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Introduction
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IntroductionIntroduction

● Kernel vulnerabilities are more popular
– Less protections than in userland

● Kernel allocations are highly performance optimized
● Less room for cookies and other roadblocks

– Code has had less attention than userland services
● Several kernel pool overflows to exploit

– Our example: MS08-001 (IGMPv3 Overflow)



06/11/08 5

People who write exploits
People who write 

Windows
overflows

People who 
write Windows 

Kernel Pool 
Overflows

PopulationPopulation



06/11/08 6

Other considerationsOther considerations

● Because few people know how to write them, 
Windows Kernel Pool overflows are often mis-
characterized as “Denial of Service”

● Huge investment in exploit development before 
it is known if a reliable exploit can be created 
for any bug
– If it costs 100K dollars to even know if you have a 

risk from any particular vulnerability, can you 
afford to find out?
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Diversity increases Diversity increases 
QA costs dramaticallyQA costs dramatically
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Addresses May VaryAddresses May Vary

● The following slides assume:
– Structures, constants and offsets are from 

ntkrnlpa.exe 5.1.2600.2180 (XP SP2 default)
● Windows XP SP2 has 4 kernels, the one being used 

depends on PAE and MP
– nt!KeNumberNodes is 1 (non NUMA architecture)

● NUMA introduces differences in the kernel pools
– See slide #71



06/11/08 9

The Kernel Pool and its structures
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Kernel Pool vs. Userland HeapKernel Pool vs. Userland Heap

● Quite similar
● Only a few pools for all the kernel allocations

– Think LSASS default heap
● Kernel pool is designed to be fast

– As few checks as possible
● No kernel pool cookie
● No kernel pool safe unlink
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Kernel PoolKernel Pool

● Used by Windows for dynamic memory 
allocations within kernel land by functions:
– nt!ExAllocatePool, nt!ExAllocatePoolWithTag, ...
– nt!ExFreePool, nt!ExFreePoolWithTag, ...

● There are several kernel pools, default being:
– One non-paged pool
– Two paged pools
– One session paged pool
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Pools DefinitionsPools Definitions

● Pools are defined thanks to structure nt!
_POOL_DESCRIPTOR
– Described in slide #16

● They are stored in the nt!PoolVector array
– Array of pointers
– Located in the .data section of the kernel
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Non Paged PoolNon Paged Pool

● Non pageable system memory
● Can be accessed from any IRQL
● Scarce resource
● Descriptor for non paged pool is static:

– nt!NonPagedPoolDescriptor in .data section
● It is initialized in nt!InitializePool
● Pointer to the descriptor is stored in entry 0 of 

nt!PoolVector
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Paged PoolPaged Pool

● Pageable system memory
● Number of paged pools defined by nt!

ExpNumberOfPagedPools (default is 2)
● An array of pool descriptors is dynamically 

allocated and initialized in nt!InitializePool
– NonPagedPool allocation
– One more descriptor than number of paged pools

● Pointer to array stored in entry 1 of nt!
PoolVector and in nt!ExpPagedPoolDescriptor
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Session Paged PoolSession Paged Pool

● Pageable system memory
● Descriptor for the session paged pool is located 

in the session space
– PagedPool member of nt!MmSessionSpace 

structure
● Usually 0xbf7f0000+0x244

● Initialized in nt!MiInitializeSessionPool
– used for session space allocations
– do not use lookaside lists

● Pointer to the descriptor stored in nt!
ExpSessionPoolDescriptor
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nt!_POOL_DESCRIPTORnt!_POOL_DESCRIPTOR

k d> dt  nt !_POOL_DESCRI PTOR
  +0x000 Pool Ty pe         :  _POOL_TYPE
  +0x004 Pool I ndex        :  Ui nt 4B
  +0x008 Runni ngAl l oc s    :  Ui nt 4B
  +0x00c Runni ngDeAl l oc s  :  Ui nt 4B
  +0x01 0 Tot a l Pages       :  Ui nt 4B
  +0x01 4 Tot a l Bi gPages    :  Ui nt 4B
  +0x01 8 Thr es hol d        :  Ui nt 4B
  +0x01 c Loc kAddr es s      :  Pt r 32 Voi d
  +0x020 Pendi ngFr ees     :  Pt r 32 Voi d
  +0x024 Pendi ngFr eeDept h :  I nt 4B
  +0x028 Li s t Heads        :  [51 2] _LI ST_ENTRY
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Pool DescriptorPool Descriptor

● Some of the members:
– PoolType: NonPagedPool=0, PagedPool=1, ...
– PoolIndex: 0 for non-paged pool and paged session 

pool, index of the pool descriptor in nt!
ExpPagedPoolDescriptor for paged pools

– ListHeads: 512 double-linked lists of free memory 
chunks of the same size (8 byte granularity)

● List number for a requested allocation size is calculated 
by Bl oc kSi z e=(Number Of By t es+0x f )>>3

● Thus can be used for allocations up to 0xff0 (4080) bytes
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ListHeadsListHeads

0
1
2
3
4

511

...

8 bytes

24 bytes 24 bytes
32 bytes

24 bytes

Each chunk of data is preceded
by a 8 byte header structure
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nt!_POOL_HEADERnt!_POOL_HEADER

k d> dt  nt !_POOL_HEADER
  +0x000 Pr ev i ous Si z e     :  Pos 0,  9 Bi t s
  +0x000 Poo l I ndex        :  Pos 9,  7 Bi t s
  +0x002 Bl oc kSi z e        :  Pos 0,  9 Bi t s
  +0x002 Poo l Ty pe         :  Pos 9,  7 Bi t s
  +0x000 Ul ong1            :  Ui n t 4B
  +0x004 Pr oc es sBi l l ed    :  Pt r 32 _EPROCESS
  +0x004 Poo l Tag          :  Ui n t 4B
  +0x004 Al l oc at o r Bac k Tr ac eI ndex  :  Ui n t 2B
  +0x006 Poo l TagHas h      :  Ui n t 2B
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Chunk HeaderChunk Header

● Explanations on some of the members:
– PreviousSize: BlockSize of the preceding chunk

● 0 if chunk is located at the beginning of a page
– BlockSize: Number of bytes requested plus header 

size rounded up to a multiple of 8, divided by 8
● or (Number Of By t es+0x f )>>3

– PoolIndex: same definition as for the descriptor  
– PoolType: 0 if free, (PoolType+1)|4 if allocated
– PoolTag: Usually 4 printable characters identifying 

the code responsible for the allocation
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Free Chunk HeaderFree Chunk Header

● When PoolType=0, the chunk header is 
followed by a nt!_LIST_ENTRY structure
– This is the entry pointed to by the ListHeads double 

linked list
● Chunks freed to the lookaside lists remain the 

same, their PoolType is non 0

k d> dt  nt !_LI ST_ENTRY
  +0x000 Fl i nk            :  Pt r 32 _LI ST_ENTRY
  +0x004 Bl i nk            :  Pt r 32 _LI ST_ENTRY
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Lookaside ListsLookaside Lists

● Like for userland heaps, kernel uses lookaside 
lists for faster allocating and freeing of small 
chunks of data
– Maximum BlockSize being 32 (or 256 bytes)

● They are defined in the processor control block
– 32 entry PPPagedLookasideList
– 32 entry PPNPagedLookasideList

● Each entry holds 2 single chained lists of nt!
_GENERAL_LOOKASIDE structures: one “per 
processor” P, one “system wide” L
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nt!_GENERAL_LOOKASIDEnt!_GENERAL_LOOKASIDE
k d> dt  nt !_GENERAL_LOOKASI DE
  +0x000 Li s t Head         :  _SLI ST_HEADER
  +0x008 Dept h            :  Ui nt 2B
  +0x00a Max i mumDept h     :  Ui nt 2B
  +0x00c Tot a l Al l oc at es   :  Ui nt 4B
  +0x01 0 Al l oc at eMi s s es   :  Ui nt 4B
  +0x01 0 Al l oc at eHi t s      :  Ui nt 4B
  +0x01 4 Tot a l Fr ees       :  Ui nt 4B
  +0x01 8 Fr eeMi s s es       :  Ui nt 4B
  +0x01 8 Fr eeHi t s          :  Ui nt 4B
  +0x01 c Ty pe             :  _POOL_TYPE
  +0x020 Tag              :  Ui nt 4B
  +0x024 Si z e             :  Ui nt 4B
  +0x028 Al l oc at e         :  Pt r 32     voi d*
  +0x02c Fr ee             :  Pt r 32     voi d
  +0x030 Li s t Ent r y         :  _LI ST_ENTRY
  +0x038 Las t Tot a l Al l oc at es :  Ui nt 4B
  +0x03c Las t Al l oc at eMi s s es :  Ui nt 4B
  +0x03c Las t Al l oc at eHi t s  :  Ui nt 4B
  +0x040 Fut ur e           :  [2] Ui nt 4B
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nt!nt!
MmNonPagedPoolFreeListHeaMmNonPagedPoolFreeListHea

dd
● Static array of 4 double linked lists for non-

paged free chunks bigger than a page
– Index in the array is (SizeOfChunkInPages-1)

● Last entry also has everything bigger than 4 pages
● Structure used is nt!

_MMFREE_POOL_ENTRY
k d> dt  nt !_MMFREE_POOL_ENTRY
  +0x000 Li s t              :  _LI ST_ENTRY
  +0x008 Si z e             :  Ui nt 4B
  +0x00c Si gnat ur e        :  Ui nt 4B
  +0x01 0 Owner             :  Pt r 32 _MMFREE_POOL_ENTRY
● Thus free non-paged “big” chunks are linked 

through the pages themselves
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Allocation and Free algorithms
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Allocation SummaryAllocation Summary

● Windows kernel pool allocates in small chunks:
– 8 byte granularity up to 4080 bytes (included)

● Used to be 32 for Windows 2000
– Page granularity above

● Makes extensive use of optimized lists:
– Single linked Lookaside lists up to 256 bytes
– Double linked ListHeads lists up to 4080 bytes

● Splits an entry if a chunk of the exact size 
cannot be found

● Expands the pool if needed
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Simplified Allocation Simplified Allocation 
AlgorithmAlgorithm

nt!ExAllocatePoolWithTag (1/2)nt!ExAllocatePoolWithTag (1/2)
● If NumberOfBytes>0xff0:

– Call nt!MiAllocatePoolPages
● If PagedPool requested:

– If BlockSize≤0x20:
● Try the “per processor” paged lookaside list
● If failed, try the “system wide” paged lookaside list
● Return on success

– Try and lock a paged pool descriptor
● Else:

– If BlockSize≤0x20:
● Try the “per processor” non-paged lookaside list
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Simplified Allocation Simplified Allocation 
AlgorithmAlgorithm

nt!ExAllocatePoolWithTag (2/2)nt!ExAllocatePoolWithTag (2/2)
● If failed, try the “system wide” non-paged lookaside list
● Return on success

– Try and lock the non-paged pool descriptor
● Use ListHeads of currently locked pool:

– Use 1st non empty ListHeads[n]
● With BlockSize≤n<512
● Split entry if bigger than needed
● Return on success

– If failed, expand the pool by adding a page
● Try again!
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Free Chunk SplittingFree Chunk Splitting

● If the algorithm has selected a chunk larger 
than the requested NumberOfBytes, it is split
– If the chunk is at the start of a page:

● Take the allocation from the front of the chunk
– Otherwise:

● Take the allocation from the end of the chunk
● The remaining part is inserted in the correct list
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Splitting SchemaSplitting Schema

Free Chunk Free Chunk

Free Chunk Free Chunk

Free chunk at the beginning of a page,
allocated chunk goes at the front

Otherwise, allocated chunk goes at the end
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Free SummaryFree Summary

● Free algorithm works pretty much as expected:
– It will use Lookaside lists for chunks up to 256 bytes

● If they are not full already
– It will use ListHeads for chunks up to 4080 bytes

● Merges contiguous free chunks to lower 
fragmentation

● Releases pages if necessary



06/11/08 32

Simplified Free AlgorithmSimplified Free Algorithm
nt!ExFreePoolWithTag (1/2)nt!ExFreePoolWithTag (1/2)

● If P is page aligned:
– Call nt!MiFreePoolPages

● If BlockSize≤0x20:
– If PoolType=PagedPool:

● Put in “per processor” paged lookaside list
● If failed, put in “system wide” paged lookaside list
● Return on success

– Else:
● Put in “per processor” non-paged lookaside list
● If failed, put in “system wide” non-paged lookaside list
● Return on success
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Simplified Free AlgorithmSimplified Free Algorithm
nt!ExFreePoolWithTag (2/2)nt!ExFreePoolWithTag (2/2)

● If next chunk is free and not page aligned:
– Merge with current chunk

● If previous chunk is free:
– Merge with current chunk

● If resulting chunk is a full page:
– Call nt!MiFreePoolPages

● Else:
– Add chunk to the tail of the correct ListHeads

● Based on PoolType, PoolIndex and BlockSize of chunk
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Merging SchemaMerging Schema

Free
Chunk

Busy
Chunk

Free
Chunk

Free
Chunk

Free
Chunk

Free
Chunk

Chunk being freed

Merge #1

Merge #2
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Exploiting a Kernel Pool overflow
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Pool BugChecksPool BugChecks

● Discrepancies in the kernel pool will most likely 
result in a BugCheck (Blue Screen)

0x 1 9:  BAD_POOL_HEADER
0x41 :  MUST_SUCCEED_POOL_EMPTY
0x c 1 :  SPECI AL_POOL_DETECTED_MEMORY_CORRUPTI ON
0x c2:  BAD_POOL_CALLER

● Some are only present in Checked Build
● Avoid those when exploiting a pool overflow!
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BugCheck ExampleBugCheck Example
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Some BugCheck ConditionsSome BugCheck Conditions

● nt!ExFreePoolWithTag:
– BugCheck 0xc2, 7 if PoolType&4=0

● The chunk attempted to be freed is already free
– BugCheck 0x19, 0x20 if PreviousSize of next chunk 

is ≠ BlockSize of current chunk
● Checked Build:

– BugCheck 0x19, 3 if (Entry→Flink)→Blink!≠Entry 
or (Entry→Blink)→Flink≠Entry

● It didn't make it to retail build, thanks Microsoft!
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Exploitable Overflows?Exploitable Overflows?

Yes !

● Unlike in userland heaps, there is no such thing 
as a kernel pool cookie

● There is no safe unlinking in retail build



06/11/08 40

Kernel Pool UnlinkKernel Pool Unlink

● Removing an entry 'e' from a double linked list:
PLI ST_ENTRY b, f ;
f =e→Fl i nk ;
b=e→Bl i nk ;
b→Fl i nk =f ;
f →Bl i nk =b;

● This leads to a usual write4 primitive:
*(wher e)=what
*(what +4)=wher e

● Locating the unlinks:
– nt!ExFreePoolWithTag: when merging chunks
– nt!MiAllocatePoolPages, nt!MiFreePoolPages, ...
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NotationsNotations

Header Next
Header

Our chunk Chunk we overflow

Overflow List
Entry

Potential list entry
depending on chunk type

Kernel Pool Overflow
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Different Write4Different Write4

● Summary list of write4 techniques:
– Write4 on Merge with Next

● When freeing our chunk
– Write4 on Merge with Previous

● When freeing the chunk we overflowed
– Write4 on ListHeads Unlink

● If we overflowed an entry in a ListHeads list
– Write4 on MmNonPagedPoolFreeListHead Unlink

● If we overflowed an entry in a 
MmNonPagedPoolFreeListHead list
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Write4 on Merge with NextWrite4 on Merge with Next
Case #1Case #1

● When our chunk is freed:
– If PreviousSize of next chunk is = BlockSize of 

current chunk
● To avoid BugCheck 0x19

– If BlockSize>0x20 (or lookaside lists are full)
● To avoid a free to lookaside

– If PoolType of next chunk is 0
– If BlockSize of next chunk is >1

● Otherwise it means there is no list entry
– Then merge with next chunk:

● And unlink happens on list entry of next chunk
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Exploit Case #1Exploit Case #1

● Allocate a chunk of size 256-4080 bytes
– Works with smaller chunks if lookaside lists are full

● Craft a free header after our chunk with:
– Correct PreviousSize
– PoolType=0
– Wanted Flink and Blink
– Requires a minimum overflow of about 16 bytes

● Write4 happens when our allocated chunk is 
freed
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Write4 on Merge with PreviousWrite4 on Merge with Previous
Case #2Case #2

● When the chunk we overflowed is freed:
– If PreviousSize of next chunk is = BlockSize of 

current chunk
● To avoid BugCheck 0x19

– If BlockSize>0x20 (or lookaside lists are full)
● To avoid a free to lookaside

– If PoolType of previous chunk is 0
– If BlockSize of previous chunk is >1

● Otherwise it means there is no list entry
– Then merge with previous chunk:

● And unlink happens on list entry of previous chunk
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Exploit Case #2 (1/2)Exploit Case #2 (1/2)

● Allocate a chunk
● Next chunk must be allocated and of size 

256-4080 bytes (not as easy as it looks)
– Works with smaller chunks if lookaside lists are full

● Craft a fake free header and list entry at the end 
of our chunk (with realistic sizes)

● Overflow PreviousSize of next chunk to make it 
point to our fake header
– Requires a ~1 byte overflow!

● 0x00 can work if PreviousSize>0x100
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Exploit Case #2 (2/2)Exploit Case #2 (2/2)

– A bigger overflow would require knowledge of 
BlockSize of next chunk to avoid BugCheck

● Or enough bytes to craft another header after (~257)
● Write4 happens when next chunk is freed

– Also works with page aligned chunks!

Header Next
Header

Next
Header

Header

Overflow

Fake
Header

List
Entry

Overflow PreviousSize of next chunk

Merge
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ListHeads Write4ListHeads Write4

● When the chunk we overflowed is allocated:
– If the chunk was requested through ListHeads list

● No other constraint on BlockSize, PreviousSize, ...
– Then the overflowed list entry is removed from the 

ListHeads list ⇨Write4
– Variations of the write4 exist based on operations 

done on the neighboring entries
● We can end up overwriting ListHeads[BlockSize]→Flink 

with a pointer we control
● Next time a chunk of BlockSize is requested, our pointer 

will be returned
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ListHeads Illustrated (1/3)ListHeads Illustrated (1/3)

Flink Blink

Flink Blink

Flink Blink

Flink Blink

ListHeads[n]

Flinks

Free ChunkFree Chunk

Free Chunk

: Overflowed list entry
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ListHeads Illustrated (1/3)ListHeads Illustrated (1/3)

Flink Blink

Flink Blink

Flink Blink

Flink Blink

ListHeads[n]

B links

Free Chunk Free Chunk

Free Chunk

: Overflowed list entry
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ListHeads Illustrated (2/3)ListHeads Illustrated (2/3)

Flink Blink

Flink Blink

Flink Blink

ListHeads[n]

Free Chunk

Free Chunk

PLIST_ENTRY b,f;
f=ListHeads[n]→Flink→Flink;
b=ListHeads[n]→Flink→Blink;
b→Flink=f;
f→Blink=b;

Allocation of size n
unlinks ListHeads[n]→Flink
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ListHeads Illustrated (3/3)ListHeads Illustrated (3/3)

Flink Blink

Flink Blink

ListHeads[n]

Free Chunk

PLIST_ENTRY b,f;
f=ListHeads[n]→Flink→Flink;
b=ListHeads[n]→Flink→Blink;
b→Flink=f;
f→Blink=b;    ⇦might AV

Allocation of size n
unlinks ListHeads[n]→Flink

Lis tHeads [n]→Flink  is  now  under our c ontrol!
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MMFREE_POOL_ENTRY MMFREE_POOL_ENTRY 
Write4Write4

● When the chunk we overflowed is allocated:
– If the chunk was requested through nt!

MmNonPagedPoolFreeListHead list
● Overflowed chunk is obviously page aligned

– Then the write4 happens when the 
MMFREE_POOL_ENTRY structure is removed 
from the double linked list ⇨Write4

– Variations of the write4 exist based on operations 
done on the neighboring list entries
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What? Where?What? Where?

● Most complicated with Kernel Pool overflows:
– Only a few pools for all kernel allocations

● Lot of allocation and free
– 4 different kernels based on architecture:

● Single processor: ntoskrnl.exe, ntkrnlpa.exe
● Multi processors: ntkrnlmp.exe, ntkrpamp.exe

– A lot of kernel patches for every service pack
⇨Addresses tend to change, a lot

● Any access violation will most likely end up in a 
BugCheck ☹
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Some IdeasSome Ideas
Non ExhaustiveNon Exhaustive

● nt!KiDebugRoutine function pointer
– Called by nt!KiDispatchException if not NULL
– Should be kept as last resort

● Context specific function pointers
– tcpip!tcpxsum_routine is called right after the 

overflow in the case of MS08-001
● Function pointers arrays

– nt!HalDispatchTable
– Interrupt Dispatch Table (IDT)

● Kernel instructions – page is RWE!
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Write4 into the KernelWrite4 into the Kernel

● Before
    mov eax ,  [ edx+8]
    mov ebx ,  [ edx+0Ch]
    mov [ebx ] ,  eax
    mov [eax+4] ,  ebx
l oc _80543F0B:  ;  CODE XREF:  ExFr eePool Wi t hTag(x , x)+51 8j
    mov z x edx ,  wor d pt r  [ edx +2]

● After
    mov eax ,  [ edx+8]
    mov ebx ,  [ edx+0Ch]
    mov [ebx ] ,  eax
    mov [eax+4] ,  ebx
l oc _80543F0B:  ;  CODE XREF:  ExFr eePool Wi t hTag(x , x)+51 8j
    j mp edx

Edx points to something we control

Jmp edx being 2 bytes long, we can
pick the upper 2 so that the write4
doesn't trigger an access violation
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Fixing the Kernel PoolFixing the Kernel Pool

● Check for inconsistencies and fix them:
– Lookaside lists, both “per processor” and 

systemwide
● Zero out Sequence, Depth and Next of ListHead member 

of the given nt!_GENERAL_LOOKASIDE entry
– In fact the first 8 bytes

– ListHeads lists for involved pool descriptor(s)
● Set ListHeads[BlockSize]→Flink and 

ListHeads[BlockSize]→Βlink to &ListHeads[BlockSize]
– nt!MmNonPagedPoolFreeListHead array
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MS08-001: IGMPv3 Kernel Pool overflow
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HistoryHistory

● Remote default kernel pool overflow in 
Windows XP when parsing IGMPv3 packets
– Even bypasses default firewall rules!

● Released January, 8th 2008 in MS08-001
– Along with MLDv2 vulnerability for Vista

● Reported by Alex Wheeler and Ryan Smith of 
IBM – Internet Security Systems

● Considered by Microsoft SWI as “unlikely” 
exploitable

http://www.microsoft.com/technet/security/bulletin/MS08-001.mspx
http://www.iss.net/
http://blogs.technet.com/swi/archive/2008/01/08/ms08-001-part-3-the-case-of-the-igmp-network-critical.aspx


06/11/08 60

IGMPv3 Membership QueriesIGMPv3 Membership Queries
RFC 3376RFC 3376

     0                   1                    2                   3
     0 1  2 3 4 5 6 7 8 9 0 1  2 3 4 5 6 7 8 9 0 1  2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Ty pe = 0x 1 1   | Max Res p Code |           Chec k s um            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         Gr oup Addr es s                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Res v  |S| QRV |     QQI C      |     Number  of  Sour c es (N)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Sour c e Addr es s [ 1 ]                      |
    +-                                                             -+
    |                       Sour c e Addr es s [2]                      |
    +-                              .                               -+
    .                                .                                .
    .                                .                                .
    +-                                                             -+
    |                       Sour c e Addr es s [N]                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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VulnerabilityVulnerability

1.Walk a single linked list to count the number of 
entries (using a 32 bit counter)

2.Allocate some memory:
l oc _441 97:     ;  CODE XREF:  Get GSI s I nRec or d(x , x)+1 8j
    pus h 1 0h ;  Pr i or i t y
    mov z x eax ,  dx
    pus h ' qI CT'  ;  Tag
    l ea eax ,  ds : 8[ eax*4]
    pus h eax ;  Number Of By t es
    pus h ebx ;  Pool Ty pe
    cal l  ds : __i mp__ExAl l oc at ePool Wi t hTagPr i or i t y@1 6 

3.Copy the list entries in the allocated array by 
walking the list ⇨Overflow

⇦Fa iled!
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TriggerTrigger

● Send multiple IGMPv3 membership queries
– Group address has to be valid
– Can be sent to:

● Unicast IP address (ie. 10.10.10.42)
● Broadcast IP address (ie. 10.10.10.255)
● Multicast IP address (ie. 224.0.0.1)

– Total number of unique source addresses must be 
65536 or greater

● IP addresses in the 224-239 range are ignored
● Wait for the IGMPv3 report to be triggered
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Issues (1/2)Issues (1/2)

● Sending a lot of IGMPv3 membership queries 
induces high CPU utilization
– Each new source address triggers the allocation of a 

20 (0x14) byte structure
– The linked list of structures is walked before adding 

a new element to check for uniqueness of IP (O(n2))
● High CPU usage leads to potential packets 

dropping
– Final buffer will not be as expected
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Issues (2/2)Issues (2/2)

● IGMPv3 reports are on a random timer
– Can be triggered before all the queries are sent
– Buffer will not be filled as intended

● 16 bit wrap usually means huge overflow
– 65536 entries are put in a 0 byte buffer
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SolutionsSolutions

● Exponential delay between packets sending
– Still fast enough to avoid a random report trigger

● Report trigger can be forced if QQIC=0
– Empty the list before the attack
– Trigger the overflow when all the packets are sent

● Index for the copy is on 16 bit register
– Overflow size is actually (for n>0xffff):

(0x10000-(n%0x10000))*4
– For n=0x1fffe, allocation size if 0x40000 (page 

aligned allocation), overflow size is 8
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Dirty WayDirty Way
256<(n% 0x10000)*4+8<4080256<(n% 0x10000)*4+8<4080

● Pros
– Relatively small number of packets (~180)
– Since the allocated buffer is freed after the overflow, 

“Write4 on Merge with Next” will always happen
● Next chunk is easily craftable

– We control BlockSize to some extent, which is 
interesting for the “Write4 into Kernel” technique

● Cons
– Overflow is huge! (>0x3f000 bytes)

● A large chunk of the kernel pool will be trashed ☹
● Lot of pool fixing to do
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Why would it work?Why would it work?

Overflow

...

...

0x14 byte buffers

Kernel Pool is
filled with n 0x14

byte buffers

Buffer closest to
our allocated buffer
is the 1st one to be
copied and freed

Requires a “carpet”
of ~13000 contiguous

0x14 byte buffers
(not too hard)

Our buffer will be
allocated before
those (we pretty

much exhausted all
the free chunks)
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Clean WayClean Way
(0x10000-(n% 0x10000))*4=8(0x10000-(n% 0x10000))*4=8

● Pros
– 8 byte overflow only

● The kernel pool remains pretty clean
● Cons

– Next chunk can be:
● A nt!_MMFREE_POOL_ENTRY: we overflow a list entry
● A busy nt!_POOL_HEADER

– “Write4 on Merge with Previous” will happen on free
● Etc
⇨Headaches

– Higher number of packets (~300)
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Conclusion
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ConclusionConclusion

● Kernel still offers a nice playground for 
exploitation even in latest Windows versions

● Exploitation costs have increased dramatically
– We're still working on MS08-001!
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NUMANUMA

● More memory allocations are NUMA aware:
– Different pool descriptors per NUMA node

● Up to 16 non-paged pool descriptors
– Initial non-paged pool has separate address ranges for each node

● Up to 16 paged pool descriptors
● Only kernel in XP SP2 modifying nt!

KeNumberNodes is ntkrpamp.exe (PAE & MP)

⇨Kernel pool overflows more complex
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LiteratureLiterature

● How to exploit Windows kernel memory pool
– SoBeIt, Xcon 2005

● Reliable Windows Heap Exploits
– M. Conover, O. Horovitz, CanSecWest 2004

● Owning NonPaged pool using stealth hooking
– mxatone, Phrack 65

http://packetstormsecurity.nl/Xcon2005/Xcon2005_SoBeIt.pdf
http://cansecwest.com/csw04csw04-Oded+Connover.ppt
http://www.phrack.com/issues.html?issue=65&id=4#article
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Thank you!
Questions?
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