
Journal of Digital Forensics, Security and Law, Vol. 6(1)

77

Technology Corner: Internet Packet Sniffers

Nick V. Flor and Kenneth Guillory
Anderson School of Management

University of New Mexico
nickflor@unm.edu

1. SECTION EDITOR’S NOTE
Welcome to the Technology Section of the Journal of Digital Forensics, Security,
and Law. The goal of this section of the journal is to explore the technical details
of the various technologies used in digital forensics, security, and law—or
conversely, to explore the technical details of the technologies used by hackers
and other digital perpetrators. Since this column was initially proposed by me, I
volunteered to start off with the initial article. However, I invite all readers to
contribute articles to this section of JDFSL.

2. INTRODUCTION
The best way to understand an internet packet sniffer, hereafter “packet sniffer”,
is by analogy with a wiretap. A wiretap is a piece of hardware that allows a
person to eavesdrop on phone conversations over a telephone network. Similarly,
a packet sniffer is a piece of software that allows a person to eavesdrop on
computer communications over the internet. A packet sniffer can be used as a
diagnostic tool by network administrators or as a spying tool by hackers who can
use it to steal passwords and other private information from computer users.
Whether you are a network administrator or information assurance specialist, it
helps to have a detailed understanding of how packet sniffers work. And one of
the best ways to acquire such an understanding is to build and modify an actual
packet sniffer. But first, a disclaimer: the information contained in this paper is
for educational purposes only—the use of packet sniffers to eavesdrop on private
information is illegal, and violates the computer use policies of most
organizations.

3. BACKGROUND: THE INTERNET AND TCP/IP
To build a packet sniffer, you need an understanding of how computers
communicate over the Internet via the TCP/IP protocol, which is the subject of
entire books and is beyond the scope of this brief technical article. Instead, I
present a highly-simplified view; the reader interested in more details can refer to
the many excellent books on these subjects (e.g., Dostalek and Kabelova, 2006; or
Kozierok, 2005).
Suppose you have a computer in California that wants to send data to another
computer in New York over the internet. For example, the computer in California
might be a web server sending a web page to a user’s computer in New York.

Administrator
Typewritten Text
(c)ADFSL 2011

Journal of Digital Forensics, Security and Law, Vol. 6(1)

78

The computer sending the data is known as the source and the computer receiving
the data is the destination. To send data over the internet, the source computer
must first break the data into smaller pieces known as packets. The main benefit
of breaking data into packets is fault tolerance. Namely, if a packet gets lost or
corrupted during transmission, or if a part of the network goes down, only that
one packet needs to be resent or rerouted—not the entire file. In short, the
internet is a packet switching network.
However, for packet switching to work, each packet needs to be combined with
additional information, much like a letter sent via mail needs to be placed inside
an envelope with mailing addresses printed on the front. In particular, a packet
needs at least a source address and a destination address (just like a mailed
letter), in addition to a sequence number. The latter is necessary because it is
possible for packets to arrive at the destination out of order, and the sequence
numbers allows the destination computer to reassemble the packets for the
original file in the proper order.
This additional information is placed in a protocol header. A packet sent out over
the internet has two main protocol headers: (1) an IP header, which contains the
source and destination addresses among other pieces of information; and (2) a
TCP header, which contains the sequence number along with other information
(see
Figure 1).

4. HOW TO WRITE A PACKET SNIFFER
From a design standpoint, a packet sniffer consists of two parts. The first part of
the packet sniffer creates a socket, which you can think of as a “tap” into the
network that the packet sniffer uses to eavesdrop on all communications packets
either sent or received by computers on a local network. The second part of the
packet sniffer consists of code that continuously listens for packets and extracts
information from the packets. We will refer to these two parts of code as socket
creation and eavesdropping, respectively. Before looking at the details of
implementing the socket creation and eavesdropping code, we first look at the
“boilerplate” code, which is common to all C# programs. Note: for those readers
unfamiliar with programming in C# and Visual Studio (the development
environment), Appendix A contains details on setting up the software and starting
up a project.

4.1 Boilerplate Code
There are many excellent books on C# programming (see Blum, 2003; for a book
specific to C# networking), so I will merely touch on some of the basics in this
section.

Journal of Digital Forensics, Security and Law, Vol. 6(1)

79

Figure 1. The data packet combined with the TCP & IP Headers (Dostalek
and Kabelova, 2006; p. 245)

using System;

namespace JDFSLPacketSniffer
{
 public class packetsniffer
 {
 public static void Main()
 {
 }
 }
}

Figure 2. C# "boilerplate" code--code that is common to all C# programs.

Journal of Digital Forensics, Security and Law, Vol. 6(1)

80

All C# programs use one or more built-in code libraries, which are accessed with
a “using” statement followed by the name of the library. In
Figure 2, this is the first line of code “using System;”. All C# programs must
have a unique name, which is declared with the “namespace” keyword followed
by a label, e.g., namespace JDFSLPacketSniffer. Finally, all C# programs must
package code inside of an object designated by the “class” keyword followed by a
label, e.g., class packetsniffer. The line “public static void Main()” is the entry
point for code execution.

4.2 Socket Creation Code
Creating a socket requires using two libraries, “System.Net” and
“System.Net.Sockets” (refer to
Figure 3 below). There are three steps required to create a socket, which I will
summarize. The reader interested in a more in-depth discussion on the code
particulars should refer to Blum (2003).
The first step in creating a socket is to get the address, specifically the IP address,
of the computer running the packet sniffer. Because a computer can be connected
to multiple networks—and therefore have multiple network addresses—it is
necessary to loop through all possible network connections until an IP address is
found.
Given the IP address of the computer that will run the packet sniffer, the next step
is to create an IP endpoint—an object that combines the IP address with a port.
To understand the concept behind an endpoint, note that a computer can be
running multiple networked programs simultaneously. For example, you can be
running a multi-player game like Guild Wars while simultaneously using a
program like Skype to chat with a family member. Each networked program has
a specific port associated with it, so that packets intended for one program do not
get delivered to another program.

using System;
using System.Net;
using System.Net.Sockets;

namespace JDFSLPacketSniffer
{
 public class packetsniffer
 {
 public static void Main()
 {
 // Step 1. Get the IP Address
 IPHostEntry iphe;
 int i;

Journal of Digital Forensics, Security and Law, Vol. 6(1)

81

 iphe = Dns.GetHostEntry(Dns.GetHostName());
 for (i=0;i<iphe.AddressList.Length;i++)
 {
 if (iphe.AddressList[i].AddressFamily ==
AddressFamily.InterNetwork)
 break; // iphe.AddressList[i] is the IP
Address
 }
 if (i == iphe.AddressList.Length) return; // Error:
No IP Address

 // Step 2. Create an Endpoint for Listening
 IPEndPoint ipep;
 ipep = new IPEndPoint(iphe.AddressList[i], 0);

 // Step 3.Create the socket
 Socket s;
 s = new Socket(AddressFamily.InterNetwork,
SocketType.Raw, ProtocolType.IP);
 s.Bind(ipep);
 s.SetSocketOption(SocketOptionLevel.IP,
SocketOptionName.HeaderIncluded, true);

 s.IOControl(IOControlCode.ReceiveAll,
BitConverter.GetBytes(1), null);

 }
 }
 }
}

Figure 3. The Socket Creation Code. A socket is best thought of as a “tap”

where the packet sniffer can listen in on all communications between computer
on the local network.

The third and final step is to actually create the socket. Creating a socket consists
of specifying the type of network the socket will listen on. The type of network is
necessary because, as mentioned, a computer can be connected to multiple
networks simultaneously and one can create different sockets to listen in on the
different types of networks. After creating the socket the endpoint—IP address
and port—from step 1 must be bound to the socket. A socket normally listens
only for packets specifically targeted for the endpoint, so the final line of code
needed for socket creation places the socket in a mode to receive all packets. This
is commonly known as “promiscuous mode” and is denoted by the line:

s.IOControl(IOControlCode.ReceiveAll, …);

// THE EAVESDROPPING CODE
int tcpoffset, dataoffset;

Journal of Digital Forensics, Security and Law, Vol. 6(1)

82

while (true)
{
 // Step 1. Read any incoming packet
 byte[] buf = new byte[s.ReceiveBufferSize];
 int count = s.Receive(buf);

 // Step 2. Extract (Parse) and print the IP Header
 string destaddr = buf[16] + "." + buf[17] + "." + buf[18] +
"." + buf[19];

 tcpoffset = (buf[0] & 0x0f) * 4;
 if (destaddr != "239.255.255.250")
 {
 Console.WriteLine("***** IP HEADER *****");
 Console.WriteLine("IP Version: {0}, Header Length: {1},
Packet Size: {2}, Id: {3}",
 (buf[0] >> 4), (buf[0] & 0x0f), (buf[2] << 8) + buf[3],
(buf[4] << 8) + buf[5]);
 Console.WriteLine("Source Address: {0}.{1}.{2}.{3}",
buf[12], buf[13], buf[14], buf[15]);
 Console.WriteLine("Destination Address: {0}.{1}.{2}.{3}",
buf[16], buf[17], buf[18], buf[19]);
 Console.WriteLine("**********");

 // Step 3. Parse and print the TCP Header
 Console.WriteLine("***** TCP HEADER *****");
 Console.WriteLine("Source Port: {0}", buf[tcpoffset] << 8 +
buf[tcpoffset+1]);
 Console.WriteLine("Destination Port: {0}", buf[tcpoffset +
2] << 8 + buf[tcpoffset + 3]);
 Console.WriteLine("Sequence Number: {0}", buf[tcpoffset + 4]
<< 24 + buf[tcpoffset + 5] << 16 + buf[tcpoffset + 6] << 8 +
buf[tcpoffset + 7]);

 dataoffset = (buf[tcpoffset + 12] >> 4)*4;
 Console.WriteLine("Data Offset: {0}", dataoffset);
 Console.WriteLine("**********");

 // Step 4. Parse the data
 Console.WriteLine("***** DATA *****");
 for (int b = (tcpoffset+dataoffset); b < count; b++)
 {
 if (Char.IsControl(Convert.ToChar(buf[b])))
 Console.Write(".");
 else
 Console.Write(Convert.ToChar(buf[b]));
 }
 Console.WriteLine();
 Console.WriteLine("**********");
}

Journal of Digital Forensics, Security and Law, Vol. 6(1)

83

Figure 4. The Eavesdropping Code. The code consists of four steps: (1)
reading a packet; (2) parsing the IP header; (3) parsing the TCP header; and (4)

printing out the data

4.3 Eavesdropping Code

The eavesdropping code (refer to
Figure 4) consists of four steps inside a loop. The first step, creates a buffer to
hold the incoming data and then reads the packet into the buffer as an array of
bytes. Recall from
Figure 1 that a packet consists of data combined with information necessary to
deliver the data (IP header), and with information necessary to arrange the packets
in the proper sequence (TCP header). The headers are placed before the data—
the IP header first, followed by the TCP header.
The second step is to extract, or “parse”, and print the information in the IP
header. One of the challenges in parsing the IP header information is that the data
is stored in a byte buffer and some of the information can be contained in several
bits within a single byte, while other information spans several bytes. Thus, C#
bit operations are needed to reconstruct the information from the bits and the
bytes. Examples of C# bit operations are AND (&), LEFT SHIFT (<<) and
RIGHT SHIFT (>>). One of the first pieces of information to parse is the
destination address (“destaddr” in
Figure 4). It is helpful to parse the destination address first, because some
computers receive or transmit packets with high frequency, and you may want to
filter out the printing of these packets. For instance, the example code filters out
the destination IP address “239.255.255.250” because the volume of packets it
transmits on the test computer drowned out the display of other packets.
The third step of the eavesdropping code is to parse the TCP header. To locate
the start of the TCP header within the byte buffer, the code takes the IP header
length and multiplies it by four. This line of code can be found in step 2 as
“tcpoffset”, which is parsed right after the destination address. All parsing of
TCP header information is done relative to this offset.
Similar to parsing the IP header, parsing the TCP header requires using bit
operations to extract and print information that is either contained within the bits
of a byte or that is spread out across multiple bytes. One important piece of
information to extract is the offset of the packet data from the TCP header. In
step 3, this is calculated as “dataoffset”. The tcpoffset when added to the
dataoffset denotes the start of the data in the packet.
The fourth and final step is to print the data, which is done via a for-loop in the
sample code. In the loop, code first checks if the byte is printable. If it is not
printable, the code displays a “.”, otherwise the actual character is displayed. In a

Journal of Digital Forensics, Security and Law, Vol. 6(1)

84

more sophisticated packet sniffer, the data would be further parsed and possibly
stored in a file or database for later analysis. Appendix B contains the packet
sniffer code in its entirety.

5. DISCUSSION: COUNTER MEASURES
There are several counter measures that network administrators and users can
employ against packet sniffers (Ansari, Rajeev, S., and Chandrashekar, 2002).
For example, a network administrator can use a program that sends packets out
with invalid addresses. If a machine accepts the packet, this indicates the
presence of a packet sniffer running on that machine. An example of a counter
measure that users can employ is to encrypt their communications over the
internet, e.g., by accessing web sites using the https protocol. While this measure
still allows a hacker to sniff packets, the encrypted data is not easily viewed.

6. REFERENCES
Ansari, S., Rajeev, S., and Chandrashekar, H. (2002). Packet Sniffing: A Brief
Introduction. IEEE Potentials, 21, 17-19.
Blum, R. (2003). C# Network Programming. San Francisco, CA: Sybex.
Dostalek, L., and Kabelova, A. (2006). Understanding Tcp/ip: A Clear And
Comprehensive Guide (p. 245). Birmingham, UK: Packt Publising.
Kozierok, C. (2005). The TCP/IP Guide: A Comprehensive, Illustrated
Internet Protocols Reference. San Francisco, CA: No Starch Press.

Journal of Digital Forensics, Security and Law, Vol. 6(1)

85

APPENDIX A: INSTALLING C# AND VISUAL C# 2010 EXPRESS

To run the code in this article, you must first download and install the free Visual
C# 2010 Express software, which is located at:

http://www.microsoft.com/visualstudio/en-us/products/2010-
editions/visual-csharp-express

After installing the software, run the program in administrator mode by right-
clicking on the icon and selecting “Run as Administrator” in the pop-up dialog
(not shown).
Select the menu item File > New Project; select Empty Project from the list; name
your project “JDFSLPacketSniffer”; and finally click the “OK” button (see
Figure 5). This sets up an empty project.

Figure 5. New Project Dialog Box. Select "Empty Project" and name your
project JDFSLPacketSniffer

Next you need to add at least one code file to this project. Select the menu

item Project > Add New Item …, which will bring up the dialog box in

Figure 6.

Journal of Digital Forensics, Security and Law, Vol. 6(1)

86

Figure 6. New Item Dialog Box. Select "Code File" and name your project
“sniffer.cs”

Select “Code File” from the list, and name your file “sniffer.cs”. Click the “Add”
button when you are finished.
Finally, select the menu item Project > Add Reference…, which will bring up the
dialog box in
Figure 7. Select the .NET tab, then find and select “System” in the list box.
When you are done, click the “OK” button. You are now ready to add and run
the code in this article (see Appendix B for the entire packet sniffer code).

Journal of Digital Forensics, Security and Law, Vol. 6(1)

87

Figure 7. Reference Dialog Box. Select the .NET tab, then find and select the
System library.

Journal of Digital Forensics, Security and Law, Vol. 6(1)

88

APPENDIX B: THE ENTIRE PACKET SNIFFER CODE
using System;
using System.Net; // ipep,
using System.Net.Sockets; // s,

namespace JDFSLPacketSniffer
{
 public class packetsniffer
 {
 public static void Main()
 {
 // PART I. THE SOCKET CREATION CODE
 // Step 1. Get the IP Address
 IPHostEntry iphe;
 int i;

 iphe = Dns.GetHostEntry(Dns.GetHostName());
 for (i=0;i<iphe.AddressList.Length;i++)
 {
 if (iphe.AddressList[i].AddressFamily ==
 AddressFamily.InterNetwork)
 break; // iphe.AddressList[i] is the IP
Address
 }
 if (i == iphe.AddressList.Length) return; // Error:
No IP Address

 // Step 2. Create an Endpoint for listening
 IPEndPoint ipep;
 ipep = new IPEndPoint(iphe.AddressList[i], 0);

 // Step 3. Create the Socket
 Socket s;
 s = new Socket(AddressFamily.InterNetwork,
SocketType.Raw, ProtocolType.IP);
 s.Bind(ipep);
 s.SetSocketOption(SocketOptionLevel.IP,
SocketOptionName.HeaderIncluded, true);

 s.IOControl(IOControlCode.ReceiveAll,
BitConverter.GetBytes(1), null);

 // PART II. THE EAVESDROPPING CODE

 int tcpoffset, dataoffset;
 while (true)
 {
 // Step 1. Read any incoming packet
 byte[] buf = new byte[s.ReceiveBufferSize];
 int count = s.Receive(buf);

 // Step 2. Extract (Parse) and print the IP
Header

Journal of Digital Forensics, Security and Law, Vol. 6(1)

89

 string destaddr = buf[16] + "." + buf[17] + "."
+ buf[18] + "." + buf[19];

 tcpoffset = (buf[0] & 0x0f) * 4;
 if (destaddr != "239.255.255.250")
 {
 Console.WriteLine("***** IP HEADER *****");
 Console.WriteLine("IP Version: {0}, Header
Length: {1}, Packet Size: {2}, Id: {3}",
 (buf[0] >> 4), (buf[0] & 0x0f), (buf[2] <<
8) + buf[3], (buf[4] << 8) + buf[5]);
 Console.WriteLine("Source Address:
{0}.{1}.{2}.{3}", buf[12], buf[13], buf[14], buf[15]);
 Console.WriteLine("Destination Address:
{0}.{1}.{2}.{3}", buf[16], buf[17], buf[18], buf[19]);
 Console.WriteLine("**********");

 // Step 3. Parse and print the TCP Header
 Console.WriteLine("***** TCP HEADER *****");
 Console.WriteLine("Source Port: {0}",
buf[tcpoffset] << 8 + buf[tcpoffset+1]);
 Console.WriteLine("Destination Port: {0}",
buf[tcpoffset + 2] << 8 + buf[tcpoffset + 3]);
 Console.WriteLine("Sequence Number: {0}",
buf[tcpoffset + 4] << 24 + buf[tcpoffset + 5] << 16 +
buf[tcpoffset + 6] << 8 + buf[tcpoffset + 7]);
 dataoffset = (buf[tcpoffset + 12] >> 4)*4;
 Console.WriteLine("Data Offset: {0}",
dataoffset);
 Console.WriteLine("**********");

 // Step 4. Parse and print the data
 Console.WriteLine("***** DATA *****");
 for (int b = (tcpoffset+dataoffset); b <
count; b++)
 {
 if
(Char.IsControl(Convert.ToChar(buf[b])))
 Console.Write(".");
 else

Console.Write(Convert.ToChar(buf[b]));
 }
 Console.WriteLine();
 Console.WriteLine("**********");
 }
 }
 }
 }
}

Journal of Digital Forensics, Security and Law, Vol. 6(1)

90

