
Lecture 5

Rootkits
Hoglund/Butler (Chapters 1-3)



Rootkits
• A set of small and useful programs that 

allow an attacker to maintain access to 
“root” on a computer
– Remote command and control (bots)
– Software eavesdropping

• What they are not
– Not an exploit
– Not a virus



How do they work?
• Modifications to software

– Patching binaries on disk
– Easter eggs (for developers to access later)
– Source-code modifications

• Two goals
– Maintain access even through firewalls
– Remain hidden from Host IDS, Network IDS, 

and forensic tools



The kernel
• Process management
• File system
• Security
• Memory management



Rootkit functions
• Hide files
• Hide registry entries
• Hide processes
• Modify boot service to start rootkit
• Modify network operations and services



Getting into the kernel
• Loadable modules

– commonly used for third-party hardware 
support on Windows and Linux

– device driver or kernel driver
• runs in kernel
• has access to all of the privileged memory of kernel
• registers a name for access from user space (i.e. 

\\Device\\MyDevice)

• Used in conjunction with user-mode code
– easier to debug and support functionality in 

user mode
– open device name (i.e. \\Device\\MyDevice)
– use ioctl/read/write to communicate to driver



Surviving reboot
• Using the “run key” in registry

– Can be checked at boot time by anti-virus
– Rootkit hides the value after being loaded

• Using a trojan or infected file
– Replace a different .sys or executable that is run at 

boot-time
– Modify search path to change DLL being used

• Using .ini files
– Initialization files that specify executables to run and 

DLLs to load (win.ini)
• Registering as a driver

– Loaded on boot, but also visible at boot since it needs 
registry key

– Rootkit hides key after being loaded



Surviving reboot
• Registering as an add-on to existing application

– Like a toolbar on a web browser
• Modifying on-disk kernel

– Modify boot loader to allow new kernel to pass 
checksum integrity check

• Modify boot loader
– Have boot loader apply patches to kernel before loading

• Other possibilities?



Hardware interaction: rings
• Intel x86 supports 4 rings

– Ring 0 = highest-privilege (kernel code)
• Access to all memory
• Access to special processor instructions/registers 

that directly alter CPU behavior
– Ring 3 = lowest-privilege (user programs)
– Windows/Linux do not use Ring 1 and 2 

typically
– Administrator programs running in Ring 3 will 

need to get Ring 0 privileges from the kernel to 
perform operations

• Rootkits typically try to run at Ring 0



Hardware interaction: tables
• Some CPU conditions require software routines to 

be handle them
– Interrupts, exceptions, page faults, etc.
– Too many conditions to keep track of all of them in 

hardware
– CPU contains base address for tables that contain 

pointers to routines
• CPU tables

– Global Descriptor Table (used to map addresses)
– Local Descriptor Table (used to map addresses)
– Page Directory (used to map addresses)
– Interrupt Descriptor Table (used to find interrupt 

handlers)
• OS tables

– OS-implemented tables not directly supported by CPU
– System Service Dispatch Table (handling system calls)



Hardware interaction: tables
• Global and local descriptor tables

– Code segment register (CS) points to where program is 
stored

• Can be modified by any program via use of “far call” “ far 
jump” or “far return”

– Call gates
• Special descriptor that allows a new ring level to be specified 

when “far call” used
• Useful for allowing user-mode programs to make a function 

call into kernel mode



Hardware interaction: tables
• Interrupt descriptor tables

– IDT register stores base of IDT
• One IDTR per CPU

– IDT contains array of 256 entries (one for each 
interrupt)

• IDT entry can specify privilege level to run at (“interrupt 
gate”)

• Useful in getting to kernel mode via interrupts (i.e. system calls 
generate interrupts)

– Other gates
• Trap gates = can be interrupted by maskable ints
• Task gates = outdated, hardware support for switching task

– Not used by windows or linux (which do it in software)



Hardware interaction: memory
• Page directory tables

– CPU handles memory access
• CPU checks whether process can open book (descriptor check)

– Check to see if segment being accessed has sufficient privilege
• CPU checks whether process can read certain chapter in book 

(page directory check)
– Check to see if page table being accessed has sufficient privilege

• CPU checks whether process can read particular page in 
chapter (page check)

– Check to see if page being accessed has sufficient privilege

– CPU uses special register CR3 to point to an array of 
1024 32-bit values called the page directory

• Each process has its own unique value of CR3 (its own page 
directory)

• Threads of a process share CR3 value
• Each 32-bit value specifies base address of a page table in 

physical memory



Hardware interaction: SSDT
• System Service Dispatch Table

– System calls
– Two ways

• Use int 0x2e
• Call SYSENTER instruction



Subverting tables
• Overwriting SSDT and IDT entries

– Memory pages containing SSDT and IDT are set to 
read-only in the page table

– Attacker must change pages to read/write in order to 
alter the pages

– Rootkits do this using CR0 trick or via registry key 
modifications

• CR0 controls whether memory access protection in the kernel 
is enforced

• WP bit = controls whether processor will allow writes to 
memory pages marked as read-only

– Counter-measure
• scanners check integrity of original IDT

– Counter-counter-measure
• Hackers create copy of IDT somewhere else, modify it, and 

change IDTR to point to modified one (more later)



Multiprocessor issues
• Each CPU contains its own interrupt table

– Hooks should be done across all CPUs
– Drivers must perform synchronization to avoid 

system crash


