
Lecture 9

Rootkits
Hoglund/Butler (Chapter 9-10)



Covert channels
• Communication channels to rootkit 

– Command and control
– Capturing and sending data (exfiltration)
– Channels must remain hidden

• Key to stealth
– Minimal footprint
– Unique structures (compared to known 

signatures)



Disguised TCP/IP protocols
• Creating a TCP connection

– Three-way handshake is a “noisy” event
– TCP ports can be mapped back to process (lsof)

• Hide in traffic that is already there
– Use something that is not “different” from other traffic
– DNS, HTTP, HTTPS, ICMP

• Use conservative patterns
– Do not create usage spikes

• Do not send data in the clear
– Some IDS look at patterns in every packet
– Encrypt or use steganography

• Use clever encoding
– Encode data as jitter between packets



Accessing the network
• Kernel-mode rootkits

– TDI (Transport Data Interface)
– NDIS (Network Driver Interface Specification)

• Access to raw packets
• Useful in forging source IP and source MAC
• Useful for reflector/bouncing attacks
• Useful in turning on promiscuous mode



Rootkit detection
• In-kernel rootkits

– Can unblock whatever has been blocked by 
intrusion prevention software

– Can stop detection/prevention software from 
running

– Arms race with advantage going to which one 
runs first



Detecting presence
• File system scanning

– e.g. Tripwire
– Still used by most anti-virus software
– Does not detect in-memory rootkits
– Does not work when system calls are hooked

• Memory checks during code loading
– “Guarding the door”
– Put detection at all places rootkit code can be loaded 

(e.g. processes, device drivers, etc.)
• How can you tell a malicious versus normal load?

– NtLoadDriver, NtOpenSection, 
ZwSetSystemInformation, ZwCreateKey, 
ZwOpenProcess, etc.

• Note: these can be hooked!
– Application-level loads problematic

• Browser Helper Objects
– Symbolic links problematic



Detecting presence
• Memory scanning for code

– Periodically check contents of process memory for code 
signatures of rootkits

– Can only find known attackers
– Doesn’t prevent rootkit from being loaded
– Kernel rootkit can thwart memory scan by tampering 

with virtual-to-physical address translation
• Memory scanning for hooks

– Periodically check critical data structures for references 
to rootkit code

– IAT, SSDT, IDT, IRP, in-line function hooks
– Look for FAR JMPs that go beyond acceptable range

• Ensure int 2e handler (system call) points to ntoskrnl.exe
– Trace execution

• Baseline instruction counts measured at boot
– Can be thwarted by kernel rootkits
– Hooks used in anti-virus software prevalently



Detecting presence
• Examining behavior

– Catch an API in a “lie”
– Registry and hidden file check

• Code check at low-level and compare with what 
high-level API returns

– Process check
• Hook SwapContext using detour function
• Use DKOM to ensure KTHREAD of thread to be 

swapped in points to EPROCESS block that can be 
reached via FLINK/BLINK list

• Use alternative to ZwQuerySystemInformation and 
FLINK/BLINK

– netstat.exe to list processes with an open port
– CSRSS.EXE has a handle to every process except 4
– Compare to what is returned via 

ZwQuerySystemInformation


