
06/11/08 1

Real World Kernel Pool
Exploitation

Kostya Kortchinsky
Immunity, Inc.

SyScan'08 Hong Kong

http://www.immunityinc.com/

06/11/08 2

AgendaAgenda

● Introduction
● The Kernel Pool and its structures
● Allocation and Free algorithm
● Exploiting a Kernel Pool overflow
● MS08-001: IGMPv3 Kernel Pool overflow
● Conclusion

06/11/08 3

Introduction

06/11/08 4

IntroductionIntroduction

● Kernel vulnerabilities are more popular
– Less protections than in userland

● Kernel allocations are highly performance optimized
● Less room for cookies and other roadblocks

– Code has had less attention than userland services
● Several kernel pool overflows to exploit

– Our example: MS08-001 (IGMPv3 Overflow)

06/11/08 5

People who write exploits
People who write

Windows
overflows

People who
write Windows

Kernel Pool
Overflows

PopulationPopulation

06/11/08 6

Other considerationsOther considerations

● Because few people know how to write them,
Windows Kernel Pool overflows are often mis-
characterized as “Denial of Service”

● Huge investment in exploit development before
it is known if a reliable exploit can be created
for any bug
– If it costs 100K dollars to even know if you have a

risk from any particular vulnerability, can you
afford to find out?

06/11/08 7

Diversity increases Diversity increases
QA costs dramaticallyQA costs dramatically

Linux Userspace Windows Userspace Windows Kernel
0

1

2

3

4

5

6

7

8

9

10

Proof Of Concept
Exploit Development
QA + Testing

06/11/08 8

Addresses May VaryAddresses May Vary

● The following slides assume:
– Structures, constants and offsets are from

ntkrnlpa.exe 5.1.2600.2180 (XP SP2 default)
● Windows XP SP2 has 4 kernels, the one being used

depends on PAE and MP
– nt!KeNumberNodes is 1 (non NUMA architecture)

● NUMA introduces differences in the kernel pools
– See slide #71

06/11/08 9

The Kernel Pool and its structures

06/11/08 10

Kernel Pool vs. Userland HeapKernel Pool vs. Userland Heap

● Quite similar
● Only a few pools for all the kernel allocations

– Think LSASS default heap
● Kernel pool is designed to be fast

– As few checks as possible
● No kernel pool cookie
● No kernel pool safe unlink

06/11/08 11

Kernel PoolKernel Pool

● Used by Windows for dynamic memory
allocations within kernel land by functions:
– nt!ExAllocatePool, nt!ExAllocatePoolWithTag, ...
– nt!ExFreePool, nt!ExFreePoolWithTag, ...

● There are several kernel pools, default being:
– One non-paged pool
– Two paged pools
– One session paged pool

06/11/08 12

Pools DefinitionsPools Definitions

● Pools are defined thanks to structure nt!
_POOL_DESCRIPTOR
– Described in slide #16

● They are stored in the nt!PoolVector array
– Array of pointers
– Located in the .data section of the kernel

06/11/08 13

Non Paged PoolNon Paged Pool

● Non pageable system memory
● Can be accessed from any IRQL
● Scarce resource
● Descriptor for non paged pool is static:

– nt!NonPagedPoolDescriptor in .data section
● It is initialized in nt!InitializePool
● Pointer to the descriptor is stored in entry 0 of

nt!PoolVector

06/11/08 14

Paged PoolPaged Pool

● Pageable system memory
● Number of paged pools defined by nt!

ExpNumberOfPagedPools (default is 2)
● An array of pool descriptors is dynamically

allocated and initialized in nt!InitializePool
– NonPagedPool allocation
– One more descriptor than number of paged pools

● Pointer to array stored in entry 1 of nt!
PoolVector and in nt!ExpPagedPoolDescriptor

06/11/08 15

Session Paged PoolSession Paged Pool

● Pageable system memory
● Descriptor for the session paged pool is located

in the session space
– PagedPool member of nt!MmSessionSpace

structure
● Usually 0xbf7f0000+0x244

● Initialized in nt!MiInitializeSessionPool
– used for session space allocations
– do not use lookaside lists

● Pointer to the descriptor stored in nt!
ExpSessionPoolDescriptor

06/11/08 16

nt!_POOL_DESCRIPTORnt!_POOL_DESCRIPTOR

k d> dt nt !_POOL_DESCRI PTOR
 +0x000 Pool Ty pe : _POOL_TYPE
 +0x004 Pool I ndex : Ui nt 4B
 +0x008 Runni ngAl l oc s : Ui nt 4B
 +0x00c Runni ngDeAl l oc s : Ui nt 4B
 +0x01 0 Tot a l Pages : Ui nt 4B
 +0x01 4 Tot a l Bi gPages : Ui nt 4B
 +0x01 8 Thr es hol d : Ui nt 4B
 +0x01 c Loc kAddr es s : Pt r 32 Voi d
 +0x020 Pendi ngFr ees : Pt r 32 Voi d
 +0x024 Pendi ngFr eeDept h : I nt 4B
 +0x028 Li s t Heads : [51 2] _LI ST_ENTRY

06/11/08 17

Pool DescriptorPool Descriptor

● Some of the members:
– PoolType: NonPagedPool=0, PagedPool=1, ...
– PoolIndex: 0 for non-paged pool and paged session

pool, index of the pool descriptor in nt!
ExpPagedPoolDescriptor for paged pools

– ListHeads: 512 double-linked lists of free memory
chunks of the same size (8 byte granularity)

● List number for a requested allocation size is calculated
by Bl oc kSi z e=(Number Of By t es+0x f)>>3

● Thus can be used for allocations up to 0xff0 (4080) bytes

06/11/08 18

ListHeadsListHeads

0
1
2
3
4

511

...

8 bytes

24 bytes 24 bytes
32 bytes

24 bytes

Each chunk of data is preceded
by a 8 byte header structure

06/11/08 19

nt!_POOL_HEADERnt!_POOL_HEADER

k d> dt nt !_POOL_HEADER
 +0x000 Pr ev i ous Si z e : Pos 0, 9 Bi t s
 +0x000 Poo l I ndex : Pos 9, 7 Bi t s
 +0x002 Bl oc kSi z e : Pos 0, 9 Bi t s
 +0x002 Poo l Ty pe : Pos 9, 7 Bi t s
 +0x000 Ul ong1 : Ui n t 4B
 +0x004 Pr oc es sBi l l ed : Pt r 32 _EPROCESS
 +0x004 Poo l Tag : Ui n t 4B
 +0x004 Al l oc at o r Bac k Tr ac eI ndex : Ui n t 2B
 +0x006 Poo l TagHas h : Ui n t 2B

06/11/08 20

Chunk HeaderChunk Header

● Explanations on some of the members:
– PreviousSize: BlockSize of the preceding chunk

● 0 if chunk is located at the beginning of a page
– BlockSize: Number of bytes requested plus header

size rounded up to a multiple of 8, divided by 8
● or (Number Of By t es+0x f)>>3

– PoolIndex: same definition as for the descriptor
– PoolType: 0 if free, (PoolType+1)|4 if allocated
– PoolTag: Usually 4 printable characters identifying

the code responsible for the allocation

06/11/08 21

Free Chunk HeaderFree Chunk Header

● When PoolType=0, the chunk header is
followed by a nt!_LIST_ENTRY structure
– This is the entry pointed to by the ListHeads double

linked list
● Chunks freed to the lookaside lists remain the

same, their PoolType is non 0

k d> dt nt !_LI ST_ENTRY
 +0x000 Fl i nk : Pt r 32 _LI ST_ENTRY
 +0x004 Bl i nk : Pt r 32 _LI ST_ENTRY

06/11/08 22

Lookaside ListsLookaside Lists

● Like for userland heaps, kernel uses lookaside
lists for faster allocating and freeing of small
chunks of data
– Maximum BlockSize being 32 (or 256 bytes)

● They are defined in the processor control block
– 32 entry PPPagedLookasideList
– 32 entry PPNPagedLookasideList

● Each entry holds 2 single chained lists of nt!
_GENERAL_LOOKASIDE structures: one “per
processor” P, one “system wide” L

06/11/08 23

nt!_GENERAL_LOOKASIDEnt!_GENERAL_LOOKASIDE
k d> dt nt !_GENERAL_LOOKASI DE
 +0x000 Li s t Head : _SLI ST_HEADER
 +0x008 Dept h : Ui nt 2B
 +0x00a Max i mumDept h : Ui nt 2B
 +0x00c Tot a l Al l oc at es : Ui nt 4B
 +0x01 0 Al l oc at eMi s s es : Ui nt 4B
 +0x01 0 Al l oc at eHi t s : Ui nt 4B
 +0x01 4 Tot a l Fr ees : Ui nt 4B
 +0x01 8 Fr eeMi s s es : Ui nt 4B
 +0x01 8 Fr eeHi t s : Ui nt 4B
 +0x01 c Ty pe : _POOL_TYPE
 +0x020 Tag : Ui nt 4B
 +0x024 Si z e : Ui nt 4B
 +0x028 Al l oc at e : Pt r 32 voi d*
 +0x02c Fr ee : Pt r 32 voi d
 +0x030 Li s t Ent r y : _LI ST_ENTRY
 +0x038 Las t Tot a l Al l oc at es : Ui nt 4B
 +0x03c Las t Al l oc at eMi s s es : Ui nt 4B
 +0x03c Las t Al l oc at eHi t s : Ui nt 4B
 +0x040 Fut ur e : [2] Ui nt 4B

06/11/08 24

nt!nt!
MmNonPagedPoolFreeListHeaMmNonPagedPoolFreeListHea

dd
● Static array of 4 double linked lists for non-

paged free chunks bigger than a page
– Index in the array is (SizeOfChunkInPages-1)

● Last entry also has everything bigger than 4 pages
● Structure used is nt!

_MMFREE_POOL_ENTRY
k d> dt nt !_MMFREE_POOL_ENTRY
 +0x000 Li s t : _LI ST_ENTRY
 +0x008 Si z e : Ui nt 4B
 +0x00c Si gnat ur e : Ui nt 4B
 +0x01 0 Owner : Pt r 32 _MMFREE_POOL_ENTRY
● Thus free non-paged “big” chunks are linked

through the pages themselves

06/11/08 25

Allocation and Free algorithms

06/11/08 26

Allocation SummaryAllocation Summary

● Windows kernel pool allocates in small chunks:
– 8 byte granularity up to 4080 bytes (included)

● Used to be 32 for Windows 2000
– Page granularity above

● Makes extensive use of optimized lists:
– Single linked Lookaside lists up to 256 bytes
– Double linked ListHeads lists up to 4080 bytes

● Splits an entry if a chunk of the exact size
cannot be found

● Expands the pool if needed

06/11/08 27

Simplified Allocation Simplified Allocation
AlgorithmAlgorithm

nt!ExAllocatePoolWithTag (1/2)nt!ExAllocatePoolWithTag (1/2)
● If NumberOfBytes>0xff0:

– Call nt!MiAllocatePoolPages
● If PagedPool requested:

– If BlockSize≤0x20:
● Try the “per processor” paged lookaside list
● If failed, try the “system wide” paged lookaside list
● Return on success

– Try and lock a paged pool descriptor
● Else:

– If BlockSize≤0x20:
● Try the “per processor” non-paged lookaside list

06/11/08 28

Simplified Allocation Simplified Allocation
AlgorithmAlgorithm

nt!ExAllocatePoolWithTag (2/2)nt!ExAllocatePoolWithTag (2/2)
● If failed, try the “system wide” non-paged lookaside list
● Return on success

– Try and lock the non-paged pool descriptor
● Use ListHeads of currently locked pool:

– Use 1st non empty ListHeads[n]
● With BlockSize≤n<512
● Split entry if bigger than needed
● Return on success

– If failed, expand the pool by adding a page
● Try again!

06/11/08 29

Free Chunk SplittingFree Chunk Splitting

● If the algorithm has selected a chunk larger
than the requested NumberOfBytes, it is split
– If the chunk is at the start of a page:

● Take the allocation from the front of the chunk
– Otherwise:

● Take the allocation from the end of the chunk
● The remaining part is inserted in the correct list

06/11/08 30

Splitting SchemaSplitting Schema

Free Chunk Free Chunk

Free Chunk Free Chunk

Free chunk at the beginning of a page,
allocated chunk goes at the front

Otherwise, allocated chunk goes at the end

06/11/08 31

Free SummaryFree Summary

● Free algorithm works pretty much as expected:
– It will use Lookaside lists for chunks up to 256 bytes

● If they are not full already
– It will use ListHeads for chunks up to 4080 bytes

● Merges contiguous free chunks to lower
fragmentation

● Releases pages if necessary

06/11/08 32

Simplified Free AlgorithmSimplified Free Algorithm
nt!ExFreePoolWithTag (1/2)nt!ExFreePoolWithTag (1/2)

● If P is page aligned:
– Call nt!MiFreePoolPages

● If BlockSize≤0x20:
– If PoolType=PagedPool:

● Put in “per processor” paged lookaside list
● If failed, put in “system wide” paged lookaside list
● Return on success

– Else:
● Put in “per processor” non-paged lookaside list
● If failed, put in “system wide” non-paged lookaside list
● Return on success

06/11/08 33

Simplified Free AlgorithmSimplified Free Algorithm
nt!ExFreePoolWithTag (2/2)nt!ExFreePoolWithTag (2/2)

● If next chunk is free and not page aligned:
– Merge with current chunk

● If previous chunk is free:
– Merge with current chunk

● If resulting chunk is a full page:
– Call nt!MiFreePoolPages

● Else:
– Add chunk to the tail of the correct ListHeads

● Based on PoolType, PoolIndex and BlockSize of chunk

06/11/08 34

Merging SchemaMerging Schema

Free
Chunk

Busy
Chunk

Free
Chunk

Free
Chunk

Free
Chunk

Free
Chunk

Chunk being freed

Merge #1

Merge #2

06/11/08 35

Exploiting a Kernel Pool overflow

06/11/08 36

Pool BugChecksPool BugChecks

● Discrepancies in the kernel pool will most likely
result in a BugCheck (Blue Screen)

0x 1 9: BAD_POOL_HEADER
0x41 : MUST_SUCCEED_POOL_EMPTY
0x c 1 : SPECI AL_POOL_DETECTED_MEMORY_CORRUPTI ON
0x c2: BAD_POOL_CALLER

● Some are only present in Checked Build
● Avoid those when exploiting a pool overflow!

06/11/08 37

BugCheck ExampleBugCheck Example

06/11/08 38

Some BugCheck ConditionsSome BugCheck Conditions

● nt!ExFreePoolWithTag:
– BugCheck 0xc2, 7 if PoolType&4=0

● The chunk attempted to be freed is already free
– BugCheck 0x19, 0x20 if PreviousSize of next chunk

is ≠ BlockSize of current chunk
● Checked Build:

– BugCheck 0x19, 3 if (Entry→Flink)→Blink!≠Entry
or (Entry→Blink)→Flink≠Entry

● It didn't make it to retail build, thanks Microsoft!

06/11/08 39

Exploitable Overflows?Exploitable Overflows?

Yes !

● Unlike in userland heaps, there is no such thing
as a kernel pool cookie

● There is no safe unlinking in retail build

06/11/08 40

Kernel Pool UnlinkKernel Pool Unlink

● Removing an entry 'e' from a double linked list:
PLI ST_ENTRY b, f ;
f =e→Fl i nk ;
b=e→Bl i nk ;
b→Fl i nk =f ;
f →Bl i nk =b;

● This leads to a usual write4 primitive:
*(wher e)=what
*(what +4)=wher e

● Locating the unlinks:
– nt!ExFreePoolWithTag: when merging chunks
– nt!MiAllocatePoolPages, nt!MiFreePoolPages, ...

06/11/08 41

NotationsNotations

Header Next
Header

Our chunk Chunk we overflow

Overflow List
Entry

Potential list entry
depending on chunk type

Kernel Pool Overflow

06/11/08 42

Different Write4Different Write4

● Summary list of write4 techniques:
– Write4 on Merge with Next

● When freeing our chunk
– Write4 on Merge with Previous

● When freeing the chunk we overflowed
– Write4 on ListHeads Unlink

● If we overflowed an entry in a ListHeads list
– Write4 on MmNonPagedPoolFreeListHead Unlink

● If we overflowed an entry in a
MmNonPagedPoolFreeListHead list

06/11/08 43

Write4 on Merge with NextWrite4 on Merge with Next
Case #1Case #1

● When our chunk is freed:
– If PreviousSize of next chunk is = BlockSize of

current chunk
● To avoid BugCheck 0x19

– If BlockSize>0x20 (or lookaside lists are full)
● To avoid a free to lookaside

– If PoolType of next chunk is 0
– If BlockSize of next chunk is >1

● Otherwise it means there is no list entry
– Then merge with next chunk:

● And unlink happens on list entry of next chunk

06/11/08 44

Exploit Case #1Exploit Case #1

● Allocate a chunk of size 256-4080 bytes
– Works with smaller chunks if lookaside lists are full

● Craft a free header after our chunk with:
– Correct PreviousSize
– PoolType=0
– Wanted Flink and Blink
– Requires a minimum overflow of about 16 bytes

● Write4 happens when our allocated chunk is
freed

06/11/08 45

Write4 on Merge with PreviousWrite4 on Merge with Previous
Case #2Case #2

● When the chunk we overflowed is freed:
– If PreviousSize of next chunk is = BlockSize of

current chunk
● To avoid BugCheck 0x19

– If BlockSize>0x20 (or lookaside lists are full)
● To avoid a free to lookaside

– If PoolType of previous chunk is 0
– If BlockSize of previous chunk is >1

● Otherwise it means there is no list entry
– Then merge with previous chunk:

● And unlink happens on list entry of previous chunk

06/11/08 46

Exploit Case #2 (1/2)Exploit Case #2 (1/2)

● Allocate a chunk
● Next chunk must be allocated and of size

256-4080 bytes (not as easy as it looks)
– Works with smaller chunks if lookaside lists are full

● Craft a fake free header and list entry at the end
of our chunk (with realistic sizes)

● Overflow PreviousSize of next chunk to make it
point to our fake header
– Requires a ~1 byte overflow!

● 0x00 can work if PreviousSize>0x100

06/11/08 47

Exploit Case #2 (2/2)Exploit Case #2 (2/2)

– A bigger overflow would require knowledge of
BlockSize of next chunk to avoid BugCheck

● Or enough bytes to craft another header after (~257)
● Write4 happens when next chunk is freed

– Also works with page aligned chunks!

Header Next
Header

Next
Header

Header

Overflow

Fake
Header

List
Entry

Overflow PreviousSize of next chunk

Merge

06/11/08 48

ListHeads Write4ListHeads Write4

● When the chunk we overflowed is allocated:
– If the chunk was requested through ListHeads list

● No other constraint on BlockSize, PreviousSize, ...
– Then the overflowed list entry is removed from the

ListHeads list ⇨Write4
– Variations of the write4 exist based on operations

done on the neighboring entries
● We can end up overwriting ListHeads[BlockSize]→Flink

with a pointer we control
● Next time a chunk of BlockSize is requested, our pointer

will be returned

06/11/08 49

ListHeads Illustrated (1/3)ListHeads Illustrated (1/3)

Flink Blink

Flink Blink

Flink Blink

Flink Blink

ListHeads[n]

Flinks

Free ChunkFree Chunk

Free Chunk

: Overflowed list entry

06/11/08 50

ListHeads Illustrated (1/3)ListHeads Illustrated (1/3)

Flink Blink

Flink Blink

Flink Blink

Flink Blink

ListHeads[n]

B links

Free Chunk Free Chunk

Free Chunk

: Overflowed list entry

06/11/08 51

ListHeads Illustrated (2/3)ListHeads Illustrated (2/3)

Flink Blink

Flink Blink

Flink Blink

ListHeads[n]

Free Chunk

Free Chunk

PLIST_ENTRY b,f;
f=ListHeads[n]→Flink→Flink;
b=ListHeads[n]→Flink→Blink;
b→Flink=f;
f→Blink=b;

Allocation of size n
unlinks ListHeads[n]→Flink

06/11/08 52

ListHeads Illustrated (3/3)ListHeads Illustrated (3/3)

Flink Blink

Flink Blink

ListHeads[n]

Free Chunk

PLIST_ENTRY b,f;
f=ListHeads[n]→Flink→Flink;
b=ListHeads[n]→Flink→Blink;
b→Flink=f;
f→Blink=b; ⇦might AV

Allocation of size n
unlinks ListHeads[n]→Flink

Lis tHeads [n]→Flink is now under our c ontrol!

06/11/08 53

MMFREE_POOL_ENTRY MMFREE_POOL_ENTRY
Write4Write4

● When the chunk we overflowed is allocated:
– If the chunk was requested through nt!

MmNonPagedPoolFreeListHead list
● Overflowed chunk is obviously page aligned

– Then the write4 happens when the
MMFREE_POOL_ENTRY structure is removed
from the double linked list ⇨Write4

– Variations of the write4 exist based on operations
done on the neighboring list entries

06/11/08 54

What? Where?What? Where?

● Most complicated with Kernel Pool overflows:
– Only a few pools for all kernel allocations

● Lot of allocation and free
– 4 different kernels based on architecture:

● Single processor: ntoskrnl.exe, ntkrnlpa.exe
● Multi processors: ntkrnlmp.exe, ntkrpamp.exe

– A lot of kernel patches for every service pack
⇨Addresses tend to change, a lot

● Any access violation will most likely end up in a
BugCheck ☹

06/11/08 55

Some IdeasSome Ideas
Non ExhaustiveNon Exhaustive

● nt!KiDebugRoutine function pointer
– Called by nt!KiDispatchException if not NULL
– Should be kept as last resort

● Context specific function pointers
– tcpip!tcpxsum_routine is called right after the

overflow in the case of MS08-001
● Function pointers arrays

– nt!HalDispatchTable
– Interrupt Dispatch Table (IDT)

● Kernel instructions – page is RWE!

06/11/08 56

Write4 into the KernelWrite4 into the Kernel

● Before
 mov eax , [edx+8]
 mov ebx , [edx+0Ch]
 mov [ebx] , eax
 mov [eax+4] , ebx
l oc _80543F0B: ; CODE XREF: ExFr eePool Wi t hTag(x , x)+51 8j
 mov z x edx , wor d pt r [edx +2]

● After
 mov eax , [edx+8]
 mov ebx , [edx+0Ch]
 mov [ebx] , eax
 mov [eax+4] , ebx
l oc _80543F0B: ; CODE XREF: ExFr eePool Wi t hTag(x , x)+51 8j
 j mp edx

Edx points to something we control

Jmp edx being 2 bytes long, we can
pick the upper 2 so that the write4
doesn't trigger an access violation

06/11/08 57

Fixing the Kernel PoolFixing the Kernel Pool

● Check for inconsistencies and fix them:
– Lookaside lists, both “per processor” and

systemwide
● Zero out Sequence, Depth and Next of ListHead member

of the given nt!_GENERAL_LOOKASIDE entry
– In fact the first 8 bytes

– ListHeads lists for involved pool descriptor(s)
● Set ListHeads[BlockSize]→Flink and

ListHeads[BlockSize]→Βlink to &ListHeads[BlockSize]
– nt!MmNonPagedPoolFreeListHead array

06/11/08 58

MS08-001: IGMPv3 Kernel Pool overflow

06/11/08 59

HistoryHistory

● Remote default kernel pool overflow in
Windows XP when parsing IGMPv3 packets
– Even bypasses default firewall rules!

● Released January, 8th 2008 in MS08-001
– Along with MLDv2 vulnerability for Vista

● Reported by Alex Wheeler and Ryan Smith of
IBM – Internet Security Systems

● Considered by Microsoft SWI as “unlikely”
exploitable

http://www.microsoft.com/technet/security/bulletin/MS08-001.mspx
http://www.iss.net/
http://blogs.technet.com/swi/archive/2008/01/08/ms08-001-part-3-the-case-of-the-igmp-network-critical.aspx

06/11/08 60

IGMPv3 Membership QueriesIGMPv3 Membership Queries
RFC 3376RFC 3376

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Ty pe = 0x 1 1 | Max Res p Code | Chec k s um |
 +-+
 | Gr oup Addr es s |
 +-+
 | Res v |S| QRV | QQI C | Number of Sour c es (N) |
 +-+
 | Sour c e Addr es s [1] |
 +- -+
 | Sour c e Addr es s [2] |
 +- . -+
 . . .
 . . .
 +- -+
 | Sour c e Addr es s [N] |
 +-+

06/11/08 61

VulnerabilityVulnerability

1.Walk a single linked list to count the number of
entries (using a 32 bit counter)

2.Allocate some memory:
l oc _441 97: ; CODE XREF: Get GSI s I nRec or d(x , x)+1 8j
 pus h 1 0h ; Pr i or i t y
 mov z x eax , dx
 pus h ' qI CT' ; Tag
 l ea eax , ds : 8[eax*4]
 pus h eax ; Number Of By t es
 pus h ebx ; Pool Ty pe
 cal l ds : __i mp__ExAl l oc at ePool Wi t hTagPr i or i t y@1 6

3.Copy the list entries in the allocated array by
walking the list ⇨Overflow

⇦Fa iled!

06/11/08 62

TriggerTrigger

● Send multiple IGMPv3 membership queries
– Group address has to be valid
– Can be sent to:

● Unicast IP address (ie. 10.10.10.42)
● Broadcast IP address (ie. 10.10.10.255)
● Multicast IP address (ie. 224.0.0.1)

– Total number of unique source addresses must be
65536 or greater

● IP addresses in the 224-239 range are ignored
● Wait for the IGMPv3 report to be triggered

06/11/08 63

Issues (1/2)Issues (1/2)

● Sending a lot of IGMPv3 membership queries
induces high CPU utilization
– Each new source address triggers the allocation of a

20 (0x14) byte structure
– The linked list of structures is walked before adding

a new element to check for uniqueness of IP (O(n2))
● High CPU usage leads to potential packets

dropping
– Final buffer will not be as expected

06/11/08 64

Issues (2/2)Issues (2/2)

● IGMPv3 reports are on a random timer
– Can be triggered before all the queries are sent
– Buffer will not be filled as intended

● 16 bit wrap usually means huge overflow
– 65536 entries are put in a 0 byte buffer

06/11/08 65

SolutionsSolutions

● Exponential delay between packets sending
– Still fast enough to avoid a random report trigger

● Report trigger can be forced if QQIC=0
– Empty the list before the attack
– Trigger the overflow when all the packets are sent

● Index for the copy is on 16 bit register
– Overflow size is actually (for n>0xffff):

(0x10000-(n%0x10000))*4
– For n=0x1fffe, allocation size if 0x40000 (page

aligned allocation), overflow size is 8

06/11/08 66

Dirty WayDirty Way
256<(n% 0x10000)*4+8<4080256<(n% 0x10000)*4+8<4080

● Pros
– Relatively small number of packets (~180)
– Since the allocated buffer is freed after the overflow,

“Write4 on Merge with Next” will always happen
● Next chunk is easily craftable

– We control BlockSize to some extent, which is
interesting for the “Write4 into Kernel” technique

● Cons
– Overflow is huge! (>0x3f000 bytes)

● A large chunk of the kernel pool will be trashed ☹
● Lot of pool fixing to do

06/11/08 67

Why would it work?Why would it work?

Overflow

...

...

0x14 byte buffers

Kernel Pool is
filled with n 0x14

byte buffers

Buffer closest to
our allocated buffer
is the 1st one to be
copied and freed

Requires a “carpet”
of ~13000 contiguous

0x14 byte buffers
(not too hard)

Our buffer will be
allocated before
those (we pretty

much exhausted all
the free chunks)

06/11/08 68

Clean WayClean Way
(0x10000-(n% 0x10000))*4=8(0x10000-(n% 0x10000))*4=8

● Pros
– 8 byte overflow only

● The kernel pool remains pretty clean
● Cons

– Next chunk can be:
● A nt!_MMFREE_POOL_ENTRY: we overflow a list entry
● A busy nt!_POOL_HEADER

– “Write4 on Merge with Previous” will happen on free
● Etc
⇨Headaches

– Higher number of packets (~300)

06/11/08 69

Conclusion

06/11/08 70

ConclusionConclusion

● Kernel still offers a nice playground for
exploitation even in latest Windows versions

● Exploitation costs have increased dramatically
– We're still working on MS08-001!

06/11/08 71

NUMANUMA

● More memory allocations are NUMA aware:
– Different pool descriptors per NUMA node

● Up to 16 non-paged pool descriptors
– Initial non-paged pool has separate address ranges for each node

● Up to 16 paged pool descriptors
● Only kernel in XP SP2 modifying nt!

KeNumberNodes is ntkrpamp.exe (PAE & MP)

⇨Kernel pool overflows more complex

06/11/08 72

LiteratureLiterature

● How to exploit Windows kernel memory pool
– SoBeIt, Xcon 2005

● Reliable Windows Heap Exploits
– M. Conover, O. Horovitz, CanSecWest 2004

● Owning NonPaged pool using stealth hooking
– mxatone, Phrack 65

http://packetstormsecurity.nl/Xcon2005/Xcon2005_SoBeIt.pdf
http://cansecwest.com/csw04csw04-Oded+Connover.ppt
http://www.phrack.com/issues.html?issue=65&id=4#article

06/11/08 73

Thank you!
Questions?

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73

