L ecture 6

Rootkits
Hoglund/Butler (Chapter 4)



Avolding detection

e Two ways rootkits can avoid detection

— Modify execution path of operating system to
hide rootkit presence

— Modify datathat stores information about
processes, files, etc. that would reveal presence
of rootkit

* Focus of chapter
— Modifying execution path via“hooking”



Hooking Windows

e Three OS subsystems processes depend on
— WIin32
— POSIX
— 052

* Processesrely on APIs provided by above

— DLLsloaded at runtime into process address space
 Kerngl32.dll, User32.dil, Gui32.dll, Advapi.dll

« Kernel32 loaded into private address space between 0x00010000
and Ox7FFEO000

o Addresses of functions placed in Import Address Table (IAT)
— Hooking

« Modify code after it isloaded or modify IAT to point elsewhere
— Example: Hiding filesin a directory

* Replace FindFirstFile(), FindNextFile() in Kernel 32 to skip
rootkit files



User hooks

 Modify execution path within process

 Run at alower privilege level than most
detection software
— Thus, not as common nor as desirable
— Kernel hooks described |ater



|AT hooking

 Normal operation for calling functions in
system libraries




|AT hooking

 Load rootkit hook function into memory

* Replacetarget function’s addressin the IAT
with address of hook function

Root kit Code




|AT hooking

* Powerful and ssimple

» Easy to detect, but

— Legitimate hooking common

e Methods such as DLL forwarding makes benign vs.
malicious hooks hard to discern

— Late binding

« Applications do late-demand binding where function
addresses are not resolved until called

* Reduces amount of memory used
* Functions will not have addressesin AT to hook!



Inline function hooking

 More powerful than IAT hooking
— Do not have problems with binding time

— Overwrite code bytes of target function so that
no matter how it is resolved, your code will run

— Can be used for both kernel and user functions



Inline function hooking

 Replace part of function preamble with a
5-byte unconditional jmp

|mplement replaced instructions in rootkit
code

Before XP

55 push ebp
8bec nov ebp, esp

e Hard to hook since you must disassemble user
code

After XP
8bf f nmov edi, edi
55 push ebp

8bec mov ebp, esp

o Easy to hook, exactly 5 bytes

« MSFT intentionally did this to make hot patches
easy



Inline function hooking

e Cdled aDetour

— G. Hunt, D. Brubacker, “Detours: Binary
|nterception of Win32 Functions’, 39 USENIX
Windows NT Symposium, July 1999.

— jmp instruction called a“detour”

— original bytes of function saved in a
“trampoling’

— detour calls trampoline

— trampoline implements 5 replaced bytes of
original function, the function you want to
execute and mps back to original target
function plus 5



Injecting a DLL

e Viathe Registry
— Applnit DLL key

— Add aDLL that hooks or modifies |AT,
kernel 32.dll or ntdll.dll

e ViaWindows hooks

— Windows allows you to hook window messages
and events of another process
o SetWindowsHookEx
» Windows hook specifies Thread to hook to
» Set to 0 and the system hooks all threads in the
current Windows desktop!
— Hook your DLL that modifies |AT,
kernel 32.dll, etc. to another process

J. Richter, “Load Your 32-bit DLL into Another Process’s
Address Space Using INJLIB", Mcrosoft Systens Journal/9 No. 5



Injecting a DLL

e Viaremote thread

— Windows allows you to create athread on a
remote process

— CreateRemoteT hread

» Load rootkit DLL into remote process by specifying
start routine as LoadL ibrary and by giving it
parameters that point to rootkit code using
Virtual AllocEx

J. Richter, “Load Your 32-bit DLL into Another Process’s
Address Space Using INJLIB", Mcrosoft Systens Journal/9 No. 5



Kernel hooks

 More desirable as it places you on equal
footing with detection software (Ring 0)

— Kernel memory 0x80000000 and above

— Cannot be accessed directly by processes unless
through certain debugging APIs

— Typically implemented as a device driver
— Kernel hooks provide global scope



SSDT hooking

e System Service Descriptor Table

— Kernel data structure that points to code which
Implements system calls in Win32, POSI X, and OS/2
subsystems

— Indexed by system call number

o System Service Parameter Table

— Specifies the number of bytes for the parameters of
each call

e Hooking SSDT
— Load rootkit as device driver

— Replace SSDT entry to point to it instead of
Ntoskrnl.exe or Win32K.sys

— Later versions of Windows XP make memory that
stores SSDT read-only (BSOD if you try to write)
» Change CRO to disable memory protection in kernel
« Use Memory Descriptor Liststo change flags

— HOOK_SYSCALL, UNHOOK_SY SCALL macros



Using SSDT hooks

e Hiding processes

— Replace NTQuery Systemlnformation function
in SSDT

— Hook calls original function and filters results
to remove rootkit entries from
SystemlnformationClass buffer that iIs returned

— Must update execution time statistics across all
processes in list

e |f CPU doesn’t add up to 100%, someone will be
SuspICcious



IDT hooking

e Interrupt Descriptor Table
— Numerous software and hardware interrupts

— Page faults (Entry 0x0e), timers, system calls
(Entry Ox2e), etc.
— Hooking most useful on system call interrupts
e j.eint 2e

o Store original int 2e function handler
(KiSystemService) into global DWORD

* Replace SSDT entry with address of your hook

« Hook calls KiSystemService upon completion
— Execution does not return to IDT handler

— Modern Windows uses faster SY SENTER

» Addresses of functions stored in model -specific
registers (MSR)
e Require Ring 0 to modify



Hooking I/O

 Maor I/O Reguest Packet Function Table
— Function table contained in every device driver

— Each IRP type has an entry in table for
addresses of functions that handle it

— Replace IRP of file system writes or TCP
gueries with rootkit

— Good for hiding files and connections



Hybrid hooking

o Usekernel to hook user process
— Why?
 Userland hooks are easier to implement functionality in

o But, run at lower privilege level and can be detected by
detection software running at Ring O

 Most detection looks at inclusion method

— Hook IAT without opening a handle to target process
(which can be detected)

« Kernd-based inclusion using PSSetlmagel oadNotifyRoutine

— Driver callback routine that is called every time animageis
loaded into memory

— OS sends notification when your target process or DLL isloaded
— Driver callback is executed when load happens
e Useon kernel32.dll to be notified when all processes load

 Modify IAT of processesin callback



Hybrid hooking

 Memory space for hooks

— Must allocate additional memory in remote
process for hooks

— New trick

e Usear address Ox7ffe0000 and kernel address
OxffdfO000 map to same physical page
— Kernel address writable, but user address is not
— Shared region is 4K, but kernel usesonly 1K
— 3K avallable for rootkit on every process



