
Lecture 14

System Integrity Services
Obfuscation

OS independent integrity checking
• Observation

– Majority of critical server vulnerabilities are
memory based

– Modern anti-virus software must scan memory
– Modern malware must disable, tamper with, or

circumvent such scanning
• Bagle and Lion worms attempt to kill anti-virus

scanning

• Intel’s solution: SMM/AMT
– System Management Mode starring the Active

Management Technology platform
– Use isolated trusted firmware solution to ensure

the presence and integrity of anti-virus software

Problems with current IDS
• Host IDS

– Rootkit allows unrestricted system access to
enable attacker to thwart checks

– Example: Witty
• Network IDS

– Insertion, evasion attacks
• VMM (virtual machine isolation)

– IDS running in VMM vulnerable to attack from
DMA device

• Programmable DMA device to scan host
memory (Petroni)
– Difficult to do since page tables not located at

well-known addresses

Threats
• Image modification

– Modify in-memory executable code of agent
• Permanent or transient (restore when integrity check runs)

• Disable agent
– Kill agent, steal interrupt vectors of agent, modify OS

scheduler to bypass agent
– IDSes that do memory read verification only (and not

execution verification) are vulnerable
• Out-of-context jump

– Trick IDS into signing bogus “health reports” by
jumping directly to its signing code

• Dynamic data modification
– Modify important data agent uses (i.e. filtering rules) or

program state
• Interrupt hijacking

– Modify state of agent when it is interrupted
asynchronously

Threats
• System Management RAM cache attack

– Modify cached copy of SMM handler to execute
malicious code in SMM

• Multi-processor attack
– Run code in parallel to agent on MP systems to cause

undesired effects
• Exploit software defects

– Buffer-overflow, format string attacks
• Agent circumvention

– Bypass checking code by reimplementing code without
check in it (i.e. filters in device drivers)

• DMA attack
– For VMM systems, instruct an I/O device to perform a

DMA directly into VMM to “inject” into “isolated”
environment

• Theft of secrets
– Steal secrets used by agent (keys) to impersonate them

Verification approach
• Locality

– Location in memory that program resides
– Do not allow requests from outside of agent’s

memory to gain access
• Integrity

– Check whether or not an agent has been
modified from its original state

• Execution state
– Check whether agent is running or being

scheduled to run over time
• Problems

– Does not address tampering with dynamic data
– Function pointers?

SIS
• Host agent initialization

– SIS specific initialization code section executed when
agent is loaded

– Registers with IMM (integrity management manager)
• Locations of critical sections in host virtual memory
• Location of its integrity manifest

• Integrity manifest
– Signed summary description of critical components of

host software agent
• Section table
• Relocation table
• Symbol table
• Mirrored from ELF and PE formats

– Signed by private key of host software agent
manufacturer

SIS
• Integrity verification

– First check done at registration when agent begins
– Periodically after that
– Integrity check value (ICV) or a MAC signed by secret

key stored in SMRAM
– Problem: virtual memory implemented by OS

• VMRS: virtual memory reconstitution service implemented
– Subsequent checks use SMI to initiate ICV

• Locality verification
– ISM checks CR3, CS and EIP
– Virtual address of instruction triggering SMI calculated
– Program identified based on previously registration

with IMM
• Key manangement

– Platform master key used to derive session keys

SIS
• ISM operation

– Must ensure consistent measurement by
disallowing modifications when measuring

– Details in paper
• Virtual memory reconstitution

– Maps host virtual address to physical address
while running on isolated partition

• Dynamic data protection
– Perform integrity checks to detect changes to

protected dynamic data
– Only reasonable to do on small amount of very

critical data

Agent execution detection
• Use IMM to generate ICV over a heartbeat

message
– Send signature to host agent
– Host agent appends to heartbeat message sends

it out
– IMM double-checks message to ensure

integrity of heartbeat

Threats revisited
• Image modification

– Integrity checks detect this
• Disable agent

– Detected since authentic heartbeats stop
• Out-of-context jump

– Partially handled using locality (SMI tracing)
• Dynamic data modification

– Signing and verifying source and validity of
dynamic data updates

• Interrupt hijacking
– Disabling interrupts and verifying it within SMI

handler

Threats revisited
• System Management RAM cache attack

– SMI flushes cache upon exit
• Multi-processor attack

– Stop other cores and threads upon running SIS
• Exploit software defects

– Addressed by No-EX bit?
• Agent circumvention

– Tie critical functions to SMI
• DMA attack

– SMRAM inaccessible to DMA due to hardware
restrictions

• Theft of secrets
– Stored in SMRAM

Open problems
• Kernel data structure integrity

– Interrupt Vector Table
• DLL integrity
• Integration with platform security tools

– Firewalls, IDS

Obfuscation

Objectives
• Slow reverse engineering process

– Make automated analysis difficult
– Make code more complicated
– Make decompilation difficult
– Make code unreadable by human

Metrics
• Resilience

– Irreversibility
• Cost

– Added run-time or code size
• Stealth

– Similarity to rest of code

Techniques
• Data obfuscation
• Control flow obfuscation
• Advanced techniques

Data obfuscation
• Renaming variables, procedures, classes,

methods
• Deleting comments and spaces
• Inserting dead code
• Variable splitting
• Scalar/object conversion
• Change variable lifetime
• Split/fold/merge arrays
• Change encoding
• Merge scalar variables

Control-flow obfuscation
• Break basic blocks
• Inline methods
• Outline statements
• Unroll loops
• Reorder statements
• Reorder loops
• Merge all functions into one

Advanced techniques
• Reuse identifiers
• Misleading comments
• Modify inheritance relations
• Convert static data to procedural data
• Store part of program as text and interpret it

only during runtime
• Remove library calls
• Attack specific decompilers and debuggers

Shiva (Mehta/Clowes 2003)
• Outer encryption layer

– Defeats “strings”
– Slows access to protected code

• TRAP flag detection
– Defeat single-stepping

• “checkme” data check
• ptrace defense

– Exits if ptrace active
– Clones itself and two copies ptrace each other to

prevent additional PTRACE_ATTACH “inter-ptrace”
• Timing checks
• AES, password protected middle encryption layer
• Inner encryption layer

– Run-time protection

Shiva (Mehta/Clowes 2003)
• /proc defenses

– Only portions of binary decrypted at a given
time

• INT 3 instruction replacement
– Some instructions replaced with INT 3
– Instructions emulated in INT 3 handler
– If debugger uses INT 3, code will be missing

• Jumping into middle of instrucitons
• Polymorphic code generation

Reversing Shiva
• Use similar techniques to run partially and

dump images
– Scripted decryption via IDA scripts
– Virtual x86 plugin for IDA

.NET reversing
• Reversing tutorial on .NET

– http://accessroot.com
– http://www.blong.com/Conferences/DCon2003

/ReverseEngineering/ReverseEngineering.htm
• Tools

– ILDASM
• Disassembler that comes with .NET framework

SDK
– Reflector
– Dis#

.NET obfuscation
• http://www.codebreakers-

journal.com/index.php?option=com_content
&task=view&id=123&Itemid=97

• StrongName
– Verifies code integrity via cryptographic hash

calculation
– Prevents patching
– Easily bypassed via ildasm edits to remove

signature scheme
• http://www.andreabertolotto.net/
• StrongName Remove

– Or patch system DLL to make check return
valid all the time

.NET obfuscation
• Name obfuscation

– Change metadata saved with binary to make
names either unprintable or random

.NET obfuscation
• Flow obfuscation

– Make msil reading hard by preventing its translation
into a HLL

– Adding boolean checks that are always true or false
– Splitting source into many segments and connecting

them using various branches
– Mess with stack

• MSIL is stack-based and will not allow unballanced stack
• Insert a “pop” that will never run
• Breaks Reflector

.assembly extern mscorlib { }

.assembly extern System{}

.assembly sample {}

.method public hidebysig void Main()
{
.entrypoint
br.s start_here
pop
start_here:
ldstr "hello!"
call void [mscorlib]System.Console::WriteLine(string)
ret
}

.NET obfuscation
• Metadata encryption

– String references stored as metadata in
managed PE file

– Often the key in reversing
– Encrypt to hide and decrypt just before use

Dotfuscator
• http://www.preemptive.com/products/dotfus

cator/FAQ.html
• Uses a variety of mechanisms to obfuscate
• All done after compilation (i.e. does not

modify source code)

Dotfuscator
• http://www.preemptive.com/products/dotfuscator/

FAQ.html
• “Overload Induction" renaming

– Identify colliding sets of methods across inheritance
hierarchies

• Rename such sets according to some enumeration (e.g. the
alphabet or unprintable characters).

– Method overloading is induced on a grand scale
• OI algorithm determines all opportunities for name reuse and

takes advantage of them.
• Can use return type to determine method uniqueness as well

– Anecdotal evidence
• 33% of ALL methods were renamed to a single character (such

as "a").
• Typically, 10% more are renamed to "b", etc.

– overload induction reduces the final program size of obfuscated
code.

– Up to 10% of the size savings in Dotfuscated and
DashO'd programs

Dotfuscator
• Undoing Dotfuscator renaming

– Decompiler needs to implement overload induction
themselves (ironically, violating Preemptive’s patent in
the process) to undo it.

– Overload induction is provably irreversible
• The best reversing will come out with a different number of

unique methods than the original source code contained
• Overload induction destroys original overloading relationships
• In reversed state, there will be no overloaded methods.

– Grand designers of OO technology implemented overloaded
methods as a way of creating "more readable code“

– By removing that ability, the code has less information in it than
before.

Dotfuscator
• Also supports

– String encryption
– Incremental obfuscation (for patches)
– Control-flow obfuscation

• Breaks loops and other HLL control structures up

