
Lecture 8

Rootkits
Hoglund/Butler (Chapter 7-8)

Avoiding detection
• Two ways rootkits can avoid detection

– Modify execution path of operating system to
hide rootkit presence

– Modify data that stores information about
processes, files, etc. that would reveal presence
of rootkit

• This chapter
– Modifying data that stores information on

rootkit

Direct Kernel Object Manipulation
• Hooking disadvantages

– If someone knows where to look, hooks can
usually be detected

– Modern kernel/hardware memory protection
mechanisms may make some hooks unusable
(read-only, no-execute protection)

• DKOM
– Directly modify objects the kernel relies upon

for its bookkeeping and reporting
– Normally, modifications to processes or tokens

is done via Object Manager in kernel
• Performs protection checks

– DKOM bypasses Object Manager and its
checks

DKOM
• Disadvantages

– Must disassemble format of object
• WinDbg makes it easier

– Must know how object is used so that code
doesn’t break after modification

– Must know how object changes between
versions of OS

– Only objects the kernel keeps in memory and
uses for accounting purposes can be modified

• Can not be used to hide files
• Can be used to hide processes, device drivers, ports
• Can be used to elevate privilege levels

Determining OS version
• User-mode

– Win32 API OSVERSIONINFOEX structure
– Returned by GetVersionEx

• Kernel-mode
– Old versions of Windows PsGetVersion API
– New versions (XP) of Windows RtlGetVersion
– Parse string that is returned

• Either mode
– Windows registry query

• HKEY_LOCAL_MACHINE\SOFTWARE\Microso
ft\Windows\NT\CurrentVersion*

• RegQueryValueEx

Making it happen
• From user-mode

– Must create IOCTLs to communicate with
driver that performs DKOM

• I/O Control Codes
– IOCTLs included within IRPs
– Example in book

Process hiding
• Objects referenced by user process such as
Taskmgr.exe

• ZwQuerySystemInformation call lists running
processes
– Traverses doubly linked list in the EPROCESS

structure of each process
• FLINK = pointer to process in front
• BLINK = pointer to process in back

– Find a reference to EPROCESS of current process
by calling PsGetCurrentProcess

Process hiding
• Hiding done based on process name

– PIDs are pseudo-random
– Name is included in EPROCESS structure
– Location of name obtained via

GetLocationOfProcessName
– 16 byte character string (first 16 characters of binary on

disk)
• Traverse list and update FLINK and BLINK pointers

to point around process to be hidden
– Must ensure that hidden process has valid FLINK and
BLINK pointers when hidden process exits via
PspExitProcess

– Have them point to itself
• What about process scheduler?

– Apparently does not rely on FLINK/BLINK

Device driver hiding
• drivers.exe utility
• Windows Device Manager

– Rely on ZWQuerySystemInformation with a
SYSTEM_INFORMATION_CLASS of 11

– Modules also referenced via doubly linked list
• Same trick used
• Modify FLINK and BLINK again

– Finding the list is hard
• Scan memory manually for MODULE_ENTRY object structure
• Use Kernel Processor Control Block (KPRCB) for Windows

XP and beyond
• Use WinDbg to view members of the DRIVER_OBJECT

structure (contains an undocumented field 0x14 into structure
that is a pointer to driver’s MODULE_ENTRY

Issues in list traversal
• Processes and modules may be added or

deleted while traversing
– Must grab PspActiveProcessMutex
– Must deal with possible pre-emption while

modifying
• Must run at DISPATCH_LEVEL to prevent

Token privilege and group elevation
• Process token derived from login session of user

that spawned process
• Every thread within process has its own token
• Use modifications to token to gain elevated

privileges to install rootkit
– Win32 API: OpenProcessToken,

AdjustTokenPrivileges, AdjustTokenGroups
– One can modify token privileges without elevated

privileges by directly modifying privelege information
in token

• Stored in variable length portion of token
• Example privileges: p 197

– SeCreateTokenPrivilege
– SeAssignPrimaryTokenPrivilege
– SeLockMemoryPrivilege
– SeIncreaseQuotaPrivilege
– SeUnsolicitedInputPrivilege
– etc

Token privilege and group elevation
• Major problem

– Adding privileges to variable length part of token
– Must avoid increasing token size
– Look to modify in place
– Many privileges are included but are in a DISABLED

state
• SE_PRIVILEGE_DISABLED
• SE_PRIVILEGE_ENABLED_BY_DEFAULT
• SE_PRIVILEGE_ENABLED

Token privilege and group elevation
• Group elevation

– Privileges associated with group membership
• Determined by group SID
• Adding SIDs to a process token adds privileges

– Much more complicated than adding privileges
• Requires allocating new memory and updating

pointers in SID_AND_ATTRIBUTE table
• i.e. unlike privileges there are no “disabled” SIDs to

fill in

Hiding while performing DKOM
• Events generated upon all actions

– Registered callbacks upon certain events must
be disabled to ensure stealth

– Example: Windows Event Log
• Process being created
• Parent PID
• Username that owns process
• Must change values in process token to other users

to hide tracks

Other DKOM targets
• Hiding network ports

– Modifying tables of open ports in TCPIP.SYS
• Recommended tools

– SoftIce
– WinDbg
– IDA Pro
– Microsoft Symbol Server

Hardware manipulation
• Physical access allows for hardware/firmware changes to

be made
– BIOS modifications

• CIH virus destroyed BIOS
• No known public rootkit for BIOS

– BIOS modifications to PCI devices
• Example in book 8259 keyboard controller

– Modifies HAL.DLL (Hardware Abstraction Layer)
– Technically not a hardware modfication, but adds exploit at

interrupt processing level using assembly commands specific to
hardware

• Microcode update for processors
– Used to fix bugs
– Stored in BIOS and uploaded to processor every time machine

boots
– Protected by strong encryption on Intel processors (but not AMD

processors)
• AMD K8 microcode update driver
• IA32 microcode driver

