
Lecture 6

Rootkits
Hoglund/Butler (Chapter 4)

Avoiding detection
• Two ways rootkits can avoid detection

– Modify execution path of operating system to
hide rootkit presence

– Modify data that stores information about
processes, files, etc. that would reveal presence
of rootkit

• Focus of chapter
– Modifying execution path via “hooking”

Hooking Windows
• Three OS subsystems processes depend on

– Win32
– POSIX
– OS/2

• Processes rely on APIs provided by above
– DLLs loaded at runtime into process address space

• Kernel32.dll, User32.dll, Gui32.dll, Advapi.dll
• Kernel32 loaded into private address space between 0x00010000

and 0x7FFE0000
• Addresses of functions placed in Import Address Table (IAT)

– Hooking
• Modify code after it is loaded or modify IAT to point elsewhere

– Example: Hiding files in a directory
• Replace FindFirstFile(), FindNextFile() in Kernel32 to skip

rootkit files

User hooks
• Modify execution path within process
• Run at a lower privilege level than most

detection software
– Thus, not as common nor as desirable
– Kernel hooks described later

IAT hooking
• Normal operation for calling functions in

system libraries

Application code

push <call parms>
call [imp_InternetConnect]
…

Import Address Table

jmp InternetConnect
jmp InternetAutodial
jmp InternetErrorDlg
…

InternetConnect()

push ebp
lea ebp, [esp+var_5 8]
sub esp, 29Ch
…
…

IAT hooking
• Load rootkit hook function into memory
• Replace target function’s address in the IAT

with address of hook function

Application code

push <call parms>
call [imp_InternetConnect]
…

Import Address Table

jmp InternetConnect
jmp InternetAutodial
jmp InternetErrorDlg
…

x
Rootkit Code

InternetConnect()

push ebp
lea ebp, [esp+var_5 8]
sub esp, 29Ch
…
…

IAT hooking
• Powerful and simple
• Easy to detect, but

– Legitimate hooking common
• Methods such as DLL forwarding makes benign vs.

malicious hooks hard to discern
– Late binding

• Applications do late-demand binding where function
addresses are not resolved until called

• Reduces amount of memory used
• Functions will not have addresses in IAT to hook!

Inline function hooking
• More powerful than IAT hooking

– Do not have problems with binding time
– Overwrite code bytes of target function so that

no matter how it is resolved, your code will run
– Can be used for both kernel and user functions

Inline function hooking
• Replace part of function preamble with a

5-byte unconditional jmp
– Implement replaced instructions in rootkit

code
– Before XP

55 push ebp
8bec mov ebp, esp
• Hard to hook since you must disassemble user

code
– After XP

8bff mov edi, edi
55 push ebp
8bec mov ebp, esp

• Easy to hook, exactly 5 bytes
• MSFT intentionally did this to make hot patches

easy

Inline function hooking
• Called a Detour

– G. Hunt, D. Brubacker, “Detours: Binary
Interception of Win32 Functions”, 3rd USENIX
Windows NT Symposium, July 1999.

– jmp instruction called a “detour”
– original bytes of function saved in a

“trampoline”
– detour calls trampoline
– trampoline implements 5 replaced bytes of

original function, the function you want to
execute and jmps back to original target
function plus 5

Injecting a DLL
• Via the Registry

– AppInit_DLL key
– Add a DLL that hooks or modifies IAT,

kernel32.dll or ntdll.dll
• Via Windows hooks

– Windows allows you to hook window messages
and events of another process

• SetWindowsHookEx
• Windows hook specifies Thread to hook to
• Set to 0 and the system hooks all threads in the

current Windows desktop!
– Hook your DLL that modifies IAT,

kernel32.dll, etc. to another process
J. Richter, “Load Your 32-bit DLL into Another Process’s
Address Space Using INJLIB”, Microsoft Systems Journal/9 No. 5

Injecting a DLL
• Via remote thread

– Windows allows you to create a thread on a
remote process

– CreateRemoteThread
• Load rootkit DLL into remote process by specifying

start routine as LoadLibrary and by giving it
parameters that point to rootkit code using
VirtualAllocEx

J. Richter, “Load Your 32-bit DLL into Another Process’s
Address Space Using INJLIB”, Microsoft Systems Journal/9 No. 5

Kernel hooks
• More desirable as it places you on equal

footing with detection software (Ring 0)
– Kernel memory 0x80000000 and above
– Cannot be accessed directly by processes unless

through certain debugging APIs
– Typically implemented as a device driver
– Kernel hooks provide global scope

SSDT hooking
• System Service Descriptor Table

– Kernel data structure that points to code which
implements system calls in Win32, POSIX, and OS/2
subsystems

– Indexed by system call number
• System Service Parameter Table

– Specifies the number of bytes for the parameters of
each call

• Hooking SSDT
– Load rootkit as device driver
– Replace SSDT entry to point to it instead of

Ntoskrnl.exe or Win32k.sys
– Later versions of Windows XP make memory that

stores SSDT read-only (BSOD if you try to write)
• Change CR0 to disable memory protection in kernel
• Use Memory Descriptor Lists to change flags

– HOOK_SYSCALL, UNHOOK_SYSCALL macros

Using SSDT hooks
• Hiding processes

– Replace NTQuerySystemInformation function
in SSDT

– Hook calls original function and filters results
to remove rootkit entries from
SystemInformationClass buffer that is returned

– Must update execution time statistics across all
processes in list

• If CPU doesn’t add up to 100%, someone will be
suspicious

IDT hooking
• Interrupt Descriptor Table

– Numerous software and hardware interrupts
– Page faults (Entry 0x0e), timers, system calls

(Entry 0x2e), etc.
– Hooking most useful on system call interrupts

• i.e. int 2e
• Store original int 2e function handler

(KiSystemService) into global DWORD
• Replace SSDT entry with address of your hook
• Hook calls KiSystemService upon completion

– Execution does not return to IDT handler
– Modern Windows uses faster SYSENTER

• Addresses of functions stored in model-specific
registers (MSR)

• Require Ring 0 to modify

Hooking I/O
• Major I/O Request Packet Function Table

– Function table contained in every device driver
– Each IRP type has an entry in table for

addresses of functions that handle it
– Replace IRP of file system writes or TCP

queries with rootkit
– Good for hiding files and connections

Hybrid hooking
• Use kernel to hook user process

– Why?
• Userland hooks are easier to implement functionality in
• But, run at lower privilege level and can be detected by

detection software running at Ring 0
• Most detection looks at inclusion method

– Hook IAT without opening a handle to target process
(which can be detected)

• Kernel-based inclusion using PSSetImageLoadNotifyRoutine
– Driver callback routine that is called every time an image is

loaded into memory
– OS sends notification when your target process or DLL is loaded
– Driver callback is executed when load happens

• Use on kernel32.dll to be notified when all processes load
• Modify IAT of processes in callback

Hybrid hooking
• Memory space for hooks

– Must allocate additional memory in remote
process for hooks

– New trick
• User address 0x7ffe0000 and kernel address

0xffdf0000 map to same physical page
– Kernel address writable, but user address is not
– Shared region is 4K, but kernel uses only 1K
– 3K available for rootkit on every process

