L ecture 14

System Integrity Services
Obfuscation

OS independent integrity checking

e Obsarvation

— Maority of critical server vulnerabilities are
memory based

— Modern anti-virus software must scan memory

— Modern malware must disable, tamper with, or
circumvent such scanning

» Bagle and Lion worms attempt to kill anti-virus
scanning

e Intd’ssolution: SMM/AMT

— System Management Mode starring the Active
Management Technology platform

— Use isolated trusted firmware solution to ensure
the presence and integrity of anti-virus software

Problems with current IDS

Host IDS

— Rootkit allows unrestricted system access to
enabl e attacker to thwart checks

— Example: Witty
Network IDS
— Insertion, evasion attacks

VMM (virtual machine isolation)

— IDS running in VMM vulnerable to attack from
DMA device

Programmable DMA device to scan host
memory (Petroni)

— Difficult to do since page tables not |ocated at
well-known addresses

Threats

|mage modification

— Modify inrmemory executable code of agent
e Permanent or transient (restore when integrity check runs)

Disable agent

— Kill agent, steal interrupt vectors of agent, modify OS
scheduler to bypass agent

— |DSes that do memory read verlflcatlon only (and not
execution verificatio % are vulnerable

Out-of -context jump

— Trick IDS into signing bogus “health reports’ by
jumping directly to its signing code

Dynamic data modification

— Modify important data agent uses (i.e. filtering rules) or
program state

Interrupt hijacking

— Modify state of agent when it is interrupted
asynchronously

Threats

System Management RAM cache attack

— Modify cached _co%of SMM handler to execute
malicious codein SMM

Multi-processor attack

— Run code in parallel to agent on MP systems to cause
undesired effects

Exploit software defects
— Buffer-overflow, format string attacks

Agent circumvention

— Bypass checking code by reimplementing code without
check init (i.e. Tfiltersin device drivers)

DMA attack

— For VMM sYst_ems Instruct an |/O device to perform a
DMA directly into VMM to “inject” into “isolated”
environment

Theft of secrets

— Steal secrets used by agent (keys) to impersonate them

Verification approach

Locality
— Location in memory that program resides

— Do not allow requests from outside of agent’s
memory to gain access

Integrity
— Check whether or not an agent has been
modified from its original state

Execution state

— Check whether agent Is running or being
scheduled to run over time

Problems
— Does not address tampering with dynamic data
— Function pointers?

SIS

e Host agent initialization
— SIS specific initialization code section executed when
agent is loaded
— Registers with IMM (integrity management manager)
 Locations of critical sectionsin host virtual memory
 Location of itsintegrity manifest
 Integrity manifest
— Signed summary description of critical components of
host software agent
« Section table
* Relocation table

e Symbol table
 Mirrored from ELF and PE formats

— Signed by private key of host software agent
manufacturer

SIS

 Integrity verification
— First check done at registration when agent begins
— Periodically after that

— Integrity check value (ICV) or aMAC signed by secret
keye%to%/edin SMRAI\X) J y

— Problem: virtual memory implemented by OS
e VMRS: virtual memory reconstitution service implemented

— Subseguent checks use SMI to initiate ICV
o Locality verification
— |SM checks CR3, CS and EIP
— Virtual address of instruction triggering SMI calculated

— Program identified based on previoudly registration
with IMM

e Key manangement
— Platform master key used to derive session keys

SIS

e |SM operation

— Must ensure consistent measurement by
disallowing modifications when measuring

— Details in paper
e Virtua memory reconstitution

— Maps host virtual address to physical address
while running on isolated partition

« Dynamic data protection

— Perform integrity checks to detect changes to
protected dynamic data

— Only reasonable to do on small amount of very
critical data

Agent execution detection

 Use MM to generate ICV over a heartbeat
message
— Send signature to host agent

— Host agent appends to heartbeat message sends
It out

— IMM double-checks message to ensure
Integrity of heartbeat

Threats revisited

|mage modification

— Integrity checks detect this

Disable agent

— Detected since authentic heartbeats stop
Out-of-context jJump

— Partially handled using locality (SMI tracing)

Dynamic data modification

— Signing and verifying source and validity of
dynamic data updates

Interrupt hijacking

— Disabling interrupts and verifying it within SM|
handler

Threats revisited

System Management RAM cache attack
— SMI flushes cache upon exit

Multi-processor attack
— Stop other cores and threads upon running SIS

Exploit software defects

— Addressed by No-EX hit?
Agent circumvention

— Tiecritical functionsto SMI
DMA attack

— SMRAM inaccessible to DMA due to hardware
restrictions

Theft of secrets
— Stored in SMRAM

Open problems

« Kernel data structure integrity
— Interrupt Vector Table

 DLL integrity
 Integration with platform security tools
— Firewalls, IDS

Obfuscation

ODbjectives

o SlOW reverse engineering process
— Make automated analysis difficult
— Make code more complicated
— Make decompilation difficult
— Make code unreadable by human

Metrics

 Resllience
— lrreversibility
e Cost
— Added run-time or code size

e Stealth
— Similarity to rest of code

Techniques

e Data obfuscation
e Control flow obfuscation
« Advanced techniques

Data obfuscation

Renaming variables, procedures, classes,
methods

Deleting comments and spaces

 Inserting dead code

Variable splitting
Scalar/object conversion
Change variable lifetime
Split/fold/merge arrays
Change encoding

Merge scalar variables

Control-flow obfuscation

Break basic blocks

Inline methods

Outline statements

Jnroll loops

Reorder statements

Reorder loops

Merge all functions into one

Advanced techniques

Reuse identifiers

Misleading comments

Modify inheritance relations

Convert static data to procedural data

Store part of program as text and interpret it
only during runtime

Remove library calls
Attack specific decompilers and debuggers

Shiva (M ehta/Clowes 2003)

Outer encryption layer

— Defeats “strings’

— Slows access to protected code
TRAP flag detection

— Defeat single-stepping
“checkme’ data check

ptrace defense

— Exitsif ptrace active

— Clonesitsdalf and two %%i&s ptrace each other to
prevent additional PTRACE_ATTACH “inter-ptrace”

Timing checks
AES, password protected middie encryption layer

Inner encryption layer
— Run-time protection

Shiva (M ehta/Clowes 2003)

/proc defenses
— Only portions of binary decrypted at a given
time
INT 3 instruction replacement
— Some instructions replaced with INT 3
— Instructions emulated in INT 3 handler
— If debugger uses INT 3, code will be missing

Jumping into middle of Instrucitons
Polymorphic code generation

Reversing Shiva

o Usesmilar techniquesto run partially and
dump images
— Scripted decryption via IDA scripts
— Virtual x86 plugin for IDA

NET reversing

* Reversing tutorial on .NET
— http://accessroot.com
— http://www.blong.com/Conferences/DCon2003
/ReverseEngineering/ReverseEngineering.htm
e Tools

— ILDASM

e Disassembler that comes with .NET framework
SDK

— Reflector
— Dist

NET obfuscation

e http://www.codebreakers-
journal.com/index.php7option=com_content
&task=view& 1d=123& [temid=97/

e StrongName

— Verifies code integrity via cryptographic hash
calculation
— Prevents patching
— Easlly bypassed via ildasm edits to remove
signature scheme
o http://www.andreabertol otto.net/
e StrongName Remove

— Or patch system DLL to make check return
valid all thetime

NET obfuscation

 Name obfuscation

— Change metadata saved with binary to make
names either unprintable or random

= ‘i %05d778514%9ecaf05 | Disassembler
* ¥} Base Types) : :
& & Derived Types private void ®x73e711f48aa0238b(ohject x39797597ff450640, Eventargs x92a31911cd180as1)
5% \ I
~=‘_'9 EE;‘;‘EIL' string text1 = this.xed?200b4564 0680, Text. Trim();
oy while (0 ==10
Dispose(Boolean) : void I |:)
a¥ x49dfacheSeflc3calObject, E if (Operators.CompareStrinatextl, ", falke) I= 0)
2 x73e711f483a0238b (Object, | Ir
& #856b1d55c12438a0(Chiect, break;
& xec0463d7f43bbes]) ; Woid 1
f? r2adabedefao02fec | Button if (-11=10)
2] 7&’- x6brefed79edS4bed ; Label 1
e _@ #7fa7Bcec?ddlsd?f ; Button return;
e _@ #a29eB504597a710d ; Label ¥
B 2 1ed2390h4564965f9 ; TextBo Label_00OZF: _
¥ _2adabadefoonzfer ; Buttan #8337 342048984 168, x2eb654 303557 2cbeB[0]. AppendChild (x83a7 a4 2045984 168, xoedf2oc 563 1 1efha);
S Label_D045:
g _chreted7oeda4bod ; Label =
ﬂ o bt e £ 4337342048054 168, xe4fbed097abeg 199, Save (xB3a7 242048084168, 4027 b6 2f7h835Hd);
¥ _a20eRSc4597a710d | Label L ah;‘ftgrggﬂ,
;‘7: —jdsfzigbggﬁgfgff ‘ICTE“ttEFE YE337242048054 165, 466254315847 e4f Value = textl;
oW WO dod N antalr if |:|:| I= D‘J
= "‘Eg #056912b347 0244564 {
£ jéi' H0E0ESThene2f3158a goto LEII':IE'_DDBF,
® 1§ x0a03883066dc0eca 1

NET obfuscation

 Flow obfuscation

Make msll reading hard by preventing its translation
IntoaHLL

— Adding boolean checks that are always true or false

Splitting source into many segments and connecting
them using various branches

Mess with stack
e MSIL is stack-based and will not allow unballanced stack
 Insert a“pop” that will never run
* Breaks Reflector

.assenbly extern nscorlib { }
.assenbly extern System{}

.assenbly sanple {}

.met hod public hidebysig void Min()
{

. entrypoi nt

br.s start _here

pop

start _here:

| dstr "hello!"

call void [nscorlib] System Consol e:: WiteLine(string)
ret

}

NET obfuscation

* Metadata encryption

— String references stored as metadata in
managed PE file

— Often the key in reversing
— Encrypt to hide and decrypt just before use

Dotfuscator

e http://www.preemptive.com/products/dotfus
cator/FAQ.html
o Usesavariety of mechanisms to obfuscate

 All done after compilation (i.e. does not
modify source code)

Dotfuscator

o http://www.preemptive.com/products/dotfuscator/
FAQ.ntmi

e “Overload Induction” renaming

— ldentify colliding sets of methods across inheritance
hierarchies
» Rename such sets according to some enumeration (e.g. the
alphabet or unprintable characters).
— Method overloading is induced on a grand scale

« Ol agorithm determines all opportunities for name reuse and
takes advantage of them.

 Can use return type to determine method uniqueness as well

— Anecdotal evidence
. 335{/0"(3f ALL methods were renamed to a single character (such
as"a').
o Typically, 10% more are renamed to "b", €etc.

— ovgrload induction reduces the final program size of obfuscated
code.

— Up to 10% of the size savings in Dotfuscated and
DashO'd programs

Dotfuscator

 Undoing Dotfuscator renaming

— Decompiler needs to implement overload induction
themselves (ironically, violating Preemptive’s patent in
the process) to undo It.

— Overload induction is provably irreversible

 The best reversing will come out with a different number of
unique methods than the original source code contained

* Overload induction destroys original overloading relationships

e |Inreversed state, there will be no overloaded methods.

— Grand designers of OO technology implemented overloaded
methods as away of creating "more readable code®

— By removing that ability, the code has less information in it than
before.

Dotfuscator

 Also supports
— String encryption
— Incremental obfuscation (for patches)

— Control-flow obfuscation
» Breaksloops and other HLL control structures up

