
Lecture 7

Rootkits
Hoglund/Butler (Chapter 5-6)



Avoiding detection
• Two ways rootkits can avoid detection

– Modify execution path of operating system to 
hide rootkit presence

– Modify data that stores information about 
processes, files, etc. that would reveal presence 
of rootkit

• Last chapter
– Modifying execution path via “hooking”

• This chapter
– Modifying execution path via run-time patching



Patching
• Source-code

– Modify source and recompile
• Binary

– Modify result of compilation
• Memory

– Modify code in memory as program executes 
“direct code-byte patch”

– Hardest to detect
– Often combined with low-level hardware 

manipulation such as page-table management
– Must be able to read/write memory where 

functions reside (i.e. be within kernel)
– Previously covered (in-line function hooking)



Run-time patching: Detours
• Detour patching

– Call hooks modify tables and can be detected 
by anti-virus/anti-rootkit technology

– Insert jump into function directly
• Functions in multiple tables handled in one step

– Example: MigBot
• Detours two kernel functions: 

NtDeviceIoControlFile and SeAccessCheck
• Both are exported and have entries in the PE header
• Issues

– Instruction alignment (leaving crumbs)
» Add 1 byte NOPs

– Overwriting important code



Run-time patching: Detours
• Overwriting important code

– Must know which OS is being used to ensure 
you know what code is overwritten 

– Must also ensure no one else has tampered or 
patched the function already

– Must save the instructions being removed by 
adding the jump

FAR JMP Rest of original function

Rootkit code Removed instructions FAR JMP



Run-time patching: Detours
• Other issues

– Using NonPagedPool memory
• Rootkit code resides in driver memory that can be 

paged out
• Place code in non-paged memory
• Allows driver itself to be unloaded so that it can no 

longer be detected
• Rootkit driver only loaded long enough to apply 

patch
– Patching addresses

• Relative FAR JMP instruction target calculated at 
run-time

• Need to patch this with desired offset at run-time



Run-time patching: Jump Templates

• Example: Hooking the Interrupt Descriptor 
Table (IDT)
– Patch all entries in IDT with same detour code
– Easier than patching every interrupt service 

routine (ISRs)
• Each ISR at a different address
• Hook every IDT entry, but include unique jump 

details to call back to original ISR
• See code in book



Run-time patching: Original IDT

ISR ptr

IDT
0

1

i

ISR ptr

ISR ptr

Original ISR 0

Original ISR 1

Original ISR i



Run-time patching: Jump Templates

ISR ptr

IDT

Call rootkit with param 00

1

i

ISR ptr

ISR ptr

Call rootkit with param 1

Call rootkit with param i

FAR JMP to ISR 0

Original ISR 0

Rootkit
code

FAR JMP to ISR 1

Original ISR 1

FAR JMP to ISR i

Original ISR i

Jump templates



Variations
• Patching typically done at entry point

– Easy to detect if placed in well-known place
– Rootkit detection software often checks first 20 

bytes of a function only
– Solution: patch deep into function

• Good locations
– Unique code byte strings (no false hits)
– Within authentication functions
– Kernel functions

• Integrity-checking functions
• Loader program that loads the kernel itself
• Network functions
• Firmware and BIOS



Layered drivers
• Ability to chain multiple drivers to avoid re-

implementing functions that can be shared
• Example chain: keyboard drivers

– Lowest-level driver deals with direct access to 
bus and hardware device

– Next level deals with data formatting and error 
codes

– Each level intercepts data from lower level, 
modifies it, and passes it on to higher level

– Perfect for rootkits!



Keyboard chain example

Keyboard class driver (Kbdclass)

Keyboard port driver (i8042prt)

8042 keyboard controller

Keyboard sniffer driver (rootkit)

Keyboard driver chain



Details
• IRP (I/O request packet)

– Contains stack specifying routines of the driver chain
– I/O manager creates IRP and fills in IRP based on 

number of drivers in driver chain
– Inject keyboard sniffer in chain, IRP automatically 

updated
– Example: KLOG

IRP header

I/O Stack location #1

I/O Stack location #2

I/O Stack location #3 First driver to call

Next driver to call

Last driver to call



File filters
• Used for stealth

– Rootkits store files in file system that must 
remain hidden

• Common approach
– Hooking SSDT to hide local files
– Does not hide files mounted via SMB

• Use layered file system drivers to hide all 
rootkit files
– Install hook on all available drive letters 

(HookDriveSet in book)
– Rootkit parses file name in 

QueryDirectory.FileInformationClass 
QueryBuffer

• Deletes entries associated with rootkit


