Invent Your Own
Lomputer Games

with Python
cnd Edition

A beginner's guide to computer programming.

By Al Sweigart

Copyright 2008, 2009 © by Albert Sweigart
"Invent Your Own Computer Games with Python" is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 United States License.

You are free:

To Share - to copy, distribute, display, and perform the work
To Remix - to make derivative works

Under the following conditions:

@Attribution - You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the work).
(Visibly include the title and author's name in any excerpts of this work.)

Noncommercial — You may not use this work for commercial purposes.

@Share Alike - If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.

This summary is located here:
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Your fair use and other rights are in no way affected by the above.
There is a human-readable summary of the Legal Code (the full license), located here:
http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

@creative
commons

Book Version 8

For Caro, with more love
than | ever knew | had.

A Note to Parents and Fellow
Programmers

| have more thanks for your interest and more apologies for this book's deficiencies than | can enumerate.
My motivation for writing this book comes from a gap | saw in today's literature for kids interested in
learning to program. | started programming when | was 9 years old in the BASIC language with a book
similar to this one. During the course of writing this, I've realized how a modern language like Python has
made programming far easier and versatile. Python has a gentle learning curve while still being a serious
language that is used by programmers professionally.

The current crop of programming books for kids that I've seen fell into two categories. First, books that
did not teach programming so much as "game creation software™ or in dumbed down languages to make
programming “easy". Or second, they taught programming like a mathematics textbook: all principles and
concepts with little application left to the reader. This book takes a different approach: show the game
source code right up front and explain programming principles from the examples.

| have also made this book available under the Creative Commons license, which allows you to make
copies and distribute this book (or excerpts) with my full permission, as long as attribution to me is left
intact and it is used for noncommercial purposes. (See the copyright page.) | want to make this book a gift
to a world that has given me so much. Thank you again for reading this book, and feel free to email me any
questions or comments.

Al Sweigart
al@inventwithpython.com

The full text of this book is available in HTML or PDF format at:
http://inventwithpython.com

My Richard The Third The
video Game is going to be
FAMNTASTIC.

AT

\\\\HAH I HEAR THAT

R COMICS

A11 I need to
do is program
it!

LATER:

Um, APPAREWTLY, programming is for folks who

are thrilled when a computer reminds them

they're missing a bracket or semicolon? It
g, MUst be, because they make

¥ % that happen =0 OFTEN.

. S0 it's not going well?
I CAM'T EVEM GET RICHARD \

THE THIRD TO MOVE.
changed from
"Copyright
2 M1crusuft 1990"
"mar, Furget
th1s

You know what my game
iz now? ame 1s
MIBELES, w1t the text

Programming's a skiTlT!

\

I know
" that!

=k

I just thought it was a skill I

could pick up easily.

to know ever¥thing! I
know the diffe

binary and B+ search trees!
S R, WANT TO KMOW

iz how to
= make Richa
ITI's sucky

=7 J Z=t horse do

* hefore wou

i can run,

rence between friggin'

A double]umps,f Crawling
o you know? sucks!
Gl ; You've
ot to
earn
to crawl

I don't need

Hey, here's a tip!
don't need to ’

ALL I

ro

T-Rex.

(21 2008 Ryan MWorth

Who iIs this book for?

il QWANTZ . COm

Programming isn't hard. But it is hard to find learning materials that teach you to do interesting things with
programming. Other computer books go over many topics that most newbie coders don't need. This book will
teach you how to program your own computer games. Y ou will learn a useful skill and have fun games to show

for it!

This book isfor:

« Anyone who wants to teach themselves computer programming, even if they have no previous experience

programming.

« Kids and teenagers who want to learn computer programming by creating games. Kids as young as 9 or
10 years old should be able to follow aong.

« Adults and teachers who wish to teach others programming.

« Anyone, young or old, who wants to learn how to program by learning a professional programming

language.

Table of Contents

Source Code Listing
hello.py

guess.py

jokes.py

dragon.py

hangman.py
tictactoe.pay

bagels.py

sonar.py

cipher.py

reversi.py

aisml.py

aismz2.py

aisim3.py
pygameHelloWorld.py
animation.py
collisionDetection.py
pygamel nput.py
spritesAndSounds.py
dodger.py

X X X X X X X X X X X X X X X X X X X

1 Installing Python

2 The Interactive Shell

3 Strings

X X X X X ¥ X X X X X ¥ X X X X X ¥

4 Guess the Number

5 Jokes

6 Dragon Realm

7 Flow Charts

8 Hangman

9 Tic Tac Toe

10 Bagels

X X X X X ¥ X X X X X ¥ X X X X X ¥ X X XXX XX XX XXX XX X XXXX X X XXXX ¥

11

12

13

14

15

16

17

Cartesian Coordinates

Sonar

Caesar Cipher

Reversi

Al Simulation

Graphics and Animation

Collision Detection and Input

X X X X X ¥ X X X X X ¥ X X X X X ¥ X X XXX XX XX XXX XX X XXXX X X XXXX ¥

18

19

Sound and Images

Dodger

Differences Between Python 2 and 3

X X X X X X ¥ X X X X X ¥ X X X X X ¥

Glossary

Chapter]

Installing Python

Topics Covered In This Chapter:

« Downloading and installing the Python interpreter.
« Using IDLE's interactive shell to run instructions.
« How to use this book.

« The book's website at http://inventwithpython.com

Hello! Thisis a book that will teach you how to program by showing you how to create computer games.
Once you learn how the games in this book work, you'll be able to create your own games. All you'll need is
a computer, some software called the Python Interpreter, and this book. The software you'll need is free and
you can download it from the Internet.

When | was a kid, | found a book like this that taught me how to write my first programs and games. It
was fun and easy. Now as an adult, | still have fun programming computers, and | get paid for it. But even
if you don't become a computer programmer when you grow up, programming is a useful and fun skill to
have.

Compuiters are very useful machines. The good news is that learning to program a computer is easy. If
you can read this book, you can program a computer. A computer program isjust a bunch of instructions
run by a computer, just like a storybook is just a whole bunch of sentences read by the reader. These
instructions are like the turn-by-turn instructions you might get for walking to a friend's house. (Turn left at
the light, walk two blocks, keep walking until you find the first blue house on the right.) The computer
follows each instruction that you give it in the order that you give it. Video games are themselves nothing
but computer programs. (And very fun computer programs!)

In this book, any words you need to know will look like this. For example, the word "program” is
defined in the previous paragraph.

In order to tell a computer what you want it to do, you write a program in a language that the computer
understands. The programming language this book teaches is named Python. There are many different
programming languages including BASIC, Java, Python, Pascal, Haskell, and C++ (pronounced, "c plus
plus’).

When | was a kid most people learned to program in BASIC as their first language. But new
programming languages have been invented since then, including Python. Python is even easier to learn
than BASIC and it's a serious programming language used by professional computer programmers. Many
adults use Python in their work (and when programming just for fun).

The first few games welll create together in this book will probably seem simple compared to the games
you've played on the XBox, Playstation, or Wii. They don't have fancy graphics or music but that's because
they're meant to teach you the basics. They're purposely simple so that we can focus on learning to program.
And remember, games don't have to be complicated to be fun. Hangman, Tic Tac Toe, and making secret
codes are simple to program but are also fun.

We'l aso learn how to make the computer solve some math problems in the Python shell. (Don't worry if
you don't know a lot of mathematics. If you know how to add and multiply, you know enough math to do
programming. Programming is more about problem solving in general than it is about solving math
problems.)

Downloading and Installing Python

Before we can begin programming you'll need to install the Python software; specifically the Python
interpreter. (You may need to ask an adult for help here.)) The interpreter isa program that understands
the instructions that you'll write in the Python language. Without the interpreter, your computer won't
understand these instructions and your programs won't work. (Well just refer to this as Python from now
on.)

Because welll be writing our games in the Python language, we need to download Python first, from the
official website of the Python programming language, http://www.python.org

I'm going to give you instructions for installing Python on Microsoft Windows, not because that's my
favorite operating system but because chances are that's the operating system that your computer is running.
Y ou might want the help of someone else to download and install the Python software.

When you get to python.org, you should see a list of links on the left (About, News, Documentation,
Download, and so on.) Click on the Download link to go to the download page, then look for the file called
Python 3.1 Windows Installer (Windows binary -- does not include source) and click onits link to
download Python for Windows.

=

) Download Python Software - Mozilla Firefox

File Edit iew History Bookmarks Tools Help

6 A 'C.‘ N, @ htkps) fpython,orgf/download)

% # pownload Python Software el

FOUMNDATION

Alzo look at the detailed Python 3.1 page:
CORE DEVELOPMENT

LINES p> e Python 3.1 compressed source tarball
Fython 3.1 bzipped source tarball (for
Fython 3.1 Windows installer (Window
Fython 3.1 Windows AMDOB installer |
Python 3.1 Mac Installer Disk lmage

. 5 & »

Figure 1-1: Click the Windows installer link to download Python for Windows from http://www.python.org

Double-click on the python-3.1.msi file that you've just downloaded to start the Python installer. (If it

2

doesn't start, try right-clicking the file and choosing Install.) Once the installer starts up, click the Next
button and just accept the choicesin the installer as you go (no need to make any changes). When the install
isfinished, click Finish.

Theinstalation for Mac OSis similar. Instead of downloading the .msi file from the Python website,
download the .dmg Mac Installer Disk Image file instead. The link to this file will look something like "Mac
Installer disk image (3.1.1)" on the "Download Python Software" web page.

If your operating system is Ubuntu, you can install Python by opening a terminal window (click on
Applications > Accessories > Terminal) and entering sudo apt-get install python3 then
pressing Enter. You will need to enter the root password to install Python, so ask the person who owns the
computer to type in this password.

There may be a newer version of Python available than 3.1. If so, then just download the latest version.
The game programs in this book will work just the same. If you have any problems, you can always Google
for "installing Python on <your operating system's name>". Python is a very popular language, so you
should have no difficulty finding help.

Starting Python

If your operating system is Windows XP, you should be able to run Python by choosing Start >
Programs > Python 3.x > IDLE (Python GUI). When it's running it should looking something like Figure
1-2. (But different operating systems will look slightly different.)

Python Shell
File Edit Shel Debug Cptions ‘Windows Help

Python 3.1rcl (r3lrcl:73069, May 31 Z009, 085:57:10) [HM
3C w1500 32 bhit (Intel)] on win3iz

Type "copyright™, "credits"™ or "license() ™ for more in
formation.

wo |

Fig 1-2: The IDLE program'’s interactive shell on Windows.

IDLE standsfor Interactive Devel opment Environment. The development environment is software that
makes it easy to write Python programs. We will be using IDLE to type in our programs and run them.

The window that appears when you first run IDLE is called the interactive shell. A shell is a program that
lets you type instructions into the computer. The Python shell lets you type Python instructions, and the
shell sends these instructions to software called the Python interpreter to perform. We can type Python
instructions into the shell and, because the shell isinteractive, the computer will read our instructions and
respond in some way. (Ideally in a way that we expect but that will depend on whether we write the correct
instructions.)

How to Use This Book

There are a few things you should understand about this book before you get started. "Invent with
Python" is different from other programming books because it focuses on the complete source code for
different games. Instead of teaching you programming concepts and leaving it up to you to figure out how
to make fun games with those concepts, this book shows you fun games and then explains how they are put
together.

The Featured Programs

Most chapters begin with a sample run of the featured program. This sample run shows you what the
program's output looks like, with responses from the user in bold print. This will give you an idea of what
the complete game will ook like when you have entered the code and run it.

Some chapters also show the complete source code of the game, but remember: you don't have to enter
every line of code right now. Instead, you can read the chapter first to understand what each line of code
does and then try entering it later.

Y ou can also download the source code file from this book's website. Go to the URL
http://inventwithpython.com/source and follow the instructions to download the source code file.

Line Numbers and Spaces

When entering the source code yourself, do not type the line numbers that appear at the beginning of each
line. For example, if you see this in the book:

9. number = random.randint(l, 20)

this:

--

__

Those numbers are only used so that this book can refer to specific lines in the code. They are not a part
of the actual program.

Aside from the line numbers, be sure to enter the code exactly as it appears. Notice that some of the lines
don't begin at the leftmost edge of the page, but are indented by four or eight spaces. Be sure to put in the
correct number of spaces at the start of each line. (Since each character in IDLE is the same width, you can
count the number of spaces by counting the number of characters above or below the line you're looking at.)

For example, you can see that the second lineis indented by four spaces because the four characters
("whi1") on the line above are over the indented space. The third lineisindented by another four spaces
(the four characters, "1 n" are above the third line's indented space):

__

i while guesses < 10:
' iIT number == 42:
print(*Hello")

__

Text Wrapping in This Book

Some lines of code are too long to fit on one line on the page, and the text of the code will wrap around
to the next line. When you type these lines into the file editor, enter the code all on one line without pressing
ENTER.

You can tell when a new line starts by looking at the line numbers on the left side of the code. For
example, the code below has only two lines of code, even though the first line wraps around:

__

1. print("This is the first line!
XXHXKXHXKXXKIIHKKIHKKIHKKIHXKIHXKXXKXX XXX XXX
XXXXXXXXXXXX ™)

2. print("This i1s the second line! %)

Tracing the Program Online

Y ou can visit http://inventwithpython.com/traces to see a trace through each of the programs in this book.
Tracing a program means to step through the code one line at a time, in the same way that a computer
would execute it. The traces web page has notes and helpful reminders at each step of the trace to explain
what the program is doing, so it can help you better understand why these programs work the way they do.

Checking Your Code Online

Some of the games in this book are a little long. Although it is very helpful to learn Python by typing out
the source code for these games, you may accidentally make typos that cause your game programs to crash.
It may not be obvious where the typo is.

Y ou can copy and paste the text of your source code to the online diff tool on the book's website. The diff
tool will show any differences between the source code in the book and the source code you've typed. This
isan easy way of finding any typosin your program.

The online diff tool is at this web page: http://inventwithpython.com/diff

Summary

This chapter has helped you get started with the Python software by showing you the python.org website
where you can download it for free. After installing and starting the Python IDLE software, we will be
ready to learn programming starting in the next chapter.

This book's website at http://inventwithpython.com has more information on each of the chapters,
including an online tracing website that can help you understand what exactly each line of the programs do.

Chapter E
The Interactive Shell

Topics Covered In This Chapter:

Integers and Floating Point Numbers
Expressions

Vaues

Operators

Evaluating Expressions

Storing Vaues in Variables

Before we start writing computer games, we should learn some basic programming concepts first. These
concepts are values, operators, expressions, and variables. We won't start programming in this chapter, but
knowing these concepts and the names of things will make learning to program much easier. This is because
most programming is built on only a few simple concepts combined together to make advanced programs.

Let's start by learning how to use Python's interactive shell.

Some Simple Math Stuff

To open IDLE on Windows, click on Start > Programs > Python 3.0 > IDLE (Python GUI). With
IDLE open, let's do some simple math with Python. The interactive shell can work just like a calculator.
Type 2+2 into the shell and pressthe ENTER key on your keyboard. (On some keyboards, this is the
RETURN key.) Asyou can see in Figure 2-1, the computer should respond with the number 4; the sum of
2+2.

Asyou can see, we can use the
Python shell just like a calculator.
Thisisn't a program by itself
because we are just learning the
basics right now. The + sign tells
the computer to add the numbers 2
and 2. To subtract numbers use the
- sign, and to multiply numbers

Python Shell
File Edit Shell Debug Options Windows Help

Python 3.0.1 (r301:69561, Feb 13 2009, zZ0:04:15) [M3
C w.1500 32 kbit (Intel)l] on wind:z
Type "ocopyright®™, "ocredits"™ or "license ()™ for more
information.
Frxr 2 + 2

use an asterisk (*), like so: 4
FrE

2+2 addition
2-2 subtraction
2% 2 multiplication
2/ 2 division

When used in thisway, +, -, *,
and / are called operators
because they tell the computer to
perform the specified operation on Figure 2-1: Type 2+2 into the shell.
the numbers surrounding them.

Integers and Floating Point Numbers

In programming (and also in mathematics), whole numbers like 4, 0, and 99 are called integers.
Numbers with fractions or decimal points (like 3.5 and 42.1 and 5.0) are not integers. In Python, the number
5isan integer, but if we wrote it as 5.0 it would not be an integer. Numbers with a decimal point are called
floating point numbers. In mathematics, 5.0 is still considered an integer and the same as the number
5, but in computer programming the computer considers any number with a decimal point as not an integer.

Expressions

Try typing some of these math problems into the shell, pressing ENTER key after each one.

Figure 2-2 iswhat the interactive shell in IDLE will look like after you type in the instructions above.

interrace and no data 13 Sen
EEEEF TN FT T AT T T T A AT A AT FF S S LA

IDLE 1.2.1
> 242

4

s> 24+2+2+4242
10

>>> BF6

45

> 10-54+4
11

>»> 2+ 2
4

sz |

Figure 2-2: What the IDLE window |ooks like after entering instructions.

These math problems are called expressions.

Computers can solve millions of these problemsin ope rator

seconds. Expressions are made up of values (the V(]i ue

numbers) connected by operators (the math signs). value \’

Let's learn exactly what values and operators are. H //
2+ 2

Asyou can see with the last expression in the above

example, you can put any amount of spaces in between H_)

the integers and these operators. (But be sure to always :
start at the very beginning of the line, with no spacesin E'-XP ression
front.)

Figure 2-3: An expression is amade up of values and operators.

Numbers are a type of value. Integers are a type of
number. But, even though integers are numbers, not all numbers are integers. (For example, fractions and
numbers with decimal points like 2. 5 are numbers that are not integers.)

Thisislike how a cat is a type of pet, but not all pets are cats. Someone could have a pet dog or a pet
lizard. An expression is made up of values (such as integers like 8 and 6) connected by an operator
(such as the * multiplication sign). A single value by itself is also considered an expression.

In the next chapter, we will learn about working with text in expressions. Python isn't limited to just
numbers. It's more than just a fancy calculator!

Evaluating Expressions

When a computer solvesthe expression 10 + 5 and getsthe value 15, we say it has evaluated the
expression. Evaluating an expression reduces the expression to a single value, just like solving a math
problem reduces the problem to a single number: the answer.

Theexpressons10 + 5and 10 + 3 + 2 have the same value, because they both evaluate to 15.
Even single values are considered expressions. The expression 15 evaluatesto 15.

However, if you just type 5 + into the interactive shell, you will get an error message.

P >>> 5 4+
» SyntaxError: invalid syntax

This error happened because 5 + isnot an expression. Expressions have values connected by operators,
but the + operator always expects to connect two things in Python. We have only given it one. Thisiswhy
the error message appeared. A syntax error means that the computer does not understand the instruction you
gave it because you typed it incorrectly. Python will always display an error message if you enter an
instruction that it cannot understand.

This may not seem important, but a lot of computer programming is not just telling the computer what to
do, but also knowing exactly how to tell the computer to do it.

Expressions Inside Other Expressions

Expressions can also contain other expressions. For example, in the expresson2 + 5 + 8,the2 + 5
part isits own expression. Python evaluates2 + 5 to 7, so the original expression becomes7 + 8.
Python then evaluates this expression to 15.

Think of an expression as being a stack of pancakes. If you put two stacks of pancakes together, you still
have a stack of pancakes. And a large stack of pancakes can be made up of smaller stacks of pancakes that
were put together. Expressions can be combined together to form larger expressions in the same way. But
no matter how big an expression isit also evaluates to a single answer, just like2 + 5 + 8 evaluatesto
15.

Storing Values in Variables

When we program, we will often want to save the values that our expressions evaluate to so we can use
them later. We can store valuesin variables.

Think of variables like a box that can hold values. Y ou can store values inside variables with the = sign
(called the assignment operator). For example, to store the value 15 in a variable named "spam”,
enter spam = 15 into the shell:

. >>> spam = 15
E >>>

Y ou can think of the variable like a box with the
value 15 inside of it (as shown in Figure 2-4). The
variable name "spam” is the label on the box (so we
can tell one variable from another) and the value
stored in it islike a small note inside the box.

When you press Enter you won't see anything in
response, other than a blank line. Unless you see an
error message, you can assume that the instruction has
been executed successfully. The next >>> prompt will
appear so that you can type in the next instruction.

Thisinstruction (caled an assignment :
statement) creates the variable spamand stores Figure 2-4: Variables are like boxes that can hold values in them.
the value 15 in it. Unlike expressions, statements
are instructions that do not evaluate to any value, which is why there is no value displayed on the next line
in the shell.

It might be confusing to know which instructions are expressions and which are statements. Just

9

remember that if the instruction evaluates to a single value, it's an expression. If the instruction does not,
then it's a statement.

An assignment statement is written as a variable, followed by the = equal sign, followed by an expression.
The value that the expression evaluates to is stored inside the variable. The value 15 by itself isan
expression. Expressions made up of a single value by itself are easy to evaluate. These expressions just
evaluate to the value itself. For example, the expression 15 evauatesto 15!

Remember, variables store values, not expressions. For example, if we had the statement, spam = 10
+ 5, then the expression 10 + 5 would first be evaluated to 15 and then the value 15 would be stored in
the variable, spam

Thefirst time you store a value inside a variable by using an assignment statement, Python will create
that variable. Each time after that, an assignment statement will only replace the value stored in the variable.

Now let's see if we've created our variable properly. If we type spaminto the shell by itself, we should
see what value is stored inside the variable spam

i >>> spam = 15
1 >>> spam

Now, spamevaluates to the value inside the variable, 15.

And here's an interesting twist. If we now enter spam + 5 into the shell, we get the integer 20, like so.

. >>> spam = 15
¢+ >>> spam + 5
20

P >>>

That may seem odd but it makes sense when we remember that we set the value of spamto 15. Because
we've set the value of the variable spamto 15, writing spam + 5 islikewriting the expression 15 + 5.

If you try to use a variable before it has been created, Python will give you an error because no such
variable exists yet. This also happens if you mistype the name of the variable.

We can change the value stored in a variable by entering another assignment statement. For example, try
the following:

__

Thefirst time we enter spam + 5, the expression evaluates to 20, because we stored the value 15
inside the variable spam But when we enter spam = 3, the value 15 isreplaced, or overwritten, with the
value 3. Now, when we enter spam + 5, the expression evaluates to 8 because the value of spamis now
3.

10

To find out what the current value isinside a variable, just enter the variable name into the shell.

Now here's something interesting. Because a variable is only a name for a value, we can write
expressions with variables like this:

. >>> spam = 15
+ >>> spam + spam

¢+ >>> spam - spam

When the variable spamhas the integer value 15 stored in it, entering spam + spamisthe same as
entering 15 + 15, which evaluatesto 30. And spam - spamisthesameas15 - 15, which
evaluates to 0. The expressions above use the variable spam twice. You can use variables as many times as
you want in expressions. Remember that Python will evaluate a variable name to the value that is stored
inside that variable, each time the variable is used.

We can even use the value in the spamvariable to assign spama new value:

. >>> spam = 15

» >>> spam = spam + 5
+ 20

i >>>

The assignment statement spam = spam + 5 islike saying, "the new value of the spam variable will
be the current value of spam plus five." Remember that the variable on the left side of the = sign will be
assigned the value that the expression on the right side evaluates to. We can also keep increasing the value
in spamby 5 several times:

__

+ >>> spam = 15 i
, >>> spam = spam + 5 :
+ >>> spam = spam + 5 i
, >>> spam = spam + 5 :
© >>> spam
: 30 i
L>>> :

Using More Than One Variable

When we program we won't always want to be limited to only one variable. Often we'll need to use
multiple variables.

For example, let's assign different valuesto two variables named eggs and f i zz, like so:

Now thef i zz variable has 10 inside it, and eggs has 15 inside it.

1"

Figure 2-5: "fizz" and "eggs’ have values stored in them.

Without changing the value in our spamvariable, let's try assigning a new value to the spam variable.
Enter spam = fizz + eggs intothe shell then enter spaminto the shell to see the new value of spam.
Can you guess what it will be?

L >>> fizz = 10
1 >>> eggs = 15
1 >>> spam = fizz + eggs
i >>> spam
25
>>>

Thevaluein spamisnow 25 because when we add f i zz and eggs we are adding the values stored
insidefi zz and eggs.

Summary

In this chapter you learned the basics about writing Python instructions. Python needs you to tell it
exactly what to do in a strict way, because computers don't have common sense and only understand very
simple instructions. Y ou have learned that Python can evaluate expressions (that is, reduce the expression to
asingle value), and that expressions are values (such as 2 or 5) combined with operators (such as + or -).
Y ou have also learned that you can store valuesinside of variablesin order to use them later on.

In the next chapter, we will go over some more basic concepts, and then you will be ready to program!

12

Chapter 3

Strings

Topics Covered In This Chapter:

That's enough of integers and math for now. Python is more than just a calculator. Now let's see what
Python can do with text. In this chapter, we will learn how to store text in variables, combine text together,
and display them on the screen. Many of our programs will use text to display our games to the player, and
the player will enter text into our programs through the keyboard. We will also make our first program,
which greets the user with the text, "Hello World!" and asks for the user's name.

Flow of execution

Strings

String concatenation

Data types (such as strings or integers)
Using IDLE to write source code.
Saving and running programsin IDLE.
Theprint () function.

Thei nput () function.

Comments

Capitalizing variables

Case-sengitivity

Overwriting variables

Strings

In Python, we work with little chunks of text called strings. We can store string values inside variables
just like we can store number values inside variables. When we type strings, we put them in between two

single quotes ('), like this:

i >>> spam = ' hell o'

E >>>

The single quotes are there only to tell the computer where the string begins and ends.

13

Now, if you type spaminto the shell, you should see the contents of the spamvariable - the' hel | 0’
string. This is because Python will evaluate a variable to the value stored inside the variable.

. >>> spam = ' hel |l o'
i >>> spam

: " hell 0

L >>>

Strings can have almost any character or sign in them as well as spaces and numbers. (Strings can't have
single quotes inside of them without using an escape character. Escape characters are described later.) These
are all examples of strings:

. " hel | o’

. "H there!’

+ " Al bert'

. ' KI TTENS'

. ' 7 apples, 14 oranges, 3 |enons'

 "Along tine ago in a galaxy far, far away...
v OF &HWYUF &OCE sdYOr &gf CWrOF &9Byc8r 2

Aswe did with numerical valuesin the previous chapter, we can also put string values in expressions. For
example, the expresson4 * 2 + 3 isan expression with numerical values that will evaluate to the
integer 11.

String Concatenation

Y ou can add one string to the end of another by using the + operator, which is called string
concatenation. Try entering' Hel 1 o° + "Wbrl d!' into the shell:

--

' >>> Hello + ' Werld!
;'HeIIoW)rId!'
D >>>

__

To keep the strings separate, put a space at the end of the' Hel | o' string, before the single quote, like
this:

--

;>>> "Hello '+ 'Wrld!"
» "Hello World!"
P>>>

__

Strings and integers are different data types. All values have a data type. The data type of the value
"Hel | o' isastring. The datatype of the value 5 is an integer. The data type of the data that tells us (and
the computer) what kind of datait is.

Writing Programs in IDLE's File Editor

Until now we have been typing instructions one at a time into the interactive shell. When we write
programs though, we type in several instructions and have them run all at once. Let's write our first
program!

14

The name of the program that provides the interactive shell is called IDLE, the Interactive Devel opement
Environment. IDLE also has another part called the file editor.

Click on the File menu at the top of the Python Shell window, and select New Window. A new blank
window will appear for us to type our program in. Thiswindow isthe file editor.

Untitled
File Edit Format Run Options windows Help

Lm: 1 |Cal:

Figure 3-1: The file editor window.

Hello World!

A tradition for programmers learning a new language is to make their
first program display the text "Hello world!" on the screen. We'll create
our own Hello World program now.

When you enter your program, don't enter the numbers at the left side of
the code. They're there so we can refer to each line by number in our
explanation. If you look at the bottom-right corner of the file editor Figure 3-2: The bottom right of thefile

window, it will tell you which line the cursor is currently on. editor window tells you where the cursor
is. The cursor is currently on line 12.

Enter the following text into the new file editor window. We call this
text the program's source code because it contains the instructions that Python will follow to determine
exactly how the program should behave. (Remember, don't type in the line numbers!)

H 1. # This program says hello and asks for ny nane. H
15

nyName = i nput ()

IR

print('Hello world!")
print('Wat is your

nanme?')

print('It is good to nmeet you, ' + myNane)

The IDLE program will give different types of instructions different colors. (Y ou can find a color coded
reference inside the back cover of this book.) After you are done typing this code in, the window should

look like this;

hello. py - C:/Python30/hello. py
File Edit Format Run

Options Windows Help

This program =ays hello and asks for my hame.
print ('Hello world!')
print ('What iz wour name')
mylatme = input()
print('It i= good to meet you, ' 4+ mylame)

Figure 3-3: The file editor window will look like this after you type in the code.

Saving Your Program

Once you've entered your source
code, save it so that you won't have
to retype it each time we start IDLE.
To do so, choose the File menu at
the top of the File Editor window,
and then click on Save As. The
Save As window should open. Enter
hello.py in the File Name box then
press Save. (See Figure 3-4.)

Y ou should save your programs
every once in awhile as you type
them. That way, if the computer
crashes or you accidentally exit
from IDLE, only the typing you've
done since your last save will be
lost. Press Ctrl-Sto save your file
quickly, without using the mouse at
all.

ER

Save As Eﬂ@ﬂ
Saveirt |y PythenD | ® cr E-
- _JDiLs
-_uf} -l
MyFRecenl | Zindude
Diocuments)b
- -; _'.H}ﬁ.
u Cabd
Desktop — T
() LICENSE
: [E] NEW'S
r-"r [] README
My Docismerts
<9
My Computer
. |
My Netwark File name: {helo py =l Sa
Save astype. | Python and text fles [py." pww.” ba) =] Cancel

Figure 3-4: Saving the program.

Opening The Programs You've Saved

To load a saved program, choose File > Open. Do that now, and in the window that appears choose
hello.py and press the Open button. Y our saved hello.py program should open in the File Editor window.

Now it'stime to run our program. From the File menu, choose Run > Run Module or just press the F5
key on your keyboard. Y our program should run in the shell window that appeared when you first started

16

IDLE. Remember, you have to press F5 from the file editor's window, not the interactive shell's window.

When your program asks us for your name, go ahead and enter it, as shown in Figure 3-5:

interface. Thiz connection ig

m interface and no data is sent
FIlE E I i e i e e i e e e e e e e

Th
prin
prin
myiaa
prin

IDLE 3.0

Frr SESEE====s======s==s=s==s=s==s=======7
i

Hello world!

What iz vour name?

Alhert

It i= good to mweet you, Llbhert
i

Figure 3-5: Running the program.

Now, when you push ENTER, the program should greet you (the user) by name. Congratulations!
Y ou've written your first program. Y ou are now a beginning computer programmer. (Y ou can run this
program again if you like by pressing F5 again.)

How the "Hello World" Program Works

How does this program work? Well, each line that we entered is an instruction to the computer that is
interpreted by Python in a way that the computer will understand. A computer program is a lot like a recipe.
Do the first step first, then the second, and so on until you reach the end. Each instruction is followed in
sequence, beginning from the very top of the program and working down the list of instructions. After the
program executes the first line of instructions, it moves on and executes the second line, then the third, and
SO on.

We call the program'’s following of instructions step-by-step the flow of execution, or just the
execution for short.

Now let's ook at our program one line at a time to see what it's doing, beginning with line number 1.

Comments

1. # This program says hello and asks for ny nane.

Thislineis called acomment. Any text following a # sign (called the pound sign) isa comment.
Comments are not for the computer, but for you, the programmer. The computer ignores them. They're used
to remind you of what the program does or to tell others who might look at your code what it is that your
code istrying to do.

Programmers usually put a comment at the top of their code to give their program atitle. The IDLE
program displays commentsin red to help them stand out.

Functions

17

A function iskind of like a mini-program inside your program. It contains lines of code that are
executed from top to bottom. Python provides some built-in functions that we can use. The great thing about
functions is that we only need to know what the function does, but not how it does it. (Y ou need to know
that the pri nt () function displays text on the screen, but you don't need to know how it does this.)

A function call isa piece of code that tells our program to run the code inside a function. For
example, your program can cal the pri nt () function whenever you want to display a string on the
screen. Thepri nt () function takes the string you type in between the parentheses as input and displays
the text on the screen. Because we want to display Hel | o wor | d!' on the screen, we type the pri nt
function name, followed by an opening parenthesis, followed by the' Hel | o wor | d!'" string and a
closing parenthesis.

The print() Function

2. print('Hello world!")
3. print("Wiat is your nane?')

Thislineisacall to the print function, usually written aspri nt () (with the string to be printed going
inside the parentheses).

We add parentheses to the end of function names to make it clear that we're referring to a function named
print (), notavariable named pri nt . The parentheses at the end of the function let us know we are
talking about a function, much like the quotes around the number ' 42" tell us that we are talking about the
string ' 42" and not the integer 42.

Line 3isanother pri nt () function call. This time, the program displays "What is your name?"

The 1nput() Function

4. nyNanme = input()

This line has an assignment statement with a variable (myNane) and a function call (i nput ()). When
i nput () iscaled, the program waits for input; for the user to enter text. The text string that the user enters
(your name) becomes the function's output value.

Like expressions, function calls evaluate to a single value. The value that the function call evaluatesto is
called the return value. In this case, the return value of thei nput () function isthe string that the user
typed in-their name. If the user typed in Albert, thei nput () function call evaluates to the string
"Al bert’.

The function named i nput () does not need any input (unlike the pri nt () function), which iswhy
there is nothing in between the parentheses.

5. print('It is good to neet you, ' + nyNane)

Onthelast linewe have apri nt () function again. This time, we use the plus operator (+) to

concatenate thestring’ I't is good to neet you, ' andthestring stored in the nyNane variable,
18

which is the name that our user input into the program. This is how we get the program to greet us by name.
Ending the Program

Once the program executes the last line, it stops. At this point it has terminated or exited and all of
the variables are forgotten by the computer, including the string we stored in myNane. If you try running
the program again with a different name, like Carolyn, it will think that's your name.

: Hel | o wor | d!
+ What is your nane?
 Carol yn

1 It is good to neet you, Carolyn

Remember, the computer only does exactly what you program it to do. In this, our first program, it is
programmed to ask you for your name, let you type in a string, and then say hello and display the string you
typed.

But computers are dumb. The program doesn't care if you type in your name, someone else's name, or just
something dumb. Y ou can type in anything you want and the computer will treat it the same way:

' Hel l o worl d!
+ WWhat is your nanme?
. poop

It 1s good to neet you, poop

Variable Names

The computer doesn't care what you name your variables, but you should. Giving variables names that
reflect what type of data they contain makes it easier to understand what a program does. Instead of nane,
we could have called this variable abr ahanli ncol n or nAnE. The computer will run the program the
same (as long as you consistently use abr ahamnLi ncol n or nAnE).

Variable names (as well as everything else in Python) are case-sensitive. Case-sensitive means the same
variable name in a different case is considered to be an entirely separate variable name. So spam SPAM
Spam and sPAMare considered to be four different variables in Python. They each can contain their own
separate values.

It's a bad ideato have differently-cased variables in your program. If you stored your first namein the
variable name and your last name in the variable NAME, it would be very confusing when you read your
code weeks after you first wrote it. Did nanme mean first and NAVE mean last, or the other way around?

If you accidentally switch the name and NAME variables, then your program will still run (it won't have
any syntax errors) but it will run incorrectly. This type of flaw in your code is called a bug. It isvery
common to accidentally make bugs in your programs while you write them. Thisiswhy it is important that
the variable names you choose make sense.

It also helps to capitalize variable names if they include more than one word. If you store a string of what
you had for breakfast in a variable, the variable name what | HadFor Br eakf ast Thi sMor ni ng is much
easier to read than what i hadf or br eakf ast t hi snor ni ng. Thisisa convention (that is, an
optional but standard way of doing things) in Python programming. (Although even better would be
something simple, like my Br eakf ast Food. Capitalizing the first letter of each word in variable names
makes the program more readable.

19

Overwriting Variables

Changing the value stored inside a variable is easy. Just perform another assignment statement with the
same variable. Look what happens when you enter the following code into the interactive shell:

i >>> spam = 42
1 >>> print(spam
42

>>> spam = ' Hel | o'
1 >>> print(spam
: Hell o

Initially, the spamvariable had the integer 42 placed inside of it. Thisiswhy thefirst pri nt (spam)
prints out 42. But when we execute spam = ' Hel | o' , the 42 value istossed out of the variable and
forgotten asthenew ' Hel | o' string value is placed inside the spamvariable.

Replacing the value in a variable with a new value is called overwriting the value. It is important to
know that the old value is permanently forgotten. If you want to remember this value so you can use it later
in your program, store it in a different variable before overwriting the value:

--

L >>> spam = 42
i >>> print(spam

» >>> ol dSpam = s,oam
+ >>> spam = ' Hel | o'
» >>> print(span

+ Hell o

5 Z;> print (ol dSpam

__

In the above example, before overwriting the value in spam we store that value in a variable named
ol dSpam

Summary

Now that we have learned how to deal with text, we can start making programs that the user can run and
interact with. This isimportant because text is the main way the user and the computer will communicate
with each other. The player will enter text to the program through the keyboard with the i nput () function.
And the computer will display text on the screen when the pri nt () function is executed.

Strings are just a different data type that we can use in our programs. We can use the + operator to
combine strings together. This processis call string concatenation. Using the + operator to concatenate two
strings together to form a new string isjust like using the + operator to add two integers to form a new
integer (the sum).

In the next chapter, we will learn more about variables so that our program will remember the text and

numbers that the player enters into the program. Once we have learned how to use text, numbers, and
variables, we will be ready to start creating games.

20

Ehapter4
Guess the Number

Topics Covered In This Chapter:

« i mport statements

Modules

Arguments

whi | e statements

Conditions

Blocks

Booleans

Comparison operators

The difference between = and ==.
i f statements

The br eak keyword.

Thestr () andi nt () functions.
Ther andom r andi nt () function.

The "Guess the Number" Game

We are going to make a "Guess the Number" game. In this game, the computer will think of a random
number from 1 to 20, and ask you to guess the number. Y ou only get six guesses, but the computer will tell
you if your guessistoo high or too low. If you guess the number within six tries, you win.

Thisis a good game for you to start with because it uses random numbers, loops, and input from the user
in afairly short program. Asyou write this game, you will learn how to convert values to different data
types (and why you would need to do this).

Because this program is a game, well call the user the player, but the word "user" would be correct,
too.

Sample Run of "Guess the Number"

21

Here iswhat our game will ook like to the player when the program is run. The text that the player types
inisin bold.

' Hello! Wat is your nane?

+ Al bert

 Well, Albert, | amthinking of a nunber between 1 and 20.
. Take a guess.

10

. Your guess is too high.

! Zake a guess.

' Your guess is too |ow.

. Take a guess.

D4

i Good job, Albert! You guessed ny nunber in 3 guesses!

Enter this code exactly as it appears here, and then save it by clicking on the File menu and then Save As.
Give it afile name like guess.py then run it by pressing the F5 key. Don't worry if you don't understand the
code now, I'll explain it step by step.

Guess the Number's Source Code

Here is the source code for our Guess the Number game. When you enter this code into the file editor, be
sure to pay attention to the spacing at the front of some of the lines. Some lines have four or eight spacesin
front of them. After you have typed in the code, save the file as guess.py. Y ou can run the program from the
file editor by pressing F5. If you see an error message, check that you have typed the program in exactly as
written.

If you don't want to type all this code, you can download it from this book's website at the URL
http://inventwithpython.com/chapter4.

guess.py
This code can be downloaded from http://inventwithpython.com/guess.py
If you get errors after typing this code in, compare it to the book's code with the online diff tool at
http://inventwithpython.com/diff or email the author at al@inventwithpython.com
1. # This is a guess the nunber gane.
2. inport random
.
4. guessesTaken = 0
5.
6. print('Hello! Wat is your nane?')
7. nmyName = input()
8.
9. nunber = randomrandint(1l, 20)
10. print(*WVell, ' + nyName + ', | am thinking of a nunber
between 1 and 20.")
11.
12. while guessesTaken < 6:
13. print(' Take a guess.') # There are four spaces in
front of print.
14. guess = input()
15. guess = int(guess)
16.

22

17. guessesTaken = guessesTaken + 1

18.

19. i f guess < nunber:

20. print('Your guess is too low.') # There are eight
spaces in front of print.

21.

22. i f guess > nunber:

23. print('Your guess is too high.")

24.

25. I f guess == nunber:

26. br eak

27.

28. if guess == nunber:

29. guessesTaken = str(guessesTaken)

30. print('Good job, ' + nyNane + '! You guessed ny
nunber in ' + guessesTaken + ' guesses!')

31.

32. if guess != nunber:

33. nunber = str(nunber)

34. print (' Nope. The nunber | was thinking of was ' +
nunber)

Even though we are entering our source code into a new file editor window, we can return to the shell to
enter individual instructions in order to see what they do. The interactive shell is very good for
experimenting with different instructions when we are not running a program. Y ou can return to the
interactive shell by clicking on its window or on its taskbar button. In Windows or Mac OS X, the taskbar is
on the bottom of the screen. On Linux the taskbar may be located along the top of the screen.

If the program doesn't seem to work after you've typed it, check to see if you have typed the code exactly
as it appears in this book. Y ou can also copy and paste your code to the online "diff" tool at
http://inventwithpython.com/diff. The diff tool will show you how your code is different from the source
code in this book. In the file editor, press Ctrl-A to "Select All" the text you've typed, then press Ctrl-C to
copy the text to the clipboard. Then, paste this text by clicking in the diff tool's text field on the website and
click the "Compare" button. The website will show you any differences between your code and the code in
this book.

There is a diff tool for each program in this book on the http://inventwithpython.com website.

The Import Statement

Let'slook at each line of code in turn to see how this program works.

1. # This is a guess the nunber gane.

This lineis a comment. Comments were introduced in our Hello World program in Chapter 3. Remember
that Python will ignore everything after the # sign. This just reminds us what this program does.

2. inport random

23

Thisisan import statement. Statements are not functions (notice that neither i nport nor r andom
has parentheses after its name). Remember, statements are instructions that perform some action but do not
evaluate to a value. You have already seen statements: assignment statements store a value into a variable
(but the statement does not evaluate to anything).

While Python includes many built-in functions, some functions exist in separate programs called
modules. Modules are Python programs that contain additional functions. We use the functions of these
modules by bringing them into our programs with the i nport statement. In this case, we're importing the
moduler andom

Thei nport statement is made up of thei nport keyword followed by the module name. Together, the
keyword and module name make up the statement. Line 2thenisan i nport statement that imports the
module named r andomwhich contains several functions related to random numbers. (Well use one of
these functions later to have the computer come up with a random number for us to guess.)

4. guessesTaken = 0

This line creates a new variable named guessesTaken. Well store the number of guesses the player makes
in this variable. Since the player hasn't made any guesses so far, we store the integer O here.

6. print('Hello! Wat is your nane?')
7. nyNanme = input()

Lines 6 and 7 are the same as the lines in the Hello World program that we saw in Chapter 3.
Programmers often reuse code from their other programs when they need the program to do something that
they've already coded before.

Line6isafunction call tothepri nt () function. Remember that a function is like a mini-program that
our program runs, and when our program calls a function it runs this mini-program. The code inside the
print () function displays the string you passed it inside the parentheses on the screen.

When these two lines finish executing, the string that is the player's name will be stored in the my Nane

variable. (Remember, the string might not really be the player's name. It's just whatever string the player
typed in. Computers are dumb and just follow their programs no matter what.)

The random randi nt () Function

9. nunber = randomrandint(1l, 20)

In Line 9 we call a new function named r andi nt () , and then store the return value in a variable named
nunber . Remember that function calls are expressions because they evaluate to a value. We call this value
the function call's return value.

Because ther andi nt () function is provided by the r andommodule, we precede it with r andom
(don't forget the period!) to tell our program that the function r andi nt () isin the random module.

24

Ther andi nt () function will return a random integer between (and including) the two integers we give
it. Here, we give it the integers 1 and 20 between the parentheses that follow the function name (separated
by a comma). The random integer that r andi nt () returnsis stored in a variable named nunber -thisis
the secret number the player is trying to guess.

Just for a moment, go back to the interactive shell and enter i nport r andomto import the random
module. Then enter r andom r andi nt (1, 20) to see what the function call evaluates to. It should
return an integer between 1 and 20. Now enter the same code again and the function call will probably
return a different integer. Thisis because each time ther andi nt () function is called, it returns some
random number, just like when you roll dice you will get a random number each time.

+ >>> jnport random
i >>> random randi nt (1, 20)

\ >>> random randint (1, 20)
{ >>> random randint (1, 20)
{ >>> random randint (1, 20)

{ >>> random randint (1, 20)

Whenever we want to add randomness to our games, we can use ther andi nt () function. And we use
randomness in most games. (Think of how many board games use dice.)

You can also try out different ranges of numbers by changing the arguments. For example, enter
random randi nt (1, 4) toonly getintegers between 1 and 4 (including both 1 and 4). Or try
random r andi nt (1000, 2000) to get integers between 1000 and 2000. Here is an example of
calling ther andom r andi nt () function and seeing what values it returns. The results you get when you
call ther andom randi nt () function will probably be different (it is random, after all).

--

: >>> random randint (1, 4)
' 3
i >>> randomrandint (1, 4)
v 4

i >>> random randi nt (1000, 2000)
+ 1294
» >>> random r andi nt (1000, 2000)
+ 1585

__

We can change the game's code dlightly to make the game behave differently. Try changing line 9 and 10
from this:

9. nunber = randomrandint(1l, 20)
10. print("Vell, ' + name + ', | am thinking of a nunber
between 1 and 20.")

into these lines:
25

9. nunber = randomrandint(1, 100)
10. print("Well, ' + name + ', | am thinking of a nunber
between 1 and 100.")

And now the computer will think of an integer between 1 and 100. Changing line 9 will change the
range of the random number, but remember to change line 10 so that the game also tells the player the new
range instead of the old one.

Calling Functions that are Inside Modules

By the way, be sure to enter r andom r andi nt (1, 20) and not justrandi nt (1, 20), or the
computer will not know to look in the r andommodule for the r andi nt () function and you'll get an error
likethis:

--

{ >>> randint(1, 20)

Traceback (nost recent call l|ast):

; File "<stdin>", line 1, in <nodul e>

i NanmeError: name 'randint' is not defined
o >>>

Remember, your program needsto runi nport randombeforeit can cal ther andom r andi nt ()
function. Thisiswhy i nport statements usually go at the beginning of the program.

Passing Arguments to Functions

The integer values between the parentheses in ther andom r andi nt (1, 20) function call are caled
arguments. Arguments are the values that are passed to a function when the function is called.
Arguments tell the function how to behave. Just like the player's input changes how our program behaves,
arguments are inputs for functions.

Some functions require that you pass them values when you call them. For example, look at these
function calls:
i i nput
print(’ Hello')
 random randi nt (1, 20)

__

Thei nput () function has no arguments but the pri nt () function call has one and the randint()
function call has two. When we have more than one argument, we separate each with commas, as you can
see in this example. Programmers say that the arguments are delimited (that is, separated) by commas.
This is how the computer knows where one value ends and another begins.

If you pass too many or too few arguments in a function call, Python will display an error message, as
you can see below. In this example, we first called r andi nt () with only one argument (too few), and
then we called r andi nt () with three arguments (too many).

--

>>> random r andi nt (1)
i Traceback (nost recent call last):

26

File "<pyshel |l #1>", line 1, in <nodul e>
» random randi nt (1)
i TypeE;ror: randi nt () takes exactly 3 positional argunments (2
: glven
+ >>> randomrandint (1, 2, 3?
. Traceback (nmost recent call last):
i File "<pyshel | #2>", line 1, in <nodul e>
» randomrandint (1, 2, 3)
. TypeError: randint() takes exactly 3 positional argunents (4
: gl ven)
v >>>

Notice that the error message says we passed 2 and 4 arguments instead of 1 and 3. Thisis because
Python always passes an extra, invisible argument. This argument is beyond the scope of this book, and you
don't have to worry about it.

Welcoming the Player

Lines 10 and 12 greets the player and tells them about the game, and then starts letting the player guess
the secret number. Line 10 isfairly ssmple, but line 12 introduces an advanced (but useful) concept called a
loop.

10. print("Well, ' + nyName + ', | am thinking of a nunber
between 1 and 20.")

InLine 10the pri nt () function welcomes the player by name, and tells them that the computer is
thinking of a random number.

But wait - didn't | say that the pri nt () function takes only one string? It may look like there's more
than one string there. But ook at the line carefully. The plus signs concatenate the three strings to evaluate
down to one string, and that is the one string the pr i nt () function prints. It might look like the commas
are separating the strings, but if you look closely you see that the commas are inside the quotes, and part of
the strings themselves.

Loops

Line 12 has something called awhi | e statement, which indicates the beginning of a while loop. Loops
are parts of code that are executed over and over again. But before we can learn about whi | e loops, we
need to learn a few other concepts first. Those concepts are blocks, booleans, comparison operators,
conditions, and finally, the whi | e statement.

Blocks

A block isone or more lines of code grouped together with the same minimum amount of indentation.
Y ou can tell where a block begins and ends by looking at the line's indentation (that is, the number of
spaces in front of the line).

A block begins when a lineisindented by four spaces. Any following line that is also indented by four
spacesis part of the block. A block within a block begins when a lineis indented with another four spaces
(for atotal of eight spacesin front of the line). The block ends when thereis a line of code with the same
indentation before the block started.

27

Below is a diagram of the code with the blocks outlined and numbered. The spaces have black squares
filled in to make them easier to count.

12. while guessesTaken < 6:

13. ssssprint 'Take a guess.’ (::>
14, swswguess = raw_ input ()

15. swsssguess = int(guess)

16.

17. sswmguessesTaken = guessesTaken + 1

18.

19. wswwlf guess < number: (::)

20. wwsmsswsprint 'Your guess is too low.

21.
22, wwswif guess > number:

23. sssmsswaprint 'Your guess is teo high.'

Figure 4-1: Blocks and their indentation.

For example, look at the code above. The spaces have been replaced with dark squares to make them
easier to count. Line 12 has an indentation of zero spaces and is not inside any block. Line 13 has an
indentation of four spaces. Since this indentation is larger than the previous line's indentation, we can tell
that a new block has started. Lines 14, 15, 17 and 19 also have four spaces for indentation. Both of these
lines have the same amount of indentation as the previous line, so we know they are in the same block. (We
do not count blank lines when we look for indentation.)

Line 20 has an indentation of eight spaces. Eight spaces is more than four spaces, so we know a new
block has started. Thisisa block that isinside of another block.

Line 22 only has four spaces. The line before line 22 had a larger number of spaces. Because the
indentation has decreased, we know that block has ended. Line 22 is in the same block as the other lines
with four spaces.

Line 23 increases the indentation to eight spaces, so again a new block has started.

To recap, line 12 isnot in any block. Lines 13 to 23 al in one block (marked with the circled 1). Line 20
isin ablock in ablock (marked with a circled 2). And line 23 isthe only line in another block in a block
(marked with a circled 3).

When you type code into IDLE, each letter is the same width. Y ou can count the number of |etters above
or below the line to see how many spaces you have put in front of that line of code.

In this figure, the lines of code inside box 1 are all in the same block, and blocks 2 and 3 are inside block
1. Block 1isindented with at least four spaces from the left margin, and blocks 2 and 3 are indented eight
spaces from the left margin. A block can contain just one line. Notice that blocks 2 and 3 are only one line
each.

The Boolean Data Type

The Boolean data type has only two values: Tr ue or Fal se. These values are case-sensitive and they
28

are not string values; in other words, you do not put a ' quote character around them. We will use Boolean
values with comparison operators to form conditions. (See below.)

Comparison Operators

In line 12 of our program, the line of code containing the whi | e statement:

12. while guessesTaken < 6:

Table 2-1: Comparison operators.
Operator Sign Operator Name

The expression that follows the whi | e keyword
(guessesTaken < 6) contains two values (the value in the

variable guessesTaken, and the integer value 6) connected by < L ess than
an operator (the < sign, the "lessthan" sign). The< signiscalled > Greater than
acomparison operator.

<= Less than or equal to

The comparison operator is used to compare two values and _

evaluateto a Tr ue or Fal se Boolean value. A list of all the ” Greater than or equal to
comparison operatorsisin Table 2-1. == Equal to

= Not equal to

Conditions

A condition is an expression that combines two values with a comparison operator (such as < or >)
and evaluates to a Boolean value. A condition is just another name for an expression that evaluatesto Tr ue
or Fal se. Youll find alist of other comparison operatorsin Table 2-1.

Conditions always evaluate to a Boolean value-either Tr ue or Fal se. For example, the condition in our
code, guessesTaken < 6 asks"isthevalue stored in guessesTaken lessthan the number 67" If so,
then the condition evaluates to Tr ue. If not, the condition evaluates to Fal se.

In the case of our Guess the Number program, in line 4 we stored the value O in guessesTaken.
Because 0 islessthan 6, this condition evaluates to the Boolean value of Tr ue. Remember, a condition is
just a name for an expression that uses comparison operators such as< or ! =.

Experiment with Booleans, Comparison Operators,
and Conditions

Enter the following expressions in the interactive shell to see their Boolean results:

1 >>> 50 < 10
. Fal se
» >>> 10 < 11
+ True
r>>> 10 < 10
. Fal se
29

The condition 0 < 6 returns the Boolean value Tr ue because the number O is less than the number 6.
But because 6 is not lessthan 0, the condition 6 < 0 evaluatesto Fal se. 50 isnot lessthan 10, so 50
< 10isFal se.10 islessthan11,s010 < 11 isTrue.

But what about 10 < 107? Why does it evaluate to Fal se? ItisFal se because the number 10 is not
smaller than the number 10. They are exactly the same size. If Alice was the same height as Bob, you
wouldn't say that Alice istaller than Bob or that Alice is shorter than Bob. Both of those statements would
be false.

Try entering some conditions into the shell to see how these comparison operators work:

§>>> 'Good bye' !'= "Hello'

Notice the difference between the assignment operator (=) and the "equal to" comparison operator (==).
The equal (=) signisused to assign a value to a variable, and the equal to (==) sign is used in expressions
to see whether two values are equal. It's easy to accidentally use one when you meant to use the other, so be
careful of what you typein.

Two values that are different data types will always be not equal to each other. For example, try entering
the following into the interactive shell:

© >>> 42 == 'Hel |l o'
. Fal se

P >>> 42 1= "Hell o'
+ True

Looping with While Statements

Thewhi | e statement marks the beginning of a loop. Sometimes in our programs, we want the program
to do something over and over again. When the execution reachesa whi | e statement, it evaluates the
condition next to the whi | e keyword. If the condition evaluatesto Tr ue, the execution moves inside the
while-block. (In our program, the while-block begins on line 13.) If the condition evaluates to Fal se, the
execution moves all the way past the while-block. (In our program, the first line after the while-block is line
28.)

30

H 12. while guessesTaken < 6: H

if False... if True...
12 while guessesTaken < 6:
13 print 'Take a guess.'
14 guess = raw ilnput() ..
15 guess = int_[guess}'"gg IHSIdE 'H"IE‘.
16 loop-block here.
17 guessesTaken = guessesTaken + 1
18
19 if guess < number:
20 print 'Your guess is toc low.'
21
22 if guess > number:
23 print 'Your guess is too high.'
24
25 if guess == number:
20 break
27
28 if guess == number:
...go past the loop-block here.

Figure 4-2: The while loop's condition.

Figure 4-2 shows how the execution flows depending on the condition. If the condition evaluatesto Tr ue
(which it does the first time, because the value of guessesTaken is0), execution will enter the while-
block at line 13 and keep going down. Once the program reaches the end of the while-block, instead of
going down to the next line, it jumps back up to the whi | e statement's line (line 12). It then re-evaluates
the condition, and if itis Tr ue we enter the while-block again.

This is how the loop works. Aslong as the condition is Tr ue, the program keeps executing the code
inside the while-block repeatedly until we reach the end of the while-block and the condition isFal se.
And, until guessesTaken isequal to or greater than 6, we will keep looping.

Think of thewhi | e statement as saying, "while this condition is true, keep looping through the code in
this block™.

Y ou can make this game harder or easier by changing the number of guesses the player gets. All you have
to do is change this line:

12. while guessesTaken < 6:

into this line:

I I
31

12. whil e guessesTaken < 4: H

...and now the player only gets four guesses instead of six guesses. By setting the condition to
guessesTaken < 4, we ensurethat the code inside the loop only runs four times instead of six. This
makes the game much more difficult. To make the game easier, set the condition to guessesTaken < 8
or guessesTaken < 10, which will cause the loop to run a few more times than before and accept more
guesses from the player.

Of course, if we removed line 17 altogether then the guessesTaken would never increase and the
condition would always be Tr ue. This would give the player an unlimited number of guesses.

The Player Guesses

Lines 13to 17 ask the player to guess what the secret number is and lets them enter their guess. We store
this guessin a variable, and then convert that string value into an integer value.

13. print(' Take a guess.') # There are four spaces in
front of print.
14. guess = input()

The program now asks us for a guess. We type in our guess and that number is stored in a variable named
guess.

Converting Strings to Integers with the i nt () Function

15. guess = int(guess)

In line 15, we call anew function called i nt () . Thei nt () function takes one argument. The
i nput () function returned a string of text that player typed. But in our program, we will want an integer,
not a string. If the player enters 5 as their guess, thei nput () function will return the string value' 5
and not the integer value 5. Remember that Python considers the string * 5' and the integer 5 to be
different values. Sothei nt () function will take the string value we give it and return the integer value
form of it.

Let's experiment with the i nt () function in the interactive shell. Try typing the following:
¢ >>> jnt('42")
42
+ >>> | nt(42)
» 42
+ >>> int('hello")

+ Traceback (nobst recent call last):

: File "<pyshell #4>", line 1, in <nodul e>
int('forty-two')

» ValueError: invalid literal for int() with base 10: 'hello
¢ >>> jnt('forty-two')

32

+ Traceback (nobst recent call last):

: File "<pyshell #5>", line 1, in <nodul e>
int('forty-two')

. ValueError: invalid literal for int() with base 10: 'forty-
¢ two'

L >>> int (" 42)

+ 42

»>>> 3 + int('2")

5

We can seethat thei nt (* 42") call will return the integer value 42, and that i nt (42) will do the
same (though it is kind of pointlessto convert an integer to an integer). However, even though you can pass
astring tothei nt () function, you cannot just pass any string. For example, passing’ hel | o' toi nt ()
(likewedointhei nt (" hel | o) call) will result in an error. The string we passtoi nt () must be made
up of numbers.

Theinteger we passtoi nt () must also be numerical, rather than text, whichiswhy i nt (' forty-
t wo') also produces an error. That said, thei nt () function isdlightly forgiving- if our string has spaces
on either side, it will still run without error. Thisiswhy thei nt (* 42 ') call works.

The3 + int('2") lineshows an expression that adds an integer 3 to the return valueof i nt (' 2')
(which evaluates to 2 as well). The expression evaluatesto 3 + 2, which then evaluates to 5. So even
though we cannot add an integer and a string (3 + ' 2' would show us an error), we can add an integer to
a string that has been converted to an integer.

Remember, back in our program on line 15 the guess variable originally held the string value of what
the player typed. We will overwrite the string value stored in guess with the integer value returned by the
i nt () function. Thisis because we will later compare the player's guess with the random number the
computer came up with. We can only compare two integer values to see if one is greater (that is, higher) or
less (that is, lower) than the other. We cannot compare a string value with an integer value to see if one is
greater or lessthan the other, even if that string value is numeric suchas' 5' .

In our Guess the Number game, if the player types in something that is not a number, then the function
call i nt () will result in an error and the program will crash. In the other games in this book, we will add
some more code to check for error conditions like this and give the player another chance to enter a correct
response.

Notice that calling i nt (guess) does not change the value in the guess variable. The code
i nt (guess) isan expression that evaluates to the integer value form of the string stored in the guess
variable. We must assign this return value to guess in order to change the value in guess to an integer with
thisfull line: guess = i nt(guess)

Incrementing Variables

17. guessesTaken = guessesTaken + 1

Once the player has taken a guess, we want to increase the number of guesses that we remember the
player taking.

The first time that we enter the loop block, guessesTaken has the value of 0. Python will take this
vaueand add 1 toit. 0 + 1 is1. Then Python will store the new value of 1 to guessesTaken.

Think of line 17 as meaning, "the guessesTaken variable should be one more than what it already is'.
33

When we add one to a value, programmers say they are incrementing the value (becauseit is
increasing by one). When we subtract one from a value, we are decrementing the value (because it is
decreasing by one). The next time the loop block loops around, guessesTaken will have the value of 1
and will be incremented to the value 2.

Is the Player's Guess Too Low?

Lines 19 and 20 check if the number that the player guessed is less than the secret random number that the
computer came up with. If so, then we want to tell the player that their guess was too low by printing this
message to the screen.

| f Statements

19. I f guess < nunber:
20. print('Your guess is too low.') # There are
ei ght spaces in front of print.

Line 19 beginsani f statement with the keyword, i f . Next to thei f keyword is the condition. Line 20
starts a new block (you can tell because the indentation has increased from line 19 to line 20.) The block
that followsthei f keywordiscalled an if-block. Ani f statement isused if you only want a bit of code to
execute if some conditionisTrue. Line19hasani f statement with the condition guess < nunber . If
the condition evaluates to Tr ue, then the code in the if-block is executed. If the condition is Fal se, then
the code in the if-block is skipped.

Likethewhi | e statement, thei f statement also has a
keyword, followed by a condition, and then a block of code.

See Figure 4-3 for a comparison of the two statements. fizzy < 10:
I [1 I
Thei f statement works almost the same way as a 'I: diti
whi | e statement, too. But unlike the while-block, I condirion
execution does not jump back to thei f statement at the I‘(EYWDPCI

end of theif-block. It just continues on down to the next
line. In other words, i f blocks won't loop.

If the condition is Tr ue, then all the lines inside the if- fizzy > 6!
block are executed. The only line inside this if-block on line I | | |
19isaprint () function call. WhIIE‘. CDHCII'I'IDH

If the integer the player enters is less than the random kgng rd

integer the computer thought up, the program displays
Your guess is too |ow. Iftheinteger the player
enters is equal to or larger than the random integer (in
which case, the condition next to thei f keyword would
have been Fal se), then this block would have been skipped over.

Figure 4-3: if and while statements.

Is the Player's Guess Too High?

Lines 22 to 26 in our program check if the player's guess is either too big or exactly equal to the secret
number.

34

22. i f guess > nunber:
23. print('Your guess is too high.")

If the player's guess is larger than the random integer, we enter the if-block that followsthei f statement.
Theprint () linetellsthe player that their guess istoo hig.

Leaving Loops Early with the br eak Statement

25. i f guess == nunber:
26. br eak

Thisi f statement's condition checks to seeif the guessis equal to the random integer. If it is, we enter
line 26, the if-block that followsiit.

Thelineinside the if-block is a break statement that tells the program to immediately jump out of the
while-block to the first line after the end of the while-block. (The br eak statement does not bother re-
checking the whi | e loop's condition, it just breaks out immediately.)

The br eak statement isjust the br eak keyword by itself, with no condition or colon (the : sign).

If the player's guessis not equal to the random integer, we do not break out of the while-block, we will
reach the bottom of the while-block anyway. Once we reach the bottom of the while-block, the program
will loop back to the top and recheck the condition (QuessesTaken < 6). Remember after the
guessesTaken = guessesTaken + 1 lineof code executed, the new value of guessesTaken is
1. Because 1 islessthan 6, we enter the loop again.

If the player keeps guessing too low or too high, the value of guessesTaken will changeto 2, then 3,
then 4, then 5, then 6. If the player guessed the number correctly, the conditioninthei f guess ==
nunber statement would be Tr ue, and we would have executed the br eak statement. Otherwise, we
keep looping. But when guessesTaken has the number 6 stored, the whi | e statement's condition is
Fal se, since 6 isnot lessthan 6. Because the whi | e statement's condition is Fal se, we will not enter
the loop and instead jump to the end of the while-block.

The remaining lines of code run when the player has finished guessing (either because the player guessed
the correct number, or because the player ran out of guesses). The reason the player exited the previous loop
will determineif they win or lose the game, and the program will display the appropriate message on the
screen for either case.

Check if the Player Won

28. if guess == nunber:

Unlike the code in line 25, this line has no indentation, which means the while-block has ended and this
isthe first line outside the while-block. When we left the whi | e block, we did so either because the
whi | e statement's condition was Fal se (when the player runs out of guesses) or if we executed the
br eak statement (when the player guesses the number correctly). With line 28, check again to seeif the
35

player guessed correctly. If so, we enter the if-block that follows.

29. guessesTaken = str(guessesTaken)
30. print('Good job, ' + nyNane + '! You guessed ny
nunber in ' + guessesTaken + ' guesses!')

Lines 29 and 30 are inside the if-block. They only execute if the condition inthei f statement on line 28
was Tr ue (that is, if the player correctly guessed the computer's number).

In line 29 (which is similar to theguess = i nt (guess) code on line 15), we cal the new function
str (), which returns the string form of an argument. We use this function because we want to change the
integer value in guessesTaken into its string version because we can only use stringsin calls to

print().

Line 29 tells the player that they have won, and how many guesses it took them. Notice in this line that
we change the guessesTaken value into a string because we can only add strings to other strings. If we
were to try to add a string to an integer, the Python interpreter would display an error.

Check if the Player Lost

32. if guess != nunber:

In Line 32, we use the comparison operator | = with thei f statement's condition to mean "is not equal
to." If the value of the player's guessis lower or higher than (and therefore, not equal to) the number chosen
by the computer, then this condition evaluates to Tr ue, and we enter the block that followsthisii f
statement on line 33.

Lines 33 and 34 are inside the if-block, and only execute if the condition is Tr ue.

33. nunber = str(nunber)
34. print (' Nope. The nunber | was thinking of was ' +
nunber)

In this block, we tell the player what the number is because they failed to guess correctly. But first we
have to store the string version of nunber as the new value of nunber .

Thislineis also inside the if-block, and only executes if the condition was Tr ue. At this point, we have
reached the end of the code, and the program terminates.

Congratulations! We've just programmed our first real game!

Summary: What Exactly is Programming?

If someone asked you, "What exactly is programming anyway?" what could you say to them?
Programming is just the action of writing code for programs, that is, creating programs that can be executed
by a computer.

36

"But what exactly is a program?" When you see someone using a computer program (for example,
playing our Guess The Number game), all you see is some text appearing on the screen. The program
decides what exact text to show on the screen (which is called the output), based on its instructions (that
is, the program) and on the text that the player typed on the keyboard (which is called the input). The
program has very specific instructions on what text to show the user. A program isjust a collection of
instructions.

"What kind of instructions?" There are only a few different kinds of instructions, really.

Expressions, which are made up of values connected by operators. Expressions are all evaluated down to
asinglevalue, like2 + 2 evaluatesto4or' Hello" + ' ' + '"Worl d' evauatesto' Hel | o
Wor | d' . Function calls are also part of expressions because they evaluate to a single value themselves, and
this value can be connected by operators to other values. When expressions are next to thei f and whi | e
keywords, we also call them conditions.

Assignment statements, which simply store valuesin variables so we can remember the values later in our
program.

i f,whil e and break are flow control statements because they decide which instructions are
executed. The normal flow of execution for a program is to start at the top and execute each instruction
going down one by one. But these flow control statements can cause the flow to skip instructions, loop over
instructions, or break out of loops. Function calls also change the flow of execution by jumping to the start
of afunction.

Theprint () function, which displays text on the screen. Also, thei nput () function can get text
from the user through the keyboard. Thisis called 1/0 (pronounced like the letters, "eye-oh™), because it
deals with the input and output of the program.

And that's it, just those four things. Of course, there are many details about those four types of
instructions. In this book you will learn about new data types and operators, new flow control statements
besidesi f ,whi | e and br eak, and severa new functions. There are also different types of 1/0 (input
from the mouse, and outputting sound and graphics and pictures instead of just text.)

For the person using your programs, they really only care about that last type, 1/0. The user types on the
keyboard and then sees things on the screen or hears things from the speakers. But for the computer to
figure out what sights to show and what sounds to play, it needs a program, and programs are just a bunch
of instructions that you, the programmer, have written.

A Web Page for Program Tracing

If you have access to the Internet and a web browser, you can go to this book's website at
http://inventwithpython.com/traces you will find a page that traces through each of the programsin this
book. By following along with the trace line by line, it might become more clear what the Guess the
Number program does.

37

) Mozilla Firefox
Gle Edt Wew Higory Bookmarks Jools Help

6 - gi | L] hitp:ffireentvithpython.comftraces/guess. html - | 1G] F @ -
“ || http:/finventwit,, aces/ goess.html £3 -
- e
[Previous [Nemt] i Step #10 Current variable values
Source code:guess.py | e
ryame == 'Albert’
1. # This is a guess the number game. number == 16
2. import random |
3.
4, guessesTaken = 0 NOtes
9.
&. print 'Helle! What is your name?' The player types in their guess. Let's say the player types
7. mytlame = Taw_input() in12.
&. I
9. number = random.randint({l, 20)
10. print "Well, " + myMame + ', I am
thinking of a number between 1 and 20.° Prog ram OUtpUt
11.
12. while guessesTaken ¢ &: Hello! What is your names??
13. print 'Take a guess.' # There are Albern
four spaces in front of print. Well, Albert, | arm thinking of a nurmber between 1 and 20
14. quess = raw_input() Take a guess
i5. guess = int(guess)
16.
1.7 muessesTaken = munessesTaken + 1 |
Done # 0

Figure 4-4: The tracing web page.

The |eft side of the web page shows the source code, and the highlighted lineis the line of code that is
about to be executed. Y ou execute this line and move to the next line by clicking the "Next" button. You
can also go back a step by clicking the "Previous" button, or jump directly to a step by typing it in the white
box and clicking the "Jump" button.

On the right side of the web page, there are three sections. The "Current variable values’ section shows
you each variable that has been assigned a value, along with the value itself. The "Notes" section will give
you a hint about what is happening on the highlighted line. The "Program output" section shows the output
from the program, and the input that is sent to the program. (This web page automatically enters text to the
program when the program asks.)

So go to each of these web pages and click the "Next" and "Previous' buttons to trace through the
program like we did above.

38

Chapter 5
Jokes

Topics Covered In This Chapter:

« Using pri nt () 's end keyword argument to skip newlines.
« Escape characters.
« Using single quotes and double quotes for strings.

Make the Most of pri nt ()

Most of the gamesin this book will have simple text for input and output. The input is typed by the user
on the keyboard and entered to the computer. The output is the text displayed on the screen. In Python, the
print () function can be used for displaying textual output on the screen. We've learned how the basics of
using the pri nt () function, but thereis more to learn about how strings and pri nt () work in Python.

This next program is simpler compared to the "Guess the Number" game in chapter 4. Open a new file
editor window by clicking on File, then clicking on New Window and enter this source code:

Sample Run of Jokes

What do you get when you cross a snowran with a vanpire?
Frost bi t e!

What do dentists call an astronaut's cavity?

A bl ack hol e!

Knock knock.

Who's there?

I nterrupting cow.

I nterrupting cow wh- MOO

39

Joke's Source Code

Here is the source code for our short jokes program. Type it into the file editor and save it as jokes.py. If
you do not want to type this code in, you can also download the source code from this book's website at the

URL http://inventwithpython.com/chapter5.

jokes.py

This code can be downloaded from http://inventwithpython.com/jokes.py
If you get errors after typing this code in, compare it to the book's code with the online diff tool at
http://inventwithpython.com/diff or email the author at al@inventwithpython.com

1. print('Wat do you get when you cross a snowman with a
vanpire?')

2. input()

3. print('Frostbhitel")

4. print()

5. print('Wiat do dentists call a astronaut\'s cavity?')

6. input()

7. print("A black hole!")

8. print()

9. print('Knock knock.")

10. input()

11. print("Wio's there?")

12. input()

13. print('Interrupting cow. ")

14. input()

15. print('Interrupting cow wh', end="")

16. print('-MO")

17

Don't worry if you don't understand everything in the program. Just save and run the program.
Remember, if your program has bugs in it, you can use the online diff tool at

http://inventwithpython.com/chapters.

How the Code Works

Let'slook at the code more carefully.

1. print('Wat do you get when you cross a snowman with a

vanpire?')
2. input()
3. print('Frosthite!")
4. print()

Here we have threepr i nt () function calls. Because we don't want to tell the player what the joke's
punch lineis, we have a call to thei nput () function after the first pri nt () . The player can read the
first line, press ENTER, and then read the punch line.

The user can till type in a string and hit ENTER, but because we aren't storing this string in any variable,
40

the program will just forget about it and move to the next line of code.

Thelast pri nt () function call has no string argument. This tells the program to just print a blank line.
Blank lines can be useful to keep our text from being bunched up together.

Escape Characters

5. print('Wiat do dentists call a astronaut\'s cavity?')
6. input()

7. print("A black hole!")

8. print()

In the first pri nt () above, you'll notice that we have a slash right before the single quote (that is, the
apostrophe). This backslash (\ is a backslash, / is a forward dlash) tells us that the letter right after itisan
escape character. An escape character helps us print out letters that are hard to enter into the source
code. There are severa different escape characters, but in our call to pri nt () the escape character isthe
single quote.

We have to have the single quote escape character because otherwise the Python interpreter would think
that this quote meant the end of the string. But we want this quote to be a part of the string. When we print
this string, the backslash will not show up.

Some Other Escape Characters

What if you really want to display a backslash? This line of code would not work:

>>> print('He flew away in a green\teal helicopter.')

--

He flew away in a green eal helicopter.

This is because the "t" in "teal” was seen as an escape character since it came after a backslash. The
escape character t simulates pushing the Tab key on your keyboard. Escape characters are there so that
strings can have characters that cannot be typed in.

Instead, try this line:

>>> print('He flew away in a green\\teal helicopter.")

Hereisalist of escape charactersin Python:

Table 3-1: Escape Characters

Escape Character What |s Actually Printed
\\ Backslash (\)
\! Single quote (')

\ " Double quote (*)
41

\'n Newline
\ t Tab

Quotes and Double Quotes

Strings don't aways have to be in between single quotes in Python. Y ou can also put them in between
double quotes. These two lines print the same thing:

1 >>> print('Hello world')
+ Hello world
v >>> print("Hello world")
i Hello world

--

p>>>

__

| liketo use single quotes because | don't have to hold down the shift key on the keyboard to type them.
It's easier to type, and the computer doesn't care either way.

But remember, just like you have to use the escape character \' to have a single quote in a string
surrounded by single quotes, you need the escape character \" to have a double quote in a string surrounded
by double gquotes. For example, look at these two lines:

__

+ >>> print('l asked to borrow Abe\'s car for a week. He said,
» "Sure. "'

. | asked to borrow Abe's car for a week. He said, "Sure."

P >>> {orl)nt("He said, \"I can't believe you let him borrow your
ccar.\""

: He said, "I can't believe you I et himborrow your car."”

Did you notice that in the single quote strings you do not need to escape double quotes, and in the double
guote strings you do not need to escape single quotes? The Python interpreter is smart enough to know that
if a string starts with one type of quote, the other type of quote doesn't mean the string is ending.

The end Keyword Arguments

9. print('Knock knock.')

10. input()

11. print("Who's there?")

12. input()

13. print('Interrupting cow. ")
14. input()

15. print('Interrupting cow wh', end="")
16. print('-MOO")

42

Did you notice the second parameter on line 15's pri nt () ? Normally, pri nt () adds a newline
character to the end of the string it prints. (Thisiswhy a blank pri nt () function will just print a newline.)
But the pri nt () function can optionally have a second parameter (which has the name end.) The blank
string we are passing is called a keyword argument. The end parameter has a specific name, and to
pass an argument to this specific parameter we need to use the end= syntax.

By passing a blank string for the end we tell the pri nt () function to not add a newline at the end of the
string, but instead add a blank string. Thisiswhy ' - MOO ' appears next to the previous line, instead of on
its own line. There was no newline printed after the' | nt errupti ng cow wh' string.

Summary

This chapter briefly covered how software (including our Python programs) runs on your computer.
Python is a higher-level programming language that the Python interpreter (that is, the Python software you
have downloaded and installed) converts into machine language. Machine language are the 1s and Os that
make up instructions that your computer can understand and process.

Therest of this chapter explores the different ways you can use the pri nt () function. Escape
characters are used for characters that are difficult or impossible to type into the code with the keyboard.
Escape characters are typed into strings beginning with a backslash \ followed by a single letter for the
escape character. For example, \n would print out a newline. To display a backslash, you would use the
escape character \\.

Theprint () function automatically appends a newline character to the end of the string we passit to
be displayed on the screen. Most of the time, this is a helpful shortcut. But sometimes we don't want a
newline character at the end. To change this, we pass the end keyword argument with a blank string. For
example, to print "spam" to the screen without a newline character, you would call pri nt (' span ,
end="").

By adding this level of control to the text we display on the screen, we have much more flexible ways to
display text on the screen the exact way we want to.

43

Chapter E
Dragon Realm

Topics Covered In This Chapter:

Thet i me module.

Theti me. sl eep() function.

Ther et ur n keyword.

Creating our own functions with the def keyword.
Theand and or and not boolean operators.
Truth tables

Variable scope (Global and Local)

Parameters and Arguments

Flow charts

Introducing Functions

We've aready used two functions in our previous programs. i nput () and pri nt () . In our previous
programs, we have called these functions to execute the code that is inside these functions. In this chapter,
we will write our own functions for our programsto call. A function is like a mini-program that is inside of
our program. Many times in a program we want to run the exact same code multiple times. Instead of
typing out this code several times, we can put that code inside a function and call the function several times.
This has the added benefit that if we make a mistake, we only have one place in the code to change it.

The game we will create to introduce functionsis called "Dragon Realm", and lets the player make a
guess between two caves which randomly hold treasure or certain doom.

How to Play "Dragon Realm"

In this game, the player isin aland full of dragons. The dragons all live in caves with their large piles of
collected treasure. Some dragons are friendly, and will share their treasure with you. Other dragons are
greedy and hungry, and will eat anyone who enters their cave. The player isin front of two caves, one with
a friendly dragon and the other with a hungry dragon. The player is given a choice between the two.

44

Open a new file editor window by clicking on the File menu, then click on New Window. In the blank
window that appears type in the source code and save the source code as dragon.py. Then run the program
by pressing F5.

Sample Run of Dragon Realm

You are in a land full of dragons. In front of you,
you see two caves. In one cave, the dragon is friendly
and will share his treasure with you. The other dragon
is greedy and hungry, and will eat you on sight.

\1/\hich cave will you go into? (1 or 2)

You approach the cave...
It is dark and spooky... o
A large dragon junmps out in front of you! He opens his jaws and...

Gobbl es you down in one bite!
Do you want to play again? (yes or no)
no

Dragon Realm's Source Code

Here is the source code for the Dragon Realm game. Typing in the source code is a great way to get used
to the code. But if you don't want to do all this typing, you can download the source code from this book's
website at the URL http://inventwithpython.com/chapter6. There are instructions on the website that will tell
you how to download and open the source code file. You can use the online diff tool on the website to
check for any mistakesin your code.

One thing to know as you read through the code below: The blocks that follow the def lines define a
function, but the code in that block does not run until the function is called. The code does not execute each
linein this program in top down order. This will be explained in more detail later in this chapter.

dragon.py

This code can be downloaded from http://inventwithpython.com/dragon.py

If you get errors after typing this code in, compare it to the book's code with the online diff tool at

http://inventwithpython.com/diff or email the author at al@inventwithpython.com

1. inport random

2. inport tine

3.

4. def displaylntro():

5. print('You are on a planet full of dragons. In front
of you,"')

6. print('you see two caves. In one cave, the dragon is
friendly")

7. print("and will share his treasure with you. The
ot her dragon')

8. print('is greedy and hungry, and will eat you on
sight.")

9. print()

10.

11. def chooseCave():

12. cave ="'

13. while cave !'= '1'" and cave != '2":

45

14. print('Wich cave will you go into? (1 or 2)')

15. cave = input()

16.

17. return cave

18.

19. def checkCave(chosenCave):

20. print('You approach the cave...")

21. tinme.sleep(2)

22. print('It is dark and spooky...")

23. tinme.sleep(2)

24. print("A large dragon junps out in front of you! He
opens his jaws and...')

25. print()

26. tinme.sleep(2)

27.

28. friendl yCave = randomrandint(1, 2)

29.

30. i f chosenCave == str(friendlyCave):

31. print('Gves you his treasure!')

32. el se:

33. print (' Gobbles you down in one bitel")

34.

35. playAgain = 'yes'

36. while playAgain == "yes' or playAgain == "y':

37.

38. di splaylntro()

39.

40. caveNunber = chooseCave()

41.

42. checkCave(caveNunber)

43.

44, print('Do you want to play again? (yes or no)')

45. pl ayAgai n = input ()

How the Code Works

Let's look at the source code in more detail.

1. inport random
2. inport tine

Here we have two i nport statements. We import the r andommodule like we did in the Guess the
Number game. In Dragon Realm, we will also want some time-related functions that the t i me module
includes, so we will import that as well.

Defining the di spl ayl ntro() Function

H 4. def displaylntro(): H
46

5. print('You are on a planet full of dragons. In front
of you,")

6. print('you see two caves. In one cave, the dragon is
friendly")

7. print('and will share his treasure with you. The
ot her dragon')

8. print('is greedy and hungry, and will eat you on
sight.")

9. print()

Figure 6-1 shows a new type of statement, the def
statement. Thedef statement is made up of the def def keyword puren’rheses
keyword, followed by a function name with parentheses, i l
and then a colon (the: sign). There is a block after the _
statement called the def-block. lef chooseCavel() :
function name colon
Parts of a def statement

Figure 6-1: Parts of a def statement.

def Statements

The def statement isn't a call to a function named di spl ayl ntro() . Instead, the def statement means
we are creating, or defining, a new function that we can call later in our program. After we define this
function, we can call it the same way we call other functions. When we call this function, the code inside
the def-block will be executed.

We also say we define variables when we create them with an assignment statement. The code spam =
42 defines the variable spam

Remember, the def statement doesn't execute the code right now, it only defines what code is executed
when we call thedi spl ayl ntro() function later in the program. When the program's execution reaches
adef statement, it skips down to the end of the def-block. We will jump back to the top of the def-block
when the di spl ayl ntro() functioniscalled. It will then execute all the pri nt () statementsinside the
def-block. So we call this function when we want to display the "You are on a planet full of dragons..."
introduction to the user.

When we call thedi spl ayl nt ro() function, the program’s execution jumps to the start of the
function on line 5. When the function's block ends, the program’s execution returns to the line that called the
function.

We will explain al of the functions that this program will use before we explain the main part of the

program. It may be a bit confusing to learn the program out of the order that it executes. But just keep in
mind that when we define the functions they just silently sit around waiting to be called into action.

Defining the chooseCave() Function

47

11. def chooseCave():

Here we are defining another function called chooseCave. The code in this function will prompt the
user to select which cave they should go into.

12. cave =
13. while cave I="1" and cave != "2":

Inside the chooseCave() function, we create a new variable called cave and store a blank string in it.
Then we will start awhi | e loop. This while statement’s condition contains a new operator we haven't seen
before called and. Just likethe - or * are mathematical operators, and == or ! = are comparison operators,
the and operator is a boolean operator.

Boolean Operators

Boolean logic deals with things that are either true or false. This is why the boolean data type only has
two values, Tr ue and Fal se. Boolean statements are always either true or false. If the statement is not
true, then it isfalse. And if the statement is not false, then it istrue.

Boolean operators compare two different boolean values and evaluate to a single boolean value. Do you
remember how the * operator will combine two integer values and produce a new integer value (the product
of the two original integers)? And do you also remember how the + operator can combine two strings and
produce a new string value (the concatenation of the two original strings)? The and boolean operator
combines two boolean values to produce a new boolean value. Here's how the and operator works.

Think of the sentence, "Cats have whiskers and dogs have tails." This sentence is true, because "cats have
whiskers' is true and "dogs have tails" is also true.

But the sentence, "Cats have whiskers and dogs have wings." would be false. Even though "cats have
whiskers' is true, dogs do not have wings, so "dogs have wings' is false. The entire sentence is only true if
both parts are true because the two parts are connected by the word "and.” If one or both parts are false,
then the entire sentence is false.

The and operator in Python works this way too. If the boolean values on both sides of the and keyword
are Tr ue, then the expression with the and operator evaluates to Tr ue. If either of the boolean values are
Fal se, or both of the boolean values are Fal se, then the expression evaluatesto Fal se.

Evaluating an Expression That Contains Boolean Operators

So let's look at line 13 again:

13. while cave !'= "'"1'" and cave I= "'2":

This condition is made up of two expressions connected by the and boolean operator. We first evaluate
these expressions to get their boolean (that is, Tr ue or Fal se) values. Then we evaluate the boolean
values with the and operator.

48

The string value stored in cave when we first execute this while statement is the blank string, ' ' . The
blank string does not equal the string’ 1" , so the left side evaluates to Tr ue. The blank string also does not
equal the string ' 2' , so the right side evaluates to Tr ue. So the condition then turnsinto Tr ue and
Tr ue. Because both boolean values are Tr ue, the condition finally evaluates to Tr ue. And because the
while statement's condition is Tr ue, the program execution enters the while-block.

Thisis all done by the Python interpreter, but it isimportant to understand how the interpreter does this.
This picture shows the steps of how the interpreter evaluates the condition (if the value of cave is the blank
string):

iwhile cave !'="1" and cave != "'2":
N

ivvhile" = "1" and cave != "2":
.

i while True and cave !='2'":
EwhiIeJ'True and "' 1= "2":

-

while True and True:

whi |l e True:

__

Experimenting with the and and or Operators

Try typing the following into the interactive shell:

: >>> True and True

+ True

+ >>> True and Fal se
. Fal se

+ >>> Fal se and True
. Fal se

+ >>> Fal se and Fal se
. Fal se

There are two other boolean operators. The next one isthe or operator. The or operator works similar to
the and, except it will evaluate to Tr ue if either of the two boolean values are Tr ue. The only time the or
operator evaluates to Fal se isif both of the boolean values are Fal se.

The sentence "Cats have whiskers or dogs have wings." is true. Even though dogs don't have wings, when
we say "or" we mean that one of the two parts is true. The sentence " Cats have whiskers or dogs have tails."
isalso true. (Most of the time when we say "this OR that", we mean one thing is true but the other thing is
false. In programming, "or" means that either of the things are true, or maybe both of the things are true.)

Try typing the following into the interactive shell:

'+ >>> True or True
+ True
+ >>> True or Fal se

49

+ True

+ >>> Fal se or True
+ True

+ >>> Fal se or Fal se
. Fal se

Experimenting with the not Operator

The third boolean operator isnot . The not operator is different from every other operator we've seen
before, because it only works on one value, not two. There is only value on the right side of the not
keyword, and none on the left. The not operator will evaluate to Tr ue as Fal se and will evaluate Fal se
as Tr ue.

Try typing the following into the interactive shell:

1 >>> not True

. Fal se

1 >>> not Fal se

+ True

1 >>> True not

.+ SyntaxError: invalid syntax (<pyshell#0>, line 1)

Notice that if we put the boolean value on the left side of the not operator resultsin a syntax error.

We can use both the and and not operatorsin a single expression. Try typing Tr ue and not Fal se
into the shell:

Normally the expression Tr ue and Fal se would evaluate to Fal se. But the Tr ue and not
Fal se expression evaluatesto Tr ue. Thisisbecause not Fal se evaluatesto Tr ue, which turnsthe
expression into True and Tr ue, which evaluatesto Tr ue.

Truth Tables

If you ever forget how the boolean operators work, you can look at these charts, which are called truth
tables:

Table 4-1: The and operator's truth table.

A and B is Entirestatement
True and True is True
True and False is False
Fase and True is Fase
False and Fase is False

Table 4-2: The or operator's truth table.

A o B is Entirestatement
True or True is True
True or False is True

50

False or True is True
False or Fase is Fase

Table 4-3: The not operator's not table.

not A is Entire statement
not True is False
not False is True

Getting the Player's Input

14. print("Wich cave will you go into? (1 or 2)")
15. cave = input()

Here, the player is asked to enter which cave they chose to enter by typing in 1 or 2 and hitting ENTER.
Whatever string the player typed will be stored in cave. After this code is executed, we jump back to the
top of the whi | e statement and recheck the condition. Remember that the line was:

13. while cave '= "1" and cave = '2':

If this condition evaluates to Tr ue, we will enter the while-block again and ask the player for a cave
number to enter. But if the player typed in 1 or 2, then the cave value will either be' 1' or' 2' . This
causes the condition to evaluate to Fal se, and the program execution will continue on past thewhi | e
loop.

The reason we have a loop here is because the player may have typed in 3 or 4 or HELLO. Our program
doesn't make sense of this, so if the player did not enter 1 or 2, then the program loops back and asks the
player again. In fact, the computer will patiently ask the player for the cave number over and over again
until the player typesin 1 or 2. When the player does that, the while-block's condition will be Fal se, and
we will jump down past the while-block and continue with the program.

Return Values

17. return cave

Thisisthe return keyword, which only appears inside def-blocks. Remember how thei nput ()
function returns the string value that the player typed in? Or how the r andi nt () function will return a
random integer value? Our function will also return a value. It returns the string that is stored in cave.

This means that if we had a line of code likespam = chooseCave() , the code inside
chooseCave() would be executed and the function call will evaluate to chooseCave() 's return value.
The return value will either be the string ' 1' or the string* 2" . (Our whi | e loop guarantees that
chooseCave() will only return either* 1' or* 2')

Ther et ur n keyword is only found inside def-blocks. Once ther et ur n statement is executed, we

51

immediately jump out of the def-block. (Thisis like how the br eak statement will make us jump out of a
while-block.) The program execution moves back to the line that had called the function.

You can also use ther et ur n keyword by itself just to break out of the function, just like the br eak
keyword will break out of awhi | e loop.

Variable Scope

Just like the values in our program'’s variables are forgotten after the program ends, variables created
inside the function are forgotten after the execution leaves the function. Not only that, but when execution is
inside the function, we cannot change the variables outside of the function, or variables inside other
functions. The variable's scope isthis range that variables can be modified in. The only variables that we
can use inside a function are the ones we create inside of the function (or the parameter variables, described
later). That is, the scope of the variable isinside in the function's block. The scope of variables created
outside of functionsis outside of all functions in the program.

Not only that, but if we have a variable named spamcreated outside of a function, and we create a
variable named spaminside of the function, the Python interpreter will consider them to be two separate
variables. That means we can change the value of spaminside the function, and this will not change the
spamvariable that is outside of the function. This is because these variables have different scopes, the
global scope and the local scope.

Global Scope and Local Scope

We have names for these scopes. The scope outside of all functionsis called the global scope. The
scope inside of a function is called the local scope. The entire program has only one global scope, and
each function has a local scope of its own.

Variables defined in the global scope can be read outside and inside functions, but can only be modified
outside of al functions. Variables defined in a function's local scope can only be read or modified inside
that function.

Specifically, we can read the value of global variables from the local scope, but attempting to change the
value in a global variable from the local scope will leave the global variable unchanged. What Python
actualy does is create a local variable with the same name as the global variable. But Python will consider
these to be two different variables.

Look at this example to see what happens when you try to change a global variable from inside a local
scope. Remember that the code in the f unky () function isn't run until the f unky () function is called.
The comments explain what is going on:

. # This block doesn't run until funky() is called:
 def funky():
: # We read the gl obal variable' s val ue:

print (spam # 42

W create a |local variable nanmed "spant

instead of changing the value of the gl obal
variable "spani:

spam = 99

The nanme "spant now refers to the | ocal
variable only for the rest of this
function:
print (spam # 99
52

A gl obal variable naned "spant:
, spam = 42

Call the funk() function: funky()

The gl obal variable was not changed in funky():
L print spam # 42

It isimportant to know when a variable is defined because that is how we know the variable's scope. A
variable is defined the first time we use it in an assignment statement. When the program first executes the
line:

12. cave = "'

..the variable cave is defined.

If we call thechooseCave() function twice, the value stored in the variable the first time won't be
remember the second time around. This is because when the execution left the chooseCave() function
(that is, left chooseCave() 'sloca scope), the cave variable was forgotten and destroyed. But it will be
defined again when we call the function a second time because line 12 will be executed again.

The important thing to remember is that the value of a variable in the local scope is not remembered in
between function calls.

Defining the checkCave() Function

19. def checkCave(chosenCave):

Now we are defining yet another function named checkCave() . Notice that we put the text
chosenCave in between the parentheses. The variable names in between the parentheses are called
parameters.

Remember, for some functions likefor thest r () or r andi nt () , we would pass an argument in
between the parentheses:

i >>> str(5)

: |5|

i >>> random randint (1, 20)
v 14

When we call checkCave() , we will also pass one value to it as an argument. WWhen execution moves
inside the checkCave() function, a new variable named chosenCave will be assigned this value. This
is how we pass variable values to functions since functions cannot read variables outside of the function
(that is, outside of the function's local scope).

Parameters are local variables that get defined when a function is called. The value stored in the
parameter is the argument that was passed in the function call.

53

Parameters

For example, here is a short program that demonstrates parameters. Imagine we had a short program that
looked like this:

. def sayHel | o(nane):
; print('Hello, ' + nane)

Lprint(’ Say hello to Alice.")

t Tizzy = "Alice'

. sayHel | o(fizzy)

print('Do not forget to say hello to Bob.")
. sayHel | o(' Bob')

: Sa?/ hello to Alice.

» Hello, Alice

! Do not forget to say hello to Bob.
. Hel | o, Bob

This program calls a function we have created, sayHel | o() and first passesthevaueinthefi zzy
variable as an argument to it. (We stored the string’ Al i ce' infi zzy.) Later, the program calls the
sayHel | o() function again, passing the string ' Bob' as an argument.

Thevaueinthefi zzy variable and the string ' Bob' are arguments. The nane variablein
sayHel | o() isa parameter. The difference between arguments and parameters is that arguments are the
values passed in a function call, and parameters are the local variables that store the arguments. It might be
easier to just remember that the thing in between the parentheses in the def statement is an parameter, and
the thing in between the parentheses in the function call is an argument.

We could have just used thef i zzy variable inside the sayHel | o() function instead of using a
parameter. (Thisis because the local scope can still see variables in the global scope.) But then we would
have to remember to assignthef i zzy variable a string each time before we call the sayHel | o()
function. Parameters make our programs simpler. Look at this code:

def sayHeIIo()
print('Hello, ' + fizzy)

Prlnt(Say hello to Alice.")
izzy = '"Alice'

;sayHeIIo()

Cprint (" not forget to say hello to Bob.")
isayHeIIo()

: Sa?/ hello to Alice.

+ Hello, Alice

! Do not forget to say hello to Bob.
» Hello, Alice

This program's sayHel | o() function does not have a parameter, but uses the global variablef i zzy
directly. Remember that you can read global variablesinside of functions, you just can't modify the value
stored in the variable.

Without parameters, we have to remember to set thef i zzy variable before calling sayHel | o() . In
this program, we forgot to do so, so the second time we called sayHel | o() thevaueof fi zzy wasstill
"Al'i ce' . Using parameters makes function calling simpler to do, especialy when our programs are very
big and have many functions.

Local Variables and Global Variables with the Same Name

Now look at the following program, which is a bit different. To make it clear to see, the global variable

. def spanm(inyNane):
: p_r_i__nt_g.y' Hé'l'l%, '+ inyNaneg)
nyNane: = ' Waffl es’

print(" Your new name is ' + myNane)

nyNang| = ' Al bert'
. span([nyNane
. print y, ' + hyName)

--

Hello, Alice
» Your new nane is Waffl es
+ Howdy, Al bert

__

This program defines a new variable called nyNane and stores the string* Al bert ' init. Then the
program calls the span() function, passing the value in myNane as an argument. The execution moves to
the span() function. The parameter in span{() isaso named myNane, and has the argument value
assigned to it. Remember, the my Nane inside the spam() function (the local scope) is considered a
different variable than the my Nane variable outside the function (the global scope).

The function then prints' Hel | o, Al bert' , and then on the next line changes the value in my Nane
to' Waf f| es' . Remember, this only changes the local myNane variable that is inside the function. The
global my Nane variable that is outside the function still hasthevalue' Al bert ' storedinit.

The function now printsout ' Your new nanme is WAffl es', because the myName variable in the
local scope has changed to' Waf f | es' . The execution has reached the end of the function, so it jumps
back down to where the function call was. The local my Nane is destroyed and forgotten. The next line after
thatisprint (" Howdy, ' + myName) , which will display Howdy, Al bert.

Remember, the my Name outside of functions (that is, in the global scope) till hasthevalue' Al bert ',
not' Waf f | es' . Thisis because the my Nane in the global scope and the myNane in span() 's local
scope are different variables, even though they have the same name.

Where to Put Function Definitions

A function's definition (where we put the def statement and the def-block) has to come before you call
the function. Thisis like how you must assign a value to a variable before you can use the variable. If you

55

put the function call before the function definition, you will get an error. Look at this code:

sayGoodBye()

def sayGoodBye():
| pr%/nt(' Good bye!")

+ Traceback (npost recent call last):

; File "C:\Python25\test1. py", line 1, in <nodul e>
: sayGoodBye()

. NameError: nanme 'sayGoodBye' is not defined

def sayGoodBye():
: pr%/nt(' Good bye!")

sayGoodBye()

Displaying the Game Results

Back to the game's source code:

20. print('You approach the cave...")
21. tinme.sleep(2)

We display some text to the player, and then call thet i me. sl eep() function. Remember how in our
cal torandi nt (), thefunction r andi nt () isinside ther andommodule? In the Dragon Realm game,
we also imported thet i me module. Thet i me module has a function caled sl eep() that will pause the
program for a few seconds. We pass the integer value 2 as an argument to thet i nme. sl eep() function to
tell it to pause for exactly 2 seconds.

22. print('It is dark and spooky...")
23. time.sleep(2)

Here we print some more text and wait again for another 2 seconds. These short pauses add suspense to
the game, instead of displaying all the text all at once. In our jokes program, we called the i nput ()
function to wait until the player pressed the ENTER key. Here, the player doesn't have to do anything at all
except walit.

24. print('A large dragon junps out in front of you! He
opens his jaws and..."')
25. print()

56

H 26. time. sl eep(2) H

What happens next? And how does the program decide what happens?

Deciding Which Cave has the Friendly Dragon

28. friendl yCave = randomrandint(1, 2)

Now we are going to have the program randomly chose which cave had the friendly dragon in it. Our call
tother andom r andi nt () function will return either the integer 1 or the integer 2, and store this value
inavariablecaled fri endl yCave.

30. I f chosenCave == str(friendlyCave):
31. print('Gves you his treasure!')

Here we check if the integer of the cave wechose (" 1' or' 2') isequa to the cave randomly selected to
have the friendly dragon. But wait, the value in chosenCave was a string (becausei nput () returns
strings) and thevalueinf ri endl yCave isan integer (becauser andom r andi nt () returns integers).
We can't compare strings and integers with the == sign, because they will aways be different (* 1' does
not equal 1).

Comparing values of different data types with the == operator will always evaluate to Fal se.

Sowearepassingfri endl yCave tothest r () function, which returns the string value of
friendlyCave.

What the condition in thisi f statement isreally comparing isthe string in chosenCave and the string
returned by the st r () function. We could have also had this line instead:

--

if int(chosenCave) == friendl yCave:

__

Thenthei f statement's condition would compare the integer value returned by thei nt () function to
theinteger valueinf ri endl yCave. Thereturn value of thei nt () function isthe integer form of the
string stored in chosenCave.

If thei f statement's condition evaluatesto Tr ue, we tell the player they have won the treasure.

32. el se:
33. print (' Gobbles you down in one bitel'")

Line 32 has a new keyword. The el se keyword always comes after the if-block. The else-block that
follows the else keyword executes if the condition inthei f statement was Fal se. Think of it as the
program’'s way of saying, "If this condition is true then execute the if-block or else execute the else-block."

Remember to put the colon (the : sign) after the else keyword.
57

The Colon :

Y ou may have noticed that we always place a colon at theend of i f , el se,whi | e, and def
statements. The colon marks the end of the statement, and tells us that the next line should be the beginning
of a new block.

Where the Program Really Begins

35. playAgain = 'yes'

Thisisthefirst linethat isnot a def statement or inside a def-block. This line is where our program
really begins. The previous def statements merely defined the functions, it did not run the code inside of
the functions. Programs must always define functions before the function can be called. Thisis exactly like
how variables must be defined with an assignment statement before the variable can be used in the program.

36. while playAgain == '"yes' or playAgain == "y':

Here is the beginning of awhi | e loop. We enter the loop if pl ayAgai n isequal to either ' yes' or
"y' . Thefirst time we come to thiswhi | e statement, we have just assigned the string value' yes' to the
pl ayAgai n variable. That means this condition will be Tr ue.

Calling the Functions in Our Program

38. di splaylntro()

Here we call thedi spl ayl ntro() function. Thisisn't a Python function, it is our function that we
defined earlier in our program. When this function is called, the program execution jumps to the first linein
thedi spl ayl ntro() function online5. When all the lines in the function are done, the execution jumps
back down to the line after this one.

40. caveNunber = chooseCave()

This line also calls a function that we created. Remember that the chooseCave() function lets the
player type in the cave they choose to go into. When the return cave linein this function executes, the
program execution jumps back down here, and the local variable cave' s valueisthe return value of this
function. The return value is stored in a new variable named caveNunber . Then the execution movesto
the next line.

42. checkCave(caveNunber)

58

Thislinecalls our checkCave() function with the argument of caveNumber's value. Not only does
execution jump to line 20, but the value stored in caveNunber is copied to the parameter chosenCave
inside the checkCave() function. Thisisthe function that will display either ' G ves you hi s
treasure!’' or' Gobbles you down in one bite!', depending onthe cave the player chose to
goin.

Asking the Player to Play Again

44, print('Do you want to play again? (yes or no)')
45, pl ayAgai n = input ()

After the game has been played, the player is asked if they would like to play again. The variable
pl ayAgai n stores the string that the user typed in. Then we reach the end of the while-block, so the
program rechecksthe whi | e statement's condition: whi | e pl ayAgain == 'yes' or playAgain

== y

The difference is, now the value of pl ayAgai n isequal to whatever string the player typed in. If the
player typed in the string ' yes' or'y' , then we would enter the loop again at line 38.

If the player typedin' no' or' n' or something silly like' Abr aham Li ncol n' , thenthewhi | e
statement's condition would be Fal se, and we would go to the next line after the while-block. But since
there are no more lines after the while-block, the program terminates.

But remember, the string ' YES' isdifferent from the string’ yes' . If the player typed in the string
" YES' , then the whi | e statement's condition would evaluate to Fal se and the program would still
terminate.

We've just completed our second game! In our Dragon Realm game, we used a lot of what we learned in
the "Guess the Number" game and picked up a few new tricks as well. If you didn't understand some of the
conceptsin this program, then read the summary at the end of this chapter, or go over each line of the
source code again, or try changing the source code and see how the program changes. In the next chapter
we won't create a game, but a computer program that will create secret codes out of ordinary messages and
also decode the secret code back to the original message.

We went through the source code from top to bottom. If you would like to go through the source code in
the order that the execution flows, then check out the online tracing web site for this program at the URL

http://inventwithpython.com/traces/dragon.html.
Designing the Program

Dragon Realm was a pretty simple game. The other games in this book will be a bit more complicated. It
sometimes helps to write down everything you want your game or program to do before you start writing
code. Thisis called "designing the program.”

For example, it may help to draw a flow chart. A flow chart is a picture that shows every possible
action that can happen in our game, and in what order. Normally we would create a flow chart before
writing our program, so that we remember to write code for each thing that happens in the game. Here's a
flow chart for Dragon Realm:

59

Show introduction

Player chooses
(L Cave

Check for friendly
or hL.rngru; dru.i}on

Ployer loses

Ask +o play again

END

Figure 6-2: Flow chart for the Dragon Realm game.

To see what happens in the game, put your finger on the "Start” box and follow one arrow from the box
to another box. Your finger is kind of like the program execution. Y our finger will trace out a path from box
to box, until finally your finger lands on the "End" box. As you can see, when you get to the "Check for
friendly or hungry dragon” box, the program could either go to the "Player wins' box or the "Player loses"
box. Either way, both paths will end up at the "Ask to play again" box, and from there the program will
either end or show the introduction to the player again.

Summary

In the "Dragon Realm" game, we created our own functions that the main section of the program called.
Y ou can think of functions as mini-programs within our program. The code inside the function is run when
our program calls that function. By breaking up our code into functions, we can organize our code into
smaller and easier to understand sections. We can aso run the same code by placing it inside of a function,
instead of typing it out each time we want to run that code.

The inputs for functions are the arguments we pass when we make a function call. The function call itself
evaluates to a value called the return value. The return value is the output of the function.

We aso learned about variable scopes. Variables that are created inside of a function exist in the local
scope, and variables created outside of all functions exist in the global scope. Code in the global scope can
not make use of local variables. If alocal variable has the same name as a variable in the global scope,

Python considers it to be a separate variable and assigning new values to the local variable will not change
60

the value in the global variable.

Variable scopes might seem complicated, but they are very useful for organizing functions as pieces of
code that are separate from the rest of the function. Because each function has it's own local scope, we can
be sure that the code in one function will not cause bugs in other functions.

All nontrivial programs use functions because they are so useful, including the rest of the gamesin this

book. By understanding how functions work, we can save ourselves a lot of typing and make our programs
easier to read later on.

61

Chapter 7

Flow Charts

Topics Covered In This Chapter:

« How to play Hangman.
« ASCII art
« Designing our game by drawing a flow chart before programming.

In this chapter, we are going to make a Hangman game. This game is more complicated than our
previous game, but it is also much more fun. Because the game is advanced, we should first carefully plan it
out by creating a diagram called a flow chart (explained later). In the next two chapters, we will actually
write out the code for Hangman.

In case you've never played Hangman before, let's first learn the rules for Hangman.

How to Play "Hangman"

In case you don't know, Hangman is a game for two people that's usually played using paper and pencil.
One player thinks of a word, and then draws a blank on the page for each letter in the word. Then the
second player tries to guess letters that might be in the word. If they guess correctly, the first player writes
the letter in the blank. If they guess incorrectly, the first player draws a single body part of the hanging man.
If the second player can guess all the letters in the word before the man has been completely drawn, they
win. But if they can't figure it out in time, the man is hanged and they lose the game!

Sample Run of "Hangman"

Here is an example of what the player might see when they run the Hangman program we will write later.
The text that the player enters in shown in bold.

HANGMAN

S

62

M ssed |etters:

Quess a letter.

M ssed |etters:

_a _
CGuess a letter.
0]

+-- -+

|

(0]

M ssed letters: o

a
CGuess a letter.
r

M ssed letters: or
a

Quess a letter.

t

M ssed letters: or
at
Cuess a letter.
a
You have already guessed that l|letter. Choose again.
Quess a letter.
c
Yes! The secret word is "cat"! You have won!
Do you want to play again? (yes or no)
no

ASCII Art

Half of the lines of code in the Hangman program aren't really code at all, but are multiline strings that use
keyboard characters to draw pictures. This type of graphicsiscaled ASCII art (pronounced "ask-e€"),
because keyboard characters (such as letters, numbers, and also all the other signs on the keyboard) are
called ASCII characters. ASCII stands for American Standard Code for Information Interchange (well learn
more about it in the Caesar Cipher chapter). Here are a couple cats done in ASCI| art:

63

] XX XXX \
/ XXX XX XXX XXX \
. XXX XXX XX XXX \
[XXXXXXXXX XX XX XX XX XXX\
/ xx I\ XX xx\
/ [\ X XX\
I\ \ xx x\
\ _ z X
_] \ z XXX \
\ z
\/ \ \
/ _
_ _ XXX
/ L e _ X
/ | [- 1
o\ -------- \ T] xx /
oo \ / / / xx/

Designing a Program with a Flowchart

This game is a bit more complicated than the ones we've seen so far, so let's take a moment to think about
how it's put together. First well create a flow chart (like the one at the end of the Dragon Realm chapter) to
help us visualize what this program will do. A flow chart is a diagram that shows a series of stepsas a
number of boxes connected with arrows. Each box represents a step, and the arrows show how one step
leads to other steps. Y ou can trace through the flow chart by putting your finger on the "Start" box of the
flow chart and following the arrows to other boxes until you get to the "End" box. You can only move from
one box to another in the direction of the arrow. Y ou can never go backwards (unless thereis a second
arrow going back, like in the "Player aready guessed this letter” box below.) Here is the complete flow
chart for the Hangman game (Figure 7-1).

64

STERT

Cﬂme up witn
secret word,

4

Show +he boord and
blanks +o +he ployer,

Player already
Sue*&&ed His letter,

Ask player +o
ﬂu&*ss i le++er,

Le+ter s Aot in
secret word,

L

Player has guessed all Player has run
letters and wins. out of body

Letter 5 in
secred word,

parts and loses.

Ask. player +o
ploy again.

END

Figure 7-1: The complete flow chart for what happens in the Hangman game.

Of course, we don't have to make a flow chart. We could just start writing code. But often, once we start
programming, we will think of things that need to be added or changed that we hadn't considered before.
We may end up having to change or delete a lot of code that we had already written, which would be a

waste of effort. To avoid this, it's always best to think carefully, and plan how the program will work before
we start writing it.

The following flow chart is provided as an example of what flow charts ook like and how to make them.
For now, since you're just using the source code from this book, you don't need to draw a flow chart before
writing code. The program is already written, so you don't have to plan anything out. But when you make
your own games, a flow chart can be very handy.

Creating the Flow Chart

Keep in mind, your flow charts don't always have to look exactly like this one. Aslong as you understand
the flow chart you made, it will be helpful when you start coding. We'll begin with a flow chart that only has
a"Start" and an "End" box, as shown in Figure 7-2:

65

STEART

END

Figure 7-2: Begin your flow chart with a Start and End box.

Now let's think about what happens when we play Hangman. First, one player (the computer in this case)
thinks of a secret word. Then the second player (the person running the program) will guess letters. Let's
add boxes for these events, as shown in Figure 6-2. (The boxes that are new to each flow chart have a
dashed outline around them.) The arrows show the order that the program should move. That is, first the
program should come up with a secret word, and after that it should ask the player to guess a letter.

Come up with a
secre+ word.

Ask player +o
BUESS L le+ter,

_—em e == o e - —

Figure 7-3: Draw out the first two steps of Hangman as boxes with descriptions.

But the game doesn't end after the player guesses one letter. It needs to check to see if that letter isin the
secret word or not.

Branching from a Flowchart Box

66

There are two possibilities: the letter will either be in the word or it won't be. This means we need to add
two new boxes to our flowchart. From the "Ask player to guess a letter" box, we can only move to the

"Letter isin secret word" box or the "Letter is not in secret word" box. Thiswill create a branch (that is, a
split) in the flow chart, as show in Figure 7-4:

START

Come up with a
secre+ word,

{1

Ask ployer +o
ﬁuﬁ.‘ss L let+t+er,

i

[
Letter s in Letter is not in|i
secre+ word secret word, :

\
|
I
'

END

Figure 7-4: There are two different things that could happen after the player guesses, so have two arrows going to separate boxes.

If the letter isin the secret word, we need to check to see if the player has guessed all the letters, which

would mean they've won the game. But, if the letter is not in the secret word, another body part is added to
the hanging man.

We can add boxes for those cases too. We don't need an arrow from the "Letter isin secret word" box to
the "Player has run out of body parts and loses" box, because it'simpossible to lose as long as you are only
guessing correct letters. Also, it'simpossible to win as long as you are guessing only incorrect letters, so we
don't need to draw that arrow either. Our flow chart now looks like Figure 7-5.

67

START

—d

Come up with a
secred word.

4

Ask. player +o
quess o letter.

N

Letter is not in
secred word,

Letter s in

secred word,

i i L

| Player has &UE‘“Ed all \ : PI[}\,IE:' has run |y

|l letters and wins. t 1] out of body |

_________ v 1| parts and loses. ;
i

END

Figure 7-5: After the branch, the steps continue on their separate paths.

Ending or Restarting the Game

Once the player has won or lost, we'll ask them if they want to play again with a new secret word. If the
player doesn't want to play again, the program will end. If the program doesn't end, we think of a new secret

word, as shown in Figure 7-6:

68

START

Cﬂm& up with a
secred word,

b

Ask player +o
gu&ss o letfer,

Leter is in - Letter s not in
secret word! secred word.
Player has guessed all Ployer has run
leHers arnd wins, out of body
ports and loses,

END

Fsk ployer +o
plosy o;s-ufn.

Figure 7-6: The game endsiif the player doesn't want to play again, or the game goes back to the beginning.

Guessing Again

This flow chart might look like it is finished, but there's something we're forgetting: the player doesn't
guess a letter just once. They have to keep guessing letters over and over until they either win or lose. We
need to draw two new arrows so the flow chart shows this, as shown in Figure 7-7.

69

START

C{:Ime up wihtn (L
secredt word,

Al
< ﬂ'&h plaser +o .
e Quess (L le+ter.

Letter s not in
secred word, ¥

|
Y
Ployer has ﬂuEﬁEd all Player has run

leHters @nd wins, out of body
parts and loses.

;LEH'EF i3 if
secred word,

Ask player +o
pl(.w o.ﬂul'n.

END

Figure 7-7: The game does not always end after aguess. The new arrows (outlined) show that the player can guess again.

We are forgetting something else, as well. What if the player guesses a letter that they've guessed before?
Rather than have them win or lose in this case, we'll allow them to guess a different |etter instead, as shown
in Figure 7-8.

70

START - q

Come up with a guessed this letter.
secred word. '

Ask player +o
jLDE’E-S o le+der,
‘ Lett+er s in

secred word,

LeHer s not in)

secret word,

L

Player has quessed all Player has run
letters and wins, out of body

parts and loses.

ﬂsh pliyer +0
ploy again.

END

Figure 7-8: Adding astep in case the player guesses aletter they already guessed.

Offering Feedback to the Player

We also need some way to show the player how they're doing. In order to do this, we'll show them the
hangman board, as well as the secret word (with blanks for the letters they haven't guessed yet). These
visuals will let them see how close they are to winning or losing the game.

WEell need to update this information every time the player guesses a letter. We can add a "Show the
board and blanks to the player." box to the flow chart between the "Come up with a secret word" box and
the "Ask player to guess a letter” box, as shown in Figure 7-9. This box will remind us that we need to show
the player an updated hangman board so they can see which letters they have guessed correctly and which
letters are not in the secret word.

71

START

Come up Wit
secret word,

-- - ;' ____ Ployer olready

i] Show +He board and HuEH&Ed this letHer,
: blanks +0 +he ployer,

Ask player +o
ﬂuES.s i letfer,

LeHer is no+ in
secred word,

L

Player has quessed all Player has run
letters and wins. out of body

parts and loses.

Lett+er s in
secred word,

Ask player +o
ploy again.

END

Figure 7-9: Adding "Show the board and blanksto the player.” to give the player feedback.

That looks good! This flow chart completely maps out everything that can possibly happen in Hangman,
and in which order. We can look at the flow chart while we are coding to remind ourselves of everything
we want the program to do. Of course this flow chart is just an example-you won't really need to use it,
because you're just using the source code that's given here. But when you design your own games, a flow
chart can help you remember everything you need to code. The flow chart is kind of like a cake recipe or
blueprints for a house. We could just start baking a cake or building a house, but without the plans we may
forget to do a step.

The Importance of Planning Out the Game

It may seem like a lot of work to sketch out a flow chart about the program first. After al, people want to
play games, not look at flowcharts! But it is much easier to make changes and notice problems by thinking
about how the program works before writing the code for it. If you jump in to write the code first, you may
discover problems that require you to change the code you've already written. Every time you change your
code, you are taking a chance that you create bugs by changing too little or too much. It is much better to
know what you want to build before you build it.

There are still a few more concepts we need to learn before we can make our hangman program. In the
next chapter, you will learn all about strings and a new data type called lists. We will go over the first half
of the Hangman source code. In the chapter after the next, we will learn some more programming concepts
and finish the Hangman game.

72

73

Chapter B
Hangman

Topics Covered In This Chapter:

Methods

Theappend() list method

Thel ower () and upper () string methods

Ther ever se() list method

Thesplit() list method

Ther ange() function

Thel i st () function

f or loops

elif statements

Thestartswi th() and endswi t h() string methods.
The dictionary data type.

key-value pairs

Thekeys() and val ues() dictionary methods
Multiple variable assignment, such as a, b, c = [1, 2, 3]

This game introduces many new concepts. But don't worry; we'll experiment with these programming
conceptsin the interactive shell first. Some data types such as strings and lists have functions that are
associated with their values called methods. We will learn several different methods that can manipulate
strings and lists for us. We will also learn about a new type of loop called af or loop and a new type of
datatype called a dictionary. Once you understand these concepts, it will be much easier to understand the
game in this chapter: Hangman.

Hangman's Source Code

This chapter's game is a bit longer than our previous games. Y ou can either type in the code below
directly into the file editor (which | recommend) or you can obtain the code from this book's website. To
grab the code from the web, in a web browser go to the URL http://inventwithpython.com/chapter8 and
follow the instructions for downloading the source code.

74

hangman.py

This code can be downloaded from http://inventwithpython.com/hangman.py

If you get errors after typing this code in, compare it to the book's code with the online diff tool at
http://inventwithpython.com/diff or email the author at al@inventwithpython.com

HANGVANPI CS [

e - 2

75

50.
51.
52.
53.
54.
55.
56.
S57.
58.
59.

60.
61.
62.

63.
64.
65.
66.

67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.

78.
79.

80.
81.

82.
83.
84.
85.
86.

87.
88.
89.

words = 'ant baboon badger bat bear beaver canel cat clam

cobra cougar coyote crow deer dog donkey duck eagle
ferret fox frog goat goose hawk lion lizard |lam nole
nonkey nobose nouse nmule newt otter ow panda parrot

pi geon python rabbit ramrat raven rhino sal non seal
shark sheep skunk sloth snake spider stork swan tiger
toad trout turkey turtle weasel whale wolf wonbat
zebra' .split()

def get Random\r d(wor dLi st):
This function returns a random string fromthe
passed |ist of strings.
wor dl ndex = randomrandint (0, |en(wordList) - 1)
return wordLi st[wordl ndex]

def di spl ayBoar d(HANGVANPI CS, m ssedLetters,
correctlLetters, secretWrd):
pri nt (HANGVANPI CS[| en(m ssedLetters)])

print()

print('Mssed letters:', end=" ")
for letter in mssedLetters:
print(letter, end=" ")

print()
blanks = ' ' * len(secretWrd)
for i in range(len(secretWrd)): # replace bl anks

With correctly guessed letters
if secretWord[i] in correctlLetters:
bl anks = blanks[:i] + secretWord[i] +
bl anks[i +1:]

for letter in blanks: # show the secret word with
spaces in between each letter
print(letter, end=" ")

print()

def get Guess(al readyGuessed):

Returns the letter the player entered. This
function nmakes sure the player entered a single letter,
and not sonething el se.

whi | e True:

print('CGuess a letter.")
guess = input()
76

90.
91.
92.
93.
94.

95.
96.
97.
98.
99.
00.
01.

02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.
31.
32.
33.

34.
35.

36.

guess = guess. |l ower ()
if len(guess) != 1:
print('Please enter a single letter.")
elif guess in al readyGuessed:
print('You have already guessed that letter.
Choose again.')
elif guess not in 'abcdefghijkl mopgrstuvwyz':
print('Please enter a LETTER ")
el se:
return guess

def playAgain():
This function returns True if the player wants to
pl ay again, otherwise it returns False.
print('Do you want to play again? (yes or no)')
return input().lower().startswith('y")

print((HANGMA N)

m ssedLetters =

correctlLetters = "'

secretWrd = get Randonmbr d(wor ds)
ganel sDone = Fal se

while True:
di spl ayBoar d(HANGVANPI CS, mi ssedLetters,
correctlLetters, secretWrd)

Let the player type in a letter.
guess = get Guess(m ssedLetters + correctlLetters)

if guess in secretWrd:
correctlLetters = correctlLetters + guess

Check if the player has won
foundAl | Letters = True
for i in range(len(secretWrd)):
If secretWrd[i] not in correctlLetters:
foundAl | Letters = Fal se

br eak
I f foundAll Letters:
print('Yes! The secret word is "' +
secretWwrd + '"! You have won!')

ganel sDone = True
el se:
m ssedLetters = m ssedLetters + guess

Check if player has guessed too nmany tinmes and
| ost
if len(m ssedLetters) == | en(HANGVANPICS) - 1
di spl ayBoar d(HANGVANPI CS, mi ssedLetters,
correctlLetters, secretWrd)
print('You have run out of guesses!\nAfter

+ str(len(m ssedLetters)) + ' mssed guesses and ' +
77

str(len(correctlLetters)) + ' correct guesses, the word
was "' + secretWord + """)

37. ganel sDone = True

38.

39. # Ask the player if they want to play again (but only
If the gane is done).

40. i f gamnel sDone:

41. i f playAgain():

42. m ssedLetters = "'

43. correctlLetters ="

44. ganel sDone = Fal se

45, secretWrd = get Randonmbr d(wor ds)

46. el se:

47. br eak

After typing in the source code (don't forget to savel!) you can run this game by pressing F5. If any errors
come up, be sure you typed the source code in exactly as it appears here. Remember that the indentation is
important, and that lines will have zero, four, eight, or even twelve spacesin front of them.

Code Explanation

1. inport random

The Hangman program is going to randomly select a secret word from a list of secret words. This means
we will need the r andommodul e imported.

3. HANGWANPICS = ['""
4.

5. +---+

6. | |

7. |

8. |

9. |

10. |

11, ========='', 6 '

...the rest of the code is too big to show here...

This"line" of code a smple variable assignment, but it actually stretches over several real linesin the
source code. The actual "line" doesn't end until line 57. To help you understand what this code means, you
should learn about multi-line strings and lists:

Multi-line Strings

Ordinarily when you write strings in your source code, the string has to be on one line. However, if you
use three single-quotes instead of one single-quote to begin and end the string, the string can be on severa
lines:

78

' >>> fjzz = '''Dear Alice,

5 IhvviII return home at the end of the nonth. | will see you
. then.

 Your friend,

:Boblll- .

» >>> print fizz

. Dear Alice,

5 IhvviII return home at the end of the nonth. | wll see you
. then.

. Your friend,

. Bob

P >>>

If we didn't have multi-line strings, we would have to use the \ n escape character to represent the new
lines. But that can make the string hard to read in the source code, like in this example:

--

+ >>> fizz = "Dear Alice,\nl will return honme at the end of the
» month. | will see you then.\nYour friend,\nBob'

+>>> print fizz

., Dear Alice,

i IhvviII return honme at the end of the nonth. | will see you

. t hen.

+ Your friend,

: Bob

P>>>

__

Multi-line strings do not have to keep the same indentation to remain in the same block. Within the multi-
line string, Python ignores the indentation rules it normally has for where blocks end.

--

+ def writelLetter():

' # inside the def-block

; print '''Dear Alice,

; How are you? Wite back to ne soon.

\ Sincerely, Bob''' # end of the multi-line string and print
+ st at enent
' print "P.S. | mss you.' # still inside the def-Dblock

ivvriteLetter() # This is the first |ine outside the def-bl ock.

__

Constant Variables

Y ou may have noticed that HANGVANPI CS's nameisin al capitals. Thisis the programming convention
for constant variables. Constants are variables whose values do not change throughout the program.
Although we can change HANGVANPI CS just like any other variable, the al-caps reminds the programmer
to not write code that does so.

Constant variables are helpful for providing descriptions for values that have a special meaning. Since the
multi-string value never changes, there is no reason we couldn't copy this multi-line string each time we
needed that value. The HANGVANPI CS variable never varies. But it is much shorter to type HANGVANPI CS
than it isto type that large multi-line string.

Also, there are cases where typing the value by itself may not be obvious. If we set avariable eggs =
72, we may forget why we were setting that variable to the integer 72. But if we define a constant variable
DOZEN = 12, thenwecould set eggs = DOZEN * 6 and by just looking at the code know that the

79

eggs variable was set to six dozen.

Like all conventions, we don't have to use constant variables, or even put the names of constant variables
in all capitals. But doing it this way makes it easier for other programmers to understand how these variables
are used. (It even can help you if you are looking at code you wrote a long time ago.)

Lists

I will now tell you about a new datatype called a list. A list value can contain severa other valuesin it.
Try typing thisintothe shell: [' appl es', 'oranges', 'HELLO WORLD] . Thisisalist value that
contains three string values. Just like any other value, you can store this list in a variable. Try typing spam
= ['"apples', 'oranges', 'HELLO WORLD], and then type spamto view the contents of
spam

i >>> spam = ['apples', 'oranges', 'HELLO WORLD]
» >>> spam

' [apples', 'oranges', 'HELLO WORLD]

D >>>

Lists are a good way to store severa different values into one variable. The individual valuesinside of a
list areaso called items. Try typing: animal s = ['aardvark', 'anteater', 'antel ope',
"al bert'] to store various strings into the variable ani mal s. The square brackets can aso be used to
get an item from a list. Try typing ani mal s[0] , or ani mal s[1] , or ani mal s[2] , or ani mal s[3]
into the shell to see what they evaluate to.

' >>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
 >>> ani mal s[0]

+ "aardvark'

+ >>> ani mal s[1]

¢ "anteater'

i >>> ani mal s[2]

+ ' ant el ope’

 >>> ani mal s[3]

+ "al bert’

P >>>

The number between the square brackets is the index. In Python, the first index is the number O instead
of the number 1. So thefirst item in thelist is at index O, the second item is at index 1, the third item is at
index 2, and so on. Lists are very good when we have to store lots and lots of values, but we don't want
variables for each one. Otherwise we would have something like this:

__

+ >>> ani mal s1 = 'aardvark'
. >>> animal s2 = 'anteater'
1 >>> ani mal s3 = ' ant el ope'
i >>> animal s4 = 'al bert’

This makes working with all the strings as a group very hard, especially if you have hundreds or
thousands (or even millions) of different strings that you want stored in a list. Using the square brackets,
you can treat itemsin the list just like any other value. Try typing ani mal s[0] + ani mal s[2] into
the shell:

--

+ >>> ani mal s[0] + ani mal s[2]
. 'aardvar kant el ope’
b>>>

__

Because ani nal s[0] evaluatesto the string ' aar dvar k' and ani mal s[2] evaluates to the string
"ant el ope' , then the expression ani mal s[0] + ani nal s[2] isthesameas' aardvark' +
" ant el ope' . This string concatenation evaluatesto ' aar dvar kant el ope' .

What happens if we enter an index that is larger than the list's largest index? Try typing ani mal s[4] or
ani mal s[99] into the shell:

1 >>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
+ >>> ani mal s[4]

. Traceback (nost recent call last):
File ", line 1, in

 ani mal s[4]

i IndexError: |ist index out of range
1 >>> ani mal s[99]

. Traceback (nost recent call last):
rFile "", line 1, in

+ani mal s[99]

: IndexError: |ist index out of range
- >>>

If you try accessing an index that is too large, you will get an index error.

Changing the Values of List Items with Index
Assignment

Y ou can also use the square brackets to change the value of an itemin alist. Try typing ani mal s[1]
= ' ANTEATER , then type ani mal s to view the list.

__

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> ani mal s[1] = ' ANTEATER
>>> ani mal s[99]

[" aardvark',
>>>

ANTEATER , 'antel ope', 'albert']

The second item in the ani mal s list has been overwritten with a new string.

List Concatenation

You can join lists together into one list with the + operator, just like you can join strings. When joining
lists, thisisknown as list concatenation. Try typing[1, 2, 3, 4] + ['apples',
‘oranges'] + ["Alice', 'Bob'] intotheshell:

--

»>>> [1, 2, 3, 4 + ['apples', 'oranges'] + ['Alice', 'Bob']
' [1, 2, 3, 4, 'apples', "oranges', 'Alice', "Bob']

__

Notice that lists do not have to store values of the same data types. The example above has a list with
81

both integers and stringsin it.

The i n Operator

Thei n operator makesit easy to seeif avalueisinside a list or not. Expressions that use the i n operator
return a boolean value: Tr ue if thevalueisin thelist and Fal se if the valueisnot in the list. Try typing
"ant el ope' in ani mal s into the shell:

 >>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
» >>> 'antelope' in animls

+ True

i>>>

Theexpression' ant el ope' i n ani mal s returns Tr ue because the string ' ant el ope' can be
found in thelist, ani mal s. (It islocated at index 2.)

But if wetypetheexpresson' ant' in ani mal s, thiswill return Fal se because the string ' ant'
does not exist in the list. We can try theexpression' ant’ in [' beetle', 'wasp', 'ant'],and

see that it will return Tr ue.

1 >>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
. >>> "antelope' in aninmals

+ True

1 >>> 'ant' in animals

' Fal se

» >>> "ant' in ['beetle', "wasp', 'ant']

© True

E>>>

Thei n operator also works for strings as well as lists. Y ou can check if one string exists in another the
same way you can check if avalueexistsin alist. Try typing' hel 1 o' in "Alice said hello
t o Bob.' intothe shell. This expression will evaluate to Tr ue.

--

§>>> "hello" in "Alice said hello to Bob.'
. True
p>>>

__

Removing Items from Lists with del Statements

Y ou can remove items from alist with adel statement. ("del" is short for "delete.") Try creating a list of
numbers by typing: spam = [2, 4, 6, 8, 10] andthendel spani1].Typespamto view the
list's contents:

--

. >>> spam = [2, 4, 6, 8, 10]
 >>> del spani1]

1 >>> spam
i [2, 6, 8, 10]
D >>>

Notice that when you deleted the item at index 1, the item that used to be at index 2 became the new

82

index 1. Theitem that used to be at index 3 moved to be the new index 2. Everything above the item that we
deleted moved down one index. We can typedel spani 1] again and again to keep deleting items from
the list:

--

+ >>> spam = [2, 4, 6, 8, 10]
i >>> del spanf 1]

1 >>> spam

' [2, 6, 8, 10

+ >>> del spanf 1]

» >>> spam

1 [2, 8, 10]

i >>> del spanf 1]

1 >>> spam

p [2, 10]

__

Just remember that del is a statement, not a function or an operator. It does not evaluate to any return
value.

Lists of Lists

Lists are a data type that can contain other values as items in the list. But these items can aso be other
lists. Let's say you have a list of groceries, a list of chores, and a list of your favorite pies. You can put all
three of these lists into another list. Try typing this into the shell:

1 >>> groceries = ['eggs', 'milk', 'soup', 'apples', 'bread']

. >>> chores = ['clean’, 'nmow the |lawn', 'go grocery shopping']
+ >>> favoritePies = ['"apple', 'frunbleberry’

1 >>> |istOLists = [groceries, chores, favoritePies]

r>>> [istOFLists

;[L'eggs', ‘mlk', 'soup', "apples', 'bread], l;'clean', ' mow
+ the lawn', 'go grocery shopping'], ['"apple' , 'tfrunbleberry']]
D >>>

¢ >>> |istOfLists = [['eggs', 'mlk', 'soup', 'apples',
., "bread'], ['clean’, '"nmow the lawn', 'go grocery shopping'],
+ [*apple', "frunbleberry']]

» >>> groceries = listOLists[O0]
. >>> chores = |istOfLists[O0]
» >>> favoritePies = |istOLists[0]

1 >>> groceries

' ["eggs', '"mlk', "soup', 'apples', 'bread]

+ >>> chores

. ['clean', 'nmow the |lawn', 'go grocery shopping']
+ >>> favoritePies

. ["apple', 'frunbleberry']

P>>>

To get an item inside the list of lists, you would use two sets of square brackets like this:
IistOFLists[1][2] whichwouldevaluatetothestring' go grocery shopping' . Thisis
becausel i st Of Li st s[1] evaluatestothelist[' cl ean', 'now the |lawn', 'go grocery
shoppi ng'][2] . That finally evaluatesto' go grocery shoppi ng' .

83

Here is another example of alist of lists, along with some of the indexes that point to the itemsin the list
of lists named x. The red arrows point to indexes of the inner lists themselves. The image is also flipped on

its side to make it easier to read:

Eg(_x[l}]
= x[0][0]
= x[0][1]
o’ — (¥ e b
X = = % s T XL
S o 0 AnNm e = x[1][2]
oo 9o Hod oo ko ﬁm—m]
F > k. oo o= o= b
[[10, 20, 301, [3, 2, 11, [8, B, B, 8], [42]] e x[2][1]
o x[2][2]
= x[2][3]
— x| 3
Em-3 . [3]
Figure 8-1: The indexes of alist of lists.
Methods

Methods arejust like functions, but they are always attached to a value.. For example, al string values
have al ower () method, which returns a copy of the string value in lowercase. Y ou cannot just call
| ower () by itself and you do not pass a string argument to | ower () by itself (asin
| ower (' Hel 1 0")). You must attach the method call to a specific string value using a period.

The | ower () and upper () String Methods

Try entering’ Hel 1 o wor |l d!' .| ower () intotheinteractive shell to see an example of this method:

i >>> 'Hello world' .lower()
;'hello wor | d!'’
:>>>

__

Thereisalso an upper () method for strings, which changes all the charactersin a string to uppercase.
Try entering’ Hel | o wor |l d' . upper () into the shell:

--

>>> 'Hello worl d' . upper()
"HELLO WORLD! '
L >>>

__

Because the upper () method returns a string, you can call a method on that string as well. Try typing
84

"Hell o worl d!'" . upper().!|ower() intothe shell:

i >>> '"Hello world' .upper().|ower()
i "hello world!
P>>>

"Hel l o worl d!" . upper () evauatesto the string' HELLO WORLD! ' , and then we call that
string's| ower () method. Thisreturnsthe string' hel | o wor | d!'' , which isthe final value in the
evaluation. The order isimportant. ' Hel | o wor 1 d!'' .| ower (). upper () isnotthesameas' Hel | o
wor | d!'" . upper ().l ower():

--

i >>> "Hello world .l ower().upper()
;' HELLO WORLD!*
L>>>

__

example:
' >>> fizz = ' Hell
» >>> fizz. upper()
: ' HELLO WORLD
P >>>

The reverse() List Method

Thelist datatype also has methods. Ther ever se() method will reverse the order of the itemsin the
list. Try enteringspam = [1, 2, 3, 4, 5, 6, 'nmeow, 'woof'],andthen
spam rever se() toreversethelist. Then enter spamto view the contents of the variable.

--

+ >>> spam = [1, 2, 3, 4, 5, 6, 'nmeow, 'woof']
i >>> spam reverse()

p>>> sPam

i ['woot', "meow, 6, 5, 4, 3, 2, 1]

b>>>

The most common list method you will useisappend() . This method will add the value you pass as an
argument to the end of the list. Try typing the following into the shell:

--

i >>> eggs = []

, >>> eggs. append(' hovercraft')
i >>> eggs

. [hovercraft']

+ >>> eggs. append(' eel s")

1 >>> eggs

+ [" hovercraft', 'eels']

, >>> eggs. append(42)

© >>> eggs

. [" hovercraft', 'eels', 42]
p>>>

__

Though string and list data types have methods, integers do not happen to have any methods.
85

The Difference Between Methods and Functions

Y ou may be wondering why Python has methods, since they seem to act just like functions. Some data
types have methods. Methods are functions associated with values of that data type. For example, string
methods are functions that can be called on any string. If you have the string value' Hel | o' , you could
cal the string method upper () likethis:' Hel | o' . upper () . Orif thestring' Hel | o' were stored in
avariable named spam it would look likethis: spam upper ()

Y ou cannot call string methods on values of other data types. For example, [1, 2,
"appl €']. upper () would cause an error because[1, 2, 'apple'] isalistand upper() isa
string method.

Methods are associated with a value of a certain data type. Functions are never associated with values.
Function calls for functions that are inside modules may look like methods because they have a name and
period in front, such asr andom r andi nt () . But random is the name of a module, it is not a value or a
variable with avaluein it.

The values of data types that have methods are also called objects. Object-oriented programming is a bit
advanced for this book, and you don't need to completely understand it to make games. Just understand that
objects are another name for a values of data types that have methods.

The split() List Method

Line 59 isavery long line of code, but it isreally just a simple assignment statement. This line also uses
thespl it () method, which is a method for the string data type (just likethe | ower () and upper ()
methods).

59. words = 'ant baboon badger bat bear beaver canel cat clam
cobra cougar coyote crow deer dog donkey duck eagle
ferret fox frog goat goose hawk lion lizard Ilam nole
nonkey nobose nmouse nule newt otter ow panda parr ot
pi geon python rabbit ramrat raven rhino sal non sea
shark sheep skunk sloth snake spider stork swan tiger
toad trout turkey turtle weasel whale wolf wonbat
zebra' .split()

Asyou can see, thislineisjust one very long string, full of words separated by spaces. And at the end of
the string, we call thespl i t () method. Thespl it () method changes this long string into a list, with
each word making up a single list item. The "split" occurs wherever a space occurs in the string. The reason
we do it this way, instead of just writing out the list, isthat it is easier for us to type as one long string. If
we created it as a list to begin with, we would haveto type: [' ant', ' baboon', 'badger', ...and
so on, with quotes and commas for every single word.

For an example of how the spl i t () string method works, try typing this into the shell:

1 >>> 'MW very energetic nother just served us nine

ies'.split() . .
"W, ‘very', '"energetic', 'nother', 'just', 'served', 'us',
» 'nine', 'pies']

p>>>
86

Theresult isalist of nine strings, one string for each of the words in the original string. The spaces are
dropped from the itemsin the list. Once we've called spl i t () , thewor ds list will contain al the possible
secret words that can be chosen by the computer for our Hangman game. Y ou can also add your own words
to the string, or remove any you don't want to be in the game. Just make sure that the words are separated
by spaces.

How the Code Works

Starting on line 61, we define a new function called get RandomWr d() , which has a single parameter
named wor dLi st . We will call this function when we want to pick a single secret word from a list of
secret words.

61. def get Randomrd(wordLi st):

62. # This function returns a random string fromthe
passed |ist of strings.

63. wor dl ndex = randomrandint (0, |en(wordList) - 1)

64. return wordLi st [wordl ndex]

The function get RandomA\or d() ispassed a list of strings as the argument for the wor dLi st
parameter. On line 63, we will store a random index in this list in thewor dl ndex variable. We do this by
caling r andi nt () with two arguments. Remember that argumentsin a function call are separated by
commas, so the first argument is 0 and the second argument is| en(wor dLi st) - 1. Thesecond
argument is an expression that isfirst evaluated. | en(wor dLi st) will return the integer size of the list
passed to get Randomr d() , minus one.

The reason we need the - 1 is because the indexesfor list start at O, not 1. If we have a list of three
items, the index of the first item is O, the index of the second item is 1, the index of the third item is 2. The
length of thislist is 3, but the index 3 is after the last index. This is why we subtract 1 from the length.

For example, if we passed ['appl€, ‘'orange’, grape] as an argument to get RandomAdr d() , then
len(wordList) would return the integer 3 and the expression 3 - 1 would evaluate to the integer 2.

That means that wordindex would contain the return value of randint(0, 2), which means wordindex
would equal 0, 1, or 2. On line 64, we would return the element in wordList at the integer index stored in
wordlndex.

Let'spretendwedidsend [' appl €', 'orange', grape'] astheargumentto
get RandomA\or d() and thatr andi nt (0, 2) returned the integer 2. That would mean that line 64
would becomer et urn wor dLi st [2], which would evaluatetor et urn ' grape' . Thisis how the
get Random\\r d() returns arandom string in the wor dLi st list. The following code entered into the
interactive shell demonstrates this:

i >>> jnport random
i >>> print (wordl ndex)
2

i >>> print(['apple', 'orange', 'grape'][wordlndex])

| grape
S>>

And remember, we can pass any list of strings we want to the get RandomAér d() function, which is
87

what makes it so useful for our Hangman game.
Displaying the Board to the Player

Next we need to create another function which will print the hangman board on the screen, along with
how many letters the player has correctly (and incorrectly) guessed.

66. def displ ayBoard(HANGVANPI CS, m ssedlLetters,
correctlLetters, secretWrd):

67. pri nt (HANGVANPI CS[| en(m ssedLetters)])

68. print()

This code defines a new function named di spl ayBoar d() . This function has four parameters. This
function will implement the code for the "Show the board and blanks to the player” box in our flow chart.
Here iswhat each parameter means:

« HANGVANPI CS - Thisisalist of multi-line strings that will display the board as ASCII art. We will
aways pass the global HANGVANPI CS variable as the argument for this parameter.

« m ssedLetters - Thisisa string made up of the letters the player has guessed that are not in the
secret word.

« correctlLetters - Thisisa string made up of the letters the player has guessed that are in the
secret word.

« secretWrd - Thisstring is the secret word.

Thefirst pri nt () function call will display the board. HANGVANPI CS will be alist of strings for each
possible board. HANGVANPI CS[0] shows an empty gallows, HANGVANPI CS[1] shows the head (this
happens when the player misses one letter), HANGVANPI CS[2] shows a head and body (this happens
when the player misses two letters), and so on until HANGVANPI CS[6] when the full hangman is shown
and the player loses.

The number of lettersinm ssedLet t er s will tell us how many incorrect guesses the player has made.
Wecancal | en(m ssedLett ers) tofind out this number. This number can also be used as the index
to the HANGVANPI CS list, which will allow us to print the correct board for the number of incorrect
guesses. So, if m ssedLettersis' aetr' thenl en(' aetr') will return 4 and we will display the
string HANGVANPI CS[4] . Thisiswhat HANGVANPI CS[| en(m ssedLet t er s)] evaluatesto. This
line shows the correct hangman board to the player.

70. print('Mssed letters:', end=" ")
71. for letter in mssedLetters:

72. print(letter, end=" ")

73. print()

Line 71 isanew type of loop, called af or loop. A f or loop iskind of likeawhi | e loop. Line 72is
the entire body of the f or loop. Ther ange() function isoften used with f or loops. | will explain both in
the next two sections.

The range() and | i st () Functions

Ther ange() function iseasy to understand. You can cal it with either one or two integer arguments.
88

When called with one argument, r ange() will return a range object of integers from O up to (but not
including) the argument. This range object can be converted to the more familiar list data type with the
I'ist() function. Try typingl i st (range(10)) intothe shell:

--

>>> | j st (range(10))
[0, 1, 2, 3, 4, 5 6, 7, 8, 9]
L >>>

__

Thel i st () functionisvery similar tothestr () orint () functions. It just converts the object itis
passed into a list. It's very easy to generate huge lists with ther ange() function. Try typingin
l'ist(range(10000)) intothe shell:

 >>> | i st (range(10000))

. [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
! ... The text here has been skipped for brevity...
... 9989, 9990, 9991, 9992, 9993, 9994, 9995, 9996, 9997,
1 9998, 9999]

D >>>

Thelist is so huge, that it won't even al fit onto the screen. But we can save the list into the variable just
like any other list by entering this:
. >>> spam = |i st (range(10000))
E >>>

If you pass two argumentsto r ange() , the list of integersit returns is from the first argument up to (but
not including) the second argument. Try typing | i st (r ange(10, 20)) into the shell:

--

>>> | jst(range(10, 20))
: [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
o >>>

__

Ther ange() isavery useful function, because we often useitin f or loops (which are much like the
whi | e loops we have already seen).

for Loops

Thef or loop isvery good at looping over alist of values. Thisis different from the whi | e loop, which
loops as long as a certain condition istrue. A f or statement begins with the f or keyword, followed by a
variable, followed by the i n keyword, followed by a sequence (such as a list or string) or a range object
(returned by ther ange() function), and then a colon. Each time the program execution goes through the
loop (that is, on each iteration through the loop) the variable in the f or statement takes on the value of
the next item in the list.

For example, you just learned that the r ange() function will return alist of integers. We will use this
list asthef or statement'slist. Intheshell, typefor i in range(10): and pressENTER. Nothing
will happen, but the shell will indent the cursor, because it is waiting for you to type in the for-block. Type
print (i) and pressENTER. Then, to tell the interactive shell you are done typing in the for-block, press
ENTER again to enter a blank line. The shell will then execute your f or statement and block:

i >>> for i in range(10):
' print(i)

VOONOURWNRO: °

Notice that with f or loops, you do not need to convert the range object returned by ther ange()
function into alist with | i st () . For loops do this for us automatically.

Thef or loop executes the code inside the for-block once for each item in the list. Each time it executes
the code in the for-block, the variable i isassigned the next value of the next item in the list. If we used the
for statement with thelist[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] instead of range(10),itwould
have been the same sincether ange() function's return value is the same as that list:

 >>> for i in range([0, 1, 2, 3, 4, 5 6, 7, 8, 9]):
' print(i)

Try typing thisintotheshell: for thing in ['cats', 'pasta', 'programmng',
"spam] : and pressENTER, thentypeprint ('l really like ' + thing) and pressENTER,
and then press ENTER again to tell the shell to end the for-block. The output should look like this:

>>> for thing in ['cats', 'pasta', 'programmng , 'spani]
C print('l really like ' + thing)

1| really like cats

1 really |like pasta

v 1 really |ike programm ng

I really |ike spam

S>>

And remember, because strings are also a sequence data type just like lists, you can use themin f or
statements as well. This example uses a single character from the string on each iteration:

v >>> for i in "Hello world!':
' print(i)
90

A whi | e Loop Equivalent of afor Loop

Thef or loop isvery similar to the whi | e loop, but when you only need to iterate over itemsin alist,
using af or loop is much less code to type. You can make awhi | e loop that acts the sameway asaf or
loop by adding extra code:

. >>> sequence = ['cats', 'pasta', 'progranmng',
1 >>> jndex = 0

» >>> while (index < |en(sequence)):

| thing = sequence[i ndex]

print('l really like ' + thing)

C I ndex = index + 1
| really like cats

| really |ike pasta

| really |ike progranm ng
| really like spam

>>>

But using the f or statement automatically does all this extra code for us and makes programming easier
since we have lessto type. Our Hangman game will use f or loops so you can see how useful they arein
real games.

One more thing about f or loops, isthat the f or statement has thei n keyword in it. But when you use
thei n keywordin af or statement, Python does not treat it like the in operator you would use in something
like42 in [0, 42, 67].Thein keywordinf or statementsisjust used to separate the variable and
the list it gets its values from.

Therest of thedi spl ayBoar d() function displays the missed letters and creates the string of the
secret word with all the unguessed |etters as blanks.

print('Mssed letters:', end=" ')
for letter in mssedLetters:

print(letter, end=" ")
print()

Thisf or loop one line 71 will display all the missed guesses that the player has made. When you play
Hangman on paper, you usually write down these letters off to the side so you know not to guess them
again. On each iteration of the loop the value of | et t er will be each letter in m ssedLet t er s inturn.

91

Remember that the end=" " will replace the newline character that is printed after the string is replaced by
a single space character.

If M ssedLetterswas' ajtw thenthisfor loopwoulddisplaya j t w.

Displaying the Secret Word with Blanks

So by this point we have shown the player the hangman board and the missed letters. Now we want to
print the secret word, except we want blank lines for the letters. We can use the _ character (called the
underscore character) for this. But we should print the letters in the secret word that the player has guessed,
and use _ charactersfor the letters the player has not guessed yet. We can first create a string with nothing
but one underscore for each letter in the secret word. Then we can replace the blanks for each letter in
correctlLetters. Soif thesecret wordwas' ott er' thenthe blanked out stringwouldbe®
(five _characters). If correct Letters wasthestring' rt' then we would want to change the blanked
stringto’ _tt_r' . Hereisthe code that does that:

75. blanks = ' ' * len(secretWrd)

76.

77. for i in range(len(secretWrd)): # replace bl anks
with correctly guessed letters

78. if secretWord[i] in correctlLetters:

79. bl anks = blanks[:i] + secretWord[i] +
bl anks[i +1:]

80.

81. for letter in blanks: # show the secret word with
spaces in between each letter

Line 75 creates the bl anks variable full of _ underscores using string replication. Remember that the *
operator can also be used on a string and an integer, so the expression' hel | o' * 3 evaluatesto
"hel | ohel | ohel | o' . Thiswill make sure that bl anks has the same number of underscores as
secr et Wr d has letters.

Thenwe use af or loop to go through each letter in secr et Wor d and replace the underscore with the
actual letter if it existsincorrect Lett ers. Line 79 may look confusing. It seems that we are using the
square brackets with the bl anks and secr et Wor d variables. But wait a second, bl anks and
secr et Wr d are strings, not lists. And thel en() function also only takes lists as parameters, not strings.
But in Python, many of the things you can do to lists you can aso do to strings:

Replacing the Underscores with Correctly Guessed Letters

77. for i in range(len(secretWrd)): # replace bl anks
Wi th correctly guessed letters

78. If secretWord[i] in correctlLetters:

79. bl anks = blanks[:i] + secretWord[i] +
bl anks[i +1:]

Let's pretend the value of secret Wrd is' otter' andthevaueincorrectlLettersis'tr'.
Then| en(secret Wrd) will return 5. Thenr ange(| en(secr et Wrd)) becomesr ange(5),

whichinturnreturnsthelist[0, 1, 2, 3, 4].
92

Because thevalue of i will takeoneachvaluein[0, 1, 2, 3, 4],thenthef or loop codeis
equivalent to this:
1 if secretWord[0] in correctlLetters:
i bl anks = bl anks[:0] + secretWrd[0] + blanks[1:]
i f secretWrd[1] in correctlLetters:
i bl anks = bl anks|:1] + secretWrd[1] + blanks[2:]
i f secretWrd[2] in correctlLetters:
i bl anks = bl anks[:2] + secretWrd[2] + blanks[3:]
i f secretWrd[3] in correctlLetters:
i bl anks = bl anks[:3] + secretWrd[3] + blanks[4:]
i f secretWord[4] in correctlLetters:
i bl anks = bl anks[:4] + secretWrd[4] + blanks[5:]

(By the way, writing out the code like this instead of using aloop iscalled loop unrolling.)

If you are confused as to what the value of something likesecr et Wor d[O] or bl anks|[3:] is, then
look at this picture. It shows the value of the secr et Wbr d and bl anks variables, and the index for each
letter in the string.

blanks

secretWord

o|lt t|e

L] 1 2 3 4

Figure 8-2: The indexes of the blanks and secretWord strings.

If we replace the list dices and the list indexes with the values that they represent, the unrolled loop code
would be the same as this:

--

if "o in "tr': # Cbndltlon is False, blanks == "' '
blanks ="' + "0 + " # This line is sklpped
if '"t'" in '"tr': # Condition is True, blanks =="'__ '
blanks =" " + "t' + ' " # This line is executed.
if 't in "tr': # Condition is True, blanks =="'_t_
blanks ="' t' + 't" + "' ' # This line is executed.
if 'e in "tr': # Condition is False, blanks == "' _tt_ '
bl anks = ' tt'" + 'e" + "' " # This line is ski pped.
+if 'r' in Ttr': # Condition is True, blanks == "' _tt_ '
' blanks = ' tt ' + 'r' + '' # This line is execut ed.

 # bl anks now has the value ' _tt _r'

__

The above three code examples all do the same thing (at least, they do when secret Wrd is' otter’
andcorrectLettersis'tr'.Thefirst boxisthe actual code we have in our game. The second box
shows code that does the same thing except without a f or loop. The third box is the same as the second
box, except we have evaluated many of the expressions in the second box.

The next few lines of code display the new value of bl anks with spaces in between each |etter.

93

81. for letter in blanks: # show the secret word with
spaces in between each letter

82. print(letter, end=" ")

83. print()

Thisf or loop will print out each character in the string bl anks. Remember that by now, bl anks may
have some of its underscores replaced with the letters in secr et Wor d. The end keyword argument in line
82'sprint () cal makesthepri nt () function put a space character at the end of the string instead of a
newline character. Thisisthe end of the di spl ayBoar d() function.

Get the Player's Guess

Theget Guess() function we create next will be called whenever we want to let the player type in a
letter to guess. The function returns the letter the player guessed as a string. Further, get Guess() will
make sure that the player types a valid letter before returning from the function.

85. def getCGuess(al readyCGuessed):

86. # Returns the letter the player entered. This
functi on nakes sure the player entered a single letter,
and not sonething el se.

Theget Guess() function has a string parameter called al r eady Guessed which contains the letters
the player has already guessed, and will ask the player to guess a single letter. This single letter will be the
return value for this function.

87. whil e True:

88. print(' Guess a letter.")
89. guess = input()

90. guess = guess. | ower ()

We will use awhi | e loop because we want to keep asking the player for a letter until they enter text that
isasingle letter they have not guessed previously. Notice that the condition for the whi | e loop is simply
the Boolean value Tr ue. That means the only way execution will ever leave this loop is by executing a
br eak statement (which leavesthe loop) or ar et ur n statement (which leaves the entire function). Such a
loop is called an infinite loop, because it will loop forever (unless it reachesa br eak statement).

The code inside the loop asks the player to enter a letter, which is stored in the variable guess. If the
player entered a capitalized letter, it will be converted to lowercase on line 90.

elif ("Else If") Statements

Take alook at the following code:

i if catNanme == 'Fuzzball":
: print('Your cat is fuzzy.")
' el se:

' 94

print('Your cat is not very fuzzy at all.")

We've seen code like this before and it's rather ssimple. If the cat Nane variable is equal to the string
"Fuzzbal | ' ,thenthei f statement's condition is Tr ue and we tell the user that her cat is fuzzy. If
cat Nane is anything else, then we tell the user her cat is not fuzzy.

But what if we wanted something else besides "fuzzy" and "not fuzzy"? We could put another i f and
el se statement inside the first el se block like this:

. i f catName == 'Fuzzball':
: print('Your cat is fuzzy.")
. el se:
| if catName == 'Spots’
print('Your cat is spotted."')
el se:

print('Your cat is neither fuzzy nor spotted.')

i f catName == 'Fuzzball':
; print('Your cat is fuzzy.")
' el se:
' if catName == ' Spots'
print('Your cat is spotted."')
el se:
if catName == 'FattyKitty'
print('Your cat is fat.")
el se:
if catName == 'Puff’
print('Your cat is puffy.")
el se:

! print(' Your cat is neither fuzzy nor spotted
» nor fat nor puffy.')

Typing all those spaces means you have more chances of making a mistake with the indentation. So
Python hastheel i f keyword. Using el i f , the above code looks like this:

--

i f catNane == 'Fuzzball':
print('Your cat is fuzzy.")

+elif catName == ' Spots'

: print('Your cat is spotted."')

+elif catName == 'FattyKitty'

: print('Your cat is fat.")

v elif catNane == 'Puff’

: print('Your cat is puffy.')

el se:

: print('Your cat is neither fuzzy nor spotted nor fat nor

s puffy.')

__

If the condition for the i f statement is Fal se, then the program will check the condition for the first
el i f statement (which iscat Na == ' Spot s' . If that condition is Fal se, then the program will
check the condition of the next el i f statement. If all of the conditionsfor thei f and el i f statements are
Fal se, then the code in the el se block executes.

95

But if one of theel i f conditions are Tr ue, the elif-block code is executed and then execution jumps
down to the first line past the else-block. So only one of the blocksin this if-elif-else statement will be
executed. You can aso leave off the else-block if you don't need one, and just have an if-elif statement.

Making Sure the Player Entered a Valid Guess

91. if len(guess) != 1:

92. print(' Please enter a single letter.")

93. elif guess in al readyGuessed:

94. print('You have already guessed that letter.
Choose again.')

95. elif guess not in 'abcdefghijkl mopgrstuvwxyz':

96. print('Please enter a LETTER ")

97. el se:

98. return guess

The guess variable contains the text the player typed in for their guess. We need to make sure they
typed in a single lowercase letter. If they didn't, we should loop back and ask them again. Thei f
statement's condition checks that the text is one and only letter. If it is not, then we execute the if-block
code, and then execution jumps down past the else-block. But since there is no more code after this if-€lif-
el se statement, execution loops back to line 87.

If the condition for the i f statement is Fal se, we check the elif statement's condition on line 93. This
condition is Tr ue if the letter exists inside the al r eady Guessed variable (remember, this is a string that
has every letter the player has already guessed). If this condition is Tr ue, then we display the error message
to the player, and jump down past the else-block. But then we would be at the end of the while-block, so
execution jumps back up to line 87.

If the condition for thei f statement and theel i f statement are both Fal se, then we check the second
el i f statement's condition on line 95. If the player typed in a number or a funny character (making guess
have avaluelike' 5' or'!"), then guess would not exist in the string
" abcdef ghi j kl mopqgr st uvwxyz' . If thisisthe case, theel i f statement's condition is Tr ue.

if len(guess) '= 1:
print 'Please enter a single letter.'
2lif guess in alreadybuessed:

print '¥ou have already guessed that letter. Choose again.'
2lif guess not in 'asbeodefghijklmnopgrstuvwxys'

print 'Please enter a LETTER.'
else:

FeELUrn guess ﬁ

One and only one of these blocks will execute.

Figure8-3: Theel i f statement.

Unless these three conditions are all Fal se, the player will keep looping and keep being asked for a
letter. But when all three of the conditions are Fal se, then the else-block'sr et ur n statement will run and
we will exit this loop and function.

96

Asking the Player to Play Again

100. def playAgain():

101. # This function returns True if the player wants to
play again, otherwise it returns Fal se.

102. print('Do you want to play again? (yes or no)')

103. return input().lower().startswth('y")

The pl ayAgai n() function hasjust apri nt () function call and ar et ur n statement. Ther et urn
statement has an expression that looks complicated, but we can break it down. Once we evaluate this
expression to a value, that value will be returned from this function.

The expression on line 103 doesn't have any operators, but it does have a function call and two method
cals. Thefunction call isi nput () and the method callsarel ower () andstartswith('y").
Remember that method calls are function calls that are attached by a period to the value on their left.
| ower () isattached to the return value of i nput () .

i nput () returns a string of the text that the user typed in. Here's a step by step look at how Python
evaluates this expression if the user typesin YES.

return input().lower().startswith('y')
return 'YES .lower().startswith('y")
return 'yes' .startswith('y")

» return True

The point of the pl ayAgai n() function isto let the player type in yes or no to tell our program if they
want to play another round of Hangman. If the player typesin YES, then the return value of i nput () is
thestring' YES' .' YES' . | ower () returns the lowercase version of the attached string. So the return
valueof ' YES' .| ower () is' yes' .

But there's the second method call, startswith('y"). This function returns Tr ue if the associated string
begins with the string parameter between the parentheses, and Fal se if it doesn't. The return value of
'ves.startswith('y") is Tr ue.

Now we have evaluated this expression! We can see that what this does is | et the player type in a
response, we lowercase the response, check if it beginswith the letter " y' or ' Y' , and then return Tr ue if
it does and Fal se if it doesn't. Whew!

On aside note, thereisalsoaendswi t h(sonmeSt ri ng) string method that will return Tr ue if the
string ends with the string in sonme St ri ng and Fal se if it doesn't.

Review of the Functions We Defined

That's al the functions we are creating for this game!

97

« get Randomor d(wor dLi st) will take a list of strings passed to it as a parameter, and return one
string from it. That is how we will choose a word for the player to guess.

« di spl ayBoar d(HANGVANPI CS, mi ssedLetters, correctlLetters, secretWrd)
will show the current state of the board, including how much of the secret word the player has
guessed so far and the wrong letters the player has guessed. This function needs four parameters
passed to work correctly. HANGVANPI CSis a list of strings that hold the ASCII art for each possible
hangman board. correct Lett ers and mi ssedLet t er s are strings made up of the letters that
the player has guessed that are in and not in the secret word. And secr et Wor d is the secret word
the player istrying to guess. This function has no return value.

« get Guess(al readyGuessed) takesa string of |etters the player has aready guessed and will
keep asking the player for a letter that is a |etter that he hasn't already guessed. (That is, a letter that is
not in al r eady@uessed. This function returns the string of the acceptable letter the player guessed.

« pl ayAgai n() isafunction that asks if the player wants to play another round of Hangman. This
function returns Tr ue if the player does and Fal se if the player doesn't.

WE'l now start the code for the main part of the game, which will call the above functions as needed.
Look back at our flow chart.

START

Come up with a
secred word,

i

3how +he board and
blanks +o +he ployer,

Ployer already
SUEHS:Ed Hhis lerter.

Ask player +o
ﬂuess i letter,

LeHer s Ao+ in
secred word,

L

Player has guessed all Player has run
letters and wins. out of body

Letter 5 in
secred word,

parts and loses.

Ask player +o
ploy - again.

END

Figure 8-4: The complete flow chart of Hangman.

The Main Code for Hangman

We need to write code that does everything in this flow chart, and does it in order. The main part of the

98

code starts at line 106. Everything previous was just function definitions and a very large variable
assignment for HANGVANPI CS.

Setting Up the Variables

106. print("fHANGMAN)

107. m ssedLetters ="'

108. correctlLetters ="'

109. secretWrd get RandomAér d(wor ds)
110. ganel sDone Fal se

Line 106 is the first actual line that executes in our game. We start by assigning a blank string for
m ssedLetters andcorrectLetters, because the player has not guessed any missed or correct
letters yet. Then we call get RandomAér d(wor ds) , where wor ds is a variable with the huge list of
possible secret words we assigned on line 59. The return value of get RandomAér d(wor ds) is one of
these words, and we save it to the secr et Wor d variable. Then we also set a variable named
ganel sDone to Fal se. We will set gamelsDone to Tr ue when we want to signal that the game is over
and the program should ask the player if they want to play again.

Setting the values of these variables is what we do before the player starts guessing | etters.

Displaying the Board to the Player

112. while True:
113. di spl ayBoar d(HANGVANPI CS, m ssedLetters,
correctlLetters, secretWrd)

Thewhi | e loop's condition is always Tr ue, which means we will always loop forever until a br eak
statement is encountered. We will execute a br eak statement when the game is over (either because the
player won or the player lost).

Line 113 calls our di spl ayBoar d() function, passing it the list of hangman ASCII art pictures and the
three variables we set on lines 107, 108, and 109. Program execution moves to the start of
di spl ayBoar d() atline66. Based on how many letters the player has correctly guessed and missed, this
function displays the appropriate hangman board to the player.

Letting the Player Enter Their Guess

115. # Let the player type in a letter.
116. guess = get Guess(m ssedLetters + correctlLetters)

If you look at our flow chart, you see only one arrow going from the "Show the board and the blanks to
the player." box to the "Ask a player to guess a letter.” box. Since we have already written a function to get
the guess from the player, let's call that function. Remember that the function needs al the lettersin
m ssedLetters andcorrectLetters combined, so wewill pass as an argument a string that is a
concatenation of both of those strings. This argument is needed by get Guess() because the function has

99

code to check if the player typesin a letter that they have aready guessed.

Checking if the Letter is in the Secret Word

118. I f guess in secretWrd:
119. correctlLetters = correctlLetters + guess

Now let's see if the single letter in the guess string existsin secr et Wor d. If it does exist, then we
should concatenate the letter in guess tothecorrect Let t er s string. Next we can check if we have
guessed all of the letters and won.

Checking if the Player has Won

121. # Check if the player has won

122. foundAl | Letters = True

123. for i in range(len(secretWrd)):

124. if secretWord[i] not in correctlLetters:
125. foundAl | Letters = Fal se

126. br eak

How do we know if the player has guessed every single letter in the secret word? Well,
correctLetters has each letter that the player correctly guessed and secr et Wor d is the secret word
itself. We can't just check if correctLetters == secr et Wr d because consider this situation: if
secret Wrd wasthestring' otter' andcorrectlLetters wasthestring' orte', then
correctLetters == secret Wr d would be Fal se even though the player has guessed each letter
in the secret word.

The player simply guessed the letters out of order and they still win, but our program would incorrectly
think the player hasn't won yet. Even if they did guess the letters in order, cor r ect Let t er s would be the
string' ot er ' because the player can't guess the letter t more than once. The expression' otter' ==
"ot er' would evaluate to Fal se even though the player won.

The only way we can be sure the player won isto go through each letter in secr et Wr d and seeiif it
existsincorrect Letters.If, and only if, every single letter in secr et Wor d existsin
correctLetters will the player have won.

Note that this is different than checking if every letterincorrect Letters isinsecret Wrd. If
correctlLetters wasthestring' ot' and secret Wrd was' otter' ,itwould be true that every
letterin' ot ' isin' otter' , but that doesn't mean the player has guessed the secret word and won.

So how can we do this? We can loop through each letter in secr et Wor d and if we find a letter that
does not exist incorrect Let t er s, we know that the player has not guessed all the letters. Thisiswhy
we create a new variable named f oundAl | Let t er s and set it to the Boolean value Tr ue. We start out
assuming that we have found all the letters, but will change f oundAl | Let t er s to Fal se when we find
aletterinsecret Wrd thatisnotincorrect Letters.

Thef or loop will go through the numbers O up to (but not including) the length of the word. Remember
that range(5) will evaluatetothelist[0, 1, 2, 3, 4].Soonline123, the program executes all the
code inside the for-block with the variable i will be set to O, then 1, then 2, then 3, then 4.

100

Weuser ange(l en(secret Wrd)) sothati can be used to access each letter in the secret word. So
if the first letter in secr et Wr d (which islocated at secr et Wor d[0]) isnotincorrect Letters,
we know we can set f oundAl | Let t er s to Fal se. Also, because we don't have to check the rest of the
lettersin secr et Wor d, we can just break out of this loop. Otherwise, we loop back to line 123 and check
the next letter.

If f oundAl | Let t er s managesto survive every single letter without being turned to Fal se, then it
will keep the original Tr ue value we gave it. Either way, the valuein f oundAl | Let t er s is accurate by
the time we get past thisf or loop and run line 127.

129. I f foundAll Letters:

130. print('Yes! The secret word is "' +
secretWwrd + '"! You have won!')

131. ganel sDone = True

Thisisa simple check to see if we found all the letters. If we have found every letter in the secret word,
we should tell the player that they have won. We will also set the ganel sDone variableto Tr ue. We will
check this variable to see if we should let the player guess again or if the player is done guessing.

When the Player Guesses Incorrectly

130. el se:

Thisisthe start of the else-block. Remember, the code in this block will execute if the condition was
Fal se. But which condition? To find out, point your finger at the start of the el se keyword and move it
straight up. You will see that the el se keyword's indentation is the same asthei f keyword's indentation
on line 118. So if the condition on line 118 was Fal se, then we will run the code in this el se-block.
Otherwise, we skip down past the else-block to line 140.

131. m ssedLetters = m ssedLetters + guess

Because the player's guessed letter was wrong, we will add it to them ssedLet t er s string. Thisislike
what we did on line 119 when the player guessed correctly.

133. # Check if player has guessed too many tines and
| ost

134. if len(m ssedLetters) == | en(HANGVANPI CS) - 1:

135. di spl ayBoar d(HANGVANPI CS, mi ssedLetters,
correctlLetters, secretWrd)

136. print('You have run out of guesses!\nAfter '

+ str(len(m ssedLetters)) + m ssed guesses and ' +
str(len(correctlLetters)) + ' correct guesses, the word
was "' + secretWord + '"")

137. ganel sDone = True

101

Think about how we know when the player has guessed too many times. When you play Hangman on
paper, this is when the drawing of the hangman is finished. We draw the hangman on the screen with
print () cals, based on how many letters arein m ssedLet t er s. Remember that each time the player
guesses wrong, we add (or as a programmer would say, concatenate) the wrong letter to the string in
m ssedLett ers. Sothelengthof m ssedLetters (or,incode, | en(m ssedLetters)) cantell us
the number of wrong guesses.

At what point does the player run out of guesses and lose? Well, the HANGVANPI CS list has 7 pictures
(really, they are ASCII art strings). Sowhen | en(m ssedLett ers) equals6, we know the player has
lost because the hangman picture will be finished. (Remember that HANGVANPI CS[0] isthefirst item in
the list, and HANGVANPI CS[6] isthelast one. Thisis because the index of a list with 7 items goes from O
to 6, not 1t0 7.)

Sowhy dowe havel en(m ssedLetters) == | en(HANGVANPI CS) - 1 asthe condition on
line134, instead of | en(m ssedLetters) == 67? Pretend that we add another string to the
HANGVANPI CS list (maybe a picture of the full hangman with atail, or a third mutant arm). Then the last
picture in the list would be at HANGVANPI CS[7] . So not only would we have to change the
HANGVANPI CS list with a new string, but we would also have to remember to change line 134 to
| en(m ssedLetters) == 7. Thismight not be abig deal for a program like Hangman, but when you
start writing larger programs you may have to change several different lines of code all over your program
just to make a change in the program's behavior. This way, if we want to make the game harder or easier,
we just have to add or remove ASCII art strings to HANGVANPI CS and change nothing else.

A second reason we user | en(HANGVANPI CS) - 1 isso that when we read the code in this program
later, we know why this program behaves the way it does. If youwrote | en(m ssedLetters) ==
and then looked at the code two weeks later, you may wonder what is so special about the number 6. Y ou
may have forgotten that 6 is the last index in the HANGVANPI CS list. Of course, you could write a comment
to remind yourself, like:

134. if len(m ssedLetters) == 6: # 6 is the last index in the
HANGVANPI CS | i st

But itiseasier to just use | en(HANGVANPI CS) - 1 instead.

So, when the length of the mi ssedLet t er s stringisequal tol en(HANGVANPI CS) - 1, we know
the player has run out of guesses and has lost the game. We print a long string telling the user what the
secret word was, and then set the ganel sDone value to the Boolean value Tr ue. Thisis how we will tell
ourselves that the game is done and we should start over.

Remember that when we have \n in a string, that represents the newline character.

139. # Ask the player if they want to play again (but only
if the gane is done).

140. i f ganel sDone:

141. i f playAgain():

142. m ssedLetters = "'

143. correctlLetters = "'

144. ganel sDone = Fal se

145. secretWrd = get RandonWbr d(wor ds)

102

If the player won or lost after guessing their letter, then our code would have set the ganel sDone
variable to Tr ue. If thisisthe case, we should ask the player if they want to play again. We already wrote
the pl ayAgai n() function to handle getting a yes or no from the player. This function returns a Boolean
value of Tr ue if the player wants to play another game of Hangman, and Fal se if they've had enough.

If the player does want to play again, we will reset the valuesin m ssedLet t er s and
correctLetters toblank strings, set ganel sDone to Fal se, and then choose a new secret word by
calling get Random\\or d() again, passing it the list of possible secret words.

This way, when we loop back to the beginning of the loop (on line 112) the board will be back to the start
(remember we decide which hangman picture to show based on the length of m ssedLet t er s, which we
just set as the blank string) and the game will be just as the first time we entered the loop. The only
difference is we will have a new secret word, because we programmed get Random\\r d() to return a
randomly chosen word each time we call it.

There is a small chance that the new secret word will be the same as the old secret word, but thisisjust a
coincidence. Let's say you flipped a coin and it came up heads, and then you flipped the coin again and it
also came up heads. Both coin flips were random, it was just a coincidence that they came up the same both
times. Accordingly, you may get the same word return from get Random\br d() twicein arow, but this
isjust a coincidence.

146. el se:
147. br eak

If the player typed in' no' when asked if they wanted to play again, then they return value of the call to
the pl ayAgai n() function would be Fal se and the else-block would have executed. This else-block
only has one line, a br eak statement. This causes the execution to jump to the end of the loop that was
started on line 112. But because there is no more code after the loop, the program terminates.

Making New Changes to the Hangman Program

This program was much bigger than the Dragon Realm program, but this program is also more
sophisticated. It really helpsto make a flow chart or small sketch to remember how you want everything to
work. Take a look at the flow chart and try to find the lines of code that represent each block.

At this point, you can move on to the next chapter. But | suggest you keep reading on to find out about
some ways we can improve our Hangman game.

After you have played Hangman a few times, you might think that six guesses aren't enough to get many
of the words. We can easily give the player more guesses by adding more multi-line strings to the
HANGVANPI CS list. It's easy, just change the] square bracket on line 57 to a,™ comma and three quotes
(see line 57 below). Then add the following:

58.
59. +----+
60. | |
61. [
62. |/
63. |/

103

We have added two new multi-line strings to the HANGMANPICS list, one with the hangman'’s left ear
drawn, and the other with both ears drawn. Because our program will tell the player they have lost when the
number of guesses is the same as the number of stringsin HANGMANPICS (minus one), thisis the only
change we need to make.

We can also change the list of words by changing the words on line 59. Instead of animals, we could have
colors:

59. words = "red orange yellow green blue indigo violet white
bl ack brown'.split()

60. O shapes:

61. words = 'square triangle rectangle circle ellipse rhonbus
trapazoi d chevron pentagon hexagon septagon
octogon' .split()

62. O fruits:

63. words = "apple orange |lenon |inme pear waternelon grape
grapefruit cherry banana cantal ope nmango strawberry
tomato' .split()

Dictionaries

With some modification, we can change our code so that our Hangman game can use all of these words
as separate sets. We can tell the player which set the secret word is from (like "animal”, "color”, "shape”, or
“fruit"). Thisway, the player isn't guessing animals all the time.

To make this change, we will introduce a new data type called a dictionary. A dictionary isa
collection of other values much like a list, but instead of accessing the itemsin the dictionary with an
integer index, you access them with an index of any data type (but most often strings).

Try typing the following into the shell:

 >>> stuff = {'hello' :'"Hello there, how are ?/ou?', ‘chat':' How
1 is the weather?', 'goodbye':'It was nice talking to you!'} >>> .

Those are curly braces{ and }. On the keyboard they are on the same key as the square braces[and].
We use curly bracesto type out a dictionary value in Python. The valuesin between them are key-value
pairs. The keys are the things on the left of the colon and the values are on the right of the colon. Y ou can
access the values (which are like items in lists) in the dictionary by using the key (which are like indexesin

104

lists). Try typingintotheshell stuff[' hello'] andstuff['chat'] andstuff[' goodbye']:

+ >>> stuff[' hello']

» "Hello there, how are you?'
b>>> stuffk' chat'

, "How is the weather?'

. >>> stuff[' goodbye']

1 '1t was nice talking to you!'
o >>>

Getting the Size of Dictionaries with | en()

You see, instead of putting an integer index in between the square brackets, you put a key string index.
This will evaluate to the value for that key. Y ou can get the size (that is, how many key-value pairsin the
dictionary) with thel en() function. Try typing | en(st uf f) into the shell:

--

__

i listStuff = ['Hello there, how are you?', 'How is the weather? |
', "It was nice talking to you!'] '

Thelist doesn't have any keys, like' hel | o' and' chat' and' goodbye' inthedictionary. We have
to use integer indexes 0, 1, and 2.

The Difference Between Dictionaries and Lists

Dictionaries are different from lists because they are unordered. Thefirst item in a list named
l'istStuff wouldbeli st Stuff[0].Butthereisno"first" item in a dictionary, because dictionaries
do not have any sort of order. Try typing this into the shell:

__

+ >>> favoritesl = {'fruit':"apples', 'animal':'cats',
' nunber ' : 42}

+ >>> favorites2 = {'animal':'cats', 'nunber':42,
yfruit' ;" apples'}

+ >>> favoritesl == favorites2

i True

P>>>

Asyou can see, theexpressionf avoritesl == favorites2 evauatesto Tr ue because
dictionaries are unordered, and they are considered to be the same if they have the same key-value pairsin
them. Lists are ordered, so a list with the same values in them but in a different order are not the same. Try
typing this into the shell:

--

+ >>> | istFavsl "apples', 'cats', 42
» >>> | i st Favs2 ‘cats', 42, 'apples’

+ >>> | jstFavsl == |i st Favs2

. Fal se

105

Asyou can see, thetwo lists| i st Favsl and | i st Favs2 are not considered to be the same because
order mattersin lists.

You can also use integers as the keys for dictionaries. Dictionaries can have keys of any data type, not
just strings. But remember, because 0 and ' 0" are different values, they will be different keys. Try typing
this into the shell:

Y ou might think that using af or loop is hard with dictionaries because they do not have integer indexes.
But actually, it'seasy. Try typing the following into the shell. (Here's a hint, in IDLE, you do not have to
type spaces to start a new block. IDLE does it for you. To end the block, just insert a blank line by just
hitting the Enter key. Or you could start a new file, type in this code, and then press F5 to run the program.)

--

+ >>> favorites = {"fruit':"apples', '"aninal':'cats',
' nunber’ : 42}

+ >>> for i in favorites:

' print(i)

pfruit

 nunber

: ani mal

+ >>> for i in favorites:
' print(favorites[i])

. appl es
v 42

i cats
p>>>

Asyou can seg, if you just use adictionary inaf or loop, the variablei will take on the values of the
dictionary's keys, not its values. But if you have the dictionary and the key, you can get the value as we do
above with f avori t es[i] . But remember that because dictionaries are unordered, you cannot predict
which order the f or loop will execute in. Above, we typed the' ani mal * key as coming before the
"nunber' key, but thef or loop printed out ' nunber' before' ani mal '

Dictionaries also have two useful methods, keys() and val ues() . These will return (ordered) lists of
the key values and the value values, respectively. Try typing the following into the shell:

__

+ >>> favorites = {'fruit':"apples', "animal':'cats',
' nunber’' : 42}

+ >>> favorites. keys()

v ["fruit', 'nunber', "animal']

P>>> favorites.values(%

. ["apples', 42, 'cats

r >>>

Using these methods to get a list of the keys and values that are in a dictionary can be very helpful.

Sets of Words for Hangman

So how can we use dictionaries in our game? First, let's change the list wor ds into a dictionary whose
keys are strings and values are lists of strings. (Remember that the string method spl i t () evaluatesto a
list.

59. words = {'Colors':'red orange yellow green blue indigo
violet white black brown' .split(),

60. 'Shapes':'square triangle rectangle circle ellipse rhonbus
trapazoi d chevron pentagon hexagon septagon
octogon' .split(),

61. 'Fruits':'apple orange lenon |inme pear waternelon grape
grapefruit cherry banana cantal ope nmango strawberry
tomato' .split(),

62. 'Animals':'bat bear beaver cat cougar crab deer dog
donkey duck eagle fish frog goat leech lion |lizard nonkey
noose nmouse otter ow panda python rabbit rat shark sheep
skunk squid tiger turkey turtle weasel whale wolf wonbat
zebra' .split()}

This code is put across multiple lines in the file, even though the Python interpreter thinks of it as just
one "line of code.” (The line of code doesn't end until the final } curly brace.)

The random choi ce() Function

Now we will have to change our get RandomA\or d() function so that it chooses a random word from a
dictionary of lists of strings, instead of from a list of strings. Here is what the function originally looked
like:

61. def get Randombrd(wordLi st):

62. # This function returns a random string fromthe
passed |list of strings.

63. wor dl ndex = randomrandint (0, |en(wordList) - 1)

64. return wordLi st [wordl ndex]

Change the code in this function so that it looks like this:

61. def get Randomrd(wordDict):
62. # This function returns a random string fromthe
passed dictionary of lists of strings, and the key al so.

63.

64. # First, randomy select a key fromthe dictionary:
65. wor dKey = random choi ce(wor dDi ct. keys())

66.

67. # Second, randomy select a word fromthe key's 1list
107

in the dictionary:

68. wor dl ndex = random randint (0, |en(wordD ct[wordKey])
- 1)

69.

70. return [wordDi ct[wordKey] [wordl ndex], wordKey]

Line 61 just changes the name of the parameter to something a little more descriptive. Now instead of
choosing a random word from a list of strings, first we choose a random key from the dictionary and then
we choose a random word from the key's list of strings. Line 65 calls a new function in the r andommodule
named choi ce() . Thechoi ce() function has one parameter, alist. Thereturn value of choi ce() is
an item randomly selected from this list each time it is called.

Remember that r andi nt (a, b) will return a random integer between (and including) the two integers
a and b and choi ce(a) returns arandom item from the list a. Look at these two lines of code, and figure
out why they do the exact same thing:

. random randi nt (0, 9)
. random choi ce(range(0, 10))

Line 64 (line 70 in the new code) has also been changed. Now instead of returning the string
wor dLi st [wor dl ndex] , we are returning a list with two items. The first item is
wor dDi ct [wor dKey] [wor dI ndex] . The second item iswor dKey . We return a list because we
actually want the get RandomWWbr d() to return two values, so putting those two valuesin alist and
returning the list is the easiest way to do this.

Evaluating a Dictionary of Lists

wor dDi ct [wor dKey] [wor dI ndex] may look kind of complicated, but it isjust an expression you
can evaluate one step at a time like anything else. First, imagine that wor dKey had thevalue' Frui t s’
(which was chosen on line 65) and wor dl ndex has the value 5 (chosen on line 68). Here is how
wor dDi ct [wor dKey] [wor dI ndex] would evaluate:

. wor dDi ct [wor dKey] [wor dI ndex]

' wordDi ct[' Fruits'][5]

i['apple', ‘orange', 'lenon', 'lime', 'pear', 'waternelon',
, 'grape', 'grapefruit', 'cherry', 'banana', 'cantal ope',
+ 'mango', 'strawberry', 'tomato'][5]

" wat er mel on’

In the above case, the first item in the list this function returns would be the string ' wat er nel on' .

There are just three more changes to make to our program. The first two are on the lines that we call the
get RandomAbr d() function. The function is called on lines 109 and 145 in the original program:

“108. correctlLetters = "' H
108

109. secretWrd = get RandonWbr d(wor ds)
110. ganel sDone = Fal se

144. ganel sDone = Fal se

145. secret Wrd = get Random\br d(wor ds)
146. el se:

Because the get Random\ér d() function now returns alist of two itemsinstead of a string,
secr et Wr d will be assigned a list, not a string. We would then have to change the code as follows:

108. correctlLetters =
109. secretWrd = get Random\br d(wor ds)
110. secretKey = secretWrd[1]
111. secretWrd = secretWrd[0]
112. ganel sDone = Fal se

144. ganel sDone Fal se

145. secretWrd get RandomAor d(wor ds)
146. secretKey = secretWrd[1]

147. secretWrd = secretWrd[0]

148. el se:

With the above changes, secr et Wor d isfirst alist of two items. Then we add a new variable named
secr et Key and set it to the second item in secr et Wor d. Then we set secr et Wor d itself to the first
iteminthesecr et Wor d list. That meansthat secr et Wor d will then be a string.

Multiple Assignment

But thereis an easier way by doing a little trick with assignment statements. Try typing the following into
the shell:

' >>> a, b, ¢ = ['apples', 'cats', 42]
P >>> a

. " appl es’

1 >>> b

: 'cats'

L >>> ¢

1 42

P >>>

Thetrick isto put the same number of variables (delimited by commas) on the left side of the = sign as
arein the list on the right side of the = sign. Python will automatically assign the first item's value in the list
to the first variable, the second item's value to the second variable, and so on. But if you do not have the

109

same number of variables on the left side as there are items in the list on the right side, the Python
interpreter will give you an error.

>>> a, b, ¢, d = ["apples', 'cats', 42]
Traceback (nost recent call |ast):
' File "<pyshel | #8>", line 1, in <nodul e>

a, b, c, d =["apples', 'cats', 42]

Val ueError: need more than 3 values to unpack

i >>> a, b, ¢, d = ['apples', 'cats']
Traceback (nobst recent call last):
File "<pyshel | #9>", line 1, in <nodul e>

a, b, ¢ =["apples', 'cats'

! Val ueError: need nore than 2 vaI]ues t o unpack

>>>

So we should change our code in Hangman to use this trick, which will mean our program uses fewer

lines of code.

108.
109.
110.

144.
145.
146.

correctlLetters ="'
secret Wrd, secretKey
ganel sDone = Fal se

ganel sDone = Fal se

secretWrd, secretKey = get RandomA\dr d(wor ds)

el se:

get RandomAor d(wor ds)

Printing the Word Category for the Player

The last change we will makeisto add asimplepri nt () call to tell the player which set of words they
are trying to guess. This way, when the player plays the game they will know if the secret word is an
animal, color, shape, or fruit. Add this line of code after line 112. Here is the original code:

112.
113.

whil e True:
di spl ayBoar d(HANGVANPI CS, mi ssedLetters,
correctlLetters, secretWrd)

Add the line so your program looks like this:

112.
113.
114.

while True:
print(' The secret word is in the set: '
di spl ayBoar d(HANGVANPI CS, mi ssedLetters,
correctlLetters, secretWrd)

110

+ secret Key)

Now we are done with our changes. Instead of just a single list of words, the secret word will be chosen
from many different lists of words. We will aso tell the player which set of words the secret word is from.
Try playing this new version. You can easily change the wor ds dictionary on line 59 to include more sets
of words.

111

Chapter g
Tic Tac Toe

Topics Covered In This Chapter:

- Artificia Intelligence

« List References

« Short-Circuit Evaluation
« The None Vaue

We will now create a Tic Tac Toe game where the player plays against a smple artificia intelligence. An
artificial intelligence (or Al) isa computer program that can intelligently respond to the player's
moves. This game doesn't introduce any complicated new concepts. We will see that the artificia
intelligence that plays Tic Tac Toeisreally just several lines of code.

Tic Tac Toeis a simple game to play with a paper and pencil between two people. One player is X and
the other player is O. On a simple nine square grid (which we call the board), the players take turns placing
their X or O on the board. If a player gets three of their marks on the board in a row, column or one of the
two diagonals, they win.

Most games of Tic Tac Toe end in a draw. The board is filled up with neither player having three marks
in arow. Instead of second player, our artificial intelligence will make moves against the user.

While this chapter may not introduce many new programming concepts, it does make use of our existing

programming knowledge to make an intelligent Tic Tac Toe player. Let's get started by looking at a sample
run of the program.

Sample Run of Tic Tac Toe

Wel cone to Tic Tac Toe!
Do you want to be X or O?
X

The conputer will go first.
O T

112

VWhat is your next move? (1-9)

3

0]

O X

X\ha is your next nove? (1-9)
O O

X

O X

\E/)\ha is your next nove? (1-9)
ol O O

X 1| X

0] X

The conputer has beaten you! You |ose.
Do you want to play again? (yes or no)
no

In a new file editor window, type in this source code and save it as tictactoe.py. Then run the game by
pressing F5. Y ou do not need to type in this program before reading this chapter. Y ou can aso download
the source code by visiting the website at the URL http://inventwithpython.com/chapter9 and following the
instructions on the webpage.

tictactoe.py

This code can be downloaded from http://inventwithpython.com/tictactoe.py
If you get errors after typing this code in, compare it to the book's code with the online diff tool at
http://inventwithpython.com/diff or email the author at al@inventwithpython.com

Tic Tac Toe
i mport random
def drawBoar d(board):

This function prints out the board that it was
passed.

O

\‘

113

11.
12.
13.
14.

15.
16.
17.
18.

19.
20.
21.
22.
23.

24.
25.
26.
27.
28.
29.

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

44
45.
46.
47.
48.
49.
50.
51.

52.

"board" is a list of 10 strings representing the
board (ignore index 0)

print(’ | ")

print(" ' + board[7] + ' | ' + board[8] + ' | ' +
boar d[9])

print(" | ')

print('-----------)

print(’ | ")

print(’" ' + board[4] + ' + board[5] + -
board[6])

print(’ | ")

print('-----------)

print(' | ")

print(" ' + board[1] + ' | ' + board[2] + ' | ' +
board[3])

print(’ | ")

def inputPlayerLetter():
Let's the player type which letter they want to be.
Returns a list with the player's letter as the
first item and the conputer's letter as the second.

letter ="'

while not (letter == "X or letter == "0O):
print('Do you want to be X or O?')
letter = input().upper()

the first elenent in the tuple is the player's
letter, the second is the conputer's letter.
If letter == "X :
return ['X, 'O]
el se:
return ['O, 'X]

def whoCGoesFirst():
Randonmly choose the pIayer who goes first.
i f randon1rand|nt(0 1) ==
return ' conputer’
el se:
return 'player’

def playAgain():
This function returns True if the player wants to
play again, otherwise it returns Fal se.
print('Do you want to play again? (yes or no)')
return input().lower().startswth('y")

def nmakeMove(board, letter, nove):
board[nove] = letter

def isWnner(bo, le):

Gven a board and a player's letter, this function
returns True if that player has won

We use bo instead of board and le instead of letter

so we don't have to type as much
114

53.

54.

55.

56.

S57.

58.

59.

60.

61.
62.
63.

64.
65.
66.
67.
68.
69.
70.
71.
72.

73.
74.
75.
76.
7.
78.

79.
80.
81.
82.
83.
84.

85.
86.
87.
88.
89.
90.
91.
92.
93.
94.

return ((bo[7] == le and bo[8] == le and bo[9] == le)
or # across the top

(bo[4] == le and bo[5] == le and bo[6] == 1le) or #
across the mddle

(bo[1l] == 1le and bo[2] == le and bo[3] == 1le) or #
across the bottom

(bo[7] == le and bo[4] == le and bo[1l] == 1le) or #
down the left side

(bo[8] == 1le and bo[5] == le and bo[2] == le) or #
down the mddle

(bo[9] == le and bo[6] == le and bo[3] == 1le) or #
down the right side

(bo[7] == le and bo[5] == le and bo[3] == 1le) or #
di agonal

(bo[9] == le and bo[5] == le and bo[1l] == 1le)) #
di agonal

def get Boar dCopy(board):

Make a duplicate of the board list and return it
t he duplicate.

dupeBoard = []

for i in board:
dupeBoar d. append(i)

return dupeBoard

def isSpaceFree(board, nove):

Return true if the passed nove is free on the
passed board.

return board[nove] ==

def get Pl ayer Move(board):
Let the player type in his nove.
nmove = ' '
while nove not in '1 2 3 4567 8 9 .split() or not
I sSpaceFree(board, int(nove)):
print('Wat is your next nove? (1-9)')
nove = input()
return int(nove)

def chooseRandomVbveFronLi st (board, novesList):

Returns a valid nove fromthe passed |ist on the
passed board.

Returns None if there is no valid nove.

possi bl eMoves = []

for i in novesList:

i f isSpaceFree(board, i):
possi bl eMoves. append(i)

i f len(possibleMves) !'= 0:
return random choi ce(possi bl eMoves)
el se:

return None
115

def get Conput er Move(board, conputerlLetter):
Gven a board and the conputer's letter, determ ne
where to nove and return that nove.

I f conmputerLetter == 'X
pl ayerLetter = 'O
el se:
pl ayerLetter = 'X

Here is our algorithmfor our Tic Tac Toe Al:
First, check if we can win in the next nove
for i in range(1, 10):
copy = get Boar dCopy(board)
if isSpaceFree(copy, i):
makeMove(copy, conputerlLetter, i)
if isWnner(copy, conputerlLetter):
return i

Check if the player could win on his next nove, and
bl ock them
for i in range(l, 10):
copy = get Boar dCopy(board)
i f isSpaceFree(copy, i):
makeMove(copy, playerLetter, i)
i f isWnner(copy, playerlLetter):
return i

Try to take one of the corners, if they are free.
nove = chooseRandomVbveFronii st (board, [1, 3, 7, 9])
i f nove != None:

return nove

Try to take the center, if it is free.
I f i sSpaceFree(board, 5):
return 5

Move on one of the sides.
return chooseRandomvbveFronii st (board, [2, 4, 6, 8])

def isBoardFul |l (board):
Return True if every space on the board has been
taken. Qtherw se return Fal se.
for i in range(1, 10):
i f isSpaceFree(board, i):
return Fal se
return True

print('Wlcone to Tic Tac Toe!')

whil e True:
Reset the board
theBoard = [' '] * 10

pl ayerLetter, conputerLetter = inputPlayerlLetter()
116

46. turn = whoGoesFirst()

47. print('The ' + turn + ' will go first.")

48. ganel sPl ayi ng = True

49.

50. whi | e ganel sPl ayi ng:

51. i f turn == 'player':

52. # Player's turn.

53. dr awBoar d(t heBoar d)

54. nmove = get Pl ayer Move(t heBoar d)

55. makeMove(t heBoard, playerLetter, nove)

56.

57. if isWnner(theBoard, playerlLetter):

58. dr awBoar d(t heBoar d)

59. print (' Hooray! You have won the gane!')

60. ganel sPl ayi ng = Fal se

61. el se:

62. i f isBoardFull (theBoard):

63. dr awBoar d(t heBoar d)

64. print('The gane is a tiel")

65. br eak

66. el se:

67. turn = 'conputer’

68.

69. el se:

70. # Conputer's turn.

71. nove = get Conput er Move(t heBoard,
conput er Letter)

72. makeMove(t heBoard, conputerlLetter, nove)

73.

74. I f isWnner(theBoard, conputerlLetter):

75. dr awBoar d(t heBoar d)

76. print(' The conputer has beaten you! You
| ose. ")

77. ganel sPl ayi ng = Fal se

78. el se:

79. i f isBoardFull (theBoard):

80. dr awBoar d(t heBoar d)

81. print(' The gane is a tie!')

82. br eak

83. el se:

84. turn = 'player’

85.

86. i f not playAgain():

87. br eak

Designing the Program

Tic Tac Toeisavery easy and short game to play on paper. In our Tic Tac Toe computer game, we'll let
the player choose if they want to be X or O, randomly choose who goes first, and then let the player and
computer take turns making moves on the board. Here iswhat a flow chart of this game could look like:

117

START

Pk for
ployer's letter,

[Jecide wikho
foEs Firgt.

Pluy'fr-i. Turr)
Cl'.l.rnpum*er v Turry

et COmpUter s
rrlve,

{:h(-'x ki
COmputer won.

Get player's move,

Y

Checie if
player won.

A

Check for +ie,

Crheck for i,

Fek player +o
play aguin.

Figure 9-1: Flow chart for Tic Tac Toe

You can see alot of the boxes on the left side of the chart are what happens during the player's turn. The
right side of the chart shows what happens on the computer's turn. The player has an extra box for drawing
the board because the computer doesn't need the board printed on the screen. After the player or computer
makes a move, we check if they won or caused a tie, and then the game switches turns. If either the
computer or player ties or wins the game, we ask the player if they want to play again.

Representing the Board as Data

First, we need to figure out how we are going to represent the board as a variable. On paper, the Tic Tac
Toe board is drawn as a pair of horizontal lines and a pair of vertical lines, with either an X, O, or empty
space in each of the nine spaces.

In our program, we are going to represent the Tic Tac Toe board as a list of strings. Each string will
represent one of the nine positions on the board. We will give a number to each of the spaces on the board.
To make it easier to remember which index in the list is for which piece, we will mirror the numbers on the
keypad of our keyboard. See Figure 9-2.

118

Figure 9-2: The board will be numbered like the keyboard's number pad.

The strings will either be' X' for the X player,' O for the O player, or a space string ' to mark a
spot on the board where no one has marked yet. The index of the string in the list will also be the number of
the space on the board.

So if we had a list with ten strings named boar d, then boar d[7] would be the top-left square on the
board (either an X, O, or blank space). boar d[5] would be the very center. When the player typesin
which place they want to move, they will type a number from 1 to 9. (Because thereis no 0 on the keypad,
we will just ignore the string at index O in our list.)

Game Al

When we talk about how our Al behaves, we will be
talking about which types of spaces on the board it will
move on. Just to be clear, we will l1abel three types of spaces
on the Tic Tac Toe board: corners, sides, and the center.
Figure 9-3is a chart of what each space is:

Corner Corner

The Al for this game will follow a simple agorithm. An
algorithm is a series of instructions to compute
something. Thisis a very loose In the case of our Tic Tac
Toe Al's algorithm, the series of stepswill determine which
is the best place to move. There is nothing in the code that
says, "These lines are an agorithm.” like there iswith a Corner
function's def-block. We just consider the Al algorithm as
al the code that is used in our program that determines the

Al's next move. Figure 9-3: Locations of the side, corner, and center places.

Center

Corner

Our agorithm will have the following steps:

1. First, seeif there is a move the computer can make that will win the game. If thereis, take that move.
Otherwise, go to step 2.

2. Seeif thereis a move the player can make that will cause the computer to lose the game. If thereis,
we should move there to block the player. Otherwise, go to step 3.

3. Check if any of the corner spaces (spaces 1, 3, 7, or 9) are free. (We always want to take a corner
piece instead of the center or a side piece.) If no corner pieceis free, then go to step 4.

4. Check if the center isfree. If so, move there. If it isn't, then go to step 5.

119

5. Move on any of the side pieces (spaces 2, 4, 6, or 8). There are no more steps, because if we have
reached step 5 the side spaces are the only spaces | eft.

This all takes place in the "Get computer's move." box on our flow chart. We could add this information
to our flow chart like this:

J

. Make wiNNing move.

L

2. Block player's winning move.

[

v

| % Move on corner. J

3

4. Move on center.

L

5. Move on side. k

[

I

L

Figure 9-4: The five steps of the "Get computer's move" algorithm.

We will implement this algorithm as code in our get Conput er Move() function, and the other
functions that get Conput er Move() calls.

How the Code Works: Lines 1 to 81

Now that we know about how we want the program to work, let's look at what each line does.

The Start of the Program

1. # Tic Tac Toe
2.
3. inport random

Thefirst couple of lines are a comment and importing the r andommodule so we can use the
randi nt () function in our game.

Printing the Board on the Screen

120

5. def drawBoard(board):

6. # This function prints out the board that it was
passed.

7.

8. # "board" is a list of 10 strings representing the
board (ignore index 0)

9. print(’ | | ")

10. print(" ' + board[7] + "' | ' + board[8] + ' | TF
boar d[9])

11. print(’ | | ")

12. print('----------- ")

13. print(’ | | ")

14. print(" ' + board[4] + ' " + board[5] + ' o+
boar d[6])

15. print(’ | | ")

16. print('----------- ")

17. print(’ | | ")

18. print(" ' + board[1] + ' " + board[2] + ' o+
board[3])

19. print(’ | | ")

This function will print out the game board, marked as directed by the boar d parameter. Remember that
our board is represented as a list of ten strings, where the string at index 1 is the mark on space 1 on the Tic
Tac Toe board. (And remember that we ignore the string at index O, because the spaces are labeled with
numbers 1 to 9.) Many of our functions will work by passing the board as a list of ten strings to our
functions. Be sure to get the spacing right in the strings that are printed, otherwise the board will look funny
when it is printed on the screen.

Just as an example, here are some values that the boar d parameter could have (on the left) and what the
dr awBoar d() function would print out:

Table 7-1: Examples of values of boar d and output from dr awBoar d(boar d) calls.

boar d data structure dr awBoar d(boar d)
output
X @)
[] H]] (%(]1 I O 1] H X] 1] X O
[] O] I O] H]1 X H]] H X
|

121

X1 X| X

[I I! 'X'l IXII IXI’IIXI, IXI! IXI! IXI’ .x.l x x x
X]

X1 X| X

7 8 9

(o, 12, 2, "3, '4,'%5, ', "7, '8, 4 5 6
9]

1 2 3

The second to last board filled with X's could not possibly have happened (unless the X player skipped all
of the O player's turns!) And the last board has strings of digitsinstead of X and O, which are invalid
strings for the board. But the dr awBoar d() function doesn't care. It just prints the boar d parameter that
it was passed. Computer programs only do exactly what you tell them, even if you tell them the wrong
things to do. We will just make sure these invalid strings are not put into the passed list in the first place.

Letting the Player be X or O

25.
26.
27.

21.
22.
23.

24.

def inputPlayerLetter():
Let's the player type which letter they want to be.
Returns a list with the player's letter as the
first item and the conputer's letter as the second.

letter ="'

while not (letter == "X or letter == "0O):
print('Do you want to be X or O?')
letter = input().upper()

Thei nput Pl ayer Lett er () isasimplefunction. It asksif the player wants to be X or O, and will
keep asking the player (with the whi | e loop) until the player typesin an X or O. Notice on line 26 that we

122

automatically change the string returned by the call to i nput () to uppercase letters with the upper ()
string method.

Thewhi | e loop's condition contains parentheses, which means the expression inside the parentheses is
evauated first. If thel et t er variablewassetto' X', the expression would evaluate like this:

ivvhile not (letter == "X or letter == "'0):
ivvhile not ("X =="'X or 'X =="'0):

(True or False):

5
- -

{ while not (True):
iv\,hile not True:

{ while Fal se:

__

Asyoucan seg ifl etter hasthevalue' X' or' O , then the loop's condition will be Fal se and lets
the program execution continue.

29. # the first element in the tuple is the player's
letter, the second is the conputer's letter.

30. if letter == "X :

31. return [' X, "O]

32. el se:

33. return ['O, 'X]

This function returns a list with two items. The first item (that is, the string at index 0) will be the
player's letter, and the second item (that is, the string at index 1) will be the computer's letter. This if-else
statement chooses the appropriate list to return.

Deciding Who Goes First

35. def whoGoesFirst():

36. # Randomly choose the player who goes first.
37. i f randomrandint(0, 1) == O:

38. return 'conputer'

39. el se:

40. return 'player’

ThewhoGoesFi r st () function does a virtual coin flip to determine who goes first, the computer or
the player. Instead of flipping an actual coin, this code gets a random number of either O or 1 by calling the
random r andi nt () function. If this function call returns a O, the whoGoesFi r st () function returns

the string ' conput er ' . Otherwise, the function returns the string ' pl ayer' . The code that calls this
123

function will use the return value to know who will make the first move of the game.

Asking the Player to Play Again

42. def playAgain():

43. # This function returns True if the player wants to
play again, otherwise it returns Fal se.

44, print('Do you want to play again? (yes or no)')

45, return input().lower().startswith('y")

Thepl ayAgai n() function asks the player if they want to play another game. The function returns
Tr ue if the player typesin' yes' or' YES or'y' or anything that begins with the letter Y. For any
other response, the function returns Fal se. The order of the method calls on line 151 isimportant. The
return value from the call to thei nput () function isastring that hasits| ower () method called onit.
Thel ower () method returns another string (the lowercase string) and that string hasitsst art swi t h()
method called on it, passing the argument ' y* .

There is no loop, because we assume that if the user entered anything besides a string that begins with
'y', they want to stop playing. So, we only ask the player once.

Placing a mark on the Board

47. def nmkeMove(board, letter, nove):
48. board[nove] = letter

ThemakeMove() functionisvery simple and only one line. The parameters are a list with ten strings
named boar d, one of the player's letters (either* X' or' O) named| et t er, and a place on the board
where that player wants to go (which is an integer from 1 to 9) named nove.

But wait a second. Y ou might think that this function doesn't do much. It seems to change one of the
itemsin the boar d list to thevaluein | et t er . But because this code isin a function, the boar d variable
will be forgotten when we exit this function and leave the function's scope.

Actually, thisis not the case. This is because lists are specia when you pass them as arguments to
functions. Thisis because you pass a reference to the list and not the list itself. Let's learn about the
difference between lists and list references.

List References

Try entering the following into the shell:

© >>> spam = 42

. >>> cheese = spam
+ >>> spam = 100

i >>> spam

i >>> cheese

This makes sense from what we know so far. We assign 42 to the spamvariable, and then we copy the
valuein spamand assign it to the variable cheese. When we later change the value in spamto 100, this
doesn't affect the value in cheese. Thisis because spamand cheese are different variables that store
different values.

But lists don't work this way. When you assign a list to a variable with the = sign, you are actually
assigning a reference to the list. A reference is a vaue that points to some bit of data, and a list

reference isavalue that points to a list. Here is some code that will make this easier to understand. Type
this into the shell:

--

>>> spam = [0, 1, 2, 3, 4, 5]
>>> cheese = spam

>>> cheese[1l] = 'Hello!

>>> spam

[0, "Hello!', 2, 3, 4, 5]
>>> cheese

[0, "Hello!', 2

Notice that the [inecheese = spamcopiesthe list reference in spamto cheese, instead of copying
the list value itself. This means that the values stored in both spamand cheese refer to the samelist.
Thereisonly one list because the list was not copied, the reference to the list was copied. So when you
modify cheese inthecheese[1] = 'Hel |l o!" line, you are modifying the samelist that spamrefers
to. Thisiswhy spamseems to have the same list value that cheese does.

Remember when you first learned about variables, | said that variables were like mailboxes that contain
values. List variables don't actually contain lists at all, they contain references to lists. Here are some
pictures that explain what happens in the code you just typed in:

@ spam =10, 1, 2, 3, 4, 5]

(") @ list value)

[0,1,2,3,4,5]

Reference

Figure 9-5: Variables do no store lists, but rather referencesto lists.

On the first line, the actual list is not contained in the spamvariable but a reference to the list. Thelist
itself is not stored in any variable.

125

@ cheese = spam

1({1 list+ value)
[0, 1, 2, 3, 4, 5]

Reference

Reference

Figure 9-6: Two variables store two references to the same list.

When you assign the reference in spamto cheese, the cheese variable contains a copy of the
reference in spam Now both cheese and spamrefer to the samellist.

@ cheese[1] = ‘Hello’

1 (@ list value)
[0, 'Hello, 2, 3, 4, 5]

Reference

Referentce

Figure 9-7: Changing the list changes all variables with references to that list.

When you alter the list that cheese refersto, the list that spamrefersto is a'so changed because they
are the samelist. If you want spamand cheese to store two different lists, you have to create two
different lists instead of copying a reference:

126

In the above example, spamand cheese have two different lists stored in them (even though these lists
areidentical in content). Now if you modify one of the lists, it will not affect the other because spamand
cheese have references to two different lists:

--

+ >>> spam = [0, 1, 2, 3, 4, 5]

» >>> cheese = [0, 1, 2, 3, 4, 5]
+ >>> cheese[1l] = 'Hell o!

1 >>> spam

+ [0, "Hello!', 2, 3, 4, 5]

, >>> cheese

+ [0, 1, 2, 3, 4, 5]

Figure 9-8 shows how the two references point to two different lists:

) @ list value)
[0, 'Hello', 2, 3, 4, 5

Reference

) (@ list value)
Pom [0, 1,2,3,4,5]

Figure 9-8: Two variables each storing references to two different lists.

Using List References in makeMve()

Let's go back to the makeMove() function:

47. def nmakeMove(board, letter, nove):
48. board[nove] = letter

When we pass a list value as the argument for the boar d parameter, we are actually passing a copy of
the reference, not a copy of thelist itself. Thel et t er and nove parameters are copies of the string and
integer values that we pass. Since they are copies, if we modify | et t er or nove in this function, the
original variables we used when we called makeMove() would not be modified. Only the copies would be
modified.

But a copy of the reference still refers to the same list that the original reference refers to. So if we make
changes to boar d in this function, the original list is modified. When we exit the makeMove() function,

the copy of the reference is forgotten along with the other parameters. But since we were actually changing
127

the original list, those changes remain after we exit the function. This is how the makeMove() function
modifiesthe list that a reference of is passed.

Checking if a Player Has Won

50. def isWnner(bo, le):

51. # Gven a board and a player's letter, this function
returns True if that player has won.

52. # We use bo instead of board and le instead of letter
so we don't have to type as much

53. return ((bo[7] == le and bo[8] == le and bo[9] == le)
or # across the top

54. (bo[4] == le and bo[5] == le and bo[6] == 1le) or #
across the mddle

55. (bo[1l] == 1le and bo[2] == le and bo[3] == 1le) or #
across the bottom

56. (bo[7] == le and bo[4] == le and bo[1l] == 1le) or #
down the left side

57. (bo[8] == Ile and bo[5] == le and bo[2] == le) or #
down the mddle

58. (bo[9] == le and bo[6] == le and bo[3] == 1le) or #
down the right side

59. (bo[7] == le and bo[5] == le and bo[3] == 1le) or #
di agonal

60. (bo[9] == le and bo[5] == le and bo[1l] == 1le)) #
di agonal

Lines53to 60inthei sW nner () function are actually one very long if statement. We use bo and | e
for the board and letter parameters so that we have lessto type in this function. (Thisis a trick programmers
sometimes use to reduce the amount they need to type. Be sure to add a comment though, otherwise you
may forget what bo and | e are supposed to mean.)

There are eight possible waysto win a Tic Tac Toe. First, have a line across the top, middle, and bottom.
Second, have a line down the left, middle, or right. And finally, have either of the two diagonals. Note that
each line of the condition checks if the three spaces are equal to the letter provided (combined with the and
operator) and we use the or operator to combine the eight different ways to win. This means only one of
the eight ways must be true in order for us to say that the player who owns letter in | e isthe winner.

Let'spretendthat| e is' O , and the board looks like this:

__

If the board looks like that, then bo must be equal to[' ',

IXI’

'O’ IO’ IO! I " IXI"

: "] . Here is how the expression after the return keyword on line 53 would evaluate:

--

53,
54,
 55.
 56.
57,
 58.
 59.
 60.

53,
4
 55.
 56.
57,
58,
50,
 60.

| 53.

| 54.
| 55.
| 56.
: 57,
| 58.
| 59.
| 60.

Here isthe expression as it isin the code:

return ((bo[7] == 1le and bo[8] == le and bo[9] == le)
or # across the top

(bo[4] == le and bo[5] == le and bo[6] == 1le) or #
across the mddle

(bo[1l] == le and bo[2] == le and bo[3] == 1le) or #
across the bottom

(bo[7] == le and bo[4] == le and bo[1l] == 1le) or #
down the left side

(bo[8] == le and bo[5] == le and bo[2] == 1le) or #
down the mddle

(bo[9] == 1le and bo[6] == le and bo[3] == le) or #
down the right side

(bo[7] == le and bo[5] == le and bo[3] == 1le) or #
di agonal

(bo[9] == le and bo[5] == le and bo[l] == 1le)) #
di agonal

First Python will replace the variable bo with the value inside of it:

return (('X ="'0 and' ' = '0 and ' ' = '0) or
across the top

"' ="'0 and 'X =='0 and' ' == "'0) or #
across the mddle

('O ='0 and 'O == "'0 and 'O == '0) or #
across the bottom

("X ='0 and ' ' = '0 and 'O == "0) or # down
the left side

== and 'X == '0 and 'O == "0) or # down
the mddle

' ="'0 and ' ' = '0 and 'O == "0) or # down
the right side

("X ='0 and 'X == '0 and 'O == '0) or #
di agonal

"' = "'0 and 'X =="'0 and 'O == "'0)) #
di agonal

4

Next, Python will evaluate all those == comparisons inside the parentheses to a

boolean value;

return ((Fal se and Fal se and Fal se) or

top

Fal se and Fal se and Fal se) or
True and True and True) or

Fal se
Fal se
Fal se
Fal se
Fal se

and
and
and
and
and

Fal se
Fal se
Fal se
Fal se
Fal se

and
and
and
and
and

across the

across the mddle
across the bottom

True) or # down the left side
True) or # down the mddle
True) or # down the right side
True) or # diagonal

True)) # diagonal

129

4

Then the Python interpreter will evaluate all those expressions inside the

parentheses:
+ 53. return ((False) or # across the top
: 54. Fal se) or # across the mddle
+ 55. True) or # across the bottom
, 56. Fal se) or # down the left side
+ 57. Fal se) or # down the mddle
' 58. Fal se) or # down the right side
+ 59, Fal se) or # diagonal
} 60. Fal se)) # di agonal

4

Since now thereis only one value inside the parentheses, we can get rid of them:

' 53. return (False or # across the top
1 54, Fal se or # across the mddle

' 55. True or # across the bottom

1 56. Fal se or # down the left side

' 57. Fal se or # down the mddle

1 58. Fal se or # down the right side

1 59. Fal se or # diagonal

1 60. Fal se) # di agonal

4

Now we evaluate the expression that is connecter by all those or operators:

{ 53. return (True)

4

Once again, we get rid of the parentheses, and we are left with one value:
: 53. return True

__

So given those values for bo and | e, the expression would evaluate to Tr ue. Remember that the value
of | e matters. If | e is' O and X has won the game, thei sW nner () would return Fal se.

Duplicating the Board Data

62. def getBoar dCopy(board):

63. # Make a duplicate of the board list and return it
t he duplicate.

64. dupeBoard = []

65.

66. for i in board:

67. dupeBoar d. append(i)

68.

130

H 69. return dupeBoard H

The get Boar dCopy() function is here so that we can easily make a copy of a given 10-string list that
represents a Tic Tac Toe board in our game. There are times that we will want our Al algorithm to make
temporary modifications to a temporary copy of the board without changing the original board. In that case,
we call this function to make a copy of the board's list.

Line 64 actually creates a brand new list and stores areference to it in dupeBoar d. But the list stored in
dupeBoar d isjust an empty list. Thef or loop will go through the board parameter, appending a copy of
the string values in the original board to our duplicate board. Finally, after the loop, we will return the
dupeBoar d variable's reference to the duplicate board. So you can see how the get Boar dCopy/()
function is building up a copy of the original board and returning a reference to this new board, and not the
original one.

Checking if a Space on the Board is Free

71. def isSpaceFree(board, nove):

72. # Return true if the passed nove is free on the
passed board.
73. return board[nove] == " '

Thisisa simple function that, given a Tic Tac Toe board and a possible move, will return if that move is
available or not. Remember that free spaces on our board lists are marked as a single space string.

Letting the Player Enter Their Move

75. def getPl ayer Move(board):

76. # Let the player type in his nove.

7. move = ' '

78. while nove not in "1 2 3 4567 8 9 .split() or not
| sSpaceFr ee(board, int(nove)):

79. print("Wat is your next nove? (1-9)')

80. nove = input()

81. return int(nove)

Theget Pl ayer Move() function asks the player to enter the number for the space they wish to move.
The function makes sure that they enter a space that is a valid space (an integer 1 through 9). It aso checks
that the space that is not already taken, given the Tic Tac Toe board passed to the function in the boar d
parameter.

The two lines of code inside the whi | e loop ssimply ask the player to enter a number from 1to 9. The
loop's condition will keep looping, that is, it will keep asking the player for a space, as long as the condition
isTrue. The condition is Tr ue if either of the expressions on the left or right side of the or keyword is
Tr ue.

The expression on the left side checks if the move that the player entered isequal to' 1' ,' 2" ," 3" , and
soonupto’ 9" by creating alist with these strings (with thespl i t () method) and checking if moveisin
thislist."1 2 3 4 5 6 7 8 9" .split() evauaesto bethesameas['1', '2', '3, '4',

131

"5, '6', "7, "8, '"9'],butiteaser to type.

The expression on the right side checks if the move that the player entered is a free space on the board. It
checks this by calling thei sSpaceFr ee() function we just wrote. Remember that i sSpaceFr ee()
will return Tr ue if the move we pass is available on the board. Note that i sSpaceFr ee() expectsan
integer for nove, so we use thei nt () function to evaluate an integer form of nove.

We add the not operators to both sides so that the condition will be Tr ue when both of these
requirements are unfulfilled. This will cause the loop to ask the player again and again until they enter a
proper move.

Finally, on line 81, we will return the integer form of whatever move the player entered. Remember that
i nput () returnsastring, so we will want to usethei nt () function to evaluate the string as an integer.

Short-Circuit Evaluation

You may have noticed thereis a possible problem in our get Pl ayer Move() function. What if the
player typed in' X' or some other non-integer string? Thenove not in "1 2 3 4 5 6 7 8
9' .split() expression on the left side of or would return Fal se as expected, and then we would
evaluate the expression on the right side of the or operator. But when we pass' X' (which would be the
valuein nove) tothei nt () function, i nt (' X') would give us an error. It gives us this error because
thei nt () function can only take strings of number characters, like' 9' or' 42" , not strings like' X

As an example of this kind of error, try entering this into the shell:
L >>> int('42")
D 42

L SS> int('X)

. Traceback (nost recent call last):
' File "<pyshel | #3>", line 1, in <nodul e>
int('X)

iVaIueError: invalid literal for int() with base 10: 'X

But when you play our Tic Tac Toe game and try entering ' X' in for your move, this error doesn't
happen. The reason is because the whi | e loop's condition is being short-circuited.

What short-circuiting means is that because the expression on the left side of the or keyword (move not in
"1 23456 7 8 9 .split())evauatesto True, the Python interpreter knows that the entire
expression will evaluate to Tr ue. It doesn't matter if the expression on the right side of the or keyword
evaluatesto Tr ue or Fal se, because only one value on the side of the or operator needs to be Tr ue.

Think about it: The expression True or Fal se evaluatesto Tr ue and the expression Tr ue or
Tr ue aso evaluatesto Tr ue. If the value on the left sideis Tr ue, it doesn't matter what the value is on the
right side. So Python stops checking the rest of the expression and doesn't even bother evaluating the not
i sSpaceFree(board, int(nove)) part. Thismeans neither thei nt () nor thei sSpaceFr ee()
functions are ever called.

This works out well for us, because if the expression on theright sideis Tr ue then nove isnot a string
in number form. That would causei nt () to giveusan error. Theonly timesnove not in '1 2 3
456 7 8 9 .split() evauatesto Fal se are when nove isnot a single-digit string. In that case,
thecall toi nt () would not give us an error.

132

An Example of Short-Circuit Evaluation

Here's a short program that gives a good example of short-circuiting. Open a new file in the IDLE editor
and type in this program, save it as truefal sefizz.py, then press F5 to run it. Don't add the numbers down the
left side of the program, those just appear in this book to make the program's explanation easier to
understand.

def TrueFi zz(nmessage):
pri nt (message)
return True

def Fal seFi zz(nessage):
print (nmessage)
return Fal se

if FalseFizz('Cats') or TrueFizz(' Dogs'):
print('Step 1')

TrueFi zz('Hello') or TrueFi zz(' Goodbye'):
print('Step 2')

if TrueFizz(' Spam ; and TrueFi zz(' Cheese'):
print('Step 3

PRRRRRRREE
ONOUIRWNROOONOUTRWN R
-

i if Fal seFizz(' Red ; and TrueFizz(' Blue'):
1 19. print('Step 4

When you run this program, you can see the output (the letters on the left side have been added to make
the output's explanation easier to understand):

A. Cats
B. Dogs
C. St e[:) 1
D. Hello
E. Step 2
F. Spam
G eese
H Step 3
[Red

This small program has two functions: Tr ueFi zz() and Fal seFi zz() . TrueFi zz() will display a
message and return the value Tr ue, while Fal seFi zz() will display a message and return the value
Fal se. Thiswill help us determine when these functions are being called, or when these functions are
being skipped due to short-circuiting.

The Firsti f Statement

Thefirst if statement on line 9in our small program will first evaluate Tr ueFi zz() . We know this
happens because Cat s is printed to the screen (on line A in the output). The entire expression could still be
Tr ue if the expression to the right of the or keyword is Tr ue. Sothe call Tr ueFi zz(' Dogs') oneline
9isevauated, Dogs is printed to the screen (on line B in the output) and Tr ue isreturned. On line 9, the

133

i f statement's condition evaluatesto Fal se or Tr ue, which in turn evaluatesto Tr ue. Step 1isthen
printed to the screen. No short-circuiting took place for this expression's evaluation.

The Second i f Statement

The second if statement on line 12 also has short-circuiting. This is because when we call
TrueFi zz(' Hel | 0) online12, it prints Hel | o (seeline D in the output) and returns Tr ue. Because it
doesn't matter what is on the right side of the or keyword, the Python interpreter doesn't call
TrueFi zz(' Goodbye') . You can tell itisnot called because Goodbye is not printed to the screen. The
i f statement's condition is Tr ue, so Step 2 is printed to the screen on line E.

The Thirdi f Statement

Thethird i f statement on line 15 does not have short-circuiting. The call to Tr ueFi zz(' Spani)
returns Tr ue, but we do not know if the entire condition is Tr ue or Fal se because of the and operator.
So Python will call TrueFi zz(' Cheese'), which prints Cheese and returns Tr ue. Thei f statement's
condition isevaluated to True and Tr ue, which in turn evaluates to Tr ue. Because the condition is
Tr ue, Step 3is printed to the screen on line H.

The Fourth i f Statement

Thefourth i f statement on line 18 does have short-circuiting. The Fal seFi zz(' Red') call prints
Red onlinel in the output and returns Fal se. Because the left side of the and keyword is Fal se, it does
not matter if theright sideisTrue or Fal se, the condition will evaluate to Fal se anyway. So
TrueFi zz(' Bl ue') isnot called and Bl ue does not appear on the screen. Because thei f statement's
condition evaluated to Fal se, Step 4 is aso not printed to the screen.

Short-circuiting can happen for any expression that includes the Boolean operators and and or . It is

important to remember that this can happen; otherwise you may find that some function calls in the
expression are never called and you will not understand why.

How the Code Works: Lines 83 to 94

Choosing a Move from a List of Moves

83. def chooseRandoniVoveFronLi st (board, novesList):

84. # Returns a valid nove fromthe passed |ist on the
passed board.

85. # Returns None if there is no valid nove.

86. possi bl eMoves = []

87. for i in novesList:

88. I f isSpaceFree(board, i):

89. possi bl eMoves. append(i)

ThechooseRandom\VbveFr onii st () function will be of use to us when we are implementing the
code for our Al. Thefirst parameter boar d isthe 10-string list that represents a Tic Tac Toe board. The
second parameter movesList is a list of integers that represent possible moves. For example, if novesLi st
is[1, 3, 7, 9], that meanswe should return the number for one of the corner spaces on the board.
This function will choose one of those moves from the list. It aso makes sure that the move that it chooses

134

isnot already taken. To do this, we create a blank list and assign it to possi bl eMoves. Thef or loop
will go through the list of moves passed to this function in novesLi st . If that move is available (which
we figure out with acall toi sSpaceFr ee()), then we add it to possi bl eMoves with the append()
method.

91. i f len(possibleMves) !'= 0:

92. return random choi ce(possi bl eMoves)
93. el se:

94. return None

At this point, the possi bl eMbves list has al of the moves that were in novesLi st that are also free
spaces on the board represented by boar d. If the list is not empty, then thereis at least one possible move
that can be made on the board.

This list might be empty. For example, if novesLi st was[1, 3, 7, 9] butthe board represented
by the boar d parameter had all the corner spaces already taken, the possi bl eMoves list would have
been empty.

If possi bl eMoves isempty, then| en(possi bl eMbves) will evaluate to O and the code in the
else-block will execute. Notice that it returns something called None.

The None Value

None is a specia value that you can assign to a variable. The None value represents the lack of a value.
None isthe only value of the data type NoneType. (Just like the boolean data type has only two values, the
NoneType data type has only one value, None.) It can be very useful to use the None value when you have
not set a variables value yet. For example, say you had a variable named qui zAnswer which holds the
user's answer to some True-False pop quiz question. You could set qui zAnswer to None if the user
skipped the question or did not answer it. Using None would be better because if you set it to Tr ue or
Fal se before assigning the value of the user's answer, it may look like the user gave an answer the
guestion even though they didn't.

Callsto functions that do not return anything (that is, they exit by reaching the end of the function and not

from areturn statement) will evaluate to None. The None value is written without quotes and with a capital
"N" and lowercase "one".

How the Code Works: Lines 96 to 187

Creating the Computer's Artificial Intelligence

96. def get Conput er Move(board, conputerlLetter):

97. # Gven a board and the conputer's letter, determ ne
where to nove and return that nove.

98. i f conputerLetter == 'X:

99. pl ayerlLetter = 'O

100. el se:

101. pl ayerLetter = 'X

135

The None function is where our Al will be coded. The parameters are a Tic Tac Toe board (in the
boar d parameter) and which letter the computer is (either ' X' or ' O). Thefirst few lines smply assign
the other letter to a variable named None. This lets us use the same code, no matter who is X and who is O.
This function will return the integer that represents which space the computer will move.

Remember how our algorithm works:

First, see if there is a move the computer can make that will win the game. If thereis, take that move.
Otherwise, go to step 2.

See if there is a move the player can make that will cause the computer to lose the game. If thereis, we
should move there to block the player. Otherwise, go to step 3.

Check if any of the corner spaces (spaces 1, 3, 7, or 9) are free. (We always want to take a corner piece
instead of the center or a side piece.) If no corner pieceis free, then go to step 4.

Check if the center isfree. If so, move there. If it isn't, then go to step 5.

Move on any of the side pieces (spaces 2, 4, 6, or 8). There are no more steps, because if we have reached
step 6 the side spaces are the only spaces |eft.

The Computer Checks if it Can Win in One Move

103. # Here is our algorithmfor our Tic Tac Toe Al:
104. # First, check if we can win in the next nove
105. for i in range(1, 10):

106. copy = get Boar dCopy(boar d)

107. i f isSpaceFree(copy, i):

108. makeMove(copy, conputerlLetter, i)

109. if isWnner(copy, conputerlLetter):

110. return i

More than anything, if the computer can win in the next move, the computer should make that winning
move. We will do this by trying each of the nine spaces on the board with af or loop. Thefirst linein the
loop makes a copy of the boar d list. We want to make a move on the copy of the board, and then see if
that move results in the computer winning. We don't want to modify the original Tic Tac Toe board, which
iswhy we make a call to get Boar dCopy() . We check if the space we will move isfree, and if so, we
move on that space and see if this resultsin winning. If it does, we return that space's integer.

If moving on none of the spaces results in winning, then the loop will finally end and we move on to line
112.

The Computer Checks if the Player Can Win in One Move

12. # Check if the player could win on his next nove, and
bl ock them

13. for i in range(1, 10):

14. copy = get Boar dCopy(boar d)

15. i f i sSpaceFree(copy, i):

16. makeMove(copy, playerlLetter, 1)

136

17. I f isWnner(copy, playerlLetter):
18. return i

At this point, we know we cannot win in one move. So we want to make sure the human player cannot
win in one more move. The code is very similar, except on the copy of the board, we place the player's |etter
before calling thei sW nner () function. If thereis a position the player can move that will et them win,
the computer should move there.

If the human player cannot win in one more move, the f or loop will eventually stop and execution
continues on to line 120.

Checking the Corner, Center, and Side Spaces in that Order

120. # Try to take one of the corners, if they are free.
121. nove = chooseRandonmMVoveFronLi st(board, [1, 3, 7, 9])
122. i f nove != None:
123. return nove

Our call to chooseRandonivbveFr onli st () withthelistof [1, 3, 7, 9] will ensurethat it
returns the integer for one of the corner spaces. (Remember, the corner spaces are represented by the
integers 1, 3, 7, and 9.) If al the corner spaces are taken, our chooseRandomvbveFr onii st ()
function will return the None value. In that case, we will move on to line 125.

125. # Try to take the center, if it is free.
126. i f isSpaceFree(board, 5):
127. return 5

If none of the corners are available, we will try to move on the center space if it isfree. If the center space
is not free, the execution moves on to line 129.

129. # Move on one of the sides.
130. return chooseRandomvbveFronii st (board, [2, 4, 6, 8])

This code also makes a call to chooseRandonmivbveFr onLi st () , except we passit a list of the side
spaces ([2, 4, 6, 8]).Weknow that this function will not return None, because the side spaces are
the only spaces we have not yet checked. Thisisthe end of the get Conput er Move() function and our
Al agorithm.

Checking if the Board is Full

132. def isBoardFull (board):
133. # Return True if every space on the board has been
taken. Otherw se return Fal se.
134. for i in range(1, 10):
137

35. I f isSpaceFree(board, i):
36. return Fal se
37. return True

Thelast function we will writeisi sBoar dFul | (), which returns Tr ue if the 10-string list board
argument it waspassed hasan' X' or ' O onevery single space. If thereis at least one spacein boar d
that issetto asingle space’ ' thenit will return Fal se.

Thef or loop will let us check spaces 1 through 9 on the Tic Tac Toe board. (Remember that r ange(1,
10) will makethef or loop iterate over theintegers1, 2, 3,4,5,6,7,8,and 9.) Assoon asit findsa free
space in the board (that is, when i sSpaceFr ee(board, i) returnsTrue), thei sBoardFul | ()
function will return Fal se.

If execution manages to go through every iteration of the loop, we will know that none of the spaces are
free. So at that point, we will executer et urn Tr ue.

The Start of the Game

140. print("Wlconme to Tic Tac Toe!')

Line 140 isthe first line that isn't inside of a function, so it isthe first line of code that is executed when
we run this program.

142. while True:
143. # Reset the board
144. theBoard = [' '] * 10

Thiswhi | e loop has Tr ue for the condition, so that means we will keep looping in this loop until we
encounter a br eak statement. Line 144 sets up the main Tic Tac Toe board that we will use, named
t heBoar d. It isa 10-string list, where each string is a single space ' . Remember the little trick using the
multiplication operator with alist to replicateit: [* '] * 10.That evaluatesto[" ', " ', " ',

, , , , , , "], butisshorter forustotype[' '] * 10.

Deciding the Player's Mark and Who Goes First

145. pl ayerLetter, conputerlLetter = inputPlayerlLetter()

Thei nput Pl ayer Let t er () function lets the player type in whether they want to be X or O. The
function returns a 2-string list, either [' X', "O] or[' O, ' X].We usethe multiple assignment
trick here that we learned in the Hangman chapter. If i nput Pl ayer Letter () returns[' X', 'O,
then pl ayer Letter issetto'X"'and conput er Letter issetto'O". If i nput Pl ayer Letter ()
returns[' O, ' X],thenpl ayerLetter issetto'O and conput er Letter issetto X"

146. turn = whoGoesFirst()

138

48. ganel sPl ayi ng = True

F47. print('The ' + turn + ' wll go first.") H

ThewhoGoesFi r st () function randomly decides who goes first, and returns either the string
"player' orthestring' conput er' . On line 147, we tell the player who will go first. The
ganel sPl ayer variable iswhat we will use to keep track of whether the game has been won, logt, tied or
if it is the other player's turn.

Running the Player's Turn

150. whi | e ganel sPl ayi ng:

Thisisaloop that will keep going back and forth between the player's turn and the computer's turn, as
long as ganel sPl ayi ng issetto Tr ue.

151. I f turn == "'player':

152. # Player's turn.

153. dr awBoar d(t heBoar d)

154. nove = get Pl ayer Move(t heBoar d)

155. makeMove(t heBoard, playerlLetter, nove)

The turn variable was originally set by whoGoesFi rst () . Itisether setto' pl ayer' or
"conputer' .If turn containsthe string ' conput er ' , then the condition is Fal se and execution will
jump down to line 1609.

The first thing we do when it is the player's turn (according to the flow chart we drew at the beginning of
this chapter) is show the board to the player. Caling the dr awBoar d() and passing the t heBoar d
variable will print the board on the screen. We then let the player type in his move by calling our
get Pl ayer Move() function, and set the move on the board by calling our makeMove() function.

157. if isWnner(theBoard, playerlLetter):

158. dr awBoar d(t heBoar d)

159. print (' Hooray! You have won the gane!')
160. ganel sPl ayi ng = Fal se

Now that the player has made his move, our program should check if they have won the game with this
move. If thei sW nner () function returns Tr ue, we should show them the winning board (the previous
call to dr awBoar d() shows the board before they made the winning move) and print a message telling
them they have won.

Then we set ganel sPl ayi ng to Fal se so that execution does not continue on to the computer's turn.

61. el se:

62. if isBoardFull (theBoard):

63. dr awBoar d(t heBoar d)
139

64. print(' The game is a tiel')
65. br eak

If the player did not win with his last move, then maybe his last move filled up the entire board and we
now have atie. In this else-block, we check if the board is full with a call to thei sBoar dFul | ()
function. If it returns Tr ue, then we should draw the board by calling dr awBoar d() and tell the player a
tie has occurred. The br eak statement will break us out of the whi | e loop we are in and jump down to
line 186.

Running the Computer's Turn

166. el se:
167. turn = 'conputer’

If the player has not won or tied the game, then we should just set thet ur n variableto' conput er' so
that when this whi | e loop loops back to the start it will execute the code for the computer's turn.

169. el se:

If thet ur n variablewas not setto ' pl ayer ' for the condition on line 151, then we know it is the
computer's turn and the code in this else-block will execute. This code is very similar to the code for the
player's turn, except the computer does not need the board printed on the screen so we skip calling the
dr awBoar d() function.

170. # Conputer's turn.

171. nove = get Conput er Move(t heBoard,
conput er Letter)

172. makeMove(t heBoard, conputerlLetter, nove)

This code is amost identical to the code for the player's turn.

174. I f isWnner(theBoard, conputerlLetter):

175. dr awBoar d(t heBoar d)

176. print(' The conputer has beaten you! You
| ose. ")

177. ganel sPl ayi ng = Fal se

We want to check if the computer won with its last move. The reason we call dr awBoar d() hereis
because the player will want to see what move the computer made to win the game. We then set
gamel sPl ayi ng to Fal se so that the game does not continue.

“178. el se: H

140

79. I f isBoardFull (theBoard):

80. dr awBoar d(t heBoar d)
81. print('The gane is a tiel")
82. br eak

These lines of code are identical to the code on lines 162 to 165. The only difference isthisis a check for
a tied game after the computer has moved.

183. el se:
184. turn = 'player'’

If the game is neither won nor tied, it then becomes the player's turn. There are no more lines of code
inside the whi | e loop, so execution would jump back to the whi | e statement on line 150.

186. i f not playAgain():
187. br eak

These lines of code are located immediately after the while-block started by the whi | e statement on line
150. Remember, we would only exit out of that whi | e loop if it's condition (the ganel sPl ayi ng
variable) was Fal se. ganel sPl ayi ng isset to Fal se when the game has ended, so at this point we are
going to ask the player if they want to play again.

Remember, when we evaluate the condition in thisi f statement, we call the pl ayAgai n() function
which will let the user type in if they want to play or not. pl ayAgai n() will return Tr ue if the player
typed something that began witha' y' like' yes' or'y' . Otherwise pl ayAgai n() will return Fal se.

If pl ayAgai n() returns Fal se, then the if statement's condition is Tr ue (because of the not operator
that reverses the Boolean value) and we execute the break statement. That breaks us out of the whi | e loop
that was started on line 142. But there are no more lines of code after that while-block, so the program
terminates.

Summary: Creating Game-Playing Artificial
Intelligences

Creating a program that can play a game comes down to carefully considering all the possible situations
the Al can be in and how it should respond in each of those situations. Our Tic Tac Toe Al isfairly simple
because there are not many possible movesin Tic Tac Toe compared to a game like chess or checkers.

Our Al simply blocks the players move if the player is about to win. If the player is not about to win, it
checks if any possible move can allow itself to win. If there is no such move, the Al simply chooses to any
available corner space. If no corner space is free, it moves on the center space. And if the center space is not
free, the computer moves on one of the side spaces. Thisis a ssmple algorithm for the computer to follow.
(It's so simple, you can probably predict which move the computer is going to make even before it makes
it.) If you follow these same steps when you play Tic Tac Toe on paper, you'll be sure not to lose because of
any silly mistakes.

The key to implementing our Al is by making copies of the board data and simulating moves on the copy.

141

That way, the Al code can see if a move will result in awin or loss. Then the Al can make that move on the
real board. This type of simulation is very effective at predicting what is a good move or not.

We also learned how to store a representation of the Tic Tac Toe board in a variable, and how to properly
draw it to the screenusing pri nt () calls. It isvery useful to know how to take a drawing of something
likea Tic Tac Toe board and represent it in a Python program. We will be going into this more in the Sonar
and Reversi games later in this book. But first, let's create a new game called Bagels.

142

Chapter ":I
Bagels

Topics Covered In This Chapter:

Hard-coding

Augmented Assignment Operators, +=,-=,*=,/ =
Therandom shuf fl e() Function

Thesort () List Method

Thej oi n() List Method

String Interpolation (also called String Formatting)
Conversion Specifier %s

Nested Loops

In this chapter you will learn a few new methods and functions that come with Python. Y ou will also
learn about augmented assignment operators and string interpolation. These concepts don't let you do
anything you couldn't do before, but they are nice shortcuts that make typing your code easier.

Bagels is a smple game you can play with a friend. Y our friend thinks up a random 3-digit number with
no repeating digits, and you try to guess what the number is. After each guess, your friend gives you clues
on how close your guess was. If the friend tells you "bagels’, that means that none of the three digits you
guessed isin the secret number. If your friend tells you "pico”, then one of the digitsisin the secret number,
but your guess has the digit in the wrong place. If your friend tells you "fermi", then your guess has a
correct digit in the correct place. Of course, even if you get a pico or fermi clue, you still don't know which
digit in your guess is the correct one.

Y ou can also get multiple clues after each guess. Say the secret number is 456, and your guess is 546. The
clue you get from your friend would be "fermi pico pico" because one digit is correct and in the correct
place (the digit 6), and two digits are in the secret number but in the wrong place (the digits 4 and 5).

Sample Run

| amthinking of a 3-digit nunber. Try to guess what it is.
Here are sone cl ues:
When | say: That neans:

143

Pi co One digit is correct but in the wong position.
Fer mi One digit is correct and in the right position.
Bagel s No digit is correct.

| have thought up a nunber. You have 10 guesses to get it.

Quess #1:

123

Fer m

Guess #2:

453

Pi co

Guess #3:

425

Ferm

Quess #4:

326

Bagel s

GQuess #5:

489

Bagel s

Guess #6:

075

Ferm Ferm

CGuess #7:

015

Ferm Pico

CGuess #8:

175

You got it!

Do you want to play again? (yes or no)

no

Bagel's Source Code

bagels.py
This code can be downloaded from http://inventwithpython.com/bagels.py
If you get errors after typing this code in, compare it to the book's code with the online diff tool at
http://inventwithpython.com/diff or email the author at al@inventwithpython.com
1. inport random
2. def getSecretNum{nunDigits):
3. # Returns a string that is nunDigits |ong, made up of
uni que random digits.
4. nunbers = |ist(range(10))
5. random shuf f | e(nunber s)
6. secret Num = "'
7. for i in range(nunDigits):
8. secret Num += str(nunbers[i])
9. return secretNum
10.
11. def getd ues(guess, secretNum:
12. # Returns a string with the pico, ferm, bagels clues
to the user.
13. i f guess == secret Num
14. return 'You got it!’
15.
16. clue =[]
17.
18. for i in range(len(guess)):
19. I f guess[i] == secretNunfi]:
20. cl ue. append(' Ferm ")
21. elif guess[i] in secretNum

144

22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42.
43.
44
45.
46.
47.
48.

49,
50.
51.

52.

53.
54.
55.
56.
57.

58.
59.
60.
61.
62.

63.
64.
65.
66.
67.
68.

cl ue. append(' Pico')
if len(clue) == O:
return ' Bagel s’

clue.sort()
return ' '.join(clue)

def isOnlyDigits(num:
Returns True if numis a string nade up only of
digits. Oherwi se returns Fal se.
if num=="":
return Fal se

for i in num
if i not in'"012345¢6789 .split():
return Fal se

return True

def playAgain():
This function returns True if the player wants to
pl ay again, otherwise it returns False.
print('Do you want to play again? (yes or no)')
return input().lower().startswith('y")

NUMDIG TS = 3
MAXGUESS = 10

print('l amthinking of a %-digit nunber. Try to guess
what it is.' % (NUMDGATS))
print('Here are sone clues:")

print('Wen | say: That neans: ')

print(" Pico One digit is correct but in the
wong position.")

print(" Ferm One digit is correct and in the
right position.")

print(' Bagels No digit is correct.")

whil e True:

secret Num = get Secr et Num(NUMDI G TS)
print('l have thought up a nunber. You have %
guesses to get it." % (MAXGUESS))

nunfauesses = 1
whi | e nunfuesses <= MAXGUESS:
guess = "'
while len(guess) !'= NUVMDIG TS or not
i sOnl yDi gi ts(guess):
print(' Guess #%: ' % (numBuesses))
guess = input()

clue = getd ues(guess, secretNum
print(clue)
nunuesses += 1

145

69.

70. I f guess == secret Num

71. br eak

72. i f numGuesses > MAXGUESS:

73. print('You ran out of guesses. The answer was
%.' % (secretNum)

74.

75. i f not playAgain():

76. br eak

Designing the Program

Here isaflow chart for this program. The flow chart describes the basic events of what happens in this
game, and in what order they can happen:

Osk +o
play r:lgmn.
Generate seCret
number.
Player has
;' lost.
See if player
has run out
2 GEEED Plover has
wion.
EUESS.
| END
Tell player
L Clues,

»
Thecrement
Hue's.s Courndt.

Figure 10-1: Flow chart for the Bagels game.

And here is the source code for our game. Start a new file and type the code in, and then save the file as
bagels.py. We will design our game so that it is very easy to change the size of the secret number. It can be
3 digits or 5 digits or 30 digits. We will do this by using a constant variable named NUVDI G TS instead of
hard-coding the integer 3 into our source code.

Hard-coding means writing a program in a way that it changing the behavior of the program requires
changing a lot of the source code. For example, we could hard-code anameintoapri nt () function call
like:print('Hello, Al bert').Orwecouldusethisline:print('Hello, ' + nane) which
would let us change the name that is printed by changing the name variable whi | e the program is running.

146

How the Code Works: Lines 1 to 9

At the start of the program we import the r andommodule and also create a function for generating a
random secret number for the player to guess. The process of creating this number isn't hard, and also
guarantees that it only has unique digitsin it.

1. inport random

This game imports the r andommaodule so we can use the modul€'s random numbers function.

Shuffling a Unique Set of Digits

2. def getSecretNunm(nunDigits):

3. # Returns a string that is nunDigits |ong, made up of
uni que random digits.

4. nunbers = |ist(range(10))

5. random shuf f | e(nunber s)

Our first function is named get Secr et Nun() , which will generate the random secret number. Instead
of having the code only produce 3-digit numbers, we use a parameter named nunDi gi t s to tell us how
many digits the secret number should have. (This way, we can make the game produce secret numbers with
four or six digits, for example, just by passing4 or 6 asnunDi gi ts.)

You may have noticed that the return value of our call tor ange() wasin turn passed to a function
calledli st().Theli st () function returnsalist value of the value passed to it, much likethe st r ()
function returns a string form or thei nt () function returns an integer form. The reason we do thisis
because ther ange() function technically does not return a list but something called an iterator. Iterators
are a topic that you don't need to know at this point, so they aren't covered in this book.

Just about every time we use ther ange() functionitisinaf or loop. Iterators are fineto usein f or
loops (just likelists are), but if we ever want to store alist of integersin a variable, be sure to convert the
return value of r ange() toalist withthel i st () function first. (Just likewe do online4.)

The random shuffl e() Function

First, we create a list of integers 0 to 9 by calling r ange(10) and store a reference to thislist in
numbers. Then we call a function in the random module named shuf f | e() . The only parameter to
random shuf fl e() isareferenceto alist. Theshuf fl e() function will randomly change the order
of al the itemsin the list.

Notice that r andom shuf f | e() does not return a value. It changes the list you pass it "in place" (just
like our makeMove() function inthe Tic Tac Toe chapter modified the list it was passed in place, rather
than return a new list with the change). It would actually be incorrect to write nunbers =
random shuf f | e(nunbers).

Try experimenting with ther andom shuf f | e() function by entering the following code into the
interactive shell:

1 >>> jnport random

+ >>> spam = range(list(10))
r>>> pr|nt(span)

' [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
P >>> randon1shuff|e(span)

P>>> prlnt(spanj

' [1, 2, 5 9, 4, 7, 0, 3, 6, 8]
P >>> randon1shuff|e(span)

P>>> pr|nt(spanj

L [3, 5, 9, 6, 8, 2, 4, 1, 7]
PS>> randon1shuff|e(span)

1 >>> print(spam

'[9, 8, 3, 5 4, 7, 1, 2, 0, 6]

Every time you pass a list reference to r andom shuf f | e() , thelist it references has al the same items
but in a different order. The reason we do this is because we want the secret number to have unique values.
The Bagels game is much more fun if you don't have duplicate numbers in the secret number, such as
‘244" or' 333" .

Getting the Secret Number from the Shuffled Digits

secret Num =
for i in range(nunDigits):

secret Num += str(nunbers[i])
return secret Num

©oNOe

The secret number will be a string of the first three digits (because we'll pass 3 for the nunDi gi t's
parameter) of the shuffled list of integers. For example, if the shuffled listis[9, 8, 3,5, 4, 7, 1, 2, 0, 6] then
we want the string returned by get Secr et Nun() tobe' 983" .

The secr et Numvariable starts out as a blank string. We then loop a number of times equal to the
integer value in nunDi gi t s. On each iteration through the loop, a new integer is pulled from the shuffled
list, converted to a string, and concatenated to the end of secr et Num So if nunDi gi t s is3, the loop
will iterate three times and three random digits will be concatenated as strings.

For example, if nunber s referstothelist[9, 8, 3, 5, 4, 7, 1, 2, 0, 6],thenonthe
first iteration, nunber s[0] (that is, 9) will be passedto str () , whichinturnreturns' 9* whichis
concatenated to the end of secr et Num On the second iteration, the same happens with nunber s[1]
(that is, 8) and on the third iteration the same happens with nunber s[2] (that is, 3). Thefina value of
secr et Numthat isreturned is' 983" .

Y ou may notice that secr et Numin this function is a string, not an integer. This may seem odd, but
remember that our secret number could be something like' 012" . If we stored this as an integer, it would
look like 12 which would make it harder to work with in our program.

Augmented Assignment Operators

The += operator on line 8 is new. Thisis one of the augmented assignment operators. Normally, if you
wanted to add or concatenate a value to a variable, you would use code that looked like this:

\ spam = 42

» spam = spam + 10
"Hello '
cheese +

After running the above code, spamwould have the value 52 and cheese would have the value
"Hel | o worl d!" . Theaugmented assignment operators are a shortcut that frees you from retyping the
variable name. The following code does the exact same thing as the above code:

. spam = 42
5 sEam += 10 # Sanme as spam = spam + 10
cheese = "Hello '

. cheese += "world!' # Same as cheese = cheese + 'world!'

There are other augmented assignment operators. - = will subtract a value from an integer. * = will
multiply the variable by a value. / = will divide a variable by a value. Notice that these augmented
assignment operators do the same math operations as the - , * , and / operators. Augmented assignment
operators are a neat shortcut.

How the Code Works: Lines 11 to 24

Now that we have a way of creating secret numbers, we also need a way of getting the clues to show to
the player based on their guess and what the secret number is.

11. def getd ues(guess, secretNum:

12. # Returns a string with the pico, ferm, bagels clues
to the user.

13. i f guess == secret Num

14. return 'You got it!'

Theget C ues() function will return a string with the fermi, pico, and bagels clues, depending on what
it is passed for the guess and secr et Numparameters. The most obvious and easiest step isto check if
the guess is the exact same as the secret number. In that case, we can just return' You got it!'.

16. clue = []

17.

18. for i in range(len(guess)):

19. I f guess[i] == secretNunfi]:
20. cl ue. append(' Ferm ")

21. elif guess[i] in secretNum
22. cl ue. append(' Pi co')

If the guess is not the exact same as the secret number, we need to figure out what cluesto give the
player. First we'll set up alist named cl ue, which we will add the strings' Ferm ' and ' Pi co' as
needed. We will combine the strings in this list into a single string to return.

We do this by looping through each possible index in guess and secr et Num(they both are the same
size). We will assume that guess and secr et Numare the same size. Asthe value of i changes from 0 to
149

1to2,and soon,thei f statement checks if the first, second, third, etc. letter of guess isthe same as the
number in the same position in secr et Num If so, we will add a string ' Fer m ' to clue.

If that condition is Fal se we will check if the number at the i th position in guess exists anywhere in
secr et Num If this condition is Tr ue we know that the number is somewhere in the secret number but not
in the same position. Thisiswhy we add the' Pi co' tocl ue.

23. If len(clue) ==
24. return ' Bagel s’

If we go through the entire f or loop above and never add anything to the cl ue list, then we know that
there are no correct digits at all in guess. In this case, we should just return the string ' Bagel s' as our
only clue.

The sort () List Method

26. clue.sort()

Lists have a method named sor t () that rearranges the items in the list to be in alphabetical order. Try
entering the following into the interactive shell:

1 >>> spam = [5, 3, 4, 1, 2]
1 >>> spam sort ()

1 >>> spam

' [1, 2, 3, 4, 5]

Notice that the sor t () method does not return a sorted list, but rather just sorts the list it is called on "in
place". Thisis much like how ther ever se() method works. Y ou would never want to use this line of
code:return spam sort () because that would return the value None (which iswhat sort ()
returns). Instead you would want a separate linespam sort () and thentheliner et urn spam

The reason we want to sort the cl ue list is because we might return extra clues that we did not intend
based on the order of the clues. If cl ue referenced thelist[' Pico', 'Ferm ', 'Pico'],thenthat
would tell us that the center digit of our guessisin the correct position. Since the other two clues are both
Pico, then we know that al we have to do is swap the first and third digit and we have the secret number.
But if the clues are always sorted in aphabetical order, the player can't be sure which number the Fermi
clue refers to.

The joi n() String Method

27. return ' '.join(clue)

Thej oi n() string method returns a string of each item in the list argument joined together. The string
that the method is called on (on line 27, thisisa single space, ' ') appearsin between each item in the list.
So the string that is returned on line 27 is each string in ¢l ue combined together with a single spacein

150

between each string.

For an example, enter the following into the interactive shell:

1 >>> ' x' . join(['hello, 'world])

+ ' hel | oxwor | d’

. >>> ' ABCDEF' .join(['x"', 'y', 'z'])

. ' X ABCDEFy ABCDEFz'

c>>> ' join(["W', "nane', 'is', 'Sani])
» "My nane is San

How the Code Works: Lines 29 to 53

We need a couple more functions for our game to use. Thefirst is a function that will tell us if the guess
that the player entered is a valid integer. Remember that the i nput () function returns a string of whatever
the player typed in. If the player enters in anything but numbers for their guess, we want to ask the player
again for a proper guess.

The second function is something we've seen before in previous games. We want a function that will ask

the player if they want to play the game again and from the player's response, figure out if it wasa Yes or
No answer.

Checking if a String Only has Numbers

29. def isOnlyDigits(num:

30. # Returns True if numis a string nmade up only of
digits. Oherw se returns Fal se.

31. I f num=="":

32. return Fal se

Thei sOnl yDi gi t s() isasmall function that will help us determineif the player entered a guess that
was only made up of numbers. To do this, we will check each individual letter in the string named numand
make sure it is a number.

Line 31 does a quick check to see if we were sent the blank string, and if so, we return Fal se.

34, for i Iin num

35. if i not in'012345¢6 789 .split():
36. return Fal se

37.

38. return True

Weuse af or loop onthe string num Thevaue of i will have a single character from the numstring on
each iteration. Inside the for-block, we check if i does not exist inthelistreturnedby* 0 1 2 3 4 5 6
7 8 9 .split().Ifitdoesn't, we know that there is a character in numthat is something besides a
number. In that case, we should return the value Fal se.

If execution continues past the f or loop, then we know that every character in numis a number because

151

we did not return out of the function. In that case, we return the value Tr ue.

Finding out if the Player Wants to Play Again

40. def playAgain():

41. # This function returns True if the player wants to
play again, otherwise it returns Fal se.

42. print('Do you want to play again? (yes or no)')

43. return input().lower().startswith('y")

Thepl ayAgai n() function isthe same one we used in Hangman and Tic Tac Toe. The long expression
on line 43 will evaluate to either Tr ue or Fal se. The return value from the call to thei nput () function
isastring that hasits| ower () method called onit. Thel ower () method returns another string (the
lowercase string) and that string hasits st art swi t h() method called on it, passing the argument ' y* .

The Start of the Game

45. NUMDIG TS = 3

46. MAXGUESS = 10

47 .

48. print('l amthinking of a %-digit nunber. Try to guess
what it is.'" % (NUMDIATS))

49. print('Here are sone clues:')

50. print('Wien | say: That neans: ')

51. print(' Pico One digit is correct but in the
W ong position.')

52. print(’ Ferm One digit is correct and in the
right position.")

53. print(' Bagels No digit is correct.")

Thisisthe actual start of the program. Instead of hard-coding three digits as the size of the secret number,
we will use the constant variable NUMDI G TS. And instead of hard-coding a maximum of ten guesses that
the player can make, we will use the constant variable MAXGUESS. (Thisis because if we increase the
number of digits the secret number has, we also might want to give the player more guesses. We put the
variable names in all capitalsto show they are meant to be constant.)

Theprint () function cal will tell the player the rules of the game and what the Pico, Fermi, and
Bagels cluesmean. Line48'spri nt () call has% (NUVDI G TS) added to the end and %s inside the
string. This is a technique know as string interpolation.

String Interpolation

String interpolation is another shortcut, like augmented assignment operators. Normally, if you want to
use the string values inside variables in another string, you have to use the + concatenation operator:

' >>> name = 'Alice'
» >>> event = 'party’
1 >>> where = 'the pool’

152

. >>> when = ' Saturday'

r>>> time = ' 6: 00pm

v >>> print('Hello, ' + nane + '. WII you go to the ' + event
'+ ' at ' + where + ' this ' + when + ' at ' + tine +'?")

: Hello, Alice. WI| you go to the party at the pool this

. Saturday at 6:00pnf?

>>>

Asyou can see, it can be very hard to type a line that concatenates several strings together. Instead, you
can use string interpolation, which lets you put placeholders like %s (these placeholders are called
conversion specifiers), and then put al the variable names at the end. Each %s is replaced with the
value in the variable at the end of the line. For example, the following code does the same thing as the
above code:

: name = 'Alice'
»event = 'party’
: where = '"the pool"’

» when = ' Saturday'

rtime = ' 6:00pm

cprint('Hello, %. WIIl you go to the % at % this % at %?'
: % (nane, event, where, when, tine))

: Hello, Alice. WI| you go to the party at the pool this

1 Saturday at 6:00pnf?

S>> >

String interpolation can make your code much easier to type and read, rather than using severa +
concatenation operators.

Thefinal line hasthe pri nt () call with a string with conversion specifiers, followed by the % sign,
followed by a set of parentheses with the variables in them. The first variable nane will be used for the first
%s , the second variable with the second % and so on. The Python interpreter will give you an error if you
do not have the same number of % conversion specifiers as you have variables.

Another benefit of using string interpolation instead of string concatenation is that interpolation works
with any data type, not just strings. All values are automatically converted to the string data type. (Thisis
what the sin % standsfor.) If you typed this code into the shell, you'd get an error:

' >>> spam = 42

1 >>> print (' Spam == "' + span

+ Traceback (nobst recent call last):

. File "<stdin>", line 1, in <nodul e>

+ TypeError: Can't convert '"int' object to str inplicitly
D >>S>

Y ou get this error because string concatenation can only combine two strings, and spamis an integer.
Y ou would have to remember to put st r (spam) in thereinstead. But with string interpolation, you can
have any datatype. Try entering this into the shell:
i >>> spam = 42
1 >>> print (' Spam == %' % (spam)
1 Spam == 42
i >>>

Asyou can see, using string interpolation instead of string concatenation is much easier because you don't
153

have to worry about the data type of the variable. Also, string interpolation can be done on any strings, not
just stringsused in pri nt () function cals.

String interpolation is aso known as string formatting.

How the Code Works: Lines 55 to 76

Now that the program has displayed the rules to Bagels to the player, the program will randomly create a
secret number and then enter a loop where it repeatedly asks for the player's guesses until she has either
correctly guessed the secret number, or has run out of guesses. After that, we will ask the player if she wants

to play again.

Creating the Secret Number

55. while True:

56. secret Num = get Secr et Num(NUMDI G TS)

57. print('l have thought up a nunber. You have %
guesses to get it.' % (MAXGUESS))

58.

59. nunfauesses = 1

60. whi | e nunfauesses <= MAXGUESS:

We start with awhi | e loop that has a condition of Tr ue, meaning it will loop forever until we execute
abr eak statement. Inside the infinite loop, we get a secret number from our get Secr et Nun{) function
(passing it NUVDI G TS to tell how many digits we want the secret number to have) and assign it to
secr et Num Remember that secr et Numis a string, not an integer.

We tell the player how many digitsisin our secret number by using string interpolation instead of string
concatenation. We set a variable nunmGuesses to 1, to denote that this is the first guess. Then we enter a
new whi | e loop which will keep looping as long as numGuesses islessthan or equal to MAXGUESS.

Getting the Player's Guess

Notice that this second whi | e loop on line 60 isinside another whi | e loop that started on line 55.
Whenever we have these loops-inside-loops, we call them nested loops. You should know that any
br eak or cont i nue statements will only br eak or cont i nue out of the innermost loop, and not any
of the outer loops.

61. guess = "'
62. while len(guess) !'= NUMDIGA TS or not
I sOnl yDi gi ts(guess):
63. print('Guess #%: ' % (nunfuesses))
64. guess = input()

The guess variable will hold the player's guess. We will keep looping and asking the player for a guess
until the player enters a guess that has the same number of digits as the secret number and is made up only
of digits. Thisiswhat the whi | e loop on line 62 isfor. We set guess as the blank string on line 61 so that
the whi | e loop's condition is Fal se the first time, ensuring that we enter the loop at |east once.

154

Getting the Clues for the Player's Guess

66. clue = getd ues(guess, secretNum
67. print(clue)
68. nunfuesses += 1

After execution gets past the whi | e loop on line 62, we know that guess contains a valid guess. We
pass this and the secret number in secr et Numto our get Cl ues() function. It returns a string that
contains our clues, which we will display to the player. We then increment nunfGuesses by 1 using the
augmented assignment operator for addition.

Checking if the Player Won or Lost

Us.

70. I f guess == secret Num

71. br eak

72. i f numGuesses > MAXGUESS:

73. print('You ran out of guesses. The answer was

% (secret Num)

If guess isthe samevalue as secr et Num, then we know the player has correctly guessed the secret
number and we can break out of this loop (thewhi | e loop that was started on line 60). If not, then
execution continues to line 72, where we check to see if the player ran out of guesses. If so, then we tell the
player that they have lost and what the secret number was. We know that the condition for the whi | e loop
on line 55 will be Fal se, so thereis no need for a br eak statement.

At this point, execution jumps back to the whi | e loop on line 60 where we let the player have another
guess. If the player ran out of guesses (or we broke out of the loop with the br eak statement on line 71),
then execution would proceed to line 75.

Asking the Player to Play Again

75.
76.

i f not playAgain():
br eak

After leaving the whi | e loop on line 60, we ask the player if want to play again by calling our
pl ayAgai n() function. If pl ayAgai n() returns Fal se, then we should break out of the whi | e loop
that was started on line 55. Since there is no more code after this loop, the program terminates.

If pl ayAgai n() returned Tr ue, then we would not execute the br eak statement and execution would
jump back to line 55. A new secret number would be generated so that the player can play a new game.

Summary: Getting Good at Bagels

Bagelsisafairly smple game to program but can be difficult to win at. But if you keep playing, you will

eventually discover better ways to guess and make use of the clues the game gives you.
155

This chapter introduced a few new functions and methods (r andom shuffl e(),sort (), and
j oi n()), aong with a couple handy shortcuts. Using the augmented assignment operators involve less
typing when you want to change a variable's relative value (such asin spam = spam + 1, which can be
shortend to spam += 1). String interpolation can make your code much more readable by placing ¥s
(called a conversion specifier) inside the string instead of using many string concatenation operations.

Thej oi n() string method is passed a list of strings that will be concatenated together, with the original
associated string in between them. For example, ' X' .join(['"hello', "world', "yay']) will
evauate to the string, ' hel | oXwor | dXyay"' .

Thesort () list method will rearrange the items in the list to be in aphabetical order.

Theappend() list method will add a value to the end of the associated list. If spamcontains the list
['a', "b', 'c'],thencalingspam append(' d') will changethelistinspamtobe["'a’,
'b', 'c', 'd].

The next chapter is not about programming directly, but will be necessary for the games we want to
create in the later chapters of this book. We will learn about the math concepts of Cartesian coordinates and
negative numbers. These will be used in the Sonar, Reversi, and Dodger games, but Cartesian coordinates
and negative numbers are used in almost all games (especialy graphical games). If you already know about
these concepts, give the next chapter a brief reading anyway just to freshen up. Let's divein!

156

Chapter]]
Cartesian Coordinates

Topics Covered In This Chapter:

« Cartesian coordinate systems.

« The X-axisand Y -axis.

« The Commutative Property of Addition.
« Absolute values and the abs() function.

This chapter does not introduce a new game, but instead goes over some simple mathematical concepts
that we will use in the rest of the games in this book.

When you look at 2D games (such as Tetris or old Super Nintendo or Sega Genesis games) you can see
that most of the graphics on the screen can move left or right (the first dimension) and up or down (the
second dimension, hence 2D). In order for us to create games that have objects moving around two
dimensions (such as the two dimensional computer screen), we need a system that can translate a place on
the screen to integers that our program can deal with.

This is where Cartesian coordinate systems come in. The coordinates can point to a very specific point on
the screen so that our program can keep track of different areas on the screen.

Negative numbers are often used with Cartesian coordinate systems as well. The second half of this
chapter will explain how we can do math with negative numbers.

You may aready know about Cartesian coordinate systems and negative numbers from math class. In
that case, you can just give this chapter a quick read anyway to refresh yourself.

Grids and Cartesian Coordinates

A problem in many games is how to talk about exact points
on the board. A common way of solving this is by marking
each individual row and column on a board with a letter and a
number. Figure 11-1 is a chess board that has each row and
each column marked.

157

In chess, the knight piece looks like a horse. The white
knight islocated at the point e, 6 and the black knight is
located at point a, 4. We can also see that every space on row
7 and every space in column ¢ is empty.

A grid with labeled rows and columns like the chess board
is a Cartesian coordinate system. By using a row label and
column label, we can give a coordinate that is for one and
only one space on the board. This can really help us describe
to a computer the exact location we want. If you have learned
about Cartesian coordinate systems in math class, you may
know that usually we have numbers for both the rows and
columns. Thisis handy, because otherwise after the 26th
column we would run out of letters. That board would look
likethis:

The numbers going left and right that describe the columns
are part of the X-axis. The numbers going up and down that
describe the rows are part of the Y-axis. When we describe
coordinates, we aways say the X coordinate first, followed by
the Y coordinate. That means the white knight in the above
picture islocated at the coordinate 5, 6 (and not 6, 5). The
black knight is located at the coordinate 1, 4 (not to be
confused with 4, 1).

Notice that for the black knight to move to the white
knight's position, the black knight must move up two spaces,
and then to the right by four spaces. (Or move right four
spaces and then move up two spaces.) But we don't need to
look at the board to figure this out. If we know the white
knight is located at 5, 6 and the black knight is located at 1, 4,

then we can just use subtraction to figure out this information.

Subtract the black knight's X coordinate and white knight's
X coordinate: 5 - 1 = 4. That means the black knight has to
move along the X-axis by four spaces.

= =]
7 7
6 A ¢
[}
% 5 S5
8
&L | 3
3 3
2 2
1 1
a b ¢ d e £ g h
X-axis
Figure11-1: A sample chessboard with a
black knight at a, 4 and awhite knight at e, 6.
1 2 3 4 5 6 7 8
=] 8
T 7
: A .
"}
= L
)
Y'Y ;
3 3
2 2

1 Z 3 4 5 & 7 g8
X-axis

Figure 11-2: The same chessboard but with
numeric coordinates for both rows and columns.

Subtract the black knight's Y coordinate and white knight's Y coordinate: 6 - 4 = 2. That means the black

knight has to move along the Y -axis by two spaces.

Negative Numbers

Another concept that Cartesian coordinates use is negative numbers. Negative numbers are

numbers that are smaller than zero. We put a minus sign in front of a number to show that it is a negative

number. -1 issmaller than 0. -2 is smaller than -1. -3 is smaller than -2. If you think of regular numbers
(called positive numbers) as starting from 1 and increasing, you can think of negative numbers as
starting from -1 and decreasing. O itself is not positive or negative. In this picture, you can see the positive
numbers increasing to the right and the negative numbers decreasing to the |eft:

158

! j

9 8-76543-2-112 3452673829

Figure 11-3: A number line.

The number lineisreally useful for doing subtraction and addition with negative numbers. The
expression 4 + 3 can be thought of as the white knight starting at position 4 and moving 3 spaces over to the

right (addition means increasing, which isin the right direction).
—— I [=—
9 -8 -7 -6 -5 4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

4+3=7

Figure 11-4: Moving the white knight to the right adds to the coordinate.

Asyou can see, the white knight ends up at position 7. This makes sense, because 4 + 3is7.

Subtraction can be done by moving the white knight to the left. Subtraction means decreasing, which isin
the left direction. 4 - 6 would be the white knight starting at position 4 and moving 6 spaces to the left:

VD)

—— I =—
—9—8-?—6—5-4—3—2—10123456?89

4-6=-2

Figure 11-5: Moving the white knight to the left subtracts from the coordinate.

The white knight ends up at position -2. That means 4 - 6 equals -2.

If we add or subtract a negative number, the white knight would move in the opposite direction. If you
add a negative number, the knight moves to the left. If you subtract a negative number, the knight moves to
the right. The expression -6 - -4 would be equal to -2. The knight starts at -6 and moves to the right by 4
gpaces. Notice that -6 - -4 has the same answer as -6 + 4.

NVV VY

——m I -

9 8-76543-2-1 123452673829

6+4=-2

Figure 11-6: Even if the white knight starts at a negative coordinate, moving right still adds to the coordinate.

The number line is the same as the X-axis. If we made the number line go up and down instead of left and
159

right, it would model the Y -axis. Adding a positive number (or subtracting a negative number) would move
the knight up the number line, and subtracting a positive number (or adding a negative number) would move
the knight down. When we put these two number lines together, we have a Cartesian coordinate system.

AV

M----e3)

-l :

|

-3.1)
r-——-- + :
| -
I | | I{ﬂ!“)l I | J‘i
32 -] 1 2 3

Figure 11-7: Putting two number lines together creates a Cartesian coordinate system.

The 0, 0 coordinate has a special name: the origin.
Changing the Signs

Subtracting negative numbers or adding negative numbers seems easy when you have a number linein
front of you, but it can be easy when you only have the numbers too. Here are three tricks you can do to
make evaluating these expressions by yourself easier to do.

Trick 1: "A Minus Eats the Plus Sign on its Left"

Thefirst isif you are adding a negative number, for example; 4 + -2. The first trick is "aminus eats the
plus sign onits left". When you see a minus sign with a plus sign on the l€eft, you can replace the plus sign
with a minus sign. The answer is still the same, because adding a negative value is the same as subtracting a
positive value. 4 + -2 and 4 - 2 both evaluate to 2.

4+-2=2

(a minus eats the plus sign on its left)

4.2:=2

Figure 11-8: Adding a positive and negative number.

Trick 2: "Two Minuses Combine Into a Plus"

The second trick isif you are subtracting a negative number, for example, 4 - -2. The second trick is "two
160

minuses combine into a plus'. When you see the two minus signs next to each other without a number in
between them, they can combine into a plus sign. The answer is still the same, because subtracting a
negative value is the same as adding a positive value.

4-2:=6

(two minuses combine into a plus)

4+2:=6

Figure 11-9: Subtracting a positive and negative number.

Trick 3: The Commutative Property of Addition

A third trick is to remember that when you add two numbers like 6 and 4, it doesn't matter what order
they arein. (Thisis called the commutative property of addition.) That meansthat 6 + 4 and 4 + 6
both equal the same value, 10. If you count the boxes in the figure below, you can see that it doesn't matter
what order you have the numbers for addition.

6 + 4 4 + 6
HNEEEEEEEEEE EEEEEEEEEE

% 5

Figure 11-10: The commutative property of addition.

Say you are adding a negative number and a positive number, like -6 + 8. Because you are adding
numbers, you can swap the order of the numbers without changing the answer. -6 + 8 isthe same as 8 + -6.
But when you look at 8 + -6, you see that the minus sign can eat the plus sign to its left, and the problem
becomes 8 - 6 = 2. But this meansthat -6 + 8 isaso 2! We've rearranged the problem to have the same
answer, but made it easier for us to solve without using a calculator or the computer.

161

-6+8=2

(because this is addition, swap the order)

8+-6=2

(the minus sign eats the plus sign on its left)

8-6:=2

Figure 11-11: Using our math tricks together.

Of course, you can always use the interactive shell as a calculator to evaluate these expressions. It is still
very useful to know the above three tricks when adding or subtracting negative numbers. After all, you
won't dways be in front of a computer with Python all the time!

--

Absolute Values and the abs() Function

The absolute value of a number is the number without the negative sign in front of it. This means
that positive numbers do not change, but negative numbers become positive. For example, the absolute
value of -4 is 4. The absolute value of -7 is 7. The absolute value of 5 (which is positive) is 5.

We can find how far away two things on a number line are from each other by taking the absolute value
of their difference. Imagine that the white knight is at position 4 and the black knight is at position -2. To
find out the distance between them, you would find the difference by subtracting their positions and taking
the absolute value of that number.

It works no matter what the order of the numbersis. -2 - 4 (that is, negative two minus four) is -6, and the
absolute value of -6 is 6. However, 4 - -2 (that is, four minus negative two) is 6, and the absolute value of 6
is 6. Using the absolute value of the difference is a good way of finding the distance between two points on
a number line (or axis).

Theabs() function can be used to return the absolute value of an integer. Theabs() functionisa
built-in function, so you do not need to import any modules to use it. Pass it an integer or float value and it

will return the absolute value:
162

1 >>> abs(-5)
)

L >>> abs(42)

| 42

1 >>> abs(-10.5)
{ 10.5

Coordinate System of a Computer Monitor

It is common that computer monitors use a

coordinate system that has the origin (0, 0) at the
top left corner of the screen, which increases going e
down and to the right. There are no negative U,u 30,0
coordinates. Thisis because text is printed starting X increases

at the top left, and is printed going to the right and
downwards. Most computer graphics use this .
coordinate system, and we will use it in our Y increases
games. Also it is common to assume that monitors
can display 80 text characters per row and 25 text
characters per column (look at Figure 11-12). This
used to be the maximum screen size that monitors
could support. While today's monitors can usually
display much more text, we will not assume that
the user's screen is bigger than 80 by 25.

Summary: Using this

Math Iin Games

Figure 11-12: The Cartesian coordinate system on a computer monitor.

This hasn't been too much math to learn for programming. In fact, most programming does not require
understanding a lot of math. Up until this chapter, we have been getting by on simple addition and
multiplication.

Cartesian coordinate systems are needed to describe exactly where in a two dimensional area a certain
position is. Coordinates are made up of two numbers: the x-coordinate and the y-coordinate. The X-axis
runs left and right and the Y -axis runs up and down. On a computer screen (and in most computer
programming), the X-axis starts at O at the top and increases on the way down. The Y -axis starts at 0 on the
left side and increases on the way to the right.

The three tricks we learned in this chapter make it very easy to add positive and negative integers. The
first trick isthat a minus sign will eat the plus sign on its left. The second trick is that two minuses next to
each other will combine into a plus sign. And the third trick is that you can swap the position of the
numbers you are adding. Thisis called the commutative property of addition.

For the rest of the book, we will use the concepts we learned in this chapter in our games because they

have two dimensional areasin them. All graphical games also require understanding how Cartesian
coordinates work.

163

Chapter] E
Sonar

Topics Covered In This Chapter:

« Data structures.
« Therenove() list method.
« Thei sdi gi t () string method.

The game in this chapter only introduces a couple new helpful methods that come with Python, the
renmove() list method and thei sdi git () string method. But this is the first program which will make
use of Cartesian coordinates and the mathematical concepts we learned in chapter 11. This program will also
use make use of data structures (which isredly just a fancy way of saying variables that contain lists of
lists.) As our games become more complicated, we will need to store our data in well-organized ways.

Sonar is a technology that ships use to locate objects under the sea. In this chapter's game, the player
places sonar devices at various places in the ocean to locate sunken treasure chests. The sonar devicesin our
game can tell the player how far away a treasure chest is from the sonar device, but not in what direction. But
by placing multiple sonar devices down, the player can figure out where exactly the treasure chest is. There
are three chests to collect, but the player has only sixteen sonar devices to use to find them. Imagine that we
could not see the treasure chest (the red dot) in the following picture. Because each sonar device can only
find the distance but not direction, the possible places the treasure could be is anywhere in a ring around the
sonar device:

164

Sonar device
L

Treasure chest

L]
sonar device

9
sonar dewvice

Figure 12-1: The first sonar device shows ablue ring of possible places the treasure could be located.

But if we have multiple sonar devices working together, we can narrow it down to an exact place where all
the rings intersect each other:

Sonar device

Tredsure chest

L]
sonar device

L]
sonar dewvice

Figure 12-2: Combining the rings of all three sonar devices shows only one possible place for the treasure.

Sample Run

' SONAR! i
+ Woul d you like to view the instructions? (yes/no) i
i no :
i 1 2 3 4 5 i
; 012345678901234567890123456789012345678901234567890123456789
e dianndiadieedis s aadindiie ittt it e e Al AN
: 0 :
L e e N e e N N N N S e S
P 1 :
N NN NN s RRUEPCL L
P 2 :
S I e it A ~——T =
P 3 :
A e e
4 :

165

~—~ ~— o —— ~ -~ ~ ~ e ————— ~— A T AT ST ST LY e
N ~— Y eee N ~\ ~~~\ A ~~~~\ ~~\ ~~\ ~~\ N ~~\ ~~~\ ~~~\ > ~\ ~~~\ N — ——
SRR SRR RN NN NN NN N N SN SN SN N S S S s s
N U SN ~ ~ NN NN NN S SN ~ SRR ~
~ ~ ~ s e . ~—— ~ -~ ~—— ~ o~ ~ —— ~ ————
B T T S N N N S S U U U U NN
NSNS N NN NN NN N N NN NSNS SN s S S s s s s s
NN NN < NN < < s ~ NN ~ NN
~ ~—— ~ ———T ~ s AT el T AT Y e ~
~~~\ ~\ ~~~\ Y e ———— N ~~~\ N ~\ ~\ ~~\ ~\ ~~\ ~\ A ~~~\ A ~~\ ~~\ ~\ N ~\ N ~\ _—
> ~~‘ A ~~\ N ~\ A ~~~\ ~\ N ~‘ ~~~~~~~~~ > ~~‘ Ve~ Y Y Y ~\ ~‘ ~‘ > —~— ———~—
NN N NSNS NSNS N NSNS N N NSNS NS NS s s sy _

Ol23456789%}234567890%234567890%234567890%5345678901%3456789

You have 16 sonar devices left. 3 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14)

(or type quit)
10 10

PO 00 ~N OO 0o A W N P OO

RPRRPRRRRPRRRE
ARWWNNRRFROO © © N O O M W N B

1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

N IR I NN SN N AN NN NN RN N N N
~ —~——— ~——— o~ —— ~ ~ —~—— ~ o~ — —————— —~ ~ —— ————
NN N T T T NN N IR AN [N
RN S U N I NN RN N U N RN [N
NN N [N S U NN I [NENENEEEN N NN N IR

~— ——— ~ —~— ~ o~~~ —~—— —~— ~ m—— —— e —— ————
AN AN AN T T SN N N NN N [N N
S SRR IR IR N N N IR N N IR I
D N NN NN SN N N [N NN NN SN NN

~ ~ ~ ~ —~— ———— —~—— ~ —~—— ~ —~—— o~ ~ ~— —~—
SN N vy v s N N NN SN NN I NN N [N N

IR N SR RN S i U NN [N SN NN I IR
NN NN NN N U R RN N N I N AN NN

~ o~ ~5 ~ ~ —— ~ ~ ~ ~—— —— —— ~———— ——— — —— ~
[N NN NN N NN NN Y N AN N N N NN T T TR T

ENEEEN NN N N ENEEEN [N IR N SN SN
N IR NN RN S v N N N NN NN RN

~— —~— ~ ~—— o~ ~ e ————————— —~—— —~———— ~ o~ o~ —~———
~ N T N RN N NN T T Y NN N T T SRR

012345678901234567890%234567890%2345678901234567890123456789
1 4 5

Treasure detected at a distance of 5 fromthe sonar device.
You have 15 sonar devices left. 3 treasure chests renaining.

166



RO 00 N o 0o A W N B+~ O

RPRRPRRRRPRRRE
ADWWNNRROO © © ~N © O A W N L O

o N oo o A W N BB O

Where do you want to drop the next sonar device? (0-59 0-14)
(or6type qui t)
15

1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

N ~ AN ~ ~ ~ LNIEN AN ~ AN ENEEN ENEEN NN AN NN AN LN

~\ ~~~\ A — — — —~ ~\ —~—— ~\ N ~\ ~~\ A ~\ ~\ —~— — ~\ — T P P P Pt ~ > e ~\ — — ~~~~\
> ~‘ > ~‘ > —~— —— B N ~\ ~\ ~‘ N ~ Y e ——————~ N ~\ ~~\ ~‘ Y e~~~ A ~~‘ ~‘ A
NN N NN N NN N N N N S N N SN s sy sy s I
A ~~\ ~~~\ N ~\ N ~~\ A ~\ ~\ ~\ ~\ N ~~~\ N ~~\ N ~\ ~~\ ~~\ ~\ B —~— — ~~~~\ N
~~‘ A ~~~‘ ~‘ ~~‘ > ~‘ B N _—~ A ~‘ ~~‘ ~~~~~‘ ~~‘ > ~‘ ~‘ ~~~‘ ~~‘ ~‘ ~\ ~‘ ~~~\
Tty ~———" ~4~~~‘ Y e~ e e T T Y e e e T Y e Y e
NUTANENENENENENENN NN NN NN N s NN NS NSNS N s S s s s s s
> ~\ A ~\ N ~\ ~~\ —~——— —~— — N ~~~\ ~\ ~‘ N —~——— N _—~ ~ Tt ~\ ~~\ N ~\ ~~~~\
R NN S S N NN
NN NN ~ < ~ NN I
~ ~ ~5 ~ ~ —— ~ ~ ~ ~—— —— —— ~——— ——— o~ —— ~
A ~\ N — —— _~ A —~—— —~——— ~> T e ~\ —~—— ~‘ —~——~— —~ — _—~ —~— — ~~~‘ N N ~\ A ~\
—~ —— ~\ ~~~‘ Y e————— * ~~~‘ > ~‘ ~\ —~—~— ~‘ —~—~— ~‘ A ~~~\ A —~—~— —~—~— ~‘ N ~‘ N ~‘ e
N NN N NN NN ~ P R SRR ~ ~
~— ~— ~ ~—— ~ ~ e e Y ————— ~ <"~ ~ e e
R T R T N N S S N N S N N RN _

012345678901234567890%234567890%2345678901234567890123456789
1 4 5

Treasure detected at a distance of 4 fromthe sonar device.
You have 14 sonar devices left. 3 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14)

(or type quit)
15 10

N B O

o N o o b~ W

1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

N ~ AN ~ ~ ~ LNEEN AN AN AN ENEEN ENEEN NN ~ NN ~ LNIEN

~—— ———T Y Y e < ~———— o~ —— ~ ~— ~ -~ ~ ————
~\ ~~~\ N — — —~— —~ ~\ ~~\ ~\ N ~\ ~~\ A ~\ ~\ ~~\ ~\ ~~~~~~\ ~ ~\ ~~\ ~~~~\
> ~\ h ~\ h ~~~‘ ~\ N ~‘ ~\ ~‘ > ~ Y e ——————~ > ~\ ~~\ ~‘ Y e~~~ A ~~‘ ~‘ A
N N SN NN [N ~ N YR SN ~ ~
~ —— ~T AT AT AT T T e ~— ~ ~ ~——— ~
N ~~\ ~~~\ ~\ —~— — A ~\ ~\ ~\ ~\ N ~~~\ N ~~\ N ~\ —~— — —~— — ~\ ~\ —~— — ~~~~\ A
~~\ N —~ —— ~‘ ~~‘ s ~‘ ~‘ N ~‘ A ~‘ —~— — — — P~ ~~‘ N ~‘ ~‘ —~— —— —~—~— ~‘ ~\ ~‘ ~~~\
S aaaaa ~ NN RN ~ ~ ~
~— ~—m~’ ~O~~~ ~———— e e ~— —— ——— ~ ——— ~——
TR TR TSR I NN N U U T T U T S S N N
N NNNN NSNS N N S NN NN N NS s s s N NN N s

167



10 O O h h h h h
1
. 10
'
]1 AN AN R N U RN AN ~ ~
]
. 11
]
N AN N N AN AN AN AN AN AN AN
Iz ~—— o~ o~~~ ~———m—— o~ ——~ ~ o~ o~~~ o~~~ ~—— ~— o~~~ ~ ~ o~
'
. 12
'

13 NN NN NN NN N N Y Yy

!
! 1 3
!

\\\\\\

14 "~ N N Y S ~

14

012345678901234567890%234567890%2345678901234567890123456789
. 1 4 5

: You have found a sunken treasure chest!

i You have 13 sonar devices left. 2 treasure chests renaining.

+ Where do you want to drop the next sonar device? (0-59 0-14)

i (or type quit)
i ... Skipped over for brevity...

1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

N NN N N v N
~ ——— ———— — —— —~ ~ —— ~0O~ ~~ ~ —————T ~ ~ —— ————

\\\\\ : ~ ~ ~ ~ ~ ~ ~ N O ~

\\\\\\\\\

PO 00 N OO 0o A W N — O

RPRRPRRRRPRRRE
ADWWNNRROO © 0 N © 0o A W N L O
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

\\\\\

D S N N N N N NN

AN AN ~ S N N N N N N N N VN N U N N U SR SR

012345678901234567890123456789012345678901234567890123456789
; 1 2 3 4 5

. Treasure detected at a distance of 4 from the sonar device.

+ W' ve run out of sonar devices! Now we have to turn the ship

. around and head

+ for honme with treasure chests still out there! Gane over.

The remai ning chests were here:

168



0, 4
Do you want to play again? (yes or no)
no

Sonar's Source Code

Knowing about Cartesian coordinates, number lines, negative numbers, and absolute values will help us
out with our Sonar game. If you do not think you understand these concepts, go back to chapter 11 to brush
up. Below is the source code for the game. Type it into a new file, then save the file as sonar.py and run it by
pressing the F5 key. Y ou do not need to understand the code to type it in or play the game, the source code
will be explained later.

Also, you can download the source code from the book's website at the URL
http://inventwithpython.com/chapter12.

sonar.py
This code can be downloaded from http://inventwithpython.com/sonar.py
If you get errors after typing this code in, compare it to the book's code with the online diff tool at
http://inventwithpython.com/diff or email the author at al@inventwithpython.com
1. # Sonar
2.
3. inport random
4. inport sys
5.
6. def drawBoard(board):
7. # Draw the board data structure.
8.
9. hline ="' " # initial space for the nunbers down
the left side of the board
10. for i in range(l, 6):
11. hline += (" ' * 9) + str(i)
12.
13. # print the nunbers across the top
14. print (hline)
15. print(’ "+ ('0123456789' * 6))
16. print()
17.
18. # print each of the 15 rows
19. for i in range(15):
20. # single-digit nunbers need to be padded with an
extra space
21. if i < 10:
22. extraSpace =
23. el se:
24, extraSpace = "'
25. print('%% % %' % (extraSpace, i, getRow board,
i), 1))
26.
27. # print the nunbers across the bottom
28. print()
29. print(’ "+ ('0123456789' * 6))
30. print(hline)

169



31.
32.
33.
34.

35.
36.
37.
38.
39.
40.
41.
42.
43.

44.
45.

46.

47.
48.
49.
50.
51.
52.
53.
54.

55.
56.
57.

58.
59.
60.
61.

62.
63.
64.
65.

66.
67.
68.
69.
70.
71.

72.
73.

def get Row( board, row):
# Return a string fromthe board data structure at a
certain row
boardRow = "'
for i in range(60):
boar dRow += board[i][row
return boar dRow

def get NewBoard():
# Create a new 60x15 board data structure.
board = []
for x in range(60): # the main list is a list of 60
lists
boar d. append([])
for y in range(15): # each list in the main |ist
has 15 single-character strings
# use different characters for the ocean to
meke it nore readabl e.
if randomrandint(0, 1) ==
boar d[ x] . append(' ~')
el se:
boar d[ x] . append(' ")
return board

def get RandontChest s(nuntChests):

# Create a list of chest data structures (two-item
lists of x, y int coordinates)

chests = []

for i in range(nunChests):

chest s. append([ random randi nt (0, 59),

random randi nt (0, 14)])

return chests

def isValidMWve(x, Yy):

# Return True if the coordinates are on the board,
ot herwi se Fal se.

return x >= 0 and x <= 59 and y >> 0 and y <= 14

def makeMove(board, chests, x, y):

# Change the board data structure with a sonar device
character. Renobve treasure chests

# fromthe chests list as they are found. Return Fal se
if this is an invalid nove.

# O herwse, return the string of the result of this
nove.

if not isValidMouwve(x, y):

return Fal se

smal | est Di stance = 100 # any chest will be closer than
100.
for cx, cy in chests:
if abs(cx - x) > abs(cy - y):

170




74.
75.
76.
7.
78.

79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

89.
90.
91.

92.
93.
94.
95.

96.

97.
98.
99.
100.
101.
102.
103.
104.

105.
106.

107.
108.
109.
110.

111.
112.
113.
114.
115.
116.
117.

abs(cx - Xx)

di st ance
el se:
di st ance

abs(cy - vy)

if distance < small estD stance: # we want the
cl osest treasure chest.
smal | est D st ance = di st ance

if smallestD stance ==
# xy is directly on a treasure chest!
chests.remove([x, VYy])
return 'You have found a sunken treasure chest!’
el se:
if smallestD stance < 10:
board[ x][y] = str(snall estDi stance)
return 'Treasure detected at a distance of %
fromthe sonar device.' % (snall estD stance)
el se:
board[x][y] = 'O
return 'Sonar did not detect anything. Al
treasure chests out of range.'

def enterPl ayer Move():

# Let the player type in her nove. Return a two-item
list of int xy coordinates.

print('Were do you want to drop the next sonar
device? (0-59 0-14) (or type quit)")

whil e True:
nove = input()
if nmove.lower() == "quit':
print(' Thanks for playing!')
sys. exit()

move = nove. split()
if len(nmove) == 2 and nove[0].isdigit() and
nmove[ 1] .isdigit() and isValidMve(int(nove[O0]),
int(nmove[1])):
return [int(nmove[0]), int(nove[l])]
print('Enter a nunber fromO to 59, a space, then
a nunber fromO to 14.")

def playAgain():
# This function returns True if the player wants to
play again, otherwise it returns Fal se.
print('Do you want to play again? (yes or no)')
return input().lower().startswith('y")

def showl nstructions():

print(''"lnstructions:
You are the captain of the Sinobn, a treasure-hunting ship.
Your current m ssion

171




18.

19.
20.
21.

22.

28

24.

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

40.
41.
42.
43.
44,
45.
46.
47.
48.

49.
50.

51.
52.
53.
54.
55.
56.
&7 -
58.

5,

is to find the three sunken treasure chests that are
lurking in the part of the
ocean you are in and collect them

To play, enter the coordinates of the point in the ocean
you wish to drop a

sonar device. The sonar can find out how far away the

cl osest chest is to it.

For exanple, the d bel ow marks where the device was
dropped, and the 2's

represent distances of 2 away from the device. The 4's
represent

di stances of 4 away from the device.

444444444

4
22222 4
2 2 4
2d2 4
2 2 4
22222 4

R L)

4
444444444
Press enter to continue...'"'")

i nput ()

print('"''For exanple, here is a treasure chest (the c)
| ocated a distance of 2 away
from the sonar device (the d):

22222
(3 2
2 .d 2
2 2
22222

The point where the device was dropped will be marked with
a 2.

The treasure chests don't npbve around. Sonar devices can
det ect treasure

chests up to a distance of 9. If all chests are out of
range, the point

will be marked with O

If a device is directly dropped on a treasure chest, you
have di scover ed

the location of the chest, and it will be collected. The
sonar device w ||

renmai n there.

When you collect a chest, all sonar devices will update to
| ocate the next
cl osest sunken treasure chest.

172




Press enter to continue...'"'")
i nput ()
print()

print("SONAR!")
print()
print('Wuld you like to view the instructions? (yes/no)')
if input().lower().startswith('y"):
showl nstructions()

whi l e True:
# gane setup
sonar Devi ces = 16
t heBoard = get NewBoar d()
t heChest s = get RandontChest s( 3)
dr awBoar d(t heBoar d)
previ ousMbves = []

whi | e sonar Devi ces > O:
# Start of a turn:

# sonar devi ce/ chest status

if sonarDevices > 1: extraSsonar = 'Ss'
el se: extraSsonar ="'
if len(theChests) > 1. extraSchest = 's'

el se: extraSchest

print('You have % sonar deviceY% left. %
treasure chest% remaining.' % (sonarDevices, extraSsonar,
| en(t heChests), extraSchest))

X, Yy = enterPl ayer Move()
previ ousMoves. append([x, y]) # we nust track al
noves so that sonar devices can be updat ed.

nmoveResul t = makeMove(t heBoard, theChests, X, YY)
if noveResult == Fal se:
conti nue
el se:
i f nmoveResult == 'You have found a sunken
treasure chest!':
# update all the sonar devices currently
on the map.
for x, y in previousMves:
makeMove(t heBoard, theChests, X, vYy)
dr awBoar d(t heBoar d)
print (noveResul t)

if len(theChests) ==
print(' You have found all the sunken treasure
chests! Congratul ati ons and good gane!')
br eak

sonarDevices -= 1

173




P08.

P09. I f sonarDevices ==

P10. print('W\'ve run out of sonar devices! Now we
have to turn the ship around and head')

P11. print('for honme with treasure chests still out
t here! Game over.')

P12. print(’ The remai ning chests were here:")

P13. for x, y in theChests:

P14, print(’ %, %' % (X, Y))

P15.

P16. i f not playAgain():

P17. sys. exit()

Designing the Program

Sonar is kind of complicated, so it might be better to type in the game's code and play it a few times first
to understand what is going on. After you've played the game a few times, you can kind of get an idea of the
sequence of eventsin this game.

The Sonar game uses lists of lists and other complicated variables. These complicated variables are known
as data structures. Data structures will let us store nontrivial arrangements of valuesin a single
variable. We will use data structures for the Sonar board and the locations of the treasure chests. One
example of a data structure wasthe boar d variable in the Tic Tac Toe chapter.

It is also helpful to write out the things we need our program to do, and come up with some function
names that will handle these actions. Remember to name functions after what they specifically do. Otherwise
we might end up forgetting a function, or typing in two different functions that do the same thing.

Table 12-1: A list of each function the Sonar game needs.

The function that will do

What the code should do. it

Prints the game board on the screen based on the boar d data structureit is

passed, including the coordinates along the top, bottom, and left and right sides. dr awBoar d()

Create a fresh boar d data structure. get NewBoar d()

Create a fresh chest s data structure that has a number of chests randomly

scattered across the game board. get Randonthest s()

Check that the XY coordinates that are passed to this function are located on the

game board or not. i sVal i dMbve()

Let the player type in the XY coordinates of his next move, and keep asking

until they type in the coordinates correctly. enter Pl ayer Move()

Place a sonar device on the game board, and update the boar d data structure

then return a string that describes what happened. makeNbve()
Ask the player if they want to play another game of Sonar. pl ayAgai n()
Print out instructions for the game. showl nstructions()

These might not be all of the functions we need, but a list like thisis a good ideato help you get started
with programming your own games. For example, when we are writing the dr awBoar d() function in the
Sonar game, we figure out that we also need a get Row( ) function. Writing out a function once and then

174



caling it twice is preferable to writing out the code twice. The whole point of functions is to reduce duplicate
code down to one place, so if we ever need to make changes to that code we only need to change one place
in our program.

How the Code Works: Lines 1 to 38

# Sonar

1

2.

3. inport random
4. inport sys

Here we import two modules, r andomand sys. The sys module contains the exi t () function, which
causes the program to immediately terminate. We will call this function later in our program.

Drawing the Game Board

6. def drawBoard(board):

The back tick (*) and tilde (~) characters are located next to the 1 key on your keyboard. They resemble the
waves of the ocean. Somewhere in this ocean are three treasure chests, but you don't know where. Figure it
out by planting sonar devices, and tell the game program where by typing in the X and Y coordinates (which
are printed on the four sides of the screen.)

Thedr awBoar d() function isthe first function we will define for our program. The sonar game's board
isan ASClI-art ocean with coordinates going along the X- and Y -axis, and looks like this:

AN L N Y N N U W NREN

o

\\\\\\ ~

=
l
l
l
l
l
l
l
l

N N AN AN AN ~ ~ ENEEN N AN N
~——— o~ m~——~ ~—— ~ ~— o~~~ o~~~ ~—~ o~ ~— o~ ~—— e~~~ ~

N

\\\\\

w

~ ~ ~ N ~ ~ N N

\\\\\\

\\\\\

\\\\\\\

~ N AN AN AN
~— o~~~ ~ ~—~ ~—~— ~— o~ o~~~ o~ ~ ~—— — i~ —~————

AN AN AN

R N T N N N N T S N N N N N N R

AN N N D N N N N N T N N N N N N U S N N N NN N N AN N
~— o~ m~—— o~ ~ ~———~ ~—~ ~ o~~~ ~ ~m—m—— o~~~ o~~~

PrRPrR,rO 00 N O O A W N +, O
RPOO © 00 ~N o o b



'
. 11
1
]2 \\\\\ ~ N N S N N ~ ~ ~

1
. 1 2
1
\\\\\\\

‘‘‘‘‘ N N IR IR I N I
:]3 ~ ~— ~ ~——— ~——— ~— ~ ——=T ~ ~—~ o~ ~ ~ ~————
1
, 13
1
14 ~~=" >t N

14

We will split up the drawing in the dr awBoar d() function into four steps. First, we create a string
variable of the linewith 1, 2, 3, 4, and 5 spaced out with wide gaps. Second, we use that string to display the
X-axis coordinates along the top of the screen. Third, we print each row of the ocean along with the Y -axis
coordinates on both sides of the screen. And fourth, we print out the X-axis again at the bottom. Having the
coordinates on all sides makes it easier for the player to move their finger along the spaces to see where
exactly they want to plan a sonar device.

Drawing the X-coordinates Along the Top

7. # Draw the board data structure.

8.

9. hline ="' " # initial space for the nunbers down
the left side of the board

10. for i in range(l1l, 6):

11. hline += (" ' * 9) + str(i)

Let'slook again at the top part of the board, this time with plus signsinstead of blank spaces so we can
count the spaces easier:

+++++++++++++ I 2 A S A+ & first line
+++012345678901234567890123456789012345678901234567390123456789 # second line

I e R e R R R L 0 # third line

Figure 12-3: The spacing we use for printing the top of the game board.

The numbers on the first line which mark the tens position all have nine spaces in between them, and there
are thirteen spacesin front of the 1. We are going to create a string with this line and store it in a variable
named hl i ne.

13. # print the nunbers across the top
14. print (hline)

15. print(’ "+ ('0123456789' * 6))
16. print()

To print the numbers across the top of the sonar board, we first print the contents of the hl i ne variable.
Then on the next line, we print three spaces (so that this row lines up correctly), and then print the string
' 012345678901234567890123456789012345678901234567890123456789" . But thisis

176




tedious to type into the source, so instead we type (' 0123456789" * 6) which evaluates to the same
string.

Drawing the Rows of the Ocean

18. # print each of the 15 rows

19. for i in range(15):

20. # single-digit nunbers need to be padded with an
extra space

21. if i < 10:

22. extraSpace = ' '

23. el se:

24. extraSpace = "'

25. print('%% % %' % (extraSpace, i, getRow board,
i), 1))

Now we print the each row of the board, including the numbers down the side to label the Y -axis. We use
thef or loop to print rows 0 through 14 on the board, along with the row numbers on either side of the
board.

We have a small problem. Numbers with only one digit (like 0, 1, 2, and so on) only take up one space
when we print them out, but numbers with two digits (like 10, 11, and 12) take up two spaces. This means the
rows might not line up and would look like this:

\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\

The solution is easy. We just add a space in front of all the single-digit numbers. The if-else statement that
starts on line 21 does this. We will print the variable ext r aSpace when we print the row, and if i isless
than 10 (which meansit will have only one digit), we assign a single space string to ext r aSpace.
Otherwise, we set ext r aSpace to be a blank string. This way, all of our rows will line up when we print
them.

Theget Row() function will return a string representing the row number we pass it. Its two parameters

are the board data structure stored in the boar d variable and a row number. We will look at this function
next.

Drawing the X-coordinates Along the Bottom

27. # print the nunbers across the bottom
28. print()
29. print(' "+ ('0123456789" * 6))

30. print(hline)

177



This code is similar to lines 14 to 17. Thiswill print the X-axis coordinates along the bottom of the screen.

Getting the State of a Row in the Ocean

33. def get Rowm board, row):

34. # Return a string fromthe board data structure at a
certain row

35. boardRow = "'

36. for i in range(60):

37. boar dRow += board[i][row]

38. return boar dRow

This function constructs a string called boar dRow from the characters stored in boar d. First we set
boar dRowto the blank string. The row number (which isthe Y coordinate) is passed as a parameter. The
string we want is made by concatenating boar d[ O] [ r ow] , board[ 1] [ row] , board[ 2] [ row] , and so
onuptoboard[ 59] [ r ow] . (Thisis because the row is made up of 60 characters, from index O to index
59))

Thef or loop iterates from integers 0 to 59. On each iteration the next character in the board data
structureis copied on to the end of boar dRow. By the time the loop is done, ext r aSpace isfully formed,
SO we return it.

How the Code Works: Lines 40 to 62

Now that we have a function to print a given game board data structure to the string, let's turn to the other
functions that we will need. At the start of the game, we will need to create a new game board data structure
and also place treasure chest s randomly around the board. We should also create a function that can tell if
the coordinates entered by the player are a valid move or not.

Creating a New Game Board

40. def get NewBoard():

41. # Create a new 60x15 board data structure.

42. board = []

43. for x in range(60): # the main list is a list of 60
lists

44 boar d. append([])

At the start of each new game, we will need a fresh boar d data structure. The boar d data structureisa
list of lists of strings. Thefirst list represents the X coordinate. Since our game's board is 60 characters across,
this first list needs to contain 60 lists. So we create af or loop that will append 60 blank lists to it.

45, for y in range(15): # each list in the main |ist
has 15 single-character strings
46. # use different characters for the ocean to

make it nore readabl e.
47. if randomrandint(0, 1) ==
178




48. boar d[ x] . append(' ~')
49, el se:
50. boar d[ x] . append(' " ")

But boar d is more than just alist of 60 blank lists. Each of the 60 lists representsthe Y coordinate of our
game board. There are 15 rows in the board, so each of these 60 lists must have 15 characters in them. We
have another f or loop to add 15 single-character strings that represent the ocean. The "ocean” will just be a
bunch of * ~' and"' "' strings, so we will randomly choose between those two. We can do this by generating
a random number between 0 and 1 with acall tor andom r andi nt () . If the return value of
random randi nt () is 0,weaddthe' ~' string. Otherwise we will add the' ~ " string.

Thisis like deciding which character to use by tossing a coin. And since the return value from
random r andi nt () will be O about half the time, half of the ocean characterswill be* ~' and the other
half will be' * ' . Thiswill give our ocean a nice random, choppy look to it.

Remember that the boar d variableisalist of 60 lists that have 15 strings. That means to get the string at
coordinate 26, 12, we would access boar d[ 26] [ 12] , and not boar d[ 12] [ 26] . The X coordinate is
first, then the Y coordinate.

Here is the picture from the Hangman chapter that demonstrates the indexes of a list of lists named x. The
red arrows point to indexes of the inner lists themselves. The image is also flipped on its side to make it
easier to read:

Eﬁ_“[[}]
= x[0][0]
= x[0][1]
= — (g M h
% % % x = ST <[
e = AN = x[1]1[2]
s5 5 EaZ EEEE B epmpra
x  ® X x X X )
[[i0, 20, 301, [3, 2, 11, [8, &, &, &1, [42]] @ x[2][1]
= x[2][2]
= x[2]1[3]
— x[3
= ST (3]
Figure 12-4: The indexes of alist of lists.
51. return board

Finally, we return the boar d variable. Remember that in this case, we are returning a reference to the list
that we made. Any changes we made to the list (or the listsinside the list) in our function will still be there

179



outside of the function.

Creating the Random Treasure Chests

53. def get RandontChest s(nuntChests):

54. # Create a |list of chest data structures (two-item
lists of x, y int coordinates)

55. chests = []

56. for i in range(nunChests):

57. chests. append([ random randi nt (0, 59),
randomrandint (0, 14)])

58. return chests

Another task we need to do at the start of the game is decide where the hidden treasure chests are. We will
represent the treasure chests in our game as a list of lists of two integers. These two integers will be the X
and Y coordinates. For example, if the chest data structurewas[ [ 2, 2], [2, 4], [10, 0]],then
this would mean there are three treasure chests, one at 2, 2, another at 2, 4, and a third one at 10, O.

We will pass the nuntChest s parameter to tell the function how many treasure chests we want it to
generate. We set up af or loop to iterate this number of times, and on each iteration we append a list of two
random integers. The X coordinate can be anywhere from 0 to 59, and the Y coordinate can be from
anywhere between 0 and 14. The expression [ r andom r andi nt (0, 59), random randi nt (O,
14)] that is passed to the append method will evaluate to something like[ 2, 2] or[2, 4] or|[ 10,

0] . This data structure is then returned.

Determining if a Move is Valid

60. def isValidMve(x, Yy):

61. # Return True if the coordinates are on the board,
ot herwi se Fal se.
62. return x >= 0 and x <= 59 and y >= 0 and y <= 14

The player will typein X and Y coordinates of where they want to drop a sonar device. But they may not
type in coordinates that do not exist on the game board. The X coordinates must be between 0 and 59, and the
Y coordinate must be between 0 and 14. This function uses a ssimple expression that uses and operators to
ensure that each condition is Tr ue. If just one is Fal se, then the entire expression evaluates to Fal se.
This Boolean value is returned by the function.

How the Code Works: Lines 64 to 91

Placing a Move on the Board

64. def makeMove(board, chests, Xx, y):

65. # Change the board data structure with a sonar device
character. Renove treasure chests
66. # fromthe chests list as they are found. Return Fal se

if this is an invalid nove.
180




67. # O herwise, return the string of the result of this
nove.

68. if not isValidMve(x, y):

69. return Fal se

In our Sonar game, the game board is updated to display a number for each sonar device dropped. The
number shows how far away the closest treasure chest is. So when the player makes a move by giving the
program an X and Y coordinate, we will change the board based on the positions of the treasure chests. This
iswhy our makeMbve() function takesfour parameters. the game board data structure, the treasure chests
data structures, and the X and Y coordinates.

This function will return the Fal se Boolean value if the X and Y coordinates if was passed do not exist
on the game board. If i sVal i dMbve() returns Fal se, then makeMove() will return Fal se.

If the coordinates land directly on the treasure, makeMove() will return the string' You have found
a sunken treasure chest!' .If the XY coordinates are within a distance of 9 or less of a treasure
chest, wereturn the string' Treasure detected at a distance of % from the sonar
devi ce.' (where % isthe distance). Otherwise, makeMove() will return the string' Sonar di d not
detect anything. Al treasure chests out of range.'.

71. smal | est Di stance = 100 # any chest will be closer than
100.

72. for cx, cy in chests:

73. if abs(cx - x) > abs(cy - y):

74. di stance = abs(cx - Xx)

75. el se:

76. di stance = abs(cy - y)

77.

78. if distance < snallestD stance: # we want the
cl osest treasure chest.

79. smal | est Di stance = di stance

Given the XY coordinates of where the player wants to drop the sonar device, and a list of XY coordinates
for the treasure chests (in the chest s list of lists), how do we find out which treasure chest is closest?

An Algorithm for Finding the Closest Treasure Chest

While the x and y variables are just integers (say, 5 and 0), together they represent the location on the
game board (which is a Cartesian coordinate system) where the player guessed. Thechest s variable may
haveavaluesuchas[[5, O], [0, 2], [4, 2]],that value representsthe locations of three treasure
chests. Even though these variables are a bunch of numbers, we can visualizeit like this:

181



0O 1 2 3 4 5
| e———

ol21]21|2]3]]4lls.¢
e a2l 31l4ll s
2o, 2 2|l 20l 31|4,4| 5
3l 2l 2|l 314 s
al212123|l4alls
s 3|33 ][3(4lls

Figure 12-5: The places on the board that [[5, 0], [0, 2], [4, 2]] represents.

We figure out the distance from the sonar device located at 0, 2 with "rings" and the distances around it:

0 1 2 3 4 5
0 0,0
1
2 10,2 4 2
3
4
5

Figure 12-6: The board marked with distances from the 0, 2 position.

But how do we trandate this into code for our game? We need a way to represent distance as an
expression. Notice that the distance from an XY coordinate is aways the larger of two values: the absolute
value of the difference of the two X coordinates and the absolute value of the difference of the two Y
coordinates.

That means we should subtract the sonar device's X coordinate and a treasure chest's X coordinate, and
then take the absolute value of this number. We do the same for the sonar device's Y coordinate and a
treasure chest's Y coordinate. The larger of these two valuesis the distance. Let's look at our example board
with rings above to see if this algorithm is correct.

The sonar's X and Y coordinates are 3 and 2. The first treasure chest's X and Y coordinates (first in the list
[[5 0], [0, 2], [4, 2]] thatis)are5and O.

For the X coordinates, 3 - 5 evauatesto - 2, and the absolute value of - 2 is 2.
For the Y coordinates, 2 - 1 evaluatesto 1, and the absolute valueof 1 is 1.

Comparing the two absolute values 2 and 1, 2 isthe larger value and should be the distance from the sonar
182



device and the treasure chest at coordinates 5, 1. We can look at the board and see that this algorithm works,
because the treasure chest at 5,1 isin the sonar device's 2nd ring. Let's quickly compare the other two chests
to seeif his distances work out correctly aso.

Let's find the distance from the sonar device at 3,2 and the treasure chest at 0,2. abs(3 - 0) evaluates
to 3. Theabs() function returns the absolute value of the number we passtoit. abs(2 - 2) evauatesto
0. 3 islarger than 0, so the distance from the sonar device at 3,2 and the treasure chest at 0,2 is 3. We look
at the board and see this is true.

Let's find the distance from the sonar device at 3,2 and the last treasure chest at 4,2. abs(3 - 4)
evaluatesto 1. abs(2 - 2) evauatesto 0.1 islarger than 0, so the distance from the sonar device at 3,2
and the treasure chest at 4,2 is 1. We look at the board and see this is true a so.

Because all three distances worked out correctly, our algorithm works. The distances from the sonar device
to the three sunken treasure chests are 2, 3, and 1. On each guess, we want to know the distance from the
sonar device to the closest of the three treasure chest distances. To do this we use a variable called
smal | est Di st ance. Let'slook at the code again:

71. smal | estDi stance = 100 # any chest will be closer than
100.

72. for cx, cy in chests:

73. if abs(cx - x) > abs(cy - y):

74. di stance = abs(cx - Xx)

75. el se:

76. di stance = abs(cy - y)

77.

78. if distance < smallestD stance: # we want the
cl osest treasure chest.

79. snmal | est Di stance = di stance

Y ou can aso use multiple assignment in f or loops. For example, the assignment statementa, b =
[5, 10] willassign5toaand 10 tob. Also, thef or loopfor i in [0, 1, 2, 3, 4] will
assignthei variable the values0 and 1 and so on for each iteration.

Thefor loopfor cx, cy in chests: combinesboth of these principles. Because chest s isa
list where each item in the list isitself a list of two integers, the first of these integersis assigned to cx and
the second integer isassigned to cy. Soif chest s hasthevalue[[5, O], [0, 2], [4, 2]],onthe
first iteration through the loop, cx will have the value 5 and cy will have the value O.

Line 73 determines which is larger: the absolute value of the difference of the X coordinates, or the
absolute value of the difference of the Y coordinates. (abs(cx - x) < abs(cy - y) seemslike much
easier way to say that, doesn't it?). The if-else statement assigns the larger of the valuesto the di st ance
variable.

So on each iteration of the f or loop, the di st ance variable holds the distance of a treasure chest's
distance from the sonar device. But we want the shortest (that is, smallest) distance of al the treasure chests.
Thisiswherethesnal | est Di st ance variable comesin. Whenever the di st ance variable is smaller
than smal | est Di st ance, then thevauein di st ance becomes the new value of
smal | est Di st ance.

We givesnal | est Di st ance theimpossibly high value of chest s at the beginning of the loop so that
at least one of the treasure chests we find will be put into smal | est Di st ance. By thetimethechest s
loop has finished, we know that srmal | est Di st ance holds the shortest distance between the sonar device

183



and all of the treasure chests in the game.

81. if smallestD stance ==

82. # xy is directly on a treasure chest!

83. chests.remove([x, VYy])

84. return 'You have found a sunken treasure chest!’

Theonly timethat smal | est Di st ance isequal to 0iswhen the sonar device's XY coordinates are the
same as a treasure chest's XY coordinates. This means the player has correctly guessed the location of a
treasure chest. We should remove this chest's two-integer list from the chest s data structure with the
renove() list method.

The renove() List Method

Ther enove() list method will remove the first occurrence of the value passed as a parameter from the
list. For example, try typing the following into the interactive shell:

1 >>> x = [42, 5, 10, 42]
1 >>> x. renove( 10)

F>>> X

1 [42, 5, 42]

Y ou can see that the 10 value has been removed from the x list.

Ther enove() method removes the first occurrence of the value you passit, and only the first. For
example, type the following into the shell:

1 >>> x = [42, 5, 42]
1 >>> X. renove(42)
S>> X

Notice that only the first 42 value was removed, but the second one is still there.

Ther enove() method will cause an error if you try to remove a value that is not in the list:

1 >>> x = [5, 42]
. >>> X, renove(10)

. Traceback (mpst recent call last):

+  File "<stdin>", line 1, in <nodul e>

: ValueError: list.renove(x): x not in |ist
D >>>

After removing the found treasure chest from the chest s list, we return the string ' You have found
a sunken treasure chest!' totell thecaller that the guess was correct. Remember that any changes
made to the list in a function will exist outside the function as well.

85. el se:
86. if small estDi stance < 10:
184



87. board[x][y] = str(smallestD stance)

88. return 'Treasure detected at a distance of %
from the sonar device.' % (small estDi stance)

89. el se:

90. board[x][y] ="'O

91. return 'Sonar did not detect anything. All

treasure chests out of range.'

Theel se block executes if snmal | est Di st ance was not 0, which means the player did not guess an
exact location of a treasure chest. We return two different strings, depending on if the sonar device was
placed within range of any of the treasure chests. If it was, we mark the board with the string version of
smal | est D st ance. If not, we mark the board witha' 0" .

How the Code Works: Lines 94 to 162

The last few functions we need are to let the player enter their move on the game board, ask the player if
he wants to play again (this will be called at the end of the game), and print the instructions for the game on
the screen (this will be called at the beginning of the game).

Getting the Player's Move

94. def enterPl ayer Move():

95. # Let the player type in her nove. Return a two-item
list of int xy coordinates.

96. print('Were do you want to drop the next sonar
device? (0-59 0-14) (or type quit)")

97. whil e True:

98. nove = input ()

99. if nove.lower() == "quit':

100. print(' Thanks for playing!'")

101. sys. exit()

This function collects the XY coordinates of the player's next move. It has awhi | e loop so that it will
keep asking the player for her next move. The player can also typein chest s in order to quit the game. In
that case, we call thesys. exi t () function which immediately terminates the program.

103. move = nove. split()

104. if len(nmove) == 2 and nove[O0].isdigit() and
nove[ 1] .isdigit() and isValidMWve(int(nmove[O0]),
int(nmove[1l])):

105. return [int(nmove[0]), int(nmove[l])]

106. print('Enter a nunber fromO to 59, a space, then
a nunber fromO to 14.")

Assuming the player has not typed in' qui t' ,wecall thespl it () method on nove and set thelist it
returns as the new value of nove. What we expect nove to be isalist of two numbers. These numbers will
be strings, becausethe spl it () method returns a list of strings. But we can convert these to integers with

thei nt () function.
185



If the player typed in something like' 1 2 3' , thenthelist returned by split () wouldbe["' 1",
2", '3"].Inthat case the expression | en(move) == 2 would be Fal se and the entire expression
immediately evaluates to Fal se (because of expression short-circuiting.)

If the list returned by spl i t () does have alength of 2, then it will have a nove[0] and nove[ 1] . We
call the string method i sdi gi t () onthosestrings. i sdi gi t () will return Tr ue if the string consists
solely of numbers. Otherwise it returns Fal se. Try typing the following into the interactive shell:

P >>> 142" isdigit()

+ True

r>>> "forty' Lisdigit()
. Fal se

C>>> ' isdigit()

. Fal se

1 >>> "hello' .isdigit()
. Fal se

P >>> x = ' 10

P >>> X, isdigit()

+ True

E >>>

Asyou can see, bothmove[ 0] . i sdigit() andnove[ 1] .i sdigit() mustbeTrue. Thefina part
of this expression calls our nove[ 1] function to check if the XY coordinates exist on the board. If all these
expressions are Tr ue, then this function returns a two-integer list of the XY coordinates. Otherwise, the
player will be asked to enter coordinates again.

Asking the Player to Play Again

109. def playAgain():

110. # This function returns True if the player wants to
play again, otherwse it returns False.

111. print(' Do you want to play again? (yes or no)')

112. return input().lower().startswith('y")

The pl ayAgai n() function will ask the player if they want to play again, and will keep asking until the
player typesin a string that beginswith ' y* . This function returns a Boolean value.

Printing the Game Instructions for the Player

115. def show nstructions():

116. print('""Instructions:

117. You are the captain of the Sinon, a treasure-hunting ship.
Your current m ssion

118. is to find the three sunken treasure chests that are
lurking in the part of the

119. ocean you are in and collect them

120.

121. To play, enter the coordinates of the point in the ocean
you wish to drop a

122. sonar device. The sonar can find out how far away the

186




cl osest chest is to it.

23. For exanple, the d bel ow marks where the device was
dropped, and the 2's

24. represent distances of 2 away from the device. The 4's

represent
25. distances of 4 away from the device.
26.
27. 444444444
28. 4 4
29. 4 22222 4
30. 4 2 2 4
31. 4 2d24
32. 4 2 2 4
33. 4 22222 4
34. 4 4
35. 444444444
36. Press enter to continue...''")
37. i nput ()

Theshowl nstructions() isjust acoupleof print () calsthat print multi-line strings. The
i nput () function just gives the player a chance to press Enter before printing the next string. Thisis
because the screen can only show 25 lines of text at atime.

39. print('''For exanple, here is a treasure chest (the c)
| ocated a distance of 2 away
40. from the sonar device (the d):

41.

42. 22222

43. c 2

44. 2d 2

45. 2 2

46. 22222

47.

48. The point where the device was dropped will be marked with

a 2.
49.

50. The treasure chests don't npbve around. Sonar devices can
det ect treasure

51. chests up to a distance of 9. If all chests are out of
range, the point

52. will be marked with O

53.

54. |If a device is directly dropped on a treasure chest, you
have di scovered

55. the location of the chest, and it will be collected. The
sonar device w ||

56. renmmin there.

57.

58. When you collect a chest, all sonar devices will update to
| ocate the next

59. closest sunken treasure chest.

60. Press enter to continue..."'")

187




62. print()

F61. i nput () ”

Thisistherest of the instructions in one multi-line string. After the player presses Enter, the function
returns.

These are al of the functions we will define for our game. The rest of the program is the main part of our
game.

How the Code Works: Lines 165 to 217

Now that we are done writing al of the functions that our game will need, let's start writing the main part
of the game.

The Start of the Game

165. print("SONARI!")

166. print()

167. print('Wuld you like to view the instructions? (yes/no)')
168. if input().lower().startswith('y"):

169. showl nstructions()

Theexpressioni nput ().l ower().startswith('y"') asksthe player if they want to see the
instructions, and evaluatesto Tr ue if the player typed in a string that began with' y* or ' Y' . If s0,
showl nstructions() iscaled.

171. while True:

172. # ganme setup

173. sonar Devi ces = 16

174. t heBoard = get NewBoar d()

175. t heChest s = get RandontChest s( 3)
176. dr awBoar d(t heBoar d)

L77. previ ousMbves = []

Thiswhi | e loop isthe main game loop. Here are what the variables are for:

Table 12-2: Variables used in the main game loop.

Variable Description

sonarDevices | The number of sonar devices (and turns) the player has left.

The board data structure we will use for this game. get NewBoar d() will set us up with a

theBoard fresh board.

Thelist of chest data structures. get RandontChest s() will return alist of three treasure

theChests chests at random places on the board.

previousMoves| A list of al the XY moves that the player has made in the game.

188



Displaying the Game Status for the Player

179. whi | e sonar Devices > O:

180. # Start of a turn:

181.

182. # sonar devicel/chest status

183. if sonarDevices > 1. extraSsonar = 's'

184. el se: extraSsonar = "'

185. if len(theChests) > 1. extraSchest = 's'

186. el se: extraSchest = "'

187. print('You have % sonar device% left. %
treasure chest% remaining.' % (sonarDevices, extraSsonar,
| en(t heChests), extraSchest))

Thiswhi | e loop executes as long as the player has sonar devices remaining. We want to print a message
telling the user how many sonar devices and treasure chests are left. But there is a problem. If there are two
or more sonar devices left, wewant to print' 2 sonar devi ces' . But if thereisonly one sonar device
left, wewant to print* 1 sonar devi ce' left. We only want the plural form of devicesif there are
multiple sonar devices. Thesamegoesfor' 2 treasure chests' and' 1l treasure chest'.

So we have two string variables named x and y, which contain awhi | e if there are multiple sonar
devices or treasures chests. Otherwise, they are blank. We use them in the while statement on line 187.

Getting the Player's Move

189. X, Yy = enterPl ayer Move()

190. previ oushMves. append([x, y]) # we nust track al
noves so that sonar devices can be updat ed.

191.

192. nmoveResul t = makeMove(t heBoard, theChests, X, YY)

193. if noveResult == Fal se:

194. conti nue

Line 189 uses the multiple assignment trick. ent er Pl ayer Move() returns atwo-item list. The first
item will be stored in the x variable and the second will be stored in the y variable. We then put these two
variables into another two-item list, which we store in the pr evi ousMoves list with the append()
method. This means pr evi ousMoves isalist of XY coordinates of each move the player makesin this
game.

The x and y variables, along with t heBoar d and t heChest s (which represent the current state of the
game board) are all sent to the makeMove() function. Aswe have already seen, this function will make the
necessary modifications to the game board. If makeMove() returnsthe value Fal se, then therewasa
problem with the x and y values we passed it. The while statement will go back to the start of thewhi | e
loop that began on line 179 to ask the player for XY coordinates again.

Finding a Sunken Treasure Chest

‘LQS. el se: H
189



196. if moveResult == 'You have found a sunken
treasure chest!':

197. # update all the sonar devices currently
on the map.

198. for x, y in previousMves:

199. makeMove(t heBoard, theChests, x, vy)

200. dr awBoar d(t heBoar d)

PO1. print (noveResul t)

If makeMove() did not return the value Fal se, it would have returned a string that tells us what were
the results of that move. If this string waswhi | e, then that means we should update al the sonar devices on
the board so they detect the second closest treasure chest on the board. We have the XY coordinates of all the
sonar devices currently on the board stored in pr evi ousMoves. So we can just pass al of these XY
coordinates to the nekeMove() function again to have it redraw the values on the board.

We don't have to worry about this call to nakeMove() having errors, because we already know all the
XY coordinatesin pr evi ousMoves are vaid. We aso know that this call to makeMove() won't find any
new treasure chests, because they would have aready been removed from the board when that move was first
made.

Thef or loop on line 198 aso uses the same multiple assignment trick for x and y because the itemsin

previ ousMoves list are themselves two-item lists. Because we don't print anything here, the player doesn't
realize we are redoing all of the previous moves. It just appears that the board has been entirely updated.

Checking if the Player has Won

P03. if len(theChests) ==

P04. print('You have found all the sunken treasure
chests! Congratul ati ons and good gane!')

P05. br eak

Remember that the makeMove() function modifiesthet heChest s list we send it. Because
t heChest s isalist, any changes made to it inside the function will persist after execution returns from the
function. makeMove() removes itemsfrom t heChest s when treasure chests are found, so eventualy (if
the player guesses correctly) al of the treasure chests will have been removed. (Remember, by "treasure
chest” we mean the two-item lists of the XY coordinatesinside thet heChest s list.)

When all the treasure chests have been found on the board and removed from t heChest s, the
t heChest s list will have alength of 0. When that happens, we display a congratulations to the player, and
then execute a br eak statement to break out of thiswhi | e loop. Execution will then move down to line
209 (thefirst line after the while-block.)

Checking if the Player has Lost

PO7. sonarDevices -= 1

Thisisthe last line of thewhi | e loop that started on line 179. We decrement the sonar Devi ces
variable because the player has used one. If the player keeps missing the treasure chests, eventually

190



sonar Devi ces will be reduced to 0. After this line, execution jumps back up to line 179 so we can re-
evaluate the whi | e statement's condition (which issonar Devi ces > 0). If sonar Devi ces isO0, then
the condition will be Fal se and execution will continue outside the while-block on line 209.

But until then, the condition will remain Tr ue and the player can keep making guesses.

209. i f sonarDevices ==

P10. print('We\'ve run out of sonar devices! Now we
have to turn the ship around and head')

P11. print('for home with treasure chests still out
there! Ganme over.')

P12, print(’ The remaining chests were here:")

P13. for x, y in theChests:

P14, print(’ %, %' % (X, Y))

Line 209 isthe first line outside the whi | e loop. By this point the game is over. But how do we tell if the
player won or not? The only two places where the program execution would have left the whi | e loop ison
line 179 if the condition failed. In that case, sonar Devi ces would be O and the player would have lost.

The second place isthe br eak statement on line 205. That statement is executed if the player has found all
the treasure chests before running out of sonar devices. In that case, sonar Devi ces would be some value
greater than 0.

Lines 210 to 212 will tell the player they've lost. Thef or loop on line 213 will go through the treasure
chests remaining in t heChest s and show their location to the player so that they know where the treasure
chests had been lurking.

Asking the Player to Play Again

P16. if not playAgain():
PL17. sys.exit()

Win or lose, we cal the pl ayAgai n() function to let the player type in whether they want to keep
playing or not. If not, then pl ayAgai n() returns Fal se. The not operator changes thisto Tr ue, making
thei f statement's condition Tr ue and thesys. exi t () function is executed. This will cause the program
to terminate.

Otherwise, execution jumps back to the beginning of the whi | e loop on line 171.

Summary: Review of our Sonar Game

Remember how our Tic Tac Toe game numbered the spaces on the Tic Tac Toe board 1 through 9? This
sort of coordinate system might have been okay for a board with less than ten spaces. But the Sonar board
has nine hundred spaces! The Cartesian coordinate system we learned in the last chapter really makes all
these spaces manageable, especially when our game needed to find the distance between two points on the
board.

Game boards in games that use a Cartesian coordinate system are often stored in a list of lists so that the
first index is the x-coordinate and the second index is the y-coordinate. This make accessing a coordinates

191



look likeboar d[ x] [ y] -

These data structures (such as the ones used for the ocean and locations of the treasure chests) make it
possible to have complicated concepts represented as data in our program, and our game programs become
mostly about modifying these data structures.

In the next chapter, we will be representing letters as numbers using their ASCII numbers. (Thisisthe

same ASCII term we used in "ASCII art" previously.) By representing text as numbers, we can perform
mathematically operations on them which will encrypt or decrypt secret messages.

192



Chapter 13
Caesar Cipher

Topics Covered In This Chapter:

Cryptography and ciphers

Encrypting and decrypting

Ciphertext, plaintext, keys, and symbols

The Caesar Cipher

ASCII ordinal values

Thechr () and ord() functions

Thei sal pha() string method

Thei supper () andi sl ower () string methods
Cryptanalysis

The brute force technique

The program in this chapter is not really a game, but it is fun to play with nonetheless. Our program will convert
normal English into a secret code, and also convert the secret code back into regular English again. Only someonewho is
knowledgeable about secret codes will be able to understand our hidden messages.

Because this program manipulates text in order to convert it into secret messages, we will learn several new functions
and methods that come with Python for manipulating strings. We will also learn how programs can do math with text
strings just as it can with numbers.

About Cryptography

The science of writing secret codes is called cryptography. Cryptography has been used for thousands of yearsto
send secret messages that only the recipient could understand, even if someone captured the messenger and read the
coded message. A secret code system is called a cipher. There are thousands of different ciphers that have been used,
each using different techniques to keep the messages a secret.

In cryptography, we call the message that we want to be secret the plaintext. The plaintext could look something
like this:

Hell o there! The keys to the house are hidden under the reddish flower pot.

When we convert the plaintext into the encoded message, we cal this encrypting the plaintext. The plaintext is
encrypted into the ciphertext. The ciphertext looks like random letters (also called garbage data), and we cannot
understand what the original plaintext was by just looking at the ciphertext. Here is an example of some ciphertext:

Ckkz fkx kj becqnejc kqp pdeo oaynap iaoowca!

193



But if we know about the cipher used to encrypt the message, we can decrypt the ciphertext back to the plaintext.
(Decryption is the opposite of encryption.)

Many ciphers also use keys. Keys are secret values that let you decrypt ciphertext that was encrypted using a specific
cipher. Think of the cipher as being like a door lock. Although all the door locks of the same type are built the same, but
a particular lock will only unlock if you have the key made for that lock.

The Caesar Cipher

When we encrypt a message using a cipher, we will
choose the key that is used to encrypt and decrypt this AIBICIDIEIF
message. The key for our Caesar Cipher will be a number
from 1 to 26. Unless you know the key (that is, know the
number), you will not be able to decrypt the encrypted

message.

The Caesar Cipher was one of the earliest ciphers
ever invented. In this cipher, you encrypt a message by
taking each letter in the message (in cryptography, these A|B|C|D|E|F
letters are called symbols because they can be letters,
numbers, or any other sign) and replacing it with a
"shifted" letter. If you shift the letter A by one space, you
get the letter B. If you shift the letter A by two spaces, you get the letter C. Figure 13-1 is a picture of some letters shifted
over by 3 spaces.

Figure 13-1: Shifting over letters by three spaces.

To get each shifted letter, draw out a row of boxes with each letter of the alphabet. Then draw a second row of boxes
under it, but start a certain number of spaces over. When you get to the leftover letters at the end, wrap around back to
the start of the boxes. Here is an example with the letters shifted by three spaces:

[AIBICIDIE[FIGIHIT[IIKILIMINIOIPIQIRISITIUIVIWIX[Y[Z]

| | | [ 1 1 1 | L 1T 1 1T 1 1111
IXIY[Z[A[BICIDIE[FIGIHIT|JIIKIL[MIN[O[P|QIRISITIU[V W]
Alphabet shifted by 3 spaces.

Figure 13-2: The entire alphabet shifted by three spaces.
The number of spaces we shift is the key in the Caesar Cipher. The example above shows the key 3.

Using a key of 3, if we encrypt the plaintext "Howdy", then the "H" becomes "E". The |etter "0" becomes”|". The
letter "w" becomes "t". The letter "d" becomes"a". And the letter "y" becomes "v". The ciphertext of "Hello" with key 3
becomes "Eltav".

We will keep any non-letter characters the same. In order to decrypt "Eltav" with the key 3, we just go from the bottom
boxes back to the top. The letter "E" becomes "H", the |etter "I" becomes"o", the letter "t" becomes"w", the letter "a"
becomes "d", and the letter "v" becomes"y" to form "Howdy".

ASCII, and Using Numbers for Letters

How do we implement this shifting of the letters in our program? We can do this by representing each letter as a
number (called an ordinal), and then adding or subtracting from this number to form a new number (and a new |etter).
ASCII (pronounced "ask-ee" and stands for American Standard for Code Information Interchange) is a code that
connects each character to a number between 32 and 127. The numbers less than 32 refer to "unprintable" characters, so
we will not be using them.

For example, the letter "A" is represented by the number 65. The letter "m" is represented by the number 109. Hereisa
table of all the ASCII characters from 32 to 127:

194



Table 13-1: The ASCII Table

32 (space) 48 0|64 @|8 P | 9% | 112

33 ! 49 1|65 A |8 Q| 97 a | 113 q
34 " 50 2|66 B |8 R | 9 b | 114 r
35 # 51 3|67 C |8 S| 9 ¢ | 115 s
36 $ 52 4|68 D |8 T | 100 d| 116 t
37 % 53 5|69 E |8 U | 101 e | 117 u
38 & 54 6|7 F |8 V | 102 f | 118 v
39 ' 55 7|70 G |8 W | 103 g | 119 w
40 ( 56 8| 72 H |8 X | 104 h | 120 x
41 ) 57 9|73 I |8 Y | 105 i | 121 'y
42 * 58 : |74 J |9 z | 1068 || 12 z
43 + 59 |75 K |91 [ | 107 k| 123 {
44 , 60 < |76 L |92 \ | 108 I | 124 |
45 - 61 = |77 M | 93 ] 109 m | 125 }
46 62 > |78 N |94 ~ | 110 n | 126 ~
47 / 63 2|79 O |9 | 111 o

The capital letters "A" through "Z" have the numbers 65 through 90. The lowercase letters "a" through "z" have the
numbers 97 through 122. The numeric digits "0" through "9" have the numbers 48 through 57.

So if we wanted to shift "A" by three spaces, we first convert it to a number (65). Then we add 3 to 65, to get 68. Then
we convert the number 68 back to a letter ("D"). We will usethechr () and or d() functions to convert between letters
and numbers.

The chr () and ord() Functions

Thechr () function (pronounced "char", short for "character") takes a single-character string for the parameter, and
returns the integer ASCII number for that string. The or d() function (short for "ordinal") takes an integer for the
parameter, and returns the ASCI| letter for that number. Try typing the following into the interactive shell:

________________________________________________________________________________________________________________________

>>> chr (65+8)
>>> chr(52)

>>> chr(ord('F'))
>>> ord(chr(68))

On the third line, chr ( 65+8) evauatesto chr ( 73) . If you look at the ASCII table, you can see that 73 isthe
ordinal for the capital letter "1". On the fifth line, chr (ord(' F' ) ) evaluatesto chr ( 70) which evaluatesto' F' .
Feeding the result of or d() tochr () will give you back the original argument. The same goes for feeding the result of
chr () toord(), as shown by the sixth line.

Using chr () and or d() will comein handy for our Caesar Cipher program. They are also helpful when we need to
convert strings to numbers and numbers to strings.

195



Sample Run of Caesar Cipher

Here is a sample run of the Caesar Cipher program, encrypting a message:

Do you wish to encrypt or decrypt a nmessage?

encrypt

Enter your nessage:

The sky above the port was the color of television, tuned to a dead channel.
Egter the key nunber (1-26)

Your translated text is:

GQur fxl nobir gur chbeg jnf gur pbybe bs gryrivfvba, gharqg gb n grng punaary.

Now we will run the program and decrypt the text that we just encrypted.
50 you wish to encrypt or decrypt a nessage?
ecrypt

Enter your nessage:
@ur fxI nobir gur cbeg jnf gur pbybe bs gryrivfvba, gharg gb n grng punaary.
Egter t he key nunber (1-26)
Your translated text is:
The sky above the port was the color of television, tuned to a dead channel.
On this run we will try to decrypt the text that was encrypted, but we will use the wong
key. Remenber that if you do not know the correct key, the decrypted text will just be
%gr bage dat a.
you wish to encrypt or decrypt a nessage?
decrypt
Enter your nessage:
@ur fxI nobir gur cbeg jnf gur pbybe bs gryrivfvba, gharqg gb n grng punaary.
Enter the key nunber (1-26)
15
Your translated text is:
Rfc giw yzntc rfc nnpr uyq rfc anjnp nd rcjctggqgm, rslcb rmy bcyb afyllcj.

Caesar Cipher's Source Code

Here is the source code for the Caesar Cipher program. If you don't want to type all of this code in, you can visit this
book's website at the URL http://inv ithpython.com/ch 13 and follow the instructions to download the source
code. After you type this code in, save the file as cipher.py

cipher.py
This code can be downloaded from http://inventwithpython.com/cipher.py
If you get errors after typing this code in, compare it to the book's code with the online diff tool at
http://inventwithpython.com/diff or email the author at al@inventwithpython.com
1. # Caesar G pher
2.
3. MAX_KEY_SIZE = 26
4.
5. def get Mde():
6. whi l e True:
7. print('Do you wish to encrypt or decrypt a nessage?')
8. node = input().lower()
9. if node in 'encrypt e decrypt d' .split():
10. return node
11. el se:
12. print('Enter either "encrypt" or "e" or "decrypt" or
d".)
13.
14. def get Message():
15. print('Enter your message:')
16. return input()
17.
18. def getKey():
19. key = 0
20. whil e True:

196



21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

print('Enter the key number (1-%)' % (MAX_KEY_SIZE))

key = int(input())
if (key >= 1 and key <= MAX KEY_SI ZE):
return key

def get Transl at edMessage(node, nessage, key):
if nmode[0] == 'd':
key = -key
translated = "'

for symbol in nessage:
i f synbol.isal pha():
num = ord(synbol)
num += key

i f synbol.isupper():
if num> ord('Z'):

num -= 26
elif num< ord('A):
num += 26

elif synbol.islower():
if num> ord('z'):

num - = 26
elif num< ord('a'):
num += 26

transl ated += chr(nun)
el se:
transl ated += symbol
return transl ated

nmode = get Mode()
message = get Message()
key = getKey()

print(' Your translated text is:')
print (get Transl at edMessage( node, nessage, key))

How the Code Works: Lines 1 to 34

This code is much shorter compared to our other games. The encryption and decryption processes are the just the
reverse of the other, and even then they still share much of the same code. Let's look at how each line works.

1.
2.
3.

# Caesar G pher

MAX_KEY S| ZE = 26

Thefirst lineis simply a comment. The Caesar Cipher is one cipher of atype of ciphers called simple substitution
ciphers. Simple substitution ciphers are ciphers that replace one symbol in the plaintext with one (and only one)
symbol in the ciphertext. So if a"G" was substituted with "Z" in the cipher, every single "G" in the plaintext would be

replaced with (and only with) a"Z".

MAX KEY_SI ZE isavariable that stores the integer 26 in it. MAX_KEY_SI ZE reminds us that in this program, the

key used in our cipher should be between 1 and 26.

Deciding to Encrypt or Decrypt

197




5. def get Mde():

6 whil e True:

7 print('Do you wish to encrypt or decrypt a nessage?')

8 node = input().lower()

9. if nmode in 'encrypt e decrypt d' .split():

10. return node

11 el se:

12 print('Enter either "encrypt" or "e" or "decrypt" or
dr. ')

Theget Mode() function will let the user typein if they want to encrypt or decrypt the message. The return value of
i nput () (which then hasthel ower () method called on it, which returns the lowercase version of the string) is stored
innmode. Thei f statement's condition checks if the string stored in mode existsin thelist returned by ' encrypt e
decrypt d'.split().Thislistis['encrypt', 'e', 'decrypt', 'd'],butitiseaser forthe
programmer to just typein' encrypt e decrypt d'.split() and nottypein al those quotes and commas. But
you can use whatever is easiest for you; they both evaluate to the same list value.

This function will return the first character in nrode aslong asnode isequal to' encrypt' ,' e',' decrypt' ,or
" d' . Thismeansthat get Mode() will return thestring' e' or thestring' d' .

Getting the Message from the Player

14. def get Message():
15. print('Enter your nessage:')
16. return input()

Theget Message() function simply gets the message to encrypt or decrypt from the user and uses this string as its
return value.

Getting the Key from the Player

18. def getKey():

19. key = 0

20. whil e True:

21. print('Enter the key number (1-9%)' % (MAX_KEY_SIZE))
22. key = int(input())

23. if (key >= 1 and key <= MAX KEY_SI ZE):

24. return key

Theget Key() function lets the player type in key they will use to encrypt or decrypt the message. Thewhi | e loop
ensures that the function only returns a valid key. A vaid key here is one that is between the integer values 1 and 26
(remember that MAX_KEY_SI ZE will only have the value 26 because it is constant). It then returns this key. Remember
that on line 22 that key was set to the integer version of what the user typed in, and so get Key() returns an integer.

Encrypt or Decrypt the Message with the Given Key

26. def getTransl at edMessage(node, nessage, key):
27. if nmode[0] == 'd':

28. key = -key

29. translated = "'

198



get Tr ansl at edMessage() isthe function that does the encrypting and decrypting in our program. It has three
parameters. node sets the function to encryption mode or decryption mode. message is the plaintext (or ciphertext) to
be encrypted (or decrypted). key isthe key that is used in this cipher.

Thefirst linein the get Tr ans| at edMessage() function determines if we are in encryption mode or decryption
mode. If the first letter in the MAX_KEY _SI ZE variable isthe string MAX_KEY_SI ZE, then we are in decryption mode.
The only difference between the two modes is that in decryption mode, the key is set to the negative version of itself. If
key wasthe integer 22, then in decryption mode we set it to - 22. The reason for this will be explained later.

t ransl at ed isthe string that will hold the end result: either the ciphertext (if we are encrypting) or the plaintext (if
we are decrypting). We will only be concatenating strings to this variable, so we first store the blank string in
transl at ed. (A variable must be defined with some string value first before a string can be concatenated to it.)

The i sal pha() String Method

Thei sal pha() string method will return Tr ue if the string is an uppercase or lowercase letter from A to Z. If the
string contains any non-letter characters, then MAX_KEY_SI ZE will return MAX_KEY_SI ZE. Try typing the following
into the interactive shell:

________________________________________________________________________________________________________________________

>>> ' Hell o' .isal pha()
True

>>> 'Forty two'.isal pha()
Fal se

>>> ' Fortytwo'.i sal pha()
True

>>> ' 42' . isal pha()

Fal se

>>> "' jsal pha()

Fal se

>>>

Asyoucansee, ' Forty two' .isal pha() will return Fal se because 'Forty two' has a space in it, which isa
non-letter character. * Fortytwo' . i sal pha() returns Tr ue because it does not have this space.
"42' .isal pha() returnsFal se becauseboth' 4' and' 2' are non-letter characters. And ' ' . i sal pha() is
Fal se becausei sal pha() only returns Tr ue if the string has only letter characters and is not blank.

We will usethei sal pha() method in our program next.

31. for synmbol in message:

32. i f synbol .isal pha():
33. num = ord(synbol)
34. num += key

We will run af or loop over each letter (remember in cryptography they are called symbols) in the message string.
Strings are treated just like lists of single-character strings. If nessage had the string' Hel |1 o' ,thenf or synbol
in 'Hello wouldbethesameasfor synmbol in ['H, '"e, "I', "I'", "0'].0Oneachiteration
through this loop, synbol will have the value of a letter in nessage.

Thereason we have thei f statement on line 32 is because we will only encrypt/decrypt letters in the message.
Numbers, signs, punctuation marks, and everything else will stay in their untranslated form. The numvariable will hold
the integer ordinal value of the letter stored in synbol . Line 34 then "shifts' the value in numby the value in key.

The i supper () and i sl ower () String Methods

Thei supper () andi sl ower () string methods (which are on line 36 and 41) work in a way that is very similar to
thei sdigit() andi sal pha() methods. i supper () will return Tr ue if the string it is called on contains at |east

199



one uppercase letter and no lowercase letters. i sl ower () returns Tr ue if the string it is called on contains at least one
lowercase letter and no uppercase |etters. Otherwise these methods return Fal se. The existence of non-letter characters
like numbers and spaces does not affect the outcome. Although strings that do not have any letters, including blank
strings, will also return Fal se. Try typing the following into the interactive shell:

________________________________________________________________________________________________________________________

+ >>> " HELLO . i supper ()
 True

1 >>> 'hello'.isupper()
. Fal se

+ >>> "hello'.islower()
 True

+ >>> "Hello'.islower()
. Fal se

¢ >>> ' LOOK OQUT BEHI ND YQU'' . i supper ()
v True

1 >>> ' 42" i supper()

. Fal se

P >>> 142" sl ower ()

. Fal se

¢ >>> "' i supper ()

. Fal se

P>>> ' isl ower ()

: Fal se

L>>>

________________________________________________________________________________________________________________________

How the Code Works: Lines 36 to 57

The process of encrypting (or decrypting) each letter is fairly smple. We want to apply the same code to every letter
character in the string, which is what the next severa lines do.

Encrypting or Decrypting Each Letter

36. i f synbol.isupper():

37. if num> ord('Z):
38. num - = 26

39. elif num< ord('A):
40. num += 26

This code checks if the symbol is an uppercase letter. If so, there are two specia cases we need to worry about. What if
synbol was' Z' and key was47? If that were the case, the value of numhere would be the character ' ' (The ordinal
or' N is94). But M isn't aletter at al. We wanted the ciphertext to "wrap around” to the beginning of the a phabet.

The way we can do this isto check if key has a value larger than the largest possible letter's ASCII value (whichisa
capital "Z"). If so, then we want to subtract 26 (because there are 26 letters in total) from num After doing this, the
value of numis 68, which isthe ASCII valuefor' D .

41. elif synbol.islower():
42. if num> ord('z'):
43. num - = 26

44, elif num< ord('a'):
45. num += 26

If the symbol is a lowercase letter, the program runs code that is very similar to lines 36 through 40. The only
differenceisthat weuseord(' z') andord('a') insteadof ord(' Z') andord(' A" ).

If we were in decrypting mode, then key would be negative. Then we would have the special case where num - =

26 might be less than the smallest possible value (whichisord(' A" ) , thatis, 65). If this is the case, we want to add
200



26 to numto have it "wrap around”.

47. transl ated += chr(nun
48. el se:
49. transl ated += symbol

Thet r ansl at ed string will be appended with the encrypted/decrypted character. If the symbol was not an uppercase
or lowercase letter, then the else-block on line 48 would have executed instead. All the code in the else-block does is
append the original symbol to thet r ansl at ed string. This means that spaces, numbers, punctuation marks, and other
characters will not be encrypted (or decrypted).

50. return transl at ed

Thelast lineinthe get Tr ansl at edMessage() function returns the translated string.

The Start of the Program

52. node = get Mbde()

53. nessage = get Message()

54. Kkey = getKey()

55.

56. print('Your translated text is:")

57. print(getTransl atedMessage(node, nessage, key))

Thisisthe main part of our program. We call each of the three functions we have defined above in turn to get the
mode, message, and key that the user wants to use. We then pass these three values as arguments to
get Tr ansl at edMessage() , whosereturn value (thet r ansl at ed string) is printed to the user.

Brute Force

That's the entire Caesar Cipher. However, while this cipher may fool some people who don't understand cryptography,
it won't keep a message secret from someone who knows cryptanalysis. While cryptography is the science of making
codes, cryptanalysis isthe science of breaking codes.

Do you wish to encrypt or decrypt a nmessage?

encrypt

Enter your messa?e:

The door key will be hidden under the mat until the fourth of July.
gnter the key nunber (1-26)

Your translated text is: ]
Bpm wwz sng eqtt jmpqgllnv cvlnz bpm uib cvbgqt bpm nweczbp wn Rctg.

The whole point of cryptography isthat so if someone else gets their hands on the encrypted message, they cannot
figure out the original unencrypted message from it. Let's pretend we are the code breaker and all we have isthe
encrypted text:

Bpm lwwz sng eqtt jmpgllmy cvlinme bpmuib cvbgt bpm nwezbp wn Rctg.

One method of cryptanalysisis called brute force. Brute force is the technique of trying every single possible key.
If the cryptanalyst knows the cipher that the message uses (or at least guessesit), they can just go through every possible
key. Because there are only 26 possible keys, it would be easy for a cryptanalyst to write a program than prints the

decrypted ciphertext of every possible key and see if any of the outputs make sense. Let's add a brute force feature to our
201



program.

Adding the Brute Force Mode to Our Program

First, change lines 7, 9, and 12 (which are in the get Mode() function) to look like the following (the changes are in

bold):

5. def get Mde():

6. whil e True:

7. print('Do you wish to encrypt or decrypt or brute force a
nmessage?')

8. node = input().lower()

9. if nmode in 'encrypt e decrypt d brute b'.split():

10. return node[ 0]

11. el se:

12. print('Enter either "encrypt" or "e" or "decrypt" or
"d" or "brute" or "b".")

This will let us select "brute force" as a mode for our program. Then modify and add the following changes to the
main part of the program:

52. node = get Mode()

53. nmessage = get Message()

54. if node[0] != "b':

55. key = getKey()

56.

57. print(' Your translated text is:")

58. if node[0] != "Db':

59. print (get Transl at edMessage( node, nessage, key))
60. el se:

61. for key in range(l, MAX KEY_SIZE + 1):

62. print(key, getTransl atedMessage(' decrypt’', nessage, key))

These changes make our program ask the user for a key if they are not in "brute force" mode. If they are not in "brute
force" mode, then the original get Tr ansl at edMessage() call is made and the trandated string is printed.

However, otherwise we are in "brute force" mode, and werun aget Tr ansl at edMessage() loop that iterates
from 1 all the way up to MAX_KEY_SI ZE (which is 26). Remember that when the r ange() function returns a list of
integers up to but not including the second parameter, which iswhy we have + 1. This program will print out every

possible trandation of the message (including the key number used in the trandation). Here is a sample run of this
modified program:

________________________________________________________________________________________________________________________

+ Do you wish to encrypt

ibr
+ En

» Bom Ilwwz sng eqgtt jmpqgllm/ cvlnme bpmuib cvbqt
transl ate

" Yo

~NOO O WN -

ut e
ter your
ur

Aol
Znk
v
x{”.

?

kvvy
] uux
Ittw
hssv

?rru

qqt
epps

or
message:

t ext
dpss
corr
bnqq

ampp
z|l oo

yknn
Xj mm ¢

|Is
i
hk no“kt
? mi 1
| Inhhlr

eh ki
ip [iFfo;

rlkf
gke
pj d
ol c
nhb

n?a

decrypt or

opkkl u

?P

brute force a nessage?

bpm nwczbp wn Rctg.

aol
znk
ynj
x| 1
wkh
vj

bukly
at j kx
zsljw
yrhiv
xqghu

voe?g

t ha buaps
s?z at zor
rfy zsynq
gex yrxnp

aol mvbyao vm Qbsf.
znk luaxzn ul Pare.
ynj ktzwym tk Ozqd.
xI'1 jsyvxl sj Nypc.
pdw xgwl o wkh I rxuwk ri Mkob.
ocv wopvkn vjg hgwtvj gh Lwna.
ulf nbu voujm uif gpvsui pg Kvnw.

I_The door

key wll

be hi dden

under the nmat until the fourth of July.]

)

Sgd cnnq

) dx
+ 10 Rfc bmmp icw ugjj

VAKK ad ghccdm
zc fgbbcl

tncdq sgd Tzs tnshk sgd entgsg ne T1KX.
slbcp rfc kyr slrgj rfc dnsprf nd Hsjw

202



1 11 Qeb allo hbv tfii yb efaabk rkabo qgeb jxq rkqgfi qeb clroge Ic Giv.
12 Pda zkkn gau sehh xa dezzaj qjzan pda Iwp qj peh pda bkgnpd kb Fghu.
13 Ccz yjjmfzt rd?? wz cdyyzi piyzm ocz hvo piodg ocz ajpnoc ja Epgt.
14 Noy xi1l eys qc vy bcxxyh ohxyl nby gun ohncf nby ziolnb 1z Dofs.
15 Max whhk dxr pbee ux abwax n?ka max ftm ngnbe max yhnkma hy Cner.
16 Lzw v??j cwg oadd tw zavv | zw esl lad | zw \),(\/? nlz ?x Bndq.

I bvp nzcc sv yzuuve Ieuw kyv drk |ekzc kyv 1k w p.

18 Jxu teeh auo nybb ru xyttud kdtuh jxu cqj kdjyb jxu vekhj x ev Zkbo.

19 Iwm sddg ztn |Ixaa gt wxsstc jcstg 1wt bpl jcixa Iw udjg w du Yjan.

20 Hvs rcct ysmkwzz ps vwrsb 1 brst hvs aoh 1 bhwz hvs tcl ct Xizm

21 GQur qgbbe xrl jvyy or uvggra haqre ?ur zng ha vy ?ur sbhegu bs Wyl .

22 Ftqg paad wgk 1uxx ng tuppgz gzpqd ftq vy ? tq ragd t ar Vgxk.

23 Esp ozzc vpj htww np stoopy fyopc esp xIe yetw esp qzfces zq j .

24 Dro nyyb uol gsvv | o rsnnox exnob dro wkd exdsv dro pyebdr yp Tevi.

25 Cgn nmxxa tnh fruu kn grmmw dwma cqgn vjc dweru cqn oxdacq xo Sduh.

26 Bpm lwwz sng eqtt jm pgllm/ cvlnme bpmuib cvbgt bpm nweczbp wn Rctg.

After looking over each row, you can see that the 8th message is not garbage, but plain English! The cryptanalyst can
deduce that the original key for this encrypted text must have been 8. This brute force would have been difficult to do
back in the days of Caesars and the Roman Empire, but today we have computers that can quickly go through millions or
even billions of keysin a short time. Y ou can even write a program that can recognize when it has found a message in
English, so you don't have read through all the garbage text.

Summary: Reviewing Our Caesar Cipher Program

Computers are very good at doing mathematics. When we create a system to translate some piece of information into
numbers (such as we do with text and ASCII or with space and coordinate systems), computer programs can process
these numbers very quickly and efficiently.

But while our Caesar cipher program here can encrypt messages that will keep them secret from people who have to
figure it out with pencil and paper, it won't keep it secret from people who know how to get computers to process
information for them. (Our brute force mode that we added proves this.) And there are other cryptographic ciphers that
are so advanced that nobody knows how to decrypt the secret messages they make. (Except for the people with the key of
course!)

A large part of figuring out how to write a program is figuring out how to represent the information you want to
manipulate as numbers. | hope this chapter has especially shown you how this can be done. The next chapter will present
our final game, Revers (also known as Othello). The Al that plays this game will be much more advanced than the Al
that played Tic Tac Toein chapter 9. In fact, the Al is so good, that you'll find that most of the time you will be unable to
beat it!

203



Chapter ]4
Reversi

Topics Covered In This Chapter:

« Thebool () Function
« Evaluating Non-Boolean Vaues as Booleans

How to Play Reversi

In this chapter we will make a game called Reversi. Reversi (also caled Othello) is a board game that is
played on a grid (so we will use a Cartesian coordinate system with XY coordinates, like we did with
Sonar.) It is a game played with two players. Our version of the game will have a computer Al that is more
advanced than the Al we made for Tic Tac Toe. In fact, this Al is so good that it will probably beat you
almost every time you play. (I know | lose whenever | play against it!)

If you would like to see a video of Reversi being played, thereis a demonstration on this book's website.
Go to the URL http://inventwithpython.com/videos and find the "Reversi Demo Video" video.

Reversi has an 8 x 8 board with tiles that are black on one side and white on the other (our game will use
O's and X's though). The starting board looks like Figure 14-1. Each player takes turn placing down a new
tile of their color. Any of the opponent's tiles that are between the new tile and the other tiles of that color is
flipped. For example, Figure 14-2 iswhat it looks like if the white player places a new white tile on space 5,
6.

204



123456 78 123456 78
1 1

2 2

3 3

4 (@ 4 (@

5 Q@ 5 Q@

6 6 O

7 7

8 8

Figure 14-1: The starting Reversi bpard has two white tiles and Figure 14-2: White places anew tile.
two black tiles.

The black tile at 5, 5 isin between the new white tile and the existing white tile at 5, 4. That black tileis
flipped over and becomes a new white tile, making the board look like Figure 14-3. Black makes a similar
move next, placing a black tile on 4, 6 which flips the white tile a 4, 5. This resultsin a board that |ooks
like Figure 14-4.

123 45¢6 738 123 45¢6 738
1 1
2 2
3 3
4 00 4 00
5 QIO 5 O
6 Q 6 L)@
/ /
8 8
Figure 14-4: Black places anew tile, which flips over one of

Figure 14-3: White's move will flip over one of black's tiles. o
white'stiles.

Tilesin al directions are flipped as long as they are in between the player's new tile and existing tile.

Below in Figure 14-5, the white player places atile at 3, 6 and flips black tiles in both directions (marked by
thelines.) Theresult isin Figure 14-6.

205



123 45©6 7 8 1 23 45©6 7 8

oNe
O0O
O0|®
OO0

G Q

N O v e w N

0o ~J O v B ow N

8

Figure 14-5: White's second move at 3, 6 will flip two of black's
tiles.

Figure 14-6: The board after white's second move.

Asyou can see, each player can quickly grab a majority of the tiles on the board in just one or two
moves. Players must always make a move that captures at least one tile. The game ends when a player
either cannot make a move, or the board is completely full. The player with the most tiles of their color
wins.

The basic strategy of Reversi isto look at which move would turn over the most tiles. But you should also
consider taking a move that will not let your opponent recapture many tiles after your move. Placing a tile
on the sides or, even better, the corners is good because there is less chance that those tiles will end up
between your opponent's tiles. The Al we make for this game will smply look for any corner moves they
can take. If there are no corner moves available, then the computer will select the move that claims the most
tiles.

Sample Run

Notice that our version of Reversi doesn't use black and white tiles because the text that our program
creates will always be the same color. Instead, we will use X's and O's to represent the human and computer

players.

Wel cone to Reversi!
Do you want to be X or O?

X
The player will go first.
1 2 3 4 5 6 7 8

+ + + i + + +
1

+ + + i & + + +
2

+ + + i & + + +
3

+ + + R i + + +
4 X O

206



S

e

e

B T S I
You have 2 points. The conputer has 2 points. ) _
Enter your nove, or type quit to end the game, or hints to turn off/on hints.

1 2 3 4 5 6 7 8
e e g N DY S S

S TP O TP e U S 3

S TP O TP e U S 3

S O T B

S O T B

B T T T e S
You have 4 points. The conputer has 1 points
Press Enter to see the conputer's nove.

...Skipped for brevity...

1 2 3 4 5 6 7 8
e LI S S

e

207



B T S I
You have 12 points. The conputer has 48 points. ) _
Enter your nove, or type quit to end the game, or hints to turn off/on hints.

X scored 15 points. O scored 46 points.
You | ost. The conputer beat you by 31 points.
Do you want to play again? (yes or no)

no

Asyou can see, the Al was pretty good at beating me. To help the player out, we'll program our game to
provide hints. If the player types' hi nt s' astheir move, they can toggle the hints mode on and off. When
hints mode is on, al the possible moves the player can make will show up ontheboard as' . ' characters,
likethis:

; 1 2 3 4 5 6 7 8 ;
! E R T T T !

1 1
1 1
1
1 1
: S H < SO U A A S 8 :
1 1
1 1
v 2
1 1
: S H < SO U A A S 8 :
1 1
1 1
3 (@] (@] (@]
1 1
: S H < SO U A A S 8 :
1 1
1 1
4 (@] (@] X
1 1
: S SO U A A S8 :
1 1
1 1
5 (@] (@] O X
1 1
: N S U A A S 8 :
1 1
1 1
1 6
1 1
: N S U A A S 8 :
1 1
1 1
7
1 1
: N S U A A S 8 :
1 1
1 1
'+ 8
1 1
1 1

P TR S

Reversi's Source Code

Reversi is a mammoth program compared to our previous games. It comesin over 300 lines long! (But
don't worry, many of these lines are just comments or blank lines to space out the code and make it more
readable.) As always, you don't have to type in the program before reading this chapter. And you can also

208



download the program by going to this book's website at the URL, http://inventwithpython.com/chapteri4
and following the instructions online.

Aswith our other programs, we will first create several functionsto carry out Reversi-related tasks that
the main section of our program will call. Roughly the first 250 lines of code are for these helper functions,
and the last 50 lines of code implement the Reversi game itself.

reversi.py

This code can be downloaded from http://inventwithpython.com/reversi.py

If you get errors after typing this code in, compare it to the book's code with the online diff tool at
http://inventwithpython.com/diff or email the author at al@inventwithpython.com

1. # Reversi

2.

3. inport random

4. inport sys

5.

6. def drawBoard(board):

7. # This function prints out the board that it was

passed. Returns None.

8. HLINE = ' 4-- -t em e e e e e e oo oo e e o - - - +
9. VLINE=" | [ | | | [ | | I
10.

11. print(' 1 2 3 4 5 6 7 8")

12. print (HLI NE)

13. for y in range(8):

14. pri nt ( VLI NE)

15. print(y+1l, end=" ")

16. for x in range(8):

17. print('| %' % (board[x][y]), end=" ")
18. print('|")

19. pri nt (VLI NE)
20. print (HLI NE)
21.
22.
23. def resetBoard(board):
24. # Bl anks out the board it is passed, except for the

original starting position.

25. for x in range(8):
26. for y in range(8):
27. board[x][y] =" "
28.
29. # Starting pieces:

30. board[3][3] = "'X

31. board[3][4] = 'O

32. board[4][3] = 'O

33. board[4][4] = 'X

34.

35.

36. def get NewBoard():

37. # Creates a brand new, blank board data structure.
38. board = []

39. for i in range(8):
40. board. append([' '] * 8)

209



41.
42.
43.
44
45.
46.

47.

48.

49,
50.
51.

52.
53.
54.
55.
56.
57.
58.
59.

60.
61.
62.
63.
64.

65.
66.
67.
68.
69.
70.
71.
72.

73.
74.
75.
76.
7.

78.
79.
80.
81.
82.
83.
84.
85.

def

return board

I sVal i dMbve(board, tile, xstart, ystart):
# Returns False if the player's nove on space xstart,

ystart is invalid.

# If it is a valid nove, returns a list of spaces

that woul d becone the player's if they nade a nove here.

I f board[xstart][ystart] !'=" " or not

i sOnBoard(xstart, ystart):

return Fal se

board[ xstart][ystart] = tile # tenporarily set the

tile on the board.

0],

if tile == 'X
otherTile = 'O
el se:
otherTile = 'X

tilesToFlip = []
for xdirection, ydirection in [[O, 1], [1, 1], [1,
[1! -1]! [0! '1]! ['1’ '1]’ ['1! 0]! ['1! 1]]
X, Yy = xstart, ystart
X += xdirection # first step in the direction
y += ydirection # first step in the direction
if isOnBoard(x, y) and board[x][y] == otherTile:
# There is a piece belonging to the other

pl ayer next to our piece.

X += xdirection
y += ydirection
I f not isOnBoard(x, Yy):
conti nue
whil e board[x][y] == otherTile:
x += xdirection
y += ydirection
I f not isOnBoard(x, y): # break out of

while [ oop, then continue in for |oop

br eak
I f not isOnBoard(x, Yy):
conti nue

if board[x][y] == tile:
# There are pieces to flip over. Go in

the reverse direction until we reach the original space,
noting all the tiles along the way.

while True:
X -= xdirection
y -= ydirection
If x == xstart and y == ystart:
br eak

tilesToFlip.append([x, Yy])

board[ xstart][ystart] = # restore the enpty space
210




86.

87.
88.
89.
90.
91.
92.

93.
94.
95.
96.
97.

98.

99.
100.
101.
102.
103.
104.
105.
106.

107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.

118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.

132.
133.

If len(tilesToFlip) == 0: # If no tiles were flipped,
this is not a valid nove.
return Fal se
return tilesToFlip

def isOnBoard(x, Yy):

# Returns True if the coordinates are | ocated on the
boar d.

return x >= 0 and x <= 7 and y >= 0 and y <=7

def get BoardW thVali dMoves(board, tile):

# Returns a new board with . marking the valid noves
the given player can nake.

dupeBoard = get Boar dCopy( boar d)

for x, y in getValidMWves(dupeBoard, tile):
dupeBoard[x][y] = '.'
return dupeBoard

def getValidMoves(board, tile):

# Returns a list of [x,y] lists of valid noves for
the given player on the given board.

val i dMoves = []

for x in range(8):
for y in range(8):
if isValidMve(board, tile, x, y) != False:
val i dMoves. append([ X, Y])
return val i dvbves

def get Scor e Boar d( board):
# Determ ne the score by counting the tiles. Returns
ctionary with keys 'X and 'O.
xscore = 0
oscore = 0
for x in range(8):
for y in range(8):

a d

I f board[x][y] == '"X:
xscore += 1
if board[x][y] == 'O:

oscore += 1
return {' X :xscore, 'O :oscore}

def enterPlayerTile():
# Let's the player type which tile they want to be.
# Returns a list with the player's tile as the first
item and the conputer's tile as the second.
tile ="'
while not (tile =="'X or tile == "0):
211




print('Do you want to be X or O?')
tile = input().upper()

# the first elenent in the tuple is the player's
tile, the second is the conputer's tile.
if tile == "X :
return ['X, "O]
el se:
return ['O, 'X]

def whoGoesFirst():
# Random y choose the player who goes first.
if randomrandint(0, 1) == O:
return 'conputer’
el se:
return 'player'

def playAgain():
# This function returns True if the player wants to
pl ay again, otherwise it returns False.
print('Do you want to play again? (yes or no)')
return input().lower().startswith('y")

def nmakeMove(board, tile, xstart, ystart):

# Place the tile on the board at xstart, ystart, and
flip any of the opponent's pieces.

# Returns False if this is an invalid nove, True if
it is valid.

tilesToFlip = isValidMvve(board, tile, xstart,
ystart)

if tilesToFlip == Fal se:
return Fal se

board[ xstart][ystart] = tile
for x, y in tilesToFlip:

board[ x][y] = tile
return True

def get Boar dCopy(board):

# Make a duplicate of the board list and return the
duplicate.

dupeBoard = get NewBoar d()

for x in range(8):
for y in range(8):
dupeBoard[ x][y] = board[x][Y]

return dupeBoard

212




82.
83.
84.

85.

86.
87.
88.
89.
90.

91.
92.
93.

94.
95.
96.
97.
98.
99.
00.

01.
02.
03.

04.
05.
06.
07.
08.

09.

10.
11.
12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

def isOnCorner(x, y):

# Returns True if the position is in one of the four
corners.

return (x == 0 and y == 0) or (x == 7 and y == 0) or
(x ==0andy ==7) or (x ==7 and y == 17)

def get Pl ayer Move(board, playerTile):

# Let the player type in their nove.

# Returns the nove as [x, y] (or returns the strings
"hints' or 'quit')

DIGTSITO8 = '1 2 3 456 7 8 .split()

while True:

print('Enter your nove, or type quit to end the

game, or hints to turn off/on hints.")

nmove = input().lower()

if nmove == "quit':
return 'quit'

if nove == 'hints':

return 'hints'

if len(nmove) == 2 and nove[0] in DA TS1ITG and
nove[1l] in DI G TS1TQO8:

X = int(nmove[0]) - 1
y = int(nove[l]) - 1
i f isValidMove(board, playerTile, x, y) ==
Fal se:
conti nue
el se:
br eak

el se:
print('That is not a valid nove. Type the x
digit (1-8), then the y digit (1-8).")
print('For exanple, 81 will be the top-right
corner.")

return [X, Y]

def get Conput er Move(board, conputerTile):
# G ven a board and the conputer's tile, determ ne
where to
# move and return that nove as a [x, y] list.
possi bl eMoves = get Val i dMoves(board, conputerTile)

# random ze the order of the possible noves
random shuf f| e( possi bl eMbves)

# always go for a corner if avail able.
for x, y in possibleMves:
if isOnCorner(x, Yy):
return [Xx, VY]

213




P27 .

P28.
P29.
230.
P31.
P32.
P33.
P34.
P35.
P36.
P37.
38.
39.
P40.
P41,
P42.

P43.
P44,
P45,
PA6.
PAT.
P48.
P49,
250.
P51.
P52.
P53.
P54,
P55.
P56.
P57.
P58.
59.
60.
P61.

62.
63.
64.
65.
66.
P67 .
68.
69.
70.
P71,
P72,
P73.
P74,

75.
P76.

# Go through all the possible noves and renenber the
best scoring nove
best Score = -1
for x, y in possibleMves:
dupeBoard = get Boar dCopy( boar d)
makeMove(dupeBoard, conputerTile, X, y)
score = get ScoreOf Boar d( dupeBoard) [ conput erTi | €]
if score > bestScore:
best Move = [X, VY]
best Score = score
return best Move

def showPoi nts(playerTile, conputerTile):

# Prints out the current score.

scores = get Scor e Boar d( mai nBoar d)

print('You have % points. The conputer has %
points.' % (scores[playerTile], scores[conputerTile]))

print(' Wl conme to Reversi!')

whil e True:
# Reset the board and gane.
mai nBoard = get NewBoar d()
r eset Boar d( nai nBoar d)
playerTile, conputerTile = enterPlayerTile()
showHi nts = Fal se
turn = whoGoesFirst()

print("The ' + turn + " will go first.")
while True:
if turn == "player':
# Player's turn.
if showHi nts:

val i dvbvesBoard =
get Boar dW t hval i dMoves( mai nBoard, playerTile)
dr awBoar d(val i dMovesBoar d)
el se:
dr awBoar d( nmai nBoar d)
showPoi nt s(pl ayerTil e, conputerTile)
nove = get Pl ayer Move(mai nBoard, playerTile)
if nmove == 'quit':
print (' Thanks for playing!")
sys.exit() # termnate the program

elif nove == '"hints':
showH nts = not showHi nts
conti nue

el se:

makeMove( mai nBoard, playerTile, nove[O0],
nove[ 1])

i f getValidMWoves(nmai nBoard, conputerTile) ==
214




[1:

R77. br eak

P78. el se:

P79. turn = 'conputer'

280.

P81. el se:

P82. # Conputer's turn

P83. dr awBoar d( mai nBoar d)

P84. showPoi nt s(pl ayerTil e, conputerTile)

P85. input('Press Enter to see the conputer\'s
nove. ')

P86. X, y = get Conput er Move( nai nBoar d,
conputerTile)

P87. makeMove( mai nBoard, conputerTile, x, y)

P88.

P89. i f getValidMWoves(nai nBoard, playerTile) ==
[1:

290. br eak

PI1. el se:

P92. turn = 'player’

P93.

P94, # Display the final score.

P95. dr awBoar d( mai nBoar d)

P96. scores = get Scor e Boar d( nmai nBoar d)

PO7. print('X scored % points. O scored % points.' %
(scores[' X' ], scores['O]))

P98. if scores[playerTile] > scores[conputerTile]:

299. print('You beat the conputer by % points!
Congratul ations!' % (scores[playerTile] -
scores[conmputerTile]))

300. elif scores[playerTile] < scores[conputerTile]:

301. print('You |lost. The conputer beat you by %
points.' % (scores[conputerTile] - scores[playerTile]))

302. el se:

303. print(' The gane was a tie!')

304.

305. if not playAgain():

306. br eak

How the Code Works

The Game Board Data Structure

Before we get into the code, we should talk about the board data structure. This data structureis a list of
lists, just like the one in our previous Sonar game. The list is created so that boar d[ x] [ y] will represent
the character on space located at position x on the X-axis (going left/right) and position 'y on the Y -axis
(going up/down). This character can either bea' ' space character (to represent a blank space), a’ . '
period character (to represent a possible movein hint mode), oran' X' or' O (to represent a player'stile).
Whenever you see a parameter named board, that parameter variable is meant to be this list of listsboar d
data structure.

215



Importing Other Modules

# Rever si

1

2.

3. inport random
4. inport sys

We import the r andommodule for itsr andi nt () and choi ce() functions and the sys module for its
exi t () function.

Drawing the Board Data Structure on the Screen

6. def drawBoard(board):

7. # This function prints out the board that it was
passed. Returns None.

8. HLINE = ' 4o - - e e o e e o e e e o e o o oo o o - -

9. VLINE = ' | I I I I I I I |

10.

11. print(' 1 2 3 4 5 6 7 8")

12. print (HLI NE)

Thedr awBoar d() function will print out the current game boar d based on the data structure in board.
Notice that each sgquare of the board looks like this:

----------------------------------------------------------------------------------------------------------

Since we are going to print the string with the horizontal line (and plus signs at the intersections) over and
over again, we will store that in a constant variable named HLI NE. There are also lines above and below
the very center of X or O tile that are nothing but '|' characters (called "pipes’) with three spaces in between.
We will store this string in a constant named VLI NE.

Line 11isthefirst pri nt () function call executed, and it prints out the labels for the X-axis along the
top of the board. Line 12 prints the top horizontal line of the board.

13. for y in range(8):

14. print (VLI NE)

15. print(y+1, end=" ")

16. for x in range(8):

17. print('| %' % (board[x][y]), end=" ")
18. print('|")

19. print (VLI NE)

20. pri nt ( HLI NE)

216



Printing each row of spaces on the board is fairly repetitive, so we can use a loop here. We will loop eight
times, once for each row. Line 15 prints the label for the Y -axis on the |eft side of the board, and has a
comma at the end of it to prevent a new line. Thisis so we can have another loop (which again loops eight
times, once for each space) print out each space (along withthe' X' ," O ,or"' ' character for that space
depending on what is stored in board.

Theprint () function call inside the inner loop also has a comma at the end of it, meaning a space
character is printed instead of a newline character. This produces the second space in the pipe-space-tile-
space string that we print out, over and over for eight times. That will produce a single line on the screen
that lookslike' | X | X | X | X | X | X | X | X '.Aftertheinnerloop isdone, the
print () function cal online 18 prints out thefinal ' | ' character along with a newline (since it does not
end with a comma).

(The pri nt () call forces usto always print a newline character or a space at the end of everything we
print. If we do not want this last character, then we can aways use thesys. st dout . wi t e() function,
which has a single string parameter that it prints out. Besureto i nport sys first before calling this
function.)

The code inside the outer f or loop that begins on line 13 prints out an entire row of the board like this:

When printed out eight times, it forms the entire board (of course, some of the spaces on the board will
have' O or' ' instead of ' X' .

Resetting the Game Board

217



An important thing to remember is that the coordinates that we print out to the player are from 1 to 8, but
the indexesin the boar d data structure are from O to 7.

23. def resetBoard(board):

24. # Bl anks out the board it is passed, except for the
original starting position.

25. for x in range(8):

26. for y in range(8):

27. board[ x][y] ="' '

Here we use aloop inside a loop to set the boar d data structure to be al blanks. We will call the
reset Boar d() function whenever we start a new game and want to remove the tiles from a previous
game.

Setting Up the Starting Pieces

29. # Starting pieces:
30. board[3][3] = "'X
31. board[3][4] = 'O
32. board[4][3] = 'O
33. board[4][4] = 'X

When we start a new game of Reversi, it isn't enough to have a completely blank board. At the very
beginning, each player has two tiles already laid down in the very center, so we will also have to set those.

We do not have to return the boar d variable, because boar d is areference to a list. Even when we

make changes inside the local function's scope, these changes happen in the global scope to the list that was
passed as an argument. (Remember, this is one way list variables are different from non-list variables.)

Creating a New Game Board Data Structure

36. def get NewBoard():

37. # Creates a brand new, blank board data structure.
38. board = []

39. for i in range(8):

40. board. append([' '] * 8)

41.

42. return board

The get NewBoar d() function creates a new board data structure and returns it. Line 38 creates the
outer list and assigns a reference to this list to boar d. L|ne 40 create the inner lists usmg list replication.
('] * 8isthesameas[' ', " ', " ", ' ottty ] but with less
typing.) Thef or loop here runsline 40 e|ght times to create the e|ght mner lists. The spaces represent a
completely empty game board.

218



Checking if a Move is Valid

45. def isVvalidwvove(board, tile, xstart, ystart):

46. # Returns False if the player's nove on space xstart,
ystart is invalid.

47. # If it is a valid nove, returns a list of spaces
that woul d becone the player's if they nade a nove here.

48. I f board[xstart][ystart] !'=" " or not
i sOnBoard(xstart, ystart):

49, return Fal se

50.

51. board[ xstart][ystart] = tile # tenporarily set the
tile on the board.

52.

53. if tile =="'X

54. otherTile = 'O

55. el se:

56. otherTile = 'X

57.

58. tilesToFlip = []

i sVal i dvbve() isone of the more complicated functions. Given a board data structure, the player's
tile, and the XY coordinates for player's move, this function should return Tr ue if the Reversi game rules
allow that move and Fal se if they don'.

The easiest check we can do to disqualify a move isto see if the XY coordinates are on the game board or
if the space at XY isnot empty. Thisiswhat the if statement on line 48 checks for. i sOnBoar d() isa
function we will write that makes sure both the X and Y coordinates are between 0 and 7.

For the purposes of this function, we will go ahead and mark the XY coordinate pointed to by xst ar t
and yst art with the player's tile. We set this place on the board back to a space before we leave this
function.

The player's tile has been passed to us, but we will need to be able to identify the other player's tile. If the
player'stileis’' X' then obviously the other player'stileis’ O . And it is the same the other way.

Finally, if the given XY coordinate ends up as a valid position, we will return alist of all the opponent's
tiles that would be flipped by this move.

59. for xdirection, ydirection in [[O, 1], [1, 1], [1,
o], 2, -1], [O, -1], [-1, -1], [-1, O], [-1, 1]]:

Thef or loop iterates through a list of lists which represent directions you can move on the game board.
The game board is a Cartesian coordinate system with an X and Y direction. There are eight directions you
can move: up, down, left, right, and the four diagonal directions. We will move around the board in a
direction by adding the first value in the two-item list to our X coordinate, and the second value to our Y
coordinate.

Because the X coordinates increase as you go to the right, you can "move" to the right by adding 1 to the

219



X coordinate. Moving to the left is the opposite: you would subtract 1 (or add - 1) from the X coordinate.
We can move up, down, left, and right by adding or subtracting to only one coordinate at a time. But to
move diagonally, we need to add or subtract to both coordinates. For example, adding 1 to the X coordinate
to move right and adding - 1 to the Y coordinate to move up would result in moving to the up-right
diagonal direction.

Checking Each of the Eight Directions

Here is a diagram to make it easier to remember which two-item list represents which direction:

X increases =l

(=1,-1))10,-11([1,-1]

K17

[(=1,0] = wep [1,0]

v 4 N

=1,11 (0,17 | [1,1]

G—— S2SD2JOUI A

Figure 14-7: Each two-item list represents one of the eight directions.

59. for xdirection, ydirection in [[O, 1], [1, 1], [1,
o, 1 -1}, [0, -1}, [-1, -1], [-1, O], [-1, 1]]:

60. X, Yy = xstart, ystart

61. X += xdirection # first step in the direction

62. y += ydirection # first step in the direction

Line 60 setsan x and y variable to be the samevalueas xst art and yst ar t , respectively. We will
change x and y to "move" in the direction that xdi r ect i on and ydi r ect i on dictate. xst art and
ystart will stay the same so we can remember which space we originally intended to check. (Remember,
we need to set this place back to a space character, so we shouldn't overwrite the values in them.)

We make the first step in the direction as the first part of our algorithm.

63. I f isOnBoard(x, y) and board[x][y] == otherTile:

64. # There is a piece belonging to the other
pl ayer next to our piece.

65. X += xdirection

66. y += ydirection

67. I f not isOnBoard(x, y):

68. conti nue

220



Remember, in order for this to be a valid move, the first step in this direction must be 1) on the board and
2) must be occupied by the other player's tile. Otherwise there is no chance to flip over any of the
opponent'stiles. In that case, thei f statement online63isnot Tr ue and execution goes back to the f or
statement for the next direction.

But if the first space does have the other player's tile, then we should keep proceeding in that direction
until we reach on of our own tiles. If we move off of the board, then we should continue back to the f or
statement to try the next direction.

69. whil e board[x][y] == otherTile:

70. X += xdirection

71. y += ydirection

72. i f not isOnBoard(x, y): # break out of
whil e [ oop, then continue in for |oop

73. br eak

74. if not isOnBoard(x, Yy):

75. conti nue

Thewhi | e loop on line 69 ensuresthat x and y keep going in the current direction as long as we keep
seeing a trail of the other player'stiles. If x and y move off of the board, we break out of the f or loop and
the flow of execution movesto line 74. What we really want to do is break out of the whi | e loop but
continue in thef or loop. But if we put acont i nue statement on line 73, that would only continue to the
whi | e loop on line 69.

Instead, we recheck not i sOnBoar d(x, Yy) online74 and then continue from there, which goes to
the next direction in the f or statement. It isimportant to know that br eak and cont i nue will only break
or continue in the loop they are called from, and not an outer loop that contain the loop they are called
from.

Finding Out if There are Pieces to Flip Over

76. i f board[x][y] == tile:

77. # There are pieces to flip over. Go in
the reverse direction until we reach the original space,
noting all the tiles along the way.

78. while True:

79. X -= xdirection

80. y -= ydirection

81. If X == xstart and y == ystart:
82. br eak

83. tilesToFlip.append([x, Yy])

If the whi | e loop on line 69 stopped looping because the condition was Fal se, then we have found a
space on the board that holds our own tile or a blank space. Line 76 checks if this space on the board holds
one of our tiles. If it does, then we have found a valid move. We start a new whi | e loop, this time
subtracting x and y to move them in the opposite direction they were originaly going. We note each space
between our tiles on the board by appending the spacetothet i | esToFl i p list.

We break out of the whi | e loop once x and y have returned to the original position (which was still
221



stored inxstart andystart).

85. board[ xstart][ystart] ="' ' # restore the enpty space

86. If len(tilesToFlip) == 0: # If no tiles were flipped,
this is not a valid nove.

87. return Fal se

88. return tilesToFlip

We perform this check in all eight directions, and afterwardsthet i | esToFl i p list will contain the XY
coordinates all of our opponent's tiles that would be flipped if the player moved onxst art ,ystart.
Remember, thei sVal i dvbve() function isonly checking to see if the original move was valid, it does
not actually change the data structure of the game board.

If none of the eight directions ended up flipping at least one of the opponent'stiles, thenti | esToFl i p

would be an empty list and this move would not be valid. In that case, i sVal i dMbve() should return
Fal se. Otherwise, we should returnti | esToFl i p.

Checking for Valid Coordinates

91. def isOnBoard(x, Yy):

92. # Returns True if the coordinates are |located on the
boar d.
93. return x >> 0 and x <= 7 and y >= 0 and y <=7

i sOnBoar d() isafunction called fromi sVal i dMove() , and isjust shorthand for the rather
complicated Boolean expression that returns Tr ue if both x and y are in between 0 and 7. This function
lets us make sure that the coordinates are actually on the game board.

Getting a List with All Valid Moves

96. def getBoardWthValidMVoves(board, tile):

97. # Returns a new board with . marking the valid noves
the given player can nake.

98. dupeBoard = get Boar dCopy( boar d)

99.

100. for x, y in getValidMves(dupeBoard, tile):

101. dupeBoard[x][y] = ".'

102. return dupeBoard

get Boar dW t hVval i dMbves() isused to return a game board data structurethat has' . ' characters
for all valid moves on the board. This is used by the hints mode to display to the player a board with all
possible moves marked on it.

Notice that this function creates a duplicate game board data structure instead of modifying the one
passed to it by the boar d parameter. Line 100 calls get Val i dMoves() , which returns a list of xy
coordinates with all the legal moves the player could make. The board copy is then marked with a period in

222



those spaces. How get Val i dMoves() works is described next.

105. def getValidMwves(board, tile):

106. # Returns a list of [x,y] lists of valid noves for
the given player on the given board.

107. val i dMoves = []

108.

109. for x in range(8):

110. for y in range(8):

111. if isValidMve(board, tile, x, y) != False:

112. val i dMoves. append([ x, Vy])

113. return val i dvbves

Theget Val i dMoves() function returns alist of two-item lists that hold the XY coordinates for al
valid moves for tile's player, given a particular game board board.

This function uses two loops to check every single XY coordinate (all sixty four of them) by calling
i sVal i dMbve() onthat space and checking if it returns Fal se or alist of possible moves (in which
caseitisavalid move). Each valid XY coordinate is appended to the list, val i dMbves.

The bool () Function

Remember how you could use thei nt () and st r () functionsto get the integer and string value of
other data types? For example, st r (42) would return the string* 42' ,and i nt (' 100" ) would return
the integer 100.

There isa similar function for the Boolean data type, bool () . Most other data types have one value that
is considered the Fal se value for that data type, and every other value is consider Tr ue. Theinteger O, the
floating point number 0. 0, the empty string, the empty list, and the empty dictionary are all considered to
be Fal se when used as the condition for ani f or loop statement. All other values are Tr ue. Try entering
the following into the interactive shell:

----------------------------------------------------------------------------------------------------------

+ >>> bool (0)

. Fal se

+ >>> bool (0.0)

. Fal se

+ >>> bool (')

. Fal se

. >>> bool ([])

. Fal se

. >>> bool ({})

. Fal se

+ >>> bool (1)

. True

+ >>> bool (' Hel | 0")

. True

i >>> bool ([1, 2, 3, 4, 5])
. True

+ >>> pool ({' spam :'cheese', 'fizz':'buzz'})
i True

P>>>

__________________________________________________________________________________________________________

Whenever you have a condition, imagine that the entire condition is placed inside a call to bool () as
223



the parameter. Conditions are automatically interpreted as Boolean values. Thisis similar to how pri nt ()
can be passed non-string values and will automatically interpret them as strings when they print.

This is why the condition on line 111 works correctly. The call to thei sVal i dMbve() function either
returns the Boolean value Fal se or a non-empty list. If you imagine that the entire condition is placed
inside a call to bool (), then Fal se becomesbool ( Fal se) (which, of course, evalutesto Fal se).
And a non-empty list placed as the parameter to bool () will return Tr ue. Thisiswhy the return value of
i sVal i dMbve() can be used as a condition.

Getting the Score of the Game Board

116. def get ScoreO Board(board):

117. # Determ ne the score by counting the tiles. Returns
a dictionary with keys 'X and 'O.

118. xscore = 0

119. oscore = 0

120. for x in range(8):

121. for y in range(8):

122. if board[x][y] == "'X:

123. xscore += 1

124. if board[x][y] == '0O:

125. oscore += 1

126. return {' X :xscore, 'O :oscore}

Theget Scor eOF Boar d() function uses nested f or loops to check all 64 spaces on the board (8 rows
times 8 columns per row is 64 spaces) and see which tile (if any) is on them. For each ' X' tile, the code
increments xscor e. For each ' O tile, the code increments oscor e.

Notice that this function does not return a two-item list of the scores. A two-item list might be a bit

confusing, because you may forget which item isfor X and which itemisfor O. Instead the function returns
adictionary with keys' X' and' O whose values are the scores.

Getting the Player's Tile Choice

129. def enterPlayerTile():

130. # Let's the player type which tile they want to be.

131. # Returns a list with the player's tile as the first
item and the conputer's tile as the second.

132. tile ="'

133. while not (tile == "X or tile == "0):

134. print('Do you want to be X or O?")

135. tile = input().upper()

This function asks the player which tile they want to be, either* X' or' O . Thef or loop will keep
looping until the player typesin® X' or' O .

)137. # the first elenent in the tuple is the player's H

224



tile, the second is the conputer's tile.
38. if tile == "X :
39. return ['X, 'O]
40. el se:
41. return ['O, "X]

Theent er Pl ayer Ti | e() function then returns a two-item list, where the player's tile choice is the
first item and the computer's tile is the second. We use a list here instead of a dictionary so that the
assignment statement calling this function can use the multiple assignment trick. (See line 252.)

Determining Who Goes First

144. def whoGoesFirst():

145. # Random y choose the player who goes first.
146. if randomrandint(0, 1) == O:

147. return 'conputer’

148. el se:

149. return 'player'’

ThewhoGoesFi r st () function randomly selects who goes first, and returns either the string
' conputer' orthestring' pl ayer' .

Asking the Player to Play Again

152. def playAgain():

153. # This function returns True if the player wants to
play again, otherwise it returns Fal se.

154. print('Do you want to play again? (yes or no)')

155. return input().lower().startswth('y")

We have used the pl ayAgai n() inour previous games. If the player types in something that begins
with ' y' , then the function returns Tr ue. Otherwise the function returns Fal se.

Placing Down a Tile on the Game Board

158. def nmkeMove(board, tile, xstart, ystart):

159. # Place the tile on the board at xstart, ystart, and
flip any of the opponent's pieces.

160. # Returns False if this is an invalid nove, True if
it is valid.

161. tilesToFlip = isValidvve(board, tile, xstart,
ystart)

makeMove() isthefunction we call when we want to place atile on the board and flip the other tiles

according to the rules of Revers. This function modifiesthe boar d data structure that is passed as a
225



parameter directly. Changes made to the boar d variable (becauseit is alist) will be made to the global
scope as well. Most of the work isdone by i sVal i dMove() , which returns alist of XY coordinates (in a
two-item list) of tiles that need to be flipped. (Remember, if thethe xst art and yst art arguments point
to an invalid move, theni sVal i dvbve() will return the Boolean value Fal se.)

163. If tilesToFlip == Fal se:

164. return Fal se

165.

166. board[ xstart][ystart] = tile
167. for x, y in tilesToFlip:

168. board[ x][y] = tile

169. return True

If the return value of i sVal i dMove() wasFal se, then nakeMove() will also return Fal se.
Otherwise, i sVal i dMove() would have returned a list of spaces on the board to put down our tiles

(the' X' or' O stringintile). Line 166 sets the space that the player has moved on, and the f or loop after
that setsal thetilesthat areinti | esToFl i p.

Copying the Board Data Structure

172. def get BoardCopy(board):

173. # Make a duplicate of the board list and return the
duplicate.

174. dupeBoard = get NewBoar d()

175.

176. for x in range(8):

177. for y in range(8):

178. dupeBoard[ x][y] = board[x][VY]

179.

180. return dupeBoard

get Boar dCopy() isdifferent from get NewBoar d() . get NewBoad( ) will create a new game
board data structure which has only empty spaces. get Boar dCopy() will create a new game board data
structure, but then copy all of the piecesin the boar d parameter. This function is used by our Al to have a
game board that it can change around without changing the real game board. Thisis like how you may
imagine making moves on a copy of the board in your mind, but not actually put pieces down on the real
board.

A call to get NewBoar d() handles getting a fresh game board data structure. Then the nested f or
loops copies each of the 64 tiles from boar d to our duplicate board, dupeBoar d.

Determining if a Space is on a Corner

83. def isOnCorner(x, y):
84. # Returns True if the position is in one of the four
corners.

226



== 0 andy ==7) or (x == 7 and y == 7)

|185. return (x == 0 and y == 0) or (x == 7 and y == 0) or
(x

This function is much likei sOnBoar d( ) . Because all Revers boards are 8 x 8 in size, we only need the
XY coordinates to be passed to this function, not a game board data structure itself. This function returns
Tr ue if the coordinates are on either (0,0), (7,0), (0,7) or (7,7). Otherwisei sOnCor ner () returns
Fal se.

Getting the Player's Move

188. def getPlayer Move(board, playerTile):

189. # Let the player type in their nove.

190. # Returns the nove as [x, y] (or returns the strings
"hints' or 'quit')

191. DATSITB ='12 3 456 7 8 .split()

Theget Pl ayer Move() function is called to let the player type in the coordinates of their next move
(and check if the move isvalid). The player can asotypein' hi nt s' to turn hints mode on (if it is off) or
off (if itison). The player can alsotypein' qui t' to quit the game.

The DIGITSITOS constant variable isthellist ['1, '2, '3, '4, 'S, '6', '7', '8]. We create this constant
because it is easier type DIGITS1TOS than the entire list.

192. whil e True:

193. print('Enter your nove, or type quit to end the
ganme, or hints to turn off/on hints.")

194. move = input().lower()

195. if move == 'quit':

196. return 'quit’

197. if nmove == 'hints':

198. return 'hints’

Thewhi | e loop will keep looping until the player has typed in a valid move. First we check if the player
wants to quit or toggle hints mode, and return the string* quit' or' hi nts' . We usethel ower ()
method on the string returned by i nput () so the player cantype' HI NTS' or ' Qui t' but still have the
command understood by our game.

The code that calls get Pl ayer Move() will handle what to do if the player wants to quit or toggle hints
mode.

200. if len(nove) == 2 and nove[0] in DA TS1ITG8 and
move[ 1] in DI TS1TO8:

PO1. X = int(nove[0]) - 1

P02. y = int(nmove[l]) - 1

203. if isValidMve(board, playerTile, x, y) ==
Fal se:

P04. conti nue

227



05. el se:
06. br eak

Our game is expecting that the player would have typed in the XY coordinates of their move as two
numbers without anything in between them. Thei f statement first checks that the size of the string the
player typed inis 2. After that, thei f statement also checks that both nove[ 0] (thefirst character in the
string) and nove[ 1] (the second character in the string) are strings that exist in DI G TS1TO8, which we
defined at the beginning of the function.

Remember that our game board data structures have indexes from 0 to 7, not 1 to 8. We show 1 to 8 when
we print the board using dr awBoar d() because people are used to numbers beginning at 1 instead of 0.
So when we convert the stringsin nove[ 0] and nove[ 1] to integers, we also subtract 1.

Even if the player typed in a correct move, we still need to check that the move is allowed by the rules of
Reversi. We do this by calling i sVal i dMove() , passing the game board data structure, the player's tile,
and the XY coordinates of the move. If i sVal i dMbve() returns Fal se, then we executethe cont i nue
statement so that the flow of execution goes back to the beginning of the whi | e loop and asks the player
for the move again.

Ifi sVal i dvbve() does not return Fal se, then we know the player typed in a valid move and we
should break out of the whi | e loop.

P0O7. el se:

P08. print('That is not a valid nove. Type the x
digit (1-8), then the y digit (1-8).")

209. print('For exanple, 81 will be the top-right
corner.')

If thei f statement's condition on line 200 was Fal se, then the player did not type in a valid move. We
should display a message instructing them how to type in moves that our Reversi program can understand.
Afterwards, the execution moves back to the whi | e statement on line 192 because line 209 is not only the
last linein the else-block, but also the last line in the while-block.

P11. return [x, VY]

Finally, get Pl ayer Move() returns atwo-item list with the XY coordinates of the player's valid move.

Getting the Computer's Move

P14. def get Conput er Move(board, conputerTile):

P15. # G ven a board and the conputer's tile, determ ne
where to

P16. # move and return that nove as a [Xx, y] list.

P17. possi bl eMoves = get Val i dMoves(board, conputerTile)

get Conput er Move() and iswhere our Reversi Al isimplemented. Theget Val i dMoves()
228



function is very helpful for our Al. Normally we use the results from get Val i dvbves() for hints move.
Hints mode will print ' . " period characters on the board to show the player all the potential moves they can
make. But if we call get Val i dMoves() with the computer Al'stile (in computerTile), we can get al the
possible moves that the computer can make. We will select the best move from this list.

219. # randoni ze the order of the possible noves
P20. random shuf f| e( possi bl eMoves)

First, we are going to use ther andom shuf f | e() function to randomize the order of movesin the
possi bl eMoves list. Remember that ther andom shuf f 1 e() function will reorder the items in the list
that you pass to it. The function also modifiesthe list directly, much like our r eset Boar d() function
does with the game board data structure.

We will explain why we want to shuffle the possi bl eMoves list, but first let's look at our algorithm.

Corner Moves are the Best Moves

p22. # always go for a corner if avail able.
p23. for x, y in possibleMves:

P24, I f isOnCorner(x, Yy):

P25. return [X, VY]

First, we loop through every move in possi bl eMoves and if any of them are on the corner, we return
that as our move. Corner moves are a good idea because once a tile has been placed on the corner, it can
never be flipped over. Since possi bl eMoves isalist of two-item lists, we use the multiple assignment
trick inour f or looptosetx andy.

Because we immediately return on finding the first corner move in possi bl eMoves, if

possi bl eMoves contains multiple corner moves we always go with the first one. But since
possi bl eMoves was shuffled on line 220, it is completely random which corner move isfirstin the list.

Get a List of the Best Scoring Moves

P27. # Go through all the possible noves and renenber the
best scoring nove

P28. best Score = -1

P29. for x, y in possibleMves:

230. dupeBoard = get Boar dCopy( boar d)

P31. makeMove(dupeBoard, conputerTile, X, y)

P32. score = get ScoreOf Boar d( dupeBoard) [ conput er Ti | €]

P33. if score > bestScore:

P34. best Move = [x, VY]

P35. best Score = score

P36. return best Move

If there are no corner moves, we will go through the entire list and find out which move gives us the

229



highest score. Thef or loop will set x and y to every move in possi bl eMoves. best Move will be set
to the highest scoring move we've found so far, and best Scor e will be set to its score. When the code in
the loop finds a move that scores higher than best Scor e, we will store that move and score as the new
values of best Mbve and best Scor e.

Simulate All Possible Moves on Duplicate Board Data Structures

In order to figure out the score of the possible move we are currently iterating on, we first make a
duplicate game board data structure by calling get Boar dCopy() . We want a copy so we can modify
without changing the real game board data structure stored in the boar d variable.

Then we call makeMbve( ) , passing the duplicate board instead of the real board. makeMove() will
handle placing the computer's tile and the flipping the player's tiles on the duplicate board.

We call get Scor ef Boar d() with the duplicate board, which returns a dictionary where the keys 