
Linux From Scratch
By Zorema
Version 2.2, April 3rd, 2002
This document describes the process of creating your own Linux system from scratch from an
already installed Linux distribution, using nothing but the source code of software that we need

1. Introduction
• 1.1 What's this all about?
• 1.2 New versions
• 1.3 Version history
• 1.4 Mailinglists
• 1.5 Contact info

2. Conventions used in this document
• 2.1 About $LFS
• 2.2 How to download the software
• 2.3 How to install the software

3. Packages you need to download
• 3.1 Mandatory software
• 3.2 Optional software

4. Preparing the new system
• 4.1 How we are going to do things
• 4.2 Creating a new partition
• 4.3 Creating an ext2 file system on the new partition
• 4.4 Mounting the new partition
• 4.5 Creating directories
• 4.6 Copying the /dev directory
Linux From Scratch 1

5. Making the LFS system bootable
• 5.1 Installing Sysvinit
• 5.2 Configuring Sysvinit
• 5.3 Creating passwd & group files
• 5.4 Installing the Bash shell
• 5.5 Adding an entry to LILO
• 5.6 Testing the system

6. Installing a kernel
• 6.1 Note on ftp.kernel.org
• 6.2 Configuring the kernel
• 6.3 Updating LILO
• 6.4 Testing the system

7. Installing basic system software
• 7.1 About debugging symbols
• 7.2 Preparing LFS system for installing basic system software
• 7.3 Installing basic systsem software
• 7.4 Removing old NSS Library files
• 7.5 Configuring the software

8. Creating system boot scripts
• 8.1 Preparing the directories and master files
• 8.2 Creating the reboot script

• 8.3 Creating the halt script
• 8.4 Creating the mountfs script
• 8.5 Creating the umountfs script
• 8.6 Creating the sendsignals script
• 8.7 Creating the checkroot bootscript
• 8.8 Creating the Sysklogd bootscript
• 8.9 Setting up symlinks and permissions
• 8.10 Crea ting the /etc/fstab file
Linux-From-Scratch-HOWTO
5. Making the LFS system bootable 2
9. Setting up basic networking
• 9.1 Installing Netkit -base
• 9.2 Installing Net-tools
• 9.3 Testing the system

10. Installing Network Daemons
• 10.1 Setting up SMTP
• 10.2 Setting up FTP
• 10.3 Setting up HTTP
• 10.4 Setting up Telnet
• 10.5 Setting up PPP

11. Installing Network Clients
• 11.1 Installing Email clients
• 11.2 Installing FTP client
• 11.3 Installing HTTP client
• 11.4 Installing Telnet client
• 11.5 Installing PPP clients

12. Installing X Window System
• 12.1 Installing X
• 12.2 Creating /etc/ld.so.conf
• 12.3 Creating the /usr/include/X11 symlink
• 12.4 Creating the /usr/X11 symlink
• 12.5 Adding /usr/X11/bin to the $PATH environment variable
• 12.6 Configuring X
• 12.7 Testing X
• 12.8 Installing Window Maker
• 12.9 Preparing the system for the Window Maker installation
• 12.10 Updating dynamic loader cache
• 12.11 Configuring WindowMaker
• 12.12 Testing WindowMaker
Linux-From-Scratch-HOWTO
9. Setting up basic networking 3

13. Resources
• 13.1 Books
• 13.2 HOWTOs
• 13.3 Other

14. The End
15. Copyright & Licensing Information
1. Introduction

1.1 What's this all about?
Having used a number of different Linux distributions, I was never fully satisfied with either of
those. I didn't like the way the bootscripts were arranged, or I didn't like the way certain programs
were configured by default and more of those things. I came to realize that when I want to be
totally satisfied with a Linux system, I have to build my own Linux system from scratch. Ideally
only using the source code. No pre-compiled packages of any kind. No help from some sort of
cdrom or bootdisk that would install some basic utilities. You would use your current Linux
system and use that one to build your own.
This, at one time, wild idea seemed very difficult and at times almost impossible. The reason for
most problems were due to my lack of knowledge about certain programs and procedures. After
sorted out all kinds of dependency problems, compilation problems, etcetera, a manually Linux
system was created and fully operational. I called this system and LFS system which stands for
LinuxFromScratch.

1.2 New versions
The latest version of the document can always be found at http://www.linuxfromscratch.org
1.3 Version history
2.1.5 - March 26th, 2000
This is not a full list of modified things. Because v2.0 is a major release, only the major changes
are mentioned and not the minor ones.
• Directory structure modified - LFS is FHS compliant now. Perhaps not 100%, but getting there.
Linux-From-Scratch-HOWTO
13. Resources 4
• New Glibc installation method
• New GCC installation method
• Eliminated the need for the pre-compiled Debian packages.
• Totally revised software installation method - eliminated the need of all the statically linked
packages in former chapter 6.1.
• Various bugs fixed in software installation
• Installed a few more programs from the util- linux package
• Added the installation of the Bzip2 program
• Explained in greater detail what the $LFS is all about - how to and how not to use it.
• Simplified installation procedures for all packages in chapters 5 through 9.1
• Moved the installation of Glibc and GCC to chapter 7 in stead of having their own chapters
which isn't necessary.
• Modified Internet servers chapter: separated into Network Daemons and Network Clients
chapter.
Internet chapter has merged with these two new chapters.
• Switched chapters 13 and 14 (X and Internet) and merged the chapters about X and Window
Maker into chapter 14.
• We're using a new Man program. This one is easier to use and configure than the man-db one
we previously used. Both versions perform nearly the same jobs.
• Added new chapter 13: Resources. This chapter contains a number of books and HOWTOs
you'll find useful to read during or after building an LFS system.
• Chapter 3: Fixed bzip2 link
• Chapter 7.2.42: Simplified Util-Linux installation method
• Chapter 3.1: Changed procps location
• Chapter 7.2: Switched installation of Vim and Util-Linux (as we need an editor to install Util-
Linux)
• Chapter 7.3.33: Fixed procps installation.
• Chapter 5.2: stripped inittab file so it won't complain about missing files at boot time.
• Chapter 6: Rewrote kernel installation
• Chapter 10.3: Fixed Apache bootscript

• Chapter 10.3.2: Removed section about modifying the httpd.conf file. No longer necessary.
Added the addition of /usr/apache/man to the /usr/share/misc/man.conf file
• Chapter 11.1: Provided a fixed mailx package with a working Makefile file to simplify the
installation procedure
• Chapter 11.3.1: Added the --shared switch to configure so that Zlib is installed as a dynamic
library rather than a static one.
• Chapter 11.6: Have Lynx link against the Ncurses library in stead of the Slang.
• Chapter 12: The newer man-db already has the X11/man directory in it's man_db.config file
2.2 - April 3rd, 2000
• The linuxfromscratch.org and linuxfromscratch.com domains are now operational. All former
links to huizen.dds.nl/~glb and tts.ookhoi.dds.nl have been replaced by the appropriate links on
www.linuxfromscratch.org
• After the reboot in chapter 7.3, the swap partition is made active before we start compiling
software.
Linux-From-Scratch-HOWTO
13. Resources 5

1.4 Mailinglists
There are two mailing lists you can subscribe to. The lfs-discuss and the lfs-announce list. The
former is an open non-moderated list discussing anything that has got anything to do with this
document. The latter is an open moderated list. Anybody can subscribe to it, but you cannot post
messages to it (only the moderator(s) can do this). This list is primarily used for announcements
of new versions of this document.
If you're subscribed to the lfs-discuss list you don't need to be subscribed to the lfs-announce list
as well.
Everything that is sent over the lfs-announce list is also sent over the lfs-discuss list.
Subscribing
To subscribe to a list, send an email to majordomo@fist.org and type in the body either subscribe
lfs-discuss or subscribe lfs-announce
Majordomo will send you a confirmation-request email. This email will contain an authentication
code. Once you send this email back to Majordomo (instructions are provided in that email) you
will be subscribed.
Unsubscribing
To unsubscribe from a list, send an email to majordomo@fist.org and type in the the body either
unsubscribe
lfs-discuss or unsubscribe lfs-announce

1.5 Contact info
Direct all your questions preferably to the mailing list. If you need to reach me personally, send
an email to

2. Conventions used in this document
2.1 About $LFS
Please read the following carefully: throughout this document you will frequently see the variable
name $LFS. $LFS must at all times be replaced by the directory where the partition that contains
the LFS system is mounted. How to create and where to mount the partition will be explained
later on in full detail in chapter 4.
In my case the LFS partition is mounted on /mnt/hda5. If I read this document myself and I see
$LFS somewhere, I will pretend that I read /mnt/hda5. If I read that I have to run this command:
cp inittab
$LFS/etc I actually will run this: cp inittab /mnt/hda5/etc
It's important that you do this no matter where you read it; be it in commands you enter on the
prompt, or in some file you edit or create.

If you want, you can set the environment variable LFS. This way you can literally enter $LFS in
stead of replacing it by something like /mnt/hda5. This is accomplished by running: export
LFS=/mnt/hda5
Linux-From-Scratch-HOWTO
1.4 Mailinglists 6
If I read cp inittab $LFS/etc, I literally can type cp inittab $LFS/etc and the shell will replace this
command by cp inittab /mnt/hda5/etc automatically.
Do not forget to set the LFS variable at all times. If you haven't set the variable and you use it in a
command, $LFS will be ignored and whatever is left will be executed. The command cp inittab
$LFS/etc without the LFS variable set, will result in copying the inittab file to the /etc directory
which will overwrite your system's inittab. A file like inittab isn't that big a problem as it can
easily be restored, but if you would make this mistake during the installation of the C Library,
you can break your system badly and might have to reinstall it if you don't know how to repair it.
So that's why I strongly advise against using the LFS variable. You better replace $LFS yourself
by something like /mnt/hda5. If you make a typo while entering /mnt/hda5, the worst thing that
can happen is that you'll get an error saying "no such file or directory" but it won't break your
system. Don't say I didn't warn you ;)

2.2 How to download the software
Throughout this document I will assume that you have stored all the packages you have
downloaded in a subdirectory under $LFS/usr/src.
I myself have use the convention of having a $LFS/usr/src/sources directory. Under sources you'll
find the directory 0-9 and the directories a through z. A package as sysvinit-2.78.tar.gz is stored
under $LFS/usr/src/sources/s/ A package as bash-3.02.tar.gz is stored under
$LFS/usr/src/sources/b/ and so forth.
You don't have to follow this convention of course, I was just giving an example. It's better to
keep the packages out of $LFS/usr/src and move them to a subdirectory, so we'll have a clean
$LFS/usr/src directory in which we will unpack the packages and work with them.
The next chapter contains the list of all the packages you need to download, but the partition that
is going to contain our LFS system isn't created yet. Therefore store the files temporarily
somewhere where you want and remember to copy them to $LFS/usr/src/<somesubdirectory>
when you have finished chapter 4.

2.3 How to install the software
Before you can actually start doing something with a package, you need to unpack it first. Often
you will find the package files being tar'ed and gzip'ed (you can see this from a .tar.gz or .tgz
extension). I'm not going to write down every time how to ungzip and how to untar an archive. I
will tell you how to that once, in this paragraph. There is also the possibility that you have the
possibility of downloading a .tar.bz2 file. Such a file is tar'ed and compressed with the bzip2
program. Bzip2 achieves a better compression than the commonly used gzip does. In order to se
bz2 archives you need to have the bzip2 program installed. Most if not every distribution comes
with this program so chances are high it is already installed on your system. If not, install it using
your distribution's installation tool.
• Start by copying the package from wherever you have stored it to the $LFS/usr/src directory
• When you have a file that is tar'ed an d gzip'ed, you unpack it by running: tar xvfz
filename.tar.gz; rm filename.tar.gz or tar xvfz filename.tgz; rm
filename.tgz
• When you have a file that is tar'ed and bzip'ed, you unpack it by running: tar
--use-compress-prog=bzip2 -xvf filename.tar.bz2; rm
filename.tar.bz2
• When you have a file that is only tar'ed, you unpack it by running tar xvf
filename.tar;
rm filename.tar
Linux-From-Scratch-HOWTO
2.2 How to download the software 7

Note that immediately after we have unpacked the archive, we delete the package file as we don't
need it anymore. That's why you have to copy the file and not move it. If you move it and then
delete it, you will need to re-download it when you need it again.
When the archive is unpacked a new directory will be created under the current directory (and
this document assumes that you unpack the archives under the $LFS/usr/src directory). You have
to enter that new directory before you continue with the installation instructions. All the above
will be summarized as 'Unpack the xxx archive'. So, when you read it, you copy the package to
$LFS/usr/src, you run the tar program to
ungzip/unbzip and untar it, then you enter the directory that was created and then you read the
next line of the installation instructions.
After you have installed a package you can do two things with it. You can either delete the
directory that contains the sources or you can keep it. If you decide to keep it, that's fine by me.
But if you need the same package again in a later chapter (all software up to cha pter 7.2 will be
re-installed in chapter 7.3) you need to delete the directory first before using it again. If you don't
do this, you might end up in trouble because old settings will be used (settings that apply to your
normal Linux system but which don't apply anymore when you have restarted your computer into
the LFS system). Doing a simple make clean does not always guarantee a totally clean
source tree. The configure script also has files lying around in various subdirectories which are
rarely removed by the make clean process.

3. Packages you need to download
Below is a list of all the software that you need to download for use in this document. I display
the sites and directories where you can download the software, but it is up to you to make sure
you download the source archive and the latest version. The version numbers correspondent to
versions of the software that is known to work and which this document is going to be based on.
If you experience problems which you can't solve yourself, download the version that is assumed
in this document (in case you download a newer version).

3.1 Mandatory software
Sysvinit (2.78) : ftp://ftp.cistron.nl/pub/people/miquels/sysvinit/
Bash (2.03) : ftp://ftp.gnu.org/gnu/bash/
Linux Kernel (2.2.14) : ftp://ftp.kernel.org/pub/linux/kernel/
Binutils (2.9.1) : ftp://ftp.gnu.org/gnu/binutils/
Bzip2 (0.9.5d) : http://sourceware.cygnus.com/bzip2/
Diff Utils (2.7) : ftp://ftp.gnu.org/gnu/diffutils/
File Utils (4.0) : ftp://ftp.gnu.org/gnu/fileutils/
GCC (2.95.2) : ftp://ftp.gnu.org/gnu/gcc/
Glibc (2.1.3) : ftp://ftp.gnu.org/gnu/glibc/
Linux-From-Scratch-HOWTO
3.Packages you need to download 8
Glibc-crypt (2.1.2) : ftp://ftp.gwdg.de/pub/linux/glibc/
Glibc-linuxthreads (2.1.3) : ftp://ftp.gnu.org/gnu/glibc/
Grep (2.4) : ftp://ftp.gnu.org/gnu/grep/
Gzip (1.2.4) : ftp://ftp.gnu.org/gnu/gzip/
Make (3.78.1) : ftp://ftp.gnu.org/gnu/make/
Sed (3.02) : ftp://ftp.gnu.org/gnu/sed/
Shell Utils (2.0) : ftp://ftp.gnu.org/gnu/sh-utils/
Tar (1.13) : ftp://ftp.gnu.org/gnu/tar/
Text Utils (2.0) : ftp://ftp.gnu.org/gnu/textutils/
Util Linux (2.10f) : ftp://ftp.win.tue.nl/pub/linux/utils/util- linux/
Bison (1.28) : ftp://ftp.gnu.org/gnu/bison/
Mawk (1.3.3) : ftp://ftp.whidbey.net/pub/brennan/
Find Utils (4.1) : ftp://ftp.gnu.org/gnu/findutils/
Ncurses (5.0) : ftp://ftp.gnu.org/gnu/ncurses/
Less (340) : ftp://ftp.gnu.org/gnu/less/

Perl (5.005_03) : ftp://ftp.gnu.org/gnu/perl/
M4 (1.4) : ftp://ftp.gnu.org/gnu/m4/
Texinfo (4.0) : ftp://ftp.gnu.org/gnu/texinfo/
Autoconf (2.13) : ftp://ftp.gnu.org/gnu/autoconf/
Automake (1.4) : ftp://ftp.gnu.org/gnu/automake/
Flex (2.5.4a) : ftp://ftp.gnu.org/gnu/flex/
E2fsprogs (1.18) : ftp://tsx-11.mit.edu/pub/linux/packages/ext2fs/
File (3.26) : http://www.linuxfromscratch.org/download/file-3.26-lfs.tar.gz
Groff (1.15) : ftp://ftp.gnu.org/gnu/groff/
Ld.so (1.9.9) : ftp://tsx-11.mit.edu/pub/linux/packages/GCC/
Libtool (1.3.4) : ftp://ftp.gnu.org/gnu/libtool/
Linux-From-Scratch-HOWTO
3.Packages you need to download 9
Linux86 (0.14.3) : http://www.linuxfromscratch.org/download/linux86-0.14.3-lfs.tar.gz
Lilo (21) : ftp://sunsite.unc.edu/pub/Linux/system/boot/lilo/
Shadow Password Suite (19990827) : ftp://piast.t19.ds.pwr.wroc.pl/pub/linux/shadow/
Man (1.5h1) : ftp://ftp.win.tue.nl/pub/linux-local/utils/man/
Modutils (2.3.9) : ftp://ftp.ocs.com.au/pub/modutils/
Termcap (1.3) : ftp://ftp.gnu.org/gnu/termcap/
Procinfo (17) : ftp://ftp.cistron.nl/pub/people/svm/
Procps (2.0.6) : ftp://people.redhat.com/johnsonm/procps/
Psmisc (19) : ftp://lrcftp.epfl.ch/pub/linux/local/psmisc/
Start-stop-daemon (0.4.1) : http://www.linuxfromscratch.org/download/ssd-0.4.1-lfs.tar.gz
Sysklogd (1.3.31) : ftp://sunsite.unc.edu/pub/Linux/system/daemons/
Vim (5.6) : ftp://ftp.vim.org/pub/editors/vim/unix/

3.2 Optional software
All software below is used in sections 13 and above and are not strictly necessary. You have to
determine for yourself if you want to install certain packages. If, for example, you don't intend to
go online with the LFS system, you might not want to install the email, telnet, ftp, www, etc.
utilities.
Netkit-base (0.17) : ftp://ftp.uk.linux.org/pub/linux/Networking/netkit-devel/
Net-tools (1.54) : http://www.tazenda.demon.co.uk/phil/net-tools/
Procmail (3.14) : ftp://ftp.procmail.org/pub/procmail/
Sendmail (8.9.3) : ftp://ftp.sendmail.org/pub/sendmail/
Mailx (8.1.1) : http://www.linuxfromscratch.org/download/mailx-8.1.1-fixed.tar.gz
Mutt (1.0i) : ftp://ftp.mutt.org/pub/mutt/
Fetchmail (5.2.0) : http://www.tuxedo.org/~esr/fetchmail/
Netkit-telnet (0.17) : ftp://ftp.uk.linux.org/pub/linux/Networking/netkit-devel/
Proftpd (1.2.0pre9) : ftp://ftp.tos.net/pub/proftpd/
Netkit-ftp (0.17) : ftp://ftp.uk.linux.org/pub/linux/Networking/netkit-devel/
Linux-From-Scratch-HOWTO
3.2 Optional software 10
Apache (1.3.11) : http://www.apache.org/dist/
Zlib Library (1.1.3) : http://www.cdrom.com/pub/infozip/zlib/
Lynx (2.8.2) : http://www.slcc.edu/lynx/release/
PPP (2.3.11) : ftp://cs.anu.edu.au/pub/software/ppp/
Xfree86 (3.3.5) : ftp://ftp.xfree86.org/pub/XFree86/
libPropList (0.9.1) : ftp://ftp.window maker.org/pub/libs/
libXpm (4.7) : ftp://sunsite.unc.edu/pub/Linux/libs/X/
libpng (1.0.3) : http://www.cdrom.com/pub/png/
libtiff (3.4) : ftp://ftp.sgi.com/graphics/tiff/
libjpeg (6b) : http://www.ijg.org/
libungif (4.1.0) : ftp://prtr-13.ucsc.edu/pub/libungif/
WindowMaker (0.61.1) :

4.Preparing the new system
4.1 How we are going to do things
We are going to build the LFS system using an already installed Linux distribution such as
Debian, SuSe, Slackware, Mandrake, RedHat, etc. You don't need to have any kind of bootdisk.
We will use an existing Linux system as the base (since we need a compiler, linker, text editor
and other tools).
If you don't have Linux installed yet, you won't be able to put this document to use right away. I
suggest you first install a Linux distribution. It really doesn't matter which one you install. It also
doesn't need to be the latest version, though it shouldn't be a too old one. If it is about a year old
or newer it'll do just fine. You will safe yourself a lot of trouble if your normal system uses glibc-
2.0 or newer. Libc5 can cause some problems and is not supported in this document as I don't
have access to such a machine anymore.

4.2 Creating a new partition
Before we can build our new Linux system, we need to have an empty Linux partition on which
we can build our new system. I recommend a partition size of at least 5 00 MB. You can get away
with around 250MB for a bare system with no extra whistles and bells (such as software for
emailing, networking, Internet, X Window Sys tem and such). If you already have a Linux Native
partition available, you can skip this subsection.
Linux-From-Scratch-HOWTO
4. Preparing the new system 11
Start the fdisk program (or some other fdisk program if you prefer) with the appropriate hard
disk as the option (like /dev/hda if you want to create a new partition on the primary master IDE
disk). Create a Linux Native partition, write the partition table and exit the fdisk program. If you
get the message that you need to reboot your system to ensure that that partition table is updated,
then please reboot your system now before continuing. Remember what your new partition's
designation is. It could be something like hda5 (as it is in my case). This newly created partition
will be referred to as the LFS partition in this document.

4.3 Creating an ext2 file system on the new partition
Once the partition is created, we have to create a new ext2 file system on that partition. To create
a new ext2 file system we use the mke2fs command. Enter the new partition as the only option
and the file system will be created. If your partition was hda5, you would run the command as
mke2fs /dev/hda5

4.4 Mounting the new partition
Once we have created the ext2 file system, it is ready for use. All we have to do to be able to
access it (as in reading from and writing date to it) is mounting it. If you mount it under
/mnt/hda5, you can access this partition by going to the /mnt/hda5 directory and then do whatever
you need to do. This document will assume that you have mounted the partition on a subdirectory
under /mnt. It doesn't matter which subdirectory you choose (or you can use just the /mnt
directory as the mounting point), but a good practice is to create a directory with the same name
as the partition's designation. In my case the LFS partition is called hda5 and therefore I mount it
on /mnt/hda5
• Create the /mnt directory if it doesn't exist yet
• Create the /mnt/xxx directory where xxx is to be replaced by your LFS partition's designation.
• Mount the LFS partition by running: mount /dev/xxx /mnt/xxx and replace xxx by your LFS
partition's designation. This directory (/mnt/xxx) is the $LFS you have read about earlier. So if
you read somewhere to "cp inittab
$LFS/etc" you actually will type "cp inittab /mnt/xxx/etc" where xxx is replaced by your
partition's designation.

4.5 Creating directories
Let's create the directory tree on the LFS partition according to the FHS standard which can be
found at

http://www.pathname.com/fhs/. Issuing the following commands will create the necessary
directories.
cd $LFS
mkdir bin boot dev etc home lib mnt proc root sbin tmp usr var
cd $LFS/usr
mkdir bin include lib sbin share src
ln -s share/man man
ln -s share/doc doc
ln -s . local
ln -s ../etc etc
ln -s ../var var
cd $LFS/usr/share
mkdir dict doc info locale man nls misc terminfo zoneinfo
Linux-From-Scratch-HOWTO
4.3 Creating an ext2 file system on the new partition 12
cd $LFS/usr/share/man
mkdir man1 man2 man3 man4 man5 man6 man7 man8
cd $LFS/var
mkdir lock log run spool tmp
Now that the directories are created, copy the source files you have downloaded in chapter 3 to
some subdirectory under $LFS/usr/src (you will need to create this subdirectory yourself).

4.6 Copying the /dev directory
We can create every single file that we need to be in the $LFS/dev directory using the mknod
command, but
that just takes up a lot of time. I choose to just simply copy the current /dev directory to the $LFS
partition.
Use this command to copy the entire directory while preserving original rights, symlinks and
ownerships:
cp -av /dev $LFS
chown root.root $LFS/dev/*

5. Making the LFS system bootable
5.1 Installing Sysvinit
Under normal circumstances, after the kernel is done loading and initializing various system
components, it attempts to load a program called init which will finalize the system boot
process. The package found on most if not every single Linux system is called Sysvinit and that's
the program we're going to install on our LFS system.
• Unpack the Sysvinit archive
• Enter the src directory
• Edit the Makefile file
• Somewhere in this file, but before the rule all: put this line: ROOT = $LFS
• Precede every /dev on the last four lines in this file by $(ROOT)
After applying the $(ROOT) parts to the last four lines, they should look like this:
@if [! -p $(ROOT)/dev/initctl]; then \
echo "Creating $(ROOT)/dev/initctl"; \
rm -f $(ROOT)/dev/initctl; \
mknod -m 600 $(ROOT)/dev/initctl p; fi
• Install the package by running:
Linux-From-Scratch-HOWTO
4.6 Copying the /dev directory 13
make -e LDFLAGS=-static; make install

5.2 Configuring Sysvinit
In order for Sysvinit to work, we need to create it's configuration file. Create the
$LFS/etc/inittab file
containing the following:
Begin /etc/inittab
id:2:initdefault:
ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

1:2345:respawn:/sbin/sulogin
End /etc/inittab

5.3 Creating passwd & group files
As you can see from the inittab file, when we boot the system, init will start the sulogin program
and sulogin will ask you for user root's password. This means we need to have at least a passwd
file present on the LFS system.
• Create the $LFS/etc/passwd file containing the following:
root:s394ul1Bkvmq2:0:0:root:/root:/bin/bash
• Create the $LFS/etc/group file containing the following: root::0:
The encoded password string above is: lfs123
When you logon to your LFS system, enter lfs123 when asked to enter user root's password.
5.4 Installing the Bash shell
When sulogin asks you for the root password and you've entered the password, a shell needs to be
started.
Usually this is the bash shell. Since there are no libraries installed yet, we need to link bash
statically, just like we did with Sysvinit.
• Unpack the Bash archive
• Install Bash by running:
./configure --enable-static-link
make; make -e prefix=$LFS/usr install
mv $LFS/usr/bin/bash $LFS/bin
cd $LFS/bin; ln -s bash sh
Linux-From-Scratch-HOWTO
5.2 Configuring Sysvinit 14

5.5 Adding an entry to LILO
In order to being able to boot from this partition, we need to update our /etc/lilo.conf file.
Add the following lines to lilo.conf:
image=<currently used image>
label=<label>
root=$LFS
read-only
Replace <currently used image> by the kernel image file that you are using to boot your normal
Linux system. <label> can be anything you want it to be. I named the label "lfs" What you enter
as <label> is what you enter at the LILO-prompt when you choose with system to boot.
Now run the lilo program to update the boot loader.

5.6 Testing the system
After you've completed this section, we can test the system by rebooting into LFS and see if we
can log on to it. When you reboot and are at the LILO prompt, enter the label you have entered in
the lilo.conf file to start the LFS system. Then enter root's password and you should be on the
bash-prompt now. You won't be able to shutdown the system with a program like shutdown.
Although the program is present, it will give you the following error: "You don't exist. Go away."
when you try to use the program. The meaning of this error is that the system isn't able to locate
the password file. Although the shutdown program is statically linked against the libraries it
needs, it still depends on the NSS Library (Name Server Switch) which is part of the GNU C
Library, which will be installed in a later chapter. This NSS library passes on information where
(in this case) the passwd file can be found.
For now you can reboot the system using the reboot -f command. This will bypass shutting
down the system using the shutdown program and reboot immediately. Since the file system is
mounted read-only this will not harm our system in any way (though you might get a warning
next time you try to mount the system that it wasn't unmounted cleanly the last time and that you
should run e2fsck to make sure the file system is still intact).

6. Installing a kernel
6.1 Note on ftp.kernel.org

In section 2 above I mentioned you can download a new kernel from ftp://ftp.kernel.org/
However, this site is often too busy to get through and the maintainers of this site encourage you
to download the kernel from a location near you. You can access a mirror site by going to
ftp://ftp.<country code>.kernel.org/ (like ftp.ca.kernel.org).
Linux-From-Scratch-HOWTO
5.5 Adding an entry to LILO 15

6.2 Configuring the kernel
• Rename the current /usr/src/linux directory to something else (/usr/src/linux can be a symlink
rather than an actual directory. Either way, rename it) by running mv /usr/src/linux
/usr/src/linux-old
• Remove /usr/include/linux and /usr/include/asm by running rm -r /usr/include/linux
/usr/include/asm
• Unpack the Kernel archive in the /usr/src/ directory (this will create a new /usr/src/linux
directory)
• Create the /usr/include/linux and /usr/include/asm symlinks by running:
cd /usr/include
ln -s ../src/linux/include/linux linux
ln -s ../src/linux/include/asm-<cpu> asm
Look in the /usr/src/linux/include directory and see which asm-* directories are present. Choose
the correct one for your platform. If you're on an Intel platform, you'd run ln -
s ../src/linux/include/asm-i386 asm
• Choose a method to configure the kernel (see the README file for more details on
configuration methods) and make sure you don't configure anything as modules at this point. This
is because we won't have the necessary software available to load kernel modules for a while.
• After you're done with your kernel configuration, run make dep
• Compile the kernel by running make bzImage
• Copy the arch/<cpu>/boot/bzImage file to the /boot directory (or some place else if
your
Linux system uses a different convent ion where kernel images and the like are stored)
• Optionally you can rename the /boot/bzImage file to something like
/boot/lfskernel
• Copy the entire kernel source tree to the LFS partition by running: cp -av
/usr/src/linux
$LFS/usr/src
• Create the $LFS/usr/include/linux and $LFS/usr/include/asm symlinks by running:
cd $LFS/usr/include
ln -s ../src/linux/include/linux linux
ln -s ../src/linux/include/asm asm

6.3 Updating LILO
• Edit the /etc/lilo.conf file and go to the LFS section
• Change the image name to lfskernel (or whatever you've named the originally called
bzImage
file)
• Run lilo to update the boot loader.
Linux-From-Scratch-HOWTO
6.2 Configuring the kernel 16

6.4 Testing the system
Reboot your system and start your LFS system. Verify that the newly installed kernel doesn't
perform out-of-the-ordinary actions (such as crashing).

7. Installing basic system software
In this chapter we will install all the software that belongs to a basic Linux system. After you're
done with this chapter you have a fully working Linux system. The remaining chapters deals with

optional issues such as setting up networking, Internet servers + clients (telnet, ftp, http, email),
setting up Internet itself and the X Window System. You can skip chapters at your own discretion.
If you don't plan on going online with the LFS system there's little use to setup Internet for
example.
There are a number of packages that need to be already installed before we can start installing all
the basic system software. A typical configure scripts needs programs like rm, grep, sed, mv, cat,
cp, diff. You need to be able to ungzip and untar archives, you need to link programs after you
have compiled the objects files. All these (and a few more) programs needs to be available before
we can install anything else. These programs are going to be linked statically. The reasoning
behind this is that your normal Linux system may have a different C Library version than the LFS
system is going to have. The programs you install in this section will be linked against the C
Library of your normal Linux system. This may cause library conflicts if you run those programs
on the LFS system. Therefore we have to link those programs statically. During the installation of
the basic system software set, we will re-install the statically linked software so that they are
linked dynamically against the C library on the LFS system.

7.1 About debugging symbols
Every program and library is default compiled with debugging symbols. This means you can run
a program or library through a debugger and the debugger's output will be more user friendly.
These debugging symbols also enlarge the program or binary significantly. This document will
not install software without debugging symbols (as I don't know if the majority of readers do or
don't debug software). In stead, you can remove those symbols manually if you want with the
strip program.
To remove debugging symbols from a binary (must be an a.out or ELF binary) run strip
--strip-debug filename You can use wild cards if you need to strip debugging symbols
from multiple files (use something like strip --strip-debug $LFS/usr/bin/*).
Before you wonder if these debugging symbols would make a big difference, here are some
statistics:
• A static Bash binary with debugging symbols: 2.3MB
• A static Bash binary without debugging symbols: 645KB
• A dynamic Bash binary with debugging symbols: 1.2MB
• A dynamic Bash binary without debugging symbols: 478KB
• $LFS/usr/lib (glibc and gcc files) with debugging symbols: 87MB
• $LFS/usr/lib (glibc and gcc files) without debugging symbols: 16MB
Sizes may vary depending on which compiler has been used and which C library version is used
to link
Linux-From-Scratch-HOWTO
6.4 Testing the system 17 dynamic programs against, but your results will be very similar if
you compare programs with and without debugging symbols. After I was done with this chapter
and stripped all debugging symbols from all LFS binaries and libraries I regained a little over 102
MB of disk space. Quite the difference. The difference would be even greater when I would do
this at the end of this document when everything is installed.

7.2 Preparing LFS system for installing basic system
software
Installing Binutils
• Unpack the binutils archive
• Install the package by running:
./configure
make -e LDFLAGS=-all-static
make -e prefix=$LFS/usr install

Installing Bzip2
• Unpack the Bzip2 archive
• Edit the Makefile file in a text editor

• Find the lines that start with : $(CC) $(CFLAGS) -o
• Replace those parts with: $(CC) $(CFLAGS) $(LDFLAGS) -o
• Install the package by running:
make -e LDFLAGS=-static
make -e PREFIX=$LFS/usr install
cd $LFS/usr/bin
mv bunzip2 bzip2 $LFS/bin

Install Diffutils
• Unpack the diffutils archive
• Install the package by running:
./configure
make -e LDFLAGS=-static
make -e prefix=$LFS/usr install
This package is known to cause static linking problems on certain platforms. If you're having
trouble
Linux-From-Scratch-HOWTO
7.2 Preparing LFS system for installing basic system software 18 compiling this package
as well, you can download a fixed package from
http://www.linuxfromscratch.org/download/diffutils-2.7-fixed.tar.gz
Installing Fileutils
• Unpack the fileutils archive
• Install the package by running:
./configure --disable-nls
make -e LDFLAGS=-static
make -e prefix=$LFS/usr install
cd $LFS/usr/bin
mv chgrp chmod chown cp dd df ln ls mkdir mknod mv rm rmdir sync $LFS/bin

Installing GCC on the normal system if necessary
In order to compile Glibc -2.1.3 you need to have gcc-2.95.2 installed. Any version from 2.8 and
up would do, but 2.95.2 is recommended. Many glibc-2.0 based systems have gcc-2.7.2.3
installed and you can't compile glibc -2.1 with that compiler. Therefore we will install gcc-2.95.2.
also on the normal system, but without overwriting the existing compiler. Before you install gcc
on your normal system, make sure whether you need it or not. Run gcc --version and
check if the version number it reports equals or is higher than 2.8. If not, you need to install gcc-
2.95.2. If you experience difficulties compiling glibc later on, you might want to install gcc-
2.95.2 anyways.
• Unpack the GCC archive
• Install the package by running:
mkdir $LFS/usr/src/gcc-build; cd $LFS/usr/src/gcc-build
../gcc-2.95.2/configure --prefix=/usr/gcc2952 \
--with-local-prefix=/usr/gcc2952 --with-gxx-include-
dir=/usr/gcc2952/include/g++ \
--enable-shared --enable-languages=c,c++
make bootstrap; make install

Installing GCC on the LFS system
• Unpack the GCC archive
• Install the package by running:
mkdir $LFS/usr/src/gcc-build;cd $LFS/usr/src/gcc-build
../gcc-2.95.2/configure --enable-languages=c --disable-nls
make -e LDFLAGS=-static bootstrap
make -e prefix=$LFS/usr local_prefix=$LFS/usr install
Linux-From-Scratch-HOWTO
Installing Fileutils 19
Creating necessary symlinks
The system needs a few symlinks to ensure every program is able to find the compiler and the
pre-processor.

Some programs run the cc program, others run the gcc program, some programs expect the cpp
program to be
in /lib (which is /usr/lib on the LFS system) and others expect to find it in /usr/bin.
• Create those symlinks by running:
cd $LFS/lib; ln -s ../usr/lib/gcc-lib/<host>/2.95.2/cpp cpp
cd $LFS/usr/lib; ln -s gcc-lib/<host>/2.95.2/cpp cpp
cd $LFS/usr/bin; ln -s gcc cc
Replace <host> with the directory where the gcc-2.95.2 files were installed (i686-unknown-linux
in my
case). You will most likely find two different directories.
Installing Glibc
A note on the glibc -crypt package:
-*-*-*-*-*-
The add-on is not included in the main distribution of the GNU
C library because some governments, mostly notable those of France, Russia and
the US, have very restrictive rules governing the distribution and use of
encryption software. Please read the node "Legal Problems" in the manual for
more details. In particular, the US does not allow export of this software
without a license, including via the Internet. So please do not download it
from the main FSF FTP site at ftp.gnu.org if you are outside of the US. This
software was completely developed outside the US.
-*-*-*-*-*-
"This software" refers to the glibc -crypt package at ftp://ftp.gwdg.de/pub/linux/glibc/. This law
only affects people who don't live in the US. It's not prohibited to import DES software, so if you
live in the US you can import it from that German site.
• Unpack the Glibc archive
• Copy the glibc -crypt and glibc-linuxthreads archives into the unpacked glibc directory
• Unpack the glibc-crypt and glibc-linuxthreads there, but don't enter these directories. Just
ungzip
and untar them.
• Create a new file configparms containing:
Begin configparms
slibdir=/lib
sysconfdir=/etc
End configparms
Linux-From-Scratch-HOWTO
Creating necessary symlinks 20
• If your normal system already had a gcc version suitable to compile glibc with, install the
package by
running:
mkdir $LFS/usr/src/glibc-build;cd $LFS/usr/src/glibc-build
../glibc-2.1.3/configure --enable-add-ons
make; make install_root=$LFS install
• If your normal didn't had a suitable gcc version and you installed gcc-2.95.2 on your normal
system, install the package by running:
mkdir $LFS/usr/src/glibc-build; cd $LFS/usr/src/glibc-build
CC=/usr/gcc2952/bin/gcc ../glibc-2.1.3/configure --enable-add-ons
make; make install_root=$LFS install

Copying old NSS Library files
If your normal Linux system runs libc-2.0.x, you need to copy the NSS library files to the LFS
partition. Certain statically linked programs still depend on the NSS library, especially programs
that need to lookup usernames, userid's and groupid's. You can check which C Library version
your normal Linux system uses by running: ls -l libc.so.*
Your system uses glibc-2.0 if the output looks like: /lib/libc.so.6 -> libc-2.0.7.so
Your system uses glibc-2.1 is the output looks like: /lib/libc.so.6 -> libc-2.1.2.so
If your have a libc-2.0.x.so file (where x is the micro version number such as 7) copy the NSS
Library files
by running: cp -av /lib/*nss* $LFS/lib

Installing grep
• Unpack the grep archive
• Install the package by running:
./configure --disable-nls
make -e LDFLAGS=-static
make -e prefix=$LFS/usr install
This package is known to cause static linking problems on certain platforms. If you're having
trouble compiling this package as well, you can download a fixed package from
http://www.linuxfromscratch.org/download/grep-2.4-fixed.tar.gz
Linux-From-Scratch-HOWTO
Copying old NSS Library files 21
Installing gzip
• Unpack the gzip archive
• Install the package by running:
./configure
make -e LDFLAGS=-static
make -e prefix=$LFS/usr install
cd $LFS/usr/bin
mv gunzip gzip $LFS/bin
This package is known to cause compilation problems on certain platforms. If you're having
trouble
compiling this package as well, you can download a fixed package from
http://www.linuxfromscratch.org/download/gzip-1.2.4-fixed.tar.gz
Installing Make
• Unpack the Make archive
• Install the package by running:
./configure
make -e LDFLAGS=-static
make -e prefix=$LFS/usr install

Installing Sed
• Unpack the sed archive
• Install the package by running:
./configure
make -e LDFLAGS=-static
make -e prefix=$LFS/usr install
mv $LFS/usr/bin/sed $LFS/bin
This package is known to cause static linking problems on certain platforms. If you're having
trouble compiling this package as well, you can download a fixed package from
http://www.linuxfromscratch.org/download/sed-3.02-fixed.tar.gz
Installing Sh-utils
• Unpack the sh-utils archive
• Install the package by running:
Linux-From-Scratch-HOWTO
Installing gzip 22
./configure --disable-nls
make -e LDFLAGS=-static
make -e prefix=$LFS/usr install
cd $LFS/usr/bin
mv date echo false pwd stty su true uname hostname $LFS/bin

Installing Tar
• Unpack the tar archive
• Install the package by running:
./configure --disable-nls
make -e LDFLAGS=-static
make -e prefix=$LFS/usr install
mv $LFS/usr/bin/tar $LFS/bin

Installing Textutils

• Unpack the textutils archive
• Install the package by running:
./configure --disable-nls
make -e LDFLAGS=-static
make -e prefix=$LFS/usr install
mv $LFS/usr/bin/cat $LFS/bin

Installing Util-linux
• Unpack the util-linux archive
• Install the package by running:
./configure
cd lib;make
cd ../mount;make -e LDFLAGS=-static
cp mount umount $LFS/bin
cp swapon $LFS/sbin

7.3 Installing basic systsem software
The installation of all the software is pretty straightforward and you'll think it's so much easier
and shorter to give the generic installation instructions for each package and only explain how to
install something if a certain package requires an alternate installation method. Although I agree
with you on this aspect, I, however, choose to give the full instructions for each and every
package. This is simply to avoid any possible
Linux-From-Scratch-HOWTO
Installing Tar 23 confusion and errors. Before you continue with this document you have to
restart your system and boot into the LFS system. But before you do that, you need to determine
which partition is used as your swap partition.
This information can usually be found in the /etc/fstab file. Check this file for a line similar to this
one:
/dev/hda6 none swap sw 0 0
The 4th field in a line must contain 'sw'. That line represents a swap partition. All you need to
remember is it's designation (which is /dev/hda6 in my case but this will probably be different on
your system). When you have determined which partition is the swap partition, you can reboot
your computer now and continue from here.
Remounting partition and activating swap
Before the software can be installed we need to remount the partition in read-write mode. Also,
we need to activate the swap partition so that we won't risk running out of memory during large
compilation processes (such as compiling gcc):
mount -o remount,rw / /
/sbin/swapon <swap device>

Installing GCC
• Unpack the GCC archive and install it by running:
mkdir $LFS/usr/src/gcc-build;cd $LFS/usr/src/gcc-build
../gcc-2.95.2/configure --with-gxx-include-dir=/usr/include/g++ \
--enable-shared --enable-languages=c,c++
make bootstrap; make install

Installing Bison
• Unpack the bison archive and install it by running:
./configure --datadir=/usr/share/bison
make; make install
Installing Mawk
• Unpack the mawk archive and install it by running:
./configure
make; make install
cd /usr/bin; ln -s mawk awk
Linux-From-Scratch-HOWTO
Remounting partition and activating swap 24
Installing Findutils
• Unpack the findutils archive and install it by running:

./configure
make; make install
This package is known to cause compilation problems. If you're having trouble compiling this
package as well, you can download a fixed package from
http://www.linuxfromscratch.org/download/findutils-4.1-fixed.tar.gz
Installing Termcap
• Unpack the Termcap archive and install it by running:
./configure
make; make install
Installing Ncurses
• Unpack the ncurses archive and install it by running:
./configure --with-shared
make; make install

Installing Less
• Unpack the Less archive and install it by running:
./configure
make; make install
mv /usr/bin/less /bin
Linux-From-Scratch-HOWTO
Installing Findutils 25
Installing Perl
• Unpack the Perl archive and install it by running:
./Configure
make; make install
Note that we skip the 'make test' step. This is because at this moment the system isn't ready yet
for running
the perl test. At this time we'll trust that perl compiled fine.
Installing M4
• Unpack the M4 archive and install it by running:
./configure
make; make install

Installing Texinfo
• Unpack the Texinfo archive and install it by running:
./configure
make; make install

Installing Autoconf
• Unpack the Autoconf archive and install it by running:
./configure
make; make install

Installing Automake
• Unpack the Automake archive and install it by running:
./configure
make install
Linux-From-Scratch-HOWTO
Installing Perl 26
Installing Bash
• Unpack the Bash archive and install it by running:
./configure
make; make install
mv /usr/bin/bash /bin

Installing Flex
• Unpack the Flex archive and install it by running:
./configure
make; make install

Installing Binutils
• Unpack the Binutils archive and install it by running:

./configure
make; make install

Installing Bzip2
• Unpack the Bzip2 archive and install it by running:
make; make install
cd /usr/bin; mv bunzip2 bzip2 /bin

Installing Diffutils
• Unpack the Diffutils archive and install it by running:
./configure
make; make install
Linux-From-Scratch-HOWTO
Installing Bash 27
Installing E2fsprogs
• Unpack the E2fsprogs archive and install it by running:
./configure
make; make install
mv /usr/sbin/mklost+found /sbin
Installing File
• Unpack the File archive and install it by running:
./configure
make; make install

Installing Fileutils
• Unpack the Fileutils archive and install it by running:
./configure
make; make install
cd /usr/bin
mv chgrp chmod chown cp dd df ln ls mkdir mknod mv rm rmdir sync /bin

Installing Grep
• Unpack the Grep archive and install it by running:
./configure
make; make install

Installing Groff
• Unpack the Groff archive and install it by running:
./configure
make; make install
Linux-From-Scratch-HOWTO
Installing E2fsprogs 28
Installing Gzip
• Unpack the Gzip archive and install it by running:
./configure
make; make install
cd /usr/bin; mv z* gunzip gzip /bin

Installing Ld.so
• Unpack the Ld.so archive and install it by running:
cd util; make ldd ldconfig
cp ldd /bin; cp ldconfig /sbin
rm /usr/bin/ldd

Installing Libtool
• Unpack the Libtool archive and install it by running:
./configure
make; make install

Installing Linux86
• Unpack the Linux86 archive and install it by running:
cd as
make; make install
cd ../ld
make ld86; make install

Installing Lilo
• Unpack the Lilo archive and install it by running:
make; make install
Linux-From-Scratch-HOWTO
Installing Gzip 29
Installing Make
• Unpack the Make archive and install it by running:
./configure
make; make install

Instaling Sh-Utils
• Unpack the Sh-utils archive and install it by running:
./configure
make; make install
cd /usr/bin
mv date echo false pwd stty su true uname hostname /bin

Installing Shadow Password Suite
• Unpack the Shadow archive and install it by running:
./configure
make; make install
cd etc
cp limits login.access login.defs.linux shells suauth /etc
mv /etc/login.defs.linux /etc/login.defs
cd /usr/sbin
mv chpasswd dpasswd groupadd groupdel groupmod logoutd mkpasswd \
newusers useradd userdel usermod grpck pwck vipw grpconv grpunconv \
pwconv pwunconv /sbin

Installing Man
• Unpack the Man archive and install it by running:
./configure -default
make all; make install
Linux-From-Scratch-HOWTO
Installing Make 30
Installing Modutils
• Unpack the Modutils archive and install it by running:
./configure
make; make install

Installing Procinfo
• Unpack the Procinfo archive and install it by running:
make; make install

Installing Procps
• Unpack the Procps archive and install it by running:
gcc -O3 -Wall -Wno-unused -c watch.c
make; make -e XSCPT="" install
mv /usr/bin/kill /bin

Installing Psmisc
• Unpack the Psmisc archive and install it by running:
make; make install

Installing Sed
• Unpack the Sed archive and install it by running:
./configure
make; make install
mv /usr/bin/sed /bin
Linux-From-Scratch-HOWTO
Installing Modutils 31
Installing start-stop-daemon
• Unpack the start-stop-daemon archive and install it by running:
make start-stop-daemon

cp start-stop-daemon /sbin
cp start-stop-daemon.8 /usr/share/man/man8

Installing Sysklogd
• Unpack the Sysklogd archive and install it by running:
make; make install
Installing Sysvinit
• Unpack the Sysvinit archive and install it by running:
cd src
make; make install

Install Tar
• Unpack the Tar archive and install it by running:
./configure
make; make install
mv /usr/bin/tar /bin

Installing Textutils
• Unpack the Textutils archive and install it by running:
./configure
make; make install
mv /usr/bin/cat /bin
Linux-From-Scratch-HOWTO
Installing start-stop-daemon 32
Installing Vim
• Unpack the Vim-rt and Vim-src archives and install it by running:
./configure
make; make install

Installing Util-linux
• Unpack the Util-linux package
• Edit the MCONFIG file, find and modify the following variables as follows:
HAVE_PASSWD=yes
HAVE_SLN=yes
HAVE_TSORT=yes
• Install the package by running:
groupadd -g 5 tty
./configure
make; make install

7.4 Removing old NSS Library files
If you have copied the NSS Library files from your normal Linux system to the LFS system
(because your normal system runs glibc-2.0) it's time to remove them now by running:
rm /lib/libnss*.so.1 /lib/libnss*2.0*

7.5 Configuring the software
Now that all software is installed, all that we need to do to get a few programs running properly is
to create their configuration files.
Configuring Glib
We need to create the /etc/nsswitch.conf file. Although glibc should provide defaults when this
file is missing or corrupt, it's defaults don't work work well with networking which will be dealt
with in a later chapter.
Also, our timezone needs to be setup.
Linux-From-Scratch-HOWTO
Installing Vim 33
• Create a new file /etc/nsswitch.conf containing:
Begin /etc/nsswitch.conf
passwd: files
group: files
shadow: files
hosts: files dns
networks: files

protocols: db files
services: db files
ethers: db files
rpc: db files
netgroup: db files
End /etc/nsswitch.conf
• Run the tzselect script and answer the questions regarding your timezone
• When you're done, the program will give you the file location you need.
• Create the localtime symlink by running: ln -s /usr/share/zoneinfo/<tzselect's output>
/etc/localtime tzselect's output can be something like "EST5EDT" or "Canada/Eastern". The
symlink you would create with that information would be ln -s /usr/share/zoneinfo/EST5EDT
/etc/localtime or ln -s
/usr/share/zoneinfo/Canada/Eastern /etc/localtime
Configuring LILO
We're not going to create lilo's configuration file from scratch, but we'll use the file from your
normal Linux system. This file is different on every machine and thus I can't create it here. Since
you would want to have the same options regarding lilo as you have when you're using your
normal Linux system you would create the file exactly as it is on the normal system.
• Create the /mnt/original directory
• Mount your normal Linux system on this mount point by running mount /dev/xxx /mnt/original
(replace /dev/xxx with your normal partition's designation).
• Copy the lilo configuration file and kernel images that lilo uses by running:
cp /mnt/original/etc/lilo.conf /etc
cp /mnt/original/boot/* /boot
If your normal Linux system does not have (all of) it's kernel images in /mnt/original/boot, then
check your /etc/lilo.conf file for the location of those files and copy those as well to the location
where /etc/lilo.conf expects them to be. Or you can copy them to /boot regardless and modify the
/etc/lilo.conf file so it contains the new paths for the images as you have them on the LFS system.
Either way works fine, it's up to you how you want to do it.
Linux-From-Scratch-HOWTO
Configuring LILO 34
Configuring Sysklogd
• Create the /var/log directory by running: mkdir /var/log
• Create the /etc/syslog.conf file containing the following:
Begin /etc/syslog.conf
auth,authpriv.* -/var/log/auth.log
.;auth,authpriv.none -/var/log/sys.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log
*.emerg *
End /etc/syslog.conf

Configuring Shadow Password Suite
This package contains the utilities to modify user's passwords, add new users/groups, delete
users/groups and more. I'm not going to explain to you what 'password shadowing' means. You
can read all about that in the doc/HOWTO file. There's one thing you should keep in mind, if you
decide to use shadow support, which programs that need to verify passwords (examples are xdm,
ftp daemons, pop3d, etc) need to be 'shadow -compliant', eg. They need to be able to work with
shadowed passwords.
If you decide you don't want to use shadowed passwords (after you're read the doc/HOWTO
document), you still use this archive since the utilities in this archive are also used on system
which have shadowed passwords disabled. You can read all about this in the HOWTO. Also note
that you can switch between shadow and non-shadow at any point you want.
Now is a very good moment to read section #5 of the doc/HOWTO file. You can read how you
can test if shadowing works and if not, how to disable it. If it doesn't work and you haven't tested
it, you'll end up with an unusable system after you logout of all your consoles, since you won't be

able to login anymore. You can easily fix this by passing the init=/sbin/sulogin parameter to the
kernel, unpack the util- linux archive, go to the login-utils directory, build the login program and
replace the /bin/login by the one in the util-linux package. Things are never hopelessly messed up
(at least not under Linux), but you can avoid a hassle by testing properly and reading manuals ;)
Configuring Sysvinit
After you have made the following modification to the /etc/inittab file, you will be able to logon
to it as you are used to (using the agetty and login programs). Sulogin won't be used anymore for
normal logins.
• Edit the /etc/inittab file and modify it so it contains the following:
Begin /etc/inittab
Linux-From-Scratch-HOWTO
Configuring Sysklogd 35
id:2:initdefault:
si::sysinit:/etc/init.d/rcS
su:S:wait:/sbin/sulogin
l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6
ft:6:respawn:/sbin/sulogin
ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now
1:2345:respawn:/sbin/agetty /dev/tty1 9600
2:2345:respawn:/sbin/agetty /dev/tty2 9600
3:2345:respawn:/sbin/agetty /dev/tty3 9600
4:2345:respawn:/sbin/agetty /dev/tty4 9600
5:2345:respawn:/sbin/agetty /dev/tty5 9600
6:2345:respawn:/sbin/agetty /dev/tty6 9600
End /etc/inittab

Creating /var/run/utmp file
Programs like login, shutdown and others want to write to the /var/run/utmp file. This file
contains information about who is currently logged in. It also contains information on when the
computer was last shutdown.
• Create the /var/run/utmp file by running: touch /var/run/utmp
• Give it the proper file permissions by running: chmod 644 /var/run/utmp

8. Creating system boot scripts
These bootscripts are started at system boot time. The scripts are responsible for mounting the
root file system in read-write mode, activating swap, setting up some system settings and starting
the various daemons that our system needs.

8.1 Preparing the directories and master files
You need the Sysvinit package again for this section.
• Create the necessary direc tories by running:
Linux-From-Scratch-HOWTO
Creating /var/run/utmp file 36
cd /etc
mkdir rc0.d rc1.d rc2.d rc3.d rc4.d rc5.d rc6.d init.d rcS.d
• Go to the unpacked Sysvinit source directory
• Copy the Debian/etc/init.d/rc file to: /etc/init.d
• Go to the /etc/init.d directory
• Create a new file rcS containing the following:
#!/bin/sh
Begin /etc/init.d/rcS
runlevel=S
prevlevel=N
umask 022
export runlevel prevlevel

trap ":" INT QUIT TSTP
for i in /etc/rcS.d/S??*
do
[! -f "$i"] && continue;
$i start
done
End /etc/init.d/rcS

8.2 Creating the reboot script
• Create a new file reboot containing the following:
#!/bin/sh
Begin /etc/init.d/reboot
echo -n "System reboot in progress..."
/sbin/reboot -d -f -i
End /etc/init.d/reboot

8.3 Creating the halt script
• Create a new file halt containing the following:
#!/bin/sh
Begin /etc/init.d/halt
Linux-From-Scratch-HOWTO
8.2 Creating the reboot script 37
/sbin/halt -d -f -i -p
End /etc/init.d/halt

8.4 Creating the mountfs script
• Create a new file mountfs containing the following:
#!/bin/sh
Begin /etc/init.d/mountfs
check_status()
{
if [$? = 0]
then
echo "OK"
else
echo "FAILED"
fi
}
echo -n "Remounting root file system in read-write mode..."
/bin/mount -n -o remount,rw /
check_status
> /etc/mtab
/bin/mount -f -o remount,rw /
echo -n "Mounting proc file system..."
/bin/mount proc
check_status
End /etc/init.d/mountfs

8.5 Creating the umountfs script
• Create a new file umountfs containing the following:
#!/bin/sh
Begin /etc/init.d/umountfs
check_status()
{
if [$? = 0]
then
echo "OK"
else
echo "FAILED"
fi
}
Linux-From-Scratch-HOWTO
8.4 Creating the mountfs script 38
echo "Deactivating swap..."
/bin/swapoff -av
check_status

echo -n "Unmounting file systems..."
/bin/umount -a -r
check_status
End /etc/init.d/umountfs

8.6 Creating the sendsignals script
• Create a new file sendsignals containing the following:
#!/bin/sh
Begin /etc/init.d/sendsignals
check_status()
{
if [$? = 0]
then
echo "OK"
else
echo "FAILED"
fi
}
echo -n "Sending all processes the TERM signal..."
/sbin/killall5 -15
check_status
echo -n "Sending all processes the KILL signal..."
/sbin/killall5 -9
check_status

8.7 Creating the checkroot bootscript
• Create a file /etc/init.d/checkroot containing the following:
#!/bin/sh
Begin /etc/init.d/checkroot
echo "Activating swap..."
/sbin/swapon -av
if [-f /fastboot]
then
echo "Fast boot, no file system check"
else
/bin/mount -n -o remount,ro /
if [$? = 0]
then
Linux-From-Scratch-HOWTO
8.6 Creating the sendsignals script 39
if [-f /forcecheck]
then
force="-f"
else
force=""
fi
echo "Checking root file system..."
/sbin/fsck $force -a /
if [$? -gt 1]
then
echo
echo "fsck failed. Please repair your file system manually by"
echo "running fsck without the -a option"
echo "Please note that the file system is currently mounted in"
echo "read-only mode."
echo
echo "I will start sulogin now. CTRL+D will reboot your system."
/sbin/sulogin
/reboot -f
fi
else
echo "Cannot check root file system because it is not mounted in"
echo "read-only mode."
fi
fi
End /etc/init.d/checkroot

8.8 Creating the Sysklogd bootscript
• Create a new file /etc/init.d/sysklogd containing the following:
#!/bin/sh
Begin /etc/init.d/sysklogd
check_status()
{
if [$? = 0]
then
echo "OK"
else
echo "FAILED"
fi
}
case "$1" in
start)
echo -n "Starting system log daemon..."
start-stop-daemon -S -q -o -x /usr/sbin/syslogd -- -m 0
check_status
echo -n "Starting kernel log daemon..."
start-stop-daemon -S -q -o -x /usr/sbin/klogd
Linux-From-Scratch-HOWTO
8.8 Creating the Sysklogd bootscript 40
check_status
;;
stop)
echo -n "Stopping kernel log daemon..."
start-stop-daemon -K -q -o -p /var/run/klogd.pid
check_status
echo -n "Stopping system log daemon..."
start-stop-daemon -K -q -o -p /var/run/syslogd.pid
check_status
;;
reload)
echo -n "Reloading system load daemon configuration file..."
start-stop-daemon -K -q -o -s 1 -p /var/run/syslogd.pid
check_status
;;
restart)
echo -n "Stopping kernel log daemon..."
start-stop-daemon -K -q -o -p /var/run/klogd.pid
check_status
echo -n "Stopping system log daemon..."
start-stop-daemon -K -q -o -p /var/run/syslogd.pid
check_status
sleep 1
echo -n "Starting system log daemon..."
start-stop-daemon -S -q -o -x /usr/sbin/syslogd -- -m 0
check_status
echo -n "Starting kernel log daemon..."
start-stop-daemon -S -q -o -x /usr/sbin/klogd
check_status
;;
*)
echo "Usage: $0 {start|stop|reload|restart}"
exit 1
;;
esac
End /etc/init.d/sysklogd

8.9 Setting up symlinks and permissions
• Set the proper file permissions and symlinks by running:
chmod 755 rcS reboot halt mountfs umountfs sendsignals checkroot sysklogd
cd ../rc0.d
ln -s ../init.d/sysklogd K90sysklogd
ln -s ../init.d/sendsignals S80sendsignals
ln -s ../init.d/umountfs S90umountfs

Linux-From-Scratch-HOWTO
8.9 Setting up symlinks and permissions 41
ln -s ../init.d/halt S99halt
cd ../rc6.d
ln -s ../init.d/sysklogd K90sysklogd
ln -s ../init.d/sendsignals S80sendsignals
ln -s ../init.d/umountfs S90umountfs
ln -s ../init.d/reboot S99reboot
cd ../rcS.d
ln -s ../init.d/checkroot S05checkroot
ln -s ../init.d/mountfs S10mountfs
cd /etc/rc2.d
ln -s ../init.d/sysklogd S03sysklogd

8.10 Creating the /etc/fstab file
• Create a file /etc/fstab containing the following:
/dev/<LFS-partition designation> / ext2 defaults 0 1
/dev/<swap-partition designation> none swap sw 0 0
proc /proc proc defaults 0 0

9. Setting up basic networking
9.1 Installing Netkit-base
• Unpack the Netkit-base archive and install it by running:
./configure
make; make install
cd etc.sample; cp services protocols /etc
mv /usr/bin/ping /bin

9.2 Installing Net-tools
• Unpack the Net-tools archive and install it by running:
make; make install
mv /usr/bin/netstat /bin
cd /usr/sbin; mv ifconfig route /sbin
Linux-From-Scratch-HOWTO
8.10 Creating the /etc/fstab file 42
Creating the /etc/init.d/localnet bootscript
• Create a new file /etc/init.d/localnet containing the following:
#!/bin/sh
Begin /etc/init.d/localnet
check_status()
{
if [$? = 0]
then
echo "OK"
else
echo "FAILED"
fi
}
echo -n "Setting up loopback device..."
/sbin/ifconfig lo 127.0.0.1
check_status
echo -n "Setting up hostname..."
/bin/hostname --file /etc/hostname
check_status
End /etc/init.d/localnet

Setting up permissions and symlink
• Set the proper permissions by running chmod 755 /etc/init.d/localnet
• Create the proper symlinks by running cd /etc/rcS.d; ln -
s ../init.d/localnet
S03localnet
Creating the /etc/hostname file

Create a new file /etc/hostname and put the hostname in it. This is not the FQDN (Fully
Qualified Domain Name). This is the name you wish to call your computer in a network.
Creating the /etc/hosts file
If you want to configure a network card, you have to decide on the IP-address, FQDN and
possible aliases
for use in the /etc/hosts file. An example is:
<myip> myhost.mydomain.org aliases
Make sure the IP-address is in the private network IP-address range. Valid ranges are:
Linux-From-Scratch-HOWTO
Creating the /etc/init.d/localnet bootscript 43
Class Networks
A 10.0.0.0
B 172.16.0.0 through 172.31.0.0
C 192.168.0.0 through 192.168.255.0
A valid IP address could be 192.168.1.1. A valid FQDN for this IP could be
me.linuxfromscratch.org If you're not going to use a network card, you still need to come up with
a FQDN. This is necessary for programs like Sendmail to operate correctly (in fact; Sendmail
won't run when it can't determine the FQDN).
Here's the /etc/hosts file if you don't configure a network card:
Begin /etc/hosts (no network card version)
127.0.0.1 me.lfs.org <contents of /etc/hostname> localhost
End /etc/hosts (no network card version)
Here's the /etc/hosts file if you do configure a network card:
Begin /etc/hosts (network card version)
127.0.0.1 localhost
192.168.1.1 me.lfs.org <contents of /etc/hostname>
End /etc/hosts (network card version)
Of course, change the 192.168.1.1 and me.lfs.org to your own liking (or requirements if you are
assigned an
IP-address by a network/system administrator and you plan on connecting this machine to that
network).
Creating the /etc/init.d/ethnet file
This sub section only applies if you are going to configure a network card. If not, skip this sub
section and
read on.
Create a new file /etc/init.d/ethnet containing the following:
#!/bin/sh
Begin /etc/init.d/ethnet
check_status()
{
if [$? = 0]
then
echo "OK"
else
echo "FAILED"
fi
}
/sbin/ifconfig eth0 <ipaddress>
check_status
End /etc/init.d/ethnet
Linux-From-Scratch-HOWTO
Creating the /etc/init.d/ethnet file 44
Setting up permissions and symlink for /etc/init.d/ethnet
• Set the proper permissions by running chmod 755 ethnet
• Create the proper symlinks by running cd ../rc2.d; ln -s ../init.d/ethnet
S10ethnet
Testing the network setup
• Start the just created localnet script by running /etc/init.d/localnet

• Start the just created ethnet script if you have one by running /etc/init.d/ethnet
• Test if /etc/hosts is properly setup by running:
ping <your FQDN>
ping <what you choose for hostname>
ping localhost
ping 127.0.0.1
ping 192.168.1.1 (only when you configured your network card)
All these five ping command's should work without failures. If so, the basic network is working.

9.3 Testing the system
Now that all software has been installed, bootscripts have been written and the local network is
setup, it's time for you to reboot your computer and test these new scripts to verify that they
actually work. You first want to execute them manually from the /etc/init.d directory so you can
fix the most obvious problems (typos, wrong paths and such). When those scripts seem to work
just fine manually they should also work during a system start or shutdown. There's only one way
to test that. Shutdown your system with shutdown –r now and reboot into LFS. After the reboot
you will have a normal login prompt like you have on your normal
Linux system (unless you use XDM or some sort of other Display Manger (like KDM - KDE's
version of XDM).
At this point your basic LFS system is ready for use. Everything else that follows now is optional,
so you can skip packages at your own discretion. But do keep in mind that if you skip packages
(especially libraries) you can break dependencies of other packages. For example, when the Lynx
browser is installed, the zlib library is installed as well. You can decide to skip the zlib library,
but this library isn't used by Lynx alone. Other packages require this library too. The same may
apply to other libraries and programs.

10. Installing Network Daemons
Linux-From-Scratch-HOWTO
Setting up permissions and symlink for /etc/init.d/ethnet 45

10.1 Setting up SMTP
Creating groups and user
Create the groups needed by Sendmail by running:
groupadd -g 1 bin
groupadd -g 2 kmem
groupadd -g 3 mail
useradd -u 1 -g bin -d /bin -s /bin/sh bin

Creating directory
Outgoing mail processed by Sendmail is put in the /var/spool/mqueue directory. Incoming mail is
forwarded to Procmail by Sendmail so we need to have an incoming mail directory as well which
is /var/mail. We'll create these directories and give them the proper permissions:
mkdir /var/spool
mkdir /var/mail
cd /var/spool; ln -s ../mail mail
chmod 700 /var/spool/mqueue
chmod 775 /var/mail
chgrp mail /var/mail
chmod 1777 /tmp

Installing Sendmail
• Unpack the Sendmail archive and install it by running:
cd src
./Build; ./Build install

Configuring Sendmail
Configuring Sendmail isn't as easily said as done. There are a lot of things you need to consider
while configuring Sendmail and I can't take everything into account. That's why at this time we'll
create a very basic and standard setup. If you want to tweak Sendmail to your own liking, go right
ahead, but this is not the right article. You could always use your existing /etc/sendmail.cf (or
/etc/mail/sendmail.cf) file if you need to use certain features.

• Go to the cf directory
• Create a new file cf/lfs.mc containing the following:
Linux-From-Scratch-HOWTO
10.1 Setting up SMTP 46
OSTYPE(LFS)
FEATURE(nouucp)
define(`LOCAL_MAILER_PATH', /usr/bin/procmail)
MAILER(local)
MAILER(smtp)
• Create an empty file ostype/LFS.m4 by running touch ostype/LFS.m4
• Compile the lfs.mc file by running m4 m4/cf.m4 cf/lfs.mc > cf/lfs.cf
• Copy the cf/lfs.cf to /etc/sendmail.cf
• Create an empty /etc/aliases file by running touch /etc/aliases
• Initialize this (empty) alias database by running sendmail -v -bi
Installing Procmail
• Unpack the Procmail archive and install it by running:
make; make install; make install-suid

Creating /etc/init.d/sendmail bootscript
• Create a new file /etc/init.d/sendmail containing the following:
#!/bin/sh
Begin /etc/init.d/sendmail
check_status()
{
if [$? = 0]
then
echo "OK"
else
echo "FAILED"
fi
}
case "$1" in
start)
echo -n "Starting Sendmail..."
start-stop-daemon -S -q -o -x /usr/sbin/sendmail -- -bd
check_status
;;
stop)
echo -n "Stopping Sendmail..."
start-stop-daemon -K -q -o -p /var/run/sendmail.pid
check_status
;;
reload)
echo -n "Reloading Sendmail configuration file..."
Linux-From-Scratch-HOWTO
Installing Procmail 47
start-stop-daemon -K -q -s 1 -p /var/run/sendmail.pid
check_status
;;
restart)
echo -n "Stopping Sendmail..."
start-stop-daemon -K -q -o -p /var/run/sendmail.pid
check_status
sleep 1
echo -n "Starting Sendmail..."
start-stop-daemon -S -q -o -x /usr/sbin/sendmail -- -bd
check_status
;;
*)
echo "Usage: $0 {start|stop|reload|restart}"
exit 1
;;
esac

End /etc/init.d/sendmail

Setting up permissions and symlinks
• Set the proper permissions by running chmod 755 /etc/init.d/sendmail
• Create the proper symlinks by running:
cd /etc/init.d/rc2.d; ln -s ../init.d/sendmail S20sendmail
cd ../rc0.d; ln -s ../init.d/sendmail K20sendmail
cd ../rc6.d; ln -s ../init.d/sendmail K20sendmail

10.2 Setting up FTP
Creating groups and users
• Create the necessary groups by running:
groupadd -g 65534 nogroup
groupadd -g 4 ftp
• Create the necessary users by running:
Linux-From-Scratch-HOWTO
Setting up permissions and symlinks 48
useradd -u 65534 -g nogroup -d /home nobody
useradd -u 4 -g ftp -s /bin/sh -m ftp

Installing Proftpd
• Unpack the Proftpd archive and install it by running:
./configure
make; make install

Creating the /etc/init.d/proftpd bootscript
• Create a new file /etc/init.d/proftpd containing the following:
#!/bin/sh
Begin /etc/init.d/proftpd
check_status()
{
if [$? = 0]
then
echo "OK"
else
echo "FAILED"
fi
}
case "$1" in
start)
echo -n "Starting Pro FTP daemon..."
start-stop-daemon -S -q -o -x /usr/sbin/proftpd
check_status
;;
stop)
echo -n "Stopping Pro FTP daemon..."
start-stop-daemon -K -q -o -x /usr/sbin/proftpd
check_status
;;
restart)
echo -n "Stopping Pro FTP daemon..."
start-stop-daemon -K -q -o -x /usr/sbin/proftpd
check_status
sleep 1
echo -n "Starting Pro FTP daemon..."
start-stop-daemon -S -q -o -x /usr/sbin/proftpd
check_status
;;
Linux-From-Scratch-HOWTO
Installing Proftpd 49
*)
echo "Usage: $0 {start|stop|restart}"
;;
esac
End /etc/init.d/proftpd

Setting up permissions and symlinks
• Set the proper permissions by running chmod 755 /etc/init.d/proftpd
• Create the necessary symlinks by running:
cd /etc/rc2.d; ln -s ../init.d/proftpd S40proftpd
cd ../rc0.d; ln -s ../init.d/proftpd K40proftpd
cd ../rc6.d; ln -s ../init.d/proftpd K40proftpd

10.3 Setting up HTTP
Installing Apache
• Unpack the Apache archive and install it by running:
./configure
make; make install

Configuring Apache
There's not much that needs to be configured. The only thing we need to do is to add the
/usr/apache/man path to /usr/share/misc/man.conf
• Edit the /usr/share/misc/man.conf file
• Add this line underneath the other lines that start with MANPATH: MANPATH
/usr/apache/man
Creating /etc/init.d/apache bootscript
• Create a new file /etc/init.d/apache containing the following:
#!/bin/sh
Begin /etc/init.d/apache
Linux-From-Scratch-HOWTO
Setting up permissions and symlinks 50
case "$1" in
start)
echo -n "Starting Apache HTTP daemon..."
/usr/apache/bin/apachectl start
;;
stop)
echo -n "Stopping Apache HTTP daemon..."
/usr/apache/bin/apachectl stop
;;
restart)
echo -n "Restarting Apache HTTP daemon..."
/usr/apache/bin/apachectl restart
;;
force-restart)
echo -n "Stopping Apache HTTP daemon..."
/usr/apache/bin/apachectl stop
sleep 1
echo -n "Starting Apache HTTP daemon..."
/usr/apache/bin/apachectl start
;;
*)
echo "Usage: $0 {start|stop|restart|force-restart}"
;;
esac
End /etc/init.d/apache

Setting up permissions and symlinks
• Set the proper permissions by running chmod 755 /etc/init.d/apache
• Create the necessary symlinks by running:
cd /etc/rc2.d; ln -s ../init.d/apache S50apache
cd ../rc0.d; ln -s ../init.d/apache K50apache
cd ../rc6.d; ln -s ../init.d/apache K50apache

10.4 Setting up Telnet
Installing telnet daemon + client
• Unpack the Netkit-telnet archive and install it by running:
Linux-From-Scratch-HOWTO

Setting up permissions and symlinks 51
./configure
make; make install

Creating the /etc/inetd.conf configuration file
• Create a new file /etc/inetd.conf containing the following:
Begin /etc/inetd.conf
telnet stream tcp nowait root /usr/sbin/in.telnetd
End /etc/inetd.conf

Creating the /etc/init.d/inetd bootscript
• Create a new file /etc/init.d/inetd containing the following:
#!/bin/sh
Begin /etc/init.d/inetd
check_status()
{
if [$? = 0]
then
echo "OK"
else
echo "FAILED"
fi
}
case "$1" in
start)
echo -n "Starting Internet Server daemon..."
start-stop-daemon -S -q -o -x /usr/sbin/inetd
check_status
;;
stop)
echo -n "Stopping Internet Server daemon..."
start-stop-daemon -K -q -o -p /var/run/inetd.pid
check_status
;;
reload)
echo -n "Reloading Internet Server configuration file..."
start-stop-daemon -K -q -s 1 -p /var/run/inetd.pid
check_status
;;
restart)
echo -n "Stopping Internet Server daemon..."
start-stop-daemon -K -q -o -p /var/run/inetd.pid
Linux-From-Scratch-HOWTO
Creating the /etc/inetd.conf configuration file 52
check_status
sleep 1
echo -n "Starting Internet Server daemon..."
start-stop-daemon -S -q -o -x /usr/sbin/inetd
check_status
;;
*)
echo "Usage: $0 {start|stop|reload|restart}"
;;
esac
End /etc/init.d/inetd

Setting up permissions and symlinks
• Set the proper permissions by running chmod 755 /etc/init.d/inetd
• Create the necessary symlinks by running
cd /etc/rc2.d; ln -s ../init.d/inetd S30inetd
cd ../rc0.d; ln -s ../init.d/inetd K30inetd
cd ../rc6.d; ln -s ../init.d/inetd K30 inetd

10.5 Setting up PPP
Configuring the Kernel

Before you can logon to the Internet, the kernel must be ppp-aware. You can accomplish this by
compiling ppp-support directly into the kernel, or compiling the ppp drivers are modules which
you load when you need them. Whatever you prefer, do it now by re-configuring the kernel if
necessary. If your LFS kernel is already ppp-aware than you don't have to re-configure the kernel.
Creating group
• Create the daemon group by running groupadd -g7 daemon
Installing PPP
• Unpack the PPP archive and install it by running:
./configure
Linux-From-Scratch-HOWTO
Setting up permissions and symlinks 53
make; make install
Creating /etc/resolv.conf
• Create a new file /etc/resolv.conf containing the following:
Begin /etc/resolv.conf
nameserver <IP address of your ISP's primary DNS server>
nameserver <IP address of your ISP's secundary DNS server>
End /etc/resolv.conf

Creating /etc/ppp/peers/provider
• Create the /etc/ppp/peers directory
• Create a new file /etc/ppp/peers/provider containing the following:
Begin /etc/ppp/peers/provider
noauth
connect "/usr/sbin/chat -v -f /etc/chatscripts/provider"
/dev/ttyS1
115200
defaultroute
noipdefault
End /etc/ppp/peers/provider

Creating /etc/chatscripts/provider
• Create the /etc/chatscripts directory
• Create a new file /etc/chatscripts/provider containing the following:
Begin /etc/chatscripts/provider
ABORT BUSY
ABORT "NO CARRIER"
ABORT VOICE
ABORT "NO DIALTONE"
ABORT "NO ANSWER"
"" ATZ
OK ATDT <ISP's phonenumber>
TIMEOUT 35
CONNECT ''
TIMEOUT 10
ogin: \q<username>
Linux-From-Scratch-HOWTO
Creating /etc/resolv.conf 54
TIMEOUT 10
assword: \q<mysecretpassword>
End /etc/chatscripts/provider
Note on password authentication
As you see from the sample scripts (these are the actual scripts I use when I'm not using X) above
I logon to my ISP using this chatscripts in stead of authenticating via pap or chap. Though my
ISP supports pap, I choose to do it this slightly different way which has it's disadvantages and
advantages. In my case the advantages outweigh the disadvantages. This way I have more control
over my logon procedure and I can see closer what is happening when.
For example most times when I connect I have a window running tail -f
/var/log/syslog so I can

keep an eye on when (with my provider it's mostly 'if') things like the username and password are
sent.

11. Installing Network Clients
11.1 Installing Email clients
Installing Mailx
• Unpack the Mailx archive and install it by running
make; make install

Installing Mutt
My favorite email client is Mutt, so that's why we're installing this one. Feel free to skip the
installation of Mutt and install your own favorite client. After all, this is going to be your system.
Not mine. If your favorite client is an X Window client (such as Netscape Mail) then you'll have
to sit tight a little while till we've installed X.
• Unpack the Mutt archive and install it by running:
./configure
make; make install
Linux-From-Scratch-HOWTO
Note on password authentication 55
Installing Fetchmail
• Unpack the Fetchmail archive and install it by running:
./configure
make; make install

Testing the email system
It's time to test the email system now.
• Start Sendmail by running /usr/sbin/sendmail -bd (you need to start sendmail using
the full path. If you don't, you can't let sendmail reload the sendmail.cf by running kill -1
<sendmail pid>).
• Send yourself an email by running echo "this is an email test" | mail -s
test
root
• Start the mail program and you should see your email there.
• Create a new user by running useradd -m testuser; passwd testuser
• Send an email to testuser by running echo "test mail to testuser" | mail -s
test testuser
• Login as testuser, try to obtain that email (using the mail program) and send an email to root in
the same way as you send an email to testuser.
If this all worked just fine, you have a working email system for local email. It's not necessarily
ready for Internet yet. You can remove the testuser by running userdel -r testuser

11.2 Installing FTP client
Installing Netkit-ftp
• Unpack the Netkit-ftp archive and install it by running:
./configure
make; make install
Testing FTP system
• Start the Pro ftp daemon by running /etc/init.d/proftpd start
• Start a ftp session to localhost by running ftp localhost
• Login as user anonymous and logout again.
Linux-From-Scratch-HOWTO
Installing Fetchmail 56

11.3 Installing HTTP client
Installing Zlib

Zlib is a compression library, used by programs like PKware's zip and unzip utilities. Lynx can
use this library to compress certain files.
• Unpack the Zlib archive and install it by running:
./configure --shared
make; make install

Installing Lynx
• Unpack the Lynx archive and install it by running:
./configure --libdir=/etc --with-zlib
make; make install
make install-help; make install-doc

Testing HTTP system
• Start the Apache http daemon by running /etc/init.d/apache start
• Start a http session to localhost by running lynx http://localhost
• Exit lynx.

11.4 Installing Telnet client
The Telnet client has already been installed when we installed the Telnet daemon in the previous
chapter.
Testing Telnet system
• Start the Internet Server daemon (and with it telnetd) by running /etc/init.d/inetd
start
• Start a telnet session to localhost by running telnet localhost
• Login and logout again.
Linux-From-Scratch-HOWTO
11.3 Installing HTTP client 57

11.5 Installing PPP clients
Creating the connect script
• Create a new file /usr/bin/pon file containing the following:
#!/bin/sh
Begin /usr/bin/pon
/usr/sbin/pppd call provider
End /usr/bin/pon

Creating the disconnect script
• Create a new file /usr/bin/poff file containing the following:
#!/bin/sh
Begin /usr/bin/poff
set -- `cat /var/run/ppp*.pid`
case $# in
0)
kill -15 `ps axw|grep "pppd call [[allnum:]]+"|grep -v grep|awk '{print $1}'`
exit 0
;;
1)
kill -15 $1
exit 0
;;
esac
End /usr/bin/poff

Testing PPP system
• Connect to the Internet by running pon
• Try to connect to a site like http://www.linuxfromscratch.org
• Disconnect from the Internet by running poff
Linux-From-Scratch-HOWTO
11.5 Installing PPP clients 58

12. Installing X Window System

12.1 Installing X
• Unpack the X archive and install it by running:
make World
make install; make install.man
During the compilation process you will encounter a few errors about the "makedepend" script
not being able to find the stddef.h stdarg.h and float.h header files. The script just isn't as smart as
the compiler is apparently, since the compilation itself does work fine without compilation errors.
Though, creating a few temporary symlinks won't solv e the problem; they only will cause more
problems.
So you just ignore the many makedepend errors you most likely will be getting. Also errors
similar to "pointer targets in passing arg x of somefunction differ in signedness". You can rewrite
those files if you feel like it. I won't do it.

12.2 Creating /etc/ld.so.conf
Create a new file /etc/ld.so.conf containing the following:
Begin /etc/ld.so.conf
/lib
/usr/lib
/usr/X11R6/lib
End /etc/ld.so.conf
• Update the dynamic loader cache by running ldconfig
12.3 Creating the /usr/include/X11 symlink
• In order for the pre-processor to find the X11/*.h files (which you encounter in #include
statements in source code) create the following symlink: ln -s
/usr/X11R6/include/X11
/usr/include/X11
Linux-From-Scratch-HOWTO
12. Installing X Window System 59

12.4 Creating the /usr/X11 symlink
Often software copies files to /usr/X11 so it doesn't have to know which release of X you are
using. This symlink hasn't been created by the X installation, so we have to create it by ourselves.
• Create the /usr/X11 symlink by running ln -s /usr/X11R6 /usr/X11
12.5 Adding /usr/X11/bin to the $PATH environment
variable
There are a few ways to add the /usr/X11/bin path to the $PATH environment variable. One way
of doing so is the following:
• Create a new file /root/.bashrc with it's contents as follows: export
PATH=$PATH:/usr/X11/bin
You need to login again for this change to become effective. Or you can update the path by
running
export PATH=$PATH:/usr/X11/bin manually

12.6 Configuring X
• Configure the X server by running xf86config
If the XF86Config file created by xf86config doesn't suffice, then you better copy the already
existing XF86Config from your normal Linux system to /etc. Cases wherein you need to make
special changes to the file which aren't supported by the xf86config program force you to do this.
You can always modify the created XF86Config file by hand. This can be very time consuming,
especially if you don't quite remember what needs to be changed.

12.7 Testing X
Now that X is properly configured it's time for our first test run.
• Start the X server by running startx

The X server should start and display 3 xterm's on your screen. If this is true in your case, X is
running fine.

12.8 Installing Window Maker
I choose to install Window Maker as the Window Manager. This is because I've used
WindowMaker for quite a while now and I'm very satisfied with it. As usual, you don't have to do
what I'm doing; install whatever you want. As you might know, you can install several Window
Managers simultaneously and choose which one to start by specifying it in the $HOME/.xinitrc
(or $HOME/.xsession in case you decide to
Linux-From-Scratch-HOWTO
12.4 Creating the /usr/X11 symlink 60
use xdm) file.

12.9 Preparing the system for the Window Maker
installation
Installing libPropList
• Unpack the libPropList archive and install it by running:
./configure
make; make install

Installing libXpm
• Unpack the libXpm archive and install it by running:
xmkmf; make Makefiles; make includes; make depend
cd lib; make; make install
cd ..; make; make install
This slightly different installation is necessary due to a bug in one of the Makefiles. It depends on
files in the
lib directory which aren't installed yet and it's not searching for them in the lib directory, so we
have to install
those files first before compiling the actual package.
Installing libpng
• Unpack the libpng archive and install it by running:
make -f scripts/makefile.lnx; make -f scripts/makefile.lnx install

Installing libtiff
• Unpack the libtiff archive and install it by running:
./configure
make; make install
Linux-From-Scratch-HOWTO
12.9 Preparing the system for the Window Maker installation 61
Installing libjpeg
• Unpack the libjpeg archive and install it by running:
./configure --enable-shared --enable-static
make; make install

Installing libungif
• Unpack the libungif archive and install it by running:
./configure
make; make install

Installing WindowMaker
• Unpack the WindowMaker archive and install it by running:
./configure
make; make install

12.10 Updating dynamic loader cache
• Update the dynamic loader cache by running: ldconfig

12.11 Configuring WindowMaker

Every user who wishes to use WindowMaker has to run the wmaker.inst script before he or she
can use it.
This script will copy the necessary files into the user's home directory and modify the
$HOME/.xinitrc file
(or create it if it's not there yet).
• Setup WindowMaker for yourself by running wmaker.inst
Linux-From-Scratch-HOWTO
Installing libjpeg 62

12.12 Testing WindowMaker
• Start the X server and see if the WindowMaker Window Manager starts properly by running
startx

13. Resources
A list of books, HOWTOs and other documents you might find useful to download or buy
follows. This list is just a small list to start with. We hope to be able to expand this list in time as
we come across more useful documents or books.

13.1 Books
• Sendmail published by O'Reilly. ISBN: 1-56592-222-0
• Linux Network Administrator's Guide published by O'Reilly. ISBN: 1-56592-087-2
• Running Linux published by O'Reilly. ISBN: 1-56592-151-8
13.2 HOWTOs
• ISP-Hookup-HOWTO at http://ww.linuxdoc.org
• Linux Network Administrator's Guide online at http://www.linuxdoc.org
13.3 Other
• The various manual and info pages that come with packages

14. The End
You have reached the end of the Linux from Scratch HOWTO. I hope this experience helped you
getting to know Linux better. If you have anything that you think needs to be mentioned in here
(be it a bug fix, extra software which has been forgotten but which you consider important) let us
know. Together with your help and suggestions this HOWTO can be improved significantly.
Linux-From-Scratch-HOWTO
12.12 Testing WindowMaker 63

