Real World Kernel Pool

Exploitation
Kostya Kortchinsky
Immunity, Inc.

SyScan'o8 Hong Kong

06/11/08 IMMUNITY ...

http://www.immunityinc.com/

-
5

~

KNOWIN OLI'R &

e Introduction

* The Kernel Pool and its structures
 Allocation and Free algorithm

« Exploiting a Kernel Pool overflow

e MS08-001: IGMPv3 Kernel Pool overflow

 Conclusion

06/11/08 IMMUNITY ...

Introduction

06/11/08 IMMUNITY ...

N ' ,
. - ®e). o9 \r
- Introdfiction” "~ -

KNOWIN OLI'R

—

o il

» Kernel vulnerabilities are more popular

- Less protections than in userland
» Kernel allocations are highly performance optimized
 Less room for cookies and other roadblocks

— Code has had less attention than userland services

» Several kernel pool overtlows to exploit
— Our example: MS08-001 (IGMPv3 Overtlow)

06/11/08 IMMUNITY ...

\
People who
write Windows
Kernel Pool
Overflows

_

06/11/08 IMMUNITY 8 5

D _
4 —

=

Other con -r tmns

L.L

—

* Because few people know how to write them,
Windows Kernel Pool overflows are often mis-
characterized as “Denial of Service”

« Huge investment in exploit development before
it is known if a reliable exploit can be created
for any bug

- If it costs 100K dollars to even know if you have a
risk from any particular vulnerability, can you
afford to find out?

06/11/08 IMMUNITY ...

B Proof Of Concept
B Exploit Development
QA + Testing

Linux Userspace Windows Userspace Windows Kernel

06/11/08 IMMUNITY ...

e The following slides assme:

— Structures, constants and offsets are from
ntkrnlpa.exe 5.1.2600.2180 (XP SP2 default)

 Windows XP SP2 has 4 kernels, the one being used
depends on PAE and MP

- nt!KeNumberNodes is 1 (non NUMA architecture)

« NUMA introduces differences in the kernel pools
- See slide #71

06/11/08 IMMUNITY ...

The Kernel Pool and its structures

06/11/08 IMMUNITY ...

“_‘-—

KNOWIN

—

e Quite similar

* Only a few pools for all the kernel allocations
— Think LSASS default heap

» Kernel pool is designed to be fast

- As few checks as possible
* No kernel pool cookie
* No kernel pool safe unlink

06/11/08 IMMUNITY ...

ernel Pool VS E*’a land Hea 0

10

- g

- > \ -

7. “Kernel’Pool =
KNOWING YOU'R RE__ © “ AN 4 -

—

* Used by Windows for damic meory
allocations within kernel land by functions:

- nt!ExAllocatePool, nt!ExAllocatePoolWithTag, ...

- nt!ExFreePool, nt!ExFreePoolWithTag, ...

e There are several kernel pools, default being:
— One non-paged pool
- Two paged pools
- One session paged pool

06/11/08 IMMUNITY ...

11

—

e Pools are defined thank to structur nt!
- POOL DESCRIPTOR
— Described in slide #16

* They are stored in the nt!PoolVector array
- Array of pointers
- Located in the .data section of the kernel

06/11/08 IMMUNITY ...

12

* Non pageable system mory
* Can be accessed from any IRQL
e Scarce resource

* Descriptor for non paged pool is static:
- nt!NonPagedPoolDescriptor in .data section

e Tt is initialized in nt!InitializePool

 Pointer to the descriptor is stored in entry o of
nt!PoolVector

06/11/08 IMMUNITY ...

ST

4 - —

=

KNOWIN OLI'R

¥,

i —

* Pageable system memo

 Number of paged pools defined by nt!
ExpNumberOfPagedPools (default is 2)

* An array of pool descriptors is dynamically
allocated and initialized in nt!InitializePool
- NonPagedPool allocation
- One more descriptor than number of paged pools
* Pointer to array stored in entry 1 of nt!
PoolVector and in nt!ExpPagedPoolDescriptor

06/11/08 IMMUNITY ...

14

3 ST

- Sessmn J* -d Pc)ol

L.L

"'-..-'" —

. Pageable system memory

* Descriptor for the session paged pool is located
in the session space

- PagedPool member of nt!MmSessionSpace
structure
» Usually oxbf7t0000+0x244

 Initialized in nt!MilnitializeSessionPool
- used for session space allocations
- do not use lookaside lists
 Pointer to the descriptor stored in nt!
ExpSessionPoolDescriptor

06/11/08 IMMUNITY 8@ 15

Y =

nv _POOL._ r' - PT()R

KNOWIN

—

kd> dt nt!_POOL_DESCRIPTOR

+0Ox 000 Pool Type : _POOL_TYPE
+0x 004 Pool | ndex : Ui nt4B
+0Ox008 Runni ngAl |l ocs : Uint4B
+0Ox00c Runni ngDeAll ocs : Ui nt 4B
+Ox010 Tot al Pages : Ui nt 4B
+Ox014 Tot al Bi gPages : Ui nt 4B
+0Ox018 Threshol d : Ui nt 4B
+Ox01c LockAddress : Ptr32 Void
+0x020 Pendi ngFrees : Ptr32 Void
+0x024 Pendi ngFreeDepth : | nt4B
+0Ox028 Li st Heads : [512] _LI ST_ENTRY

06/11/08 IMMUNITY ...

-~ -

\

.- Pool DegCriptor ~

KNOWIN (]

i —

e Some of the members:

- PoolType: NonPagedPool=0, PagedPool=1, ...

— Poollndex: 0 for non-paged pool and paged session
pool, index of the pool descriptor in nt!
ExpPagedPoolDescriptor for paged pools

- ListHeads: 512 double-linked lists of free memory

chunks of the same size (8 byte granularity)

 List number for a requested allocation size is calculated
by Bl ockSi ze=(Nunber Of Byt es +Oxf)>>3

* Thus can be used for allocations up to oxffo (4080) bytes

06/11/08 IMMUNITY 8@ 17

06/11/08

8 bytes

24 bytes < .24 bytes < 24 bytes

~ W N = O

32 bytes

511

Each chunk of data is preceded
by a 8 byte header structure

IMMUNITY 8

18

kd> dt nt ! POOL HEADER

+0x 000
+0x 000
+0x 002
+0x 002
+0x 000
+0x 004
+0x 004
+0x 004
+0x 006

06/11/08

Previ ousSi ze
Pool | ndex

Bl ockSi ze
Pool Type

Ul ongl
ProcessBil | ed
Pool Tag

Pos O
Pos 9,
Pos O
Pos 9,
Ui nt 4B
Ptr32

Ui nt 4B

Al | ocat orBackTracel ndex

Pool TagHash

IMMUNITY 8

Ui nt 2B

9 Bits
/ Bits
9 Bits
/ Bits

_EPROCESS

Ui nt 2B

19

4 - —

s Chunkdi€ader -~

hL.L ® n

¥,

—

» Explanations on some of the members:
— PreviousSize: BlockSize of the preceding chunk
* 0 if chunk is located at the beginning of a page

— BlockSize: Number of bytes requested plus header
size rounded up to a multiple of 8, divided by 8
e or (Number Of Byt es +Oxf)>>3

- PoolIndex: same definition as for the descriptor
- PoolType: o if free, (PoolType+1)|4 if allocated

- PoolTag: Usually 4 printable characters identifying
the code responsible for the allocation

06/11/08 IMMUNITY 8@ 20

 When PoolType=o, the chunk header is
followed by a nt!_ LIST ENTRY structure

- This is the entry pointed to by the ListHeads double
linked list

 Chunks freed to the lookaside lists remain the
same, their PoolType is non O

kd> dt nt |_LI ST_ENTRY
+0x000 Fli nk : Ptr32 _LIST_ENTRY
+0x 004 Bl i nk : Ptr32 _LI ST_ENTRY

06/11/08 IMMUNITY 8@ o1

N

D | o = 4\ %
7. Lookasigde Lists =

hL.L ® i

 Like for userland heaps, kernel uses lookaside
lists for faster allocating and freeing of small
chunks of data
- Maximum BlockSize being 32 (or 256 bytes)
* They are defined in the processor control block
- 32 entry PPPagedLookasideList
- 32 entry PPNPagedLookasideList
« Each entry holds 2 single chained lists of nt!
_ GENERAL_ LOOKASIDE structures: one “per
processor’ P, one “system wide” L

06/11/08 IMMUNITY 8@ 22

kd> dt nt | _GENERAL_LOOKASI DE
+0x000 Li st Head

_SLI ST_HEADER

+0x008 Dept h : Uint 2B

+0x00a Maxi munDept h : Uint2B

+0x00c Tot al Al l ocat es : Uint4B

+0x010 All ocateM sses : Uint4B

+0Ox010 All ocateHits : Uint4B

+0x014 Tot al Frees : Uint4B

+0x018 FreeM sses : Uint4B

+0x018 FreeHits : Uint4B

+0Ox01c Type _POOL_TYPE
+0x020 Tag Ui nt 4B

+0x024 Si ze Ui nt 4B

+0x028 Al l ocate Ptr32 voi d*
+0x02c Free Ptr32 voi d
+0Ox030 ListEntry _LI ST_ENTRY

+0Ox038 Last Total Al l ocates : Ui nt 4B
+0x03c LastAllocateM sses : Uint4B
+0x03c LastAllocateHits : Uint4B
+0x040 Future : [2] Uint4B

06/11/08 IMMUNITY ...

N ngp : =
mNonPagedP OLE eeL"iSt‘I{e 1]

KINOWIN

d - Y :
» Static array of 4 double hnked lists for non-
paged free chunks bigger than a page
- Index in the array is (SizeOfChunkInPages-1)
 Last entry also has everything bigger than 4 pages
e Structure used is nt!
_ MMFREE_POOL_ENTRY

kd> dt nt | _MVFREE_POOL_ENTRY

+0Ox 000 Li st : _LI ST_ENTRY

+0Ox008 Si ze : Ui nt 4B

+0Ox00c Si gnature : Uint4B

+0Ox010 Owner : Ptr32 _MVFREE_POOL_ENTRY

* Thus free non-paged “big” chunks are linked
«.farough the pages themselies 5

06/11/08

Allocation and Free algorithms

IMMUNITY 8

25

D

c| > — : ‘% .
fAllocatlo summary

L.L

B il —

 Windows kernel pool allocates in small chunks:

- 8 byte granularity up to 4080 bytes (included)

e Used to be 32 for Windows 2000

- Page granularity above
» Makes extensive use of optimized lists:

- Single linked Lookaside lists up to 256 bytes

— Double linked ListHeads lists up to 4080 bytes
 Splits an entry if a chunk of the exact size

cannot be found

« Expands the pool if needed

06/11/08 IMMUNITY 8@ 26

_ Si‘mplified ocation

Algomithm.
e, prrra oY

o If NumberOfotes>oxffo.
- Call nt!MiAllocatePoolPages

 If PagedPool requested:

— If BlockSize<o0x20:

* Try the “per processor” paged lookaside list
o If failed, try the “system wide” paged lookaside list
e Return on success

- Try and lock a paged pool descriptor

e Else:

— If BlockSize<o0x20:
* Try the “per processor” non-paged lookaside list

06/11/08 IMMUNITY ...

27

e Return on success

- Try and lock the non-paged pool descriptor

» Use ListHeads of currently locked pool:

- Use 1°* non empty ListHeads[n]

e With BlockSizesn<512
 Split entry if bigger than needed
 Return on success

- If failed, expand the pool by adding a page
e Try again!

06/11/08 IMMUNITY ...

28

R

rFree Chu ‘lx 1tt'1ng "

L.L

o If the algorithm has selected a chunk larger
than the requested NumberOfBytes, it is split

— If the chunk is at the start of a page:
» Take the allocation from the front of the chunk

— Otherwise:
e Take the allocation from the end of the chunk

e The remaining part is inserted in the correct list

06/11/08 IMMUNITY 8@ 29

Free chunk at the beginning of a page,
allocated chunk goes at the front

Free Chunk

—

Free Chunk

Otherwise, allocated chunk goes at the end

Free Chunk

—

06/11/08

IMMUNITY 8

Free Chunk

30

. R

.
. ' > e N ‘&
KNOWING YOU'R RE__ © ot { I e

IIﬂ

—
=g

=

¥,

o

* Free algorithm works ptty much as expected:

- It will use Lookaside lists for chunks up to 256 bytes
o If they are not full already

— It will use ListHeads for chunks up to 4080 bytes

* Merges contiguous free chunks to lower
fragmentation

» Releases pages if necessary

06/11/08 IMMUNITY ... 31

3 ST

Slmphfied F ME & gorlthm

wowne youlltlEXFreePool fi_.__ 1thTag (a/ 2)

 If P is page aligned:
- Call nt!'MiFreePoolPages

* If BlockSize<ox20:
- If PoolType=PagedPool:

 Put in “per processor” paged lookaside list
o If failed, put in “system wide” paged lookaside list
* Return on success

- Else:

 Put in “per processor” non-paged lookaside list
o If failed, put in “system wide” non-paged lookaside list
* Return on success

06/11/08 IMMUNITY ...

32

‘x‘r >

 If next chunk is free andnot page ahgned:
- Merge with current chunk

* If previous chunk is free:
— Merge with current chunk

o If resulting chunk is a full page:
- Call nt!'MiFreePoolPages

e Else:

- Add chunk to the tail of the correct ListHeads
* Based on PoolType, Poollndex and BlockSize of chunk

06/11/08 IMMUNITY ...

33

Chunk being freed

1L

Free Busy Free

Chunk Chunk Chunk
Merge #1

Free Free

Chunk Chunk
Merge #2

Free

Chunk

06/11/08

IMMUNITY 8

34

06/11/08

Exploiting a Kernel Pool overflow

IMMUNITY 8

35

—

* Discrepancies in the kernel pool will most likely

result in a BugCheck (Blue Screen)

0x19: BAD _POOL_HEADER

Ox41: MUST_SUCCEED POOL_EMPTY

Oxcl: SPECI AL_POOL_DETECTED MEMORY_CORRUPTI ON
Oxc2: BAD_POOL_CALLER

* Some are only present in Checked Build
» Avoid those when exploiting a pool overflow!

06/11/08 IMMUNITY 8 36

06/11/08

Filz

Ireentory

Edit
i

1 win%PProSP2ERCE
31 winxPProSPZER A, 1] e s heen detecten
1 winPHomSP2Fr $.

CiwinvistallkSPOER
b winyPMCE2005ER
31 winz008ERESPOER

Wigw Host WM Power Snapshot windows Help
2L-H ¢ I @ | B

and windows has been shut down to prevent damage

x

w hardware or software
i hardware

echinical information:

WMware Server 1.0.5 &

IMMUNITY 8@ 37

ST

S ome BugCh K C Fnﬁdit_‘i‘f ons

KINOWIN

—

. nt!ExFreePoolWithTag:

- BugCheck oxc2, 7 if PoolType&4=0
* The chunk attempted to be freed is already free

- BugCheck 0x19, 0x20 if PreviousSize of next chunk
is # BlockSize of current chunk

e Checked Build:

— BugCheck 0x19, 3 if (Entry - Flink) - Blink!#ZEntry

or (Entry - Blink) - FlinkZEntry
It didn't make it to retail build, thanks Microsoft!

06/11/08 IMMUNITY 8 38

"'_-

Expl()ltabl G ﬂ_oné?\'_"

KNOWIN

—

Yes!

» Unlike in userland heaps, there is no such thing
as a kernel pool cookie

* There is no safe unlinking in retail build

06/11/08 IMMUNITY 8 39

3 ST

- Kernel r e ; lmk

L.L 0)

o

 Removing an entry 'e’ from a double linked list:
PLI ST_ENTRY b, f;
f=esFlink;
b=e -Blink;
b-Flink=f;
f -Blink=b;

* This leads to a usual write4 primitive:

* (wher e)=what
* (what +4)=wher e

* Locating the unlinks:

- nt!ExFreePoolWithTag: when merging chunks
- nt!MiAllocatePoolPages, nt!MiFreePoolPages, ...

06/11/08 IMMUNITY ...

Kernel Pool Overflow

Our chunk Chunk we overflow

Overflow Next = List
Header "» Header Entry

I

Potential list entry
depending on chunk type

06/11/08 IMMUNITY ...

-~ ‘ e

=

~

KNOWIN

—

* Summary list of writegq echniquesz
- Write4 on Merge with Next

* When freeing our chunk

- Write4 on Merge with Previous
* When freeing the chunk we overflowed

— Write4 on ListHeads Unlink

* If we overflowed an entry in a ListHeads list

- Write4 on MmNonPagedPoolFreeListHead Unlink

* If we overflowed an entry in a
MmNonPagedPoolFreeListHead list

06/11/08 IMMUNITY ...

42

3 ST

Wr,1te4 on M

e When our chunk is free:

- If PreviousSize of next chunk is = BlockSize ot
current chunk
* To avoid BugCheck 0x19
— If BlockSize>0x20 (or lookaside lists are full)
* To avoid a free to lookaside
— If PoolType of next chunk is 0
— If BlockSize of next chunk is >1
» Otherwise it means there is no list entry
- Then merge with next chunk:
e And unlink happens on list entry of next chunk

06/11/08 IMMUNITY ...

43

- g

i -] - : = R \ -
' Exploitgise #1r =

~

KNOWIN oL

 Allocate a chunk of size 256-4080 bytes
- Works with smaller chunks if lookaside lists are full
e Craft a free header after our chunk with:
— Correct PreviousSize
- PoolType=0
- Wanted Flink and Blink
- Requires a minimum overtlow of about 16 bytes

* Write4 happens when our allocated chunk is
freed

06/11/08 IMMUNITY 8@ 44

N

| r1te4 on Merggsvi ith Previoul

Cas #2 /

e

e When the chunk we overﬂowed 1s freed:

L'L ()

— If PreviousSize of next chunk is = BlockSize ot
current chunk
* To avoid BugCheck 0x19
— If BlockSize>0x20 (or lookaside lists are full)
* To avoid a free to lookaside
— If PoolType of previous chunk is 0
— If BlockSize of previous chunk is >1
» Otherwise it means there is no list entry
- Then merge with previous chunk:
* And unlink happens on list entry of previous chunk

06/11/08 IMMUNITY ...

N

L.L

fEXpl Olt C 2P~y ¢ A f F(I / 2)“ -\i

e Allocate a chunk

* Next chunk must be allocated and of size
256-4080 bytes (not as easy as it looks)
- Works with smaller chunks if lookaside lists are full
 Craft a fake free header and list entry at the end
of our chunk (with realistic sizes)
e Overtlow PreviousSize of next chunk to make it

point to our fake header

- Requires a ~1 byte overflow!
e 0X00 can work if PreviousSize>0x100

06/11/08 IMMUNITY 8@ 46

3 ST

/EXplOIt Cagk (2/ 2)

IIﬂ

LL.h

o

- A bigger overtlow would require knowedge of
BlockSize of next chunk to avoid BugCheck
* Or enough bytes to craft another header after (~257)

» Write4 happens when next chunk is freed
- Also works with page aligned chunks!

Header Overflow ||» H'::gzr

Overflow PreviousSize of next chunk

Fake = List | Next
Header ENUY Header

A A
Merge

Header

06/11/08 IMMUNITY 8 47

N

—

g - LlstHea lté4

I
L. [I||I

._,_-

e When the chunk we overﬂowed 1S allocated

— If the chunk was requested through ListHeads list
e No other constraint on BlockSize, PreviousSize, ...

— Then the overflowed list entry is removed from the
ListHeads list © Write4

- Variations of the write4 exist based on operations
done on the neighboring entries
* We can end up overwriting ListHeads[BlockSize] - Flink
with a pointer we control

» Next time a chunk of BlockSize is requested, our pointer
will be returned

06/11/08 IMMUNITY 8@ 48

-

LlstHeads Ill

KNOWIN

Flinks B

Flink | Blink

ListHeads[n]

Flink | Blink

ited (1/3)

» Flink | Blink

Free Chunk L

ik ok

06/11/08

: Overflowed list entry

Free Chunk

IMMUNITY 8

Free Chunk

49

-

KNOWIN

LlstHeads Ill t_e_d (1 /3)

ListHeads[n]
» Flink | Blink Blinks
LFIink Blink ~—» Flink | Blink
|
Free Chunk Free Chunk
- Pl | Blink
|
Free Chunk

: Overflowed list entry

06/11/08 IMMUNITY ...

LY x"‘_

hL-L n

LlstHeads IlluwS -mted (2 /}3)

—

ListHeads[n]

~—» Flink | Blink

Allocation of size n
unlinks ListHeads[n] - Flink

Flink | Blink JIL

PLIST ENTRY b,f;
f=ListHeads[n] = Flink = Flink;
b=ListHeads[n] - Flink = Blink;
b - Flink=f;

»/;ﬁﬁg/ Blink | foBlink=b:

Free Chunk

Free Chunk

06/11/08 IMMUNITY ... 51

LY x"‘_

ListHeads[n]

“Flink Blink

Flink | Blink

Free Chunk

Allocation of size n
unlinks ListHeads[n] - Flink

1 1

PLIST ENTRY b,f;
f=ListHeads[n] = Flink = Flink;
b=ListHeads[n] - Flink = Blink;
b - Flink=f;

f_Blink=b; <Imight AV

ListHeads[n]-Flink is now under our control!

06/11/08

IMMUNITY 8

52

—

e When the chunk we oveﬂowed 1S alocated:

— If the chunk was requested through nt!
MmNonPagedPoolFreeListHead list
» Overflowed chunk is obviously page aligned
— Then the write4 happens when the
MMFREE POOL_ENTRY structure is removed
from the double linked list > Write4

- Variations of the write4 exist based on operations
done on the neighboring list entries

06/11/08 IMMUNITY 8 53

-~ -

. Ry - 3 e AW

KNOWIN oL

—— —

e Most complicated with Kernel Pool overflows:
— Only a few pools for all kernel allocations
* Lot of allocation and free

- 4 different kernels based on architecture:
 Single processor: ntoskrnl.exe, ntkrnlpa.exe
e Multi processors: ntkrnlmp.exe, ntkrpamp.exe

- A lot of kernel patches for every service pack
» Addresses tend to change, a lot

* Any access violation will most likely end up in a
BugCheck ®

06/11/08 IMMUNITY 8 54

nt!KiDebugRoutine functmn pomter
— Called by nt!KiDispatchException if not NULL
— Should be kept as last resort

Context specific function pointers

- tepip!tepxsum_routine is called right after the
overflow in the case of MS08-001

Function pointers arrays
- nt!'HalDispatchTable
- Interrupt Dispatch Table (IDT)

Kernel instructions — page is RWE!

06/11/08 IMMUNITY ...

55)

L x‘ —

Edx points to something we control
mov eax, [edx+8]

mov ebx, [edx+0Ch]
mov [ebx], eax
mov [eax+4], ebx
| oc_80543F0B: ; CODE XREF: ExFreePool WthTag(x,x)+51 8j
movzx edx, word ptr [edx+2]

o After .
Jmp edx being 2 bytes long, we can
nov eax, [edx+8] pick the upper 2 so that the write4
mov ebx, [edx+O0Ch] doesn't trigger an access violation

mov [ebx], eax
mov [eax+4], ebx
| oc_80543F0B: ; CODE XREF: ExFreePool WthTag(x,x)+51 8j

j mp edx

06/11/08 IMMUNITY ...

N

L.L

_Fixing the Ix€rn el Pool N

i —

e Check for inconsistencies and fix them:

- Lookaside lists, both “per processor” and
systemwide

» Zero out Sequence, Depth and Next of ListHead member
of the given nt!_ GENERAL_LOOKASIDE entry
— In fact the first 8 bytes

- ListHeads lists for involved pool descriptor(s)

e Set ListHeads[BlockSize] — Flink and
ListHeads[BlockSize] - Blink to &ListHeads[BlockSize]

- nt!MmNonPagedPoolFreeListHead array

06/11/08 IMMUNITY 8 57

MS08-001: IGMPv3 Kernel Pool overflow

06/11/08 IMMUNITY ...

 Remote default kernel ol overflow in
Windows XP when parsing IGMPv3 packets

- Even bypasses detault firewall rules!
* Released January, 8" 2008 in MS08-001
- Along with MLDv2 vulnerability for Vista
« Reported by Alex Wheeler and Ryan Smith of
IBM — Internet Security Systems
* Considered by Microsoft SWI as “unlikely”
exploitable

06/11/08 IMMUNITY ...

59

http://www.microsoft.com/technet/security/bulletin/MS08-001.mspx
http://www.iss.net/
http://blogs.technet.com/swi/archive/2008/01/08/ms08-001-part-3-the-case-of-the-igmp-network-critical.aspx

0]
0]

t—+—+—+-—

+—t—t—+-

LL-h

QU'R

GMPV3 Memb seship Quef'le v

\ RFC 3376 .-*F

1 2 3

L

12345678901 2345678901 2345¢%67 89201

Type

+—+—+—+—+-
Ox11 I

t—+—t+—+—+-—

t—t+—t+—+—+—F—F+—+—+—

Resv

IS QRV |

+—+—F+—t+—F—+—F+—+—+-—

I
+_
I

+_

+ —

+—+—+—+—+—+—F—F—F—F+—t+—t+—F+—F—F—F—F+—t+—+—+—+—+—+—
Max Resp Code | Checksum I

t—t—+—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—+—F+—t+—+—+—+
|

+

Group Address
t—t+—t+—F+—F—F—F—F—Ft—F—F—F—Ft—F—F—F—+—t+—F—F+—+—+—+—+
QQl C I Number of Sources (N) I
+—+—+—+—F+—+—F—F—F+—F—F+—F—F+—F—+—F—F+—F—F—F+—F+—+—+—+
I

Source Address [1]

Source Address [2]

Source Address [N] |

+t—+—t+—+—+—F+—F—F—Ft—F—F—F—F—F—F—F—F—F—F—F—F+—F—F—F—F—F—F—F+—F+—F+—+—+—+

06/11/08

IMMUNITY 8

60

— -

1. Walk a single linked list to count the number of
entries (using a 32 bit counter)

2. Allocate some memory:
| oc_44197: ;: CODE XREF: Get GSlslnRecord(x,x)+18j
push 10h ; Priority
movzx eax, dX <1Failed!

push "ql CT" ; Tag

| ea eax, ds: 8[eax*4]

push eax ; Number Of Byt es

push ebx ; Pool Type

call ds:__inmp__ExAlIl ocatePool WthTagPriority@ 6

3.Copy the list entries in the allocated array by
walking the list ® Overflow

06/11/08 IMMUNITY 8@ 61

* Send multiple IGMPv3 embershi queries
— Group address has to be valid

- Can be sent to:
e Unicast IP address (ie. 10.10.10.42)
e Broadcast IP address (ie. 10.10.10.255)
e Multicast IP address (ie. 224.0.0.1)
- Total number of unique source addresses must be
65536 or greater
* IP addresses in the 224-239 range are ignored

* Wait for the IGMPv3 report to be triggered

06/11/08 IMMUNITY 8@ 62

* Sending a lot of IGMPV membershp queries
induces high CPU utilization

- Each new source address triggers the allocation of a
20 (0x14) byte structure

- The linked list of structures is walked before adding
a new element to check for uniqueness of IP (O(n?))

» High CPU usage leads to potential packets
dropping

- Final buffer will not be as expected

06/11/08 IMMUNITY 8 63

 IGMPv3 reports are on a random timer

- Can be triggered before all the queries are sent
— Buffer will not be filled as intended

16 bit wrap usually means huge overtlow
- 65536 entries are put in a 0 byte buffer

06/11/08 IMMUNITY ...

64

3 ST

Soluion

i —

¥l

=

- |
KNOWIN OLI'R &

« Exponential delay between packets sending

— Still fast enough to avoid a random report trigger
» Report trigger can be forced if QQIC=0

- Empty the list before the attack

- Trigger the overtflow when all the packets are sent
* Index for the copy is on 16 bit register

- Overtlow size is actually (for n>oxfttf):

(0x10000-(n%0x10000))*4

- For n=oxifffe, allocation size if 0x40000 (page
aligned allocation), overtlow size is 8

06/11/08 IMMUNITY ...

> Dir a

256 <(n% Ox10000)*4+8<4080

—

e Pros
- Relatively small number of packets (~180)

— Since the allocated buffer is freed after the overflow,
“Write4 on Merge with Next” will always happen
* Next chunk is easily craftable

— We control BlockSize to some extent, which is
interesting for the “Write4 into Kernel” technique
 Cons

- Overflow is huge! (>0x3f000 bytes)
* A large chunk of the kernel pool will be trashed @
* Lot of pool fixing to do

06/11/08 IMMUNITY 8@ 66

g -

fWhy woulgl= ‘, ork'>

—

LL-h

Overflow
Kernel Pool is Buffer closest to
filled with n Ox14 our allocated buffer
byte buffers is the 1°* one to be
copied and freed
Our buffer will be
allocated before 0x14 byte buffers Requires a “carpet”
those (we pretty of ~13000 contiguous
much exhausted all 0x14 byte buffers

06/11/08 IMMUNITY 8 67

b

> Clean®WVay » -

—

p = . i = r g
I R (0x10000-(n% PX10000))*4=8 ~

KNOWIN (LK

e Pros
- 8 byte overflow only

* The kernel pool remains pretty clean

e Cons

— Next chunk can be;:
 Ant!_ MMFREE_POOL_ENTRY: we overflow a list entry
* A busynt! POOL_HEADER

- “Write4 on Merge with Previous” will happen on free
e Etc
D Headaches

- Higher number of packets (~300)

06/11/08 IMMUNITY 8@ 68

06/11/08

Conclusion

IMMUNITY 8

69

-

Y

-
KNOWIN OLI'R

/

. “ConcljiSio

» Kernel still offers a nice playground for
exploitation even in latest Windows versions

» Exploitation costs have increased dramatically
- We're still working on MS08-001!

06/11/08 IMMUNITY ...

70

: V=

N _ ‘ - —
R b -'I ."I S

KNOWIN OLI'R

Jewel

'\':" l;

e —

 More memory allocations are NUMA aware:

- Different pool descriptors per NUMA node

* Up to 16 non-paged pool descriptors
- Initial non-paged pool has separate address ranges for each node

» Up to 16 paged pool descriptors

* Only kernel in XP SP2 modifying nt!
KeNumberNodes is ntkrpamp.exe (PAE & MP)

» Kernel pool overflows more complex

06/11/08 IMMUNITY ... 71

1\\.“-

. Literdtuire =

KNOWIN OLI'R

—

* How to exploit Windows kernel meory pool
- SoBelt, Xcon 2005

» Reliable Windows Heap Exploits
- M. Conover, O. Horovitz, CanSecWest 2004

 Owning NonPaged pool using stealth hooking
- mxatone, Phrack 65

06/11/08 IMMUNITY ...

72

http://packetstormsecurity.nl/Xcon2005/Xcon2005_SoBeIt.pdf
http://cansecwest.com/csw04csw04-Oded+Connover.ppt
http://www.phrack.com/issues.html?issue=65&id=4#article

06/11/08

Thank you!
Questions?

IMMUNITY 8

73

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73

