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e Introduction

* The Kernel Pool and its structures
 Allocation and Free algorithm

« Exploiting a Kernel Pool overflow

e MS08-001: IGMPv3 Kernel Pool overflow
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» Kernel vulnerabilities are more popular

- Less protections than in userland
» Kernel allocations are highly performance optimized
 Less room for cookies and other roadblocks

— Code has had less attention than userland services

» Several kernel pool overtlows to exploit
— Our example: MS08-001 (IGMPv3 Overtlow)
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write Windows
Kernel Pool
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* Because few people know how to write them,
Windows Kernel Pool overflows are often mis-
characterized as “Denial of Service”

« Huge investment in exploit development before
it is known if a reliable exploit can be created
for any bug

- If it costs 100K dollars to even know if you have a
risk from any particular vulnerability, can you
afford to find out?
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B Proof Of Concept
B Exploit Development
QA + Testing

Linux Userspace Windows Userspace Windows Kernel
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e The following slides assme:

— Structures, constants and offsets are from
ntkrnlpa.exe 5.1.2600.2180 (XP SP2 default)

 Windows XP SP2 has 4 kernels, the one being used
depends on PAE and MP

- nt!KeNumberNodes is 1 (non NUMA architecture)

« NUMA introduces differences in the kernel pools
- See slide #71
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The Kernel Pool and its structures
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e Quite similar

* Only a few pools for all the kernel allocations
— Think LSASS default heap

» Kernel pool is designed to be fast

- As few checks as possible
* No kernel pool cookie
* No kernel pool safe unlink
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* Used by Windows for damic meory
allocations within kernel land by functions:

- nt!ExAllocatePool, nt!ExAllocatePoolWithTag, ...

- nt!ExFreePool, nt!ExFreePoolWithTag, ...

e There are several kernel pools, default being:
— One non-paged pool
- Two paged pools
- One session paged pool
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e Pools are defined thank to structur nt!
- POOL DESCRIPTOR
— Described in slide #16

* They are stored in the nt!PoolVector array
- Array of pointers
- Located in the .data section of the kernel
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12



* Non pageable system mory
* Can be accessed from any IRQL
e Scarce resource

* Descriptor for non paged pool is static:
- nt!NonPagedPoolDescriptor in .data section

e Tt is initialized in nt!InitializePool

 Pointer to the descriptor is stored in entry o of
nt!PoolVector
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* Pageable system memo

 Number of paged pools defined by nt!
ExpNumberOfPagedPools (default is 2)

* An array of pool descriptors is dynamically
allocated and initialized in nt!InitializePool
- NonPagedPool allocation
- One more descriptor than number of paged pools
* Pointer to array stored in entry 1 of nt!
PoolVector and in nt!ExpPagedPoolDescriptor
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. Pageable system memory

* Descriptor for the session paged pool is located
in the session space

- PagedPool member of nt!MmSessionSpace
structure
» Usually oxbf7t0000+0x244

 Initialized in nt!MilnitializeSessionPool
- used for session space allocations
- do not use lookaside lists
 Pointer to the descriptor stored in nt!
ExpSessionPoolDescriptor
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kd> dt nt!_POOL_DESCRIPTOR

+0Ox 000 Pool Type : _POOL_TYPE
+0x 004 Pool | ndex : Ui nt4B
+0Ox008 Runni ngAl |l ocs : Uint4B
+0Ox00c Runni ngDeAll ocs : Ui nt 4B
+Ox010 Tot al Pages : Ui nt 4B
+Ox014 Tot al Bi gPages : Ui nt 4B
+0Ox018 Threshol d : Ui nt 4B
+Ox01c LockAddress : Ptr32 Void
+0x020 Pendi ngFrees : Ptr32 Void
+0x024 Pendi ngFreeDepth : | nt4B
+0Ox028 Li st Heads : [512] _LI ST_ENTRY
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e Some of the members:

- PoolType: NonPagedPool=0, PagedPool=1, ...

— Poollndex: 0 for non-paged pool and paged session
pool, index of the pool descriptor in nt!
ExpPagedPoolDescriptor for paged pools

- ListHeads: 512 double-linked lists of free memory

chunks of the same size (8 byte granularity)

 List number for a requested allocation size is calculated
by Bl ockSi ze=(Nunber Of Byt es +Oxf )>>3

* Thus can be used for allocations up to oxffo (4080) bytes
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8 bytes

24 bytes < .24 bytes < 24 bytes

~ W N = O

32 bytes

511

Each chunk of data is preceded
by a 8 byte header structure
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kd> dt nt ! POOL HEADER

+0x 000
+0x 000
+0x 002
+0x 002
+0x 000
+0x 004
+0x 004
+0x 004
+0x 006

06/11/08

Previ ousSi ze
Pool | ndex

Bl ockSi ze
Pool Type

Ul ongl
ProcessBil | ed
Pool Tag

Pos O
Pos 9,
Pos O
Pos 9,
Ui nt 4B
Ptr32

Ui nt 4B

Al | ocat orBackTracel ndex

Pool TagHash

IMMUNITY 8

Ui nt 2B

9 Bits
/ Bits
9 Bits
/ Bits

_EPROCESS

Ui nt 2B
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» Explanations on some of the members:
— PreviousSize: BlockSize of the preceding chunk
* 0 if chunk is located at the beginning of a page

— BlockSize: Number of bytes requested plus header
size rounded up to a multiple of 8, divided by 8
e or (Number Of Byt es +Oxf )>>3

- PoolIndex: same definition as for the descriptor
- PoolType: o if free, (PoolType+1)|4 if allocated

- PoolTag: Usually 4 printable characters identifying
the code responsible for the allocation

06/11/08 IMMUNITY 8@ 20



 When PoolType=o, the chunk header is
followed by a nt!_ LIST ENTRY structure

- This is the entry pointed to by the ListHeads double
linked list

 Chunks freed to the lookaside lists remain the
same, their PoolType is non O

kd> dt nt |_LI ST_ENTRY
+0x000 Fli nk : Ptr32 _LIST_ENTRY
+0x 004 Bl i nk : Ptr32 _LI ST_ENTRY

06/11/08 IMMUNITY 8@ o1
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 Like for userland heaps, kernel uses lookaside
lists for faster allocating and freeing of small
chunks of data
- Maximum BlockSize being 32 (or 256 bytes)
* They are defined in the processor control block
- 32 entry PPPagedLookasideList
- 32 entry PPNPagedLookasideList
« Each entry holds 2 single chained lists of nt!
_ GENERAL_ LOOKASIDE structures: one “per
processor’ P, one “system wide” L

06/11/08 IMMUNITY 8@ 22



kd> dt nt | _GENERAL_LOOKASI DE
+0x000 Li st Head

_SLI ST_HEADER

+0x008 Dept h : Uint 2B

+0x00a Maxi munDept h : Uint2B

+0x00c Tot al Al l ocat es : Uint4B

+0x010 All ocateM sses : Uint4B

+0Ox010 All ocateHits : Uint4B

+0x014 Tot al Frees : Uint4B

+0x018 FreeM sses : Uint4B

+0x018 FreeHits : Uint4B

+0Ox01c Type _POOL_TYPE
+0x020 Tag Ui nt 4B

+0x024 Si ze Ui nt 4B

+0x028 Al l ocate Ptr32 voi d*
+0x02c Free Ptr32 voi d
+0Ox030 ListEntry _LI ST_ENTRY

+0Ox038 Last Total Al l ocates : Ui nt 4B
+0x03c LastAllocateM sses : Uint4B
+0x03c LastAllocateHits : Uint4B
+0x040 Future : [2] Uint4B
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» Static array of 4 double hnked lists for non-
paged free chunks bigger than a page
- Index in the array is (SizeOfChunkInPages-1)
 Last entry also has everything bigger than 4 pages
e Structure used is nt!
_ MMFREE_POOL_ENTRY

kd> dt nt | _MVFREE_POOL_ENTRY

+0Ox 000 Li st : _LI ST_ENTRY

+0Ox008 Si ze : Ui nt 4B

+0Ox00c Si gnature : Uint4B

+0Ox010 Owner : Ptr32 _MVFREE_POOL_ENTRY

* Thus free non-paged “big” chunks are linked
«.farough the pages themselies 5
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Allocation and Free algorithms
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 Windows kernel pool allocates in small chunks:

- 8 byte granularity up to 4080 bytes (included)

e Used to be 32 for Windows 2000

- Page granularity above
» Makes extensive use of optimized lists:

- Single linked Lookaside lists up to 256 bytes

— Double linked ListHeads lists up to 4080 bytes
 Splits an entry if a chunk of the exact size

cannot be found

« Expands the pool if needed

06/11/08 IMMUNITY 8@ 26
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o If NumberOfotes>oxffo.
- Call nt!MiAllocatePoolPages

 If PagedPool requested:

— If BlockSize<o0x20:

* Try the “per processor” paged lookaside list
o If failed, try the “system wide” paged lookaside list
e Return on success

- Try and lock a paged pool descriptor

e Else:

— If BlockSize<o0x20:
* Try the “per processor” non-paged lookaside list

06/11/08 IMMUNITY ...
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e Return on success

- Try and lock the non-paged pool descriptor

» Use ListHeads of currently locked pool:

- Use 1°* non empty ListHeads[n]

e With BlockSizesn<512
 Split entry if bigger than needed
 Return on success

- If failed, expand the pool by adding a page
e Try again!

06/11/08 IMMUNITY ...
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o If the algorithm has selected a chunk larger
than the requested NumberOfBytes, it is split

— If the chunk is at the start of a page:
» Take the allocation from the front of the chunk

— Otherwise:
e Take the allocation from the end of the chunk

e The remaining part is inserted in the correct list

06/11/08 IMMUNITY 8@ 29



Free chunk at the beginning of a page,
allocated chunk goes at the front

Free Chunk

—

Free Chunk

Otherwise, allocated chunk goes at the end

Free Chunk

—

06/11/08
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Free Chunk
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* Free algorithm works ptty much as expected:

- It will use Lookaside lists for chunks up to 256 bytes
o If they are not full already

— It will use ListHeads for chunks up to 4080 bytes

* Merges contiguous free chunks to lower
fragmentation

» Releases pages if necessary

06/11/08 IMMUNITY ... 31
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wowne youlltlEXFreePool fi_.__ 1thTag (a/ 2)

 If P is page aligned:
- Call nt!'MiFreePoolPages

* If BlockSize<ox20:
- If PoolType=PagedPool:

 Put in “per processor” paged lookaside list
o If failed, put in “system wide” paged lookaside list
* Return on success

- Else:

 Put in “per processor” non-paged lookaside list
o If failed, put in “system wide” non-paged lookaside list
* Return on success

06/11/08 IMMUNITY ...
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 If next chunk is free andnot page ahgned:
- Merge with current chunk

* If previous chunk is free:
— Merge with current chunk

o If resulting chunk is a full page:
- Call nt!'MiFreePoolPages

e Else:

- Add chunk to the tail of the correct ListHeads
* Based on PoolType, Poollndex and BlockSize of chunk

06/11/08 IMMUNITY ...
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Chunk being freed

1L

Free Busy Free

Chunk Chunk Chunk
Merge #1

Free Free

Chunk Chunk
Merge #2

Free

Chunk
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Exploiting a Kernel Pool overflow
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* Discrepancies in the kernel pool will most likely

result in a BugCheck (Blue Screen)

0x19: BAD _POOL_HEADER

Ox41: MUST_SUCCEED POOL_EMPTY

Oxcl: SPECI AL_POOL_DETECTED MEMORY_CORRUPTI ON
Oxc2: BAD_POOL_CALLER

* Some are only present in Checked Build
» Avoid those when exploiting a pool overflow!
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Ireentory

Edit
i

1 win%PProSP2ERCE
31 winxPProSPZER A, 1] e s heen detecten
1 winPHomSP2Fr $ .

CiwinvistallkSPOER
b winyPMCE2005ER
31 winz008ERESPOER

Wigw  Host WM Power  Snapshot  windows  Help
2L-H ¢ I @ | B

and windows has been shut down to prevent damage

x

w hardware or software
i hardware

echinical information:

WMware Server 1.0.5 &
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. nt!ExFreePoolWithTag:

- BugCheck oxc2, 7 if PoolType&4=0
* The chunk attempted to be freed is already free

- BugCheck 0x19, 0x20 if PreviousSize of next chunk
is # BlockSize of current chunk

e Checked Build:

— BugCheck 0x19, 3 if (Entry - Flink) - Blink!#ZEntry

or (Entry - Blink) - FlinkZEntry
It didn't make it to retail build, thanks Microsoft!
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Yes!

» Unlike in userland heaps, there is no such thing
as a kernel pool cookie

* There is no safe unlinking in retail build

06/11/08 IMMUNITY 8 39
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 Removing an entry 'e’ from a double linked list:
PLI ST_ENTRY b, f;
f=esFlink;
b=e -Blink;
b-Flink=f;
f -Blink=b;

* This leads to a usual write4 primitive:

* (wher e )=what
* (what +4 )=wher e

* Locating the unlinks:

- nt!ExFreePoolWithTag: when merging chunks
- nt!MiAllocatePoolPages, nt!MiFreePoolPages, ...
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Kernel Pool Overflow

Our chunk Chunk we overflow

Overflow Next = List
Header "» Header Entry

I

Potential list entry
depending on chunk type
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* Summary list of writegq echniquesz
- Write4 on Merge with Next

* When freeing our chunk

- Write4 on Merge with Previous
* When freeing the chunk we overflowed

— Write4 on ListHeads Unlink

* If we overflowed an entry in a ListHeads list

- Write4 on MmNonPagedPoolFreeListHead Unlink

* If we overflowed an entry in a
MmNonPagedPoolFreeListHead list

06/11/08 IMMUNITY ...
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e When our chunk is free:

- If PreviousSize of next chunk is = BlockSize ot
current chunk
* To avoid BugCheck 0x19
— If BlockSize>0x20 (or lookaside lists are full)
* To avoid a free to lookaside
— If PoolType of next chunk is 0
— If BlockSize of next chunk is >1
» Otherwise it means there is no list entry
- Then merge with next chunk:
e And unlink happens on list entry of next chunk

06/11/08 IMMUNITY ...
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 Allocate a chunk of size 256-4080 bytes
- Works with smaller chunks if lookaside lists are full
e Craft a free header after our chunk with:
— Correct PreviousSize
- PoolType=0
- Wanted Flink and Blink
- Requires a minimum overtlow of about 16 bytes

* Write4 happens when our allocated chunk is
freed

06/11/08 IMMUNITY 8@ 44
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Cas #2 /

e

e When the chunk we overﬂowed 1s freed:

L'L ()

— If PreviousSize of next chunk is = BlockSize ot
current chunk
* To avoid BugCheck 0x19
— If BlockSize>0x20 (or lookaside lists are full)
* To avoid a free to lookaside
— If PoolType of previous chunk is 0
— If BlockSize of previous chunk is >1
» Otherwise it means there is no list entry
- Then merge with previous chunk:
* And unlink happens on list entry of previous chunk
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e Allocate a chunk

* Next chunk must be allocated and of size
256-4080 bytes (not as easy as it looks)
- Works with smaller chunks if lookaside lists are full
 Craft a fake free header and list entry at the end
of our chunk (with realistic sizes)
e Overtlow PreviousSize of next chunk to make it

point to our fake header

- Requires a ~1 byte overflow!
e 0X00 can work if PreviousSize>0x100
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- A bigger overtlow would require knowedge of
BlockSize of next chunk to avoid BugCheck
* Or enough bytes to craft another header after (~257)

» Write4 happens when next chunk is freed
- Also works with page aligned chunks!

Header Overflow ||» H'::gzr

Overflow PreviousSize of next chunk

Fake = List | Next
Header ENUY Header

A A
Merge

Header

06/11/08 IMMUNITY 8 47
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e When the chunk we overﬂowed 1S allocated

— If the chunk was requested through ListHeads list
e No other constraint on BlockSize, PreviousSize, ...

— Then the overflowed list entry is removed from the
ListHeads list © Write4

- Variations of the write4 exist based on operations
done on the neighboring entries
* We can end up overwriting ListHeads[BlockSize] - Flink
with a pointer we control

» Next time a chunk of BlockSize is requested, our pointer
will be returned

06/11/08 IMMUNITY 8@ 48
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Flinks B

Flink | Blink

ListHeads[n]

Flink | Blink

ited (1/3)

» Flink | Blink

Free Chunk L

ik ok

06/11/08

: Overflowed list entry

Free Chunk

IMMUNITY 8

Free Chunk

49



-

KNOWIN

LlstHeads Ill t_e_d (1 /3)

ListHeads[n]
» Flink | Blink Blinks
LFIink Blink ~—» Flink | Blink
|
Free Chunk Free Chunk
- Pl | Blink
|
Free Chunk

: Overflowed list entry
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ListHeads[n]

~—» Flink | Blink

Allocation of size n
unlinks ListHeads[n] - Flink

Flink | Blink JIL

PLIST ENTRY b,f;
f=ListHeads[n] = Flink = Flink;
b=ListHeads[n] - Flink = Blink;
b - Flink=f;

»/;ﬁﬁg/ Blink | foBlink=b:

Free Chunk

Free Chunk

06/11/08 IMMUNITY ... 51
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ListHeads[n]

“Flink Blink

Flink | Blink

Free Chunk

Allocation of size n
unlinks ListHeads[n] - Flink

1 1

PLIST ENTRY b,f;
f=ListHeads[n] = Flink = Flink;
b=ListHeads[n] - Flink = Blink;
b - Flink=f;

f_Blink=b; <Imight AV

ListHeads[n]-Flink is now under our control!

06/11/08
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e When the chunk we oveﬂowed 1S alocated:

— If the chunk was requested through nt!
MmNonPagedPoolFreeListHead list
» Overflowed chunk is obviously page aligned
— Then the write4 happens when the
MMFREE POOL_ENTRY structure is removed
from the double linked list > Write4

- Variations of the write4 exist based on operations
done on the neighboring list entries

06/11/08 IMMUNITY 8 53
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e Most complicated with Kernel Pool overflows:
— Only a few pools for all kernel allocations
* Lot of allocation and free

- 4 different kernels based on architecture:
 Single processor: ntoskrnl.exe, ntkrnlpa.exe
e Multi processors: ntkrnlmp.exe, ntkrpamp.exe

- A lot of kernel patches for every service pack
» Addresses tend to change, a lot

* Any access violation will most likely end up in a
BugCheck ®

06/11/08 IMMUNITY 8 54



nt!KiDebugRoutine functmn pomter
— Called by nt!KiDispatchException if not NULL
— Should be kept as last resort

Context specific function pointers

- tepip!tepxsum_routine is called right after the
overflow in the case of MS08-001

Function pointers arrays
- nt!'HalDispatchTable
- Interrupt Dispatch Table (IDT)

Kernel instructions — page is RWE!

06/11/08 IMMUNITY ...

55)



L x‘ —

Edx points to something we control
mov eax, [edx+8]

mov ebx, [edx+0Ch]
mov [ebx], eax
mov [eax+4], ebx
| oc_80543F0B: ; CODE XREF: ExFreePool WthTag(x,x )+51 8j
movzx edx, word ptr [edx+2]

o After .
Jmp edx being 2 bytes long, we can
nov eax, [edx+8] pick the upper 2 so that the write4
mov ebx, [edx+O0Ch] doesn't trigger an access violation

mov [ebx], eax
mov [eax+4], ebx
| oc_80543F0B: ; CODE XREF: ExFreePool WthTag(x,x )+51 8j

j mp edx

06/11/08 IMMUNITY ...
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e Check for inconsistencies and fix them:

- Lookaside lists, both “per processor” and
systemwide

» Zero out Sequence, Depth and Next of ListHead member
of the given nt!_ GENERAL_LOOKASIDE entry
— In fact the first 8 bytes

- ListHeads lists for involved pool descriptor(s)

e Set ListHeads[BlockSize] — Flink and
ListHeads[BlockSize] - Blink to &ListHeads[BlockSize]

- nt!MmNonPagedPoolFreeListHead array

06/11/08 IMMUNITY 8 57



MS08-001: IGMPv3 Kernel Pool overflow
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 Remote default kernel ol overflow in
Windows XP when parsing IGMPv3 packets

- Even bypasses detault firewall rules!
* Released January, 8" 2008 in MS08-001
- Along with MLDv2 vulnerability for Vista
« Reported by Alex Wheeler and Ryan Smith of
IBM — Internet Security Systems
* Considered by Microsoft SWI as “unlikely”
exploitable

06/11/08 IMMUNITY ...
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http://www.microsoft.com/technet/security/bulletin/MS08-001.mspx
http://www.iss.net/
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0]
0]

t—+—+—+-—

+—t—t—+-

LL-h

QU'R

GMPV3 Memb seship Quef'le v

\ RFC 3376 .-*F

1 2 3

L

12345678901 2345678901 2345¢%67 89201

Type

+—+—+—+—+-
Ox11 I

t—+—t+—+—+-—

t—t+—t+—+—+—F—F+—+—+—

Resv

IS QRV |

+—+—F+—t+—F—+—F+—+—+-—

I
+_
I

+_

+ —

+—+—+—+—+—+—F—F—F—F+—t+—t+—F+—F—F—F—F+—t+—+—+—+—+—+—
Max Resp Code | Checksum I

t—t—+—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—+—F+—t+—+—+—+
|

+

Group Address
t—t+—t+—F+—F—F—F—F—Ft—F—F—F—Ft—F—F—F—+—t+—F—F+—+—+—+—+
QQl C I Number of Sources (N) I
+—+—+—+—F+—+—F—F—F+—F—F+—F—F+—F—+—F—F+—F—F—F+—F+—+—+—+
I

Source Address [1]

Source Address [2]

Source Address [N] |

+t—+—t+—+—+—F+—F—F—Ft—F—F—F—F—F—F—F—F—F—F—F—F+—F—F—F—F—F—F—F+—F+—F+—+—+—+
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1. Walk a single linked list to count the number of
entries (using a 32 bit counter)

2. Allocate some memory:
| oc_44197: ;: CODE XREF: Get GSlslnRecord(x,x)+18j
push 10h ; Priority
movzx eax, dX <1Failed!

push "ql CT" ; Tag

| ea eax, ds: 8[eax*4]

push eax ; Number Of Byt es

push ebx ; Pool Type

call ds:__inmp__ExAlIl ocatePool WthTagPriority@ 6

3.Copy the list entries in the allocated array by
walking the list ® Overflow
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* Send multiple IGMPv3 embershi queries
— Group address has to be valid

- Can be sent to:
e Unicast IP address (ie. 10.10.10.42)
e Broadcast IP address (ie. 10.10.10.255)
e Multicast IP address (ie. 224.0.0.1)
- Total number of unique source addresses must be
65536 or greater
* IP addresses in the 224-239 range are ignored

* Wait for the IGMPv3 report to be triggered

06/11/08 IMMUNITY 8@ 62



* Sending a lot of IGMPV membershp queries
induces high CPU utilization

- Each new source address triggers the allocation of a
20 (0x14) byte structure

- The linked list of structures is walked before adding
a new element to check for uniqueness of IP (O(n?))

» High CPU usage leads to potential packets
dropping

- Final buffer will not be as expected
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 IGMPv3 reports are on a random timer

- Can be triggered before all the queries are sent
— Buffer will not be filled as intended

16 bit wrap usually means huge overtlow
- 65536 entries are put in a 0 byte buffer
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« Exponential delay between packets sending

— Still fast enough to avoid a random report trigger
» Report trigger can be forced if QQIC=0

- Empty the list before the attack

- Trigger the overtflow when all the packets are sent
* Index for the copy is on 16 bit register

- Overtlow size is actually (for n>oxfttf):

(0x10000-(n%0x10000))*4

- For n=oxifffe, allocation size if 0x40000 (page
aligned allocation), overtlow size is 8
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> Dir a

256 <(n% Ox10000)*4+8<4080

—

e Pros
- Relatively small number of packets (~180)

— Since the allocated buffer is freed after the overflow,
“Write4 on Merge with Next” will always happen
* Next chunk is easily craftable

— We control BlockSize to some extent, which is
interesting for the “Write4 into Kernel” technique
 Cons

- Overflow is huge! (>0x3f000 bytes)
* A large chunk of the kernel pool will be trashed @
* Lot of pool fixing to do
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Overflow
Kernel Pool is Buffer closest to
filled with n Ox14 our allocated buffer
byte buffers is the 1°* one to be
copied and freed
Our buffer will be
allocated before 0x14 byte buffers Requires a “carpet”
those (we pretty of ~13000 contiguous
much exhausted all 0x14 byte buffers
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I R (0x10000-(n% PX10000))*4=8 ~

KNOWIN (LK

e Pros
- 8 byte overflow only

* The kernel pool remains pretty clean

e Cons

— Next chunk can be;:
 Ant!_ MMFREE_POOL_ENTRY: we overflow a list entry
* A busynt! POOL_HEADER

- “Write4 on Merge with Previous” will happen on free
e Etc
D Headaches

- Higher number of packets (~300)

06/11/08 IMMUNITY 8@ 68



06/11/08

Conclusion

IMMUNITY 8

69



-

Y

-
KNOWIN OLI'R

/

. “ConcljiSio

» Kernel still offers a nice playground for
exploitation even in latest Windows versions

» Exploitation costs have increased dramatically
- We're still working on MS08-001!
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 More memory allocations are NUMA aware:

- Different pool descriptors per NUMA node

* Up to 16 non-paged pool descriptors
- Initial non-paged pool has separate address ranges for each node

» Up to 16 paged pool descriptors

* Only kernel in XP SP2 modifying nt!
KeNumberNodes is ntkrpamp.exe (PAE & MP)

» Kernel pool overflows more complex
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* How to exploit Windows kernel meory pool
- SoBelt, Xcon 2005

» Reliable Windows Heap Exploits
- M. Conover, O. Horovitz, CanSecWest 2004

 Owning NonPaged pool using stealth hooking
- mxatone, Phrack 65
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http://packetstormsecurity.nl/Xcon2005/Xcon2005_SoBeIt.pdf
http://cansecwest.com/csw04csw04-Oded+Connover.ppt
http://www.phrack.com/issues.html?issue=65&id=4#article
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Thank you!
Questions?
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