Lecture 5

Rootkits
Hoglund/Butler (Chapters 1-3)



Rootkits

o A set of small and useful programs that
allow an attacker to maintain access to
“root” on a.computer

— Remote command and control (bots)
— Software eavesdropping
e What they are not

— Not an exploit
— Not avirus



How do they work?

 Modificationsto software
— Patching binaries on disk
— Easter eggs (for developers to access later)
— Source-code modifications

 Two goals

— Maintain access even through firewalls

— Remain hidden from Host IDS, Network IDS,
and forensic tools



The kerndl

Process management
File system

Security

Memory management



Rootkit functions

Hide files

Hide registry entries

Hide processes

Modify boot service to start rootkit
Modify network operations and services




Getting Into the kerndl

e | oadable modules

— commonly used for third-party hardware
support on Windows and Linux

— device driver or kernel driver

e runsin kernel
 has accessto all of the privileged memory of kernel
* registers a name for access from user space (1.€.

)
 Used In conjunction with user-mode code

— easler to debug and support functionality in
user mode

— open device name (i.e. )
— use 1octl/read/write to communicate to driver



Surviving reboot

Using the “run key” in registry
— Can be checked at boot time by anti-virus
— Rootkit hides the value after being loaded

Using a trojan or infected file

— Replace adifferent .sys or executable that is run at
boot-time

— Modify search path to change DLL being used

Using .ini files

— Initialization files that specify executablesto run and
DLLsto load (win.ini)

Registering as adriver

— Loaded on boot, but also visible a boot since it needs
registry key

— Rootkit hides key after being loaded



Surviving reboot

Registering as an add-on to existing application
— Like atoolbar on aweb browser
Modifying on-disk kernel

— Modify boot loader to allow new kernel to pass
checksum integrity check

Modify boot |loader
— Have boot |oader apply patches to kernel before [oading

Other possibilities?



Hardware interaction: rings

 Intel x86 supports 4 rings
— Ring O = highest-privilege (kernel code)
o Accessto all memory

« Accessto special processor instructions/registers
that directly ater CPU behavior

— Ring 3 = lowest-privilege (user programs)

— Windows/Linux do not use Ring 1 and 2
typically

— Administrator programs running in Ring 3 will
need to get Ring O privileges from the kernel to
perform operations

e Rootkitstypicaly try torunat Ring O



Hardware interaction: tables

« Some CPU conditions require software routines to
be handle them

— Interrupts, exceptions, page faults, etc.

— Too many conditions to keep track of all of themin
hardware

— CPU contains base address for tables that contain
pointers to routines

 CPU tables
— Global Descriptor Table (used to map addresses)
— Local Descriptor Table (used to map addresses)
— Page Directory (used to map addresses)

— Interrupt Descriptor Table (used to find interrupt
handlers)

o OStables
— OS-implemented tables not directly supported by CPU
— System Service Dispatch Table (handling system calls)



Hardware interaction: tables

e Global and local descriptor tables

— Codéed segment register (CS) points to where program is
stor

 Can be modified by any program via use of “far call” “ far
jump” or “far return”

— Call gates

o Special descriptor that allows anew ring level to be specified
when “far call” used

« Useful for allowing user-mode programs to make a function
call into kernel mode



Hardware interaction: tables

 Interrupt descriptor tables

— |DT register stores base of IDT
e OnelIDTR pear CPU

— IDT contains array of 256 entries (one for each
Interrupt)
* IDT entry can specify privilege level to run at (“interrupt
gate’)
o Useful in getting to kernel mode via interrupts (i.e. system calls
generate interrupts)

— Other gates

 Trap gates = can be interrupted by maskable ints

» Task gates = outdated, hardware support for switching task
— Not used by windows or linux (which do it in software)



Hardware interaction: memory

* Page directory tables

— CPU handles memory access
» CPU checks whether process can open book (descriptor check)
— Check to seeif segment being accessed has sufficient privilege

 CPU checks whether process can read certain chapter in book
(page directory check)
— Check to seeif page table being accessed has sufficient privilege

e CPU checks whether process can read particular pagein
chapter (page check)

— Check to seeif page being accessed has sufficient privilege

— CPU uses special register CR3 to point to an array of
1024 32-bit values called the page directory

« Each process has its own unique value of CR3 (its own page
directory)
» Threads of a process share CR3 value

« Each 32-hit value specifies base address of a page tablein
physical memory



Hardware interaction: SSDT

e System Service Dispatch Table
— System calls

— Two ways

e Useint Ox2e
e Cal SYSENTER instruction



Subverting tables

e Overwriting SSDT and IDT entries

— Memory pages containing SSDT and IDT are set to
read-only in the page table

— Attacker must change pages to read/write in order to
alter the pages

— Rootkits do thisusing CRO trick or viaregistry key
modifications

» CRO controls whether memory access protection in the kernel
Is enforced

« WP bit = controls whether processor will alow writesto
memory pages marked as read-only

— Counter-measure
o scanners check integrity of origina IDT

— Counter-counter-measure

» Hackers create copy of IDT somewhere else, modify it, and
change IDTR to point to modified one (more later)



Multiprocessor Issues

 Each CPU contains its own interrupt table
— Hooks should be done across all CPUs

— Drivers must perform synchronization to avoid
system crasn



