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 1.  Introduction 
 
 
 
 
 
 
 
 
 
The number of reported incidents on local area networks (LANs) and further on individual 
computer systems are continually increasing since mid of the last decade. The governments, 
companies and home users are typical targets for malicious activities of hackers. Most of the 
incidents, especially on home computer systems are not reported. It is important to deploy new 
defence mechanisms in the computer security field. System administrators have to ensure that 
their systems are up to date and not vulnerable. They constantly have to take steps towards more 
secure computers and networks. But it seems that some hackers are not affected by these steps, 
because some of them are still successful exploiting computer systems. They are able to bypass 
the systems security perimeter and find paths through the present intrusion detection systems. 
By this they can access most of the computers connected to a network. 
Internet worms and computer viruses use advanced infection techniques. They spread over the 
internet and infect a high number of computer systems within a few days. Because of the global 
connection of computers, the infectious agents may be distributed all over the world. It possibly 
takes some weeks for the computer administration staff to sanitize all infected computer systems 
in a network. After an outbreak it could cost billions of Euros to reestablish the productivity of 
infected systems. 
Malicious agents can spread easily over the Internet because of weaknesses in the protection of 
individual systems. It is difficult to ensure network-wide security on large networks. Every day 
new vulnerabilities and security holes are discovered which have to be repaired immediately. 
Especially home users often do not download patches or make updates of their antivirus 
database right after they are available. Systems which are not kept up to date are in danger to be 
infected. A high percentage of today’s internet worms and viruses are undetected until they have 
a negative effect on the system.  Therefore, users often do not notice that their system is 
infected.  
The currently used methods often suffer from the need of a database which has to be constantly 
kept up to date. Those methods are not effective enough to detect new malicious agents when 
they try to infect computer systems. Current systems show weaknesses in preventing their 
spread and in preventing intrusions. This can be seen by the increasing rate of reported 
incidents.  
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1.1 Strategies of intrusion detection systems (IDS) 
 
Generally, there are two main strategies for the implementation of an IDS: 

• Misuse detection is based on the detection of already known attack patterns. The 
information is analysed by comparing it with signatures in a database. An IDS that uses 
misuse detection protects the system as soon as installed with a very low false positive rate. 
If the IDS raises an alarm it is directly referred to a specific kind of network activity. But 
those systems do not detect new types of attacks which are not included in the database. 
Therefore, the database has to be kept up to date.  

• Anomaly detection is based on the detection of deviations of the system behaviour which 
is defined by a profile for normal behaviour. This profile is learned by the IDS during a 
long time observation of the network.  

‡ This approach has several advantages. Because the IDS is based on a learned profile 
of normal behaviour, attackers do not know what activity will lead to an alarm of the 
IDS. The detection of intrusions is not based on known malicious activities like in 
misuse detection systems. Anomaly detection enables the IDS for the detection of new 
attacks which probably were used for the first time.  

‡ An IDS using anomaly detection has also some disadvantages. The profile for the 
normal behaviour must be defined and therefore, the IDS does not protect the system 
for a time period after installation. The definition of what is “normal” must be 
configured in the profile. Anomaly detection systems have a high rate of false 
positives and a generated alarm is more difficult to associate with a specific network 
activity. Furthermore, if a specific attack does not violate with the defined behaviour 
profile it passes unnoticed.  

Therefore, anomaly detection systems are not often implemented in IDS’s. Actually a lot of 
research is done about the anomaly detection strategy. The combination of both strategies to a 
hybrid detection system architecture will use the benefits of both strategies. This thesis proposes 
a hybrid detection system with an anomaly detection system based on the biological immune 
system. 
 

1.2 Overview about the thesis 
 
The human body shows us how a robust infection defence system can be built. The biological 
immune system has the job to keep the body healthy. This system is very complex and uses 
advanced mechanisms for detecting and eliminating infectious microorganisms (pathogens). 
The immune system learns to recognize new pathogens which are intruding the body and then 
produces the right kind of response to fight them. It has many properties which can be adopted 
for the design of artificial systems in the computer security field. The immune system uses 
anomaly detection for the recognition of pathogens. 
This thesis presents the implementation of a computer security system that is inspired by the 
biological immune system. The computer immune system (CIS) is applied to the network 
security domain. It is able to perform the detection of malicious code in the payloads of 
transferred network packets. This system applies several match algorithms for the inspection of 
packets. The results of the experiments with the CIS are presented and analysed.  
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This thesis has the following structure:  
Chapter 2 gives a short introduction to the biological background of the computer immune 
system. It analyses the complex biological learning mechanism for the adaptive detection and 
elimination of pathogens. The important properties of the human immune system which are 
influencing the design of the CIS are presented.  
Chapter 3 presents the model of the computer immune system. Related work is mentioned as 
well as a description of important mechanisms in the model. It is presented how relevant 
mechanisms of the human immune system are applied in the CIS.  
Chapter 4 describes the five implemented match algorithms. These algorithms are used to 
perform the data discrimination in the anomaly based detection system. 
Chapter 5 presents the components and the implementation of the CIS framework. It provides a 
short overview about the intrusion detection system Snort. This chapter also shows how 
matching algorithms are applied. It gives a detailed description of the experiments and their 
results.  
Chapter 6 explains why the data representation of the packet payload is changed from byte 
code to machine instructions. The content of the payload is decoded by a disassembler. When 
applying the disassembler an entry point has to be chosen. The problem of finding the right 
entry point in the content of the payload is analysed. Finally some further experiments and their 
results are presented. 
Chapter 7 contains the conclusions of this thesis as well as proposed future work. 
 
Appendix A analyses the byte spectrum of some text based and binary based file formats. 
Appendix B presents the tables of data from the experiments presented in chapter 5 and 6. 
Appendix C analyses the instruction spectrum of some text based and binary based file formats. 
Appendix D uses code examples to explain the “entry point effect” presented in chapter 6. 
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 2.  The Immune System of the Human Body 
 
 
 
 
 
 
 
 
 
This chapter is an introduction into the biological background of immune systems. It explains 
how parts of the human immune system are working. For further information the reader is 
referred to [19, 20, 21]. The main intention of this chapter is to understand the basic architecture 
and to define algorithms which can be mapped to computer immune systems.  
 
The human immune system is a very complex defence system with the intention to protect the 
body from various types of threats. During lifetime the body is permanently exposed to harmful 
substances (pathogens). Pathogens are harmful microorganisms like bacteria or viruses. If 
pathogens are left undetected, they lead to a rapid deterioration of the body’s health. The 
immune system has the job to fight those pathogens to keep the body healthy.  
The immune system performs two elementary tasks. One task is to detect pathogens. As soon as 
pathogens are detected, another task is to eliminate or neutralize these pathogens. Therefore, the 
immune system deploys a great amount of cells and molecules which are able to recognize and 
eliminate pathogens. The cells interact with the local environment via chemical signals. A cell 
that binds to foreign proteins is signalling a detection event. This cell will then attract other cells 
for assistance and is therefore initiating a sequence of reactions. Short after the detection of 
pathogens, a high number of cells will interact at the site of infection. The immune system 
reacts with a primary immune response which leads to the destruction or neutralisation of the 
pathogens. During the primary response, the immune system produces a variety of cells which 
are able to detect particular kinds of pathogens with an increasing accuracy. The adaptation of 
these cells takes some time. But as soon as the immune system recognizes the new pathogens 
they are killed. After the successful elimination of the intruding pathogens the immune system 
memorizes a small fraction of the adapted cells (immunological memory). These cells are high 
specific and enable the immune system to respond much faster and more efficient during future 
occurrences. This mechanism is called a secondary immune response. It is based on the 
immunological memory of the immune system. This secondary response is often fast enough to 
fight pathogens before they are reaching a sufficient number to harm the body. The 
immunological memory protects the body from infectious diseases which the immune system 
has encountered before. 
Cells of the immune system can detect subtle chemical differences between pathogens. They 
can distinguish between harmful pathogens and elements of the body. Thus, the immune system 
is able to distinguish between self and nonself [1]. The self set consists of harmless substances 
which include elements of the body. Whereas, the nonself set contains harmful substances.  
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The immune system maintains a huge amount of cells doing their job. These cells are working 
independently in the local environment and are not under centralized control [1]. This provides 
a system that is highly distributed and robust against attacks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: This figure shows the difference between the primary and the secondary response to a 
pathogen reflecting the principle of the immunologic memory [21, 22]. When a pathogen is 
detected the immune system reacts with a primary response having a low level of antibodies. If 
a second infection with the same pathogen occurs, the immune system will respond through a 
secondary response with a much higher antibody level. The antibody level reaches its peak 
much faster. This secondary response is more efficient than the primary response.  
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2.1 Architecture overview 
 
The immune system provides defence mechanisms on several levels. First, the pathogens will 
meet an anatomic barrier, the skin. The skin blocks all substances which have not the right 
shape to pass through. It forms an effective barrier to many microorganisms. But some of them 
will reach the next level of defence, especially if the skin is compromised by wounds. Wounds 
provide broad paths to infections. The next level maintains physiologic barriers where a low pH 
value and a high body temperature are mechanisms to prevent the pathogens from evolving. 
When pathogens have entered the body, then two further mechanisms are engaged: the innate 
and the adaptive immune system. Both mechanisms are based on a big number of cells 
circulating in the bloodstream. 
 

Level of defence Type Mechanisms 
Skin Anatomic barrier Physical shield, blocks entry of microorganisms 

Temperature Physiologic barrier 
Prevent pathogens from evolving, normal body  
temperature provides a inhospitable environment 

Low pH value Physiologic barrier 
Kills many pathogens by the acidous living  
conditions within the body 

Innate IS cells Bloodstream content Static defence mechanisms 
Adaptive IS cells Bloodstream content Dynamic defence mechanisms 

 
Table 2: The skin, the body temperature, the low pH value and the innate immune system (IS) 
cells are non-specific defence mechanisms. These mechanisms are equal among a population 
and they do not change during the lifetime of an individual. The adaptive immune system is able 
to develop a specific response to an encountered pathogen and retains an immunologic memory. 
It changes often during lifetime and gets more and more sophisticated. 
 

2.1.1 The innate immune system 
 
The innate immune system forms the evolutionary evolved resistance of the body to already 
known pathogens. It is a first line of defence to already known pathogens, but it cannot detect 
new kinds of pathogens. It is mainly based on a chemical signalling system called the 
complement system. The complements, also called antibodies, are free floating molecules that 
can bind to pathogens. Here it is important to note that the antibodies do not bind to cells of the 
body. They help to eliminate pathogens in an early stage of infection. The antibodies which are 
bound to pathogens are used as markers for special killer cells like macrophages. Macrophages 
are eliminating the detected pathogens (Figure 2.1). 
When macrophages detect pathogens they are activated. Activated macrophages will then 
release molecules called cytokines. Cytokines are not only released by activated macrophages, 
but also by other cells of the immune system. Cytokines raises a kind of alarm signal to the 
system, which is called the inflammatory response. This results in a higher local blood flow in 
order to attract other cells for assistance to the site of infection. They induce the increase of the 
body temperature and are responsible for activating other immune system cells. 
The innate immune system integrates several molecules that are capable to recognize molecule 
patterns typical to pathogens. There are many types of molecules that can only be found in 
pathogens, but not in the body (self). The fast response to such patterns is a strong feature of the 
innate immune system.  
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Figure 2.1: The process of a pathogen that is coated with the antibodies. In a) a pathogen, which 
was discovered by the immune system has entered the body. In b) the pathogen is detected by 
two antibodies. A pathogen has different epitope structures (see 2.2) on the surface. That’s why 
several different antibodies can bind to pathogens. In c) the coated pathogen is detected by a 
floating killer cell, the macrophage. Finally in d) the macrophage engulfed the pathogen. 
 

2.1.2 The adaptive immune system 
 
In contrast to the innate immune system, the adaptive immune system reacts with a high specific 
immune response to the threat. It is able to recognize special pathogens with an increasing 
efficiency. This is a learning process performed on pathogens which have not been seen by the 
system before. After the immune system had cleared the infection, it will keep a fraction of the 
recognizing cells in the immunologic memory. The response of the immunologic memory to a 
pathogen is called the secondary response of the immune system. This feature makes the 
individuals of a species diverse. The response will not be the same for all members of the 
species - unlike the innate immune response. A need for the adaptive immune system is the 
ability to distinguish between self and nonself. This feature is essential for all immune systems, 
because the response to elements of self will have fatal consequences. If cells of the immune 
system are responding to elements of the body, they are causing an autoimmune reaction [23, 
24]. 
The adaptive immune system is mainly based on parts of white blood cells, called lymphocytes. 
Lymphocytes are mobile and independent detectors which are circulating in the bloodstream 
and the lymphatic systems of the body. The huge number of distributed detectors builds a strong 
system capable to detect and eliminate the invading foreign microorganisms efficiently.  
 
The main features of the adaptive immune system are: 

• Lymphocyte and receptor diversity 

• Increasing specificity to pathogenic structures 

• Complex interactions between immune system cells 

• Discrimination between self and nonself elements 

• Immunologic memory 
 
In the following, the adaptive immune system and its features are described in more detail.  
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2.2 The adaptive detection of pathogens 
 
The detection of pathogens is based on the recognition of protein structures. A cell of the 
immune system has receptors on its surface which can bind to various kinds of epitopes (also 
called antigenic protein structures or antigen). Epitopes are protein structures on the surface of 
a pathogen. A detection event occurs when the chemical binding between the complementary 
receptors and epitopes succeed. The binding mechanism of receptors to epitope structures can 
be explained as a pattern match process, where a lymphocyte tries to match epitopes on 
pathogens. All receptors on a single lymphocyte are the same, but they are not the same on 
different lymphocytes. A lymphocyte is a detector for the recognition of a small subset of 
epitopes. In contrast to the lymphocytes, pathogens have different epitopes on their surface. 
Therefore, many lymphocytes can bind to a single pathogen. The immune system does not need 
to maintain lymphocytes for each pathogen to cover the whole space of possible epitope 
structures.  
It is very important for developing the immune response to have lymphocytes that have many 
equal receptors on their surface. When they are activated by the detection event, it is clear on 
which kind of pathogen the immune system should react on. Otherwise, the detection of a 
pathogen can result in an unclear immune response. A detection event can be defined as the 
number of receptors on the surface of a lymphocyte which are needed to establish a binding to a 
pathogenic epitope. This number is a threshold and measures the affinity between the receptor 
and the eptiope.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Shows the structure of lymphocytes and successful detected pathogens. In a) 
pathogens are presented, which have low affinity to the receptors of both lymphocytes. These 
do not bind to either lymphocyte 1 or 2. The lymphocytes receptors are not specific to a single 
pathogen. As it can be seen in b) and c) they can bind a small subset of pathogens which have a 
similar structure. The same type of pathogen can also be bound by several lymphocytes.  
 
The immune system maintains a dynamic detector population [22]. Lymphocytes have a short 
lifetime and if they do not match to any pathogen, they will be replaced. New lymphocytes will 
be produced in the bone marrow each day. The number of continually new lymphocytes is about 
10 percent of their total number. Only a few of them are successful and the rest is replaced again 
after some time. Thus, there is a continual turnover of detectors which increases the protection 
capability of the body. 
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2.3 The learning mechanism of the adaptive system 
 
The development of an immune response needs the cooperation between two different types of 
cells, which are the T lymphocytes and the antigen presenting cells. Antigen presentation 
occurs in various cells of the body (see 2.3.3). The lymphocytes are part of the white blood cells 
which are produced in the bone marrow. As described before, lymphocytes have receptors on 
their surface that bind to antigen structures. They can be divided into two main subgroups that 
are B lymphocytes, also called B-cells and T lymphocytes, also called T-cells. 
 

2.3.1 The B-Cells 
 
B-cells are the detectors of the immune system which are able to specialize to encountered 
pathogens. They are able to adapt to a specific pathogen and enable their efficient detection by 
the immune system. B-cells are essential for the detection of pathogens. If the B-cell receptors 
bind to an antigen it is defined as a match event of the B-cell detector. This match event will 
lead to the activation of the B-cell. The process of the B-cell activation is shown in figure 2.3.2 
on page 17. Activated B-cells are developing the adaptive immune response. The adaptation of 
B-cells to pathogens includes the following cycle of mechanisms: 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3.1: The adaptation cycle of B-cells. 
 
When B-cells are activated they clone themselves by a cell division process. The receptors of 
the clones mutate with unusual high mutation rates (also known as hypermutation) [25]. The 
high mutation rates of the receptors ensure that clones may have a higher affinity to the 
encountered pathogen, but it could also be worse. The clones do not live long and they have to 
pass a rigorous selection process. B-cell clones having a higher affinity to the detected pathogen 
are more likely to survive the selection process. The others, which are more than 90 percent of 
the cloned B-cells, will die through programmed cell death (apoptosis) after a short time.  
The clones that survive the selection will differentiate into two B-cell types. This is an 
important step for the adaptive recognition of pathogens. Those B-cells become memory cells 
or plasma cells. Memory B-cells are equipped with higher affinity receptors and have a long 
life span. Plasma B-cells are short lived and have no or only a few receptors. Their purpose is to 
produce antibodies. The antibodies are a soluble form of the high affinity receptors. The plasma 
B-cells releases the antibodies to the bloodstream where they act as free floating recognition 
molecules. 
In each adaptation cycle the B-cell clones become more and more specific to the threat. The 
cloning and selection process is repeated until the infection has been cleared. This takes time 
and represents the primary response of the immune system. It shows how a very general 

activated B-cell 
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response evolves to a very specific response. The adaptive immune system works as a dynamic 
defence system which uses the interactions of many cells. Initially, when pathogens are 
detected, it trains new cells needed to fight a specific kind of pathogen. Afterwards, it 
memorizes those detectors with the highest affinity to the pathogen, while all lower affinity cells 
will die by apoptosis. When the body has defeated the intruding pathogens the adaptive learning 
process always results in a more robust defence system. 
The new fraction of memorized B-cells is an addition to the cells of the immunologic memory. 
It retains the population of B-cells that are specific in detecting a special kind of pathogen. If the 
same pathogen appears in future infections then the memorized B-cells react with a fast and 
efficient secondary response. Figure 2 compares the antibody level and speed of occurrence in 
the primary and the secondary response.  
The use of only B-cell detectors for developing the immune response has an until now 
unmentioned problem. B-cells are maturing in the bone marrow. When they leave the bone 
marrow they possibly could bind to self cells. This is because the selection process in the bone 
marrow is not sufficient. In addition, in the adaptation cycle the receptors of B-cells are cloned 
with high mutation rates. Those B-cells could also initiate autoimmunity. But usually, mature B-
cells are tolerant to self cells. To prevent B-cells from initiating an autoimmune reaction the T-
cells come into play. A B-cell must receive two different signals to become activated. The first 
signal occurs when the B-cell receptors bind to an antigen. The second signal, a costimulatory 
signal, is provided by the T helper cells (TH-cells, see 2.3.2). If the B-cells receive only the first 
signal they will die. The need for an approval signal from the TH-cells prevents the B-cells from 
causing autoimmune reactions. 
 

2.3.2 The T-Cells 
 
T-cells are also produced in the bone marrow. To get matured, they have to migrate to the 
thymus. In the thymus they are made tolerant to almost all self protein structures. T helper cells 
(TH-cells), a subgroup of the T-cells are entrusted with the task of ensuring tolerance to the self 
cells. If a T-cell binds to self cells, it will die by apoptosis in a process known as negative 
selection [11]. The negative selection process finally chooses those T-cells to join the 
population which are not binding to self. 
Matured T-cells have on their surface a unique antigen binding receptor (T-cell receptor). B-
cells receptors are membrane bound antibodies which can only bind to the antigen structures on 
pathogens. In contrast to the B-cells, the T-cells are equipped with receptors that can only 
recognize antigen in combination with molecules of the Major Histocompatibility Complex 
(MHC). The MHC molecules are proteins bound to the surface of self cells. MHC molecules 
exist in two major types. The one can only be found in antigen presenting cells. It has the 
purpose to show other cells what they have detected. This type is recognized by TH-cells. The 
second type is found in almost every cell of the body. It is needed to display the cells genetic 
code. If the cells genetic code is changed by an infection this MHC type is recognized by T 
killer cells (TK-cells). TK-cells are another subgroup of the T lymphocytes. 
A B-cell uses the antigen presenting cell MHC type. If a B-cell recognizes a pathogen the 
combined molecule is presented to TH-cells in order to get the necessary approval for its 
detection – this is called the costimulatory process. 
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Figure 2.3.2: The cycle of a B-cell that recognizes a pathogen [21]. A B-cell recognizes a 
pathogen and gets approved by a TH-cell. The activated B-cell then proliferates and 
differentiates with high mutation rates known as hypermutation. The clones of the B-cell with 
a higher affinity to the recognized pathogen will be selected for Memory B-cells and Plasma 
cells. Plasma cells are producing antibodies. 
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2.3.3 The costimulatory process 
 
As already mentioned, the T-cell receptors recognize pathogenic antigens in combination with 
MHC molecules. The TH-cell must somehow verify what the B-cell has detected to provide it 
with the necessary costimulation. The MHC molecules allow the B-cells in a process called 
antigen presentation to show TH-cells what they have recognized. For that purpose, the B-
cells must combine antigen with the MHC molecules (see 2.3.4). Antigen presentation occurs in 
different cells of the body, like in cells that bind to antigenic structures of the pathogens (B-
cells). Further antigen is also presented in killer cells which engulf and eliminate the pathogens 
(macrophages).  
The TH-cells are binding only to antigen presenting cell MHC molecules. If they recognize 
antigen in combination with MHC molecules they release a high number of cytokines. The 
cytokines produced by activated TH-cells lead to the activation of other immune system cells. 
That’s why the activation of TH-cells must be done carefully. Otherwise their response will 
initiate major autoimmune reactions. This is because the cytokines are also causing immune 
reactions by the antigen presenting cell. The activated B-cells for example will differentiate and 
proliferate, whereas activated macrophages eliminate the found pathogen. 
TK-cells recognize MHC molecules on altered self cells. They are essential for the detection 
and elimination of contaminated host cells. TK-cells are activated by binding to cells of the 
body that present the MHC in combination with the cells altered genetic code. The infection of 
self cells alters their genetic code. The MHC then displays pathogenic structures on the cells 
surface which came from a pathogen living inside the cell. These cells are for example virus 
infected self cells. Activated TK-cells will eliminate infected self cells. 
 

2.3.4 Antigen processing and presenting 
 
Pathogens in intracellular regions: As mentioned before, the recognition of pathogens is done 
by binding of foreign surface proteins (epitopes) to the lymphocyte’s receptors. But some 
pathogens, so called intracellular pathogens, do not display their epitopes to the B-cells. B-cells 
are not able to recognize intracellular pathogens. 
The immune system uses another recognition mechanism to detect infected self cells: The MHC 
is used to carry fragments of proteins from inside the cell to the surface of the cell. Self cells can 
be infected by viruses or bacteria which are altering the structure of the cells. The complex 
foreign protein structure contains also fragments that can be combined with the MHC. This 
composition is transported to the surface of the presenting cell, where it can be detected by the 
TK-cells. They eliminate the contaminated host cell.  
Pathogens found by antigen presenting cells: When pathogens are bound to the receptors of 
the antigen presenting cells they trigger a presenting process. The antigen presenting cells are 
decomposing the complex foreign protein structure into some fragments which will enter the 
cell by phagocytosis or endocytosis. The antigen structure will then bind to the MHC of antigen 
presenting cell types. The composition is then also transported on the surface of the cell, where 
it can be detected by the TH-cells. 
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Figure 2.3.3: Here both T-cell subgroups are binding to their recognized classes of MHC 
molecules (see [21]). TH-cells can only bind to antigen presenting cell MHC molecules. TK-
cells have specific receptors for the altered self cell MHC molecule. 
 

2.4 Detection failures made by the immune system 
 
The human immune system is a strong defence system against invading pathogens. But the 
immune system sometimes fails. There are two kinds of detection errors which can occur. These 
failures of the immune system can also appear in a computer defence system. Both of them are 
harmful to the system and can result in a fast deterioration of the body’s health.  

•  A false positive occurs, if the immune system responds to a molecule which is not 
harmful (e.g. self cells) 

•  A false negative occurs, if the immune system does not respond to a molecule which 
is harmful  

In the normal case if a single immune system cell kills a healthy cell it is not a problem. This 
immune system cell will not receive the costimulatory signal from the TH-cells and it will soon 
die by apoptosis. The body maintains a huge amount of cells and there are many other cells 
which can fulfil the function of the killed cell. The problem emerges if the immune system cell 
gets stimulated by the TH-cell. In this case the immune system develops a continually 
increasing population of antibodies which are responding to the detected healthy cell type. The 
response of the immune system on elements of the body is an autoimmune reaction. This can be 
defined as false positives in the detection system. The development of a method for the 
prevention of false positives in biological systems needs the understanding of mechanisms 
which are responsible for cells death. Further it needs a clear look at mechanisms how and why 
cells die in the known autoimmune disorders. A deep insight in autoimmune diseases is 
provided by [24].  
The immune system always faces new types of pathogens. By evolution pathogens permanently 
are changing their genetic codes. Infectious agents which are already known by the immune 
system possibly mutate and evolve to some new types. Therefore beside the already known 
pathogens which are easily detected, the adaptive immune system always has to learn how to 
fight new ones. One of the central mechanisms for the detection of a pathogen is antigen 
presentation by the immune system cells. As mentioned before this process uses MHC 
molecules. If pathogens are altering their structure in such a way that MHC molecules cannot 
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bind to them then these pathogens cannot be recognized by the immune system. However, the 
antigen presenting cells possibly recognize those pathogens. But they never get stimulated by 
TH-cells for the detection and therefore those cells will die after a short time. This error is 
termed as a false negative by the immune system. The immune system must provide a big 
repertoire of MHC molecules to enable the binding to a huge amount of foreign antigenic 
structures. The body has a fixed set of MHC types which does not change during the lifetime. 
This repertoire is most diverse within a population. Because individuals do not have the same 
MHC repertoire the robustness to some special kind of pathogen is improved by evolution. The 
individuals that will withstand a virus infection have MHC types which can bind to its antigenic 
structure.  
 

2.5 Summery about the tasks of immune system cells 
 
This chapter provides a short introduction into the sophisticated mechanisms of the human 
immune system. The immune system maintains a huge amount of cells where each of them is 
entrusted with a minor task. The immune system gets its performance by the cooperation of 
these cells. The focus of the proposed approach lies on the adaptive immune system, since it is 
able to perform anomaly detection. This is done by the ability to identify elements that are not 
part of the body (nonself). After the recognition of those elements, the adaptive learning process 
(by high mutation rates of B-cells) leads to their elimination. A strong feature of the adaptive 
system is the immunologic memory. It enables the immune system to react on a reinfection with 
a pathogen.  
The tasks of lymphocytes during the development of the immune response can be summarized 
as follows:  
Many types of cells involved in the immune system are specialized to enable a speed up of the 
immune response in a repeated infection with the same pathogen. The response is developed in 
a way that it avoids autoimmunity. This indicates that the immune system can distinguish 
between elements of self and everything else. TH-cells are responsible for the tolerance to the 
self elements. At the same time they allow B-cells to evolve and mutate with high rates. By 
continued costimulation they guarantee that the cloned B-cells have an increasing specificity to 
the invading pathogens (all others die). This ensures a fast adaptation to a new pathogen. The 
task of B-cells is to diversify to become effective detectors, whereas TH-cells are not specific 
detectors. TH-cells are able to verify an antigen that is displayed by the B-cells. But they are not 
able to recognize a specific kind of pathogen on their one.  
The adaptive immune system uses the two subgroups of lymphocytes to recognize and respond 
to two different types of pathogens. The B lymphocytes react on extracellular pathogens by 
establishing a binding between the receptors and epitope structures on the pathogens. The T 
lymphocytes react on intracellular pathogens where antigenic structure - that is bound to a MHC 
molecule - is transported to the surface of the cell. 
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3.  Modelling a Computer Immune System 
 
 
 
 
 
 
 
 
 
 
The sophisticated defence mechanisms of the human immune system are developed by 
evolution. In analogy to this system a model for a computer immune system is going to be 
designed. Up to now, for intrusion detection and virus detection several approaches have been 
implemented. Some of them are reviewed and analysed in [7, 54, 55, 57, 59, 60]. The proposed 
model in this thesis is influenced by the architecture of a computer immune system which was 
developed at the University of New Mexico [1]. 
 
It is important to understand how the main parts of the immune system are working and 
cooperating to ensure the elimination of harmful elements. By applying useful architectures, 
algorithms, and design principles, this knowledge will help to improve the design of computer 
systems. Systems which are able to adapt to different kinds of threats will make those systems 
more unique. In biology, some individuals are able to fight an infection before they will notice 
it, whereas some others are getting sick. The diversity of individual immune systems among a 
population is a feature that should be considered in the design of computer systems. It will 
automatically improve the robustness of computer systems. But it is not only the diversity 
feature we are interested in. There are more features we think about in this model. 
It is difficult to design a useful defence system by copying the human immune system. It is not 
the goal of the design to apply the human immune system to the computer security domain [28]. 
Instead, the design would follow biology only as far as the implementation of the mechanisms 
appears to be useful for the special problem domain. Now, the main features of the immune 
system are pointed out [4]: 
 
•  The immune system is a multilayer defence system. Several layers fulfil their part of 

resistance against the pathogens. From the skin to the adaptive layer the immune system 
provides several barriers of defence and a high overall security.  

•  The adaptive layer ensures that the systems are individual and diverse. It learns to 
withstand a specific kind of pathogen and enables a population to be more robust to 
infections. An infection will have different effects on the individual systems. Some of them 
are getting sick, others withstand. It is a characteristic of unique systems, that the 
individual systems are susceptible in a different amount. The immune system supports a 
huge amount of diverse and redundant components. Its architecture ensures the continued 
functioning even if a few of these components fail.  
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•  Since control is localized and not centralized, the immune system is robust and error 
tolerant against failures of some components. The immune response is the result of the 
interaction of a huge amount of independent components which are distributed all over the 
body.  

•  In combination with the multiple layers, the immune system provides a distributed 
protection mechanisms of the body. There is no single point in the system where an attack 
will cause the whole system to fail.  

•  The immune system learns to respond to a special kind of pathogen with increasing speed 
and efficiency. It is very important for the survival of the population that the system is able 
to perform a detection based on the recognition of anomalies. Individuals adapt to the new 
encountered pathogens and will detect new infections very often in their lifetime. The 
adaptive immune system learns to detect the new pathogens and finally generates an 
efficient adaptive response.  

•  It retains an immunological memory which enables the system to respond more rapid on 
known pathogens in future.  

 

3.1 Related Work - UNM’s Computer Immune System 
 
A Computer Immune System called ARTIS [1] (artificial immune system) was proposed by 
Hofmeyr and Forrest (2000). It was developed at the Department of Computer Science, 
University of New Mexico (UNM). This system was inspired by the biological immune system. 
The main aspects of the Computer Immune System in this thesis are based on this architecture. 
 

3.1.1 Overview of ARTIS 
 
ARTIS consists of a huge amount of cells. The cells are the detectors of the computer immune 
system. Their function is comparable with the one of the lymphocytes in the biological immune 
system. They interact dynamically with the environment to establish an anomaly based 
detection system. The architecture follows the biological immune system to enable the 
detection and elimination of pathogens on a computer system. For this purpose the detectors are 
distributed over the system. Like in the biological systems there is no centralized control. The 
detectors are communicating and interacting in each node of the computer system only locally. 
Detecting and eliminating of pathogens is performed in each node independently. As a 
consequence, the ARTIS is very robust and error tolerant. It provides a distributed protection of 
the computer systems and is therefore robust to direct attacks.  
The main problem of detecting infectious agents in Computer Systems is to distinguish between 
“self” and “nonself”. In anomaly based detection systems, “self” is defined as all elements of 
the computer system that do not damage the system. “Nonself” are the remaining elements. The 
“nonself” set includes all elements that have a negative effect on the continuous functioning of 
computer systems. If “nonself” elements are detected by ARTIS, some action can be taken to 
eliminate them. Different elements may need to be eliminated through different mechanisms. 
The elimination is a separate problem and is up to the particular problem domain where ARTIS 
is applied. 
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3.1.2 Architecture of ARTIS 
 
The detectors in ARTIS are designed as binary bit strings with defined length. The detectors 
comprise the main properties of the lymphocytes in the biological immune system. They contain 
an indicator for the detectors state which can be immature, mature or memory. Further they 
contain an activation flag which shows if the detector is activated and also the number of 
matches it has accumulated. The binary bit string of the detector is created by random and 
represents the receptors of the lymphocytes which bind to pathogens. 
ARTIS discriminates between self and nonself through matches of binary bit strings. The 
applied match algorithm is called “r-contiguous bits” [3]. The r-value defines the threshold for 
the specificity of a detector. It also gives the number of contiguous bits that two strings must 
have in common to raise a match event. Chapter 4.2.3 gives a detailed description of this match 
rule.  
Detectors contain a randomly created bit string and therefore they can respond to self or nonself. 
After their creation they are in the immature state, but only for a limited time. For the training 
purpose, the immature detectors are exposed to the local environment. This time is called 
tolerance period, because immature detectors should learn to respond only to nonself elements. 
All detectors that match a self string will be eliminated during this period. Detectors which do 
not match to anything during the tolerance period will reach the mature state. Mature detectors 
have to match several strings until the number of matches reaches the activation threshold. 
Thereafter, they will be activated and indicate an anomaly. 
During the tolerance period usually not all elements of self can be presented to the detectors. 
The training of the detector set is based on incomplete self sets. The training of lymphocytes in 
the biological immune system is, as mentioned in chapter 2, also based on incomplete self sets. 
It is possible that mature detectors still are activated by elements that do not harm. ARTIS uses 
two methods to solve this problem. There are two kinds of thresholds implemented which 
influence the activation of the detectors:  

• A detector becomes activated when the string matches exceed a threshold within a defined 
period of time. The activation threshold of detectors can be influenced with the local 
sensitivity level.  

• The local sensitivity level is an adaptive adjustment of the activation threshold. A higher 
local sensitivity level corresponds to a lower local activation threshold. The sensitivity 
level will be incremented when a mature detector in the set detects a string and its match 
count is incremented from 0 to 1. The sensitivity level rises when a detector encounters a 
nonself string which was never seen before. After some period of time the sensitivity level 
is reduced again. This ensures that nonself strings which occur within a short time period 
are still detected. But rare self strings that may be present in the traffic do not trigger the 
detectors.  

A human user has to verify the strings which are causing the activation of the detector. If the 
user decides that the detector has detected malicious activity, he will send a costimulation 
signal to the detector. This indicates to the detector that it has correctly identified a harmful 
nonself string and it will then become a memory detector. Memory detectors have a lowered 
level of the activation threshold and are therefore able to react with a fast and efficient 
secondary response. This feature models the immunologic memory of the biological immune 
system. 
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3.1.3 Using ARTIS for Network Intrusion Detection 
 
A Computer Immune System for Network Intrusion Detection called LISYS (Lightweight 
Intrusion detection SYStem [1, 2, 9, 56]) was implemented at the Computer Science 
Department of the University of New Mexico. This system is based on the architecture of 
ARTIS. 
In LISYS, network traffic is monitored. The elements representing self and nonself are 
modelled by binary strings containing the header information of the TCP network traffic. In 
LISYS, only the start of the TCP connection is monitored. This is done by processing captured 
TCP/SYN packets. The binary string which is representing a network connection is compressed. 
It consists of the datapath information that is extracted from the TCP/IP header. It is a string 
of 49-bit length and contains the source IP address and the destination IP address which are 
extracted from the IP-Header, and the used TCP service or port received from the TCP-Header. 
The self set is defined as frequently occurring TCP network connections during the systems 
training period. The elements of the nonself set are then defined as TCP connections which are 
not occurring during the training period. The assumption was that nonself traffic is rare.  
The model of the distributed environment is defined as a graph with vertices, where each vertex 
is represented by a computer in a LAN. The graph is represented by the connections of the 
computers in a LAN. The model of the local environment is defined by the detection node 
including many detectors. The number of the detector used in a detection node of LISYS is set 
to 100 at the same time.  
The network topology is assumed to be a broadcast network and therefore, every computer 
receives every packet transferred over the network. In LISYS, mobile detectors, their 
replication, or an immune response is not implemented at this time. Also the elimination 
mechanisms for detected intrusion attempts are not implemented. In summary, LISYS 
implements most of the components and techniques given in ARTIS and uses network 
connections to determine the set of self and nonself. 
 

3.1.4 Results from LISYS 
 
A prototype of LISYS was implemented at the Computer Science Department of UNM. For the 
training of the detectors connection information was collected from 50 computers. The self set 
was represented by 2.3 million TCP/IP connections which were collected in a period of 50 days. 
From the logged TCP/IP headers 0.8 million headers have been filtered out. This was caused by 
noisy traffic sources from ftp or web servers. They usually have widely varying connection 
information and therefore, they do not provide a stable definition of self. Finally, 3900 unique 
connections were extracted. The system was trained on the self set over a time period of 30 
simulated days. Afterwards for the remaining 20 days, it was exposed to the traffic in which 
seven different intrusion attempts did occur. These intrusion attempts were real incidents on the 
network and had been logged. The logged intrusion attempts were several types of port scans 
and IP address probes. LISYS has correctly recognized the seven incidents with an average of 
1.76 false positives per day. This was a very encouraging result for a Network Intrusion 
Detection System. These results have been reported from the off-line prototype. An on-line 
prototype was implemented and tested but the results have not been published. 
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3.1.5 Limitations of LISYS 
 
The implementation of LISYS has several limitations. They can be summarized as follows: 
 
• Some limitations of LISYS result from its design to be used in broadcast networks. The 

current LAN technologies are moving towards switched Ethernet and broadcast networks 
are becoming rare. In modern network topologies, a computer receives only the packets 
that are intended for it. This speaks against the design philosophy of LISYS.  

• In LISYS the replication of memory detectors and the proposed mobility of the detectors 
in the network are not implemented yet.  

• The designers decided to monitor only TCP datapaths. But intrusions can also be 
executed at different protocols and layers. Examples are intrusion attempts by using the 
UDP protocol. LISYS does not detect them. At this time LISYS only looks for TCP/SYN 
packets. Therefore, also the detected attack range is very limited. Looking at the header of 
the TCP/SYN packets and extracting a 49 bit connection information can only result in the 
detection of connection related attacks, like different kinds of port scans.  

• Another problem of LISYS is the correct setting of the activation threshold for the 
detectors. A higher threshold is important for reducing false positives. But in general, the 
use of a threshold will miss attacks if the attacker stays under a certain number of 
connections. There would be two possibilities for an attacker to sneak in undetected: by 
infrequent anomalous connections or when the number of connections stays lower than the 
activation level.  

• LISYS will also not work on computer systems where applications like web browsers are 
going to establish connections to other computer systems, like WWW or FTP servers on 
the internet. Their possible IP range is not providing a stable definition of the self set.  

• LISYS is trained on real traffic, assuming that self occurs more frequently than nonself. 
This is an assumption made in most anomaly based systems. If nonself is presented 
frequently, it would be treated like self and the system will fail to detect the particular 
nonself elements.  

• Finally a limitation of LISYS is also that it is not completely autonomous, because human 
operators are needed. However, the architecture of ARTIS allows a learning process that 
is usually independent from user interactions.  

 

3.2 Modelling a hybrid system architecture 
 
As it is mentioned in chapter 1.1, for the detection of attacks mainly two techniques are 
implemented [38]. The first approach supports a large signature database that is kept up to date. 
It contains thousands of attack or virus signatures with the favour of detecting signatures by 
pattern matching. The second does not maintain a large database, but it watches the traffic for 
anomalous behaviour. It uses no signatures and detects attacks through protocol anomaly 
detection. 
The misuse detection or pattern matching approach is reacting on the occurrence of typical 
byte sequences or combinations of them as the traffic flows by. It detects known malicious code 
patterns by inspecting the packets of the network traffic. The byte sequences stored in the 
database are compared with bytes sequences in the packets. If there is a significant match, an 
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attack has been detected. The advantage of this technique is that it is possible to detect all 
known malicious activities based on the signatures stored in the database with no false positives. 
A disadvantage of this approach is that it looks for known signatures and potential dangerous 
code patterns which have not been identified before will not be listed and can slip through.  
The other approach, known as protocol anomaly detection, inspects the network traffic for 
flow and protocol anomalies. It can detect protocol violations or their misuse and can also scan 
the traffic for statistical abnormalities. The advantage is that it is effective at discovering new 
types of attacks, but it does not incorporate the knowledge about malicious code patterns.  
The next step in developing a highly efficient detection system is to combine both techniques to 
a hybrid system architecture [11] using rock solid techniques and an adaptive learning 
technique to achieve an intelligent intrusion detection architecture. Such a system will achieve a 
significant better detection, especially for the currently growing number of polymorphic attacks 
[26]. Some of the commercial application firewalls are already trying to implement protocol 
anomaly detection. But in this field there are still many open issues. The successful detection of 
future threats will require mechanisms that are capable for the detection of polymorph attacks. 
 

3.2.1 Defence mechanisms of the human immune system 
 
In biology the immune system of the human body is equipped with defence mechanisms on 
several layers. Each layer is intended to build a barrier for a special kind of intrusion attempts. 
The outer layer, which is the first line of defence, is responsible for rejecting very basic kinds of 
intrusion attempts. Each inner layer has the task to filter a part of the intruding elements until 
the inner most layer which should face only the most advanced intrusions. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.1: The defence mechanisms of the immune system on different layers. 
 
The layered defence system of the human body consists of the skin which is the first line of 
defence. It is responsible to filter out microorganisms with some very basic methods. If it is not 
compromised by wounds, it provides an effective barrier to microorganisms that do not have the 
required size to reach the next layer. Only elements that meet the size and shape requirements 
are able to pass through. All other elements will be rejected. When the pathogenic 
microorganisms have entered the body they have to multiply themselves to reach a sufficient 
high number to invade the body which then can lead to disease.  
The growth of the pathogens will be affected by the environmental conditions of the body. 
These are forming the next barrier for the invaders. This defence layer consists of physiologic 
barriers like low pH-value, high temperature and some kinds of soluble or cell associated 
protein structures. All of them are responsible for slowing down the growth of pathogens. The 
elements belonging to the self set are adapted to these living conditions and they are treated as 

Anatomic barrier: only elements that meet the size and shape requirements 

Physiologic barrier: only elements that accept the body’s normal living conditions 

Innate immune barrier: all known harmful elements are filtered out 

Adaptive immune barrier: learns to identify and respond to new harmful elements 
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normal. But for some of the intruders, the prevailing conditions in the body are not normal. Due 
to that fact they will be blocked.  
The third layer of defence is activated when the pathogens have already entered the body. 
There the innate immune system will eliminate all known bad elements. The innate immune 
system was learning this information to distinguish between good and bad during the evolution. 
This knowledge is given to us as a static defence mechanism. It enables the immune system to 
protect the body against all the already known pathogens.  
The fourth layer of defence is the adaptive immune system. On this level the body can 
distinguish between self and nonself. It can identify and adapt to pathogens which have not 
previously met by the system. The adaptive immune system memorizes them to strike next time 
when they are met even faster and harder. This is the reason why every system will be unique.  
 

3.2.2 Defence mechanisms of the computer immune system 
 
In analogy to the layered defence mechanisms of the biological immune system, the proposed 
framework should include defence mechanisms on several levels. Each level is responsible for 
blocking a part of the intrusion attempts. As it is shown in the following figure they are handled 
on four different levels. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.2: The defence mechanisms of the computer immune system on different levels. 
 

3.2.2.1 The defence mechanisms on the first level 
 
The first layer consists of an applications and component control (ACC) and a process 
termination monitor. The security of this layer will be increased if not just applications are 
monitored. It is important to inspect also the components of the active applications in a system. 
The defence mechanisms on this layer are able to protect applications from the termination 
through other processes. These mechanisms can also prevent the system from executing 
applications or their components when they have been modified. The ACC is monitoring 
changes on the local harddisk [37]. 
If a process crashes then the system creates some error messages. In contrast, when a process is 
terminated it is usually not noticed by the user. The process termination monitor alerts the user 
if a process, which has not been recognized and approved before (for example the Task-
Manager), tries to terminate another running process [39]. 
The ACC provides also a significant improvement in security due to detecting changes on a 
computer system. A typical Win32 application uses many modules. These modules can easily 
be substituted by modules created from virus or trojan developers. The ACC will inspect the 
applications when they are starting up for possible changes in the files. If the application itself 

First level: change detection and process termination monitor 

Second level: process execution and system hook monitor and memory protection 

Third level: application firewall and antivirus client 

Fourth level: anomaly detection by an adaptive learning system 
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or its components were modified and the application tries to access the local network, then the 
ACC will raise an alarm. It also warns the user if the application tries to build up a connection 
to other computers on the internet. The user has to decide if he wants to allow or stop the 
activities for this changed component. Through that the ACC ensures that the executable files 
and their modules are not altered and malicious.  
Trojans are not always standalone applications. They are sometimes installed as a component 
used by a well known Win32 application (just to mention one example - the web browser). In 
Microsoft Windows systems the security privileges of applications are directly applied to their 
components. If the host application has network access rights then its components will also 
receive automatically the privileges needed for establishing a connection to other computer 
systems. 
The ACC on this level allows the user to view the components and the applications it is 
currently monitoring. It also should provide the possibility for the user to remove any of the 
monitored applications and components from the trusted list. The list contains components 
which are used by several applications in the Windows operating system. The user will not be 
called for attention when a shared component is going to be used by applications to which it 
initially has not been registered. The trusted list is a database of executable files and their 
components which is continually kept up to date. Initially, all components of the Win32 
platform will be added to the database because these shared components are requested by most 
applications. But this initial setting can be modified as mentioned before. Every executable file 
that is not listed and trying to establish a connection is going to raise an event in which the user 
is asked to allow or to forbid activities from this file. If the user decides to allow the connection 
of this file, it will be added to the trusted list of files with a signature to make it possible to 
monitor also changes of this file. 
 

3.2.2.2 The defence mechanisms on the second level 
 
The second level of defence is the monitoring of hidden process execution and global system 
hooks, and a control for the protection of the physical memory. On Windows systems, several 
applications are capable for transferring data over the network, but do not implement a routine 
for the network access. They use external references to establish the connection through 
separate processes. This technique enables the applications to evade the detection by traditional 
firewalls. The applications are executing additional processes which carry out the desired task. 
These processes can be separate applications or components which provide the needed 
functionality. If separate applications are launched then the firewall security restrictions of the 
parent application are not applied to these child processes. Furthermore, these processes are not 
visible to the user. Thus, the actions which are really performed by the application are 
effectively hidden. This technology is e.g. implemented by commonly needed applications, like 
the Microsoft Internet Explorer. It is used to carry out repeated and automatically performed 
maintenance operations without the need of user interaction. Such maintenance operations are 
checking if updates or patches on some servers are available. But on the other side trojan 
applications may use this mechanism to initiate unauthorized activities in the system, such as 
stealing passwords and sending them to a remote host. The second layer of defence should give 
the user the ability to control hidden processes. Especially this applies to processes that are 
intended to perform some specific tasks for the trusted application. Thus, unwanted activities in 
the background can not be fulfilled without the notice of the user. 
Many trojans, viruses and especially shellcodes use sophisticated techniques. These techniques 
allow them to modify the executable code of the trusted application when it is actually running 
and loaded into the memory [39, 62]. They can bypass the security definitions on a system and 
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launch their malicious activities with the privileges of the hijacked process. One method to 
bypass a firewall is to directly inject (without the use of threads) some code into the web 
browser. This is known as copycat attack. There are several other methods to modify the 
physical memory of running processes. For example thermite attack which injects code through 
a DLL to the target and creates a thread in the attacked process. The firehole attack uses a global 
system hook to load a DLL into all processes which are using the systems user32.dll. It gets 
notified when its own component is injected into the web browser and then it can perform 
malicious activities by using the browsers network connection. 
This second level of defence should therefore monitor and control functions which can be used 
to write bytes to the memory and functions which are used for global system hooks. On this 
level it is possible to watch these functions and prevent them from injecting malicious code into 
the address space of trusted applications.  
 

3.2.2.3 The defence mechanisms on the third level 
 
The third level of defence will be an application firewall in combination with an antivirus 
client [40] that holds a database of already known attacks or viruses. This databases need to be 
kept up to date. Installing both of these applications on a computer system is an important step 
to a higher security level. The database lists definitions in form of signatures of known attacks 
or viruses. These signatures are a kind of fingerprint, which exactly identifies both through a 
short or compressed description of the contents. The description may include a special sequence 
of instructions or bytes, which can only be found in this kind of attack or virus. The description 
contains also important information about the configuration of a received packet. Such 
information can be a set flag, the port or service which is going to be used or a significant part 
of the payload which is also constantly the same in this kind of attack. Microsoft has released 
the Service Pack 2 for Windows XP systems in summer 2004 [41]. It enables by default a 
simple firewall which is a good step in the right direction.  
 

3.2.2.4 The defence mechanisms on the fourth level 
 
The fourth and last level of defence is the adaptive learning system. In a training period the 
computer system should learn to distinguish between self and nonself. It should learn to be 
tolerant to the normal network traffic which is defined as self. But the computer system should 
also recognize and react on nonself packets. Nonself packets are infrequent occurring parts of 
the traffic. These should be detected by the system that has learned to be tolerant to frequently 
occurring packets. Nonself elements are defined as anomalies in the network traffic and 
therefore, the implemented adaptive system is an anomaly detection system. This work focuses 
on the implementation of the fourth level of defence, the adaptive learning system.  
 

3.3 The representation of self and nonself 
 
In the human immune system the discrimination between self and nonself is based on chemical 
bonds that are set up between complementary formed protein structures. These structures are 
receptors of the immune cells and the epitopes of pathogens. The decision what is self or 
nonself in the human immune system relies on fragments of proteins.  
The representation of self and nonself in the computer immune system should use a comparable 
model [5]. The protein fragments in the computer immune system are designed as binary byte 
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strings of fixed length. The universe U of strings of defined length is divided into two subsets. 
The set of self S and the set of nonself N. U equals to the union of S and N, but their 
intersection results in the zero set. The computer immune system then has to discriminate 
between the sets S and N. Usually the set N includes much more elements than set S. This is, 
since the set S of a single computer system represents only a small fraction of the possibilities in 
U. Further, N represents everything that is not self. The system must decide for a given arbitrary 
string in the universe if it actually belongs to the self set or the nonself set. The nonself set 
contains all packets that are classified as being anomalous.  
The decision is based on the actual defined contents of the self set. The problem is that neither 
the immune system of the body nor the computer immune system have complete self sets. The 
training in both systems is based on an incomplete definition of self. Therefore, in the immune 
system mature lymphocytes possibly cause an autoimmune response. But this is prevented by an 
additional stimulation signal (see chapter 3.5.2 for details). 
In the computer immune system the autoimmune response is denoted as a false positive of the 
detection system. False positives appear in a system when the description of self patterns is 
incomplete [43]. The system will somewhen observe new patterns which belong to self. But 
since these were not included in the definition of self patterns they are treated as nonself and are 
producing false positives.  
The other kind of failure occurs when the system classifies a nonself string as being normal. 
These false negatives are also occurring in the human immune system, when pathogens are not 
detected and eliminated. These types of detection errors are harmful to either system. The goal 
is to minimize the appearance of both errors. Therefore, it is important to the computer immune 
system to think about the selection of proteins structures which are able to classify elements as 
self or nonself [17, 18].  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3: Shows the representation of the all strings belonging to the universe (see [1]). The 
nonself is defined as the complement to self and each string either is part of self or nonself. The 
immunological detection system tries to reflect the self set accurately. 
 

3.4 The detectors 
 
The immune system of the body uses a multitude of immune cells for the detection and 
elimination of foreign organisms. The detectors in this system are based on the group of 
immune cells called lymphocytes. The detectors combine the functionality of both lymphocytes 
subgroups. The implemented system is similar to the human immune system. The detectors are 
like the lymphocytes in the body acting in the local environment. They are changing their states 
and carrying out different kinds of actions. During the lifetime of a detector it can achieve 
different states. These states are introducing different phases and abilities. The system consists 
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of many independent and mobile detectors which can circulate in a distributed environment. 
Detectors with a certain state can spread out to all computer systems present in a network. But 
they are communicating and interacting only in the local environment of a computer system.  
The lymphocytes and the antibodies in the human immune system are responsible for the 
detection of pathogens. The detection event occurs when a sufficient high number of receptors 
of a lymphocyte bind to epitope structures on pathogens. The likelihood for an occurring bond 
is expressed through the affinity between the receptor and the epitope.  
In the computer immune system the receptors and epitopes are represented as character 
sequences of defined length. A detection event is produced by approximate string matching 
algorithms. Each detector is equipped with a binary string which is modelling its receptors. 
Some possible approximate matching rules are presented in chapter 4. All algorithms are going 
to be implemented and tested on the ability of discriminating between self and nonself. To 
define and influence the specificity of the detector, a threshold is needed. With this threshold, 
the specificity of the detectors can be adjusted. The specificity is the size indicator of the subset 
of similar strings which can be detected by a single detector. For example, if the threshold is 
equal to the length of the binary string, the detector can only match a single string. A completely 
general detector is defined through a threshold value that is zero. Such a detector will match 
every binary string. In practice it will be useful to apply a partial matching rule with a threshold 
somewhere between these two values. This value is strongly influenced by the used match 
algorithms. To determine the specific threshold for each match algorithm, some different 
parameter configurations will be tested. But in general, the level of detection in a computer 
system depends on the combination of two values:  

• the used threshold for the detector specificity 

• and the number of detectors.  

The same level of detection in a computer system is kept if both values are changed to the same 
direction. It is necessary when the threshold is increased to use also a higher number of 
detectors.  
 

3.5 Training the detection system 
 
Lymphocytes are created in the bone marrow and their diversity results from a pseudo random 
process. Different lymphocyte genes are created in a DNA recombination process and are 
causing diversity among their receptors. The new generated lymphocytes can then bind to self 
cells or to the pathogens. Lymphocytes in the body are trained to bind to the epitopes of 
pathogens. During the training the lymphocytes should learn to bind to nonself. In this period if 
the lymphocytes are recognizing anything they will be dieing by apoptosis (negative selection 
process). All lymphocytes that do not match during this time will be selected to survive. The 
time in which the lymphocytes are learning not to detect the cells of the body is called tolerance 
period. Afterwards they have to be tolerant to the self set. The human immune system is training 
the lymphocytes on self proteins structures. These structures are expressed to them in the 
thymus to get detectors which are able to discriminate between self and nonself. After the 
training period the lymphocyte will be mature. When it is activated, the body reacts as if a 
pathogen was detected.  
The training of the lymphocytes in the immune system is done by the negative selection 
process which ensures the recognition of nonself elements in the body. The advantage of using 
negative selection for the detectors is explored and analysed by [6, 54, 58]. An efficient negative 
selection algorithm is proposed by [61]. It is especially designed to be used by a system that 



 38 

implements the r-contiguous match rule with a binary representation of the data. The 
architecture of ARTIS includes this algorithm. But also non-binary alphabets have been used to 
achieve a self/nonself discrimination in a computer system [5]. This mechanism is adopted in 
the computer immune system for the training of the detector set to achieve anomaly based 
detection.  
 
 
 
 
 
 
 
 
 
Figure 3.5: The negative selection process for a detector in the tolerance period. The state of 
new randomly created detectors is set to immature. This state is kept for a time period in which 
the detector is exposed to the environment. If it matches anything it will die and is replaced by a 
new one. Every detector that does not match to a string in the tolerance period is released in the 
mature state. 
 
This computer immune system implements the negative selection algorithm. Each detector is 
created analogous to the receptors of the lymphocytes with a randomly generated string. Its 
state is set to immature. Detectors remain immature over the tolerance period. In the computer 
immune system the detectors are not trained centrally like the lymphocytes in the thymus, but 
more distributed in the system perimeter. During the tolerance period, the detector is released to 
the environment of the local computer system. There it can detect self and maybe a few nonself 
strings. If the detector matches any of the presented strings it is eliminated and replaced by a 
new randomly created immature detector.  
For the training it is important to assume that nonself will occur infrequently and most of the 
observed traffic contents are part of self. Otherwise the system would also become tolerant to 
the frequently expressed nonself. The decision what are self patterns is based in the anomaly 
detection system on the frequency they are observed by the system. All nonself strings that are 
observed during the tolerance period will be treated by the system as part of the self set. 
Therefore, the detectors will not detect these patterns. They would become tolerant and remain 
tolerant for the whole lifetime. But this is not a problem for the detection of nonself by the 
system, because the detectors do not life longer than a few days. Therefore, a fraction of the 
detectors is always in the immature state. This provides like in the human immune system a 
dynamic detector population. Consequently, for detectors in the mature state, a nonself pattern 
will only escape the detection if it is frequently present in the tolerance period. The system faces 
only false negatives if nonself is continually observed and this is against the assumption made 
for anomaly detection systems. Furthermore, a dynamic detector population enables the system 
to adapt to slowly changing self sets. When the self set changes, the system releases new mature 
detectors from the tolerance period. The other already matured ones that are causing false 
positives will be replaced due to the missing costimulation or because of their age. 
Like the B-cells in the body, if the detector does not match anything during the tolerance period, 
it will change the state and is upgraded to a mature detector. All detectors have a probability of 
dying once they have matured. The number of detectors in a system always stays the same. 
When detectors die they will be replaced by randomly created and new immature ones. In 
general all detectors in the set will be dieing, unless their state has been set to the memory 
status. If mature detectors match a string they will be activated and signal the immune system 

Randomly created Immature Death 

Mature 

Match anything?
Yes 

No 
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that they have detected an anomaly. The mechanism of anomaly detection relies also on the 
frequency based assumption. Immature detectors that react on self elements have a high chance 
to observe these strings during their tolerance period. On the other hand when an immature 
detector reacts on nonself elements it has a low chance to detect these strings during its 
tolerance period. Activated mature detectors reach the possibility to get upgraded to memory 
detectors which are long-lived and not eliminated over time.  
 

3.5.1 Memory based detection 
 
The human immune system has an adaptive defence layer. The adaptive immune system evolves 
a set of lymphocytes that specifically adapt to some kinds of pathogens that it had encountered. 
It memorizes this information to speed up the response in future. When there is a reinfection of 
the body the immune system does not have to learn how to recognize the pathogens again. It 
remembers the specific kind, and it will react with a much faster and effective secondary 
response. The secondary response is based on the detection effect with a memorized number of 
former trained lymphocytes. The memory based detection in the immune system is capable for 
detecting also different pathogens which have a related structure to previous encountered ones. 
This is for example the case at evolving and mutating pathogen populations. When the infection 
is eliminated, a fraction of high affinity cells are retained as memory cells in the body. Memory 
cells are not replaced over time. The fraction of memory cells includes enough lymphocytes to 
combat the pathogen with the secondary response if it is met again. 
The computer immune system supports memory based detection in a similar way. When a 
nonself string activates more than one detector at a node then those detectors with the highest 
match value, according to the match rule, are upgraded to the memory detector status. Memory 
detectors are also activated by nonself strings with related structure. This is ensured by the 
threshold for their specificity which is adjusting the value for partial string matching. The 
computer immune system can also detect new nonself elements that have similar structures. 
Every match algorithm mentioned in chapter 4 supports this feature.  
Activated detectors are asking for a costimulation signal (see chapter 3.5.2). The detectors 
which finally receive the costimulation become memory detectors. These detectors will make a 
copy of themselves. The copy then is sent to a signature database. From the database, those 
successful detectors can spread out to all nodes of the network. A representation of the 
detected string will be distributed over the network. Then all future occurrences of it are fast 
detected in any node of the network. This imitates the features of the second response in the 
human immune system. 
As mentioned, the exception to the finite lifetime of a detector will be if it achieves the memory 
status. Similar to the memory cells in the immune system of the body. Detectors which reach 
the memory state have a long lifetime and their patterns are remembered to provide a lifelong 
protection against threats. Memory detectors can only die when they are also responding on self 
strings. In that case they will not receive the costimulation signal again.  
A problem in the memory based detection is that all detectors of the set sooner or later could 
achieve the memory detector state. This would result in a more and more shrinking number of 
immature and mature detectors and lowers the effect of having a dynamic detector population. 
This problem is solved by defining a maximum number of detectors that can be in the 
memory state at the same time. This number is set to some fraction of the total number of 
detectors. When a new activated detector receives the costimulation it becomes a memory 
detector. If the fraction of the memory detector population exceeds the defined limit, then the 
upgrade is done with the least-recently-used (LRU) mechanism, as mentioned in [44]. The 
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memory detector which was activated least recently will change his state to a simple mature 
detector with again having a finite lifetime.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5.1: The figure shows the life-cycle of the detectors. Once a detector is released from 
the tolerance period, its state is set to mature. A mature detector has a finite lifetime. When its 
age is exceeding this time it will be replaced by a new random detector. If a mature detector 
detects a possible nonself string it will be activated and requests a costimulation signal. If the 
detector has detected a string of the self set it will not receive the costimulation signal and it 
dies. But if it has detected nonself the costimulation signal is sent back and its state is upgraded 
to a memory detector.  
 

3.5.2 The costimulation signal 
 
T lymphocytes are matured centrally in the thymus. But unfortunately the set of self proteins in 
the thymus is incomplete. They will be tolerant to most but not all proteins structures contained 
in the human body. Therefore, the negative selection process in the thymus maybe is not 
complete. T lymphocytes could get matured but possibly still be activated by a self protein 
which was not presented in the thymus. Because of this the T lymphocytes can cause an 
autoimmune reaction. The immune system however combats that problem by an additional 
stimulation procedure. An autoimmune reaction is prevented by a required costimulation. 
There are two signals needed to activate the T lymphocytes. The one occurs automatically when 
binding to antigen presenting cells. The second signal is provided by cells of the innate immune 
system and some other cells when the tissue of the body is damaged somehow. T lymphocytes 
are dieing with lack of receiving the costimulation. When autoreactive T lymphocytes bind to 
self proteins in absence of tissue damage they will be eliminated. In general, these lymphocytes 
will have a high probability of dying before reaching an area with damaged tissue, because most 
of the tissue is not damaged when circulating through the body. 
Also the training of the detectors in the computer immune system takes place on incomplete self 
sets. If the detector survives the tolerance period its state is changed from immature to mature. 
The mature state indicates that the detector is capable of detecting nonself. But it cannot be 
assumed that a detector has encountered every possible self string during its tolerance period. 
Resulting in mature detectors that may match a few strings in the self set. A human operator 
can provide the second signal within the costimulation delay. Detectors that are activated by 

New detector 
in Tolerization Mature 

Death 

Activated 

Detection? 

Yes 

No 

Lifetime expired?

Costimulation?

Memory 

No 

Yes Yes 

No 
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strings will send a costimulation request to the human operator which then verifies what the 
detector has recognized. If it has detected nonself the operator sends the second signal back to 
the detector. Otherwise no signal will be sent and the detector dies and is replaced by a new 
randomly generated detector. The human operator therefore does not have to respond when the 
system has incorrectly recognized something. Some occurring false positives are corrected by 
the system itself. This system is therefore largely autonomous. 
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4.  Matching algorithms 
 
 
 
 
 
 
 
 
 
 
 
The immune system must be able to distinguish between self and nonself. The discrimination 
job is the central task in anomaly detection systems based on the immune system. Many 
approaches can be used to identify nonself elements. The question is: Which algorithms are 
better suited for this kind of application?  
The algorithms are independent from the data representation and can be applied to binary byte 
strings as well as to e.g. DNA chains. They return a value which is representative for the affinity 
between two sequences. In our particular problem domain, the algorithm must measure the 
strength of the bond between the detector sequence and any data sequence under investigation.  
 
Two different methods are checked if they are able to significantly separate self elements from 
nonself elements. The first method is based on associations between data sets and the algorithm 
is the widely used Pearson correlation coefficient. The second method includes four algorithms 
based on approximate string matching [42]. The source code is presented for all of them to 
analyse the complexity of the needed algorithms.  
 

4.1 Pearson Product-Moment Correlation Coefficient 
 
This method is often used to determine the association or correlation between data sets which 
are measured through the consistence in the relative position for pairs of values [35, 36]. The 
correlation coefficient assumes in a coordinate system a straight line dependence between the 
two data sets. It measures how good a deviation in data set #1 is matched by the deviation of the 
corresponding point in dataset #2. It is called product moment correlation because it can be 
calculated by the sums from the products (crossproduct) of the deviation of the values from their 
mean. The correlation coefficient results in a value between -1 and +1, where -1 indicates the 
best negative correlation, 0 means no correlation and +1 stands for the best positive correlation. 
It is in practice quite cumbersome to calculate it from the deviation of individual datapoints. But 
another formula is easier to implement and it is used to compute Pearsons r: 
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The variable n is the number of values in the set and xi,yi are the specific values in data sets at 
position i. The significance of the correlation coefficient can be tested by the formula: 
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The resulting value t gives a statistical match value which is then compared with cutoff-scores 
in the so called T-table. For a defined error probability the T-table shows which t value the 
Pearson coefficient must reach to be significant. 
 

4.2 Approximate string matching approaches 
 
In general the approaches return values for the similarity of sequences. But there is no universal 
and precise mathematical definition for the notation of similarity. It very much depends on what 
needs to be compared. When comparing some specific words in the dictionary they may sound 
and are spelled very similar, but they have a completely different meaning. The same problem 
occurs in microbiology: Chains of proteins may be similar concerning the functions, the 
molecular structure, or also the contained sequence of special amino acids. The focus lies on the 
shape of molecular chains, which is determined through their sequences. But the shape is the 
indicator for their specific function. The search of similarity of sequences in biology has the 
purpose to find similarities in shape and so the function of proteins. But unfortunately many 
times sequences have low or even no similarity in their sequence and nevertheless their 
molecules fit to same shape or fulfil the same functions. 
The computer immune system mimics biology. Therefore, it is of interest to match code patterns 
which have similar functions. To measure the similarities of symbol sequences concerning their 
functions some flexible and more general approaches are needed. The approaches presented 
here differ in their flexibility and can be divided in two methods for determining the relation 
between two given sequences [32]. The first method is the measure of similarity. It assigns a 
representative numeric value to the two sequences that are compared. A higher value is 
associated with a greater similarity. The second method measures the distance of two sequences. 
In general, distance and similarity values are dual to each other, because a higher distance value 
will result in a lower similarity value.  
 

4.2.1 Hamming distance 
 
Several algorithms are measuring the distance between strings. The Hamming Distance [34] is a 
simple form for determining the distance. It compares two strings with equal lengths and counts 
how many symbols are different at the corresponding locations in the strings. It can also be seen 
as the number of symbol substitutions which are needed to change one sequence until it is equal 
to the other. If l is the length of the strings, then l comparisons for the calculation of the 
Hamming distance are needed. This is resulting in an asymptotic running time of ∑(l). For 
example: 
 
 

(4.1) 

(4.2) 
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A = 01011011 
B = 01010110 
 
The Hamming distance between A and B is 3. 
 
The calculation of the Hamming distance needs strings with equal lengths. This measure of the 
Hamming distance is often useful, but sometimes a more flexible algorithm is needed. For 
example if strings have different lengths, it can be solved by the sliding window in the 
algorithm below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algorithm 1: Calculation of the Hamming Distance 
 
When two strings are compared, they usually do not have equal length. In this case the smaller 
string (assume it is B), is slided like a window byte per byte towards the end of string A. For 
every sliding step all bytes in the window are compared. Every match increases the temporary 
match counter. When the window processing is finished, the actual temporary match counter is 
compared with the maximum value recorded so far. When the new value is bigger it is set as the 
maximum value. Then the window B slides to the next position in the A string. After the 
window has reached the end of the A string, the Hamming distance is given back as the length 
of B minus the maximum recorded match count. 
 
If m is the length of the data sequence and n is the length of the string B then the string B is 
needed to be shifted and compared m times with n symbols, resulting in an upper asymptotic 
running time of ∑(nm). 
 
The affinity P of the occurred match is defined by: 

l
dP −=1 , 

where d is the value returned by the Hamming distance and l is the length of the comparison 
window. 

(4.3) 

String1: A[0..m] 
String2: B[0..n] 
 
for x:=0 to m do 

tmpmatch := 0 
 z:=0 

for y:=0 to n do 
if A[x+z] = B[y] then 

   tmpmatch++ 
  z++; 
  if (x+z)>m then break 

if tmpmatch>matchlen then 
  matchlen := tmpmatch 
 
return n - matchlen 
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Probability of a match  
HAMMl,r (string1, string2) defines the occurring match when using the Hamming distance. 
Both strings are of length l and match if they have at least r equal bytes in corresponding 
positions. The match probability of two randomly selected byte strings is defined by: 
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as presented in [28]. b-l defines the probability for the occurrence of a sequence of length l in a 
alphabet of b members, and l over i counts the number of strings having i equal bytes in the 
comparison windows of length l.  
 
The Hamming distance allows only substitutions on fixed byte positions. More flexible are 
algorithms with additional operations like insertions or deletions. 
 

4.2.2 Levenshtein or Edit Distance 
 
The Levenshtein distance or edit distance [33] is a more sophisticated method to determine the 
distance between two strings. The algorithm is returning the minimum number of required edit 
operations to change one of the two strings that it is equal to the other. The allowed operations 
are deletions, insertions or substitutions.  
With more allowed operations edit distance becomes more general than the Hamming distance. 
The difference is shown with the following two strings A and B: 
 
A = CBEGAFDK 
B = BEGNFDKK 
 
The Hamming distance between A and B is 7 characters. When measured with the Levenshtein 
algorithm a distance of only 3 characters is returned. Three edit operations are needed that both 
strings will be equal to BEGAFDK. The operations are the deletion of C from A and the last K 
from B, and the replacement of N in B with A from A.  
 
The edit distance uses following definitions of one-character operations, which are necessary to 
change a sequence A to another sequence B.  
 
(x,x)  defines a character match and results in no change from A to B 
(x,y)  defines a character replacement of x in A by y from B, where x is not equal to y 
(x,-)  defines a character deletion, x in A 
(-,y)  defines a character insertion, y in A 
 
These definitions are symmetric in A and B. When a character is inserted in the sequence A also 
one could have been deleted from the sequence B. The edit distance will not require two 
sequences of the same length. The size of A and B can be altered by insertion or deletion of 
characters to get finally the same length.  
 
A: CBEGAFDK- 
B: -BEGNFDKK   
 
This example shows one Delete (C,-), one Replacement (A,N) and one Insert (-,K), thus 3 
needed operations. The operations are processed with characters at corresponding positions in 

(4.4) 
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both sequences. The pairwise applied edit operations will transform the sequence A finally into 
B.  
 

Algorithm 2: Calculation of the Levenshtein or Edit Distance 
 
This algorithm uses a two dimensional array with the size ij. A character of string A is 
compared at a time with each character of string B. If the current position B[y] is equal to A[x] 
then the edit cost is zero. Otherwise an edit operation is needed. The algorithm selects that 
operation which is resulting in the minimum value for the current cost.  
 
The affinity P of the occurred match is defined by: 

),max(
1

ji
dP −= , 

where d is the distance returned by the Levenshtein algorithm and i and j is the size of the 
strings. 
 
The calculation needs ∑(ij) operations and also ∑(ij) space. The algorithm can be optimized in 
its space requirements if the value for the edit distance should be calculated. Then the allocation 
of two rows of the previously two dimensional array is enough and the needed space is ∑(i). 
 

4.2.3 R-Contiguous Symbols 
 
This is a matching approach which is more related to the immune system of the body [1, 8, 10]. 
It returns the number of common contiguous symbols in two sequences. For example: 
 
A = 01011011 
B = 10010101 
 
The sequences A and B match with the four contiguous symbols. This match rule can also be 
applied on two symbol sequences which have not the same length. Then the shorter sequence is 
slided over the longer sequence of symbols. The algorithm returns the maximum number of 
contiguous symbols found in both sequences. The variable r is the discriminator, the threshold 
value which determines if two sequences are matching or not. If in the above example r is given 
with the value 4 then the sequences A and B are matching. If r is going to be 5, then the 

(4.5) 

String1: A[0..i] 
String2: B[0..j] 
 
for x:=0 to i do 
      d[x,0]:= x 
for y:=0 to j do 
      d[0,y]:= y 
 
for x:=1 to i do 
for y:=1 to j do 

if A[x] = B[y] then cost:= 0 
else cost:= 1 
d[x,y] = min( d[x-1,y  ] + 1, // insert operation 

    d[x  ,y-1] + 1, // delete operation 
    d[x-1,y-1] + cost)// character substitution 
return d[i,j] 
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sequences A and B do not match. Because the compared sequence A does not have 5 contiguous 
symbols with B in common. 
In terms of an immune system, the threshold describes the specificity of a detector. The higher 
the threshold, the more selective a detector will be in its matches.   
 
The first sequence is defined to be A = (a[1], a[2],…, a[n]) and the second sequence is denoted 
by B = (b[1], b[2],…, b[m]), and the variable match holds the maximum number of the 
contiguous symbol sequences of (a[1], a[2],…, a[n]) and (b[1], b[2],…, b[m]). 
 
 
 
 
 
 
 
 
 
 
 
Algorithm 3: Calculation of the R-Contiguous Symbols 
 
The complexity of the matching algorithm is determined for sequences with different length by 
the needed shift operations. If m is the size of the longer sequence and n is the size of the shorter 
sequence then the shorter symbol sequence is shifted and compared m times with n symbols. 
The upper asymptotic run time of the algorithm is ∑(nm). When both symbol sequences have 
equal length then the run time is ∑(n2). 
 
The affinity P of the occurred match is defined by: 
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whereas match is the variable defined above.  
 
Probability of a match  
CONTIGl,r (string1, string2) defines the occurring match under the r-contiguous symbols rule. 
Both sequences string1 and string2 are of length l and match if they have at least r equal 
contiguous symbols in corresponding positions. The match probability of two randomly selected 
sequences is defined by: 
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as presented in [29]. b-l defines the probability for the occurrence of a sequence of length l in a 
alphabet of b members. T(l,r) gives the absolute number of strings of defined length l that have 
not r symbols in common. So T(l,r) calculates the complement of the matching strings. 

(4.6) 

(4.7) 

(4.8)

for x:=1 to n do 
c[x,0]:= 0 

for y:=0 to m do 
c[0,y]:= 0 

for x:= 1 to n do 
for y:= 1 to m do 

if a[x] = b[y] then 
c[x,y]:= c[x-1,y-1]+1 
if match < c[x,y] 

    match = c[x,y] 
return match 
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4.2.4 Longest Common Subsequence 
 
The longest common subsequence [30, 31] solves the problem of finding the longest 
consecutive sequence which is common across multiple strings even with the possibility of 
having other symbols between corresponding symbol positions. It is an important application in 
the bioinformatics field when similarities among protein sequences need to be known. Genes are 
changing with the evolution of the species and the proteins they encode change with them. The 
task is now to search different species for regions in the DNA chains which fulfil the same 
functions. This search is done under the assumption that there must be a similarity in the chain 
for proteins functions which were preserved during evolution. When looking for the longest 
common subsequence of molecular structures within corresponding proteins among different 
species it is possible to detect molecules that have not been changed through evolution. 
 
Computer systems can apply such a method to the search of similarities in polymorph evolving 
threats. Polymorphic viruses consist of a decryption engine and the corresponding encrypted 
code. For their detection it is very important to analyse the mechanisms how differences in the 
decryption engine can be generated. Generators for polymorph viruses are using many different 
mechanisms to evade the detection. For example when garbage instructions are inserted 
between the instructions belonging to the decryption engine then this could still be detected by 
this match algorithm. This is because the sequence of the instructions belonging to the 
decryption engine often stays the same.  
The longest common substring algorithm can be seen as a modification of the edit distance. It 
allows two edit operations on the sequences, which are the insertion and the deletion of 
symbols. The character substitution is not allowed and it can be computed faster than edit 
distance. 
For example: 
 
A = BCEAEAEK 
B = BEAEAENK 
 
The longest common subsequence of A and B is BEAEAEK. Thus the result is 7. 
 
The first sequence is defined to be A = (a[1], a[2],…, a[n]) and the second sequence is denoted 
by B = (b[1], b[2],…, b[m]). The two dimensional array c of size [n,m] holds the maximum 
length of the longest common subsequence at index c[n,m]. 
 
Then 
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In the implementation of the equation of c[x,y] the algorithm looks like this: 
 
 
 
 
 
 
 
 
 
 
 
Algorithm 4: Calculation of the Longest Common Subsequence 
 
This solution does not return the longest common subsequence itself but its length. The 
subsequence can be recovered by a trace back function from the matrix c. The upper asymptotic 
run time of the algorithm is ∑(nm). 
 
The affinity P of the occurred match is defined by: 

),max(
],[
mn
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where c[n,m] is the maximum length returned by the algorithm and n and m is the size of the 
symbol sequences. 
 
 

(4.10) 

for x:=1 to n do 
c[x,0]:= 0 

for y:=0 to m do 
c[0,y]:= 0 

for x:= 1 to n do 
for y:= 1 to m do 

if a[x] = b[y] then 
c[x,y]:= c[x-1,y-1]+1 

else 
c[x,y]:= max(c[x-1,y],c[x,y-1]) 

return c[x,y] 
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5.  Implementing the Computer Immune System using 
SNORT 

 
 
 
 
 
 
 
 
 
 
 
In this chapter the implementation of the computer immune system is presented. It is shown 
how it succeeds at detecting malicious code in packets of the network traffic. The targets for this 
system are Internet worms, different kinds of viruses and shellcodes which are possibly 
polymorph. The targets are further all other pieces of code that have a negative effect on the 
continued functioning of computer systems and on larger scale local area networks (LANs).  
Today's computer systems are running (mostly) one kind of operating system which makes it 
easy for a new virus to spread rapidly. Independently evolving immune systems will make 
computers in a network more diverse. Because of that, systems will become more robust to 
today’s common threats. The implementation in this work is intended to shield computers in a 
LAN from new network driven attack attempts (see [12]).  
Each network node is equipped with a sensor which is used to train an individual set of 
detectors. This set evolves in response to the network traffic at this node. The set of detectors 
will be different in each node. That makes the whole network system highly diverse. A 
vulnerability in one system refers not automatically to the same kind of security hole in another 
system. Applying the computer immune system with multiple independent sensors across a 
network ensures a distributed detection system which is not centrally or hierarchically 
controlled.  
 
In this chapter the framework of the computer immune system is described in detail. The 
implementation takes advantage of the Open Source Network Intrusion detection system called 
Snort [16]. It provides the basis for processing the packets of the network traffic. Since it is an 
open source intrusion detection system it also has a large community of users from which newly 
developed plug-ins can be tested. Now, the following chapter gives a short overview about the 
Snort Framework. For further information about Snort the reader is referred to [13, 14, 15].  
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5.1 Overview on the Snort Framework 
 
Snort is a popular multilayer packet inspection system [16]. It is a network based intrusion 
detection system which is sniffing and processing the transferred packets. Since it is based on 
signature detection, it searches in the packets for known attack patterns. During packet 
processing all packets are examined by several independent component layers. 
 
 
 
 
 
 
 
 
 
Figure 5.1: Schema of the Snort Framework. It shows the packet processing flow. 
 
The component layers in the Snort Framework function as follows:  

• Snort receives all the traffic by using the packet capture library. In Windows Systems this 
is done by the WinPcap library which is used to get access to Ethernet packets. First, 
Snort receives unprocessed packets from the Data Link Layer (OSI-Model [63]).  

• Then, the packet decoder processes the header information. It will decode the data link 
frame, which can be for example 802.3 (Ethernet) or 802.11 (Wireless LAN). Thereafter, 
the IP protocol header and the TCP or UDP packet header will be decoded. Snort’s decoder 
fills up internal data structures with the information provided by the packets and protocols. 
By this it enables the start of the inspection at the next level. The data structures are 
accessible from all higher layers and provide the needed information for further processing.  

• A preprocessor module follows the packet decoder. It includes several plug-ins and 
operates on the data structures of the packet decoder. It implements various detection 
mechanisms which are inspecting the packets on this low level. In the preprocessor module 
also data transformations are performed which should simplify the further data inspection. 
Preprocessors can directly access the output modules and they are able to alert on suspect 
packets immediately. They also can classify the packets and possibly drop them if one of 
the preprocessors has encountered an attack.  

• The next component is the more CPU-intensive detection engine. It executes the main 
pattern inspection techniques. Here the packets passed on from previous layers are now 
inspected at the transport and application layers, which are the layers 3 and 4 in the TCP/IP 
model [63]. The packet contents are examined by rule-based detection plug-ins. They use 
signatures of already known attacks.  

• The output module is placed on top of all. It generates and logs an alert if one of the 
previous layers has encountered significant patterns in a packet. The detection engine and 
the preprocessor are directly connected with the output module. If a preprocessor or a rule 
of the detection engine responds on the contents of a packet then the output module 
receives a description of the incident. In the generated alert also some optional information 
about the detection activity can be provided.  
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Snort Packet 
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plug-ins 

Detection 
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The Snort framework has two positions for a plugin development: In the preprocessor and in the 
detection engine. For the decision where the computer immune system should be implemented a 
closer look on both layers is needed. 
 

5.1.1 Snort’s Detection Engine 
 
Snort has a clever plugin architecture and therefore, it is more than a simple pattern matching 
system. The implemented rules ensures that it is flexible to configure and easy to keep it up to 
date. The detection engine analyses the contents of packets to find patterns and match 
signatures. These signatures are stored in rule files. Snort provides a flexible and robust system 
of predefined rules. At startup, it reads the attack signatures by processing the rule files line by 
line. The contents are parsed and loaded to an internal data structure. The detection engine 
checks traffic packets by comparing them with the attack signatures. Overall, it processes 
packets at a high level with a rule based system which makes it not to the right place to perform 
deep data analysis. 
 

5.1.2 Snort’s Preprocessor 
 
In preprocessors special pattern detection mechanisms can be implemented and they will work 
as the network traffic flows by. For example one existing plugin analyses packets for the Back 
Orifice magic cookie. It uses a weak encryption and therefore, it cannot be detected by 
comparison with patterns. The used encryption can be broken with the brute force method by 
trying all possible keys. This example needs something different than a rule based detection 
engine. Here, the traffic will not be scanned for possible attack signatures. The purpose is to 
implement some deeper data analysis.  
The preprocessor is the first module where a packet passes through the components of Snort. It 
removes packets from their way to the detection engine which needs much CPU time to verify 
all signatures. An advanced packet preprocessor detects inconsistencies or wrong header 
information in packets which is typically an indication for suspect behaviour.  
In the OSI model the preprocessor is placed at the Data Link Layer. A big advantage of the 
preprocessor plugin layer is that it is possible to analyse packets at the lowest level. There, the 
implementation of other sophisticated techniques like the detection of anomalous protocol 
behaviour or other statistical related approaches will be possible. The extension of Snort with an 
anomaly detection preprocessor will make it capable for detecting malicious activities. The 
implementation of a preprocessor plugin can make use of some more advanced mechanisms 
than the port and pattern matching applied in the detection engine.  
 

5.2 Architecture of the computer immune system 
 
The Snort framework consists of several layers of processing routines installed on each network 
node. The focus lies on the sensor installed in the preprocessor plugin layer and the 
corresponding monitor application.  

• The sensor processes all the network traffic of the network node. It represents the main 
logic of the computer immune system. The sensor incorporates all the mechanisms for 
training and reacting on various activities of the detector set.  
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• The monitor of the network node presents the status of the sensor to the user. It shows the 
ongoing activity in the detector set and provides a visual overview of all changes. The 
monitor also allows the user to react on a possible detected malicious code fragment in a 
packet. Furthermore, it is responsible for the communication with a central database.  

• This MYSQL-Database collects the most successful detectors of the whole computer 
immune system. Further it receives statistical information about the status of each network 
node. The monitor sends successful detectors, trained by the local sensor, to the central 
database. It eventually receives new ones which were trained by other network nodes. The 
monitor passes such newly received detectors to the sensor for implementation.  

• The database can also be read by external frameworks with a similar kind of 
environment. In this way successful detectors and incident reports can be provided to 
different work groups. The common data format for the exchange of information with the 
database is IODEF (Incident Object Description and Exchange Format), a XML based 
format.  

• The statistical information in the database is used to update the Web-Frontend. There, the 
status of the computer immune system can be viewed. 

 
 
Figure 5.2: Architecture of the computer immune system (CIS). Each network node is equipped 
with a CIS sensor and a monitor application. The monitor applications are communicating with 
a database. The purpose is to update the statistics of the local training process and to upload 
successfully trained detectors, so that they can spread over the CIS.  
 

5.3 Architecture differences to ARTIS and LISYS 
 
The concept behind the implementation of this computer immune system is mainly based on 
ARTIS. Most mechanisms of ARTIS are implemented. This system has only some minor 
changes from the architecture, like a lower activation threshold, or the use of more match 
algorithms.  
The LISYS (Lightweight Intrusion detection SYStem [1]) from the Computer Science 
Department of the University of New Mexico (UNM) is also based on ARTIS. How the 
proposed architecture in ARTIS is implemented depends on the particular problem domain. This 
system should find malicious code in the payload of network packets. The design of LISYS is 
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intended to find some port scan attacks. Beside the fact that LISYS was based on ARTIS it has 
major differences the system implemented in this thesis. This implementation needs the 
inspection of all TCP and UDP packets of the network traffic. In contrast, the design of LISYS 
needs only the inspection of packet headers. The packets which are intended for inspection are 
included in the TCP-handshake procedure which is needed for the connection establishment 
between two computers in a network.  
A more detailed description of the main differences between both systems is listed below:  

• Packet payload processing: A major difference is, that LISYS monitors only the start of a 
TCP connection. For this purpose, the connection information (Source IP, Destination IP 
and Port or Service) from the header of TCP/SYN packets are extracted. This information 
is then compressed to a 49-Bit string on which all match operations took place. In contrast 
to LISYS, the proposed approach in this thesis is not to inspect the headers, but the 
payloads. 

• Inspection of the whole network traffic: In addition, LISYS processes only TCP packets 
which have set the SYN flag. In contrast the Snort framework allows a simple access to the 
network traffic through WinPcap. In this system not only TCP/SYN packet headers are 
watched, but also the whole network traffic. That includes all TCP and UDP packets. 

• No realtime packet inspection capability: Assuming a 100Mbit network connection, then 
there will be a huge amount of data to process. LISYS was tested by UNM over a period of 
50 days.  In that time period about 2.3 million TCP/IP connections were detected. That is 
an average of 32 connection requests per minute. The point is that LISYS doesn’t need to 
process much data. Because the immune system in this thesis will not focus on a particular 
part or type of the network protocols it will require much more computing time than 
LISYS. Therefore, it is not possible for the preprocessor to act in real-time on the packets 
that are captured. 

• Online prototype: For LISYS only results of an offline prototype have been published by 
using idealized assumptions. The system described in this thesis was tested in an online 
environment.  

• Data representation at byte level: Representing the payload at bit level and comparing it, 
by using a sliding window, with the detectors is too CPU-intensive. This approach also 
doesn’t make sense when the payload is inspected. Applications are working with the 
payload data at byte level and therefore this will also be used in this thesis.  

• No restriction about the network topology: The design of LISYS was based on a 
broadcast network topology, where all nodes in the network are confronted with the same 
network traffic. Therefore, also the detector sets of all nodes were trained on the same 
traffic. The underlying topology for the system presented here is not restricted to a 
broadcast network. 

• More autonomic network nodes: LISYS was designed for a distributed environment, 
although that feature wasn’t implemented. For example, mobile detectors or the exchange 
of successful detectors are not implemented. The system of this thesis should work in a 
more independent way with a higher number of detectors. It can be distributed over a large 
network without loosing autonomy of each individual system. An additional network node 
does not increase the communication overhead for the whole system. In the present work 
the number of network nodes is only limited by the maximum number of users allowed by 
the database.  
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• Higher number of detectors: LISYS uses 100 detectors on each node. The decision to use 
a higher number of detectors in this thesis is not only based on the non-broadcast 
environment. A reason is also the much greater spectrum of possibilities of the payload 
data compared to the 49 bit string of LISYS. 

• Five match algorithms: ARTIS proposed the r-contiguous bits match rule and in LISYS 
the designers where using it with a window size of 12 bits. With the huge amount of data to 
process and the higher number of detectors it needs to be investigated which kind of match 
rule is the best approach. In this work five different match algorithms are implemented and 
compared in their results.  

• Different symbol representation of the detector: Because of the byte level representation 
of the data it is also necessary to change the symbol representation of the detector. Instead 
of a bit string the detector holds a vector of bytes (or instructions).  

• Low activation threshold: In LISYS, the activation threshold was initially set to 10 and 
was then adapted dynamically to the current traffic. For LISYS, the implementation of an 
activation threshold was useful. Because for detecting portscans, the extracted header 
information will remain largely the same and portscans are usually occurring within a short 
period of time. In this thesis the activation threshold is set to 1 which should ensure that the 
system is more sensitive to infrequent occurring suspect packets. By setting the activation 
threshold to 1 every match of a detector will lead to its activation. This is based on the 
observation that the same substring of a payload will occur very infrequent in time or even 
not at all. If they are appearing within a certain period of time its more up to coincidence 
and mostly in another context of data. Therefore, it makes no sense to wait for another 
occurrence by using a higher threshold. In contrast to that a port scan will occur as burst of 
related packets. A disadvantage of a threshold of 1 is that the chance for false positive 
increases.  

 

5.4 The sensor of the computer immune system 
 
For the construction of the sensor it was very important to consider the kind of information the 
set of detectors should be trained on. The detectors will face text based data as well as binary 
data in the network traffic. Two kinds of matching approaches are implemented: These are the 
group of approximate string matching algorithms and the Pearson correlation coefficient. In 
the approximate string matching algorithms the payloads of the packets can be seen as a chain 
of strings, where some of them are characteristic. The Pearson correlation is implemented by 
building the spectrum of the byte distribution of the data in the payload. Some analysis was 
done to show whether the spectrum of the payload will give a good discrimination of the data. 
This provides the basis for the training of the detector set. 
For the training, self is defined as the contents of the payloads which are frequently observed on 
the LAN over a long period of time. Nonself on the other hand is then defined as the set of the 
contents of the payloads which are not frequently present in the traffic on the LAN.  
Packets can be transferred between two internal computers on the LAN, or between an internal 
computer on the LAN and an external computer outside the LAN. Here we do not differentiate 
between the locations of computer systems or between different sources where packets can 
come from. This is because potentially malicious code can also be contained in packets from 
computers inside the LAN. An assumption in the design is that the systems do not trust any 
other computer that is transferring data to them. 
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Computers, which are part of the immune system do not transfer any data related to the immune 
system between them. The design of the immune system does not need a communication 
between computers in the LAN. The only transfer of data generated by the immune system is 
done through the monitor application which communicates with the central database. This is 
done in IODEF, a XML based format containing no binary data.  
The computers on the LAN that maintain a sensor of the computer immune system have a 
maybe changing set of connections between them. It is not even necessary that a computer is 
connected to the LAN, when it is part of the computer immune system. A computer is 
representing an autonomous detection node.  
 
 

 
Figure 5.4: Example network constellation on which the computer immune system is applied. 
The computer immune system (CIS) is distributed over computers that are not necessary 
connected to the LAN. Each computer of the CIS represents a detection node which holds a set 
of detectors. The set of detectors is permanent changing with the life-cycle of the detectors. 
Each detector contains a randomly generated symbol sequence (Signature Value), and a specific 
information to the detector: Its state, which can be immature, mature or memory; an activation 
flag, which indicates the wait state for costimulation; the number of matches it has accumulated; 
the time of the last activation, indicating the timeout for the costimulation and finally the age of 
the detector. 
 

5.4.1 Configuration of the preprocessor 
 
The preprocessor maintains two files for its configuration. The first file provides the parameters 
for adjusting the preprocessor. The second file saves the actual training status of the detector set. 
 

5.4.1.1 The preprocessor configuration file 
 
Preprocessors are turned on through Snort’s main configuration file snort.conf. When the 
computer immune system is activated, following options can be set by the user in the Snort 
configuration file:  
 

activation threshold:  how often a detector must match with packets of the network 
traffic before it gets activated. Higher values will reduce false positives, but on the 
other hand suspect packets will be missed. Therefore, the threshold is set by default 
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to the value 1. The user should pay attention to the consequences, if it is changed 
from default. 

 
tolerance period:  the length of the training period of the detector set. It is most important 

for reducing false positives. The detectors set should learn to adapt to packets being 
transferred over the network which are assumed to represent normal traffic. 
Detectors which are matching anything during this period are replaced, ensuring the 
tolerance of the detector set to normal traffic. A higher value for the tolerance period 
results in a lower chance in receiving false positives. But as the tolerance period 
increases also possible infrequent nonself packets are tolerated. Furthermore, they 
will not be detected from mature detectors released from this longer tolerance period. 
The longer the period the higher the chance for creating detection holes in the system 
and maybe it fails in detecting anomalies. Detectors in the tolerance period have an 
immature status. Detectors released from the tolerance period have mature status. 
The tolerance period is set by default to 4 days. 

 
life expectancy:  the time span a detector is given to prove its success. If the detector was 

not activated during this time it is assumed that it is less useful and needs to be 
replaced. This parameter ensures a dynamical changing detection environment and 
possible detection deficits will not be permanent. Detectors exceeding the life 
expectancy are replaced by new randomly generated ones. A finite lifetime provides 
a detector set which can adapt dynamically to a slowly changing self set. It is 
important to define the right proportions between the lifetime and the tolerance 
period. Otherwise maybe the computer immune system faces a high number of false 
positives or maybe even the loss of the detection capability. The default value for the 
maximum age of the detectors is set to 14 days. 

 
match decay period:  this parameter is only valid when an activation threshold greater 

than the default value of 1 is used. It reduces the value of accumulated matches over 
time. 

 
sensitivity decay period:  this parameter is only valid for activation thresholds greater 

than the default value of 1. The sensitivity level reduces the activation threshold. It is 
decremented again within the time period given by this parameter. The activation 
threshold is therefore an adaptive threshold, which enables the preprocessor to adjust 
the sensitivity of the detector set in a dynamic way.  

 
costimulation delay:  gives the time that the user has to decide when a detector has 

been activated if indeed nonself has been detected. If no action is taken the detector 
is replaced by a new random one after the delay. The default value for the delay is 24 
hours. 

 
number detectors:  can be adjusted to set the optimal number of detectors. 

 

5.4.1.2 The preprocessor data file 
 
The preprocessor saves the learned values to a data file periodically. When the preprocessor is 
initialized it accesses this file and reads the last saved values to reinstall the states of the data 
structures. The file holds the following values: 
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a) The general configuration of the detector set 
 

Detector number:  the count of the local detector set, for example 1500 detectors at 
this node. 

 
Detector length: sets the length of the byte vector, for example 30. 

 
 
 
b) Some statistic values which document the learning progress of the detector set 
 

Tolerance replacement:  the total count of the detectors which were replaced during the 
tolerance period since the preprozessor was initialized the first time. 

 
Activation replacement:  the total count of the detectors which were replaced due to lack 

of receiving the costimulation signal. 
 
Lifetime replacement:  the total count of the detectors which were replaced because of 

their age. 
 
Engine running time:  the total time the engine was running. 
 
Number of processed packets:  the total number of packets which were processed by 

the preprocessor so far. 
 
Number of rejected packets:  the total number of packets which were filtered out of 

the network traffic. The preprocessor discards packages with presumably clean 
content like text-based contents, such as html files. This is done to reduce computing 
load on the detectors. This number is only set if the packet filters are activated. 

 
c) Values which are stored separately for each detector of the set 
 

Detector state:  immature, mature, memory 
 
Detector activated:  Boolean value. 
 
Number of matches:  the number of the accumulated matches of the detector. 
 
Last activation:  holds the relative time when the detector was last activated. This value 

is zero when the detector was never activated, but also when the costimulation signal 
was received. The relative time is measured in terms of the running time of the 
engine since the detector was activated. 

 
Time created:  the relative time which gives the age of the detector. 
 
Value of the detector:  it is given by the array of symbols (e.g. a character sequence) 

which are random created sequences with the length given by the parameter 
“Detector length”. 
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5.4.2 The logfile of the preprocessor 
 
The preprocessor periodically writes the progress in teaching the detector population to a 
logfile. It documents all important changes of the detectors and useful additional information 
like statistics. The logfile is intended for the use by the monitor application of the computer 
immune system. The contents of the logfile and their effect on the monitor application are 
described in more detail in section 5.5. 
 

5.4.3 Applying the string match algorithms 
 
After a detector is released from the tolerance period it is treated as mature detector. When it 
becomes activated and receives the costimulation signal it will be a memory detector. These 
successful detectors have the feature that they can detect structurally related nonself strings. 
This feature is supported by all match algorithms.  

• The Pearson correlation enables the detectors to respond to payloads with related 
spectrum. Therefore, this algorithm gives for each detector a broad bandwidth of possible 
detections. By this it is a very general approach. For better discrimination the value of the 
detector must be of sufficient length and/or the probability of the significance level must be 
high. 

• The Hamming match rule is more general than the r-contiguous byte match rule. 
Hamming can detect the longest contiguous sequence plus some possible matching bytes in 
the surrounding area. For the Hamming match rule contiguous sequences are not required. 
The match value received from the Hamming rule is at least equal when compared to the r-
contiguous byte match rule.  

• Levenshtein distance and its special case the Longest Common Subsequence include 
operations which alter the size of the strings. For example, the Longest Common 
Subsequence algorithm searches for the occurrence of a string sequence all over the other 
string and accepts gaps within the strings. This property makes it possible to search in the 
payload also for mutated code segments. Almost all of today’s successful threats and 
attacks use some polymorphism [26]. 

The ranking of the algorithms concerning their specificity (from specific to general) is as 
follows:  

1. r-contiguous bytes,  
2. Hamming Distance,  
3. Levenshtein distance or edit distance,  
4. Longest Common Subsequence,  
5. Pearson correlation.  

 
Now following is a detailed description of the match algorithm implementation.  
 

5.4.3.1 Overview about the algorithm implementation 
 
The calculation of the match value by using the Hamming Distance, the r-contiguous symbols 
and the Levenshtein distance or edit distance string matching algorithm requires equal size of 
the compared strings. Since the payload is of variable length and the detectors contain strings 
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with fixed length, the implementation of the algorithms has to take care of that fact. All three 
implementations therefore use sliding windows with the size of the detectors string length. The 
window is slided from the beginning of the payload until its end, skipping one byte of the 
payload each time. The Longest Common Subsequence match algorithm does not need to have 
strings of equal length. But it turned out that a learning effect in the detector set can only be 
achieved if also a sliding window is applied. 
 

5.4.3.2 Implementation of the Hamming Distance match algorithm 
 
For Hamming Distance and the r-contiguous symbols algorithms the matching is performed as a 
one dimensional process. This also can be seen in the code example for both algorithms (see 
chapter 4). But there is a difference in the alignment of the sliding window. The payload string 
is aligned in horizontal direction; let’s say it is beginning from left with byte zero and ending on 
the right side with the last byte. Then for the Hamming match rule the alignment of the sliding 
window is also in horizontal direction.  
 

 
Figure 5.4.3.2: Alignment of the sliding window for the Hamming match rule. 
 

5.4.3.3 Implementation of the r-contiguous symbols match algorithm 
 
The window alignment for the r-contiguous symbols match rule is vertical to the payload data. 
All symbols of the detector string are compared at once with one symbol of the payload until the 
end of the payload. This constellation results in a two dimensional matrix of match values. 
 

 
Figure 5.4.3.3: Alignment of the sliding window for the r-contiguous symbols match rule. In the 
two dimensional matrix all values are initially set to zero. If a match occurs then the value on 
the upper-left side is incremented. The symbol in the upper-left position must have matched 
before to get a greater match value for a contiguous symbol sequence. # Process indicates the 
number of the current match. 
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5.4.3.4 Implementation of the Levenshtein Distance match algorithm 
 
The implementation of the Levenshtein distance was more complicated. The window alignment 
here is also vertical, but the implementation is only useful for comparing strings of equal (or 
almost equal) length in horizontal direction. The calculation needs a two dimensional matrix for 
each match process. This requires a two dimensional sliding window with the dimension of the 
detector length in both directions. The window was slided in steps over the payload data. The 
step size was 1 or 2 bytes, depending on the match value of the previous window. If the distance 
had a decreasing tendency the step was set to 1 otherwise the step was 2. The purpose of 
skipping most of the time two bytes was to speed up the match process. But the sliding window 
was slowed down in positions of the payload with a potential higher match value. The upper 
asymptotic running time of the implemented algorithm was not as proposed ∑(nm), but 
approximately ∑(n2m). Where n is the window size and m is the length of the payload. 
 

 
Figure 5.4.3.4: The two dimensional sliding window for the Levenshtein distance or edit 
distance.  
 

5.4.3.5 Implementation of the Longest Common Subsequence match algorithm 
 
The Longest common subsequence (LCS) algorithm is also applied to the payload with a sliding 
window. Without a window, longer payloads produce significantly longer common 
subsequences with the detector string than shorter payloads. It has been verified that LCS with 
no window will have no learning effect in the detector population. A horizontal window of size 
300 is slided over the payload with a step size of 50 bytes. That ensures the detection of those 
LCSs which are appearing within a smaller range. The window alignment is similar to the r-
contiguous symbols match rule. All symbols of the detector string are compared at once with 
one symbol of the payload until the end of the horizontal window in the payload. The first 
match run goes from byte 0 to byte 299 in the payload, the next match process is going from 
byte 50 to byte 349 in the payload, and so forth. The size of the two dimensional matrix is in 
vertical direction the length of the detector and in horizontal direction it is 300.  
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Figure 5.4.3.5: Alignment of the sliding window for the longest common subsequence match 
rule. It is calculated similar to the r-contiguous symbols match rule, but in here not only the 
upper-left position is of interest. In addition also if no match occurs in the process before then 
two further positions are checked. These additional positions are in the matrix the upper position 
and the left position. The highest value then is filled in the actual position of the matrix. This 
procedure results in the longest contiguous sequence with allowing gaps within the sequence.  
 

5.4.4 Using the Preprocessing Engine for payload processing 
 
When a packet is captured from the Pcap Library, Snort fills up an internal data structure with 
the packet. This data structure is passed to the preprocessor, so all parts of the packet can be 
accessed easily. Primary of interest is the payload data. If there is no significant difference 
between the detector and the payload data then some action is taken. In the tolerance phase of 
the detector (immature state) this will be the replacement with a new random detector. In the 
mature or memory phase it will be the raise of a costimulation request. This chapter presents the 
results in the training of the detector set for the different match algorithms described above. 
 

5.4.4.1 Simulated network traffic 
 
The network traffic for training the engine was simulated. This allows the comparison of all 
match algorithms under the same traffic and the same conditions. The network traffic simulated 
internet file transfers. The TestData set contained two main file types: 
 
 File count Space amount 
Binary files 2937 419,7 MB 
Text files 7173 91,8 MB 

Table 5.4.4.1: The composition of the TestData set 
 
The binary file type contains executable files (exe, dll, ocx), images (gif, jpg), archives (zip, tar, 
gz, cab, rar), document formats (doc, xls, pdf, chm) and a few music files (mp3). The text file 
type contains source code (c, cpp, h,…), hyper-text files (htm, html), scripts, text files and a few 
base64 coded files (simulating email attachments).  
The transfer of all files in the TestData set was repeated without break after the last file was 
sent. In that way a continuous transfer rate over the network was ensured. 
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5.4.4.2 Measuring the success of a learning process 
 
The learning progress is measured by two performance values. The first is the number of 
detectors that are replaced in the tolerance period (will be plotted in the chart 
"Replacements"). The training will be successful when the turnover of detectors is decreasing 
over time. As time advances, more and more detectors should survive the replacement in the 
tolerance period. Then the complete detector set is assumed to show a better tolerance to the 
presented network traffic.  
The second performance value is the age of the oldest detector in the detector set (will be 
plotted in the chart "Oldest Detector"). In a successful training some of the detectors must have 
become resistant to replacement. While the captured packets are processed they are getting older 
and older. The oldest detectors are assumed to have the greatest tolerance to the presented 
network traffic. The lifetime of the oldest detector was chosen as a representative performance 
value. 
 

5.4.4.3 Overview of engine testing 
 
The algorithms are tested whether they have a significant learning effect, which should be seen 
after a few repeated transfers of the TestData set. Some of the detectors, a fraction not too big, 
should then be resistant to the continued replacement. That means some detectors will be 
equipped with a character sequence which is not included in the TestData set. They will be 
tolerant to the self set (which was presented as the TestData set).  
Two different approaches are chosen to train the detectors set. In both of them the minimum 
payload size for a packet that is intended for processing was set to 60 bytes. This limit will filter 
out packets involved in the TCP-Handshake procedure, packets with a payload size of zero 
bytes and other small payloads. It was assumed that packet payloads containing malicious code 
will have a length of at least 60 bytes.  
The first measurement had the purpose to determine Snort’s idle packet processing rate. In this 
measure the implemented algorithms were deactivated. The TestData set was transferred over 
the network and the number of packets which Snort has received was recorded. With this value 
the packet drop rate could be calculated in the following runs. When the algorithms were 
activated in the preprocessor engine Snort was slowed down due to the processing of the 
packets and dropped a percentage of the packets. The fact that Snort dropped a fraction was not 
a problem, because the data being transferred was repeating. Because of a rearrangement in the 
sequence of files Snort was not dropping the same packets on each run. Therefore, it was 
ensured that the training set was a bit different each time.  
The implemented algorithms are applied with different parameter configurations. In a 
configuration three parameters can be adjusted:  

1.  the size of the detector set (detector number),  

2.  the detector length and 

3.  the significance level (threshold for a match). 

Now following both approaches and their results are described in more detail. 
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5.4.4.3.1 The first approach, without the use of packet filters 
 
In the first approach all transferred packets are passed to the preprocessor engine. It was 
necessary to limit the speed of the 100Mbit network connection, because the preprocessor could 
not process the data in realtime. Thus, the speed of the network connection was controlled and 
set to an average value of 94.4 kB per second. Even in a slowed down file transfer Snort did 
drop packets, because it could not catch up with processing speed. The percentage depended 
largely on the used match algorithm.  
Many configurations were resulting in a not successful training. The following table gives an 
overview of the successful configurations. 
 
Algorithm # detectors Detector 

length 
Significance level Drop 

rate 
Pearson correlation 3000 220 0.99995 35.4% 
r-contiguous symbols 600 8 3 bytes 51.8% 

Table 5.4.4.3.1: This table shows the successful configurations of the implemented algorithms 
in the first approach. Only three of 12 configurations lead to a successful training of the detector 
set. The third successful training was a slightly changed configuration of the r-contiguous 
symbols match rule and is therefore not listed in the table. 
 

5.4.4.3.2 The second approach, with the use of packet filters 
 
In the second approach the preprocessor engine was implemented with a packet filter. Overall 
we have an enormous number of packets that are subject to inspection. It is in the interest of the 
implementation to use a mechanism for the reduction of the processed data. A huge amount of 
packets has to be monitored. The algorithm candidates will be tested if they can discriminate 
between text based packets and binary data packets. Packets with text based content are 
common in the transfer of html web pages and packets that contain binary data are for example 
applications. By filtering out text based packets this approach has the advantage of reducing the 
high data load. When Snort faces a high data load the queue of buffered packets is reduced due 
to fastly dropping text based contents. According to this the packet drop rate caused by slow 
packet processing is lower. In addition also the network speed was slowed down even more. 
This time the speed was set to an average of 40 kB per second which should assist the filters in 
reducing the packet drop rate. A high portion of packets that were not of interest were rejected. 
Due to the fact that the training of the detectors is based on a data selection which is possibly 
more dangerous the training of the detector set will be more efficient.  
For implementing the filters some file formats have been analysed. As it can be seen in 
Appendix A the average spectrum is definitely different between text based file formats, such as 
html pages, and binary file formats including executables. It is easy to distinguish between 
payload data containing text and containing binary data. But it is very difficult to distinguish 
between binary data coming from data format files, like pictures, and executable files.  
It turned out that the Pearson correlation coefficient gives a very good discrimination between 
text based file formats and binary file formats. The correlation coefficient between the spectrum 
of an incoming packet and the text reference spectrum is highly significant for packets 
containing text based data. So a major part of the packets which are not of interest can be 
rejected with the use of a Pearson text filter. 
A second filter was implemented with the purpose to reject binary packets with a definitely 
wrong spectrum. When the traffic was analyzed it turned out those packets containing no file 
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data fall in this class. These packets have a short payload and are occurring frequently. This 
filter was implemented in a very conservative way to make sure that no packets of interest are 
missed. The spectrum of this filter is also presented in Appendix A. 
The second approach had a better performance in comparison with the first approach, which 
was mainly based on the knowledge of not successful configurations.  
 
Algorithm # detectors Detector length Significance 

level 
Drop 
rate 

Pearson correlation 3000 220 0.99995 2.1% 
Hamming Distance 500 10 4 bytes 19.4% 
r-contiguous symbols 250 16 4 bytes 32.4% 

Table 5.4.4.3.2: This table shows only the successful configurations of the implemented 
algorithms in the second approach. There are already three of six configurations which lead to a 
successful training of the detector set.  
 

5.4.4.3.3 Factors that influence the training 
 
In the second approach the packet drop rate was analysed for a significant effect in influencing 
the training of the detector set. Therefore, the three successful configurations (see table above) 
were also chosen for a second training. The training conditions of the first approach were set up 
again. The filters were turned off and the data was transferred with the faster network speed. It 
turned out that the training took longer when the drop rate is higher. This was resulting from the 
presentation of only a fraction of the self set in one run. The size of the fraction depends on the 
packet drop rate. Because this fraction has in each run different contents it is a very realistic 
approximation to the real world demands. The training was finished with the same result. There 
is no significant negative effect caused by different packet drop rates (with the respect to the 
longer training time). Differences in the training success are only caused by the combination of 
two parameters. The one is the number of symbols with which the detector is equipped and the 
other is the chosen significance level for a match. The number of detectors is responsible for the 
coverage of patterns belonging to the nonself set and is not influencing the success of the 
training. 
 

5.4.4.4 Results of the first approach (without filters) 
 
The results are presented in a graphical form, the numerical data can be found in Appendix 
B.1.1.  

5.4.4.4.1 The Pearson correlation coefficient 
 
The first algorithm implemented was the Pearson correlation coefficient. A byte spectrum was 
generated from the payload of a packet. The number of occurrences of each byte was stored in a 
256 byte vector as a frequency distribution. To be able to compare it with a reference it is 
necessary to divide the vector by the length of the payload. After this normalisation the vector is 
correlated with each detector. Three different configurations have been tested to determine the 
difference in the learning process in response to changing parameters. The number of detectors 
was 5000 in the first configuration and 3000 in both the second and in the third configuration. 
Each detector was holding 30, 90 or 220 values out of the 256 possible byte values of the 
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spectrum. The values represent, like the values in the data vectors, relative occurrence 
frequencies which have been normalized to the packet length.  
After a Pearson correlation coefficient is calculated it will be tested if it is significant. For this, 
three tables with cutoff-scores were added using four different statistical significance levels: 
0.95, 0.975, 0.990 and 0.99995.  
During the training of the detector set a significance level of 0.975 was used in the first two 
configurations and 0.99995 in the third configuration. That means that during the tolerance 
period all detectors were replaced, which correlate to an occurring data vector with a 
significance level of 0.975 or 0.99995, respectively.  
 
The results of the implemented Pearson correlation coefficient are presented in figure 5.4.4.4.1a 
and figure 5.4.4.4.1b. The replacement rate in the first and second configuration was much too 
high. Furthermore, the age of the oldest detector stays pretty much the same. Not one detector 
from the set survived a run. Both performance indicators do not show any tendency in the 
direction towards a useful detector. This leads to the decision that the training will not be 
successful within a reasonable time period. The training was interrupted after two respectively 
three runs. The third configuration was chosen properly. Both performance values indicate a 
successful configuration. The number of replaced detectors is dropping with each run and also 
the age of the oldest detector has a higher value after each run. This configuration had also the 
lowest packet drop rate.  
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Figure 5.4.4.4.1a: The Replacement rate of detectors using the Pearson correlation in three 
different configurations. 
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Figure 5.4.4.4.1b: The age of the oldest detector when using the Pearson correlation at three 
different configurations. 
 

5.4.4.4.2 Hamming Distance 
 
The Hamming distance match algorithm was slightly modified, because it should return the 
similarity value of two sequences and not their distance. With this it was easier to compare the 
results with the other algorithms.  
The Hamming distance was also implemented in three different configurations. The size of the 
detector set was 600 in the first configuration and 300 in both the second and the third 
configuration. Each detector was equipped with 8 bytes in the first configuration, with 20 bytes 
in the second and 18 bytes in the third one. The threshold for a match was set to 3 bytes in the 
first configuration and 4 in the second and the third one. 
The results of the implemented Hamming Distance algorithm are presented in figure 5.4.4.4.2a 
and figure 5.4.4.4.2b. The tendencies of the replacement rate of all three configurations indicate 
not successful runs. The rate stays approximately the same over a long time. The first 
configuration was the fastest, because of a much lower detector length. For the second and the 
third configuration the length was increased because of the higher match threshold. This was 
necessary to ensure that a fraction of the detectors are still replaced. Otherwise a detector length 
of 8 in combination with a match threshold of 4 will lead to a replacement rate near zero. Then 
the detector set will not be trained at all. For the second and the third configuration it was 
initially difficult to see if the training will be successful in further runs. This was because the 
age of the oldest detector in the set was increasing. After the sixth run in both configurations it 
turned out that the training was instable and not one detector was immune to the continually 
replacement. It was observed that a detector length of 16 will lead to a more stable training, but 
at the same time also the replacement rate was shrinking. This result is not published here 
because the impression of a “stable training” was caused more by the low replacement rate than 
by a tolerant detector set. 
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Figure 5.4.4.4.2a: The Replacement rate of detectors using the Hamming distance in three 
different configurations. 
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Figure 5.4.4.4.2b: The age of the oldest detector when using the Hamming distance at three 
different configurations. 

5.4.4.4.3 r-contiguous bytes 
 
This algorithm was tested in two configurations and both appeared to be successful. The only 
difference was the size of the detector set. In the first configuration 600 detectors are trained and 
in the second 800 detectors. Each detector was equipped with 8 bytes and they were exposed to 
the traffic over 10 runs. The threshold for a match was set to three contiguous bytes. Both sets 
resulted in very similar training values.  
This training shows two important facts: 

• The training success of algorithms is independent from the number of used detectors.  

• The training success of algorithms is independent form their packet drop rate (see 
Appendix B.1.1.3).  

The replacement rate was decreasing in each further run and at the same time the age of the 
oldest detector was increasing. Both are indicating that some of the detectors become immune to 
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replacement and are therefore tolerant to the presented TestData traffic. In figure 5.4.4.4.3a and 
figure 5.4.4.4.3b the results of the implemented r-contiguous bytes algorithm can be seen. 
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Figure 5.4.4.4.3a: The Replacement rate of detectors using the r-contiguous bytes match rule. 
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Figure 5.4.4.4.3b: The age of the oldest detector when using the r-contiguous bytes match rule. 
 

5.4.4.4.4 Levenshtein distance or edit distance 
 
This algorithm was tested with only one configuration. The size of the detector set was 100, 
each equipped with 8 bytes. This algorithm is measuring the distance between two sequences, 
but it was modified like the Hamming distance to return the similarity. The threshold for a 
match was set to three equal bytes.  
The algorithm had a low packet processing rate, because of the need for two dimensional 
matching windows. Snort’s packet drop rate lies in each run on the average at 84%, although a 
low number of detectors have been chosen. A high drop rate is responsible for a slow adaptation 
to the TestData set. But beside this low processing speed the training seems to be not successful. 
The Levenshtein distance or edit distance was tested in only one configuration. The replacement 
rate of the detectors in the set stayed almost the same over all runs (figure 5.4.4.4.4a) and also 
not one detector survived a run (figure 5.4.4.4.4b). The result of this configuration shows the 
training of detectors which were not specific enough to adapt to the presented TestData set. 
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Figure 5.4.4.4.4a: The Replacement rate of detectors using the Levenshtein or Edit distance. 
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Figure 5.4.4.4.4b: The age of the oldest detector when using the Levenshtein or Edit distance. 
 

5.4.4.4.5 Longest common subsequence (LCS) 
 
The LCS was tested in two different configurations. The first was using 130 detectors equipped 
with 18 bytes. The second was using 100 detectors of 17 bytes length. In both configurations the 
threshold for a match was set to 11 bytes. This algorithm had a poor packet processing speed 
with a packet drop rate near 90% so it was necessary to watch the training in more runs. The 
first configuration appeared to result in a detector set which is getting older each further run. 
Although the age of the detectors stays between the third and the fifth run almost the same. Also 
the replacement rate remains at the same level. The second configuration was applied with a 
slightly lower number of detectors, which therefore had a higher packet processing rate. The 
lowered length of the detectors was intended to get a maybe clearer tendency in the training 
result. The detectors are again getting older and this time until the seventh run in monotone 
upward tendency. But the eighth run in combination with the low replacement rate of the 
detectors lead to the conclusion that this partial success is more up the very low packet 
processing rate than to a real success of the training. This training was done before the 
implementation of the Levenshtein algorithm. 
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Figure 5.4.4.4.5a: The Replacement rate of detectors using the Longest Common Subsequence 
in two different configurations. 
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Figure 5.4.4.4.5b: The age of the oldest detector when using the Longest Common Subsequence 
in two different configurations. 
 

5.4.4.5 Results of the second approach (using filters) 
 
In the second approach four algorithms were tested if they are able to train the detector set when 
the engine faces a higher load of binary packets. The high rate of binary packets was achieved 
through the activation of the two implemented packet filters which drop all text data. Now the 
engine only processes packets which potentially contain malicious code. In comparison to the 
first approach a slowed down network speed had to be used. This was up to the low 
performance of some algorithms. Due to the lower network speed also a lower packet drop rate 
was achieved. All measured data are listed in Appendix B.1.2. 
 
 
 
 

Conf1 
Conf2 

Conf1 
Conf2 



 73 

5.4.4.5.1 The Pearson correlation coefficient 
 
The successful Pearson correlation of the third configuration in the first approach was reused to 
see how it is performing at high loads of binary packets. The algorithm trained the detector set 
successfully. The values for the replacement rate as well as those for the oldest detector were 
almost the same as they have been before. This algorithm is able to adapt to different data 
constellations and is able to ensure that the detector set is after some time tolerant to the 
presented network traffic. 
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Figure 5.4.4.5.1a: The Replacement rate when using the Pearson correlation in the second 
approach. 
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Figure 5.4.4.5.1b: The age of the oldest detector when using the Pearson correlation in the 
second approach. 
 

5.4.4.5.2 Hamming Distance 
 
The training in the first approach was resulting in an instable detector set. Due to the lower 
network speed a higher packet processing rate was achieved. Therefore, the number of detectors 
was increased to 500, each equipped with 10 bytes. The threshold of a match was again set to 4 
bytes. This training of the detector set will be successful in further runs, although the training 
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process is very slowly. Figure 5.4.4.5.2a shows the replacement rate which is slightly 
decreasing towards the seventh run. After the seventh run the detector set contained 35 detectors 
out of the 500 which are with a high probability tolerant to the presented self set. Their age was 
continually rising between the fourth and the seventh run.  
This training configuration was something special. In all the other ones the replacement rate 
decreases fast for successful runs, resulting in a fast growing population of detectors which are 
tolerant to the presented network traffic. This training configuration is also working. The 
algorithm had a high packet processing rate. But in contrast to the other successful trainings it 
takes much more time to adapt to the presented TestData set.  
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Figure 5.4.4.5.2a: The Replacement rate when using the Hamming Distance in the second 
approach. 
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Figure 5.4.4.5.2b: The age of the oldest detector when using the Hamming Distance in the 
second approach. 
 

5.4.4.5.3 r-contiguous bytes 
 
The training in the first approach was successful in both configurations. In the new training 
situation the second configuration of the first approach was reused. 800 detectors were selected, 
each with the length of 8 bytes. The match threshold was set to 3 bytes. This configuration now 
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failed in the training of the detector set. This was possibly up to the higher packet processing 
rate and the high load of binary packets. The high number of binary packets was leading to a 
definitely higher number of replacements. Two additional configurations were tested on their 
success. The first of them used a set of 2000 detectors, each equipped with 4 bytes. The match 
threshold remained at the value 3. As it can be seen in the following figures the replacement rate 
stayed at almost the same level. All detectors were continually replaced in sooner or later runs. 
Finally in the ninth run not one detector was immune to replacement, therefore also the 
configuration was assumed to be not successful.  
The other configuration was using 250 detectors, each of 16 bytes length. This time the match 
threshold was increased to 4 bytes. The packet processing speed in this configuration was also 
acceptable with a drop rate of 32.4%. The replacement rate was very low, because a defined 
string of 4 contiguous bytes is contained in a very low fraction of the payloads. That’s why the 
training was successful. 
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Figure 5.4.4.5.3a: The Replacement rate when using the r-contiguous bytes in the second 
approach. 
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Figure 5.4.4.5.3b: The age of the oldest detector when using the r-contiguous bytes in the 
second approach. 
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5.4.4.5.4 Longest Common Subsequence (LCS) 
 
The second configuration of the LCS algorithm in the first approach was reused. Here 100 
detectors equipped with 17 bytes were trained on the network traffic. The match threshold was 
kept at 11 bytes. 
The training of the detector set was not successful. The replacement rate was not changing 
during the runs and remained at almost the same level. But compared to the first approach the 
rate was definitely higher which was causing the low value for the age of the oldest detector. 
After the fourth run not one detector was immune to replacement. The lower speed of the 
network traffic had unfortunately no effect on the rate of the processed packets.  
Afterwards a second configuration was using a higher specificity of the detectors. The number 
and the length of the detectors remained the same, but the match threshold was increased to 12 
bytes. This training was developing in the same way as before the Hamming Distance (see 
5.4.4.5.2). The number of replaced detectors remains over the runs at almost the same level. But 
age of the oldest detector is from the sixth run on continually increasing. This result came from 
one detector that is with a high probability tolerant to the presented TestData set. The 99 other 
detectors are in each run subject to replacement – and therefore the replacement rate does not 
significantly change. 
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Figure 5.4.4.5.4a: The Replacement rate when using the longest common subsequence in the 
second approach. 

Longest Common Subsequence

467748914919 4995

75904
56386

37561
43999

37875

24999

15511

35215

1,0E+3

1,0E+4

1,0E+5

1 2 3 4 5 6 7 8
Number of Runs

O
ld

es
t D

et
ec

to
r (

lo
g 

sc
al

e)

Reihe1

Reihe2

 
Figure 5.4.4.5.4b: The age of the oldest detector when using the longest common subsequence 
in the second approach. 
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5.4.4.6 Conclusion on the training results of both approaches 
 
Overall, three of the five implemented algorithms were able to train a detector set successful in 
terms that it would be tolerant to the presented network traffic. The remaining two algorithms 
(LCS and Levenshtein distance) unfortunately are processing the packets much to slow. 
After the training period two of the successful algorithms from the second approach have been 
tested on their success on detecting nonself elements. The first algorithm was the Pearson 
correlation and the second the r-contiguous bytes string matching method (third configuration). 
For this purpose 9064 virus files have been collected which includes potential threats to each 
version of the Windows operating system. After the training of the detector set these 9064 files 
were transferred over the network. They should be detected by the computer immune system as 
elements which were not observed previously. The system should declare them as anomalies in 
the network traffic. These 9064 files were transferred by using 36972 packets. The following 
table shows how many of them are declared as suspect packets. 
 
Algorithm Detection Rate 
r-contiguous bytes 17 suspect packets 
Pearson correlation 6433 suspect packets 

Table 5.4.4.6: The detection rate of transferred virus files by two algorithms. 
 
The very low detection rate of the r-contiguous bytes algorithm came from the fact that only 250 
detectors are used in combination with a match threshold of four contiguous bytes. The 
possibility for observing a predefined sequence of four contiguous bytes is low. In addition, 
when using 250 detectors only a very small fraction of possible patterns contained in the nonself 
set are covered. Therefore for better results it will be necessary to increase the number of used 
detectors in a large extent. But now this is not practicable because of a too low performance of 
current computer systems.  
The Pearson correlation used a set of 3000 detectors. It is able to detect previously not presented 
packets in the network traffic with an acceptable result. For an even higher detection rate it is 
also required to increase the number of detectors. 
 

5.4.5 Modification of the data representation 
 
We are interested in detecting malicious executable code in the payload of the packets. The goal 
in training the detector set is to enable the detectors finally to detect malicious runable machine 
instructions. For this the comparison of binary byte strings is not the best approach. In the 
methods used so far the payload is represented as binary string where the symbol range is from 
0 to 255. A big fraction of the packets being transferred is not executable at all. Therefore the 
representation of the data in the payload can be converted to disassembled machine instructions. 
Then the unambiguous number of the machine instructions is the new basis for the match 
algorithms. At the low level observation, the traffic stream has no indicators for the actual 
position in the files, if the packets are treated as being independent. A detailed description of the 
modification of the data representation is provided in chapter 6. There also the implementation 
of the disassembler engine and the results of the applied algorithm are presented. 
 
 



 78 

5.5 Using the Preprocessing Engine for packet header processing 
 
The inspection of the payload content described in chapter 5.4 had a low success rate. This was 
shown by the result of the practical tests in chapter 5.4.4.6. The complexity of the payload data 
on which the training is based is too high. The assumption behind this modification was: As 
soon as the data complexity is reduced the results of the computer immune system will lead to 
the detection of attacks.  
The detector set used in LISYS was trained on the headers of packets and the system had a high 
detection rate with a low number of false positives. Therefore, the implementation in this thesis 
was modified. By this, the system is trained on a similar data set, as it was used for the training 
of LISYS. Now the training of the detector set is not based on the payload data, but on some 
fields of the packet header. The training of the detector set should verify the results of LISYS 
implemented by Hofmeyr and Forrest. Further it should show that the presented architecture of 
the computer immune system in chapter 3 is performing good job in anomaly detection.  
 

5.5.1 Description of the data representation 
 
In LISYS the datapath information is extracted from TCP/SYN packets and compressed to a 
string of 49 bit length. In this thesis a string of 72 bit length is used to represent the source IP 
address, the source port, the destination port, one bit to indicate if the payload is of zero length, 
one bit that defines the protocol and if the protocol is TCP then also the TCP-Flags of the packet 
are included. It was assumed that the underlying topology of the network is switched ethernet 
and not like in LISYS a broadcast topology. Therefore, the destination IP address was not of 
interest, because for the incoming packets it is always the same. After the training the detectors 
would be not specific to a single computer in the LAN. They can be spreaded over the network 
in case of a successful detection.  
The network traffic contains two protocols of interest: TCP and UDP packets. Here both 
protocols are inspected. In case of TCP traffic only the packets with a SYN Flag were selected 
for further processing. But in addition also UDP packets are processed.  
Our representation of the extracted 72 bit string uses no compression. The 72 bit were split up in 
two bit sequences which were distributed over an array with 36 bytes. The format of the byte 
array is as follows: 
 

•  Index 0 to 15: stores the 32 bit SourceIP Address 

•  Index 16 to 20: store the lower 10 bits of the Source Port  

 (Portnumbers ≤ 1024) 

•  Index 21 to 25: stores the lower 10 bits of the Destination Port (Portnumbers ≤ 
1024) 

•  Index 26 to 28: stores the remaining 6 bits of the Source Port (Portnumbers > 1024), 
which bits are often Zero 

•  Index 29 to 31: stores the remaining 6 bits of the Destination Port (Portnumbers > 
1024), which bits are often Zero 

•  Index 32 to 34: stores the TCP Flags. Those indices are zero for the UDP protocol 

•  Finally the Index 35: stores in the first bit a boolean value indicating if the packet 
length is equal to zero, and in the second bit if the current packet was TCP or UDP. 
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5.5.2 Training of the detector set 
 
The detector set was trained on the above described constellation of the TestData set. This time 
a small LAN consisting of 15 workstations was used for the test environment. The sensor was 
installed one of them and all network nodes were transferring the data set to the one equipped 
with the sensor. Therefore, the self set consists of 15 IP addresses including the ports used for 
the data transfer.  
It had been observed that under two conditions the increment in the training time for tolerating a 
few additional network nodes is low. First, this applies to nodes which are part of the same IP-
Subnet (Class C Network Addresses). Second, the detector set should already be tolerant to the 
actual number of network nodes.  
The used algorithms were the Hamming Distance, the Levenshtein Distance and the Longest 
Common Subsequence. We do not use the r-contiguous bit match rule.  
 

5.5.3 Results of the applied algorithms 
 
All three algorithms have been trained successful on the file transfer using 15 IP addresses out 
of the Class C Network range from 192.168.123.0 to 192.168.123.255. The Hamming Distance 
was tested in more detail if it detects portscans from different source IP addresses. The portscan 
attack ranges from port number 1 to 1000 and is producing 1566 packets. The source of the first 
portscan was an IP Address from one of the 15 network nodes, which are part of the local 
network. This is simulating an attack from a “trusted” computer from the network 
neighbourhood. The second attack was driven from a random chosen IP Address belonging to 
the same Class C IP addresses as the 15 network nodes. This was simulating an attack from a 
computer which is not normally connected to the local network. And finally the third tested 
attack came from a completely different IP Address. 
 
Portscan number Source Detection Rate 
1 192.168.123.50 517 suspect packets 
2 192.168.123.99 751 suspect packets 
3 169.254.244.19 1496 suspect packets 

Table 5.4.6.3: The detection rate of a portscan attack from different IP addresses, by using the 
Hamming Distance algorithm. 
 
This result shows that the architecture behind the computer immune system is capable for 
detecting anomalies very well. The training of the computer immune system is not restricted to 
IP addresses belonging to the local network; it is also possible to include external connections. 
The training will be successful if these connections are occurring frequently and use static IP’s. 
A static IP Address set can not be defined for machines which are frequently connecting to 
various WWW or FTP Servers on the web. Therefore the anomaly detection with this approach 
will not work if it’s based on the extraction of some header fields on these machines. This 
limitation is also mentioned by Hofmeyr and Forrest. 
It works very well for protecting the own network from external connections. Precisely that are 
IP addresses which are not belonging to the previously defined self set. Here in this test 95.5% 
of the packets from an external driven attack are declared as being suspect, and that’s definitive 
the indication for a correctly detected portscan. Internal attacks are also detected by a high rate 
of suspect packets: 33% for the first portscan and 48% for the second portscan. 
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5.6 The monitor of the computer immune system 
 
The monitor application is the interface of the sensor to the user. It periodically reads the logfile 
of the sensor and displays the ongoing changes to the user in a visual comfortable manner. In 
addition the monitor informs the user about the actions requested by the sensor and the status of 
some autonomic tasks. Changes of interest are for example: 
 

•  Changes in the state of a detector. After the tolerance period detectors become 
automatically mature detectors. If they have successful detected malicious activity 
they receive the costimulation and become memory detectors. 

•  The activation of a detector. In the logfile also the dump of the packet(s) is included 
which is responsible for the activation. 

•  The replacement of detectors caused by the end of their lifetime, or by an absent 
costimulation signal. 

•  The replacement of detectors in the tolerance period. This information is displayed 
per time interval. 

•  The appending of a successful detector to the detector set which is trained by another 
network node. 

 
The user should get an overview about the update actions during the learning process of the 
detector set since the preprocessor was initialized. The information is displayed as a 
preprocessor event log. Additional statistical information about the learning process of the 
sensor is updated periodically. That statistical information includes the following values: 
 

•  Number of detectors in tolerance phase 

•  Number of mature detectors 

•  Number of activated detectors 

•  Number of memory detectors 

•  Number of replaced detectors in tolerance phase since the beginning of the learning 
process 

•  Number of replaced activated detectors since the beginning of the learning process 
(false positives) 

•  Number of replaced mature detectors because of their age since the beginning of the 
learning process 

•  The overall running time of the preprocessor, this is the time since it was initialized 

•  The age of the oldest detector 

•  Number of packets being processed since the beginning of the learning process 

•  Number of packets being rejected (if the filter is used) since the beginning of the 
learning process 
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5.6.1 Periodically produced events  
 
The sensor periodically logs a summary of the number of detectors which were replaced due to 
a match in their tolerance period. This is the only message that is displayed by the monitor until 
some of the detectors reached the mature state. 
As mentioned before also statistical information about the training process is frequently 
updated. This information is decoded and displayed by the monitor in corresponding fields to 
provide a clear overview about the status of the detector set.  
 

5.6.2 Events produced by detectors in the mature and memory state 
 
Mature detectors need a number of match events (according to the activation threshold 
parameter) then they get activated. This event will be handled by the monitor as a costimulation 
request and therefore it is displayed to the user in a separate window. This ensures that the user 
does not lose track of all user requests. While a detector is activated it can discover further 
sequences in the payload data. Every time a detector matches a symbol sequence in the payload 
it will increment its match count. This is logged in combination with detailed information of the 
discovered packet. If the sensor requests a costimulation of one detector the user gets also a 
dump of the packets which were causing the activation. All the packets can be disassembled 
with a free selectable entry point in the payloads. The user now can decide if the detector had 
observed some malicious code. If this is the case, the monitor application sends the 
costimulation signal back to the sensor and the detector will become a memory detector. Then 
the sensor delivers the successful detector to the monitor, which is building up an IODEF 
(Incident Object Description and Exchange Format) document. The monitor then sends this 
document to a special table in the central MYSQL-Database (Memory Detector table, see 
chapter 5.7). The communication of the monitor with the database for the exchange of 
successful detectors is done with IODEF, which structure is XML based. The content of the 
document is described in chapter 5.9. The monitor frequently requests updates of successful 
detectors from the database. If a detector was added recently then the monitor receives the 
detector and sends it to the sensor, where it can be appended to the local detector set. If a new 
detector is added to the database it can be spread over the whole network. The thesis provides 
the framework for the implementation of such a distribution. All tests of the system did not use 
such a function, because the work focused more on the recognition of malicious code than on 
the distribution of information about them. 
If an activated detector has detected no malicious activity the sensor logs its replacement after 
the costimulation timeout. Then it is also deleted from the user request window. If mature 
detectors did not match any strings during their lifetime their replacement is also logged. Finally 
the sensor produces some more events when the activation threshold is changed from the default 
value. This will activate the local sensitivity level of the sensor and the belonging messages. 
 

5.6.3 Updates of the MYSQL-Database 
 
The monitor application performs the update of three tables in the computer immune system 
database.  

•  The monitor updates the Statistic Table. It sends the statistical information about the 
current training status to the database. The monitor receives this information from 
the logfile of the sensor.  



 82 

•  It updates the Chart Data Table. This includes the calculation of the data needed for 
displaying the charts on the webpage.  

•  It updates the Memory Detector Table. When a detector finally has been upgraded to 
a memory detector then the monitor produces an IODEF document. The document is 
appended to this table in the database. 

 

5.7 The computer immune system database 
 
The database is designed as a MYSQL database [64] on a web server. This database must be 
accessible by the monitor applications from all computers which belong to the computer 
immune system. It consists of three tables:  

•  the Statistic Table,  

•  the Memory Detector Table  

•  and the Chart Data Table.  

Each computer system is registered in the database through its IP-Address. This is necessary to 
ensure that data updates are associated correctly with the corresponding monitor application.  
The data of the Statistic Table and the Chart Table are used to keep the Web-Frontend up to 
date. The Memory Detector Table is used to spread successful detectors within the immune 
system. It is also open for access from other frameworks using a similar kind of anomaly 
detection environment. These foreign systems can use the IODEF document to improve their 
own detection system. The incident information report is available for public access. 
 

5.8 Web-Frontend 
 
The purpose of the Web-Frontend [65, 66] is the presentation of the current status of a computer 
immune system which is running on a network. The Web-Frontend allows a public view. The 
statistical data of all network nodes is presented on this web page. This allows to track the 
actual progress in the training of the system.  
The data presentation is divided into two sections:  

•  The first section is an overview about the training success of the detector set in the 
computer immune system, shown as two system performance charts. One chart 
shows the number of replaced detectors in the tolerance period per time interval. The 
other chart shows the average age of the oldest detector in the computer immune 
system.  

•  In the second section the detailed learning progress of the independent network 
nodes is presented in two tables. All values of the Statistic Table from the database 
are viewed. 
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5.9 Incident Object Description and Exchange Format (IODEF) 
 
The decision for using IODEF in this system was based on the advantage that IODEF defines a 
common data format [27]. It is used for documenting the actions that have been taken to repair 
contaminated systems and to prevent a repeated incident occurrence. The incident itself is also 
reported through statistical information, logfile entries, special behaviours, code fragments, and 
so forth. This document can be exchanged between CSIRTs (Computer Security Incident 
Response Teams). In this way successful detectors and their incident data are accessible in a 
common data format. This makes it possible to exchange information with other frameworks. 
The IODEF reports also contain the patterns of the detected anomalies and by this they will 
enable other groups to eliminate those anomalies.  
 

5.9.1 IODEF Overview  
 
This is a data format that enables security working groups to exchange computer security 
information between them. The intention of the IODEF is to provide a message format that can 
extend the capability of CSIRTs. It satisfies the required format for exchanging incident reports. 
By using IODEF it is easier for people working in the computer security field to give or receive 
support when security incidents occur. Also the cooperation between them is easier because 
they can share specific data in a defined format. In the design of the IODEF format it was 
important to remain compatible with IDMEF (Intrusion Detection Message Exchange Format), 
which was designed for intrusion detection systems. Therefore, it was necessary to implement a 
data model which was based on IDMEF, but that represents, handles and exchanges incident 
data. The format allows to append also other important security information like the information 
about a security hole or the link to a virus database. The focus of the format design is centered at 
the documentation of sources and targets of malicious activities in the system. Also the 
behavioural analysis of the malicious activities is a central issue. The defined format model 
offers a common way to document the analysis and the investigation of the incident. This 
security report can finally be shared among working groups. The implementation of IODEF is 
done in XML. 
 

5.9.2 The contents of the report in the computer immune system 
 
If a detector was successful (which requires both activation and costimulation) it is sent by the 
sensor to the monitor application. There the incident report is generated and delivered to the 
memory detector table in the database. The IODEF incident report contains the information 
about all captured packets which caused the system to raise an alarm on this incident. Further it 
includes information about the environment of the system.  
The contents of the report can be divided into four parts: 
 
a) Information that is specific to the system. This part describes where the attack has been 
discovered:  

•  A value defines the purpose of a generated incident report which is here the 
description of the detected malicious code.  

•  On which network the system is running on. This is given by the name of the current 
network. 
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•  The algorithm which was used for the training of the detector set.  

•  A unique number of the incident report defines the IncidentID.  

•  Time the report was generated.   

 
b) Information to the owner of the report: 

•  A contact information record contains also the address and the function of the 
contact person. 

 
c) The incident description: 

•  The classification and description of the attack method. It defines how the attack 
works, including the analysis of the incident. If the attack was already known then its 
reference name can be provided. This includes also an eventual available URL to 
further details. 

•  The expected impact on the network if the discovered attack would have been 
successful.  

•  A detailed description of the incident event, including the information about the 
source and the destination of the attack. The source is given by the IP-Address and 
the used port, whereas the information about the target computer system includes the 
attacked service. The complete event data is supplied, which includes the protocol, 
the time stamp and the hex dump of the payload data. Finally it reports the 
significance level of the detector which has detected the occurrence. 

 
d) Additional Data: 

•  In the additional data section the detector and its length is stored. It can be loaded 
into the set of detectors of other computer systems which then are capable of 
detecting this particular attack.  
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6.  Changing the data representation 
 
 
 
 
 
 
 
 
 
 
 
The decision to disassemble the payload data was made because the byte stream of the payload 
data has a very big spectrum of possibilities. There is a huge number of possible data 
arrangements. It will be very difficult to detect something useful. Disassembling the payload has 
two advantages:  
 

•  The space of possibilities in the payload data is reduced by splitting up the opcode in 
machine instructions and their arguments. For the training, only the instructions are of 
interest and therefore their arguments are dropped. The arguments vary on a very large 
extent. 

•  The detectors are trained on real instructions and not on the byte code like before.  
 
The Netwide Disassembler [53] (NDISASM) is included in the Netwide Assembler package as 
an additional application. NDISASM produces disassembled code from binary source input 
data. Netwide Disassembler is just disassembling and does not understand any of the input file 
formats. The disassembling starts at a free adjustable offset from the beginning of the input data. 
The produced output uses 32-bit instructions.  
NDISASM produces machine instructions independently from the format of the input data. 
Packets, which contain some data that is not machine code will be disassembled as well as if the 
data contains some machine code. When arbitrary data is disassembled the resulting instructions 
will often look different to correctly executable code. This is because some of the assembler 
instructions will be combined with unusual prefixes and also Define-Byte (DB) instructions are 
generated more often.  
The decision for using NDISASM was based on the fact that it does not need to understand the 
executable headers. The whole payload of the packets can be disassembled, where other 
disassemblers will produce errors due to missing header information. An advantage is further 
the configurable data offset. The Netwide Assembler package provides also the source code. 
The files needed for disassembling were added to the Snort preprocessor after some 
modifications.  
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6.1 Disassembling the payload data 
 
The output of NDISASM was modified that it is returning only the instruction number without 
its opcode or parameters, but if needed, they can be printed in a code listing. For the analysis of 
polymorph code it is very useful to return only the instruction number. For example, the XOR 
instructions can be built with several different opcode byte sequences. These sequences are 
indicating different parameter constellations, but are still only XOR instructions. The opcode is 
often so different that it cannot be detected by training the detector set only on byte sequences. 
Because the XOR operation is often used for polymorphic decryption engines this 
disassembling method allows to detect such decryption engines more easily.  
Different opcodes which are finally disassembled to the same instruction apply to many 
instructions on the Intel x86 processor. In the following example, five MOV instructions are 
included in a code listing. All MOV instructions have the number 292 but a completely different 
opcode. As it can be seen all bytes, except the first byte in a fraction, are varying. Also the 
instruction’s opcode is of different length.  
 

Figure 6.1: Opcode example, showing the large range of opcode and arguments for the 
instruction MOV. 
 
When the arguments are skipped the new representation of the data will be a sequence of 
instruction numbers. The Intel x86 processor supports 563 instructions in total [53]. One 
instruction can have from one to eight bytes of opcode. Some instructions have a fixed 
instruction length, like some one byte instructions. But others, like MOV or ADD, are 
supporting different opcode lengths within the instruction. The average opcode length per 
instruction in an executable file is 2.437 bytes. The average reduction in possibilities of an 
executable is 563:2562.437 representing a symbol factor of 1:2.437.  
In the following table the average opcode length per instruction is listed for some file formats. 
The value for each file type is based on the analysis of the number of files listed in the Filecount 
column. The number of files is high enough that the result can be seen as representative for each 
file type. It is interesting that the symbol factor for not executable file formats is significant 
different (p=0.995) from executable file formats. The training of the detector set on a practical 
data representation maybe leads to better training results. 

01 241  CC                int3 
02 292  8BFF              mov edi,edi 
03 456  56                push esi 
04 292  8BF1              mov esi,ecx 
05 456  68F4A10001        push dword 0x100a1f4 
06 292  C70608130001      mov dword [esi],0x1001308 
07 292  C7460401000000    mov dword [esi+0x4],0x1 
08 026  FF15B8100001      call near [0x10010b8] 
09 292  8BCE              mov ecx,esi 
10 409  5E                pop esi 
11 250  E94FFCFFFF        jmp 0x11cc 
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Filetype Filecount Symbol Factor Variance 
pdf 1993 2,39326886 1,09E-02 
jpg 5541 2,37042501 1,36E-02 
txt 3955 2,53194582 4,64E-02 
cpp 2235 2,32021505 8,35E-02 
dll 4541 2,44399021 5,61E-02 
exe 2752 2,43717452 4,99E-02 

Table 6.1: Symbol factors of some file types 
 

6.2 The instruction spectrum of different file formats 
 
The relative frequency spectrum of the instruction set has been calculated for some file formats. 
The analysis is including also a lot of virus files of the file type com, exe, pif and cpl. The tables 
and diagrams are presented in Appendix C.  
The spectrum of all text based file formats is very similar. In all of the three analysed formats 
the same instructions were generated. The instruction set is concentrated in some main 
frequencies with almost nothing in between. Of the possible 563 instructions only 19 appear in 
the chart with a relative occurrence rate of 1 percent or higher. By this narrow spectrum text 
files can be distinguished very easy from binary file formats. That result was expected from the 
analysis done in chapter 5, where the byte spectrum of text files (see Appendix A) showed 
already a concentration on fewer bytes. 
Binary data files also have a similar spectrum. Compared with executable files they have a 
broader instruction range, including more instructions with a relative appearance rate around 
0.04. This result came from an almost continual byte spectrum of the binary files as 
demonstrated in Appendix A. In binary files the byte values are nearly equal distributed, that’s 
why a broader instruction range is produced. 
The byte spectrum of executable files shows one value which is by far higher than all others: 
The zero byte. This is because zeros are used to fill sections of the file until their size reaches a 
multiple of the file alignment value (see [47]). The higher occurrence of values in the range of 
byte 65 to 122 results from data sections in the executables. These data sections include some 
text i.e. for dialogue windows. 
In the instruction spectrum of executable files a high occurrence value is located at the 
instruction with the number 5 (ADD instruction). The high number of ADD instructions results 
from the disassembled sequence of zero bytes in the section padding.  
 

6.3 The effect of the entry point on disassembled instructions 

6.3.1 Overview of the problem 
 
In Windows operating systems the Win32 loader decodes the header information of the Portable 
Executable (PE) Files and executes the sections which are marked as executable [47, 49, 50]. It 
is obvious where the execution begins. In the same way it is no problem to disassemble a PE file 
with a disassembler application which understands the header information. All sections are 
decoded correctly. For further information about the PE file format the reader is referred to [45, 
46, 48]. 



 88 

But that information can not be applied to the payloads of packets transferred over networks. On 
this low level of observation the header information can not be used, because each packet is 
analysed independently. It would not be a big problem to search packets for the MS-DOS 
header, which is included in every valid application. But, besides the synchronisation problems 
with following packets, it is not useful to do that, because malicious code may not follow these 
predefined structures. The goal of the computer immune system is not only to search for 
complete malicious applications, but also for malicious code fragments, like exploits of some 
operating system vulnerabilities. Code fragments do not contain any header information, they 
are inserted into the memory space of the exploited application and are executed straight 
forward. 
 
Now the question is: Where is the right entry point for disassembling the payload data? This is 
not only a question of defining one out of eight bytes (because of the maximal instruction 
length) in the payload as being the correct one. We do not even know where to start 
disassembling eight bytes.  
In that context a further question arises: What effect does it have if the entry point is not chosen 
correctly? In the following the answer to that question is presented. For that purpose an 
intensive investigation of PE executables and other file formats has been carried out.  
 

6.3.2 Investigation of PE executables and other file formats 
 
There are zero or more correct positions in the payload where disassembled code could be 
started. The number of possible starting points in an executable section is equal to the count of 
instructions. This can be explained as follows: If all opcode bytes of the first instruction are 
skipped then the second instruction will establish the next starting point. Then again the 
assembly sequence is correctly decoded. The number of starting points is zero for data sections 
and will be more than one if the packet contains an executable section. Wrong starting points 
are only those offsets in the section for which the disassembling is started somewhere within the 
opcode of an instruction.  
The correct entry point is defined here as the pointer to the first executable instruction in the 
payload in terms of the original instruction sequence. When a payload is disassembled, we 
unfortunately do not know what the original instruction sequence is. We will not know the 
correct entry point. A possible way to defeat this problem is to choose every offset from the 
start of the payload until its end as an entry point for the disassembler. Then we know that the 
right one must be included in the analysis. In fact, we only need to choose 8 different offsets, 
because we know that the longest opcode is 8 bytes. That’s why the correct sequence must be 
one of those 8 disassambled sequences. When we choose larger offsets, e.g. the next 8 bytes or a 
random window of 8 bytes somewhere in the payload, then we will get again 8 instruction 
sequences. But at least one of them must be equal to a sequence we found from the first 8 bytes. 
If there is more than one match, we repeat the method with a selection of another 8 byte 
window, until only one sequence is left. This must then be the sequence with the correct entry 
point. It has now to be investigated whether this method leads always to the selection of a single 
sequence or if more than one sequence may be left in some cases.  
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6.3.2.1 Finding the synchronisation point  
 
There are several ways how the basic facts mentioned above might be exploited in algorithms 
for a computer immune system. The following analysis focuses on the search of the 
synchronisation point in the instruction sequence. This information is essential for the 
reconstruction of the original instruction sequence by an algorithm. When a wrong entry point 
for the disassembler is chosen, then it is of interest to determine the number of instructions 
which have to be disassembled before the new sequence gets synchronized with the true 
(original) instruction sequence. With which probability can we be sure that the rest of 
instruction sequence is identical to the original one? This is a question which is independent 
from the implemented algorithms and it will come up in all cases.  
Initially, an executable file was disassembled with a few random chosen entry points. This test 
showed that the synchronisation of the instruction sequence with the original one happens very 
soon. Therefore, the consequence of choosing a wrong entry point will now be investigated 
more accurately.  
We define the reference instruction sequence (RIS) as the one which we get when disassembling 
is started at offset zero of a file. This sequence serves as reference for any other disassembled 
sequence which is created by using some offset in the data. 
Most disassembled sequences will start with different instructions compared to the RIS, because 
most disassemblies will start within an opcode. Synchronisation is found if from a certain 
instruction number on all following instructions are equal to the RIS. 
 

 
Figure 6.3.2.1: The reference instruction sequence (RIS) is compared with a window of 100 
disassembled instructions. The window is generated with a different entry point in the file data. 
The offset of the entry point is increased byte by byte until the end of the file data. Each time 
this results in a different sequence of disassembled instructions. It was observed that after a few 
instructions the window got synchronized with the RIS. The unsynchronized part of the window 
is marked green in the figure. 
 

6.3.2.2 Details of the investigation 
 
The reference instruction sequence (RIS) is created by the disassembler by starting at file offset 
zero. It contains a sequence of pure instruction numbers without their parameters. The actual file 
offsets of these instructions are stored with each instruction.  
A two dimensional array contains: 

• First, it contains the disassembly of the whole opcode in the file. This sequence of 
instruction numbers is defined as the RIS. All instruction numbers are stored. 

• Second, it contains the offset from the start of the file to each instruction number. 

A window of 100 disassembled instructions is slided from the beginning of the file until its end 
by increasing the byte offset in the file data one by one. The offset gives the entry point for the 
disassembler. Every time, when the match process with the RIS has been finished, the offset is 
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increased and the array is filled again with 100 instructions of the file data. The actual byte 
offset refers to the position of the corresponding instruction in the RIS. As shown in figure 
6.3.2.2a the offset may point somewhere between two instructions of the RIS. If the offset is not 
equal to the one stored beside the RIS then the next lower offset is chosen to select the RIS 
instruction. From this point on the reference will be compared with the array of the new 
disassembled instructions. The synchronisation and match process of the window with the RIS 
is shown in figure 6.3.2.2b. A practical explanation of the match process is given in Appendix D 
through a code example. 
 
 

 
Figure 6.3.2.2a: The offset of the disassembly window is increased byte by byte. The first 
window had an offset of 1 byte from the start of the file data. The green colour shows that the 
disassembler generated nine instructions which are different from the RIS. From the 10th 
instruction on the sequence was synchronized with the 9th instruction of the RIS. The second 
window used an offset of 2 bytes from the start. The disassembler generated two different 
instructions. The remaining 98 instructions of the window were the same as in the RIS. The 
third window got an immediate match, because the first instruction in the RIS was three byte 
long. It was just skipped in the third window. The same process is applied to the fourth and the 
fifth window. 
 
 

 
Figure 6.3.2.2b: This figure shows how new disassembly sequences are matched and 
synchronised with the RIS. In a) a new sequence of disassembled instructions is generated. In 
the RIS there is at byte number 14 an instruction of three byte length. Since the actual decoded 
window starts at byte offset 15, we have started decoding within an instruction of the RIS. 
Therefore, the new sequence first is aligned to the corresponding instruction in the RIS, which is 
here to the instruction at byte 14. In b) the length of the instructions in the window is ignored. 
This is needed to compare the instructions independently from their offsets with the RIS. One 
instruction of the window is then compared with one instruction of the RIS. And finally in c) the 
whole window is slided over the RIS to discover the maximum match count between them. This 
has to be done, because the disassembly was started somewhere within an instruction of the 
RIS. This could lead to a different instruction or even a different number of instructions. When 
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the window is not slided the match count is zero. In this example the relative position of the RIS 
(compared to the window) which receives the highest match count is +2. The relative position is 
calculated from the length of the instruction sequences before the point of synchronization. The 
difference to the RIS gives the relative position. 
 

6.4 Results of the investigation 
 
This measure determines the number of instructions before the point of synchronisation in the 
investigated files. The dual value of this number is presented in the following charts. The 
window contains 100 disassembled instructions and they are compared with the RIS. The 
resulting value from the match operation of both sequences is the number of matching 
instructions after the point of synchronisation.  
At the same time the number of matching instructions is determined by the algorithm, also a 
second match value is calculated. The second match value gives the absolute number of 
matching instructions in the window regardless to the point of synchronisation. This second 
value was of interest because of the observation that in some cases also many instructions of 
both sequences are matching before the point of synchronisation. The reason for this is that 
different opcode constellations can result in the same instruction number (see chapter 6.1, 
opcode example of the MOV instruction). Therefore, the second value is at least equal (often 
higher) than the first match value. 
The matching algorithm has to synchronize the window with the RIS. Synchronisation is the 
process of finding the highest match value for the current window. After both sequences are 
synchronized, the relative position of the RIS to the sliding window is important. This value 
is an indicator of how the number of generated instructions is influenced by a wrong entry point. 
Sometimes the window contains more instructions before the point of synchronisation, 
sometimes it contains fewer instructions. By this the value shows the direction of the 
distribution with the maximum match value. The direction is given by the positive or negative 
difference in the number of generated instructions when the RIS is compared with the window.  
Two classes of files were analysed: executable files and not executable data files. 51 executable 
files were analysed resulting in over 58 million sliding windows, what approximately 
corresponds with the number of bytes in the files. The analysed of not executable data files 
include 74 files in the following formats: Text, Music, Pictures, Archives, MS-Office 
documents and binary data files. More than 56 million sliding windows were compared with the 
RIS. The offset in the files is incremented as long as 100 instructions can be disassembled from 
the remaining data. 
 

6.4.1 The position of the instruction synchronisation 
 
Figure 6.4.1a shows the result of comparing the RIS with the sliding windows of 100 
disassembled instructions using executable files as inputs. The match count indicates the length 
of the synchronized instruction sequence. Therefore, it gives the number of equal instructions in 
both sequences from the point of synchronisation to the end of the sliding window. The x-axis 
gives the count of instructions which match with the RIS. The y-axis gives in logarithmic scale 
the relative number of the occurrence of each synchronisation length.  
A clear flattened curve with a relative high level can be recognized until point 80 of the x-axis. 
This results from the section padding with zeros in executable files. Long sequences of equal 
bytes in the data are resulting in long sequences of equal instructions. By increasing the byte 
offset the window will slide over such an area. If the end of the padding area is reached and the 
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offset is increased once more then the sliding window includes on its end already instructions of 
the next file section. This first step into the next section will make the first 99 instructions equal 
to the RIS. But in this case the last, the 100th instruction, will differ. Such an instruction 
sequence will receive the match value 0, because a synchronisation did not happen within the 
window.  
In figure 6.4.1a can be seen that the frequencies raise steep near the match count 100. This 
shows that in most disassembled sequences the synchronisation is reached very soon, although 
the disassembling is started often within an instruction of the RIS. Especially the high value for 
a complete identical sequence of 100 instructions is noticeable. When the offset is increased it 
had been observed that the sequence often remains the same. This applies if a one byte 
instruction was skipped, if an entry point lays within some two byte instructions or in minor 
cases longer ones if other special opcode constellations are met. As it can be seen in the 
examples in Appendix D some different opcode sequences are disassembled to the same 
instruction number. That’s the reason for the high value at match count 100. 
Figure 6.4.1b shows the same analysis using not executable data files as inputs. The data usually 
contains a low number of equal byte sequences. That’s why the synchronisation appears faster 
and clearer than before.  
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Figure 6.4.1a: The position of the instruction synchronisation in executable files. 
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Figure 6.4.1b: The position of the instruction synchronisation in not executable data files. 
 

6.4.2 Absolute equal instructions 
 
In figure 6.4.2a the absolute matching value of the instruction sequence is presented. Here the 
overall count of matching instructions is calculated, independent from the synchronisation point. 
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In the padding example given above, where the window steps over section boarders in 
executable files and gets 99 equal instructions and one different, this function will receive not a 
zero match like before, but a match value of 99 for the total count of matches. In this curve a 
clear decrease from a match value 100 to about 60 can be noticed. This decrease is even clearer 
in figure 6.4.2b which presents the analysis of the not executable data files. 
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Figure 6.4.2a: Absolute equal instructions, ignoring the position of synchronisation in 
executable files. 
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Figure 6.4.2b: Absolute equal instructions, ignoring the position of synchronisation in not 
executable data files. 
 

6.4.3 Relative position of the RIS to the sliding window 
 
When the offset of the window is increased, the disassembler sometimes generates a different 
number of instructions compared to the RIS. For example, when there is an instruction in the 
RIS with a length of eight bytes, then skipping one byte the disassembler may generate seven 
new one byte instructions. That is not limited to only one instruction. The following instructions 
of the RIS maybe are influenced as well. Maybe the eighths byte indicates a two byte 
instruction. Then the next instruction in the RIS will also be affected and maybe split up or 
combined, and so forth. The difference in the number of instructions between RIS and the 
window sequence can also be negative. On the one side from fewer instructions in the RIS can 
result a longer sequence, and on the other side also from more instructions in the RIS can result 
a shorter sequence. 
In the search for synchronisation the matching algorithm takes the 100 new disassembled 
instructions and slides them over the RIS from minus 15 to plus 29 relative to the match 
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position which was found first. For every slide position it counts the number of matches in the 
sequence. From these 45 sequence match operations the algorithm chooses the highest match 
value and records the position of the sliding window. 
 
In figure 6.4.3a the relative frequency of each position of the sliding window is presented. The 
x-axis gives the position of the RIS relative to the sliding window starting at minus 15. The 
peak value at position zero shows that the number of instructions usually stays the same, 
although the entry point of the disassembler is often somewhere within the instructions of the 
RIS. It can be noticed that the negative range seems to be narrower. The negative range means 
that from more instructions in the RIS the disassembler will generate fewer instructions in the 
window before the point of synchronisation (see example (c) in figure 6.3.2.2b or “relative 
position” in Appendix D).  
Figure 6.4.3b shows the same distribution for the not executable data file. It can be recognized 
that this distribution possibly is symmetrical. Starting from the origin at zero both sides have an 
almost equal frequency.  
 

 
Figure 6.4.3a: Distribution of the relative position of the RIS to the sliding window with the 
highest match count in executable files. 
 

 
Figure 6.4.3b: Distribution of the relative position of the RIS to the sliding window with the 
highest match count in not executable data files. 
 

6.5 The reconstruction of the original instruction sequence 
 
The original instruction sequence possibly can be reconstructed as follows. An entry point is 
chosen in the payload. This method is independent from the selected offset in the data. At the 
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entry point in the data an 8 byte window is selected. All bytes in the window are selected as an 
entry point for the disassembler and therefore, 8 instruction sequences are produced. One byte is 
skipped each time. The window is selected with 8 bytes length, because of the maximum 
opcode length (as mentioned in chapter 6.3.2). Then we know that the original instruction 
sequence must occur in at least one of those 8 sequences. All 8 sequences are compared with 
each other to find the longest common instruction sequence. The found instruction sequence is 
the original sequence by the probability p: 

8
np = , 

where n is the count of sequences in the window which have the sequence in common.  
In the analysis of the synchronisation point above, it was observed that a high fraction of the 
disassembled sequences synchronize with another sequence. This fact can be applied to the 8 
sequences in the selected window. Therefore, a high fraction of the sequences should 
synchronize with the other sequences after a certain number of instructions. But for the 
reconstruction of the original instruction sequence it is of interest to find the earliest possible 
synchronisation. In some cases more sequences can be the original one. It is not known if the 
one that was selected with the probability p is the original sequence. 
A problem of this method is that a window of 8 bytes can be selected for which no 
synchronisation occurs. In this case the original instruction sequence can not be reconstructed. 
The probability for selecting such an 8 byte window has to be analysed in more detail in future. 
 
 

 
Figure 6.5: An example for the reconstruction of the original instruction sequence. This example 
is taken from the disassembled code in Appendix D (Entry point +1 until +8). The disassembled 
sequence at byte 1 is analysed. From instruction number 5 on the sequence is identical to 6 other 
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sequences in the window. The probability that this sequence is the original one is 7/8. The 
synchronisation is achieved after skipping 6 bytes of the window which corresponds to 4 
skipped instructions. If one further instruction is skipped, then the probability is 100 percent. 
This is because the sequence occurs in all sequences contained in the window. Sequence 0 in 
this figure was disassembled with an entry point that is selected far before the selected window. 
It is assumed that the instructions have synchronized with the original sequence before the 
selected window. Here this sequence serves only as a possible verifier of the found sequence in 
the window. The green marked instructions in the window are equal to sequence 0.  
 

6.6 Conclusion and further work 
 
It has been discovered that independent from the entry point there is a synchronisation with the 
original instruction sequence within a few instructions. This information is needed for the 
reconstruction of the original instruction sequence. It is important to know how many 
instructions are influenced (with an error rate) by a wrong chosen entry point for the 
disassembler. 
The main intention for this analysis was to show the fact that not knowing the right entry point 
in the payload possibly is not a big problem. The number of analysed instructions sequences is 
on the order of 107. This number is too low for a clear statement on the results. This 
investigation shows a tendency to a fast synchronisation, but the error rate is on the order of 10-5 
(synchronisation point at instruction 30).  
But at the same time this analysis raises some questions. It will need some deeper data analysis 
to interpret the reason for the following observed facts: 

• Sometimes the match count for instruction sequences is low (<75). What is the reason for 
the sometimes highly different instruction sequences? Under those circumstances, what 
opcode constellations are met?  

• For decreasing match count values it seems that the curve becomes more flattened. Are 
match count values below 50 instructions noise in the distribution? 

• There is a difference in not executable data files and executable files. Is this difference only 
caused by long sequences of equal bytes (section padding in executable files)? 

• For a practical application it is primary of interest to have a very low error rate. Analysing 
a high amount of data, which is needed for a clear statement on the error rate, is not 
practicable within a reasonable amount of time. Therefore, in some cases, the probability 
that the reconstructed instruction sequence is the right one possibly is low. For a higher 
probability more instructions have to be skipped, but this is not useful when detecting 
malicious executable code. 

The future work of this measure: 

• It would be interesting to determine the match count for executable code only. Here the 
whole executable file (all sections) is disassembled. But maybe there is a difference in the 
match distribution if all not executable sections are skipped. This analysis would reveal 
also the real error rate for the number of influenced instructions in executable code. 
Executable code is the target data for the practical application. 
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• The actual knowledge of the synchronisation point should be implemented in an algorithm. 
It should try the reconstruction of the original instruction sequence, as proposed in chapter 
6.5. Possibly most instruction sequences can be reconstructed, even with the high error rate 
of the synchronisation point. 

When the entry point in the payload is selected then an additional error can occur, if the entry 
point for the disassembler lies in a data section of the file: 
This error can occur if the data section is followed by an executable code section. It is then 
possible that the disassembled instruction sequence contains again not synchronized 
instructions. When a data section is disassembled then it is possible that the last instruction from 
the data section is generated as a more-byte instruction. It then needs some bytes of the 
following code section. In this situation the disassembler does not decode the first instruction of 
the code section correctly. Because some bytes are missing in the code section it is treated as if 
the entry point is chosen incorrectly for a second time. We do not know if the actual entry point 
lies within a data section or an executable code section. If the entry point error can be corrected 
at all (with a probability) then it is at the start of the instruction sequence. A section transition is 
not considered. In that case, as shown above, again a number of instructions are needed to 
synchronize such a starting error in the code section. This is the error we will have to keep in 
mind when not knowing the right entry point. 
 

6.7 Implementing the payload disassembling function in the preprocessor 
 
The NDISASM sources have been appended to the Snort Framework. All packets, which were 
intended for processing, were first passed to the disassembler function. The data in the payloads 
was disassembled, all parameters of the instructions were skipped and the instruction sequence 
was stored in an array. This array then provides the data basis for the match algorithm. The 
symbol sequences of the detectors now need to consist of instruction numbers instead of byte 
values.  
The implemented match rule for this approach was the r-contiguous instructions algorithm. 
Three different configurations were tested. The first configuration had the packet filter 
deactivated. The first and the second configuration were using the faster network speed. For the 
test of the third configuration the speed was slowed down. The network traffic was simulated 
with the continual transfer of the TestData set defined in chapter 5.  
The first and the second configuration were using the same set of detectors: 1000 detectors 
equipped with 8 instructions. The third one uses 2000 detectors, where each is holding a 
sequence of 5 instructions. The threshold of a match was set to 2 contiguous instructions. 
Independently from the packet drop rate all three configurations became tolerant to the 
presented traffic after a short period of time. Detailed results are presented in Appendix B.2. 
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Figure 6.7a: The Replacement rate of detectors using the r-contiguous instructions match rule. 
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Figure 6.7b: The age of the oldest detector when using the r-contiguous instructions match rule. 
 

6.8 Conclusion on the results of the packet disassembling approach 
 
In Appendix C the distribution of the disassembled instructions is presented. The charts are 
showing that most of the instructions are occurring with a very low rate somewhere near zero. 
Instructions with an occurrence rate of 1% and more make only a small fraction of all possible 
instructions. And not more than 10 instructions out of the 563 are exceeding an occurrence rate 
of 4%. 
When detectors are generated with a random sequence of instructions under these circumstances 
they will very soon be equipped with instructions which are very rare. And further when rare 
instructions are compared to an incoming sequence this will hardly ever match, even when the 
match threshold is set to the smallest possible contiguous sequence of two instructions. This is 
what the training had demonstrated. 
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Conf2 
Conf3 

Conf1 
Conf2 
Conf3 
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7.  Conclusion 
 
 
 
 
 
 
 
 
 
 
 
The proposed anomaly detection system is performing well if three requirements apply to the 
training of the detector set: 

Requirement 1: The self set has a stable definition. This requirement influences the 
training success. 

Requirement 2: The number of detectors in the set is chosen properly. This requirement 
influences the detection rate. The detection capability of the system is influenced by the 
size of the detector set. In general, the higher the number of detectors in the set, the 
higher is the detection rate. The selected number depends on the size of the self set (in 
relation to the size of the nonself set). For a big self set also a high number of detectors 
have to be selected.  

Requirement 3: The inspected data has the right proportion of self to nonself. This 
requirement influences the practical applicability of the detection system. This can be 
explained as follows:  

First example: The system is designed to protect a LAN from nonself connections. If the 
training of the detectors is based on the source and destination IP address field of the 
packet header and requirement 1 is met then self is usually much smaller than nonself. 
There self can be defined as all IP addresses which belong to the LAN (plus possibly 
some others), and nonself is the complement of the self IP address space. It is easy to 
detect nonself connections, because nonself contains much more IP addresses. 

Second example: The system is designed to protect a LAN from malicious code in the 
payload of the packets. If the training of the detectors is based on the content of the 
packet payloads and requirement 1 is met then self is usually much bigger than nonself. 
Each payload is containing a huge amount of self strings – and beside that – possibly a 
few nonself strings. These nonself strings are the signatures of the observed malicious 
code. It is very difficult to detect those signature patterns in the payload. 

If all three requirements are met, then the system will detect attacks. This was proven by the 
modification of the inspected data (see chapter 5.5). If the implementation uses a detector set 
that was trained on some fields of the packet header then this will lead to the detection of 
attacks.  
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The implemented system for the detection of malicious code fragments in the payload of the 
packets meet only the first requirement. Overall the detection rate of malicious code fragments 
in the payload of packets is very low. The trained detector set was tested for the capability of 
detecting virus files when they are transferred over the network (see chapter 5.4.4.6). The 
detection capability of the computer immune system suffers from the afterwards described 
problems.  
The approach of reconstructing the original instruction sequence was analysed in chapter 6. The 
data representation was changed from byte code to disassembled machine instructions. For the 
training of the detector set on the changed data representation a measure was necessary. The 
measure was done by using a disassembler with a wrong entry point. The question was how 
many instructions must be disassembled to get synchronized with the original instruction 
sequence. This information is needed for the reconstruction of the original instruction sequence. 
The measure shows that disassembling data straight forward without knowing the entry point 
has to be explored in more detail to get a clear statement. A deeper data analysis will reveal if 
the error rate in this measure is too high for the reconstruction (see chapter 6.6). 
 

7.1 Problem of the useful detector symbol length 
 
For each algorithm a parameter configuration could be found which results in a successful 
training. The success of a training is influenced by the adjustment of two parameters: The 
threshold for a match and the length of the detector symbol sequence.  
The relation of the match threshold to the length of the detectors symbol sequence defines the 
specificity of the detector. By the adjustment of the specificity a good trade off between the size 
of the detector set and their replacement rate can be achieved. If for example the threshold for a 
match is set too high then the training will certainly be successful in terms of surviving 
detectors. But this configuration is less useful, because there is no adaptation to the presented 
self data set. These detectors are tolerant to the self set as soon as they are generated, but they 
are also not able to fulfil the discrimination job, because they possibly never match any string 
during their lifetime. In other words: The specificity is a measure of how successful the trained 
detector set can discriminate between the self and the nonself set.  
The size of the detector set is responsible for identifying a particular nonself element and does 
not influence the success of the adaptation process to the self set. The size of the detector set 
should be selected in relation to the size of the nonself set that has to be covered. The covered 
space of patterns is defined by the combination of the size of the detector set and the specificity 
of the detectors. 
In this thesis it was of interest to find configurations which train the detector set successfully 
and at the same time are able to fulfil the discrimination job. Therefore many configurations 
were implemented and tested on their success. Several configurations were not successful, 
because their detectors have not been specific enough to adapt to the presented self set.  
The probability of a match can be calculated (see the formula in chapter 4). The results are 
presented in the following table for the r-contiguous bytes match rule. The table defines the 
match probability for two random selected byte strings with length l, under the assumption that 
the occurrence rate of each character is equal and the match threshold is set to r bytes. 
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l\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 256 1 0 0 0 0 0 0 0 0 0 0 0 0 

2 65536 1280 1 0 0 0 0 0 0 0 0 0 0 0 

3 16777216 587008 1280 1 0 0 0 0 0 0 0 0 0 0 

4 4,29E+09 2,16E+08 589824 1280 1 0 0 0 0 0 0 0 0 0 

5 1,10E+12 7,17E+10 2,18E+08 589824 1280 1 0 0 0 0 0 0 0 0 

6 2,81E+14 2,25E+13 7,30E+10 2,18E+08 589824 1280 1 0 0 0 0 0 0 0 

7 7,21E+16 6,80E+15 2,31E+13 7,30E+10 2,18E+08 589824 1280 1 0 0 0 0 0 0 

8 1,84E+19 2,01E+18 7,04E+15 2,31E+13 7,30E+10 2,18E+08 589824 1280 1 0 0 0 0 0 

9 4,72E+21 5,80E+20 2,09E+18 7,04E+15 2,31E+13 7,30E+10 2,18E+08 589824 1280 1 0 0 0 0 

10 1,21E+24 1,65E+23 6,09E+20 2,09E+18 7,04E+15 2,31E+13 7,30E+10 2,18E+08 589824 1280 1 0 0 0 

11 3,09E+26 4,65E+25 1,75E+23 6,09E+20 2,09E+18 7,04E+15 2,31E+13 7,30E+10 2,18E+08 589824 1280 1 0 0 

12 7,92E+28 1,30E+28 4,96E+25 1,75E+23 6,09E+20 2,09E+18 7,04E+15 2,31E+13 7,30E+10 2,18E+08 589824 1280 1 0 

13 2,03E+31 3,59E+30 1,39E+28 4,96E+25 1,75E+23 6,09E+20 2,09E+18 7,04E+15 2,31E+13 7,30E+10 2,18E+08 589824 1280 1 
 

Table 7.1: This table shows the absolute number of byte strings a detector of length l can match 
under a defined match threshold r using the r-contiguous bytes match rule. In vertical direction 
the detector length starts at 1 byte until 13 bytes. For each length all possible threshold values r 
are presented, where r = 0 defines a completely general detector and r = l a completely specific 
detector. As an example: The second value in the first column (65536) is the number of 
possibilities a string with 2 bytes (l=2) can match when the threshold is zero (r=0). 
 
All approximate string matching in this thesis is done with a r-value of at most 4 bytes. When 
the threshold was increased to a higher value then there was no learning effect in the detector set 
and all of them were “tolerant” to the presented self set as soon as they were generated. Even a 
value of 4 bytes is a much too low specificity value to correctly identify malicious agents. To be 
able to identify malicious executable code correctly the absolute minimum threshold would be 
12 bytes [51, 52]. 
The next step in this thesis was the change of the data representation to disassembled assembler 
instructions. The threshold in this approach was even worse: At most 2 instructions could be 
used to achieve a learning effect (training on the self set). This was caused by the irregular 
spectrum of disassembled files, showing many instructions with a diminishing occurrence rate. 
During a pure random generation of detectors very soon a combination of two instructions will 
be found which is occurring in a very low rate – therefore it will survive the training and the 
training will be successful. But in practice it is useless to try the identification of virus threats 
with a threshold of only two instructions! To characterize a virus it is assumed that at least 10 
instructions will be needed. 
As presented in table 7.1 the probability of a match dramatically shrinks with higher thresholds. 
For example a detector length of 13 bytes and a threshold of 9 bytes will give a probability of 
3.59989E-21 for a detector match. Assuming an equal distribution of the bytes in the spectrum 
of the transferred data then 1020 bytes have to be transferred in average to get one match. But 
this example does not even come near to the needed specificity requiring a threshold of 12 
bytes. 
The time required for transferring random distributed 1020 bytes on a 1 Gigabit/second 
connection speed is 617 * 106 hours. 
 



 102 

7.2 Problem of the nonself coverage 
 
The required symbol length is not the only problem when approximate string matching is 
applied. It is further necessary to implement a much greater detector set to cover a reasonable 
pattern space in nonself. The size of the detector set must be somehow proportional to the size 
of the pattern space. Therefore, if inspecting the packet headers the number of detectors can be 
much lower than if inspecting the payload of packets. Furthermore, its size must be chosen 
according to the selected specificity of the detectors.  
If for example one million detectors are chosen, then a new problem arises. To achieve real time 
processing on a 1 Gigabit/second connection speed the needed computational power for the 
approximate string matching would be 12.5*106 times more than the calculation speed which 
current machines offer. According to Moore’s Law (“computational power doubles each 18 
months”) this is reached in the year 2040. But also from year to year the data transfer speed will 
increase and the year 2040 is probably too optimistic for a real application. 
 

7.3 Solutions and suggested future work 
 
It is very important to include a deeper data analysis of executable code in a future work. 
Polymorph shellcodes do not use the complete spectrum of instructions and maybe this applies 
also to a part of viruses. For shellcode detection it is possible to reduce the instruction set. This 
should lead to a drastic reduction of possibilities in the watched patterns. 
The random creation process of the detectors is an increasingly inefficient method when the 
detector sequences are getting longer. The detector generation can be improved with some 
sophisticated mechanisms. The randomly created detectors in this work are based on a white 
spectrum where all symbols are appearing with equal probability. For better results it would be 
a good idea to use a weighted random creation process where the weights are calculated from 
the distribution of the target data. This is especially important when the data is decoded into 
instructions, because as chapter 6 has shown, the instruction frequency spectrum is distributed 
in a very irregular way. When a white spectrum is assumed in such a case then the training can 
only be carried out with a very low number of instructions, which will not be useful – as shown 
above. 
Beside the measures in chapter 6 on reconstructing the original instruction sequence it would 
further be of interest to verify if the instructions are executable at all. If the payload contains a 
sequence which is executable then the payload it is selected for a deeper analysis, otherwise the 
packet is dropped. The suggested approach for virtually executing the instructions is called 
“Abstract payload execution” which has been published in [67]. 
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Appendix A 
 
This chapter presents the relative occurrence rate of ASCII characters in some file types.  

• In the first section the spectrum of five text based file types is analysed. This includes a 
high number of Hypertext Files (HTM) as well as a high number of ordinary Text Files 
(TXT). Also some source code formats, like the CPP or Ansi C Files as they are used in 
Visual C and also FRM Files which are Visual Basic Form files.  

• The second section shows the analysis of four binary based file formats, which are the 
Adobe portable document format (PDF), a picture file format (JPG), a common archive file 
format (ZIP) and a music file format (MP3).  

• Section three presents the spectrum of two Binary Executable File Formats (EXE and 
DLL).  

• Finally, section four shows the values which were used for the implementation of the 
filters with the Pearson match rule. 

 

A.1 Text based file types 
 
They all have a very similar spectrum which is concentrated somewhere between byte 40 and 
byte 122. The spectrum includes most of the printable characters in the ASCII character table. 
The exceptions are the bar at byte 9, indicating a tabulator, at byte 10 and 13, representing Line 
Feed and Carriage Return and the Space character at byte number 32.  
Bytes that represent numbers are located at position 48 till 57. Capital Letters start at byte 
number 65 and range to byte 90 and small letters range between byte number 97 and 122. The 
probability of the occurrence of small letters is higher than that of capital letters, like expected. 
 
File type Number of files 
HTM 5383 
CPP 520 
C 448 
FRM 322 
TXT 12818 

Table A.1: Text based file types 
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A.1.1 Byte spectrum of HTM Pages 
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Figure A.1.1 Byte spectrum of HTM pages 

A.1.2 Byte spectrum of CPP Source files 
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Figure A.1.2 Byte spectrum of CPP Source files 
 

A.1.3 Byte spectrum of C Source files 

 
Figure A.1.3 Byte spectrum of C Source files 
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A.1.4 Byte spectrum of FRM Source files 

 
Figure A.1.4 Byte spectrum of FRM Source files 
 

A.1.5 Byte spectrum of TXT Files 
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Figure A.1.5 Byte spectrum of TXT Files 
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A.2 Binary based file types 
 
The spectrum of binary based file types has with some exceptions an almost equal distribution 
of ASCII characters.   
It can be seen that PDF-Files have sections which represent text. All other characters are 
distributed over the spectrum with almost equal occurrence probability.  
The spectrum of the JPG, MP3 and especially the one of the ZIP format is almost rectangular 
distributed. The ZIP file seems to contain a very small portion of text. The one of the MP3 and 
JPG Format is a bit more uneven than the spectrum of the ZIP file format. In binary files the 
characters 0 and 255 have relative to the other characters a higher occurrence rate.  
 
File type Number of files 
pdf 3618 
jpg 13686 
zip 3696 
mp3 4684 

Table A.2: Binary based file types 

A.2.1 Byte spectrum of PDF files 
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Figure A.2.1 Byte spectrum of PDF files 
 

A.2.2 Byte spectrum of JPG Image files 
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Figure A.2.2 Byte spectrum of JPG Image files 
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A.2.3 Byte spectrum of ZIP Archive files 
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Figure A.2.3 Byte spectrum of ZIP Archive files 

A.2.4 Byte spectrum of MP3 Music files 
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Figure A.2.4 Byte spectrum of MP3 Music files 
 

A.3 Executable file types 
 
The spectrum of both analysed executable file formats can be seen as statistically equivalent. It 
has a low portion of noise distributed over the whole spectrum with a relative occurrence rate of 
about 0.001, which is definitely lower than the one observed in the binary file types above.  
This feature including the main bars of the spectrum could possibly be used for discriminating 
between those files. But when it was applied on network packets it resulted in a lot of missed 
payloads containing executable code, even when the filter was relaxed. The reason was that the 
different sections of the executable files which have different contents are resulting in a 
different form of the spectrum.  
 
File type Number of files 
EXE 4110 
DLL 6038 

Table A.3: Executable file types 
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A.3.1 Byte spectrum of EXE files 

 
Figure A.3.1 Byte spectrum of EXE files 

A.3.2 Byte spectrum of DLL files 

 
Figure A.3.2 Byte spectrum of DLL files 
 

A.4 Byte Spectrum of the implemented filters 
 
Both implemented filters had a high success rate. They were filtering out most of the desired 
packets. The purpose of implementing two filters was to reduce the high data load. A high 
portion of packets that are not of interest should be rejected before the preprocessor starts their 
inspection. The implementation of the filters was not intended to block for example all 
incoming text based packets.  
The filters were implemented with a conservative threshold in order to miss not any of the 
possible malicious binary packets, but still catch and drop a lot of packets that are definitely not 
of interest. Therefore the preprocessor can train its detector set on a high portion of binary 
packets and the processing load is successfully reduced. The filters are applied by using the 
Pearson correlation coefficient.  
 



 109 

 

A.4.1 Text filter 
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Figure A.4.1 Byte spectrum of the Text filter 
 

A.4.2 Binary filter 

 
Figure A.4.2 Byte spectrum of the Binary filter 
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Appendix B 
 
This appendix presents the numerical results of the tests on the match algorithms in chapter 5 
and chapter 6. The charts presented in those chapters are based on the numbers in the tables 
given here. The columns of the tables are defined as follows: 

• The first column in the following tables is the number of the current run. A run is the 
whole transfer of the TestData set, from the first file until the last one. The transfer of the 
TestData set is repeated without break until the training has been interrupted.  

• The second column in the tables gives the number of replaced detectors during the 
tolerance phase. If the detectors have matched anything they were replaced.  

• The third column is the count of packets which were processed by the preprocessor. When 
filters are used this column is splitted into “rejected” and “processed”, because then a 
fraction of the packets are rejected by the filter. The number of processed packets is an 
indicator for the performance of the algorithm. The higher that number is the faster is the 
algorithm.  

• The last column gives the age of the oldest detector after each run, measured in seconds. 

To all configurations of the algorithms the drop rate of packets is calculated. The activated 
algorithms caused Snort to drop a fraction of the packets. This came from a slowed down packet 
processing rate. Therefore first the average number of packets is recorded which Snort received 
when the algorithms are turned off. This value is treated as reference for the calculation of the 
drop rate.  
 
 

B.1 Results of the tested algorithms in chapter 5 
 

B.1.1 First approach, without filters 
 
One transfer of the TestData lasts on the average 5292 seconds and Snort received an average of 
619684 packets during this time. 
 

B.1.1.1 Pearson correlation coefficient 
 
In the first configuration 5000 detectors were used. All of them have different values assigned 
to 30 positions of the spectrum. After their creation they were exposed to the simulated network 
traffic. The detectors were trained on two transfers of the TestData set. During this time Snort 
dropped 59.5% of the packets transferred. In the first run 908389 detectors were replaced due to 
significant similarity with the TestData set. In the second run 988553 detectors were replaced. 
The results in both runs were about the same. Not one of detectors survived a run, because 
otherwise in the second run the replacement rate of the detectors would have decreasing 
tendency. This conclusion can also be drawn from the age of the oldest detector which is much 
lower than the duration of the data transfer for one run. 
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Run Replacements Packets Oldest Detector 
1 908389 248930 3857 
2 988553 253259 4385 

Table B.1.1.1a: Pearson Correlation in the first configuration 
 
The purpose of the next configuration was to check if the training of the detector set develops 
differently for a changed initial configuration. Therefore, 3000 detectors with 90 values were 
chosen and exposed to the simulated network traffic. The number of values of the spectrum per 
detectors was increased from 30 to 90, which may result in a better discrimination of the data. 
This time the detectors were trained on three transfers of the TestData set over the network. The 
drop rate of Snort was 62.6% of the packets. In each run at average 426580 detectors were 
replaced. The result after the third run was the same as in the first configuration shown above: 
Not one of the detectors lived long enough to expect a success of the training in further runs. 
 
Run Replacements Packets Oldest Detector 
1 425970 224980 3939 
2 427203 237264 3751 
3 426567 231526 3911 

Table B.1.1.1b: Pearson Correlation in the second configuration 
 
In the third configuration the significance level was set to the definitely higher value of 0.99995 
compared to a value of 0.975 in the previous two configurations. Therefore the detectors are 
now more specific than in the configurations before. In addition more values of the spectrum are 
used. Instead of 30 in the first configuration respectively 90 in the second now 220 values are 
generated. To improve the drop rate, the network speed was slowed down from 94.4 kB on the 
average to 40 kB per second. Snort’s packet drop rate was now 35.4%. This configuration 
shows a nice learning effect on the detector set. 
 
 Run Replacements Packets Oldest Detector 
1 10864 655692 15016 
2 6064 667390 30375 
3 3523 670504 45415 
4 2263 678016 60698 
5 1524 682026 76091 

Table B.1.1.1c: Pearson Correlation in the third configuration 
 

B.1.1.2 Hamming Distance 
 
The Hamming distance algorithm was tested for success by using three configurations. In the 
first the number of detectors was set to 600 with a length of 8 bytes. The training took place on 
four transfers of the TestData with a drop rate of 42.5% of the transferred packets. The threshold 
for a match was set to 3 bytes. The result shows that the training was not successful. The details 
are presented in the following table.  
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Run Replacements Packets Oldest Detector 
1 19284 342826 4003 
2 19601 358175 4385 
3 19549 353876 4239 
4 18754 369555 4085 

Table B.1.1.2a: Results of the Hamming distance algorithm using the first configuration. 
 
In the second configuration the number of detectors was set to 300 with a length of 20 bytes. 
The training took place on seven transfers of the TestData. The drop rate comes to 66.9% of the 
transferred packets. Here, because of the longer byte sequences of the detector, the threshold for 
a match was increased to 4 bytes. The result of this configuration shows an instable progress in 
the training, with no indication for a lower replacement rate in future.  
 
Run Replacements Packets Oldest Detector 
1 3329 196469 4177 
2 3565 205747 4108 
3 3263 206539 4645 
4 3069 215767 7073 
5 3259 210221 7911 
6 3367 195359 4343 
7 3200 195840 7312 

Table B.1.1.2b: Results of the Hamming distance algorithm using the second configuration. 
 
The third configuration was the same as the second except of the length of the detectors. The 
length was slightly decreased to 18 bytes. The purpose of decreasing the length by only two 
bytes was to check if the results are changing towards a stable training. The training took place 
on eight transfers of the TestData with a drop rate of 61.0% of the transferred packets. 
Unfortunately this configuration produces the same result as it was seen in the configuration 
before. 
 
Run Replacements Packets Oldest Detector 
1 2242 207864 4679 
2 2443 244061 6613 
3 2505 248428 8320 
4 2293 244861 4564 
5 2309 242075 6994 
6 2340 244161 4288 
7 2367 249324 4353 
8 2444 250868 4498 

Table B.1.1.2c: Results of the Hamming distance algorithm using the third configuration. 
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B.1.1.3 r-contiguous bytes 
 
The configuration of this match rule was equal to the first configuration of the hamming 
distance. The number of detectors was also set to 600 with 8 bytes length. The detectors were 
trained on 10 transfers of the TestData set over the network. During this time Snort dropped 
51.8% of the transferred packets. The discriminator value r was set to 3. The detectors therefore 
have to match at least 3 contiguous bytes to become activated. 
In the following table the number of replaced detectors is continual decreasing. At the same 
time the number of the processed packets increases slightly. That’s because Snort needs to 
replace less detectors and can process more packets in the same time. The age of the oldest 
detector is increasing in all runs. 
 
Run Replacements Packets Oldest Detector 
1 1490 286251 4804 
2 1247 294480 9950 
3 1015 296846 14976 
4 965 299349 20062 
5 946 304152 25223 
6 866 303056 30371 
7 811 295992 35401 
8 759 305047 40588 
9 685 294990 45610 
10 651 304601 50821 

Table B.1.1.3a: Results of the r-contiguous bytes algorithm using the first configuration. 
 
The second configuration was using a set of 800 detectors. All other parameters are left 
unchanged. The detectors were trained on 10 transfers of the TestData set over the network. 
During this time Snort dropped 64.9% of the transferred packets. The results of this algorithm 
shows that algorithms are performing well independently form their drop rate.  
 
Run Replacements Packets Oldest Detector 
1 1988 217091 4989 
2 1624 217127 9988 
3 1358 215998 14981 
4 1031 217955 19979 
5 792 218328 24989 
6 581 218236 30002 
7 546 217599 35010 
8 624 218381 40025 
9 483 216813 45121 
10 463 218807 50194 

Table B.1.1.3b: Results of the r-contiguous bytes algorithm using the second configuration. 
 

B.1.1.4 Levenshtein distance or edit distance 
 
The implementation of this algorithm was quite slow. The number of detectors was set to 100 
with a length of 8 bytes. The threshold for a match was set to a distance of 5 operations, which 
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corresponds to a similarity of 3 bytes. The detectors were trained on five transfers of the 
TestData set over the network. During this time Snort dropped 84.0% of the transferred packets.  
 

Run Replacements Packets Oldest Detector 
1 1029 98597 4566 
2 950 98427 4343 
3 1085 98202 4279 
4 891 99706 4795 
5 1077 98459 4563 

Table B.1.1.4a: Results of the Levenshtein distance or edit distance algorithm. 
 

B.1.1.5 Longest common subsequence (LCS) 
 
Two slightly different configurations have been implemented. The first uses a set of 130 
detectors with a length 18 bytes. The threshold for a match was set to a value of 11 bytes. The 
detectors were trained on seven transfers of the TestData set over the network. During this time 
Snort dropped 89.3% of the transferred packets. 
 
Run Replacements Packets Oldest Detector 
1 676 66324 4789 
2 680 66802 4822 
3 702 65223 7289 
4 653 67138 8678 
5 714 65602 7425 
6 757 65869 9513 
7 644 66155 8488 

Table B.1.1.5a: Results of the Longest common subsequence algorithm using the first 
configuration. 
 
The second configuration uses a smaller detector set (100) to increase speed and a detector 
length of 17 bytes. The algorithm was tested during eight TestData transfers. The drop rate of 
Snort was 86.2%. This configuration is a more stable version of the one before.  
 

Run Replacements Packets Oldest Detector 
1 308 85630 4668 
2 349 83689 9373 
3 337 86344 13016 
4 341 83457 13728 
5 323 84346 14063 
6 254 83043 18747 
7 362 87434 23538 
8 322 87674 13577 

Table B.1.1.5b: Results of the Longest common subsequence algorithm using the second 
configuration. 
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B.1.2 Second approach (using filters) 
 
When Snort was used with the filters it captured 1038957 packets. 421203 were forwarded for 
processing and 617754 were rejected. This ratio can not directly be applied to the transferred 
amount of data, because the average packet size of the rejected packets is significantly smaller 
(see chapter 5, some packets do not contain file data). An approximate value for the processed 
packets is around 420 MB compared to the effective transferred 511 MB. The time for one 
transfer of the TestData set was on the average 15474 seconds. 
 

B.1.2.1 The Pearson correlation coefficient 
 
The parameters of the Pearson correlation were set to the same values as they have been in the 
third configuration of the first approach. Here the significance level was set to the highest value 
(0.99995) of the four implemented tables. The size of the detector set was 3000, with an 
individual length of 220 values. Snort trained the detector set during four transfers of the 
TestData set and it can be seen that it has almost the same learning effect compared with the 
results of the first approach. Snorts drop rate was definitely low with a value of 2.1%.  
 

Packets 
Run Replacements processed rejected Oldest Detector 
1 10941 409529 612004 15094 
2 6190 414580 610997 30318 
3 3688 411421 615097 45543 
4 2344 412980 617796 60786 

Table B.1.2.1: Results of the Pearson Correlation with packet filters. 
 

B.1.2.2 Hamming Distance 
 
This time the Hamming distance algorithm was training a set of 500 detectors, each equipped 
with 10 bytes. The threshold for a match remained unchanged with 4 bytes. Snorts drop packet 
rate was 19.4%. This training process on the seven runs was interesting, because the detectors 
are getting continually older, but the replacement rate stayed almost the same. It can be seen that 
it is slightly decreasing towards the seventh run. This result came from a continually increasing 
number of detectors that are probably tolerant to the presented TestData set. But after the 
seventh run this number is still low. 
 

Packets 
Run Replacements processed rejected Oldest Detector 
1 3139 339624 478365 15131 
2 2995 334369 512381 30382 
3 3046 337424 511949 45526 
4 2946 343014 513033 60676 
5 3025 343991 519782 75760 
6 2901 339083 473294 91073 
7 2862 339372 487247 106347 

Table B.1.2.2: Results of the Hamming distance algorithm with packet filters. 
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B.1.2.3 r-contiguous bytes 
 
The third tested match rule was the r-contiguous bytes algorithm. It worked in the first approach 
and therefore it will be interesting to see if it also trains the detector set on the new conditions. 
Three configurations have been implemented. The first is using a set of 800 detectors with 
length 8 bytes. The discriminator value r was set to 3. The detectors were trained on three 
transfers of the TestData set. During this time snort dropped 37.5% of for the processing 
intended packets. Not one detector lives longer than a third part of the training time. Therefore 
the training can not be assumed to be successful in further runs. 
 

Packets 
Run Replacements processed rejected Oldest Detector 
1 30987 266840 390284 5017 
2 30581 267009 396000 5526 
3 31076 255809 361169 4030 

Table B.1.2.3a: Results of the r-contiguous bytes algorithm with packet filters, using the first 
configuration. 
 
The second configuration uses a set of 2000 detectors with length 4 bytes. The discriminator 
value r remains at the value 3. The detectors were trained on 9 transfers of the TestData set. 
During this time Snort dropped 57.3% of for the processing intended packets. The progress of 
the training was instable.  
 

Packets 
Run Replacements processed rejected Oldest Detector 
1 17325 186269 347966 15063 
2 17787 189940 359788 26135 
3 17777 189401 370579 30147 
4 14815 143452 330645 22032 
5 14449 167286 339332 21392 
6 17181 187339 371473 21263 
7 17064 184055 356877 25093 
8 17887 189791 362712 21515 
9 17547 184724 346102 14849 

Table B.1.2.3b: Results of the r-contiguous bytes algorithm with packet filters, using the second 
configuration. 
 
Finally the third configuration uses a set of 250 detectors with a length of 16 bytes. The 
discriminator value r was set to 4. The detectors were trained on 2 transfers of the TestData set. 
During this time Snort dropped 32.4% of the packets. As it can be seen in the following table, 
the training was successful.  
 

Packets 
Run Replacements processed rejected Oldest Detector 
1 238 296284 276743 15458 
2 84 273113 241395 29817 

Table B.1.2.3c: Results of the r-contiguous bytes algorithm with packet filters, using the third 
configuration. 
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B.1.2.4 Longest common subsequence (LCS) 
 
The parameters for the LCS algorithm were set to the same values as they have been in the 
second configuration of the first approach. The size of the detector set was 100, with a length of 
17 bytes. The threshold for a match was again 11 bytes. Unfortunately although the network 
speed was reduced it had again a low performance with a packet drop rate of 84.5%. This time 
the training was stable but not successful, because the age of the oldest detector was less than a 
third of the training duration. This was up to a definitely higher number of replaced immature 
detectors. 
 

Packets 
Run Replacements processed rejected Oldest Detector 
1 4650 64391 185455 4919 
2 4462 65920 224724 4891 
3 4775 65892 222770 4677 
4 4558 64600 229027 4995 

Table B.1.2.4a: Results of the Longest Common Subsequence algorithm with packet filters, 
using the first configuration. 
 
The second configuration was using a detector set with the same size and length as in the first 
configuration. The threshold for a match was increased to 12 bytes. This time the packet drop 
rate was 79.8%. This training success is developing similar to the result of the Hamming 
Distance presented in B.1.2.2. The detectors are getting older but the replacement rate stays 
almost the same and has no decreasing tendency. This result came from a low number of 
detectors that seem to be already tolerant the presented TestData set. The training of the 
detectors is based on 8 transfers of the TestData set. 
 

Packets 
Run Replacements processed rejected Oldest Detector 
1 447 84641 61773 15511 
2 461 84124 61898 24999 
3 428 85555 61353 37875 
4 397 84397 60000 35215 
5 460 85932 61526 43999 
6 327 85324 106812 37561 
7 414 83613 62948 56386 
8 450 86253 60611 75904 

Table B.1.2.4b: Results of the Longest Common Subsequence algorithm with packet filters, 
using the second configuration. 
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B.2 Results of the tested algorithm in chapter 6 
 
In chapter 5 the data basis for the match algorithms were byte sequences in the payload. In 
chapter 6 the new representation is the numbers of disassembled instructions. Three 
configurations have been tested on their success in training a detector set. The detector set was 
trained with the r-contiguous instructions algorithm. 
The first configuration uses 1000 detectors equipped with 8 instructions. The discriminator 
value r in all three configurations was set to 2. In the first configuration the detectors were 
trained on five transfers of the TestData set and the packet filter was turned off. During this time 
Snort dropped 77.6% of for the processing intended packets. The training was successful. 
 
Run Replacements Packets Oldest Detector 
1 618 135889 4937 
2 105 136926 10003 
3 57 138596 15031 
4 26 140140 20066 
5 32 140986 25091 

Table B.2a: Results of the r-contiguous instructions algorithm using the first configuration 
without packet filters. 
 
The second configuration again uses 1000 detectors holding 8 instructions. The only difference 
in the first and the second configuration was that in the second the packet filter was turned on. 
The detectors were trained on three transfers of the TestData set. During this time Snort dropped 
72.0% of for the processing intended packets. This training was successful. 
 

Packets 
Run Replacements processed rejected Oldest Detector 
1 773 74443 279526 5228 
2 61 76558 281534 10291 
3 17 76863 283453 15357 

Table B.2b: Results of the r-contiguous instructions algorithm using the second configuration 
with packet filters. 
 
In the third configuration the network speed was slowed down again to the 40 kB per second. 
The packet filter was also turned on. Here, the number of detectors was increased to 2000 with a 
length of 5 instructions. The detectors were trained on five transfers of the TestData set. During 
this time Snort dropped 31.3% of for the processing intended packets. Also the third 
configuration has been successful. 
 

Packets 
Run Replacements processed rejected Oldest Detector 
1 1876 285157 422310 15422 
2 189 293154 456374 30707 
3 22 296867 450068 46338 
4 19 296379 469710 61809 
5 7 275208 423116 76105 

Table B.2c: Results of the r-contiguous instructions algorithm using the third configuration with 
packet filters. 
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Appendix C 
 
This appendix presents the assembler instruction frequency spectrum which is produced when 
different file types are being disassembled.  

• In the first section three text based file types are analysed, which are CPP Source Code 
Files, HTM Web pages and TXT Files.  

• The second section contains the analysis of five binary based file formats. Included are 
two picture formats commonly used for Web pages (GIF and JPG). This section includes 
also the Adobe portable document format (PDF), a common archive file format (ZIP) and a 
music file format (MP3).  

• Section three shows the instruction distribution of two Binary Executable File Formats 
(EXE and DLL).  

• The last section presents the spectrum used by a high number of computer viruses. These 
files have been collected from past threats which are reaching back until the beginning of 
the Microsoft Windows area.  

 

C.1 Text based file types 
 
The text based files all are using the same instruction set. This can be seen if the instruction 
distribution in the spectrum is compared. When these files are disassembled the resulting 
instruction range is very limited. This result was expected from the byte spectrum analysis in 
Appendix A. There the observed range of the characters was also limited.  
 
File type Number of files Disassembled instructions 
CPP 2235 11637493 
TXT 3955 149139095 
HTM 2763 21462699 

Table C.1: Text based file types 

C.1.1 Instruction spectrum of CPP Source Files 
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Figure C.1.1 Instruction spectrum of CPP Source files 
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C.1.2 Instruction spectrum of TXT Files 
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Figure C.1.2 Instruction spectrum of TXT files 
 

C.1.3 Instruction spectrum of HTM Pages 
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Figure C.1.3 Instruction spectrum of HTM Pages 
 

C.2 Binary based file types 
 
The disassembly of binary files resulted in a broader spectrum of instructions. The Intel x86 
processor supports 563 instructions. Most of them are produced with a very low occurrence rate.  
 
File type Number of files Disassembled instructions 
GIF 2554 8561282 
JPG 5541 287398930 
MP3 272 678829903 
PDF 1993 356274169 
ZIP 3657 427752106 

Table C.2: Binary based file types 
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C.2.1 Instruction spectrum of GIF Image files 
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Figure C.2.1 Instruction spectrum of GIF Image files 
 

C.2.2 Instruction spectrum of JPG Image files 
 

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320 331 342 353 364 375 386 397 408 419 430 441 452 463 474 485 496 507 518 529 540 551 562

 
Figure C.2.2 Instruction spectrum of JPG Image files 
 

C.2.3 Spectrum of MP3 Music files 
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Figure C.2.3 Instruction spectrum of MP3 Music files 
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C.2.4 Instruction spectrum of PDF files 
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Figure C.2.4 Instruction spectrum of PDF files 
 

C.2.5 Instruction spectrum of ZIP Archive files 
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Figure C.2.5 Instruction spectrum of ZIP Archive files 
 

C.3 Executable file types 
 
If the disassembled instruction spectrum between binary file types and executable files is 
compared, it can be noticed that some noise in the spectrum is removed. The individual bars 
appear clearer. The ADD instruction (Instruction number 5) in executable file types is observed 
with a much higher probability than in non-executable file types. The ADD operation was 
produced in 32.8% (EXE) and 31% (DLL) of all instructions. This results from the section 
padding in PE Files.  
 
File type Number of files Disassembled instructions 
EXE 2752 376588208 
DLL 4541 492301150 

Table C.3: Executable file types 
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C.3.1 Instruction spectrum of EXE files 
 

 
Figure C.3.1 Instruction spectrum of EXE files 
 

C.3.2 Instruction spectrum of DLL files 
 

 
Figure C.3.2 Instruction spectrum of DLL files 
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C.4 Virus files  
 
The spectrum of the virus files does not significantly differ from the executable files presented 
in section 3. The exception is the occurrence of the instruction with the number 333 in EXE 
Virus files. This instruction is the NOP instruction and it had been observed that in early 
Windows viruses some quite large NOP zones are present. 
 
File type Number of files Disassembled instructions 
COM 6337 8581825 
EXE 1470 7714879 
PIF 44 773372 
CPL 8 83657 

Table C.4: Virus files 

C.4.1 Instruction spectrum of COM Virus files 
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Figure C.4.1 Instruction spectrum of COM Virus files 
 

C.4.2 Instruction spectrum of EXE Virus files 
 

 
Figure C.4.2 Instruction spectrum of EXE Virus files 
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C.4.3 Instruction spectrum of PIF Virus files 
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Figure C.4.3 Instruction spectrum of PIF Virus files 
 

C.4.4 Instruction spectrum of CPL Virus files 
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Figure C.4.4 Instruction spectrum of CPL Virus files 
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Appendix D 
 
This appendix shows examples of the entry point effect, which occurs when code is being 
disassembled without knowing where the code really starts. The hypothesis is that even if the 
exact entry point is missed, a correct instruction sequence will be reproduced after a few 
wrongly disassembled instructions. 
Here a code example is presented, where the disassembly process was started at a random offset 
within an executable file. From there the offset of the entry point was increased between 1 and 
17 bytes with a step of one byte. The consequences in the produced instruction sequence are 
shown.  
 
The code fragment on the left side is always the same. It is the disassembled reference 
instruction sequence (started at the entry point with offset 0). The code on the right side was 
produced with an offset in the start of the disassembly process. It has a length of 100 
instructions. 
For each example a table with the results of the analysis is included.  

• The first row gives the data offset (entry point) for the disassembled instruction sequence 
on the right side.   

• The second row shows the number of equal instructions. This is the number of 
instructions after the sequences are completely identical again.  

• The absolute equal instructions in the third row gives the total number of identical 
instructions. At the start of the assembly process it could happen that a different opcode 
results in the same instruction, but the next byte is disassembled wrong (see example #11). 
This row counts the number of matching instructions in both sequences regardless of holes 
in it. The value therefore is always equal or higher than the number of equal instructions.  

• The last row reports the relative position in the new disassembled instruction sequence 
where the sequences start to be equal (without holes). It counts the number of how many 
more instructions are generated in the window compared to the RIS before the point of 
synchronisation. 

In the following examples a part of the disassembled sequence is marked with grey background. 
This indicates the areas where both sequences are equal. The only difference which remains in 
the marked sequence is the data of the JMP instruction (Number 561). This difference in the 
disassembled instruction comes from the relative address coding. 
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Entry point: +1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 1
# equal instructions 96
absolute equal instructions 96
relative position 1  
Table D1: Entry point +1 
 
 
 
Entry point: +2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 2
# equal instructions 100
absolute equal instructions 100
relative position 0  
Table D2: Entry point +2 

LN INS OPCODE            INSTRUCTION 
 0 561 7600              jna 0x441 
 1 005 0000              add [eax],al 
 2 005 00501E            add [eax+0x1e],dl 
 3 035 807C29B580        cmp byte [ecx+ebp-0x4b],0x80 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 005 0000              add [eax],al  
 1 005 0000              add [eax],al  
 2 456 50                push eax      
 3 456 1E                push ds       
 4 035 807C29B580        cmp byte [ecx 
 5 561 7C2F              jl 0x3c       
 6 334 08817C8A2B86      or [ecx+0x862 
 7 561 7C16              jl 0x2b       
 8 456 1E                push ds       
 9 035 807CE51780        cmp byte [ebp 
10 561 7C11              jl 0x2e       
11 409 59                pop ecx       
12 563 82                db 0x82       
13 561 7C0E              jl 0x2f       
14 492 18807C4E9980      sbb [eax+0x80 
15 561 7C9F              jl 0xffffffc8 
16 561 0F817CCC4083      jno near 0x83 
17 561 7C98              jl 0xffffffc9 

LN INS OPCODE            INSTRUCTION 
 1 005 0000              add [eax],al 
 2 005 00501E            add [eax+0x1e],dl 
 3 035 807C29B580        cmp byte [ecx+ebp-0x4b],0x80 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 005 0000              add [eax],al  
 1 005 00501E            add [eax+0x1e 
 2 035 807C29B580        cmp byte [ecx 
 3 561 7C2F              jl 0x3b       
 4 334 08817C8A2B86      or [ecx+0x862 
 5 561 7C16              jl 0x2a       
 6 456 1E                push ds       
 7 035 807CE51780        cmp byte [ebp 
 8 561 7C11              jl 0x2d       
 9 409 59                pop ecx       
10 563 82                db 0x82       
11 561 7C0E              jl 0x2e       
12 492 18807C4E9980      sbb [eax+0x80 
13 561 7C9F              jl 0xffffffc7 
14 561 0F817CCC4083      jno near 0x83 
15 561 7C98              jl 0xffffffc8 
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Entry point: +3: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 3
# equal instructions 97
absolute equal instructions 97
relative position 1  
Table D3: Entry point +3 
 
 
 
 
Entry point: +4: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 4
# equal instructions 100
absolute equal instructions 100
relative position 0  
Table D4: Entry point +4 

LN INS OPCODE            INSTRUCTION 
 1 005 0000              add [eax],al 
 2 005 00501E            add [eax+0x1e],dl 
 3 035 807C29B580        cmp byte [ecx+ebp-0x4b],0x80 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 005 0000              add [eax],al  
 1 456 50                push eax      
 2 456 1E                push ds       
 3 035 807C29B580        cmp byte [ecx 
 4 561 7C2F              jl 0x3a       
 5 334 08817C8A2B86      or [ecx+0x862 
 6 561 7C16              jl 0x29       
 7 456 1E                push ds       
 8 035 807CE51780        cmp byte [ebp 
 9 561 7C11              jl 0x2c       
10 409 59                pop ecx       
11 563 82                db 0x82       
12 561 7C0E              jl 0x2d       
13 492 18807C4E9980      sbb [eax+0x80 
14 561 7C9F              jl 0xffffffc6 
15 561 0F817CCC4083      jno near 0x83 
16 561 7C98              jl 0xffffffc7 

LN INS OPCODE            INSTRUCTION 
 2 005 00501E            add [eax+0x1e],dl 
 3 035 807C29B580        cmp byte [ecx+ebp-0x4b],0x80 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 005 00501E            add [eax+0x1e 
 1 035 807C29B580        cmp byte [ecx 
 2 561 7C2F              jl 0x39       
 3 334 08817C8A2B86      or [ecx+0x862 
 4 561 7C16              jl 0x28       
 5 456 1E                push ds       
 6 035 807CE51780        cmp byte [ebp 
 7 561 7C11              jl 0x2b       
 8 409 59                pop ecx       
 9 563 82                db 0x82       
10 561 7C0E              jl 0x2c       
11 492 18807C4E9980      sbb [eax+0x80 
12 561 7C9F              jl 0xffffffc5 
13 561 0F817CCC4083      jno near 0x83 
14 561 7C98              jl 0xffffffc6 
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Entry point: +5: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 5
# equal instructions 98
absolute equal instructions 98
relative position 1  
Table D5: Entry point +5 
 
 
 
 
Entry point: +6: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 6
# equal instructions 99
absolute equal instructions 99
relative position 0  
Table D6: Entry point +6 

LN INS OPCODE            INSTRUCTION 
 2 005 00501E            add [eax+0x1e],dl 
 3 035 807C29B580        cmp byte [ecx+ebp-0x4b],0x80 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 456 50                push eax      
 1 456 1E                push ds       
 2 035 807C29B580        cmp byte [ecx 
 3 561 7C2F              jl 0x38       
 4 334 08817C8A2B86      or [ecx+0x862 
 5 561 7C16              jl 0x27       
 6 456 1E                push ds       
 7 035 807CE51780        cmp byte [ebp 
 8 561 7C11              jl 0x2a       
 9 409 59                pop ecx       
10 563 82                db 0x82       
11 561 7C0E              jl 0x2b       
12 492 18807C4E9980      sbb [eax+0x80 
13 561 7C9F              jl 0xffffffc4 
14 561 0F817CCC4083      jno near 0x83 
15 561 7C98              jl 0xffffffc5 

LN INS OPCODE            INSTRUCTION 
 2 005 00501E            add [eax+0x1e],dl 
 3 035 807C29B580        cmp byte [ecx+ebp-0x4b],0x80 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 456 1E                push ds       
 1 035 807C29B580        cmp byte [ecx 
 2 561 7C2F              jl 0x37       
 3 334 08817C8A2B86      or [ecx+0x862 
 4 561 7C16              jl 0x26       
 5 456 1E                push ds       
 6 035 807CE51780        cmp byte [ebp 
 7 561 7C11              jl 0x29       
 8 409 59                pop ecx       
 9 563 82                db 0x82       
10 561 7C0E              jl 0x2a       
11 492 18807C4E9980      sbb [eax+0x80 
12 561 7C9F              jl 0xffffffc3 
13 561 0F817CCC4083      jno near 0x83 
14 561 7C98              jl 0xffffffc4 
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Entry point: +7: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 7
# equal instructions 100
absolute equal instructions 100
relative position 0  
Table D7: Entry point +7 
 
 
 
 
Entry point: +8: 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 8
# equal instructions 98
absolute equal instructions 98
relative position 1  
Table D8: Entry point +8 
 

LN INS OPCODE            INSTRUCTION 
 3 035 807C29B580        cmp byte [ecx+ebp-0x4b],0x80 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 035 807C29B580        cmp byte [ecx 
 1 561 7C2F              jl 0x36       
 2 334 08817C8A2B86      or [ecx+0x862 
 3 561 7C16              jl 0x25       
 4 456 1E                push ds       
 5 035 807CE51780        cmp byte [ebp 
 6 561 7C11              jl 0x28       
 7 409 59                pop ecx       
 8 563 82                db 0x82       
 9 561 7C0E              jl 0x29       
10 492 18807C4E9980      sbb [eax+0x80 
11 561 7C9F              jl 0xffffffc2 
12 561 0F817CCC4083      jno near 0x83 
13 561 7C98              jl 0xffffffc3 

LN INS OPCODE            INSTRUCTION 
 3 035 807C29B580        cmp byte [ecx+ebp-0x4b],0x80 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 561 7C29              jl 0x2b       
 1 292 B580              mov ch,0x80   
 2 561 7C2F              jl 0x35       
 3 334 08817C8A2B86      or [ecx+0x862 
 4 561 7C16              jl 0x24       
 5 456 1E                push ds       
 6 035 807CE51780        cmp byte [ebp 
 7 561 7C11              jl 0x27       
 8 409 59                pop ecx       
 9 563 82                db 0x82       
10 561 7C0E              jl 0x28       
11 492 18807C4E9980      sbb [eax+0x80 
12 561 7C9F              jl 0xffffffc1 
13 561 0F817CCC4083      jno near 0x83 
14 561 7C98              jl 0xffffffc2 
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Entry point: +9: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 9
# equal instructions 95
absolute equal instructions 95
relative position -3  
Table D9: Entry point +9 
 
 
 
 
Entry point: +10: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 10
# equal instructions 99
absolute equal instructions 99
relative position 0  
Table D10: Entry point +10 
 

LN INS OPCODE            INSTRUCTION 
 3 035 807C29B580        cmp byte [ecx+ebp-0x4b],0x80 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 522 29B5807C2F08      sub [ebp+0x82 
 1 035 817C8A2B867C161E  cmp dword [ed 
 2 035 807CE51780        cmp byte [ebp 
 3 561 7C11              jl 0x26       
 4 409 59                pop ecx       
 5 563 82                db 0x82       
 6 561 7C0E              jl 0x27       
 7 492 18807C4E9980      sbb [eax+0x80 
 8 561 7C9F              jl 0xffffffc0 
 9 561 0F817CCC4083      jno near 0x83 
10 561 7C98              jl 0xffffffc1 

LN INS OPCODE            INSTRUCTION 
 3 035 807C29B580        cmp byte [ecx+ebp-0x4b],0x80 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 292 B580              mov ch,0x80   
 1 561 7C2F              jl 0x33       
 2 334 08817C8A2B86      or [ecx+0x862 
 3 561 7C16              jl 0x22       
 4 456 1E                push ds       
 5 035 807CE51780        cmp byte [ebp 
 6 561 7C11              jl 0x25       
 7 409 59                pop ecx       
 8 563 82                db 0x82       
 9 561 7C0E              jl 0x26       
10 492 18807C4E9980      sbb [eax+0x80 
11 561 7C9F              jl 0xffffffbf 
12 561 0F817CCC4083      jno near 0x83 
13 561 7C98              jl 0xffffffc0 
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Entry point: +11: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 11
# equal instructions 91
absolute equal instructions 93
relative position 1  
Table D11: Entry point +11 
 
 
 
 
Entry point: +12: 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 12
# equal instructions 100
absolute equal instructions 100
relative position 0  
Table D12: Entry point +12 
 

LN INS OPCODE            INSTRUCTION 
 3 035 807C29B580        cmp byte [ecx+ebp-0x4b],0x80 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 035 807C2F0881        cmp byte [edi 
 1 561 7C8A              jl 0xffffff91 
 2 522 2B867C161E80      sub eax,[esi+ 
 3 561 7CE5              jl 0xfffffff4 
 4 409 17                pop ss        
 5 035 807C115982        cmp byte [ecx 
 6 561 7C0E              jl 0x25       
 7 492 18807C4E9980      sbb [eax+0x80 
 8 561 7C9F              jl 0xffffffbe 
 9 561 0F817CCC4083      jno near 0x83 
10 561 7C98              jl 0xffffffbf 

LN INS OPCODE            INSTRUCTION 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 561 7C2F              jl 0x31       
 1 334 08817C8A2B86      or [ecx+0x862 
 2 561 7C16              jl 0x20       
 3 456 1E                push ds       
 4 035 807CE51780        cmp byte [ebp 
 5 561 7C11              jl 0x23       
 6 409 59                pop ecx       
 7 563 82                db 0x82       
 8 561 7C0E              jl 0x24       
 9 492 18807C4E9980      sbb [eax+0x80 
10 561 7C9F              jl 0xffffffbd 
11 561 0F817CCC4083      jno near 0x83 
12 561 7C98              jl 0xffffffbe 
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Entry point: +13: 
 
 
 
 
 
 
 
 
 
 
 
 
Data offset 13
# equal instructions 99
absolute equal instructions 99
relative position 0  
Table D13: Entry point +13 
 
 
Entry point: +14: 
 
 
 
 
 
 
 
 
 
 
 
Data offset 14
# equal instructions 100
absolute equal instructions 100
relative position 0  
Table D14: Entry point +14 
 
 

LN INS OPCODE            INSTRUCTION 
 4 561 7C2F              jl 0x47c 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 105 2F                das           
 1 334 08817C8A2B86      or [ecx+0x862 
 2 561 7C16              jl 0x1f       
 3 456 1E                push ds       
 4 035 807CE51780        cmp byte [ebp 
 5 561 7C11              jl 0x22       
 6 409 59                pop ecx       
 7 563 82                db 0x82       
 8 561 7C0E              jl 0x23       
 9 492 18807C4E9980      sbb [eax+0x80 
10 561 7C9F              jl 0xffffffbc 
11 561 0F817CCC4083      jno near 0x83 
12 561 7C98              jl 0xffffffbd 

LN INS OPCODE            INSTRUCTION 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 334 08817C8A2B86      or [ecx+0x862 
 1 561 7C16              jl 0x1e       
 2 456 1E                push ds       
 3 035 807CE51780        cmp byte [ebp 
 4 561 7C11              jl 0x21       
 5 409 59                pop ecx       
 6 563 82                db 0x82       
 7 561 7C0E              jl 0x22       
 8 492 18807C4E9980      sbb [eax+0x80 
 9 561 7C9F              jl 0xffffffbb 
10 561 0F817CCC4083      jno near 0x83 
11 561 7C98              jl 0xffffffbc 
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Entry point: +15: 
 
 
 
 
 
 
 
 
 
 
Data offset 15
# equal instructions 97
absolute equal instructions 97
relative position -2  
Table D15: Entry point +15 
 
Entry point: +16: 
 
 
 
 
 
 
 
 
 
 
Data offset 16
# equal instructions 93
absolute equal instructions 95
relative position -2  
Table D16: Entry point +16 
 
Entry point: +17: 
 
 
 
 
 
 
 
 
 
 
Data offset 17
# equal instructions 97
absolute equal instructions 97
relative position -1  
Table D17: Entry point +17 

LN INS OPCODE            INSTRUCTION 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 035 817C8A2B867C161E  cmp dword [ed 
 1 035 807CE51780        cmp byte [ebp 
 2 561 7C11              jl 0x20       
 3 409 59                pop ecx       
 4 563 82                db 0x82       
 5 561 7C0E              jl 0x21       
 6 492 18807C4E9980      sbb [eax+0x80 
 7 561 7C9F              jl 0xffffffba 
 8 561 0F817CCC4083      jno near 0x83 
 9 561 7C98              jl 0xffffffbb 

LN INS OPCODE            INSTRUCTION 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 561 7C8A              jl 0xffffff8c 
 1 522 2B867C161E80      sub eax,[esi+ 
 2 561 7CE5              jl 0xffffffef 
 3 409 17                pop ss        
 4 035 807C115982        cmp byte [ecx 
 5 561 7C0E              jl 0x20       
 6 492 18807C4E9980      sbb [eax+0x80 
 7 561 7C9F              jl 0xffffffb9 
 8 561 0F817CCC4083      jno near 0x83 
 9 561 7C98              jl 0xffffffba 

LN INS OPCODE            INSTRUCTION 
 5 334 08817C8A2B86      or [ecx+0x862b8a7c],al 
 6 561 7C16              jl 0x46b 
 7 456 1E                push ds 
 8 035 807CE51780        cmp byte [ebp+0x17],0x80 
 9 561 7C11              jl 0x46e 
10 409 59                pop ecx 
11 563 82                db 0x82 
12 561 7C0E              jl 0x46f 
13 492 18807C4E9980      sbb [eax+0x80994e7c],al 
14 561 7C9F              jl 0x408 
15 561 0F817CCC4083      jno near 0x8340d0eb 
16 561 7C98              jl 0x409 

LN INS OPCODE            INSTRUCTION   
 0 292 8A2B              mov ch,[ebx]  
 1 553 867C161E          xchg bh,[esi+ 
 2 035 807CE51780        cmp byte [ebp 
 3 561 7C11              jl 0x1e       
 4 409 59                pop ecx       
 5 563 82                db 0x82       
 6 561 7C0E              jl 0x1f       
 7 492 18807C4E9980      sbb [eax+0x80 
 8 561 7C9F              jl 0xffffffb8 
 9 561 0F817CCC4083      jno near 0x83 
10 561 7C98              jl 0xffffffb9 
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