Click to visit

UltimateYideoiame=SUEtemER ®

http://www.getpedia.com/videogames/index.html

RING

CTION

(raiq Walls
Ryan Breidenbach

/ll MANNING

Spring i Action

CRAIG WALLS
RYAN BREIDENBACH

MANNING

Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018

Greenwich, CT 06830 email: orders@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co. Copyeditor: Liz Welch
/I/I 209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-35-4

Printed in the United States of America
123456789 10 - VHG - 0908070605

Mazisy Grace, see you soon
—C.W.

For my brother, Lee
—R.B.

brief contents

N O o A

10
11

A Spring jump start 3
Wiring beans 42

Creating aspects 91

Hitting the database 133
Managing transactions 173
Remoting 207

Accessing enterprise services 240

Building the web layer 269
View layer alternatives 319
Working with other web frameworks 346

Securing Spring applications 367

vii

contents

preface xvii
acknowledgments xx
about this book xxiit

A Spring jump start 3
1.1 Why Spring? 5
A day n the life of a J2EE developer 5 = Spring’s pledge 6
1.2 Whatis Spring? &
Spring modules 9
1.3 Spring jump start 12

1.4 Understanding inversion of control 15

Injecting dependencies 16 = IoCin action 16
I0C in enterprise applications 23

1.5 Applying aspect-oriented programming 25

Introducing AOP 25 = AOP in action 27 = AOP in the
enterprise 30

ix

CONTENTS

1.6 Spring alternatives 33

Comparing Spring to E[B 33 = Considering other lightweight
containers 36 = Web frameworks 38 w Persistence
Sframeworks 40

1.7 Summary 40

Wiring beans 42

2.1 Containing your beans 44
Introducing the BeanFactory 44 = Working with an application
context 46 = A bean’s life 47

2.2 Basicwiring 50
Wiring with XML 54 = Adding a bean 55 = Injecting

dependencies via setter methods 58 = Injecting dependencies
via constructor 65

2.3 Autowiring 69
Handling ambiguities of autowiring 71 = Mixing auto and
explicit wiring 72 = Autowiring by default 72 = To autowire
or not to autowire 72

2.4 Working with Spring’s special beans 73
Postprocessing beans 74 = Postprocessing the bean factory 76
Externalizing the configuration 78 = Customizing property

editors 80 = Resolving text messages 83 = Listening for
events 85 = Publishing events 86 = Making beans aware 87

2.5 Summary 90

Creating aspects 91

3.1 Introducing AOP 92
Defining AOP terminology 93 = Spring’s AOP
implementation 95
3.2 Creating advice 97
Before advice 99 w After advice 101 » Around advice 102
Throws advice 104 = Introduction advice 105
3.3 Defining pointcuts 105
Defining a pointcut in Spring 105 = Understanding
aduvisors 107 = Using Spring’s static pointcuts 107
Using dynamic pointcuts 111 = Pointcut operations 113

3.4

3.5
3.6

3.7

CONTENTS xi

Creating introductions 115

Implementing Introductioninterceptor 115 = Creating an
IntroductionAdvisor 119 = Using introduction advice
carefully 120

Using ProxyFactoryBean 122

Autoproxying 124
BeanNameAutoProxyCreator 124 = DefaultAdvisorAutoProxy-
Creator 126 = Metadata autoproxying 128

Summary 128

Hitting the database 133

4.1

4.2

4.3
4.4

4.5

4.6

4.7

4.8

Learning Spring’s DAO philosophy 134
Understanding Spring’s DataAccessException 135

Working with DataSowrces 137 = Consistent DAO
support 139

Using JDBC with Spring 141
The problem with [DBC code 142 » Using JdbcTemplate 144
Creating operations as objects 152 = Auto-incrementing
keys 155
Introducing Spring’s ORM framework support 156
Integrating Hibernate with Spring 157

Hibernate overview 157 » Managing Hibernate
resources 159 w Accessing Hibernate through
HibernateTemplate 162 = Subclassing
HibernateDaoSupport 163

Spring and JDO 164
Configuring JDO 164 = Accessing data with JdoTemplate 165
Spring and iBATIS 166
Setting up SQL Maps 167
Using SqlMapClientTemplate 168
Spring and OJB 169
Setting up O]B’s PersistenceBroker 169
Summary 171

xii

CONTENTS

Managing transactions 173

5.1

5.2
5.3

5.4

5.5

5.6

5.7

Understanding transactions 174

Explaining transactions in only four
words 176 = Understanding Spring’s transaction management
support 177 = Introducing Spring’s transaction manager 178

Programming transactions in Spring 181

Declaring transactions 183
Understanding transaction attributes 185 = Declaring a simple
transaction policy 189

Declaring transactions by method name 191
Using NameMatchTransactionAttributeSource 191
Shortcutting name-matched transactions 194

Declaring transactions with metadata 195
Sourcing transaction attributes from metadata 196
Declaring transactions with Commons Attributes 197

Trimming down transaction declarations 201
Inheriting from a parent TransactionProxyFactoryBean 202
Autoproxying transactions 203

Summary 206

Remoting 207

6.1
6.2

6.3

6.4

6.5

6.6

6.7

Spring remoting overview 208

Working with RMI 212
Wiring RMI services 212 = Exporting RMI services 214
Remoting with Hessian and Burlap 218

Accessing Hessian/Burlap services 219 = Exposing bean
Sfunctionality with Hessian/Burlap 220

Using Http invoker 223

Accessing services via HITP 224 = Exposing beans as HT'TP
Services 225

Working with E]JBs 226
Accessing E[Bs 227 = Developing Spring-enabled E[Bs 231
Using JAX-RPC web services 233

Referencing a web service with JAX-RPC 234 = Wiring a web
service in Spring 236
Summary 238

CONTENTS

Accessing enterprise services 240
7.1 Retrieving objects from JNDI 241

Working with conventional [NDI 241 = Proxying [NDI
objects 243

7.2 Sending e-mail 244

7.3 Scheduling tasks 248

Scheduling with Java’s Timer 248 = Using the Quartz

scheduler 250 = Invoking methods on a schedule 254
7.4 Sending messages with JMS 256

Sending messages with [MS templates 257 = Consuming

messages 261 = Converting messages 263

7.5 Summary 266

xiii

Building the web layer 269

8.1 Getting started with Spring MVC 270
A day in the life of a request 271 = Configuring
DispatcherServlet 272 w Spring MVC in a nutshell 275
8.2 Mapping requests to controllers 279

Mapping URLs to bean names 280 = Using
SimpleUrlHandlerMapping 281 = Using metadata to map
controllers 281 = Working with multiple handler
mappings 282

8.3 Handling requests with controllers 283

Writing a simple controller 285 = Processing commands 287

Processing form submissions 289 = Processing complex forms
with wizards 294 » Handling multiple actions in one

controller 301 = Working with Throwaway controllers 305

8.4 Resolving views 307

Using template views 308 = Resolving view beans 310
Choosing a view resolver 313

8.5 Using Spring’s bind tag 314
8.6 Handling exceptions 317
8.7 Summary 317

xiv

CONTENTS

View layer alternatives 319
9.1 Using Velocity templates 321

Defining the Velocity view 321 = Configuring the Velocity
engine 322 = Resolving Velocity views 323 = Formatting
dates and numbers 324 = Exposing request and session
attributes 325 w Binding form fields in Velocity 326

9.2 Working with FreeMarker 327

Constructing a FreeMarker view 328 = Configuring the
FreeMarker engine 329 = Resolving FreeMarker views 330
Binding form fields in FreeMarker 330

9.3 Designing page layout with Tiles 332
Tile views 332 = Tile controllers 335
9.4 Generating non-HTML output 337

Producing Excel spreadsheets 338 = Generating PDF
documents 340 = Generating other non-HTML files 343

9.5 Summary 344

Working with other web frameworks 346

10.1 Working with Jakarta Struts 347
Registering the Spring plug-in 348 = Implementing
Spring-aware Struts actions 348 = Delegating actions 350
10.2 Working with Tapestry 352

Replacing the Tapestry Engine 353 = Loading Spring beans
into Tapestry pages 355
10.3 Integrating with JavaServer Faces 357

Resolving variables 357 = Publishing request handled
events 361

10.4 Integrating with WebWork 362
WebWork 1 363 = XWork/WebWork2 364
10.5 Summary 365

Securing Spring applications 367
11.1 Introducing the Acegi Security System 368

Security interceptors 369 = Authentication managers 370
Access decisions managers 370 = Run-as managers 370

11.6
appendix A:
Al
A2
A3
A4

appendix B:
B.1

B.2
B.3

CONTENTS XV

Managing authentication 371

Configuring a provider manager 371 = Authenticating against
a database 373 ® Authenticating against an LDAP
repository 382 = Enabling Single Sign-On with Acegi and
Yale CAS 384

Controlling access 389

Voting access decisions 389 = Deciding how to vote 390
Handling voter abstinence 392

Securing web applications 392

Proxying Acegt’s filters 394 = Enforcing web security 397
Processing a login 400 = Setting up the security context 406
Ensuring a secure channel 407 = Using the Acegi tag

library 411

Securing method invocations 412

Creating a security aspect 412 = Securing methods using
meladata 414

Summary 416

Spring setup 417
Downloading Spring 418
Choosing a distribution 418
Setting up your project 419
Building with Ant 420
Spring-related projects 422
AppFuse 423

Rich Client Project 424
Spring. NET 424

mdex 427

preface

Software developers need to have a number of traits in order to practice their
craft well. First, they must be good analytical thinkers and problem solvers. A
developer’s primary role is to create software that solves business problems.
This requires analyzing customer needs and coming up with successful, cre-
ative solutions.

They also need to be curious. Developments in the software industry are
moving targets, always evolving. New frameworks, new techniques, new lan-
guages, and new methodologies are constantly emerging. Each one is a new
tool that needs to be mastered and added to the toolbox, allowing the devel-
oper to do his or her job better and faster.

Then there is the most cherished trait of all, “laziness.” The kind of lazi-
ness that motivates developers to work hard to seek out solutions with the
least amount of effort. It was with curiosity, a good dose of “laziness,” and all
the analytical abilities we could muster that the two of us struck out together
four years ago to find new ways to develop software.

This was the time when open source software was reaching critical mass in
the Java community. Tons of open source frameworks were blossoming on the
Java landscape. In order to decide to adopt one, it had to hit the sweet spot of
our needs—it had to do 80% of what we needed right out of the box. And for
any functionality that was not right out of the box, the framework needed to
be easily extendible so that functionality too would be included. Extending

xvii

xviii

PREFACE

didn’t mean kludging in some hack that was so ugly you felt dirty afterwards—it
meant extending in an elegant fashion. That wasn’t too much to ask, right?

The first of these frameworks that gained immediate adoption on our team
was Ant. From the get-go, we could tell that Ant had been created by another
developer who knew our pain in building Java applications. From that moment
on, no more javac. No more CLASSPATH. All this with a straightforward (albeit
sometimes verbose) XML configuration. Huzzah! Life (and builds) just got easier.

Aswe went along, we began adopting more and more tools. Eclipse became our
IDE of choice. Log4] became our (and everybody else’s) default logging toolkit.
And Lucene supplanted our commercial search solution. Each of these tools met
our criteria of filling a need while being easy to use, understand, and extend.

But something was lacking. These great tools were designed to help develop
software, like Ant and Eclipse, or to serve a very specific application need, like
searching in the case of Lucene and logging for Log4]. None of them addressed
the needs at the heart of enterprise applications: persistence, transactions, and
integration with other enterprise resources.

That all changed in the last year or so when we discovered the remarkable
one-two enterprise punch of Spring and Hibernate. Between these two frame-
works nearly all of our middle- and data-tier needs were met.

We first adopted Hibernate. It was the most intuitive and feature-rich object/
relational mapping tool out there. But it was by adopting Spring that we really
got our code to look good. With Spring’s inversion of control, we were able to get
rid of all our custom factories and configurers. In fact, that is the reason we first
integrated Spring into our applications. Its wiring allowed us to streamline our
application configurations and move away from homegrown solutions. (Hey,
every developer likes writing his own framework. But sometimes you just have to
let go!)

We quickly discovered a nice bonus: Spring also provided very easy integra-
tion with Hibernate. This allowed us to ditch our custom Hibernate integration
classes and use Spring’s support instead. In turn, this led us directly to Spring’s
support for transparent persistence.

Look closely and you will see a pattern here. The more we used Spring, the
more we discovered new features. And each feature we discovered was a pleasure
to work with. Its web MVC framework worked nicely in a few applications. Its AOP
support has been helpful in several places, primarily security. The JDBC support
was quite nice for some smaller programs. Oh yeah, we also use it for scheduling.
And JNDI access. And email integration. When it comes to hitting development
sweet spots, Spring knocks the ball out of the park.

PREFACE xix

We liked Spring so much, we decided somebody should write a book about it.
Fortunately, one of us had already written a book for Manning and knew how to
go about doing this sort of thing. Soon that “somebody who should write a book”
became us. In taking on this project we are trying to spread the gospel of Spring.
The Spring framework has been nothing but a joy for us to work with—we pre-
dict it will be the same for you. And, we hope this book will be a pleasant vehicle
for you to get to that point.

acknowledgments

The creation of this book was not just a two-man job. In addition to the two
authors, a great number of people were involved in many ways to make this
book possible.

First, we’'d like to acknowledge the book’s behind-the-scenes crew at Man-
ning Publications: publisher Marjan Bace, his assistant Susan Capparelle, our
editor Jackie Carter, as well as Denis Dalinnik, Leslie Haimes, Mary Piergies,
Liz Welch, Susan Forsyth, and Helen Trimes. We can’t imagine working with a
better team of professionals. You are all very good at what you do and deserve
commendation for producing the best technical books in the world.

We’d also like to thank each of the reviewers who contributed their time to
provide us with the feedback, criticism, and inspiration we needed to shape
the book: Doug Warren, Muhammad Ashikuzzaman, Ryan Cox, Mojahedul
Hasanat, Jack Herrington, Olivier Jolly, William Lopez, Lester Martin, Dmitri
Maximovich, Daniel Miller, Christian Parker, Matthew Payne, and Norman
Richards. Special thanks to Doug Warren for his technical proofread of the
manuscript shortly before it went to press.

And finally, thanks to Rod Johnson and the rest of the Spring team for cre-
ating Spring in the first place. We can honestly say that Spring is a pleasure to
work with. You guys rock!

ACKNOWLEDGMENTS xxi

CRAIG WALLS

I want to thank my beautiful and loving wife, Raymie. You're the love of my
life, my best friend, and my sweetest dream. Thanks for supporting me and for
your patience, and for putting up with another book project—I promise that
it’s over now.

To my coauthor, Ryan, for getting me started with Spring and for helping me
put together this book to tell everyone else about it.

To my team at Michaels—Ryan, Marianna, Van, Tonji, Jeff, Jim, Don, Carol,
and Leida—thanks for continuing to demonstrate every day what a world-class
software development team is capable of. Now that this book is done, maybe I
won’t have to decline as many lunch invitations!

To my friends and colleagues whom I've met and chatted with this year as I
toured the country with the No-Fluff/Just-Stuft software symposiums: Glenn
Vanderburg, Ted Neward, Bruce Tate, Venkat Subramaniam, Ramnivas Laddad,
Dave Thomas, Erik Hatcher, Howard Lewis Ship, Neal Ford, Rick Hightower,
Ben Galbraith, Stuart Halloway, and Matt Raible. And thanks to Jay Zimmerman
for always putting on a great show and inviting me to be a part of it in 2004.

To my friends and neighbors from the "hood: John, Jennifer, and Tobey for
providing Raymie and me with frequent pizza/movie/sit-on-the-driveway breaks.

Thanks to Dick Wolf for creating “Law & Order,” the TV show that provided
much of the background noise while I was writing.

And everyone else I thanked in XDoclet in Action.

RYAN BREIDENBACH

First, I want to thank my wife Angi. Your limitless patience and encouragement is
what kept me going in this endeavor. I promise you will see me smiling more and
breathing easier now that this is done.

To my daughter Julia, for helping me keep the pressure of writing a book in
perspective. It was always a pleasure to take some time away from writing to visit
the web sites of ElImo’s World and Jo Jo’s Circus.

To my parents, Mark and Lynda, and my brother Lee, for understanding why
I kept my head buried in my laptop when I came to visit. I will be a lot less
stressed during future visits.

To my in-laws, Stephanie and George, for your pep talks and for occasionally
(okay, frequently) babysitting to give Angi and me some time to ourselves.

To my fellow developers out there, Van, Marianna, Tonji, and Jerry, for let-
ting me bounce ideas off you. Sometimes my brain gets going too fast and a swift
kick is in order to get me back in line.

xxii ACKNOWLEDGMENTS

To my friends and neighbors, Dave, Javier, Alex, Scott and James for helping
me keep my chin up and, every now and then, providing some much needed
... levity.

To the folks at CVSDude. Cool CVS hosting name. Great CVS hosting service.

Finally, to Craig for being a mentor and showing me the ropes of how to write
a book. There is a lot to know and your help made the process that much easier.

about this book

The Spring framework was created with a very specific goal in mind: to make
developing J2EE applications easier. Along the same lines, Spring in Action was
written to make learning how to use Spring easier. Our goal is not to give you
a blow-by-blow listing of Spring APIs. Instead, we hope to present the Spring
framework in a way that is most relevant to a J2EE developer by providing
practical code examples from real-world experience.

Since Spring is a modular framework, this book was written in the same
way. We recognize that not all developers have the same needs. Some may
want to learn the Spring framework from the ground up, while others may
want to pick and choose different topics and go at their own pace. That way,
the book can act as a tool for learning Spring for the first time as well as a
guide and reference for those wanting to dig deeper into specific features.

Roadmap

Spring in Action is divided into three parts, plus two appendices. Each of the
three parts focuses on a general area of the Spring Framework: the core,
middle-tier, and web layer. While each part builds on the previous section,
each is also able to stand on its own, allowing you to dive right into a certain
topic without starting from the beginning.

In part 1, you'll explore the two core features of the Spring framework:
inversion of control (IoC) and aspect-oriented programming (AOP). This will

xxiii

xXiv

ABOUT THIS BOOK

give you a good understanding of Spring’s fundamentals that will be utilized
throughout the book.

In chapter 1, you’ll be introduced to IoC and AOP and how Spring uses them
to make developing Java applications easier. You will also see how Spring com-
pares to other frameworks, such as EJB, Struts, and PicoContainer.

Chapter 2 takes a more detailed look at how to configure your application
objects using IoC. You will learn how to write loosely coupled components and
wire their dependencies and properties within the Spring container using XML.

Chapter 3 explores how to use Spring’s AOP to decouple cross-cutting con-
cerns, such as security, from the objects that they service. This chapter also sets
the stage for chapter 5, where you’ll learn how to provide declarative transaction
services with Spring’s AOP.

Part 2 builds on the IoC and AOP features introduced in part 1 and shows you
how to apply these concepts to the middle tier of your application.

Chapter 4 covers Spring’s support for data persistence. You’ll be introduced
to Spring’s JDBC support, which helps you remove much of the boilerplate code
associated with JDBC. You'll also see how Spring integrates with several popular
object-relational mapping frameworks, such as Hibernate, JDO, OJB, and iBATIS
SQL Maps.

Chapter 5 complements chapter 4, showing you how to ensure integrity in
your database using Spring’s transaction support. You will see how Spring uses
AOP to give you the power of declarative transactions without having to use EJBs.

Chapter 6 explores how to expose your application objects as remote services.
You’ll also learn how to transparently access remote services as though they were
any other in your application. Remoting technologies explored will include RMI,
Hessian/Burlap, EJB, web services, and Spring’s own HttpInvoker.

Since most enterprise applications do not exist in a vacuum, chapter 7 shows
you how to integrate with other enterprise services. In this chapter, you will learn
how Spring makes it easy to integrate with mail services, JMS, and even EJBs.

Part 3 moves out of the middle tier and into the presentation layer used in so
many J2EE applications: the Web.

Chapter 8 introduces you to Spring’s own MVC web framework. You will dis-
cover how Spring can transparently bind web parameters to your business
objects and provide validation and error handling at the same time. You will
also see how easy it is to add functionality to your web applications using
Spring’s interceptors.

Building on the foundation of Spring MVC, chapter 9 demonstrates how to
move beyond JavaServer Pages and use other templating languages such as

ABOUT THIS BOOK XXV

Velocity and FreeMarker. In addition, you’ll see how to use Spring MVC to
dynamically produce binary content, such as PDF and Excel documents.

Chapter 10 shows you how to integrate Spring with other web frameworks.
For those of you who have already made an investment in another framework,
Spring provides support for several of the popular web frameworks, including
Struts, Tapestry, JavaServer Faces, and WebWork.

Finally, in chapter 11 you will learn how to apply security to your web applica-
tions using the Acegi Security System to provide authentication. In addition, you
will see how to integrate Acegi with your business objects to apply security at the
method level as well.

Appendix A will get you started with your own Spring application, showing
you how to download the Spring framework and configure your Ant build file.

Appendix B introduces you to several other open source frameworks related
to Spring.

Who should read this book

Spring in Action is for all Java developers, but enterprise Java developers will find
it particularly useful. While we will guide you gently through code examples that
build in complexity throughout each chapter, the true power of Spring lies in its
ability to make enterprise applications easier to develop. As a result, enterprise
developers will most fully appreciate the examples presented in this book.
Because a vast portion of Spring is devoted to providing enterprise services,
many parallels can be drawn between Spring and EJB. Any EJB experience you
have will be useful in making comparisons between these two frameworks. Finally,
while this book is not exclusively focused on web applications, a good portion of
itis dedicated to this topic. In fact, the final four chapters demonstrate how Spring
can support the development of your applications’ web layer. If you are a web
application developer, you will find the last part of this book especially valuable.

Code conventions and downloads

There are many code examples in this book. These examples will always appear
in a code font. If there is a particular part of an example we want you to pay
extra attention to, it will appear in a bolded code font. Any class name, method
name, or XML fragment within the normal text of the book will appear in code
font as well.

Many of Spring’s classes have exceptionally long names. Because of this, line-
continuation markers (=) may be included when necessary.

XXVi

ABOUT THIS BOOK

Not all code examples in this book will be complete. Often we only show a
method or two from a class to focus on a particular topic.

Complete source code for the application found in the book can be down-
loaded from the publisher’s web site at http://www.manning,.com/walls2 or at
http://www.springinaction.com.

Author Online

Purchase of Spring in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask tech-
nical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.man-
ning.com/walls2. This page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct
on the forum.

Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialog between individual readers and between readers and the authors
can take place. It is not a commitment to any specific amount of participation on
the part of the authors, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest
their interest stray!

The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.

About the authors

Craig Walls is a professional software developer with more than ten years’ expe-
rience developing software solutions in the areas of telecommunications,
finance, retail, and e-commerce. He is a frequent presenter at user groups and
conferences and a co-author of XDoclet in Action. Craig lives in Denton, Texas.

An avid supporter of open source Java technologies, Ryan Breidenbach has
been developing Java web applications for the past five years. Ryan lives in Cop-
pell, Texas.

About the title

By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research in

ABOUT THIS BOOK xxvii

cognitive science, the things people remember are things they discover during
self-motivated exploration.

Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, re-telling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively
exploring them. Humans learn in action. An essential part of an In Action guide is
that it is example-driven. It encourages the reader to try things out, to play with
new code, and explore new ideas.

There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just
when they want it. They need books that aid them in action. The books in this
series are designed for such readers.

About the cover illustration

The figure on the cover of Spring in Action is an “Officer of the Grand
Signior.” The illustration is taken from a collection of costumes of the Otto-
man Empire published on January 1, 1802, by William Miller of Old Bond
Street, London. The title page is missing from the collection and we have been
unable to track it down to date. The book’s table of contents identifies the fig-
ures in both English and French, and each illustration bears the names of two
artists who worked on it, both of whom would no doubt be surprised to find
their art gracing the front cover of a computer programming book...two hun-
dred years later.

The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an Ameri-
can based in Ankara, Turkey, and the transaction took place just as he was
packing up his stand for the day. The Manning editor did not have on his person
the substantial amount of cash that was required for the purchase and a credit
card and check were both politely turned down.

With the seller flying back to Ankara that evening the situation was getting
hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply pro-
posed that the money be transferred to him by wire and the editor walked out
with the bank information on a piece of paper and the portfolio of images under
his arm. Needless to say, we transferred the funds the next day, and we remain

xxviii

ABOUT THIS BOOK

grateful and impressed by this unknown person’s trust in one of us. It recalls
something that might have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of
two centuries ago. They recall the sense of isolation and distance of that
period—and of every other historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional
life of two centuries ago, brought back to life by the pictures from this collection.

Part 1

Spring essentials

In part 1, you’ll explore the two core features of the Spring framework:
inversion of control (IoC) and aspect-oriented programming (AOP). Starting
with chapter 1, “A Spring jump start,” you’ll be given a quick overview of IoC
and AOP in Spring and how it can make developing Java applications easier.
You will also see how Spring compares to other frameworks such as EJB,
Struts, and PicoContainer.

In chapter 2, “Wiring beans,” you’ll take a more in-depth look at how to
keep all of your application objects loosely coupled using IoC. You’ll learn
how to define your application’s objects and wire their dependencies within
the Spring container using XML.

Chapter 3, “Creating aspects in Spring,” explores how to use Spring’s AOP
to decouple systemwide services (such as security and auditing) from the
objects they service. This chapter sets the stage for chapter 5, where you’ll
learn how to use Spring’s AOP to provide declarative transaction services.

A Spring jump start

This chapter covers

Creating simpler J2EE applications using Spring
Decoupling components with inversion of control

Managing cross-cutting concerns with aspect-
oriented programming

Comparing the features of Spring and EJB

CHAPTER 1
A Spring jump start

It all started with a bean.

In 1996 the Java programming language was still a young, exciting, up-and-
coming platform. Many developers flocked to the language because they had
seen how to create rich and dynamic web applications using applets. But they
soon learned that there was more to this strange new language than animated
juggling cartoon characters. Unlike any language before it, Java made it possible
to write complex applications made up of discrete parts. They came for the
applets, but they stayed for the components.

It was in December of that year that Sun Microsystems published the Java-
Beans 1.00-A specification. JavaBeans defined a software component model for
Java. This specification defined a set of coding policies that enabled simple Java
objects to be reusable and easily composed into more complex applications.
Although JavaBeans were intended as a general-purpose means of defining reus-
able application components, they have been primarily used as a model for build-
ing user interface widgets. They seemed too simple to be capable of any “real”
work. Enterprise developers wanted more.

Sophisticated applications often require services such as transaction support,
security, and distributed computing—services not directly provided by the Java-
Beans specification. Therefore, in March 1998, Sun published the 1.0 version of
the Enterprise JavaBeans (E]JB) specification. This specification extended the
notion of Java components to the server side, providing the much-needed enter-
prise services, but failed to continue the simplicity of the original JavaBeans spec-
ification. In fact, except in name, EJB bears very little resemblance to the original
JavaBeans specification.

Despite the fact that many successful applications have been built based on
EJB, E]B never really achieved its intended purpose: to simplify enterprise appli-
cation development. Every version of the EJB specification contains the following
statement: “Enterprise JavaBeans will make it easy to write applications.” It is
true that EJB’s declarative programming model simplifies many infrastructural
aspects of development, such as transactions and security. But EJBs are compli-
cated in a different way by mandating deployment descriptors and plumbing
code (home and remote/local interfaces). Over time many developers became dis-
enchanted with EJB. As a result, its popularity has started to wane in recent years,
leaving many developers looking for an easier way.

Now Java component development is coming full circle. New programming
techniques, including aspect-oriented programming (AOP) and inversion of con-
trol (IoC), are giving JavaBeans much of the power of EJB. These techniques fur-
nish JavaBeans with a declarative programming model reminiscent of EJB, but

Why Spring? 5

without all of EJB’s complexity. No longer must you resort to writing an unwieldy
EJB component when a simple JavaBean will suffice.
And that’s where Spring steps into the picture.

1.1 Why Spring?

If you are reading this book, you probably want to know why Spring would be
good for you. After all, the Java landscape is full of frameworks. What makes
Spring any different? To put it simply, Spring makes developing enterprise appli-
cations easier. We don’t expect that to convince you at face value, so first let’s take
a look at life without Spring.

1.1.1 A day in the life of a J2EE developer

Alex is a Java developer who has just started on his first enterprise application. Like
many Java 2 Enterprise Edition (J2EE) applications, it is a web application that
serves many users and accesses an enterprise database. In this case, it is a customer
management application that will be used by other employees at his company.

Eager to get to work, Alex fires up his favorite integrated development envi-
ronment (IDE) and starts to crank out his first component, the CustomerManager
component. In the EJB world, to develop this component Alex actually has to
write several classes—the home interface, the local interface, and the bean itself.
In addition, he has to create a deployment descriptor for this bean.

Seeing that creating each of these files for every bean seems like a lot of effort,
Alex incorporates XDoclet into his project. XDoclet is a code generation tool that
can generate all of the necessary EJB files from a single source file. Although this
adds another step to Alex’s development cycle, his coding life is now much simpler.

With XDoclet now handling a lot of the grunt work for him, Alex turns his
attention to his real problem—what exactly should the CustomerManager compo-
nent do? He jumps in with its first method, getPreferredCustomer (). There are
several business rules that define exactly what a preferred customer is, and Alex
dutifully codes them into his CustomerManager bean.

Wanting to confirm that his logic is correct, Alex now wants to write some
tests to validate his code. But then it occurs to him: the code he is testing will
be running within the EJB container. Therefore, his tests need to execute
within the container as well. To easily accomplish this, he concocts a servlet
that will be responsible for executing these tests. Since all J2EE containers sup-
port servlets, this will allow him to execute his tests in the same container as his
E]B. Problem solved!

1.1.2

CHAPTER 1
A Spring jump start

So Alex fires up his J2EE container and runs his tests. His tests fail. Alex sees his
coding error, fixes it, and runs the tests again. His tests fail again. He sees
another error and fixes it. He fires up the container and runs the tests again. As
Alex is going through this cycle, he notices something. The fact that he has to
start the J2EE container for each batch of testing really slows down his develop-
ment cycle. The development cycle should go code, test, code, test. This pattern
has now been replaced with code, wait, test, code, wait, test, code, wait, get
increasingly frustrated...

While waiting for the container to start during another test run, Alex thinks,
“Why am I using EJB in the first place?” The answer, of course, is because of the
services it provides. But Alex isn’t using entity beans, so he is not using persis-
tence services. Alex is also not using the remoting or security services. In fact, the
only E]B service Alex is going to use is transaction management. This leads Alex
to another question: “Is there an easier way?”

Spring’s pledge

The above story was a dramatization based on the current state of J2EE—specifi-
cally EJB. In its current state, EJB is complicated. It isn’t complicated just to be
complicated. It is complicated because E]Bs were created to solve complicated
things, such as distributed objects and remote transactions.

Unfortunately, a good number of enterprise projects do not have this level of
complexity but still take on EJB’s burden of multiple Java files and deployment
descriptors and heavyweight containers. With EJB, application complexity is
high, regardless of the complexity of the problem being solved—even simple
applications are unduly complex. With Spring, the complexity of your applica-
tion is proportional to the complexity of the problem being solved.

However, Spring recognizes that EJB does offer developers valuable services. So
Spring strives to deliver these same services while simplifying the programming
model. In doing so, it adopts a simple philosophy: J2EE should be easy to use. In
keeping with this philosophy, Spring was designed with the following beliefs:

® Good design is more important than the underlying technology.
m JavaBeans loosely coupled through interfaces is a good model.

= Code should be easy to test.

Okay. So how does Spring help you apply this philosophy to your applications?

Why Spring? 7

Good design is more important than the underlying technology

As a developer, you should always be seeking the best design for your application,
regardless of the implementation you choose. Sometimes the complexity of EJB is
warranted because of the requirements of the application. Often, this is not the
case. Many applications require few, if any, of the services provided by EJB yet are
still implemented using this technology for technology’s sake. If an application
does not require distribution or declarative transaction support, it is unlikely that
EJB is the best technology candidate. Yet many Java developers feel compelled to
use EJB for every Java enterprise application.

The idea behind Spring is that you can keep your code as simple as it needs to
be. If what you want are some plain-vanilla Java objects to perform some services
supported by transparent transactions, you've got it. And you don’t need an EJB
container, and you don’t have to implement special interfaces. You just have to
write your code.

JavaBeans loosely coupled through interfaces is a good model

If you are relying on EJBs to provide your application services, your components
do not just depend on the EJB business interface. They are also responsible for
retrieving these EJB objects from a directory, which entails a Java Naming and
Directory Interface (JNDI) lookup and communicating with the bean’s EJBHome
interface. This is not creating a decoupled application. This is tightly coupling
your application to a specific implementation, namely E]JB.

With Spring, your beans depend on collaborators through interfaces. Since
there are no implementation-specific dependencies, Spring applications are very
decoupled, testable, and easier to maintain. And because the Spring container is
responsible for resolving the dependencies, the active service lookup that is
involved in EJB is now out of the picture and the cost of programming to inter-
faces is minimized. All you need to do is create classes that communicate with
each other through interfaces, and Spring takes care of the rest.

Code should be easy to test
Testing J2EE applications can be difficult. If you are testing EJBs within a con-
tainer, you have to start up a container to execute even the most trivial of test
cases. Since starting and stopping a container is expensive, developers may be
tempted to skip testing all of their components. Avoiding tests because of the rig-
idness of a framework is not a good excuse.

Because you develop Spring applications with JavaBeans, testing is cheap.
There is no J2EE container to be started since you will be testing a POJO. And

8 CHAPTER 1
A Spring jump start

since Spring makes coding to interfaces easy, your objects will be loosely coupled,
making testing even easier. A thorough battery of tests should be present in all of
your applications; Spring will help you accomplish this.

1.2 What is Spring?

Spring is an open-source framework, created by Rod Johnson and described in
his book Expert One-on-One: J2EE Design and Development.! It was created to
address the complexity of enterprise application development. Spring makes it
possible to use plain-vanilla JavaBeans to achieve things that were previously only
possible with E]Bs. However, Spring’s usefulness isn’t limited to server-side devel-
opment. Any Java application can benefit from Spring in terms of simplicity, test-
ability, and loose coupling.

NOTE To avoid ambiguity, we’ll use the term “EJB” when referring to Enter-
prise JavaBeans. When referring to the original JavaBean, we’ll call it
“JavaBean,” or “bean” for short. Some other terms we may throw around
are “POJO” (which stands for “plain old Java object”) or “POJI” (which
means “plain old Java interface”).

Put simply, Spring is a lightweight inversion of control and aspect-oriented con-
tainer framework. Okay, that’s not so simple a description. But it does summarize
what Spring does. To make more sense of Spring, let’s break this description down:

m Lightweight—Spring is lightweight in terms of both size and overhead.
The entire Spring framework can be distributed in a single JAR file that
weighs in at just over 1 MB. And the processing overhead required by
Spring is negligible. What’s more, Spring is nonintrusive: objects in a
Spring-enabled application typically have no dependencies on Spring-
specific classes.

m [nversion of control—Spring promotes loose coupling through a technique
known as inversion of control (IoC). When IoC is applied, objects are pas-
sively given their dependencies instead of creating or looking for depen-
dent objects for themselves. You can think of IoC as JNDI in reverse—
instead of an object looking up dependencies from a container, the con-
tainer gives the dependencies to the object at instantiation without waiting
to be asked.

! In this book, Spring was originally called “interface21.”

1.2.1

What is Spring? 9

m Aspect-oriented—Spring comes with rich support for aspect-oriented pro-
gramming that enables cohesive development by separating application
business logic from system services (such as auditing and transaction man-
agement). Application objects do what they’re supposed to do—perform
business logic—and nothing more. They are not responsible for (or even
aware of) other system concerns, such as logging or transactional support.

m Container—Spring is a container in the sense that it contains and manages
the life cycle and configuration of application objects. You can configure
how your each of your beans should be created—either create one single
instance of your bean or produce a new instance every time one is needed
based on a configurable prototype—and how they should be associated
with each other. Spring should not, however, be confused with tradition-
ally heavyweight EJB containers, which are often large and cumbersome
to work with.

m Framework—Spring makes it possible to configure and compose complex
applications from simpler components. In Spring, application objects are
composed declaratively, typically in an XML file. Spring also provides
much infrastructure functionality (transaction management, persistence
framework integration, etc.), leaving the development of application logic
to you.

All of these attributes of Spring enable you to write code that is cleaner, more
manageable, and easier to test. They also set the stage for a variety of subframe-
works within the greater Spring framework.

Spring modules

The Spring framework is made up of seven well-defined modules (figure 1.1).
When taken as a whole, these modules give you everything you need to develop
enterprise-ready applications. But you do not have to base your application fully
on the Spring framework. You are free to pick and choose the modules that suit
your application and ignore the rest.

As you can see, all of Spring’s modules are built on top of the core container.
The container defines how beans are created, configured, and managed—more
of the nuts-and-bolts of Spring. You will implicitly use these classes when you con-
figure your application. But as a developer, you will most likely be interested in
the other modules that leverage the services provided by the container. These
modules will provide the frameworks with which you will build your application’s
services, such as AOP and persistence.

10

CHAPTER 1
A Spring jump start

: Web Context
O/R Mapping and Utility
Module Module
AOP Module MVC Framework
JDBC and DAO Appicei
Module Module

Figure 1.1 The Spring framework is composed of several well-defined modules.

The core container
Spring’s core container provides the fundamental functionality of the Spring
framework. In this module you’ll find Spring’s BeanFactory, the heart of any
Spring-based application. A BeanFactory is an implementation of the factory pat-
tern that applies IoC to separate your application’s configuration and depen-
dency specifications from the actual application code.

We'll be discussing the core module (the center of any Spring application)
throughout this book, starting in chapter 2, when we cover bean wiring using IoC.

Application context module
The core module’s BeanFactory makes Spring a container, but the context mod-
ule is what makes it a framework. This module extends the concept of Bean-
Factory, adding support for internationalization (I18N) messages, application life
cycle events, and validation.

In addition, this module supplies many enterprise services such as e-mail,
JNDI access, E]JB integration, remoting, and scheduling. Also included is support
for integration with templating frameworks such as Velocity and FreeMarker.

Spring’s AOP module
Spring provides rich support for aspect-oriented programming in its AOP mod-
ule. This module serves as the basis for developing your own aspects for your
Spring-enabled application.

To ensure interoperability between Spring and other AOP frameworks, much
of Spring’s AOP support is based on the API defined by the AOP Alliance. The

What is Spring? 11

AOP Alliance is an open-source project whose goal is to promote adoption of AOP
and interoperability among different AOP implementations by defining a com-
mon set of interfaces and components. You can find out more about the AOP Alli-
ance by visiting their website at http://aopalliance.sourceforge.net.

The Spring AOP module also introduces metadata programming to Spring.
Using Spring’s metadata support, you are able to add annotations to your source
code that instruct Spring on where and how to apply aspects.

JDBC abstraction and the DAO module
Working with JDBC often results in a lot of boilerplate code that gets a connec-
tion, creates a statement, processes a result set, and then closes the connection.
Spring’s JDBC and Data Access Objects (DAO) module abstracts away the boiler-
plate code so that you can keep your database code clean and simple, and pre-
vents problems that result from a failure to close database resources. This module
also builds a layer of meaningful exceptions on top of the error messages given by
several database servers. No more trying to decipher cryptic and proprietary SQL
error messages!

In addition, this module uses Spring’s AOP module to provide transaction
management services for objects in a Spring application.

Object/relational mapping integration module

For those who prefer using an object/relational mapping (ORM) tool over straight
JDBC, Spring provides the ORM module. Spring doesn’t attempt to implement its
own ORM solution, but does provide hooks into several popular ORM frame-
works, including Hibernate, JDO, and iBATIS SQL Maps. Spring’s transaction
management supports each of these ORM frameworks as well as J]DBC.

Spring’s web module

The web context module builds on the application context module, providing a
context that is appropriate for web-based applications. In addition, this module
contains support for several web-oriented tasks such as transparently handling
multipart requests for file uploads and programmatic binding of request parame-
ters to your business objects. It also cotains integration support with Jakarta Struts.

The Spring MVC framework

Spring comes with a full-featured Model/View/Controller (MVC) framework for
building web applications. Although Spring can easily be integrated with other
MVC frameworks, such as Struts, Spring’s MVC framework uses IoC to provide for
a clean separation of controller logic from business objects. It also allows you to

12

1.3

CHAPTER 1
A Spring jump start

declaratively bind request parameters to your business objects, What’s more,
Spring’s MVC framework can take advantage of any of Spring’s other services,
such as I18N messaging and validation.

Now that you know what Spring is all about, let’s jump right into writing
Spring applications, starting with the simplest possible example that we could
come up with.

Spring jump start

In the grand tradition of programming books, we’ll start by showing you how
Spring works with the proverbial “Hello World” example. Unlike the original
Hello World program, however, our example will be modified a bit to demon-
strate the basics of Spring.

NOTE To find out how to download Spring and plug it into your project’s build
routine, refer to appendix A.

Spring-enabled applications are like any Java application. They are made up of
several classes, each performing a specific purpose within the application. What
makes Spring-enabled applications different, however, is how these classes are
configured and introduced to each other. Typically, a Spring application has an
XML file that describes how to configure the classes, known as the Spring config-
uration file.

The first class that our Springified Hello World example needs is a service
class whose purpose is to print the infamous greeting. Listing 1.1 shows Greeting-
Service.java, an interface that defines the contract for our service class.

Listing 1.1 The GreetingService interface separates the service’s

implementation from its interface.

package com.springinaction.chapter0l.hello;

public interface GreetingService ({
public void sayGreeting() ;

}
|

GreetingServiceImpl.java (listing 1.2) implements the GreetingService interface.
Although it’s not necessary to hide the implementation behind an interface, it’s
highly recommended as a way to separate the implementation from its contract.

Spring jump start 13

Listing 1.2 GreetingServicelmpl.java: Responsible for printing the greeting

package com.springinaction.chapter0l.hello;

public class GreetingServiceImpl implements GreetingService {
private String greeting;

public GreetingServiceImpl() {}

public GreetingServiceImpl (String greeting) ({
this.greeting = greeting;

}

public void sayGreeting() {
System.out.println(greeting) ;

}

public void setGreeting(String greeting) {
this.greeting = greeting;
}
}

The GreetingServiceImpl class has a single property: the greeting property. This
property is simply a String that holds the text that is the message that will be
printed when the sayGreeting () method is called. You may have noticed that the
greeting can be set in two different ways: by the constructor or by the property’s
setter method.

What’s not apparent just yet is who will make the call to either the constructor
or the setGreeting () method to set the property. As it turns out, we’re going to let
the Spring container set the greeting property. The Spring configuration file
(hello.xml) in listing 1.3 tells the container how to configure the greeting service.

Listing 1.3 Configuring Hello World in Spring

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
<bean id="greetingService"
class="com.springinaction.chapter0l.hello.GreetingServiceImpl">
<property name="greeting"s>
<value>Buenos Dias!</value>
</propertys>
</bean>
</beans>

14 CHAPTER 1
A Spring jump start

The XML file in listing 1.3 declares an instance of a GreetingServiceImpl in the
Spring container and configures its greeting property with a value of “Buenos
Dias!” Let’s dig into the details of this XML file a bit to understand how it works.

At the root of this simple XML file is the <beans> element, which is the root ele-
ment of any Spring configuration file. The <bean> element is used to tell the
Spring container about a class and how it should be configured. Here, the id
attribute is used to name the bean greetingService and the class attribute spec-
ifies the bean’s fully qualified class name.

Within the <bean> element, the <property> element is used to set a property, in
this case the greeting property. By using <propertys, we're telling the Spring
container to call setGreeting() when setting the property.

The value of the greeting is defined within the <value> element. Here we've
given the example a Spanish flair by choosing “Buenos Dias” instead of the tra-
ditional “Hello World.”

The following snippet of code illustrates roughly what the container does when
instantiating the greeting service based on the XML definition in listing 1.3:

GreetingServiceImpl greetingService = new GreetingServiceImpl () ;
greetingService.setGreeting ("Buenos Dias!");

Similarly, we may choose to have Spring set the greeting property through
GreetingServiceImpl’s single argument constructor. For example:

<bean id="greetingService"
class="com.springinaction.chapter0l.hello.GreetingServiceImpl">
<constructor-arg>
<value>Buenos Dias!</value>
</constructor-args>
</bean>

The following code illustrates how the container will instantiate the greeting ser-
vice when using the <constructor-arg> element:

GreetingServiceImpl greetingService =
new GreetingServiceImpl (“Buenos Dias”) ;

The last piece of the puzzle is the class that loads the Spring container and uses it
to retrieve the greeting service. Listing 1.4 shows this class.

% The container actually performs other activities involving the life cycle of the bean. But for illustrative
purposes, these two lines are sufficient.

14

Understanding inversion of control 15

package com.springinaction.chapter0l.hello;

import java.io.FileInputStream;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;

public class HelloApp
public static void main(String[] args) throws Exception {
BeanFactory factory =
new XmlBeanFactory(new FileInputStream("hello.xml")) ;

GreetingService greetingService =
(GreetingService) factory.getBean ("greetingService") ;

greetingService.sayGreeting() ;
}
}
||

The BeanFactory class used here is the Spring container. After loading the
hello.xml file into the container, the main () method calls the getBean () method
on the BeanFactory to retrieve a reference to the greeting service. With this refer-
ence in hand, it finally calls the sayGreeting() method. When we run the Hello
application, it prints (not surprisingly)
Buenos Dias!

This is about as simple a Spring-enabled application as we can come up with. But
it does illustrate the basics of configuring and using a class in Spring. Unfortu-
nately, it is perhaps too simple because it only illustrates how to configure a bean

by injecting a String value into a property. The real power of Spring lies in how
beans can be injected into other beans using IoC.

Understanding inversion of control

Inversion of control is at the heart of the Spring framework. It may sound a bit
intimidating, conjuring up notions of a complex programming technique or
design pattern. But as it turns out, IoC is not nearly as complex as it sounds. In
fact, by applying IoC in your projects, you’ll find that your code will become sig-
nificantly simpler, easier to understand, and easier to test.

But what does “inversion of control” mean?

16 CHAPTER 1
A Spring jump start

1.4.1 Injecting dependencies

In an article written in early 2004, Martin Fowler asked what aspect of control is
being inverted. He concluded that it is the acquisition of dependent objects that
is being inverted. Based on that revelation, he coined a better name for inversion
of control: dependency injection.?

Any nontrivial application (pretty much anything more complex than Hello-
World java) is made up of two or more classes that collaborate with each other to
perform some business logic. Traditionally, each object is responsible for obtain-
ing its own references to the objects it collaborates with (its dependencies). As
you’ll see, this can lead to highly coupled and hard-to-test code.

Applying IoC, objects are given their dependencies at creation time by some
external entity that coordinates each object in the system. That is, dependencies
are injected into objects. So, IoC means an inversion of responsibility with regard
to how an object obtains references to collaborating objects.

1.4.2 IoC in action

If you're like us, then you’re probably anxious to see how this works in code. We
aim to please, so without further delay...

Suppose that your company’s crack marketing team culled together the results
of their expert market analysis and research and determined that what your cus-
tomers need is a knight. That is, they need a Java class that represents a knight.
After probing them for requirements, you learn that what they specifically want is
for you to implement a class that represents an Arthurian knight of the Round
Table that embarks on brave and noble quests to find the Holy Grail.

This is an odd request, but you’ve become accustomed to the strange notions
and whims of the marketing team. So, without hesitation, you fire up your favor-
ite IDE and bang out the class in listing 1.5.

package com.springinaction.chapter0l.knight;

public class KnightOfTheRoundTable {
private String name;
private HolyGrailQuest quest;

% Although we agree that “dependency injection” is a more accurate name than “inversion of control,”
we're likely to use both terms interchangeably in this book.

Understanding inversion of control 17

public KnightOfTheRoundTable (String name) {
this.name = name;
quest = new HolyGrailQuest(); <— Aknight gets its own quest

}

public HolyGrail embarkOnQuest ()
throws GrailNotFoundException {
return quest.embark () ;

}
}
-

In listing 1.5 the knight is given a name as a parameter of its constructor. Its con-
structor sets the knight’s quest by instantiating a HolyGrailQuest. The implemen-
tation of HolyGrailQuest is fairly trivial, as shown in listing 1.6.

Listing 1.6 HolyGrailQuest.java

package com.springinaction.chapter0l.knight;
public class HolyGrailQuest {
public HolyGrailQuest () {}

public HolyGrail embark () throws GrailNotFoundException {
HolyGrail grail = null;
// Look for grail

return grail;
}
1
|

Satisfied with your work, you proudly check the code into version control. You
want to show it to the marketing team, but deep down something doesn’t feel
right. You almost dismiss it as the burrito you had for lunch when you realize the
problem: you haven’t written any unit tests.

Knightly testing

Unit testing is an important part of development. It not only ensures that each
individual unit functions as expected, but it also serves to document each unit in
the most accurate way possible. Seeking to rectify your failure to write unit tests,
you put together the test case (listing 1.7) for your knight class.

18

CHAPTER 1
A Spring jump start

Listing 1.7 Testing the KnightOfTheRoundTable

package com.springinaction.chapter0l.knight;
import junit.framework.TestCase;
public class KnightOfTheRoundTableTest extends TestCase {
public void testEmbarkOnQuest () {
KnightOfTheRoundTable knight =

new KnightOfTheRoundTable ("Bedivere") ;

try {
HolyGrail grail = knight.embarkOnQuest () ;

assertNotNull (grail) ;
assertTrue (grail.isHoly()) ;

} catch (GrailNotFoundException e) ({
fail();

After writing this test case, you set out to write a test case for HolyGrailQuest. But
before you even get started, you realize that the KnightOfTheRoundTableTest test
case indirectly tests HolyGrailQuest. You also wonder if you are testing all contin-
gencies. What would happen if HolyGrailQuest’s embark() method returned
null? Or what if it were to throw a GrailNotFoundException?

Who'’s calling who?

The main problem so far with KnightofTheRoundTable is with how it obtains a
HolyGrailQuest. Whether it is instantiating a new HolyGrail instance or obtaining
one via JNDI, each knight is responsible for getting its own quest (as shown in fig-
ure 1.2). Therefore, there is no way to test the knight class in isolation. As it

a\\QueS‘O HolyGrailQuest

new HolyGF

KnightOfThe
Roundtable

Figure 1.2

A knight is responsible
for getting its own quest,
through instantiation or
some other means.

INDj Lookyp

RescueDamsel
Quest

Understanding inversion of control 19

stands, every time you test KnightOfTheRoundTable, you will also indirectly test
HolyGrailQuest.

What’s more, you have no way of telling HolyGrailQuest to behave differently
(e.g., return null or throw a GrailNotFoundException) for different tests. What
would help is if you could create a mock implementation of HolyGrailQuest that
lets you decide how it behaves. But even if you were to create a mock implemen-
tation, KnightOfTheRoundTable still retrieves its own HolyGrailQuest, meaning
you would have to make a change to knightOfTheRoundTable to retrieve the mock
quest for testing purposes (and then change it back for production).

Decoupling with interfaces

The problem, in a word, is coupling. At this point, KnightOf TheRoundTable is stati-
cally coupled to HolyGrailguest. They’re handcuffed together in such a way that
you can’t have a knightOfTheRoundTable without also having a HolyGrailQuest.

Coupling is a two-headed beast. On one hand, tightly coupled code is difficult
to test, difficult to reuse, difficult to understand, and typically exhibits “whack-a-
mole” bugs (i.e., fixing one bug results in the creation of one or more new bugs).
On the other hand, completely uncoupled code doesn’t do anything. In order to
do anything useful, classes need to know about each other somehow. Coupling is
necessary, but it should be managed very carefully.

A common technique used to reduce coupling is to hide implementation
details behind interfaces so that the actual implementation class can be swapped
out without impacting the client class. For example, suppose you were to create a
Quest interface:

package com.springinaction.chapter0l.knight;

public interface Quest ({
public abstract Object embark() throws QuestException;

}

Then, you change HolyGrailQuest to implement this interface. Also, notice that
embark now returns an Object and throws a QuestException.

package com.springinaction.chapter0l.knight;

public class HolyGrailQuest implements Quest {
public HolyGrailQuest () {}

public Object embark() throws QuestException {
// Do whatever it means to embark on a quest
return new HolyGrail() ;
1
}

20

CHAPTER 1
A Spring jump start

Also, the following method must also change in KnightOfTheRoundTable to be
compatible with these Quest types:

private Quest quest;

public Object embarkOnQuest () throws QuestException {
return quest.embark() ;

}

Likewise, you could also have knightOfTheRoundTable implement the following
Knight interface:

public interface Knight
public Object embarkOnQuest () throws QuestException;

}

Hiding your class’s implementation behind interfaces is certainly a step in the right
direction. But where many developers fall short is in how they retrieve a Quest
instance. For example, consider this possible change to knightOfTheRoundTable:

public class KnightOfTheRoundTable implements Knight {

private Quest quest;

public KnightOfTheRoundTable (String name) {
quest = new HolyGrailQuest () ;

}
public Object embarkOnQuest () throws QuestException {
return quest.embark() ;

}
}

Here the KnightOfTheRoundTable class embarks on a quest through the Quest
interface. But, the knight still retrieves a specific type of Quest (here a Holy-
GrailQuest). This isn’t much better than before. A knightOf TheRoundTable is stuck
going only on quests for the Holy Grail and no other types of quest.

Giving and taking
The question you should be asking at this point is whether or not a knight should
be responsible for obtaining a quest. Or, should a knight be given a quest to
embark upon?

Consider the following change to KnightOfTheRoundTable:

Understanding inversion of control 21

public class KnightOfTheRoundTable implements Knight {
private Quest quest;

public KnightOfTheRoundTable (String name) {
}

public HolyGrail embarkOnQuest () throws QuestException {

return quest.embark() ;

}

public void setQuest(Quest quest) {
this.quest = quest;

}
}

Notice the difference? Compare figure 1.3 with figure 1.2 to see the difference in
how a knight obtains its quest. Now the knight is given a quest instead of retriev-
ing one itself. kKnightOfTheRoundTable is no longer responsible for retrieving its
own quests. And because it only knows about a quest through the Quest interface,
you could give a knight any implementation of Quest you want. In a production
system, maybe you would give it a HolyGrailQuest, but in a test case you would
give it a mock implementation of Quest.

In a nutshell, that is what inversion of control is all about: the responsibility of
coordinating collaboration between dependent objects is transferred away from
the objects themselves. And that’s where lightweight container frameworks, such
as Spring, come into play.

Assigning a quest to a knight

Now that you've written your KnightOfTheRoundTable class to be given any arbi-
trary Quest object, how can you specify which guest it should be given?

HolyGrailQuest

KnightOfThe
RoundTable

1
setquestl Figure 1.3

A knight is given a
quest through its
setQuest () method.

RescueDamsel
Quest

22

CHAPTER 1
A Spring jump start

The act of creating associations between application components is referred to as
wiring. In Spring, there are many ways to wire components together, but the most
common approach is via XML. Listing 1.8 shows a simple Spring configuration
file, knight.xml, that gives a quest (specifically, a HolyGrailQuest) to a Knight-
OfTheRoundTable.

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd" >

<beans> Define a quest
<bean id="quest"
class="com.springinaction.chapter0l.knight.HolyGrailQuest"/>

<bean id="knight"
class="com.springinaction.chapter0l.knight.KnightOfTheRoundTable">
Define a knight

<constructor-arg>
<value>Bedivere</value> <— Set the knight’s name

</constructor-arg>

<property name="quest'">
<ref bean="quest"/> <— Give the knight a quest

</propertys>

</bean>
</beans>

This is just a simple approach to wiring beans. Don’t worry too much about the
details of it right now. In chapter 2 we’ll explain more about what is going on
here, as well as show you even more ways you can wire your beans in Spring.

Now that we’ve declared the relationship between a knight and a quest, we
need to load up the XML file and kick off the application.

Seeing it work

In a Spring application, a BeanFactory loads the bean definitions and wires the
beans together. Because the beans in the knight example are declared in an XML
file, an XmlBeanFactory is the appropriate factory for this example. The main ()
method in listing 1.9 uses an XmlBeanFactory to load knight.xml and to get a ref-
erence to the “knight” object.

Understanding inversion of control ‘ 23

Listing 1.9 Running the knight example

import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;

Load
public class KnightApp { the XML
public static void main(String[] args) throws Exception { beans
BeanFactory factory = file
new XmlBeanFactory(new FileInputStream("knight.xml")) ;
KnightOfTheRoundTable knight = Retrieve a knight
(KnightOfTheRoundTable) factory.getBean ("knight") ; from the factory

knight .embarkOnQuest () ; <— Send knight on its quest

}
}
||

Once the application has a reference to the Knight0fTheRoundTable object, it simply
calls the embarkonQuest () method to kick off the knight’s adventure. Notice that
this class knows nothing about the quest the knight will take. Again, the only thing
that knows which type of quest will be given to the knight is the knight .xm1 file.
It’s been a lot of fun sending knights on quests using inversion of control, but
now let’s see how you can use 1oC in your real-world enterprise applications.*

1.4.3 IoC in enterprise applications

Suppose that you've been tasked with writing an online shopping application.
Included in the application is an OrderServiceBean, implemented as a stateless
session bean. Now you want to have a class that creates an order object from user
input (likely an HTML form) and call the createorder () method on your order-
ServiceBean, as shown in listing 1.10.

Listing 1.10 Creating an order using EJB

private OrderService orderService;

public void doRequest (HttpServletRequest request) ({
Order order = createOrder (request) ;
OrderService orderService = getOrderService() ;
orderService.createOrder (order) ;

}

* This assumes that your real-world applications do not involve knights and quests. In the event that
your current project does involve knights and quests, you may disregard the next section.

24

CHAPTER 1
A Spring jump start

private OrderService getOrderService() throws CreateException { Get
if (orderService == null) ({ the JNDI
Context initial = new InitialContext () ; Context
Context myEnv = (Context) initial.lookup ("java:comp/env") ;
Object ref = myEnv.lookup ("ejb/OrderServiceHome") ; Retrieve an EJB
OrderServiceHome home = (OrderServiceHome) Home from JNDI

PortableRemoteObject .narrow (ref, OrderService.class) ;

Get the Remote object

} . from the Home object
return orderService;

orderService = home.create() ;

}

Notice that it took five lines of code just to get your OrderService object. Now imag-
ine having to do this everywhere you need an oOrderService object. Now imagine
you have ten other E]Bs in your application. That is a lot of code! But duplicating
this code everywhere would be ridiculous, so a ServiceLocator is typically used
instead. A ServiceLocator acts as a central point for obtaining and caching EJB-
Home references:
private OrderService getOrderService()
OrderServiceHome home =

ServiceLocator.locate (OrderServiceHome) ;
OrderService orderService = home.create() ;

}
While this removes the need to duplicate the lookup code everywhere in the
application, one problem still remains: we always have to explicitly look up our
services in our code.

Now let’s see how this would be implemented in Spring:

private OrderService orderService;

public void doRequest (HttpServletRequest request) {
Order order = createOrder (request) ;
orderService.createOrder (order) ;

}

public void setOrderService (OrderService orderService) ({

}

No lookup code! The reference to OrderService is given to our class by the Spring
container through the setorderService () method. With Spring, we never have to
trouble ourselves with fetching our dependencies. Instead, our code can focus on
the task at hand.

this.orderService = orderService;

http://home.create();
http://home.create();

1.5

1.5.1

Applying aspect-oriented programming 25

But inversion of control is only one of the techniques that Spring offers to
JavaBeans. There’s another side to Spring that makes it a viable framework for
enterprise development. Let’s take a quick look at Spring’s support for aspect-
oriented programming.

Applying aspect-oriented programming

While inversion of control makes it possible to tie software components together
loosely, aspect-oriented programming enables you to capture functionality that is
used throughout your application in reusable components.

Introducing AOP

Aspect-oriented programming is often defined as a programming technique that
promotes separation of concerns within a software system. Systems are composed
of several components, each responsible for a specific piece of functionality.
Often, however, these components also carry additional responsibility beyond
their core functionality. System services such as logging, transaction manage-
ment, and security often find their way into components whose core responsibility
is something else. These system services are commonly referred to as cross-cutting
concerns because they tend to cut across multiple components in a system.

By spreading these concerns across multiple components, you introduce two
levels of complexity to your code:

m The code that implements the systemwide concerns is duplicated across
multiple components. This means that if you need to change how those
concerns work, you’ll need to visit multiple components. Even if you've
abstracted the concern to a separate module so that the impact to your
components is a single method call, that single method call is duplicated
in multiple places.

= Your components are littered with code that isn’t aligned with their core
functionality. A method to add an entry to an address book should only be
concerned with how to add the address and not with whether it is secure or
transactional.

Figure 1.4 illustrates this complexity. The business objects on the left are too inti-
mately involved with the system services. Not only does each object know that it is
being logged, secured, and involved in a transactional context, but also each
object is responsible for performing those services for itself.

26

CHAPTER 1
A Spring jump start

Student _| Logging
Service Module
Course —
Service
Instructor Security
Service Module
N————d
Billing Service
Content Transaction
Service ~| Manager
————

Figure 1.4 Calls to system-wide concerns such as logging and security are often
scattered about in modules where those concerns are not their primary concern.

AOP makes it possible to modularize these services and then apply them declara-
tively to the components that they should affect. This results in components that
are more cohesive and that focus on their own specific concerns, completely igno-
rant of any system services that may be involved.

As shown in figure 1.5, it may help to think of aspects as blankets that cover
many components of an application. At its core, an application is comprised of
modules that implement the business functionality. With AOP, you can then cover

Transaction manager
|

Student

Service
g 3
e Course Instructor 3
3 Service Service =
3 o
e S
o 3
=3 -]
™ Billing Content n

Service Service

Figure 1.5 Using AOP, systemwide concerns blanket the components
that they impact.

Applying aspect-oriented programming 27

your core application with layers of functionality. These layers can declaratively
be applied throughout your application in a flexible manner without your core
application even knowing they exist. This is a very powerful concept.

1.5.2 AOP in action

Let’s revisit our knight example to see how AOP works with Spring. Suppose that
after showing your progress to marketing, they came back with an additional
requirement. In this new requirement, a minstrel must accompany each knight,
chronicling the actions and deeds of the knight in song.’

To start, you create a Minstrel class:

package com.springinaction.chapter0l.knight;
import org.apache.log4j.Logger;

public class Minstrel {
Logger song = Logger.getLogger (KnightOfTheRoundTable.class) ;
public Minstrel() {}

public void compose (String name, String message) {
song.debug ("Fa la la! Brave " + name + " did " + message + "!");

}
}

In keeping with the IoC way of doing things, you alter knightOfTheRoundTable to
be given an instance of Minstrel:

public class KnightOfTheRoundTable {

private Minstrel minstrel;
public void setMinstrel (Minstrel minstrel) {
this.minstrel = minstrel;

}

public HolyGrail embarkOnQuest () throws QuestException {
minstrel.compose (name, "embark on a quest");
return quest.embark() ;
1
1

% Think of minstrels as musically inclined logging systems of medieval times.

28

CHAPTER 1
A Spring jump start

There’s only one problem. As it is, each knight
must stop and tell the minstrel to compose a | Knight 2ompose) ! winstrel
song before the knight can continue with his
quest (as. in figure 1.6). Ideally a minstrel w01'11d Figure 16 Without AOP, a knight
automatically compose songs without being myst tell his minstrel to compose
explicitly told to do so. A knight shouldn’t know songs.
(or really even care) that their deeds are being
written into song. After all, you can’t have your knight being late for quests
because of a lazy minstrel.

In short, the services of a minstrel transcend the duties of a knight. Another way
of stating this is to say that a minstrel’s services (song writing) are orthogonal to a
knight’s duties (embarking on quests). Therefore, it makes sense to implement a
minstrel as an aspect that adds its song-writing services to a knight. Probably the
simplest way to create an aspect-oriented minstrel is to change the minstrel class to
be an implementation of MethodBeforeAdvice, as shown in listing 1.11.

package com.springinaction.chapter0l.knight;

import java.lang.reflect.Method;
import org.apache.log4j.Logger;
import org.springframework.aop.MethodBeforeAdvice;

public class MinstrelAdvice
implements MethodBeforeAdvice ({
public MinstrelAdvice() {}

public void before (Method method, Object[] args,

. Advise method
Object target) throws Throwable { before call
Knight knight = (Knight) target;
Logger song =
Logger.getLogger (target.getClass()) ; Get the advised

class’s logger
song.debug ("Brave " + knight.getName () +

" did " + method.getName()) ;

Applying aspect-oriented programming 29

As a subclass of MethodBefore-

))) MinstrelAdvice
Advice, the MinstrelAdvice

1 ill inter 1Is to th . Figure 1.7
classw . te’ cept calls to t, ¢ Knight An aspect-oriented minstrel covers
target object’s methods, giv- a knight, chronicling the knight's
ing the before () method an activities without the knight's

knowledge of the minstrel.

opportunity to do something
before the target method gets
called. In this case, MinstrelAdvice naively assumes that the target object is a
KnightOfTheRoundTable and uses log4j as its mechanism for chronicling the
knight’s actions. As illustrated in figure 1.7, the knight needn’t worry about how
he is being sung about or even that the minstrel is writing the song.

The knight no longer needs to tell this new aspect-oriented minstrel to sing
about the knight’s activities. In fact, the knight doesn’t even need to know that
the minstrel exists. But how does Minstreladvice know that it is supposed to
intercept calls to a Knight?

Weaving the aspect

Notice that there’s nothing about Minstreladvice that tells the Minstrel what
object it should sing about. Instead, a Minstrel’s services are applied to a knight
declaratively. Applying advice to an object is known as weaving. In Spring, aspects
are woven into objects in the Spring XML file, much in the same way that beans
are wired together. Listing 1.12 shows the new knight.xml, modified to weave
MinstrelAdvice into a KnightOfTheRoundTable.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
<bean id="quest"
class="com.springinaction.chapter0l.knight.HolyGrailQuest"/>

<bean id="knightTarget"
class="com.springinaction.chapter0l.knight.KnightOfTheRoundTable" >
<constructor-arg><value>Bedivere</value></constructor-arg>

<property name="quest"s><ref bean="quest"/></propertys>

</bean> Create a minstrel

instance
<bean id="minstrel"

class="com.springinaction.chapter0l.knight.MinstrelAdvice"/>

30

CHAPTER 1
A Spring jump start

<bean id="knight"
class="org.springframework.aop. framework.ProxyFactoryBean">
<property name="proxyInterfaces">

<list>
<value>com.springinaction.chapter0l.knight.Knight</value>
</list> Intercept calﬂ
</property> to the knight
<property name="interceptorNames">
<list>
<valuesminstrel</values> <— Let minstrel handle call first
</list>
</property>
<property name="target"><ref bean="knightTarget"/></propertys>
</bean> Then let the knigﬂ
</beans> handle the call

Notice that the id of KnightOfTheRoundTable has changed from knight to
knightTarget and now knight points to a Spring class called ProxyFactoryBean.
What this means is that when the container is asked for a knight object, it will
return an object that intercepts calls to the target knightOfTheRoundTable object,
giving MinstrelAdvice a shot at handling method calls first. Once Minstrel-
Advice is finished, control is returned to KnightOfTheRoundTable to perform the
knightly task.

Don’t worry if this doesn’t make sense yet. We’ll explain Spring’s AOP support
in more detail in chapter 3. For now, suffice it to say that even though a knight’s
every move is being observed by a minstrel, the knight’s activities are in no way
hampered because of the minstrel’s presence.

But Spring’s AOP can be used for even more practical things than composing
ageless sonnets about knights. As you’ll see, AOP can be used to provide enter-
prise services such as declarative transactions and security.

1.5.3 AOP in the enterprise

Enterprise applications often require certain services such as security and trans-
actional support. One way of applying these services is to code support for them
directly into the classes that use them. For example, to handle transactions, you
may place the following snippet throughout your code:

UserTransaction transaction = null;

try {
transaction = ... {retrieve transaction}

transaction.begin() ;

. do stuff...

Applying aspect-oriented programming 31

transaction.commit () ;
} catch (Exception e)

if (transaction != null) transaction.rollback() ;
}

The problem with handling transactions this way is that you may repeat the same
transaction handling code several times—once for each time you need a transac-
tional context. What’s more, your application code is responsible for more than
its core functionality.

EJB simplifies things by making it possible to declare these services and their
policies in the EJB deployment descriptor. With EJB it is possible to write com-
ponents that are ignorant of the fact that they are in a transactional context or
being secured and then declare the transactional and security policies for those
components in the EJB deployment descriptor. For example, to ensure that a
method is transactional in EJB, you simply place the following in the deploy-
ment descriptor:

<container-transaction>

<method>
<ejb-name>Foo</ejb-name>
<method-intf>Remote</method-inf>
<method-name>doSomething</method-name>
</method>
<trans-attribute>RequiresNew</trans-attributes>

</container-transaction>
EJB has hung its hat on how it simplifies infrastructure logic such as transactions
and security. But as we discussed in the introduction to this chapter, EJB has com-
plicated matters in other ways.

Although Spring’s AOP support can be used to separate cross-cutting con-
cerns from your application’s core logic, its primary job is as the basis for
Spring’s support for declarative transactions. Spring comes with several aspects
that make it possible to declare transaction policies for JavaBeans. And the Acegi
Security System (another open-source project associated with Spring) provides
declarative security to JavaBeans. As with all Spring configuration, the transac-
tional and security policies are prescribed in a Spring configuration file.

NOTE Although the Spring framework comes packed with several frameworks
and support for several enterprise-level services, it does not come with
much to assist you with security. The Acegi security system uses Spring’s
AOP support as the foundation of a framework that adds declarative se-
curity to Spring-enabled applications. You will learn more about Acegi
in chapter 11.

32

CHAPTER 1
A Spring jump start

For example, suppose that instead of a knight your application handles student
registration for training courses. Perhaps you have a bean called studentService-
Impl that implements the following interface:

public StudentService {
public void registerForCourse (Student student, Course course) ;

This bean may be registered in the Spring bean XML file as follows:

<bean id="studentServiceTarget"
class="com.springinaction.training.StudentServiceImpl"/>

StudentService’s registerForCourse () method should perform the following
actions:

1 Verify that there is an available seat in the course.
2 Add the student to the course’s roster.
3 Decrement the course’s available seat count by 1.

4 Notify the student by e-mail of a successful registration.

All of these actions should happen atomically. If anything goes bad, then all
should be rolled back as if nothing happened. Now imagine if instead of a min-
strel providing musical logging to this class, you were to apply one of Spring’s
transaction manager aspects. Applying transactional support to StudentService-
Impl might be as simple as adding the lines shown in listing 1.13 to the bean
XML file.

<bean id="transactionManager" class=
"org.springframework.orm.hibernate.HibernateTransactionManager">
<property name="sessionFactory"s>
<ref bean="sessionFactory"/>
</property>
</beans>

Declare transaction manager

<bean id="studentService" class=
"org.springframework.transaction.interceptor.
TransactionProxyFactoryBean">

<property name="target">
<ref bean="studentServiceTarget"/> <G— Apthrmnacﬁons
</property>

<property name="transactionAttributes">
<props>

1.6

1.6.1

Spring alternatives ‘ 33

<prop key="registerForCourse"> Declare
PROPAGATION_ REQUIRES NEW, ISOLATION_ DEFAULT transaction
</prop>
</props>
</propertys>

<property name="transactionManager">
<ref bean="transactionManager"/> <G— Inkctﬂansacﬁon
</property>
</bean>

Here we make use of Spring’s TransactionProxyFactoryBean. This is a conve-
nience proxy class that allows us to intercept method calls to an existing class and
apply a transaction context. In this case we are creating a proxy to our Student-
ServiceImpl class and applying a transaction to the registerForCourse () method.
We are also using HibernateTransactionManager, the implementation of a trans-
action manager you would most likely use if your application’s persistence layer is
based on Hibernate.

Although this example leaves a lot to be explained, it should give you a
glimpse of how Spring’s AOP support can provide plain-vanilla JavaBeans with
declarative services such as transactions and security. We’ll dive into more details
of Spring’s declarative transaction support in chapter 5.

Spring alternatives

Whew! After that whirlwind introduction of Spring, you have a pretty good idea
of what it can do. Now you are probably chomping at the bit to get down into the
details so you can see how you can use Spring for your projects. But before we do
that, we need to cover what else is out there in the world of J2EE frameworks.

Comparing Spring to EJB

Because Spring comes with rich support for enterprise-level services, it is posi-
tioned as a viable alternative to EJB. But EJB, as opposed to Spring, is a well-
established platform. Therefore, the decision to choose one over the other is not
one to be taken lightly. Also, you do not necessarily have to choose only Spring or
EJB. Spring can be used to support existing E]Bs as well, a topic that will be dis-
cussed in detail in chapter 7. With that in mind, it is important to know what
these two have in common, what sets them apart, and the implications of choos-
ing either.

34

CHAPTER 1

A Spring jump start

EJB is a standard
Before we delve into the technical comparisons between Spring and EJB, there is
an important distinction that we need to make. EJB is a specification defined by the
JCP. Being a standard has some significant implications:

m Wide industry support—There is a whole host of vendors that are supporting

this technology, including industry heavyweights Sun, IBM, Oracle, and
BEA. This means that EJB will be supported and actively developed for
many years to come. This is comforting to many companies because they
feel that by selecting EJB as their J2EE framework, they are going with a
safe choice.

Wide adoption—E]B as a technology is deployed in thousands of compa-
nies around the world. As a result, EJB is in the tool bag of most J2EE
developers. This means that if a developer knows EJB, they are more
likely to find a job. At the same time, companies know that if they adopt
EJB, there is an abundance of developers who are capable of developing
their applications.

Toolability—The EJB specification is a fixed target, making it easy for ven-
dors to produce tools to help developers create EJB applications more
quickly and easily. Dozens of applications are out there that do just that,
giving developers a wide range of EJB tool options.

Spring and EJB common ground

As J2EE containers, both Spring and EJB offer the developer powerful features for
developing applications. Table 1.1 lists the major features of both frameworks

and how the implementations compare.

Table 1.1 Spring and EJB feature comparison

Feature EJB Spring
Transaction = Must use a JTA transaction manager. = Supports multiple transaction environ-
management = Supports transactions that span remote ments through its PlatformTransac-

method calls.

tionManager interface, including JTA,
Hibernate, JDO, and JDBC.

= Does not natively support distributed
transactions—it must be used with a JTA
transaction manager.

continued on next page

Table 1.1 Spring and EJB feature comparison (continued)

Spring alternatives 35

Feature EJB Spring
Declarative = Can define transactions declaratively = Can define transactions declaratively
transaction through the deployment descriptor. through the Spring configuration file or
support = Can define transaction behavior per through class metadata.
method or per class by using the wild- = Can define which methods to apply
card character *. transaction behavior explicitly or by using
= Cannot declaratively define rollback regular expressions.
behavior—this must be done program- = Can declaratively define rollback behav-
matically. ior per method and per exception type.
Persistence = Supports programmatic bean-managed = Provides a framework for integrating with
persistence and declarative container several persistence technologies, includ-
managed persistence. ing JDBC, Hibernate, JDO, and iBATIS.
Declarative = Supports declarative security through = No security implementation out-of-the
security users and roles. The management and box.
implementation of users and roles is = Acegi, an open source security frame-
container specific. work built on top of Spring, provides
= Declarative security is configured in the declarative security through the Spring
deployment descriptor. configuration file or class metadata.
Distributed = Provides container-managed remote = Provides proxying for remote calls via
computing method calls. RMI, JAX-RPC, and web services.

For most J2EE projects, the technology requirements will be met by either Spring
or EJB. There are exceptions—your application may need to be able to support
remote transaction calls. If that is the case, EJB may seem like the the way to go.
Even then, Spring integrates with a Java Transaction API (JTA) transaction pro-
viders, so even this scenario is cut-and-dried. But if you are looking for a J2EE
framework that provides declarative transaction management and a flexible per-
sistence engine, Spring is a great choice. It lets you choose the features you want
without the added complexities of EJB.

The complexities of EJB

So what are the complexities of EJB? Why is there such a shift toward lightweight
containers? Here are a few of the complexities of EJB that turn off many developers:

m Writing an EJB is overly complicated—To write an EJB, you have to touch at
least four files: the business interface, the home interface, the bean imple-
mentation, and the deployment descriptor. Other classes are likely to be
involved as well, such as utility classes and value objects. That’s quite a

36

1.6.2

CHAPTER 1
A Spring jump start

proliferation of files when all you are looking for is to add some container
services to your implementation class. Conversely, Spring lets you define
your implementation as a POJO and wire in any additional services needs
through injection or AOP.

m EJB is invasive—This goes hand in hand with the previous point. In order
to use the services provided by the EJB container, you must use the
javax.ejb interfaces. This binds your component code to the E]JB tech-
nology, making it difficult (if not possible) to use the component outside
of an EJB container. With Spring, components are typically not required
to implement, extend, or use any Spring-specific classes or interfaces,
making it possible to reuse the components anywhere, even in the
absence of Spring.

m Entity EJBs fall short—Entity E]Bs are not as flexible or feature-rich as other
ORM tools. Spring recognizes there are some great ORM tools out there,
such as Hibernate and JDO, and provides a rich framework for integrating
them into your application. And since an entity bean could represent a
remote object, the Value Object pattern was introduced to pass data to and
from the EJB tier in a course-grained object. But value objects lead to code
duplication—you write each persistent property twice: once in the entity
bean and once in your value object. Using Spring together with Hibernate
or another ORM framework, your application’s entity objects are not directly
coupled with their persistence mechanism. This makes them light enough
to be passed across application tiers.

Again, in most J2EE applications, the features provided by EJB may not be worth
the compromises you will have to make. Spring provides nearly all of the services
provided by an EJB container while allowing you to develop much simpler code.
In other words, for a great number of J2EE applications, Spring makes sense. And
now that you know the differences between Spring and EJB, you should have a
good idea which framework fits your needs best.

Considering other lightweight containers

Spring is not the only lightweight container available. In the last few years, more
and more Java developers have been seeking an alternative to EJB. As a result,
several lightweight containers have been developed with different methods for
achieving inversion of control.

Spring alternatives 37

Table 1.2 lists the types of IoC. These were first described with the nondescript
“Type X” convention, but have since shifted to more meaningful names. We will
always refer to them by the name.

Table 1.2 Inversion of Control types

Type Name Description

Type 1 Interface Dependent Beans must implement specific interfaces to have their depen-
dencies managed by the container.

Type 2 Setter Injection Dependencies and properties are configured through a bean’s
setter methods.

Type 3 Constructor Injection Dependencies and properties are configured through the bean’s
constructor.

Although the focus of this book is on Spring, it may be interesting to see how
these other containers stack up to Spring. Let’s take a quick look at some of the
other lightweight containers, starting with PicoContainer.

PicoContainer

PicoContainer is a minimal lightweight container that provides IoC in the form
of constructor and setter injection (although it favors constructor injection). We
use the word minimal to describe PicoContainer because, with it small size (~50Kk),
it has a sparse API. PicoContainer provides the bare essentials to create an IoC
container and expects to be extended by other subprojects and applications. By
itself, you can only assemble components programmatically through PicoCon-
tainer’s API. Since this would be a cumbersome approach for anything but the
most trivial applications, there is a subproject named NanoContainer that pro-
vides support for configuring PicoContainer through XML and various scripting
languages. However, at the time of this writing, NanoContainer does not appear
to be production-ready.

One of the limitations of PicoContainer is that it allows only one instance of
any particular type to be present in its registry. This is could lead to problems if
you need more than one instance of the same class, just configured differently.
For example, you may want to have two instances of a javax.sql.DataSource in
your application, each configured for a different database. This would not be pos-
sible in PicoContainer.

Also, you should know that PicoContainer is only a container. It does not offer
any of the other powerful features that Spring has, such as AOP and third-party
framework integration.

38

1.6.3

CHAPTER 1
A Spring jump start

HiveMind

HiveMind is a relatively new IoC container. Like PicoContainer, it focuses on wir-
ing and configuring services with support for both constructor and setter injec-
tion. HiveMind allows you to define your configuration in an XML file or in
HiveMind’s Simple Data Language.

HiveMind also provides an AOP-like feature with its Interceptors. This allows
you to wrap a service with Interceptors to provide additional functionality. How-
ever, this is not nearly as powerful as Spring’s AOP framework.

Finally, like PicoContainer, HiveMind is only a container. It provides a frame-
work for managing components but offers no integration with other technologies.

Avalon

Avalon was one of the first IoC containers developed. As with many early entrants
into a market, some mistakes were made in its design. Mainly, Avalon provides
interface-dependent IoC. In other words, in order for your objects to be managed
by the Avalon container, they must implement Avalon-specific interfaces. This
makes Avalon an invasive framework; you must change your code in order for it to
be usable by the container. This is not desirable because it couples your code to a
particular framework for even the simplest of cases.

We believe that if Avalon does not adopt a more flexible means of managing
components, it will eventually fade out of the lightweight container market; there
are other ways of achieving the same results with much less rigidity.

Web frameworks

Spring comes with its own very capable web framework. It provides features
found in most other web frameworks, such as automatic form data binding and
validation, multipart request handling, and support for multiple view technolo-
gies. We’ll talk more about Spring’s web framework in chapter 8. But for now, let’s
take a look at how Spring measures up to some popular web frameworks

Struts

Struts can probably be considered the de facto standard for web MVC frameworks.
In has been around for several years, was the first “Model 2” framework to gain
wide adoption and has been used in thousands of Java projects. As a result, there
is an abundance of resources available on Struts.

The Struts class you will use the most is the Action class. It is important to note
that this is a class and not an interface. This means all your classes that handle

Spring alternatives 39

input will need to subclass Action. This in contrast to Spring, which provides a
Controller interface that you can implement.

Another important difference is how each handles form input. Typically, when
a user is submitting a web form, the incoming data maps to an object in your
application. In order to handle form submissions, Struts requires you have
ActionForm classes to handle the incoming parameters. This means you need to
create a class solely for mapping form submissions to your domain objects.
Spring allows you to map form submissions directly to an object without the need
for an intermediary, leading to eaiser maintenance.

Also, Struts comes with built-in support for declarative form validation. This
means you can define rules for validating incoming form data in XML. This keeps
validation logic out of your code, where it can be cumbersome and messy. Spring
does not come with declarative validation. This does not mean you cannot use
this within Spring; you will just have to integrate this functionality yourself using
a validation framework, such as the Jakarta Commons Validator.

If you already have an investment in Struts or you just prefer it as your web
framework, Spring has a package devoted to integrating Struts with Spring.

Furthermore, Struts is a mature framework with a significant following in the
Java development community. Much has been written about Struts, including Ted
Husted’s Struts in Action (Manning, 2002).

WebWork

WebWork is another MVC framework. Like Struts and Spring, it supports multiple
view technologies. One of the biggest differentiators for WebWork is that it adds
another layer of abstraction for handling web requests. The core interface for
handling requests is the Action interface, which has one method: execute().
Notice that this interface is not tied to the web layer in any way. The WebWork
designers went out of their way to make the Action interface unaware that it could
be used in a web context. This is good or bad, depending on your perspective.
Most of the time it will be used in a web application, so hiding this fact through
abstraction does not buy you much.

A feature that WebWork provides that Spring does not (at least, not explicitly)
is action chaining. This allows you to map a logical request to a series of Actions.
This means you can create several Action objects that all perform discrete tasks
and chain them together to execute a single web request.

Tapestry
Tapestry is another open source web framework that is quite different than ones
mentioned previously. Tapestry does not provide a framework around the

40

1.6.4

1.7

CHAPTER 1
A Spring jump start

request-response servlet mechanism, like Struts or WebWork. Instead, it is a
framework for creating web applications from reusable components (if you are
familiar with Apple’s WebObjects, Tapestry was inspired by its design).

The idea behind Tapestry is to relieve the developer from thinking about Ses-
sion attributes and URLs, and instead think of web applications in terms of com-
ponents and methods. Tapestry takes on the other responsibilities, such as
managing user state and mapping URLs to methods and objects.

Tapestry provides a view mechanism as well. That is, Tapestry is not a framework
for using JSPs—it is an alternative to JSPs. Much of Tapestry’s power lies in its custom
tags that are embedded with HTML documents and used by the Tapestry frame-
work. Needless to say, Tapestry provides a unique web application framework. To
learn more about Tapestry, take a look at Tapestry in Action (Manning, 2004).

Persistence frameworks

There really isn’t a direct comparison between Spring and any persistence frame-
work. As mentioned earlier, Spring does not contain any built-in persistence
framework. Instead, Spring’s developers recognized there were already several
good frameworks for this and felt no need to reinvent the wheel. They created an
ORM module that integrates these frameworks with rest of Spring. Spring pro-
vides integration points for Hibernate, JDO, OJB, and iBATIS.

Spring also provides a very rich framework for writing JDBC. JDBC requires a lot
of boilerplate code (getting resources, executing statements, iterating though query
results, exception handling, cleaning up resources). Spring’s JDBC module handles
this boilerplate, allowing you to focus on writing queries and handling the results.

Spring’s JDBC and ORM frameworks work within Spring’s transaction man-
agement framework. This means you can use declarative transactions with just
about any persistence framework you choose.

Summary

You should now have a pretty good idea of what Spring brings to the table. Spring
aims to make J2EE development easier, and central to this is its inversion of con-
trol. This enables you to develop enterprise applications using simple Java
objects that collaborate with each other through interfaces. These beans will be
wired together at runtime by the Spring container. It lets you maintain loosely
coupled code with minimal cost.

On top of Spring’s inversion control, Spring’s container also ofters AOP. This
allows you place code that would otherwise be scattered throughout you application

Summary 41

in one place—an aspect. When your beans are wired together, these aspects can
be woven in at runtime, giving these beans new behavior.

Staying true to aiding enterprise development, Spring offers integration to
several persistence technologies. Whether you persist data using JDBC, Hiber-
nate, or JDO, Spring’s DAO frameworks ease your development by providing a
consistent model for error handling and resource management for each of these
persistence frameworks.

Complementing the persistence integration is Spring’s transaction support.
Through AOP, you can add declarative transaction support to your application
without EJB. Spring also supports a variety of transaction scenarios, including
integration with JTA transactions for distributed transactions.

Filling out its support for the middle tier, Spring offers integration with other
various J2EE services, such as mail, E]Bs, web services, and JNDI. With its inver-
sion of control, Spring can easily configure these services and provide your appli-
cation objects with simpler interfaces.

To help with the presentation tier, Spring supports multiple view technologies.
This includes web presentation technologies like Velocity and JSP as well as sup-
port for creating Microsoft Excel spreadsheets and Adobe Acrobat Portable Doc-
ument Format (PDF) files. And on top of the presentation, Spring comes with a
built-in MVC framework. This offers an alternative to other web frameworks like
Struts and WebWork and more easily integrates with all of the Spring services.

So without further ado, let’s move on to chapter 2 to learn more about exactly
how Spring’s core container works.

Wiring beans

This chapter covers

m Wiring bean properties with XML

m Comparing manual wiring and autowiring
m Managing bean life-cycle events
Publishing and handling application events

42

Wiring beans 43

Have you ever stuck around after a movie long enough to watch the credits? It’s
incredible how many different people it takes to pull together a major motion pic-
ture. There are the obvious participants: the actors, the scriptwriters, the directors,
and the producers. Then there are the not-so-obvious: the musicians, the special
effects crew, and the art directors. And that’s not to mention the key grip, the sound
mixer, the costumers, the makeup artists, the stunt coordinators, the publicists, the
first assistant to the cameraman, the second assistant to the cameraman, the set
designers, the gaffer, and (perhaps most importantly) the caterers.

Now imagine what your favorite movie would have been like had none of these
people talked to each other. Let’s say that they all showed up at the studio and
started doing their own thing without any coordination. If the director keeps to
himself and doesn’t say “roll 'em,” the cameraman won’t start shooting. It proba-
bly wouldn’t matter anyway, because the lead actress would still be in her trailer
and the lighting wouldn’t work because the gaffer would not have been hired.

Maybe you’ve seen a movie where it looks like this is what happened. But most
movies (the good ones anyway) are the product of hundreds of people working
together toward the common goal of making a blockbuster movie.

In this respect, a great piece of software isn’t much different. Any nontrivial
application is made up of several components that must work together to meet a
business goal. These components must be aware of each other and talk to each
other to get their job done. In an online shopping application, for instance, an
order manager component may need to work with a product manager compo-
nent and a credit card authorization component. All of these will likely need to
work with a data access component to read and write from a database.

But as we saw in chapter 1, the traditional approach to creating associations
between application objects (via construction or lookup) leads to complicated
code that is difficult to reuse and unit-test. In the best case, these components do
more work than they should, and in the worst case, they are highly coupled to
each other, making them hard to reuse and hard to test.

In Spring, components are not responsible for managing their associations
with other components. Instead, they are given references to collaborating com-
ponents by the container. The act of creating these associations between applica-
tion components is known as wiring. And that is what we are going to cover in this
chapter—wiring. You will discover that Spring’s wiring goes far beyond establish-
ing an association between two objects. You will learn how you can also use Spring
to configure all of your beans’ properties, externalize deployment configurations
in separate files, and manage the life cycle of your beans. Boy, there sure is a lot to
this wiring business.

44

2.1

2.1.1

CHAPTER 2
Wiring beans

Containing your beans

As we promised, we will cover Spring’s wiring in depth. But before we go down that
road, it is important to understand what is controlling the wiring...and the config-
uring...and the life-cycle management. Whenever you configure any beans for the
Spring framework, you are giving instructions to the Spring container. Under-
standing the container helps you understand how your beans will be managed.

The container is at the core of the Spring framework. Spring’s container uses
inversion of control (IoC) to manage the components that make up an applica-
tion. This includes creating associations between collaborating components. As
such, these objects are cleaner and easier to understand, they support reuse, and
they are easy to unit-test.

There is no single Spring container. Spring actually comes with two distinct
types of containers: Bean factories (defined by the org.springframework.
beans.factory.BeanFactory interface) are the simplest of containers, providing
basic support for dependency injection. Application contexts (defined by the
org.springframework.context.ApplicationContext interface) build on the notion
of a bean factory by providing application framework services such as the ability
to resolve textual messages from a properties file and the ability to publish appli-
cation events to interested event listeners.

NOTE Although Spring uses the words “bean” and “JavaBean” liberally when
referring to application components, this does not mean that a Spring
component must follow the JavaBeans specification to the letter. A
Spring component can be any type of POJO (plain-old Java object). In
this book, assume the loose definition of JavaBean, which is synonymous
with POJO.

Beyond these two basic types of containers, Spring comes with several implemen-
tations of BeanFactory and ApplicationContext. Unless there is a need to specifi-
cally state which type of container is being used, we’ll refer to both bean factories
and application contexts synonymously with the word “container.”

Let’s start our exploration of Spring containers with the most basic of the
Spring containers: the BeanFactory.

Introducing the BeanFactory

As its name implies, a bean factory is an implementation of the factory design
pattern. That is, it is a class whose responsibility is to create and dispense beans.

Containing your beans 45

But unlike many implementations of the factory pattern, which often dole out a
single type of object, a bean factory is a general-purpose factory, creating and dis-
pensing many types of beans.

But there’s more to a bean factory than simply instantiation and delivery of
application objects. Because a bean factory knows about many objects within an
application, it is able to create associations between collaborating objects as they
are instantiated. This removes the burden of configuration from the bean itself
and the bean’s client. As a result, when a bean factory hands out objects, those
objects are fully configured, are aware of their collaborating objects, and are
ready to use. What’s more, a bean factory also takes part in the life cycle of a bean,
making calls to custom initialization and destruction methods, if those methods
are defined.

There are several implementations of BeanFactory in Spring. But the most
useful one is org.springframework.beans.factory.xml.XmlBeanFactory, which
loads its beans based on the definitions contained in an XML file.

To create an XmlBeanFactory, pass a java.io.InputStream to the constructor.
The InputStream will provide the XML to the factory. For example, the following
code snippet uses a java.io.FileInputStream to provide a bean definition XML
file to XmlBeanFactory:

BeanFactory factory =
new XmlBeanFactory (new FileInputStream("beans.xml")) ;
This simple line of code tells the bean factory to read the bean definitions from
the XML file. But the bean factory doesn’t instantiate the beans just yet. Beans are
“lazily” loaded into bean factories, meaning that while the bean factory will
immediately load the bean definitions (the description of beans and their prop-
erties), the beans themselves will not be instantiated until they are needed.

To retrieve a bean from a BeanFactory, simply call the getBean () method, pass-

ing the name of the bean you want to retrieve:

MyBean myBean = (MyBean) factory.getBean ("myBean") ;

When getBean() is called, the factory will instantiate the bean and begin setting
the bean’s properties using dependency injection. Thus begins the life of a bean
within the Spring container. We’ll examine the life cycle of a bean in section 2.1.3,
but first let’s look at the other Spring container, the application context.

46

CHAPTER 2
Wiring beans

2.1.2 Working with an application context

A bean factory is fine for simple applications, but to take advantage of the full
power of the Spring framework, you may want to move up to Spring’s more
advanced container, the application context.

On the surface, an ApplicationContext 1is much the same as a BeanFactory.
Both load bean definitions, wire beans together, and dispense beans upon
request. But an ApplicationContext offers much more:

= Application contexts provide a means for resolving text messages, includ-
ing support for internationalization (118N) of those messages.

m Application contexts provide a generic way to load file resources, such as images.

= Application contexts can publish events to beans that are registered as listeners.

Because of the additional functionality it provides, an ApplicationContext is
preferred over a BeanFactory in nearly all applications. The only times you
might consider using a BeanFactory are in circumstances where resources are
scarce, such as a mobile device. We will be using an ApplicationContext through-
out this book.

Among the many implementations of ApplicationContext are three that are
commonly used:

®m ClassPathXmlApplicationContext—ILoads a context definition from an
XML file located in the class path, treating context definition files as class
path resources.

m FileSystemXmlApplicationContext—I.oads a context definition from an
XML file in the filesystem.

®m XmlWebApplicationContext—I.0ads context definitions from an XML file
contained within a web application.

We'll talk more about XmlWebApplicationContext in chapter 8 when we discuss
web-based Spring applications. For now, let’s simply load the application context
from the file system using FileSystemxmlApplicationContext, or from the class
path using ClassPathxmlApplicationContext.

Loading an application context from the file system or from the class path is
very similar to how you load beans into a bean factory. For example, here’s how
you'd load a FileSystemXmlApplicationContext:

ApplicationContext context =
new FileSystemXmlApplicationContext ("c:/foo.xml") ;

2.1.3

Containing your beans 47

Similarly, you can load an application context from within the application’s class
path using ClassPathxmlApplicationContext:
ApplicationContext context =
new ClassPathXmlApplicationContext ("foo.xml") ;

The difference between these uses of FileSystemxXmlApplicationContext and
ClassPathXmlApplicationContext 1s that FileSystemXmlApplicationContext will
look for foo.xml in a specific location, whereas ClassPathxmlApplicationContext
will look for foo.xml anywhere in the class path.

In either case, you can retrieve a bean from an ApplicationContext just asyou
would from a BeanFactory: by using the getBean () method. This is no surprise
because the aApplicationContext interface extends the BeanFactory interface.

Aside from the additional functionality offered by application contexts,
another big difference between an application context and a bean factory is how
singleton beans are loaded. A bean factory lazily loads all beans, deferring bean
creation until the getBean() method is called. An application context is a bit
smarter and preloads all singleton beans upon context startup. By preloading
singleton beans, you ensure that they will be ready to use when needed—your
application won’t have to wait for them to be created.

Now that you know the basics of how to configure a Spring container, let’s take
a closer look at your bean’s existence within the container.

A bean’s life

In a traditional Java application, the life cycle of a bean is fairly simple. Java’s new
keyword 1is used to instantiate the bean (or perhaps it is deserialized) and it’s
ready to use. In contrast, the life cycle of a bean within a Spring container is a bit
more elaborate. It is important to understand the life cycle of a Spring bean,
because you may want to take advantage of some of the opportunities that Spring
offers to customize how a bean is created.

Figure 2.1 shows the startup life cycle of a typical bean as it is loaded into a
BeanFactory container.

As you can see, a bean factory performs several setup steps before a bean is
ready to use. The following list explains each of these steps in more detail:

1 The container finds the bean’s definition and instantiates the bean.

2 Using dependency injection, Spring populates all of the properties as
specified in the bean definition.

3 If the bean implements the BeanNameAware interface, the factory calls
setBeanName () passing the bean’s ID.

48

CHAPTER 2
Wiring beans

4 If the bean implements the BeanFactoryaAware interface, the factory calls
setBeanFactory (), passing an instance of itself.

5 If there are any BeanPostProcessors associated with the bean, their post-
ProcessBeforeInitialization() methods will be called.
6 Ifan init-method is specified for the bean, it will be called.

7 Finally, if there are any BeanPostProcessors associated with the bean,
their postProcessAfterInitialization () methods will be called.

At this point, the bean is ready to be used by an application and will remain in the
bean factory until it is no longer needed. It is removed from the bean factory in
two ways.

" Call custom
Instantiate T
A 4
Populate Post-initialization
properties BeanPostProcessors

! !

Bean Is Ready

BeanNameAware's

setBeanName() To Use
Container s
< Shutdown
v
BeanFactoryAware's i
setBeanFactory()
DisposableBean's
destroy()
Pre-initialization
BeanPostProcessors v
Call custom
destroy-method
A4
InitializingBean's ¢

afterPropertiesSet() —

Figure 2.1 The life cycle of a bean within a Spring bean factory container

Containing your beans 49

1 If the bean implements the DisposableBean interface, the destroy()
method is called.

2 If a custom destroy-method is specified, it will be called.

The life cycle of a bean within a Spring application context differs only slightly
from that of a bean within a bean factory, as shown in figure 2.2.

Instanting Call custom

nstantigesy g init-method
Populate Post-initialization
properties BeanPostProcessors

|
: v

BeanNameAware's

setBeanName() Bean Is Ready
To Use
v Container Is
Shutdown
BeanFactoryAware's
setBeanFactory() i
v DisposableBean's
snContextAware destroy()
A4
v Call custom
Pre-initialization destroy-method
BeanPostProcessors i
y

InitializingBean's
afterPropertiesSet()

Figure 2.2 The life cycle of a bean in a Spring application context

50

2.2

CHAPTER 2
Wiring beans

The only difference here is that if the bean implements the ApplicationContext-
Aware interface, the setApplicationContext () method is called.

Regardless of which container you use, you'll need to tell Spring about your
application’s beans and how they are related. Let’s take a look at how to place
beans within the Spring container using XML.

Basic wiring

Piecing together beans within the Spring container is known as wiring. When wir-
ing beans, you tell the container what beans are needed and how the container
should use dependency injection to tie them together.

Despite its name, basic wiring doesn’t require that you have an electrician’s
license. You only need to know a little XML. But before we get into the details of
wiring beans using XML, let’s set the stage for the sample application you’'ll build
while learning how to work with Spring.

Suppose that you're contracted by Spring Training, Inc., a technical training
organization. Spring Training wants you to build an application that enables stu-
dents to register for courses online.

To get started, let’s build the service layer of the application. Figure 2.3 shows
the objects that make up this portion of the Spring Training application.

There are two service components in the service layer: a student service and
a course service. The student service handles all student-related matters, while
the course service is responsible for course-related functionality. These services
are defined by interfaces. The StudentService interface is as follows:

public interface StudentService {
public Student getStudent (String id) ;
public void createStudent (Student student) ;
public java.util.Set getCompletedCourses (Student student) ;

}
And the courseService looks like this:

public interface CourseService ({
public Course getCourse (String id) ;
public void createCourse (Course course) ;
public java.util.Set getAllCourses() ;
public void enrollStudentInCourse (Course course,
Student student) throws CourseException;

Basic wiring 51

Service Layer

|

[|

| |

| I

| StudentService CourseService |

| |

i I i |

| I

[StudentServicelmpl |« CourseServicelmpl |

| |

DR P

e e T

: v v |

[StudentDao CourseDao |

| |

B T

| |

| |

[StudentDaolmpl CourseDaolmpl | Figure 2.3

| | The beans that make
| up the service layer of

| Data Access Layer the Spring Training

= . application

StudentServiceImpl (listing 2.1) is the implementation of the StudentService
interface.

Listing 2.1 A student service handles student-related functionality

package com.springinaction.service.training;

public class StudentServiceImpl implements StudentService {
private StudentDao studentDao;

public StudentServiceImpl (StudentDao dao) { <+— Inject by constructor...
studentDao = dao;

}

public void setStudentDao (StudentDao dao) { <+ Or by setter
studentDao = dao;

}

public Student getStudent (String id) {
return studentDao.findById(id) ;

}

52

CHAPTER 2
Wiring beans

public void createStudent (Student student) {
studentDao.create (student) ;
}

public java.util.Set getCompletedCourses (Student student) {
return studentDao.getCompletedCourses (student) ;
}

}
|

StudentServiceImpl delegates much of its responsibility to a StudentDao. A
StudentDao handles interaction with the database to read and write student infor-
mation. The actual implementation of the studentDao object isn’t important right
now (we’ll flesh it out in more detail in chapter 4 when we talk about working with
databases). For the time being, just assume an implementation of StudentDao
named StudentDaoImpl.

Notice that there are two ways that a StudentServiceImpl can be given a refer-
ence to its StudentDao: either via its constructor or via the setStudentDao () method.

CourseServiceImpl (listing 2.2), the implementation of CourseService, is
slightly more interesting than StudentServiceImpl. For the most part, CourseSer-
viceImpl delegates responsibility to a CourseDao object. But the enrollStudentIn-
Course () method needs to be smarter. Before a student may enroll in a course, he
must have completed all of the prerequisite courses.

Listing 2.2 CourseServicelmpl.java

package com.springinaction.service.training;

import java.util.Iterator;
import java.util.Set;

public class CourseServicelImpl implements CourseService {
private CourseDao courseDao;
private StudentService studentService;
private int maxStudents;

public CourseServicelImpl (CourseDao dao) {
this.courseDao = dao;
1

Set CourseDao via
constructor injection

public void setStudentService (StudentService service) {
this.studentService = service;
}

Basic wiring 53

public void setMaxStudents (int maxStudents) {
this.maxStudents = maxStudents;

}

pubic int getMaxStudents () {
return maxStudents;

}

public Course getCourse (String id)
return courseDao.findById(id) ;

}

public void createCourse (Course course) {
courseDao.create (course) ;

}

public void enrollStudentInCourse (Course course,
Student student) throws CourseException {

if (course.getStudents () .size() >= maxStudents) {
throw new CourseException("Course is full");
}

enforcePrerequisites (course, student) ;
course.getStudents () .add (student) ;

courseDao.update (course) ;

private void enforcePrerequisites (Course course,
Student student) throws CourseException {

Set completed =
studentService.getCompletedCourses (student) ;
Set preregs = course.getPrerequisites();

for (Iterator iter = preregs.iterator(); iter.hasNext();) {
if (!completed.contains (iter.next ())) {
throw new CourseException("Prerequisites are not met.");

}
}
}
}
|

As with StudentServiceImpl, CourseServiceImpl receives its CourseDao reference
through its constructor. Again let’s just assume an implementation of CoursebDao,
for now called CourseDaoImpl.

54

2.2.1

CHAPTER 2
Wiring beans

The enrollstudentInCourse() method makes a call to enforcePrerequi-
sites() prior to adding the student to the course. If the student hasn’t met the
prerequisites, enforcePrerequisites() will throw a CourseException, which is
summarily rethrown by enrollStudentInCourse().

Notice that enforcePrerequisites() uses a reference to a StudentService
implementation to retrieve all of a student’s completed courses. This means that
in addition to CourseDao, CourseServiceImpl collaborates with StudentService to
ensure that the business requirement of prerequisites is met. CourseServiceImpl
receives its reference to a StudentService via the setStudentService () method,
unlike CourseDao, which is set through the constructor. The motivation behind
this decision is that the courseDao property is used by most of CourseServiceImpl,
so you shouldn’t be able to create a CourseServiceImpl instance without setting
the courseDao property. But only the enforcePrerequisites() method requires a
reference to a StudentService, so it can be optionally set if needed.

Now that the stage has been set, let’s see how we can wire our components into
our application through a Spring wiring file (“spring-training.xml”).

Wiring with XML
In theory, bean wiring can be driven from virtually any configuration source,
including properties files, a relational database, or even an LDAP directory. But in
practice, XML is the configuration source of choice for most Spring-enabled
applications and is the way we’ll wire beans throughout this book.

Several Spring containers support wiring through XML, including

® XmlBeanFactory—A simple BeanFactory that loads a context definition file
by way of a java.io.InputStream.

m ClassPathXmlApplicationContext—An application context that loads the
context definition file from the class path.

m FileSystemXmlApplicationContext—An application context that loads the
context definition file from the file system.

® XmlWebApplicationContext—An application context used with Spring-
enabled web applications that loads the context definition file from a web
application context. We’ll look at this container in chapter 8 when we talk
about using Spring with web applications.

All of these XML-oriented containers have their beans defined by a remarkably
simple XML file. At the root of the context definition file is the <beans> element.
This <beans> has one or more <bean> subelements. Each <beans> element (not

Basic wiring 55

surprisingly) defines a JavaBean (or any Java object, actually) to be configured
within the Spring container.

For example, the XML file in listing 2.3 shows a trivial context definition file
for Spring.

Listing 2.3 Configuring beans within a Spring container

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd" >

<beans> <— The root element
<bean id="foo"

class="com.springinaction.Foo"/> B
ean

<bean id="bar" instances

class="com.springinaction.Bar"/>
</beans>

This simple bean wiring XML file configures two beans, named foo and bar, in the
Spring container. Let’s take a closer look at how the <bean> element defines a
bean within an application context.

2.2.2 Adding a bean

The most basic configuration for any bean in Spring involves the bean’s ID and its
fully qualified class name. Adding a bean to the Spring container is as simple as
adding a <bean> element to the container’s XML file, similar to this:

The bean's id is "foo"

<bean id="foo"
class="com.springinaction.Foo" />

The bean's fully qualified class name

For example, let’s start a bean definition XML file for the Spring Training appli-
cation by adding definitions of the implementations of Coursebao and Student-
Dao, as shown in listing 2.4.

56

CHAPTER 2
Wiring beans

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans> Register the courseDao bean
<bean id="courseDao"
class="com.springinaction.training.service.CourseDaoImpl"/>

Register the studentDao bean
<bean id="studentDao"
class="com.springinaction.training.service.StudentDaoImpl"/>

</beans>

As far as you know, CourseDaoImpl and StudentDaoImpl have no collaborators or
other properties to be configured (that’s why they’re dummy implementations),
so the lines in listing 2.4 are sufficient to tell Spring how to load them into the
application context. And as simple as this configuration may be, it still serves as
an illustration of how beans are uniquely defined in a Spring container.

Prototyping vs. singleton

By default, all Spring beans are singletons. When the container dispenses a
bean (either as the result of a call to getBean () or through wiring), it will always
give the exact same instance of the bean. But what if you want the context to
return a unique instance each time it is asked for a specific bean? What if you
need a unique instance of a bean each time it is retrieved from the container?

In this case, you would want to define a prototype bean. Defining a prototype
means that instead of defining a single bean, you define a blueprint. Beans are
then created based on this blueprint.

The singleton property of <beans tells the context whether or not a bean is to
be defined as a singleton. By default it is set to true, but setting it to false results
in a bean being defined as a prototype:

<bean id="foo"

class="com.springinaction.Foo"
singleton="false" />

The bean is a prototype

Prototyped beans are useful when you want the container to give a unique
instance of a bean each time it is asked for, but you still want to configure one or

Basic wiring 57

more properties of that bean through Spring. For example, let’s change the stu-
dentDao bean’s definition so that a new instance is created every time it is needed:
<bean id="studentDao"
class="com.springinaction.training.service.StudentDaoImpl"
singleton="false"/>
Bear in mind that a new instance of a prototype bean will be created each time
getBean () is invoked with the bean’s name. This could be bad if your bean uses a
limited resource such as database or network connections. At a minimum, you
may incur a small performance hit each time a new instance is created. Consider
these implications of setting singleton to false and avoid doing so unless it is
absolutely necessary.

Configuring a bean as a prototype may be useful if you’d like to use the Spring
context as a factory for new instances of domain objects, such as Student or
Course objects. As prototype beans, you would be able to easily configure the
objects at the factory level (like any other bean), while still guaranteeing that the
factory would dispense a unique instance each time you ask for a domain object.

Initialization and destruction

When a bean is instantiated, it may be necessary to perform some initialization to
get it into a usable state. Likewise, when the bean is no longer needed and is
removed from the container, some cleanup may be in order. For that reason,
Spring can hook into two life-cycle methods of each of your beans to perform this
setup and teardown.

Declaring a custom init-method in your bean’s definition specifies a method
that is to be called on the bean immediately upon instantiation. Similarly, a cus-
tom destroy-method specifies a method that is called just before a bean is
removed from the container:

<bean id="foo"
class="com.springinaction.Foo"

init-method="setup" destroy-method="teardown"/>
Call setup() when bean Call teardown() when bean
is loaded into the container is unloaded from the container

A typical example of this would be a connection pooling bean:

public class MyConnectionPool {

public void initialize() {

58

2.2.3

CHAPTER 2
Wiring beans

// initialize connection pool

}

public void close() {
// release connections

}

}

The bean definition would appear as follows:

<bean id="connectionPool"

class="com.springinaction.chapter02.MyConnectionPool"
init-method="initialize" destroy-method="close"/>
Defined in this way, the initialize() method will be called immediately after
MyConnectionPool is instantiated, allowing it the opportunity to initialize the
pool. Just before the bean is removed from the container and discarded, the
close () method will release the database connections.

Spring also provides two interfaces that perform the same functionality: Ini-
tializingBean and DisposableBean. The InitializingBean interface provides
one method, afterPropertiesset (), that will be called once all of a bean’s prop-
erties have been set. Similarly, DisposableBean’s one method, destroy (), will be
called when the bean is removed from the container.

The one benefit of this approach is that the Spring container automatically
detects beans that implement these interfaces and invokes their methods without
any configuration on your part. However, by implementing these interfaces, you
tie your beans to Spring’s API. Because of this, you should rely on the init-method
and destroy-method bean definitions to initialize and destroy your beans when-
ever you can. The only scenario where you might favor Spring’s interfaces is when
you are developing a framework bean that is to be used specifically within
Spring’s container.

Now you’ve seen how to configure beans individually within the Spring con-
tainer. But to paraphrase John Donne, no bean is an island. For a bean to be of any
use in an application, it will have to get to know other beans and gain some iden-
tity. Let’s see how to set bean properties in Spring, starting with setter injection.

Injecting dependencies via setter methods

Setter injection is not something you need to get every winter to keep from get-
ting the flu. Instead, it is a technique for populating a bean’s properties based on
standard naming conventions. The JavaBean specification formalized the already
well-practiced idiom of having matching “set” and “get” methods that are used to

Basic wiring 59

set and retrieve a bean property’s value. For instance, a maxStudents property may
have the following getter and setter methods:

public void setMaxStudents (int maxStudents) {
this.maxStudents = maxStudents;

pubic int getMaxStudents() {
return maxStudents;
1

Since bean properties have these methods, why not let Spring use them to config-
ure the bean? Setter injection does just that, and the <property> subelement of
<bean> is the means to inject into a bean’s properties through their setter meth-
ods. Within the <propertys> element, you can define what property you are con-
figuring and what value you are injecting into this property. And as you will see,
you are able to inject just about anything, from primitive types to collections to
even other beans within your application.

Simple bean configuration

It’s quite common for a bean to have properties that are of simple types like int
and string. In fact, in the Spring Training application we have a few beans that
have such properties. Using the <value> subelement of <property> you can set
properties that are of primitive types, such as int or float, or are typed as
java.lang.String in the following way:

<bean id="foo"
class="com.springinaction.Foo"
<property name="name"><value>Foo McFoo</value>
</property>
</bean>

Set the name property by calling
setName("Foo McFoo")

For example, the courseService bean can be configured to limit the number of stu-
dents enrolled in a course via its maxStudents property. To limit the number of
students enrolled in any course to no more than 30, change the definition of the
courseService bean to the following:
<bean id="courseService" ...>
<property name="maxStudents">
<value>30</values>
</property>
</beans>

60

CHAPTER 2
Wiring beans

Here you are setting an int property, but you could set any primitive or String
property in the same way. Spring will automatically determine the type of the
property being set and convert the value appropriately.

At this point you know how to inject simple properties into your beans. But
what about properties that are of more complex types, such as other objects? Let’s
see how you can play matchmaker and introduce your beans to each other.

Referencing other beans
Believe it or not, socializing your beans doesn’t involve sending them on blind
dates with your single bean friends or to bean single bars (you just never know
who a bean will hook up with there). Instead, beans get acquainted within your
application in the same way they are defined—in the container’s XML file.

Just as we did previously, we use the <propertys> element to set properties that
reference other beans. The <ref> subelement of <property> lets us do just that:

Wire the bean
named "bar"

<bean id="foo"
class="com.springinaction.Foo">

<property name="bar"> to the bar
<ref bean="bar"/> property
</property>
</bean>

<bean id="bar"
class="com.springinaction.Bar"/>

For example, recall that the CourseServiceImpl class uses a reference to a Student-
Service bean when ensuring that a student has met the prerequisites for a course.
This reference is wired through the setStudentService() method on Course-
ServiceImpl and is declared in XML by changing the courseService bean defini-
tion to

<bean id="courseService"
class="com.springinaction.service.training.CourseServiceImpl">
<property name="studentService">
<ref bean="studentService"/>
</property>
</beans>

The container gives the courseService bean a StudentService bean (through
setStudentService ()), thereby freeing CourseServiceImpl from having to look up
a StudentService bean on its own.

Basic wiring 61

Inner beans
Another lesser-used means of wiring bean references is to embed a <bean> ele-
ment directly in the <property> element. For example, the studentService prop-
erty of the courseService bean could be wired as follows:

<bean id="courseService"

class="com.springinaction.service.training.CourseServiceImpl">
<property name="studentService">
<bean
class="com.springinaction.service.training.StudentServiceImpl"/>
</propertys>

</bean>
The drawback of wiring a bean reference in this manner is that you can’t reuse the
instance of StudentServiceImpl anywhere else—it is an instance created specifi-
cally for use by the courseservice bean. You may also find that using inner-bean
definitions impacts the readability of the XML. On the other hand, this could be
beneficial if we don’t want an actual bean instance to be accessible without a wrap-
per bean. For example, if we are creating an AOP proxy, we may not want the tar-
get bean to be accessible in our BeanFactory. In this case, configuring the proxy’s
target using an inner bean would achieve this goal.

Now let’s take a look at the case where we need to inject not just one object, but
a collection of objects.

Wiring collections
What if you have a property that is a List of values? Or a set of bean references?
No problem. Spring supports many types of collections as bean properties, as
shown in table 2.1.

Table 2.1 Collections supported by Spring’s wiring

XML Type
<list> java.awt.List, arrays
<set> java.awt.Set
<map> java.awt .Map
<props> java.awt.Properties

Wiring collections isn’t much different than wiring singular properties. Instead of
using <values> or <ref> elements, use one of the elements from table 2.1.

62

CHAPTER 2
Wiring beans

Wiring lists and arrays

Whether you have an array property or a property that’s of the type
java.util.List, you will use the <1ist> element to wire the property in the wiring
XML file:

Wire a list

=N : n
property <property name="barList">

<list>
<valuesbarl</value>
<ref bean="bar2"/>
</list>
</property>

List elements can

be any type of element,
including <value>, <ref>, or
even another <list>.

In chapter 4, you’ll see how to use Hibernate to persist the objects in the Spring
training application. But as a demonstration of how to wire List properties using
<list>, we’ll give you a sneak peek now. When using Hibernate with Spring,
youll wire a LocalSessionFactoryBean into the container. The LocalSession-
FactoryBean has a mappingResources property that takes a List of Strings con-
taining the names of Hibernate mapping files. Here’s a snippet of XML that we’ll
introduce to the bean wiring file when we get around to talking about Hibernate:

<bean id="sessionFactory" class=
"org.springframework.orm.hibernate.LocalSessionFactoryBean">
<property name="mappingResources">
<list>
<value>/com/springinaction/training/model/Course.hbm.xml</value>
<value>/com/springinaction/training/model/Student .hbm.xml</value>
</list>
</property>

</bean>

Although the previous snippet wires a List of String values, you are not limited
to using only <value>s as entries in a <list>. You may use any element that is
valid when wiring a singular property, including <values, <ref>, or even another
collection such as <list>. The only limitation is in what your bean’s expectations
are; you can’t wire in a List of Foos when your bean is expecting a List of Bars.

Wiring sets

Lists are great, but what if your bean has a java.util.Set property to guarantee
uniqueness in the collection? That’s what the <set> element is for:

Basic wiring 63

Wire a set
property <property name="barSet">

<set>
<valuesbarl</value>
<ref bean="bar2"/>
</set>

</propertys> . .
Sets, like Lists, can

take any type of element

Notice that you use <set> exactly the way you would use <1lists. The only differ-
ence is in how it is wired to a bean property. Where <list> wires values to a
java.util.List or an array, <set> wires values to a java.util.Set.

Wiring maps

You can wire java.util.Map collections in Spring using the <map> element. Map
collections are somewhat different than Lists and Sets. Each entry in a Map is
made up of a key and a value defined by the <entry> element:

<property name="barMap">

The map's
<map>

entries
<entry key="keyl">

<valuesbarl</value>
</entry>
<entry key="key2">
The map's <ref bean="bar2"/>
keys </entry>
</map>
</property>

The value of a map <entrys, just as with <1ist> and <set>, can be any valid prop-
erty element. Again, this includes <value>, <ref>, <list>, or even another <map>.

When wiring an <entry>, notice that the key attribute will also be a String.
This is a slight limitation over the full functionality of java.util.Map, which
allows any object to be the key of a map entry. However, this limitation doesn’t
often present a problem, as Maps are typically keyed with strings anyway.

Wiring properties
A java.util.Properties collection is the final type of collection that can be wired
in Spring. It is wired with the <props> element. Each element of a properties col-
lection is wired with the <prop> element.

In many ways, <props> works similarly to <map>. The big difference is that the
value of a <prop> entry is always a String, so there is no need to use the <value>
element to differentiate between String values and non-String values:

64

CHAPTER 2
Wiring beans

<property name="barProps">
<props> The property key
<prop key="keyl"sbarl</prop>
<prop key="key2">bar2</prop>
</props>
</property>

The property value

You'll use <props> several places in Spring, including when you create URL map-
pings within Spring’s Model/View/Controller (MVC) framework. We’ll talk more
about the details of URL mappings in chapter 8. But for now, here’s an example
showing how the <props> element is used to declare URL mappings:
<property name="mappings">
<props>
<prop key="/viewCourseDetails.htm">viewCourseController</prop>

</props>
</property>

Setting null values

So far we have talked about configuring the properties of our beans with primi-
tive types, collections, or other beans within our application. But what if in order
to satisfy a requirement you need to explicitly set a property to nul1? This is really
just another kind of wiring, only in this case we are wiring null instead of a value
or bean.

To set a property to null, you simply use the <null/> element. For example, to
set a foo property to null, you'd use this:

<property name="foo"><null/><property>

Why would you ever need to do this? If you do not explicitly wire a property in
Spring, you may assume that the property is left null. But that’s not always true.
For one thing, the bean itself may set the property to some default value. Or, if
you’re using autowiring, the property may be implicitly wired. In either case, you
may need to use <null/> to explicitly set the property to null.

An alternative to setter injection

Setter injection is a straightforward way to configure and wire bean properties.
But one shortcoming of setter injection is that assumes that all mutable proper-
ties are available via a setter method. You may not want all of your beans to
behave this way. For one thing, when this type of bean is instantiated, none of its
properties have been set and it could possibly be in an invalid state. Second, you

2.2.4

Basic wiring 65

may want certain properties to be set just once—when the bean is created—and
become immutable after that point. This is complicated, if not impossible, when
exposing all properties through setters.

An alternative is to design your beans where some properties are set via con-
structors. This is a particularly good design if some properties are required and
immutable, such as a DAO’s DataSource. So if you choose to design some of your
beans this way or are working with beans that are already designed this way, you
still need a way to configure these objects through Spring. You're in luck.

Spring does offer another form of dependency injection: constructor injec-
tion. Let’s see how to use constructor injection to set the minimal properties for
a bean.

Injecting dependencies via constructor

In Java, a class can have one or more constructors, each taking a unique set of
arguments. With that in mind, you can program your bean classes with con-
structors that take enough arguments to fully define the bean at instantiation.
Using constructors this way, it is impossible to create a bean without it being
ready to use.

Whereas the shortcoming of setter injection is that it is not clear which prop-
erties are required and which are optional, constructor injection’s main strength
is in the strong dependency contract imposed by constructors. That is, construc-
tors make it virtually impossible to instantiate a bean that is not fully defined and
ready to use.

With setter injection, we defined the property we were injecting with the
<property> subelement. Constructor injection is similar, except in this case you’ll
use the <constructor-arg> subelement of <bean> to specify arguments to pass to a
bean’s constructor at instantiation. One difference between these two is that the
<constructor-arg> does not contain a name attribute that the <propertys subele-
ment did (we will discuss why in a moment). An example of constructor injection
configuration is demonstrated here:

<bean id="foo" <bean id="foo"
class="com.springinaction.Foo"> class-"com.springinaction.Foo">
<constructor-arg> <constructor-arg>
<value>42</value> <ref bean="bar"/>
</constructor-arg> </constructor-arg>
</bean </beans>

Construct a Foo
through its constructor

66

CHAPTER 2
Wiring beans

Returning to our Spring Training application, both CourseServiceImpl and Stu-
dentServiceImpl require references to a DAO object (CourseDaoImpl and Student-
ServiceImpl, respectively). Because these service beans are useless without their
DAO objects, each has a constructor that sets the DAO properties at bean creation
time. To set the DAO properties on the courseService and studentService beans,
use the following code:

<bean id="studentService"
class="com.springinaction.training.service.StudentServiceImpl">
<constructor-arg>
<ref bean="studentDao"/>
</constructor-args>
</bean>

<bean id="courseService"
class="com.springinaction.training.service.CourseServiceImpl">
<constructor-arg>
<ref bean="courseDao"/>
</constructor-arg>
</bean>

Notice that <constructor-arg> can take a <ref> element just like <property> does.
In fact, you can use any of the same subelements you used with <propertys in the
same way when setting constructor arguments with <constructor-args.

Handling ambiguous constructor arguments

Single-argument constructors are easy to deal with. But what if your constructor
has multiple arguments? Worse, what if the arguments are all the same type? How
can you specify which values go to which arguments?

For example, what if your bean’s constructor takes a String argument and an
java.net.URL argument?

public class Foo {
public Foo(String argl, java.net.URL arg2) {

)
)

Both the java.net.URL and String types can be converted from the <values ele-
ment.! So which one will be sent as arg1l and which will be sent as arg2?

! We’ll show you how Spring converts strings to URLs when we talk about PropertyEditors in
section 2.4.3.

Basic wiring 67

At first thought, this may seem to be a silly question. You may be thinking that
the argument that looks like a URL will be sent as arg2. But suppose your bean is
wired like this:

<bean id="foo"
class="com.springinaction.Foo">
<constructor-arg>
<values>http://www.manning.com</value>
</constructor-args>
<constructor-arg>
<value>http://www.springinaction.com</value>
</constructor-args>
</bean>

Hmmm. Both <constructor-arg> elements have values that look like URLs. Okay,
so maybe Spring will wire the arguments in the order that they appear—http://
www.manning.com will be wired to argl and http://www.springinaction.com will
be wired to arg2. Is that how it works?

Good guess, but that’s not how it works. Spring will not attempt to guess its
way through your constructor arguments. Instead, it will throw an org. spring-
framework.beans. factory.UnsatisfiedDependencyException, indicating that there
is an ambiguity in the constructor arguments.

Fortunately, there are two ways you can deal with ambiguities among construc-
tor arguments: by index and by type.

The <constructor-arg> element has an optional index attribute that specifies
the ordering of the constructor arguments. For example, to send http://
www.manning.com as the URL argument and http://www.springinaction.com as the
String argument, simply add the index attribute like this (index is zero-based):

<bean id="foo"
class="com.springinaction.Foo">
<constructor-arg index="1">
<values>http://www.manning.com</values>
</constructor-arg>
<constructor-arg index="0">
<values>http://www.springinaction.com</value>
</constructor-arg>
</bean>

The other way to deal with <constructor-arg> ambiguity is to use the type
attribute. The type attribute lets you specify exactly what type each <constructor-
arg> is supposed to be so that Spring can make an informed decision as to which
argument goes where. For example:

68

CHAPTER 2
Wiring beans

<bean id="foo"
class="com.springinaction.Foo">
<constructor-arg type="java.lang.String">
<values>http://www.manning.com</value>
</constructor-args
<constructor-arg type="java.net.URL">
<values>http://www.springinaction.com</value>
</constructor-args>
</bean>

Wired this way, http://www.habuma.com will be the URL argument and http://
www.manning.com will be the String argument.

Which should you use—index or type? In the example above, it didn’t matter,
because each argument had a distinct type. But what if both arguments were
strings? If that’s the case, the type attribute won’t help you much and you must
opt for the more specific index attribute.

How to choose: Constructor or setter?

There are certain things that most people can agree upon: The fact that the sky
is blue, that Michael Jordan is the greatest player to touch a basketball, and
that Star Trek VV should have never happened. And then there are those things that
stir up controversy, such as politics, religion, and the eternal “tastes great/less
filling” debates.

Likewise, the choice between constructor injection and setter injection stirs up
as much discourse as the arguments surrounding creamy versus crunchy peanut
butter. Both have their merits and their weaknesses. Which should you choose?

Here are some arguments in favor of constructor injection:

= As we stated before, constructor injection enforces a strong dependency
contract. In short, a bean cannot be instantiated without being given all of
its dependencies. It is perfectly valid and ready to use upon instantiation.
Of course, this assumes that the bean’s constructor has all of the bean’s
dependencies in its parameter list.

m Because all of the bean’s dependencies are set through its constructor,
there’s no need for superfluous setter methods. This helps keep the lines
of code at a minimum.

= By only allowing properties to be set through the constructor, you are, in
effect, making those properties immutable.

Autowiring 69

But there are also many arguments against constructor injection (and thus, in
favor of setter injection):

m If a bean has several dependencies, the constructor’s parameter list can be
quite lengthy.
m If there are several ways to construct a valid object, it can be hard to come

up with unique constructors since constructor signatures vary only by the
number and type of parameters.

m If a constructor takes two or more parameters of the same type, it may be
difficult to determine what each parameter’s purpose is.

= Constructor injection does not lend itself readily to inheritance. A bean’s
constructor will have to pass parameters to super () in order to set private
properties in the parent object.

Our approach to choosing between setter injection and constructor injection, for
lack of a hard and fast rule, will be to do what works best in each situation. Quite
simply, choose constructor injection when constructor injection makes sense and
choose setter injection when setter injection makes sense. A good yardstick to go
by is the clarity of your Spring configuration file. For instance, if you are creating
a bean that has only one mandatory property (such as a DAO object as its Data-
Source), constructor injection would probably be a good choice. On the other
hand, if you have a bean that has multiple, optional properties (such as the Data-
Source itself), setter injection would be more appropriate.

To put another way, sometimes you feel like a nut...sometimes you don’t. Do
what works for you.

Fortunately, Spring doesn’t force you into any specific choice regarding
dependency injection. You may inject a bean using either form of dependency
injection. In fact, you are free to mix-'n’-match setter injection and constructor
injection in the same context definition file—or even in the same bean.

Now that you've seen the basics of wiring beans in a Spring container using
Spring’s context definition file, let’s look at ways to customize how Spring per-
forms the wiring.

2.3 Autowiring

So far you've seen how to wire all of your bean’s properties explicitly using the
<property> element. Alternatively, you can have Spring wire them automatically
by setting the autowire property on each <bean> that you want autowired:

70

CHAPTER 2
Wiring beans

<bean id="foo"

/>

class-"com.springinaction.Foo"
autowire="autowire type"

Auto-wire this bean's properties

There are four types of autowiring:

byName—Attempts to find a bean in the container whose name (or ID) is
the same as the name of the property being wired. If a matching bean is
not found, then the property will remain unwired.

byType—Attempts to find a single bean in the container whose type
matches the type of the property being wired. If no matching bean is
found, then the property will not be wired. If more than one bean matches,
an org.springrframework.beans.factory.UnsatisfiedDependencyExcpetion
will be thrown.

constructor—Ities to match up one or more beans in the container with the
parameters of one of the constructors of the bean being wired. In the event
of ambiguous beans or ambiguous constructors, an org.springframe-
work .beans . factory.UnsatisfiedDependencyException will be thrown.

autodetect—Attempts to autowire by constructor first and then using
byType. Ambiguity is handled the same way as with constructor and
byType wiring.

For example, the declaration of the courseService bean when explicitly wired

looks like this:

<bean id="courseService"

class="com.springinaction.training.service.CourseServiceImpl">
<property name="courseDao">
<ref bean="courseDao"/>
</property>
<property name="studentService">
<ref bean="studentService"/>
</property>

</beans>

But when autowiring (by name), it looks like this:

<bean id="courseService"

class="com.springinaction.training.service.CourseServiceImpl"
autowire="byName"/>

2.3.1

Autowiring 71

By using byName autowiring, you are telling the container to consider all proper-
ties of the CourseServiceImpl and look for beans declared with the same name as
the property. In this case, two properties, courseDao and studentService, are eli-
gible for autowiring through setter injection. If beans are declared in the wiring
file with the names courseDao and studentService, those beans will be wired to
courseDao and studentService, respectively.

Autowiring using byType works in a similar way to byName, except that instead of
considering a property’s name, the property’s type is examined. For example, if the
courseService bean’s autowire is set to byType instead of byName, the container will
search itself for a bean whose type is com. springinaction.training.CourseDao and
another bean whose type is com. springinaction.training.StudentService.

For an example of autowiring by constructor consider the studentService bean:

<bean id="studentService"

class="com.springinaction.training.service.StudentServiceImpl"
autowire="constructor"/>
The studentServiceImpl class has a single-argument constructor that takes a
StudentDao as an argument. If the container can find a bean whose type is
com.springinaction.training.StudentDao, it will construct StudentServiceImpl
by passing that bean to the constructor.

As you recall, StudentServiceImpl also has a setStudentDao () method that can
be used to set the studentDao property. So, in addition to constructor autowiring,
you could also apply byType or byName. Or if you’d like the flexibility of letting the
container decide, you could use autodetect:

<bean id="studentService"

class="com.springinaction.training.service.StudentServiceImpl"
autowire="autodetect"/>
By setting autowire to autodetect, you instruct the Spring container to attempt to
autowire by constructor first. If it can’t find a suitable match between constructor
arguments and beans, it will then try to autowire using byType.

Handling ambiguities of autowiring

When autowiring using byType or constructor, it’s possible that the container
may find two or more beans whose type matches the property’s type or the types
of the constructor arguments. What happens when there are ambiguous beans
suitable for autowiring?

Unfortunately, Spring isn’t capable of sorting out ambiguities and chooses to
throw an exception rather than guess which bean you meant to wire in. If you

72

2.3.2

2.3.3

2.3.4

CHAPTER 2
Wiring beans

encounter such ambiguities when autowiring, the best solution is often to simply
not autowire the bean.

Mixing auto and explicit wiring
Just because you choose to autowire a bean, that doesn’t mean you can’t explicitly
wire some properties. You can still use the <property> element on any property as
if you hadn’t set autowire.
For example, to explicitly wire the courseDao property of CourseServiceImpl,
but still autowire the studentService property, you'd use this code:
<bean id="courseService"
class="com.springinaction.training.service.CourseServiceImpl"
autowire="byName" >
<property name="courseDao">
<ref bean="someOtherCourseDao"/>
</propertys>
</bean>
Mixing automatic and explicit wiring is also a great way to deal with ambiguous
autowiring that may occur when autowiring using byType.

Autowiring by default

By default, beans will not be autowired unless you set the autowire attribute.
However, you can set a default autowiring for all beans within the Spring config-
uration wiring file by setting default-autowire on the root <beans> element:

<beans default-autowire="byName">

Set this way, all beans will be autowired using byName unless specified otherwise.

To autowire or not to autowire

Although autowiring seems to be a powerful way to cut down on the amount of
manual configuration required when writing the bean wiring file, it may lead to
some problems.

For example, suppose that the studentService bean is set to be autowired
using byName. As a result, its studentDao property will automatically be set to the
bean in the container whose name is studentDao. Let’s say that you decide that
you want to refactor the studentDao property, renaming it as studentData. After
refactoring, the container will try to autowire by looking for a bean named
studentData. Unless you have changed the bean XML file, it won’t find a bean by
that name and will leave the property unwired. When the studentService bean
tries to use the studentData property, you'll get a NullpointerException.

2.4

Working with Spring’s special beans 73

Worse still, what if there is a bean named studentData but it isn’t the bean you
want wired to the studentData property? Depending on the type of the student-
Data bean, Spring may quietly wire in the unwanted bean, resulting in unex-
pected application behavior.

Autowiring is a powerful tool feature. But, as you may have heard, with great
power comes great responsibility. If you choose to autowire, do so with caution.

Because autowiring hides so much of what is going on and because we want
our examples to be abundantly clear, most of the examples in this book will not
use autowiring. We'll leave it up to you whether or not you will autowire in your
own applications.

You now know how to use Spring to wire your beans. But these aren’t the only
beans you can put to use in the container. Spring also comes with its own beans
that can be wired into the container to do some additional work for you.

Working with Spring’s special beans

Most beans configured in a Spring container are treated equally. Spring config-
ures them, wires them together, and makes them available for use within an appli-
cation. Nothing special.

But some beans have a higher purpose. By implementing certain interfaces,
you can cause Spring to treat beans as being special—as being part of the Spring
framework itself. By taking advantage of these special beans, you can configure
beans that

m Become involved in the bean’s and the bean factory’s life cycles by postpro-
cessing bean configuration

m Load configuration information from external property files

= Alter Spring’s dependency injection to automatically convert string values
to another type when setting bean properties—for example, being able to
inject a String value into a java.util.Date field and have the date auto-
matically converted

m Load textual messages from property files, including internationalized
messages

= Listen for and respond to application events that are published by other
beans and by the Spring container itself

m Are aware of their identity within the Spring container

74

24.1

CHAPTER 2
Wiring beans

In some cases, these special beans already have useful implementations that come
packaged with Spring. In other cases, you’ll probably want to implement the
interfaces yourself.

Let’s start the exploration of Spring’s special beans by looking at beans that
perform postprocessing of other beans and of the bean factory itself.

Postprocessing beans

Earlier in this chapter, you learned how to define beans within the Spring con-
tainer and how to wire them together. For the most part, you have no reason to
expect beans to be wired in any way different than how you define them in the
bean definition XML file. The XML file is perceived as the source of truth regard-
ing how your application’s objects are configured.

But as you saw in figures 2.1 and 2.2, Spring offers two opportunities for you
to cut into a bean’s life cycle and review or alter its configuration. This is called
postprocessing. From the name, you probably deduced that this processing done
after some event has occurred. The event this postprocessing follows is the instan-
tiation and configuring of a bean. The BeanPostProcessor interface gives you two
opportunities to alter a bean after it has been created and wired:

public interface BeanPostProcessor {

Object postProcessBeforeInitialization(
Object bean, String name) throws BeansException;

Object postProcessAfterInitialization(
Object bean, String name) throws BeansException;

The postProcessBeforeInitialization() method is called immediately prior to
bean initialization (the call to afterPropertiesSet () and the bean’s custom init-
method). Likewise, the postProcessAfterInitialization() method is called
immediately after initialization.

Writing a bean post processor

For example, suppose that you wanted to alter all string properties of your appli-
cation beans to translate them into Elmer Fudd-speak. The Fuddifier class in list-
ing 2.5 is a BeanPostProcessor that does just that.

public class Fuddifier implements BeanPostProcessor {
public Object postProcessAfterInitialization(
Object bean, String name) throws BeansException {

Working with Spring’s special beans 75

Field[] fields = bean.getClass () .getDeclaredFields() ;

try {
for(int i=0; i < fields.length; i++) {
if (fields[i] .getType () .equals (

java.lang.String.class)) {
fields[i] .setAccessible (true) ;
String original = (String) fields[i] .get (bean) ;

fields[i] .set (bean, fuddify(original)) ;

}
}

} catch (IllegalAccessException e) {
e.printStackTrace() ;

}

return bean;

}

private String fuddify(String orig) {

if (orig == null) return orig;
return orig.replaceAll (" (r|1l)", "w")
.replaceAll (" (R|L) ", "W");

}

public Object postProcessBeforeInitialization (
Object bean, String name) throws BeansException {
return bean;

}
|

The postProcessAfterInitialization() method cycles through all of the bean’s
properties, looking for those that are of type java.lang.String. For each string
property, it passes it off to the fuddify () method, which translates the string into
Fudd-speak. Finally, the property is changed to the fudd-ified text. (You'll also
notice a call to each property’s setAccessible () method to get around the private
visibilityof a property. We realize that this breaks encapsulation, but how else
could we pull this off?)

The postProcessBeforeInitialization () method is left purposefully unexcit-
ing; it simply returns the bean unaltered. Actually, the fudd-ification process
could have occurred just as well in this method.

Now that we have a Fudd-ifying BeanPostProcessor, let’s look at how to tell the
container to apply it to all beans.

76

2.4.2

CHAPTER 2
Wiring beans

Registering bean post processors
If your application is running within a bean factory, you'll need to programmatically
register each BeanPostProcessor using the factory’s addBeanPostProcessor () method:

BeanPostProcessor fuddifier = new Fuddifier() ;

factory.addBeanPostProcessor (fuddifier) ;
If you're using an application context, you'll only need to register the post proces-
sor as a bean within the context.

<bean id=" fuddifier"

class="com.springinaction.chapter02.Fuddifier"/>

The container will recognize the fuddifier bean as a BeanPostProcessor and call
its postprocessing methods before and after each bean is initialized.

As a result of the fuddifier bean, all String properties of all beans will be
Fudd-ified. For example, suppose you had the following bean defined in XML:

<bean id="bugs" class="com.springinaction.chapter02.Rabbit">

<property name="description"s>
<value>That rascally rabbit!</values>
</property>

</bean>
When the “fuddifier” processor is finished, the description property will hold
“That wascawwy wabbit!”

Spring’s own bean postprocessors

The Spring framework itself uses several implementations of BeanPostProcessor
under the covers. For example, ApplicationContextAwareProcessor is a Bean-
PostProcessor that sets the application context on beans that implement the
ApplicationContextAware interface (see section 2.4.6). You do not need to regis-
ter ApplicationContextAwareProcessor yourself. It is preregistered by the appli-
cation context itself.

In the next chapter, you'll learn of another implementation of BeanPost-
Processor. You'll also learn how to automatically apply aspects to application beans
using DefaultAdvisorAutoProxyCreator, which is a BeanPostProcessor that cre-
ates AOP proxies based on all candidate advisors in the container.

Postprocessing the bean factory

While a BeanPostProcessor performs postprocessing on a bean after it has
been loaded, a BeanFactoryPostProcessor performs postprocessing on a bean
factory after the bean factory has loaded its bean definitions but before any of

Working with Spring’s special beans 77

the beans have been instantiated. The BeanFactoryPostProcessor interface is
defined as follows:
public interface BeanFactoryPostProcessor {
public void postProcessBeanFactory (

ConfigurablelListableBeanFactory beanFactory)
throws BeansException;

}
The postProcessBeanFactory () method is called by the Spring container after all
bean definitions have been loaded but before any beans are instantiated (includ-
ing BeanPostProcessor beans).

For example, the BeanFactoryPostProcessor implementation in listing 2.6
gives a whole new meaning to the term “bean counter.” BeanCounter is a Bean-
FactoryPostProcessor that simply logs the number of bean definitions that have
been loaded into the bean factory.

Listing 2.6 Creating a BeanFactoryPostProcessor to count how many beans are

created within the factory

public class BeanCounter implements BeanFactoryPostProcessor {
private Logger LOGGER = Logger.getLogger (BeanCounter.class) ;

public void postProcessBeanFactory (
ConfigurableListableBeanFactory factory)
throws BeansException {

LOGGER.debug ("BEAN COUNT: "o+
factory.getBeanDefinitionCount ()) ;

If you’re using an application context container, you won’t need to do anything to
register a BeanFactoryPostProcessor as a postprocessor in Spring other than reg-
ister it as a regular bean:

<bean id="beanCounter"

class="com.springinaction.chapter02.BeanCounter"/>
When the container sees that beanCounter 1S a BeanFactoryPostProcessor, it will
automatically register it as a bean factory postprocessor. You cannot use Bean-
FactoryPostProcessors with bean factory containers.

BeanCounter Is a naive use of BeanFactoryPostProcessor. To find more mean-
ingful examples of BeanFactoryPostProcessor, we have to look no further than
the Spring framework itself. Two very useful implementations of BeanFactory-
PostProcessor are PropertyPlaceholderConfigurer and CustomEditorConfigurer.

78

2.4.3

CHAPTER 2
Wiring beans

PropertyPlaceholderConfigurer loads properties from one or more external
property files and uses those properties to fill in placeholder variables in the bean
wiring XML file. CustomEditorConfigurer lets you register custom implementa-
tions of java.beans.PropertyEditor to translate property wired values to other
property types.

Let’s take a look at how you can use the PropertyPlaceholderConfigurer
implementation of BeanFactoryPostProcessor.

Externalizing the configuration

For the most part, it is possible to configure your entire application in a single
bean wiring file. But sometimes you may find it beneficial to extract certain pieces
of that configuration into a separate property file. For example, a configuration
concern that is common to many applications is configuring a data source. In
Spring, you could configure a data source with the following XML in the bean wir-
ing file:
<bean id="dataSource" class=
"org.springframework.jdbc.datasource.DriverManagerDataSource" >
<property name="url"s>
<valuejdbc:hsqgldb:Training</value>
</property>
<property name="driverClassName">
<value>org.hsqldb.jdbcDriver</value>
</property>
<property name="username">
<values>appUser</value>
</property>
<property name="password">
<values>password</value>
</property>
</bean>
Configuring the data source directly in the bean wiring file may not be appropri-
ate. The database specifics are a deployment detail. Conversely, the purpose of
the bean wiring file is mainly oriented toward defining how components within
your application are put together. That’s not to say that you cannot configure
your application components within the bean wiring file. In fact, when the con-
figuration is application-specific (as opposed to deployment-specific) it makes
perfect sense to configure components in the bean wiring file. But deployment
details should be separated.
Fortunately, externalizing properties in Spring is easy if you are using an
ApplicationContext as your Spring container. You use Spring’s PropertyPlace-
holderConfigurer to tell Spring to load certain configuration from an external

Working with Spring’s special beans 79

property file. To enable this feature, configure the following bean in your bean
wiring file:

<bean id="propertyConfigurer" class="org.springframework.beans.
factory.config.PropertyPlaceholderConfigurer"s
<property name="location"s>
<value>jdbc.properties</values>
</property>
</bean>

The location property tells Spring where to find the property file. In this case,
the jdbc.properties file contains the following JDBC information:

database.url=jdbc:hsgldb:Training
database.driver=org.hsqgldb.jdbcDriver
database.user=appUser
database.password=password

The location property allows you to work with a single property file. If you want
to break down your configuration into multiple property files, use Property-
PlaceholderConfigurer’s locations property to set a List of property files:

<bean id="propertyConfigurer" class="org.springframework.beans.
factory.config.PropertyPlaceholderConfigurer"s
<property name="locations">
<list>
<value>jdbc.properties</value>
<values>security.properties</value>
<valuesapplication.properties</value>
</list>
</propertys>
</bean>

Now you are able to replace the hard-coded configuration in the bean wiring file
with placeholder variables. Syntactically, the placeholder variables take the form
${variable}, resembling Ant properties or the JavaServer Pages (JSP) expres-
sion language.

Applying the placeholder variables to the data source configuration yields
the following:

<bean id="dataSource" class="org.springframework.
jdbc.datasource.DriverManagerDataSource" >

<property name="url"s>
<value>${database.url}</value>

</property>

<property name="driverClassName">
<value>${database.driver}</value>

</property>

<property name="username">

80

2.4.4

CHAPTER 2
Wiring beans

<values>${database.user}</value>
</propertys>
<property name="password">
<value>${database.password}</value>
</propertys>
</bean>
The placeholder variables will be replaced with properties from jdbc.properties

when the context is loaded.

Customizing property editors

In section 2.2.4, you saw that it is possible to wire a String value to a property
whose type is java.net.URL. Did you wonder how that works?

Actually, the magic behind this trick isn’t something Spring provides, but
rather comes from a little-known feature of the original JavaBeans API. The
java.beans.PropertyEditor interface provides a means to customize how String
values are mapped to non-String types. There is a convenience implementation
of this interface—java.beans.PropertyEditorSupport—that has two methods of
interest to us:

® getAsText () returns the String representation of a property’s value.

m setAsText (String value) sets a bean property value from the string value
passed in.

If an attempt is made to set a non-String property to a String value, the setas-
Text () method is called to perform the conversion. Likewise, the getAsText ()
method is called to return a textual representation of the property’s value.
Spring comes with several custom editors based on PropertyEditorSupport,
including org.springframework.beans.propertyeditors.URLEditor, which is the
custom editor used to convert Strings to and from java.net.URL objects.
Some other custom editors that come with Spring include

m ClassEditor—Sets a java.lang.Class property from a String value that
contain the fully qualified class name

® CustomDateEditor—Sets a java.util.Date property from a String using a
custom java.text.DateFormat object

m FileEditor—Sets a java.io.File property from a String value that con-
tains a file’s path

® LocaleEditor—Sets a java.util.Locale property from a String value that
contains a textual representation of the locale (i.e., “en_US”)

Working with Spring’s special beans 81

® StringArrayPropertyEditor—Converts a comma-delimited String to a
String array property

® StringTrimmerEditor—Automatically trims String properties with an
option to convert empty String values to null

You can also write your own custom editor by extending the PropertyEditor-
Support class. For example, suppose that your application has a Contact bean that
conveniently carries contact information about the people in your organization.
Among other things, the Contact bean has a phoneNumber property that holds the
contact phone number:

public Contact
private PhoneNumber phoneNumber;

public void setPhoneNumber (PhoneNumber phoneNumber) {
this.phoneNumber = phoneNumber;
}
}

The phone property is of type PhoneNumber and is defined as follows:

public PhoneNumber (
private String areaCode;
private String prefix;
private String number;

public PhoneNumber () { }

public PhoneNumber (String areaCode, String prefix,
String number) {
this.areaCode = areaCode;
this.prefix = prefix;
this.number = number;

}
Using basic wiring techniques learned in section 2.2, you could wire a Phone-
Number object into the Contact bean’s phoneNumber property as follows:

<beans>
<bean id="infoPhone"
class="com.springinaction.chapter02.PhoneNumber">
<constructor-arg index="0">
<value>888</value>
</constructor-arg>
<constructor-arg index="1">
<value>555</value>

82

CHAPTER 2
Wiring beans

</constructor-args>
<constructor-arg index="2">
<value>1212</value>
</constructor-arg>
</beans>
<bean id="contact"
class="com.springinaction.chapter02.Contact">
<property name="phoneNumber">
<ref bean="infoPhone"/>
</property>
</beans>
</beans>

Notice that you had to define a separate infoPhone bean to configure the Phone-
Number object and then wire it into the phoneNumber property of the Contact bean.
But suppose you were to write a custom PhoneEditor like this:

public class PhoneEditor
extends java.beans.PropertyEditorSupport {
public void setAsText (String textValue) ({
String stripped = stripNonNumeric (textValue) ;

String areaCode = stripped.substring(0,3);

String prefix = stripped.substring(3,6);

String number = stripped.substring(6) ;

PhoneNumber phone = new PhoneNumber (areaCode, prefix, number) ;
setValue (phone) ;

private String stripNonNumeric (String original) {
StringBuffer allNumeric = new StringBuffer();

for(int i=0; i<original.length(); i++) {
char ¢ = original.charAt (i) ;
if (Character.isDigit(c)) {
allNumeric.append(c) ;

}
}

return allNumeric.toString() ;

}
}

Now the only thing left is to get Spring to recognize your custom property editor
when wiring bean properties. For that, you'll need to use Spring’s CustomEditor-
Configurer. CustomEditorConfigurer is a BeanFactoryPostProcessor that loads
custom editors into the BeanFactory by calling the registerCustomEditor ()
method. (Optionally, you can call the registerCustomEditor () method in your
own code after you have an instance of the bean factory.)

Working with Spring’s special beans 83

By adding the following piece of XML to the bean configuration file, you’ll tell
Spring to register the PhoneEditor as a custom editor:
<bean id="customEditorConfigurer" class="org.springframework.
beans.factory.config.CustomEditorConfigurer"s>
<property name="customEditors"s>
<map>
<entry key="com.springinaction.chapter02.Phone">
<bean id="phoneEditor"
class="com.springinaction.02.PhoneEditor">
</bean>
</entry>
</map>
</property>
</bean>
And you’ll now be able to configure the Contact object’s phoneNumber property
using a simple String value and without creating a separate Phone bean:
<bean id="contact"
class="com.springinaction.chapter02.Contact">
<property name="phoneNumber">
<value>888-555-1212</value>
</propertys>
</bean>
Note that many of the custom editors that come with Spring (such as URLEditor
and LocaleEditor) are already registered with the bean factory upon container

startup. You do not need to register them yourself using CustomEditorConfigurer.

2.4.5 Resolving text messages

Oftentimes you may not want to hard-code certain text that will be displayed to
the user of your application. This may be because the text is subject to change or
perhaps your application will be internationalized and you will display text in the
user’s native language.

Java’s support for parameterization and internationalization (I18N)? of mes-
sages enables you to define one or more properties files that contain the text that
is to be displayed in your application. There should always be a default message
file along with optional language-specific message files. For example, if the name
of your application’s message bundle is “trainingtext,” you may have the follow-
ing set of message property files:

? Internationalization is often referred to as “Il18N” for short. It gets this name because there are 18
letters between the I and the N in “Internationalization.”

84

CHAPTER 2
Wiring beans

m fraimingtext.properties—Default messages when a locale cannot be deter-
mined or when a locale-specific properties file is not available

m raimingtext_en_US.properties—Text for English-speaking users in the
United States

m frainingtext_es_MX.properties— Text for Spanish-speaking users in Mexico

» lrainingtext_de_DE.properties—Text for German-speaking users in Germany

For example, both the default and English properties files may contain entries
such as

course=class
student=student
computer=computer

while the Spanish message file would look like this:

course=clase
student=estudiante
computer=computadora

Spring’s ApplicationContext supports parameterized messages by making them
available to the container through the MessageSource interface:

public interface MessageSource {

public String getMessage (
MessageSourceResolvable resolvable, Locale locale)
throws NoSuchMessageException;

public String getMessage (
String code, Object[] args, Locale locale)
throws NoSuchMessageException;

public String getMessage (
String code, Object[] args, String defaultMessage,
Locale locale) ;

}
Spring comes with a ready-to-use implementation of MessageSource. Resource-
BundleMessageSource Simply uses Java’s own java.util.ResourceBundle to
resolve messages. To use ResourceBundleMessageSource, add the following to the
bean wiring file:
<bean id="messageSource" class="org.springframework.
context.support.ResourceBundleMessageSource" >
<property name="basename">
<value>trainingtext</values>
</propertys>
</beans>
It is very important that this bean be named messageSource because the Applica-
tionContext will look for a bean specifically by that name when setting up its

2.4.6

Working with Spring’s special beans 85

internal message source. You'll never need to inject the messageSource bean into
your application beans, but will instead access messages via ApplicationContext’s
own getMessage () methods. For example, to retrieve the message whose name is
computer, use this code:

Locale locale = .. ; //determine locale

String text =

context.getMessage ("computer", new Object[0], locale);

You'll likely be using parameterized messages in the context of a web application,
displaying the text on a web page. In that case, you'll want to use Spring’s
<spring:message> JSP tag to retrieve messages and will not need to directly access
the ApplicationContext:

<spring:message code="computer"/>

But if you need your beans, not a JSP, to retrieve the messages, how can you write
them to access the ApplicationContext? Well, you're going to have to wait a bit for
that. Or you can skip ahead to section 2.4.8 where we discuss making your beans
aware of their container.

Right now, we are going to move on to examine the events that occur during
an application context’s life cycle, how to handle these events, and how to publish
our own events.

Listening for events

In the course of an application’s lifetime, the ApplicationContext will publish a
handful of events that tell interested listeners what’s going on. These events are
all subclasses of the abstract class org.springframework.context.Application-
Event. Three such application events are

m ContextClosedEvent—Published when the application context is closed

m ContextRefreshedEvent—Published when the application context is initial-
ized or refreshed

® RequestHandledEvent—Published within a web application context when a
request is handled

For the most part, these events are published rather...uh...well, uneventfully.
Most beans will never know or care that they were published. But what if you want
to be notified of application events?

If you want a bean to respond to application events, all you need to do is
implement the org.springframework.context.ApplicationListener interface.

86

2.4.7

CHAPTER 2
Wiring beans

This interface forces your bean to implement the onApplicationEvent () method,
which is responsible for reacting to the application event:

public class RefreshlListener implements ApplicationListener {
public void onApplicationEvent (ApplicationEvent event) {

}
}
The only thing you need to do to tell Spring about an application event listener is
to simply register it as a bean within the context:
<bean id="refreshListener"
class="com.springinaction.foo.RefreshListener"/>
When the container loads the bean within the application context, it will notice

that it implements ApplicationListener and will remember to call its onApplica-
tionEvent () method when an event is published.

Publishing events

While it may be handy for your beans to respond to events published by the con-
tainer itself, it’s also possible for your application to publish its own events. These
events are handled by implementations of ApplicationListener in the same way
that any events are handled.

Imagine that you want to alert one or more application objects any time that a
student signs up for a course and, as a result, the course is full. Maybe you want to
fire off a routine to automatically schedule another course to handle the overflow.

First, define a custom event, such as the one in listing 2.7.

public class CourseFullEvent extends ApplicationEvent {
private Course course;

public CourseFullEvent (Object source, Course course) {
super (source) ;
this.course = course;

}

public Course getCourse() {
return course;
1
}

2.4.8

Working with Spring’s special beans 87

Next you’ll need to publish the event. The ApplicationContext interface has a
publishEvent () method that enables you to publish ApplicationEvents. Any
ApplicationListener that is registered in the application context will receive the
event in a call to its onApplicationEvent () method:

ApplicationContext context = ..;
Course course = ..;
context.publishEvent (new CourseFullEvent (this, course)) ;

Finally, you'll need to make sure that the objects interested in handling the
CourseFullEvent implement the ApplicationListener interface as described
above. One thing to keep in mind is that these events are handled synchronously.
So, you want to take care that any events handled in this fashion are handled
quickly. Otherwise, you application’s performance could be negatively impacted.

Unfortunately, in order to publish events, your beans will need to have access
to the ApplicationContext. This means that beans will have to be made aware of
the container that they’re running in. And that’s the next type of special bean
we're going to talk about.

Making beans aware

Have you seen The Matrix? In the movie, humans have been unwittingly enslaved
by machines, living their everyday lives in a virtual world while their life essence
is being farmed to power the machines. Thomas Anderson, the main character, is
given a choice between taking a red pill and learning the truth of his existence or
taking a blue pill and continuing his life ignorant of the truth. He chooses the red
pill, becoming aware his real-world identity and the truth about the virtual world.

For the most part, beans running in the Spring container are like the
humans in The Matrix. For these beans, ignorance is bliss. They don’t know (or
even need to know) their names or even that they are running within a Spring
container. This is usually a good thing because if a bean is aware of the con-
tainer, then it becomes coupled with Spring and may not be able to exist outside
of the container.

But sometimes, beans need to know more. Sometimes they need to know the
truth who they are and where they are running. Sometimes they need to take the
red pill.

The red pill, in the case of Spring beans, comes in the form of the Bean-
NameAware, BeanFactoryAware, and ApplicationContextAware interfaces. By imple-
menting these three interfaces, beans can be made aware of their name, their
BeanFactory, and their ApplicationContext, respectively.

88

CHAPTER 2
Wiring beans

Be warned, however, that by implementing these interfaces, a bean becomes
coupled with Spring. And, depending on how your bean uses this knowledge, you
may not be able to use it outside of Spring.

Knowing who you are

The Spring container tells a bean what its name is through the BeanNameAware
interface. This interface has a single setBeanName () interface that takes a string
containing the bean’s name, which is set through either the id or the name
attribute of <bean> in the bean wiring file:

public interface BeanNameAware {
void setBeanName (String name) ;

}

It may be useful for a bean to know its name for bookkeeping purposes. For
example, if a bean may have more than one instance within the application con-
text, it may be beneficial for that bean to identify itself by both name and type
when logging its actions.

Within the Spring framework itself, BeanNameAware is used several times. One
notable use is with beans that perform scheduling. cronTriggerBean, for example,
implements BeanNameAware to set the name of its Quartz CronTrigger® job. The
following code snippet from CronTriggerBean illustrates this:

package org.springframework.scheduling.quartz;

public class CronTriggerBean extends CronTrigger
implements .., BeanNameAware, .. {

private String beanName;

public void setBeanName (String beanName) {
this.beanName = beanName;

}

public void afterPropertiesSet () .. {
if (getName () == null) {
setBeanName (this.beanName) ;
1

% The cronTriggerBean class allows you to schedule jobs within the Spring container using Quartz, an
open source scheduling system. We will cover Quartz in detail in chapter 7.

Working with Spring’s special beans 89

You don’t need to do anything special for a Spring container to call setBean-
Name () on a BeanNameAware class. When the bean is loaded, the container will see
that the bean implements BeanNameAware and will automatically call setBean-
Name (), passing the name of the bean as defined by either the id or the name
attribute of the <bean> element in the bean wiring XML file.

Here CronTriggerBean extends CronTrigger. After the Spring context has set
all properties on the bean, the bean name is sent to setBeanName () (defined in
CronTrigger) to set the name of the scheduled job.

This example showed you how to use BeanNameAware by showing how it is used
in Spring’s own scheduling support. We'll talk more about scheduling in chapter 7.
For now, let’s see how a bean can be made aware of its own container.

Knowing where you live

Asyou've seen in this section, sometimes it’s helpful for a bean to be able to access
the application context. Perhaps your bean needs access to parameterized text
messages in a message source. Or maybe it needs to be able to publish application
events for application event listeners to respond to. Whatever the case, your bean
should be aware of the container in which it lives.

Spring’s ApplicationContextAware and BeanFactoryAware interfaces enable a
bean to be aware of its container. These interfaces declare a setApplication-
Context () method and a setBeanFactory() method, respectively. The Spring
container will detect whether any of your beans implement either of these inter-
faces and provide the BeanFactory or ApplicationContext.

Going back to our event publishing example earlier, we would finish out that
example like this:

public class StudentServiceImpl
implements StudentService, ApplicationContextAware {

private ApplicationContext context;

public void setApplicationContext (ApplicationContext context) {
this.context = context;

}

public void enrollStudentInCourse (Course course, Student student)
throws CourseException;

context.publishEvent (new CourseFullEvent (this, course)) ;

90

2.5

CHAPTER 2
Wiring beans

Being aware of the application container is both a blessing and a curse for a bean.
On the one hand, access to the application context affords the bean a lot of
power. On the other hand, being aware of the container couples the bean to
Spring and is something that should be avoided if possible.

Summary

At the core of the Spring framework is the Spring container. Spring comes with
several implementations of its container, but they all fall into one of two catego-
ries. A BeanFactory is the simplest form of container, providing basic dependency
injection and bean wiring services. But when more advanced framework services
are needed, Spring’s ApplicationContext is the container to use.

In this chapter, you've seen how to wire beans together within the Spring con-
tainer. Wiring is typically performed within a Spring container using an XML file.
This XML file contains configuration information for all of the components of an
application along with information that helps the container perform dependency
injection to associate beans with other beans that they depend on.

You've also seen how to instruct Spring to automatically wire beans together by
using reflection and making some guesses about which beans should be associ-
ated with each other.

Finally, you learned how to write and use special beans that become directly
involved in Spring’s wiring process. These special beans may alter how Spring
performs wiring by changing how String values are interpreted (as is the case with
CustomEditorConfigurer and PropertyPlaceholderConfigurer). Special beans can
also be made aware of who they are and what container they are running in so
that they can interact directly with their environment. Or a special bean may sim-
ply listen for and respond to application events as they are published.

Everything you learned in this chapter is the basis for what is to come. You’'ll
continue working with Spring’s bean definition XML file as you add more func-
tionality to the Spring Training application. You’ll also start recognizing practical
uses of Spring’s special beans and how they are used throughout Spring.

In the next chapter, you'll learn about Spring’s aspect-oriented programming
support. You'll find that dependency injection and AOP are complementary ways
to extract common logic into loosely coupled modules. Spring’s AOP support is
important, not only because it enables you to modularize application concerns,
but also because it is the basis for Spring’s support for declarative transactions,
which we’ll cover in chapter 5.

Creating aspects

This chapter covers

Defining aspect-oriented programming

Adding advice before, after, and around methods
Defining pointcuts with regular expressions
Automating the creation of advised beans

91

92

3.1

CHAPTER 3
Creating aspects

In chapter 2 you learned how Spring can help manage and configure your applica-
tion objects. You can follow sound object-oriented design, write loosely coupled
code, and use Spring’s inversion of control to make connecting your collaborators
painless. But sometimes you have functionality that is used throughout your appli-
cation that does not fit nicely into a single object hierarchy. This is where aspect-
oriented programming (AOP) comes in.

Spring’s AOP framework allows you to code functionality that is sprinkled
throughout your application in one place—an aspect. Using Spring’s powerful
pointcut mechanism, you have a wide range of choices of how and where to apply
your aspects in your application. This allows you to add powerful services, such as
declarative transaction management, to simple JavaBeans.

Introducing AOP

Before we get started on how Spring implements AOP, we’ll first cover the basics
of AOP. It is important to understand AOP fundamentals and how AOP can help
you write cleaner applications.

Most definitions of AOP say something about the modularization of cross-
cutting concerns. Unfortunately, the term cross-cutting is not used often outside of
an AOP context, so it doesn’t have much meaning for most developers. Figure 3.1
gives a visual depiction of cross-cutting concerns.

This figure represents a typical application that is broken down into modules.
Each module’s main concern is to provide services for its particular domain.
However, each of these modules also requires similar ancillary functionalities,
such as security and transaction management. The common object-oriented
technique for reusing common functionality is through inheritance or delega-
tion. But inheritance can lead to a brittle object hierarchy if the same base class is

CourseService

StudentService

A 7 A 7L AN A
Figure 3.1
Cross-cutting
concerns

18110

Aunoag
suojjoesues |

MiscService

http://www.thesimpsons.com
http://www.thesimpsons.com

3.1.1

Introducing AOP 93

used throughout an application, and delegation can be cumbersome and still
requires duplicated calls to the delegate object.

AOP presents an alternative that can be cleaner in many circumstances. With
AOP, you still define the common functionality in one place, but you can declara-
tively define how and where this functionality is applied without having to modify
the class to which you are applying the new feature. Cross-cutting concerns can
now be modularized into special objects called aspects. This has two benefits. First,
the logic for each concern is now in one place, as opposed to being scattered all
over the code base. Second, our service modules are now cleaner since they only
contain code for their core functionality and secondary concerns have been
moved to aspects.

Defining AOP terminology

Like most technologies, AOP has a jargon unto itself. Unfortunately, many of the
terms used to describe AOP features are not intuitive. But they are now part of
the AOP language and, in order to understand AOP, you must know this language.
In other words, before you walk the walk, you have to learn to talk the talk.

Aspect

An aspect is the cross-cutting functionality you are implementing. It is the aspect,
or area, of your application you are modularizing. The most common (albeit sim-
ple) example of an aspect is logging. Logging is something that is required
throughout an application. However, because applications tend to be broken
down into layers based on functionality, reusing a logging module through inher-
itance does not make sense. However, you can create a logging aspect and apply it
throughout your application using AOP.

Joinpoint

A joinpoint is a point in the execution of the application where an aspect can be
plugged in. This point could be a method being called, an exception being
thrown, or even a field being modified. These are the points where your aspect’s
code can be inserted into the normal flow of your application to add new behavior.

Advice

Advice is the actual implementation of our aspect. It is advising your application
of new behavior. In our logging example, the logging advice would contain the
code that implements the actual logging, such as writing to a log file. Advice is
inserted into our application at joinpoints.

94

CHAPTER 3
Creating aspects

Pointcut

A pointcut defines at what joinpoints advice should be applied. Advice can be
applied at any joinpoint supported by the AOP framework. Of course, you don’t
want to apply all of your aspects at all of the possible joinpoints. Pointcuts allow
you to specify where you want your advice to be applied. Often you specity these
pointcuts using explicit class and method names or through regular expressions
that define matching class and method name patterns. Some AOP frameworks
allow you to create dynamic pointcuts that determine whether to apply advice
based on runtime decisions, such as the value of method parameters.

Introduction

An introduction allows you to add new methods or attributes to existing classes
(kind of mind-blowing, huh?). For example, you could create an Auditable advice
class that keeps the state of when an object was last modified. This could be as
simple as having one method, setLastModified (Date), and an instance variable
to hold this state. This can then be introduced to existing classes without having to
change them, giving them new behavior and state.

Target

A target is the class that is being advised. This can be either a class you write or a
third-party class to which you want to add custom behavior. Without AOP, this
class would have to contain its primary logic plus the logic for any cross-cutting
concerns. With AOP, the target class is free to focus on its primary concern, obliv-
ious to any advice being applied.

Proxy

A proxy is the object created after applying advice to the target object. As far as
the client objects are concerned, the target object (pre-AOP) and the proxy object
(post-AOP) are the same—as it should be. That is, the rest of your application will
not have to change to support the proxy class.

Weaving

Weaving is the process of applying aspects to a target object to create a new, prox-
ied object. The aspects are woven into the target object at the specified joinpoints.
The weaving can take place at several points in the target class’s lifetime:

m Compile time—Aspects are woven in when the target class is compiled. This
requires a special compiler.

3.1.2

Introducing AOP 95

m Classload time—Aspects are woven in when the target class is loaded into
the JVM. This requires a special ClassLoader that enhances that target
class’s bytecode before the class is introduced into the application.

® Runtime—Aspects are woven in sometime during the execution of the
application. Typically, an AOP container will dynamically generate a proxy
class that will delegate to the target class while weaving in the aspects.

That’s a lot of new terms to get to
know. Figure 3.2 illustrates the key
AOP concepts in action.

The advice contains the cross-
cutting behavior that needs to be
applied. The joinpoints are all the
points within the execution flow of |
the application that are candidates
to have advice applied. The point-
cut defines at what joinpoints that
advice is applied. The key concept
you should take from this? Pointcuts
define which joinpoints get advised.

Program Execution

55 >

JoinPoints

O
,VO
<:gmo1ugod

Figure 3.2 Applying an aspect

Spring’s AOP implementation

Not all AOP frameworks are created equal. They may differ on how rich of a join-
point model they offer. Some may allow you to apply advice at the field modifica-
tion level, while others only expose the joinpoints related to method invocations.
They may also differ on how and when they weave the aspects. Whatever the case,
the ability to create pointcuts that define the joinpoints at which aspects should
be woven is what makes it an AOP framework.

Although there are several implementations of AOP, right now we are con-
cerned with how Spring implements AOP. So let’s take a look at the key points of
Spring’s AOP framework.

Spring advice is written in Java

All of the advice you create within Spring will be written in a standard Java class.
This means you will get the benefit of developing your aspects in the same inte-
grated development environment (IDE) you would use for your normal Java devel-
opment. What’s more, the pointcuts that define where advice should be applied

96

CHAPTER 3
Creating aspects

are typically written in XML in your Spring configuration file. This means both the
aspect’s code and configuration syntax will be familiar to Java developers.

Other frameworks out there, specifically Aspect], require a special syntax to
write the aspect and define pointcuts. There are benefits and drawbacks to this
approach. By having an AOP-specific language, you get more power and fine-
grained control, as well as a richer AOP toolset. However, you are required to
learn a new tool and syntax to accomplish this.

Spring’s advises objects at runtime

Spring does not create a proxied object until that proxied bean is needed by the
application. If you are using an ApplicationContext, the proxied objects will be
created when it loads all of the beans from the BeanFactory. Because Spring cre-
ates proxies at runtime, you do not need a special compiler to use Spring’s AOP.

Spring generates proxied classes in two ways. If your target object implements
an interface(s) that exposes the required methods, Spring will use the JDK’s
java.lang.reflect.Proxy class. This class allows Spring to dynamically generate
a new class that implements the necessary interfaces, weave in any advice, and
proxy any calls to these interfaces to your target class.

If your target class does not implement an interface, Spring uses the CGLIB!
library to generate a subclass to your target class. When creating this subclass,
Spring weaves in advice and delegates calls to the subclass to your target class.
When using this type of proxy generation, you need to deploy all of the JAR files
in the 1ib/cglib directory of your Spring distribution with your application.
There are two important things to take note of when using this approach:

m Creating a proxy with interfaces is favored over proxying classes, since this
leads to a more loosely coupled application. The ability to proxy classes is
provided so that legacy or third-party classes that do not implement inter-
faces can still be advised. This approach should be taken as the exception,
not the rule.

m Methods marked as £inal cannot be advised. Remember, Spring generates
a subclass to your target class. Any method that needs to be advised is over-
ridden and advice is woven in. This is not possible with final methods.

! CGLIB is an open source, high-performance code generation library. You can find more information
about CGLIB at http://cglib.sourceforge.net.

Creating advice 97

Spring implements AOP Alliance interfaces

The AOP Alliance is a joint project between several parties interested in imple-
menting AOP in Java. The AOP Alliance shares the same belief as Spring that AOP
can provide cleaner and easier solutions for Java enterprise applications than what
is currently offered by EJB. Their goal is to standardize Java’s AOP interface to pro-
vide interoperability between various Java AOP implementations. This means that
AOP advice that implements their interfaces (as do some of Spring’s implementa-
tions) will be reusable in any other AOP Alliance—compatible framework.

Spring only supports method joinpoints

As mentioned earlier, multiple joinpoint models are available through various
AOP implementations. Spring only supports method joinpoints. This is in con-
trast to some other AOP frameworks, such as Aspect] and JBoss, which provide
field joinpoints as well. This prevents you from creating very fine-grained advice,
such as intercepting updates to an object’s field.

However, as Spring focuses on providing a framework for implementing J2EE
services, method interception should suit most, if not all, of your needs. Plus,
Spring’s philosophy is that field interception violates encapsulation. A funda-
mental object-oriented concept is that objects initiate operations on themselves
and other objects through method calls. Having advice fired on field modifica-
tion as opposed to method invocation arguably violates this concept.

Now you have a general idea of what AOP does and how it is supported by
Spring. Let’s take a look at how to create the different advice types in Spring.

3.2 Creating advice

If you recall from the previous section, advice contains the logic of your aspect. So
when you create an advice object, you are writing the code that implements the
cross-cutting functionality. Also, remember that Spring’s joinpoint model is built
around method interception. This means that the Spring advice you write will be
woven into your application at different points around a method’s invocation.
Because there are several points during the execution of a method that Spring
can weave in advice, there are several different advice types. Table 3.1 lists the
types of advice offered by Spring and where they are woven into your code.?

2 Actually, there is another advice type that is omitted: introduction advice. Since this advice type is han-
dled so differently than the others, we devoted a section specifically to introduction advice later in this
chapter.

98

CHAPTER 3
Creating aspects

Table 3.1 Advice types in Spring

Advice type Interface Description
Around org.aopalliance.intercept.MethodInterceptor Intercepts calls to the tar-
get method
Before org.springframework.aop.BeforeAdvice Called before the target

method is invoked

After org.springframework.aop.AfterReturningAdvice Called after the target
method returns

Throws org.springframework.aop.ThrowsAdvice Called when target
method throws an
exception

As you can see, these different advice types give you opportunities to add behav-
ior before and after a method invocation, as well as when a method throws an
exception. In addition, you can put advice around a method and optionally pre-
vent the target method from even being called. So now that you know what advice
types are at your disposal, exactly how do you go about implementing them?

To demonstrate this, we are going to create a running example. This example
is meant to serve as a simple illustration of Spring AOP at work and not as a work-
ing J2EE application (don’t worry, we’ll get to that). To do so, let’s take a trip to
Springtield and visit Apu’s KwikEMart (see http://www.thesimpsons.com for more
information). We will start off with the KwikEMart interface where a Customer can
purchase a Squishee:

public interface KwikEMart {
Squishee buySquishee(Customer customer) throws KwikEMartException;

}
We also have an implementation of this interface: ApukwikEMart. As listing 3.1
illustrates, our implementation is quite simple, but it does what we need.

public class ApuKwikEMart implements KwikEMart {
private boolean squisheeMachineEmpty;

public Squishee buySquishee (Customer customer)
throws KwikEMartException {
if (customer.isBroke()) {
throw new CustomerIsBrokeException() ;

}

3.2.1

Creating advice 99

if (squisheeMachineEmpty) {
throw new NoMoreSquisheesException() ;
}
return new Squishee() ;
}
}
|

Without much effort we have a working kKwikEMart implementation, including test
cases. Now we want to add some additional behavior to this class. However, the
class is working just fine doing its fundamental duty—serving Squishees. So
instead of cracking open this class and adding more code, we are going to create
some advice instead.

Before advice

As any convenience store owner knows, friendly customer service is key. So before

our customers purchase their Squishee, we want to give them a warm greeting. To

do this, we need to add some functionality before the buySquishee () method is

executed. To accomplish this, we extend the MethodBeforeAdvice interface:
public interface MethodBeforeAdvice {

void before (Method method, Object[] args, Object target)
throws Throwable
}

This interface provides you with access to the target method, the arguments
passed to this method, and the target object of the method invocation. Since you
have access to the method arguments, you have the opportunity to implement
advice using the runtime parameters. However, you cannot change the identity of
these values. That is, you cannot substitute different argument objects or a differ-
ent target object. You can alter these objects; just use caution when doing so.

Now let’s take a look at our implementation of MethodBeforeAdvice, shown in
listing 3.2.

package com.springinaction.chapter03.store;

import java.lang.reflect.Method;
import org.springframework.aop.MethodBeforeAdvice;

public class WelcomeAdvice implements MethodBeforeAdvice {
public void before (Method method, Object[] args, Object target) ({
Customer customer = (Customer) args[0]; <— Cast first argument to Customer

../../../org/springframework/aop/ClassFilter.html
../../../org/springframework/aop/MethodMatcher.html

100

CHAPTER 3
Creating aspects

System.out.println("Hello " + customer.getName () + Say hello to
". How are you doing?") ; Customer

Because the buySquishee () method we will be advising has only one argument, we
cast the first element in the argument array to a Customer. Then all we have do to
is give the Customer a nice, warm greeting.

Notice that we do not return anything at the end of the method. This is
because the return type is void. It is void because the target method will always be
called after the MethodBeforeAdvice returns and it is the target method that is
responsible for returning any values. The only way MethodBeforeAdvice can pre-
vent the target method from being invoked is to throw an exception (or call sys-
tem.exit (), but we don’t want to do that!). The results of throwing an exception
depend on the type of exception thrown. If the exception is a RuntimeException
or if it is in the throws clause of the target method, it will propagate to the calling
method. Otherwise, Spring’s framework will catch the exception and rethrow it
wrapped in a RuntimeException.

Now that we have our advice, we need to apply it to our KwikEMart object. We
do this through our Spring configuration file (kwikemart.xml), shown in
listing 3.3.

<beans> Create proxy

target object
<bean id="kwikEMartTarget"

class="com.springinaction.chapter03.store.ApukwikEMart"/>

<bean id="welcomeAdvice" <— Create advice
class="com.springinaction.chapter03.store.WelcomeAdvice"/>

<bean id="kwikEMart"
class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces">
<value>com.springinaction.chapter03.store.KwikEMart</value>

</propertys> Create
<property name="interceptorNames"> proxy
<lists> bean
<value>welcomeAdvice</value>
</list>
</property>

<property name="target">

Creating advice 101

<ref bean="kwikEMartTarget"/> Create
</propertys> proxy
</bean> bean

</beans>

We now have a KwikEMart bean that has the welcomeAdvice applied to it. And if
you notice, we created this bean using Spring’s ProxyFactoryBean class. This is
also your introduction to this very important class in Spring’s AOP framework.
The proxyFactoryBean class is used by BeanFactory and ApplicationContext
objects to generate proxies. In the above example, we configure a ProxyFactory-
Bean using several of that bean’s properties. Going down the list of properties in
the example above, we tell Spring to create a bean that does the following:

® Implements the KwikEMart interface

m Applies the wWelcomeAdvice (id welcomeAdvice) advice object to all incom-
ing calls

m Uses the ApukwikEMart bean (id kwikEMartTarget) as the target object

The ProxyFactoryBean class is a central class for explicitly creating proxied
objects within a BeanFactory. As demonstrated, you can give it an interface to
implement, a target object to proxy, and advice to weave in, and it will create a
brand-new proxied object. And as in the example above, you will typically config-
ure the ProxyFactoryBean to implement the same interface as your target object.
We will explore this class in more detail in section 3.5. For now, assume we are
going to configure all KwikEMart advice as illustrated in listing 3.3 unless other-
wise noted.

3.2.2 After advice

Staying with the courteous store owner theme, we want to make sure we thank our
patrons after they make their purchase. To do this, we implement AfterReturning-
Advice:

public interface AfterReturningAdvice ({

void afterReturning (Object returnvValue, Method method,
Object[] args, Object target) throws Throwable
1

}

Like MethodBeforeAdvice, this advice gives you access to the method that was
called, the arguments that were passed, and the target object. You also have access

102 CHAPTER 3
Creating aspects

to the return value of the advised method. Again, this interface returns void.
While you have access to the return value of the target method, you cannot sub-
stitute a different return value. And as with MethodBeforeadvice, the only way you
can alter the flow of execution is by throwing an exception. The behavior for han-
dling thrown exceptions is the same as MethodBeforeAdvice, as well.

Listing 3.4 shows what our advice would look like in our example.

package com.springinaction.chapter03.store;

import java.lang.reflect.Method;
import org.springframework.aop.AfterReturningAdvice;

public class ThankYouAdvice implements AfterReturningAdvice {

public void afterReturning(Object returnvValue, Method method,
Object [l arg2, Object target) throws Throwable {
System.out.println("Thank you. Come again!");

}
}
|

With this advice, any normal method exit (i.e., no exception is thrown) of our
proxied method will result in our customer being thanked.

3.2.3 Around advice

So far we have seen how to weave advice before and after a method. MethodInter-
ceptor provides the ability to do both in one advice object:

public interface MethodInterceptor extends Interceptor {
Object invoke (MethodInvocation invocation) throws Throwable;

}
There are two important differences between the MethodInterceptor interface
and the previous two types of advice. First, the MethodInterceptor implementa-
tion controls whether the target method is actually invoked. Invoking the target
method is done by calling MethodInvocation.proceed (). This is in contrast to
MethodBeforeAdvice, where the target method is always called unless you throw
an exception.

Second, MethodInterceptor gives you control over what object is returned. This
means you can return a completely different object than the one returned by pro-
ceed (). Remember, with AfterReturningAdvice you had access to the object being

Creating advice 103

returned, but you could not return a different object. While MethodInterceptor
provides this added flexibility, you should use caution when returning a different
object than the one returned by the target method and only do so when necessary.

Let’s take a look at MethodInterceptor in use. Suppose we have a rule that a
customer can order only one Squishee. OnePerCustomerInterceptor is shown in
listing 3.5.

package com.springinaction.chapter03.store;

import java.util.HashSet;
import java.util.Set;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class OnePerCustomerInterceptor implements MethodInterceptor {
Define Set containing
private Set customers = new HashSet () ; previous customers

public Object invoke (MethodInvocation invocation) Get current

throws Throwable { customer
Customer customer = (Customer) invocation.getArguments() [0];

if (customers.contains (customer)) {

. . Throw exception if
throw new KwikEMartException ("One per customer.");

repeat customer

}

Object squishee = invocation.proceed() ; <+— Invoke target method
customers.add (customer) ; <— Add customer to Set
return squishee; Return result of

} target method

Notice that we have logic before and after the target method being invoked.
Before we call the target method, we want to make sure the customer has not
already purchased a Squishee. If they have not, we continue. After our target
method has executed, we “remember” the customer so they cannot purchase
another Squishee.

This example serves as a demonstration of when you should use this type of
advice. You should only use a MethodInterceptor when you require cross-cutting
aspect logic on both sides of the method invocation. Since you have to remember
to explicitly call invocation.proceed(), it is better to use MethodBeforeAdvice or
AfterReturningAdvice if this will satisfy your needs.

104

3.2.4

CHAPTER 3
Creating aspects

There is one more thing you should notice about MethodInterceptor. If you
remember from table 3.1, MethodInterceptor in an AOP Alliance interface.
This means that any advice you implement using this interface is compatible
with any other AOP framework that is compliant with the AOP Alliance. You
may want to make special note of this if you are planning to work with multi-
ple AOP frameworks.

Throws advice

So what happens if something goes wrong during the method invocation and an
exception is thrown? ThrowsAdvice lets you define behavior should an exception
occur. Unlike the previous advice types, ThrowsAdvice is a marker interface and
contains no methods that need to be implemented. Instead, a class that imple-
ments this interface must have at least one method with either of the following
two signatures:

void afterThrowing (Throwable throwable)

void afterThrowing (Method method, Object[] args, Object target,
Throwable throwable)

The first of these methods receives only one argument: the exception that was
thrown. The second of these receives the exception and the invoked method, its
argument, and the target object. Unless you need these additional arguments,
you will only need to implement the one-argument variety. The type of exception
handled by your ThrowsAdvice is determined by the type in your method signa-
ture. For example, void afterThrowing (KwikEMartException e) will catch any
KwikEMartException, but void afterThrowing(NoMoreSquisheesException e)
would only catch that specific subclass of kwikEMartException.

You can also have more than one afterThrowing method in the same class.
Listing 3.6 gives an example of ThrowsAdvice in action.

package com.springinaction.chapter03.store;
import org.springframework.aop.ThrowsAdvice;
public class KwikEMartExceptionAdvice implements ThrowsAdvice {

public void afterThrowing (NoMoreSquisheesException e) {
orderMoreSquishees () ;

}

3.2.5

3.3

3.3.1

Defining pointcuts 105

public void afterThrowing (CustomerIsBrokeException e)
showCustomerAtmMachine () ;
}
1
|

The correct method will be called depending on what type of exception is thrown.
Notice that both of these methods add additional behavior to the application, but
neither catches and handles the exception. This is because you cannot do this. The
proxy object is catching the exception and calling the appropriate ThrowsAdvice
method, if there is one. After the ThrowsAdvice is executed, the original exception
will still be thrown and will propagate up the stack like any other exception. The
only way your ThrowsAdvice can change this is to throw another exception.

Introduction advice

Introduction advice is a little different from the other types of advice we just cov-
ered. All the other types are woven in at some point surrounding a target object’s
method invocation. Introduction advice adds new methods (and attributes) to the
target object. This is probably the most complex advice type to understand. And
to understand Spring’s introduction advice, you need to understand its pointcuts
as well. So we will discuss pointcuts in the next section and revisit introduction
advice in more detail in section 3.4.

Defining pointcuts

So far we have only discussed how to write advice. This is not very useful if we can-
not expressively define where this advice should be applied in our application.
This is where pointcuts come in. Pointcuts determine if a particular method on a
particular class matches a particular criterion. If the method is indeed a match,
then advice will be applied to this method. Spring’s pointcuts allow us to define
where our advice is woven into our classes in a very flexible manner.

Defining a pointcut in Spring

Spring defines pointcuts in terms of the class and method that is being advised.
Advice is woven into the target class and its methods are based on their character-
istics, such as class name and method signature. The core interface for Spring’s
pointcut framework is, naturally, the Pointcut interface.

public interface Pointcut {
ClassFilter getClassFilter () ;

106

CHAPTER 3
Creating aspects

MethodMatcher getMethodMatcher () ;
}
This is logical since we just said a pointcut decides where to weave our advice
based on our method and classes. The classFilter interface determines if a class
is eligible for advising:

public interface ClassFilter {
boolean matches (Class clazz) ;

}

Classes implementing this interface determine if the Class that is passed in as an
argument should be advised. Typical implementations of this interface make this
decision based on the name of the class, but this does not always have to be the
case. This interface also contains a simple implementation of the ClassFilter
interface, ClassFilter.TRUE. This is the canonical instance of ClassFilter that
matches any class, which can be useful for creating a Pointcut that only considers
methods when matching.

While classFilter lets you filter your aspects by class, you are more likely
interested in filtering by method. This feature is provided by the MethodMatcher
interface:

public interface MethodMatcher {
boolean matches (Method m, Class targetClass) ;

public boolean isRuntime () ;
public boolean matches (Method m, Class target, Object[] args);

}

As you can see, there are three methods in this interface, but each one is used in a
certain point in a proxied object’s life cycle. The matches (Method, Class) method
determines whether a method is a candidate to be advised based on the target
Class and Method. Since this can be determined statically, this method is only
called once—when the AOP proxy is created. The result of this method deter-
mines if the advice is woven in at all.

If matches (Method, Class) returns true, isRuntime () 1s called to determine
what type of MethodMatcher this is. There are two types: static and dynamic. Static
pointcuts define advice that is always executed. If a pointcut is static, isRuntime ()
should return false. Dynamic pointcuts determine if advice should be executed
by examining the runtime method arguments. If a pointcut is dynamic, isRun-
time () should return true. Like matches(Method, Class), isRuntime() is only
called once—when the proxy class is created.

It a pointcut is static, matches (Method, Class, Object[]) is never called, since
runtime arguments are not necessary for determining whether advice should be

3.3.2

3.3.3

Defining pointcuts 107

applied. For dynamic pointcuts, the matches (Method, Class, Object [1) method is
called at runtime for every invocation of the target method. This adds runtime
overhead for every time this method is invoked. To avoid this, use static pointcuts
wherever possible.

Now you know how to define pointcuts in Spring. Although you can imple-
ment the Pointcut interface yourself, you will most likely use one of Spring’s pre-
defined Pointcut implementations. This is what we will explore next. Well, not
exactly next. We need to cover advisors first.

Understanding advisors

Before we cover Spring’s built-in pointcuts, you must understand another Spring
concept: an advisor. Most aspects are a combination of advice that defines the
aspect’s behavior and a pointcut defining where the aspect should be executed.
Spring recognizes this and offers advisors, which combine advice and pointcuts
into one object. More specifically, the PointcutAdvisor does this.

public interface PointcutAdvisor {

Pointcut getPointcut () ;
Advice getAdvice() ;

}
Most of Spring’s built-in pointcuts also have a corresponding PointcutAdvisor.
This is convenient if you want to define a pointcut and the advice it is managing
in one place. As we discuss pointcuts in depth, we will use PointcutAdvisors in of
our examples where it makes sense.

Using Spring’s static pointcuts
As discussed earlier, static pointcuts are preferred because they perform better
than dynamic pointcuts since they are evaluated once (when the proxy is created)
rather than at each runtime invocation. Spring provides a convenience superclass
for creating static pointcuts: StaticMethodMatcherPointcut. So if you want to cre-
ate a custom static pointcut, you can override this class and implement the
isMatch method.

But for most of your needs, you will use a static pointcut provided by Spring.

NameMatchMethodPointcut
The most basic of these is the NameMatchMethodPointcut. This class has two meth-
ods you should be interested in:

public void setMappedName (String)
public void setMappedNames (Stringl[])

108

CHAPTER 3
Creating aspects

As you might have guessed, this pointcut matches when the invoked method’s
name matches one of the given mapped names. You can provide explicit method
names or use the wildcard character * at the beginning or end of the name. For
instance, setting the mappedName property to set* will match all setter methods.
Note that this matching only applies to the method name itself, not the fully qual-
ified name that includes that class name as well. The two methods above behave
exactly the same, except that the former matches against one name, while the lat-
ter looks at an array of Strings for a match. If any one of the mapped strings
matches, then the method is considered a match.

For example, let’s say instead of a Spring Training service, we are running a
Spring Cleaning maid service. For this application, we have a MaidService inter-
face that has several methods for ordering services, such orderFurniturepolish-
ing and orderWindowCleaning. For each of these methods, we want to add an
aspect that adds points to the orderer’s account so they can earn free services
offered to frequent customers. Listing 3.7 illustrates how we would map this using
a NameMatchMethodPointcut.

<beans>

<bean id="maidServiceTarget" class="com.springinaction.
chapter03.cleaning.MaidServiceImpl"/>

<bean id="frequentCustomerAdvice" class="com.springinaction.
chapter03.cleaning.FrequentCustomerAdvice" />

<bean id="frequentCustomerPointcutAdvisor"
class="org.springframework.aop. support.
NameMatchMethodPointcutAdvisor">
<property name="mappedName">
<valuesorder*</value>
</propertys>
<property name="advice">
<ref bean="frequentCustomerAdvice"/>
</property>
</bean>

<bean id="maidService"
class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces">
<value>com.springinaction.chapter03.
cleaning.MaidService</value>
</property>
<property name="interceptorNames">

Defining pointcuts 109

<list>
<value>frequentCustomerAdvisor</value>

</list>

</property>

<property name="target">
<value ref="maidServiceTarget">

</property>

</bean>

</beans>

When our proxy is created, invocations of any method on our MaidService object
that begins with order will be advised by our FrequentCustomerAdvice. And
instead of supplying the wildcard characters, we just as easily explicitly name each
of these methods:
<property name="mappedNames">
<list>
<values>orderFurniturePolishing</name>
<value>orderWindowCleaning</name>
</list>
</property>
Using a NamedMethodMatcherPointcut works well for clearly expressing exactly
which methods you want advised. However, listing every method name you want
advised could become quite verbose for a large application. Using the wildcard
can help this, but its usefulness is limited if you want fine-grained control over
your pointcuts. That is where regular expressions come in.

Regular expression pointcuts

Spring’s RegexpMethodPointcut lets you leverage the power of regular expressions
to define your pointcuts. This enables you to use Perl-style regular expressions to
define the pattern that should match your intended methods. If you are unfamil-
iar with regular expressions, table 3.2 lists the symbols you will most likely use
when defining pointcuts.

Table 3.2 Common regular expression symbols used in pointcuts

Symbol Description Example
Matches any single character setFoo. matches setFooB, but not setFoo or
setFooBar
+ Matches the preceding character one setFoo.+ matches setFooBar and setFooB,
or more times but not setFoo

continued on next page

110 CHAPTER 3
Creating aspects

Table 3.2 Common regular expression symbols used in pointcuts (continued)

Symbol Description Example
* Matches the preceding character zero setFoo.* matches setFoo, setFooB and
or more times setFooBar
\ Escapes any regular expression symbol | \.setFoo. matches bar.setFoo, but not and
setFoo

Unlike the NameMethodMatcherPointcut, these patterns include the class name as
well as the method name. That means if we want to match all setxxx methods, we
need to use the pattern . *set.* (the first wildcard will match any preceding class
name). Also, when you are using the RegexpMethodPointcut, you need to include
the Jakarta Commons ORO? library in your application.

Continuing with our Spring Cleaning business, our MaidService interface also
offers clients different methods for querying our cleaning packages, such as get-
PackagesByPrice () and getSpecialsByDay (). We decide we want to capture the
details of our customers’ queries so we know what they are looking for most fre-
quently. So, we create a QueryInterceptor to do just that. We would apply this
interceptor to our query methods as illustrated in listing 3.8.

<beans>

<bean id="maidServiceTarget"
class="com.springinaction.chapter03.cleaning.MaidService"/>

<bean id="queryInterceptor" class="com.springinaction.
chapter03.cleaning.QueryInterceptor"/>

<bean id="queryPointcutAdvisor"
class="org.springframework.aop.support.RegExpPointcutAdvisor">
<property name="pattern"s
<values>.*get.+By.+</value>
</property>
<property name="advice"s>
<ref bean="queryInterceptor"/>
</property>
</bean>

% Jakarta Commons ORO is an open source utility for text-processing using Perl and Awk regular ex-
pressions. Its name comes from the company that donated the original libraries, ORO Inc. You can
learn more about ORO at http://jakarta.apache.org/oro/.

3.3.4

Defining pointcuts 111

<bean id="maidService"
class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces">
<value>com. springinaction.chapter03.
cleaning.MaidService</value>
</property>
<property name="interceptorNames">
<list>
<value>queryPointcutAdvisor</values>
</list>
</property>
<property name="target">
<value ref="maidServiceTarget">
</property>
</bean>

</beans>

Interpreting the regular expression, this means our pointcut should match any
method on any class that begins with get and then contains at least one character,
followed by By, followed by at least one character. As you can see, regular expres-
sions offer you a way to define pointcuts in a way that is more expressive than a
NameMatchMethodPointcut.

Using dynamic pointcuts

So far the only Spring-provided pointcuts we have discussed have been static
pointcuts. They will be the type of pointcuts you will use most often. However,
there may be some cases where your pointcuts will need to evaluate runtime
attributes. Spring provides one built-in dynamic pointcut: ControlFlowPointcut.
This pointcut matches based on information about the current thread’s call stack.
That is, it can be configured to return true only if a particular method or class is
found in the current thread’s stack of execution.

For example, let’s say we have a service method that can be called from a vari-
ety of clients. If this method is initiated from a web application, we want to add
some additional logic in the form of a MethodBeforeAdvice (the content of this
advice is not important for this example). We can do so by creating a pointcut that
matches if our call stack contains a call from javax.servlet.http.HttpServlet.
Listing 3.9 illustrates how we would configure this.

112 CHAPTER 3
Creating aspects

Listing 3.9 Configuring a ControlFlowPointcut

<beans>
<bean id="myServiceTarget" class="MyServiceImpl"/>
<bean id="servletInterceptor" class="MyServletInterceptor"/>

<bean id="servletPointcut"
class="org.springframework.aop. support.
ControlFlowPointcut">
<constructor-arg>
<value>javax.servlet.http.HttpServlet</value>
</constructor-arg>
</bean>

<bean id="servletAdvisor"
class="org.springframework.aop.support.DefaultPointcutAdvisor">
<property name="advice">
<ref bean="servletInterceptor"/>
</propertys>
<property name="pointcut"s>
<ref bean="servletPointcut"/>
</propertys>
</beans>

<bean id="service"
class="org.springframework.aop. framework.ProxyFactoryBean">
<property name="proxyInterfaces">
<value>MyService</value></property>
<property name="interceptorNames">
<list>
<values>servletAdvisor</value>
</list>
</propertys>
<property name="target">
<value ref="myServiceTarget">
</propertys>
</bean>
</beans>

Now any call to a method in our service object that comes from an HttpServlet
will have the servletadvice applied. One important thing to point out about this
class is the performance penalty it imposes. You should use the controlFlow-
Pointcut class only as needed because it is significantly slower than other
dynamic pointcuts. For Java 1.4, they may be 5 times slower, and for Java 1.3 they
could be more than 10 times slower.

3.3.5

Defining pointcuts 113

As stated earlier, the ControlFlowPointcut is the only dynamic pointcut imple-
mentation provided by Spring. But remember, you can create your own dynamic
pointcut by implementing MethodMatcher and have the isRuntime() method
return true. This effectively makes the pointcut dynamic and the matches (Method
m, Class target, Object[] args) method will be called for every method invoca-
tion this pointcut evaluates. Again, keep in mind that this approach can have sig-
nificant performance penalties. And since a vast majority of your pointcut needs
can be resolved statically, we feel you will rarely have the occasion to create a
dynamic pointcut.

Pointcut operations

You can now create reusable pointcuts for your applications. Adding to this reus-
ability, Spring supports operations on these pointcuts—namely unions and inter-
sections—to create new pointcuts. Intersections match when both pointcuts
match; unions match when either pointcut matches. Spring provides two classes
for creating these types of pointcuts.

The first of these classes is ComposablePointcut. You assemble Composable-
Pointcut objects by creating unions and intersections with existing Composable-
Pointcut objects and Pointcut, MethodMatcher, and ClassFilter objects. You do
this by calling one of the intersection() or union() methods on an instance of
ComposablePointcut. Each intersection() and union() returns the resulting Com-
posablePointcut object, which can be useful for chaining method calls like so:

ComposablePointcut p = new ComposablePointcut () ;

p = p.intersection (myPointcut) .union (myMethodMatcher) ;
You can combine any number of Pointcut, ClassFilter, and MethodMatcher
objects in this manner. The only method not available in this class is a
union (Pointcut) method. To create a union between two Pointcut objects, you
must use the Pointcuts class. Pointcuts is a utility class that contains static meth-
ods that operate on Pointcut objects. Creating a union between two Pointcut
objects would look like this:

Pointcut union = Pointcuts.union (pointcutl, pointcut2);

You would create an intersection between two Pointcut objects in a similar fash-
ion. The one drawback to this approach is that it is done programmatically. It
would be nice if we could do the same thing in a declarative fashion. But since
Spring works so well configuring JavaBeans, there is no reason we could not con-
struct our own class that creates Pointcut unions in a configurable fashion. List-
ing 3.10 is an example of how this might be done.

114 CHAPTER 3
Creating aspects

Listing 3.10 UnionPointcut.java

package com.springinaction.chapter03.aop;
import java.util.List;

import org.springframework.aop.ClassFilter;

import org.springframework.aop.MethodMatcher;

import org.springframework.aop.Pointcut;

import org.springframework.aop.framework.AopConfigException;
import org.springframework.aop.support.Pointcuts;

public class UnionPointcut implements Pointcut ({

private Pointcut delegate; <— Declare unioned Pointcut instance

public ClassFilter getClassFilter() {

return getDelegate () .getClassFilter () ;
} Delegate

Pointcut
interface

public MethodMatcher getMethodMatcher () { methods

return getDelegate () .getMethodMatcher () ;
}

private Pointcut getDelegate() {
if (delegate == null) {
throw new AopConfigException (.
"No pointcuts have been configured."); ;ﬂnz:gﬁa;ﬂ::
}

return delegate;

}

public void setPointcuts(List pointcuts) {

if (pointcuts == null || pointcuts.size() == 0) ({
throw new AopConfigException (
"Must have at least one Pointcut.");

1 Create
unioned
delegate = (Pointcut) pointcuts.get(0); Pointcut
for (int i = 1; i < pointcuts.size(); i++) {
Pointcut pointcut = (Pointcut) pointcuts.get(i);

delegate = Pointcuts.union(delegate, pointcut) ;

}

}
}

34

3.4.1

Creating introductions 115

We now have a bean that allows us to declaratively create a Pointcut made up
of two or more existing Pointcut beans, freeing us from having to do this pro-
grammatically.

Creating introductions

As we mentioned earlier, introductions are a little different than the other types of
Spring advice. The other advice types are woven in at different joinpoints sur-
rounding a method invocation. Introductions affect an entire class. They do so by
adding new methods and attributes to the advised class. This means you can take
an existing class and have it implement additional interfaces and maintain addi-
tional state (this is also known as a mix-in). In other words, introductions allow you
to build composite objects dynamically, affording you the same benefits as multi-
ple inheritance.

Implementing Introductioninterceptor

Spring implements introductions through a special subinterface of Method-
Interceptor: IntroductionMethodInterceptor. This interface adds one addi-
tional method:

boolean implementsInterface (Class intf);

This method is critical to how introduction works. implementsInterface returns
true if the IntroductionMethodInterceptor is responsible for implementing the
given interface. This means that any invocation of a method that is declared by
this interface will be delegated to the invoke () method of the Introduction-
MethodInterceptor. The invoke () method is now responsible for implementing
this method—it cannot call MethodInvocation.proceed(). It is introducing the
new interface; proceeding to the target object doesn’t make sense.

To better explain this, let’s return to our Spring Training application for an
example. We now have a new requirement where we have to track the time of the
most recent modification to any of our domain objects. Currently, none of these
objects (Course, Student, etc.) support this functionality. Instead of altering each
one of these classes to add this new method and state, we decide to introduce this
feature through, what else, an introduction.

First, let’s take a look at the interface we are introducing in listing 3.11.

116 CHAPTER 3
Creating aspects

Listing 3.11 Auditable.java

package com.springinaction.training.advice;
import java.util.Date;

public interface Auditable
void setLastModifiedDate (Date date) ;
Date getLastModifiedDate () ;

Pretty straightforward, right? Now we need to implement an Introduction-
MethodInterceptor, as shown in listing 3.12.

Listing 3.12 AuditableMixin.java subclassing IntroductionInterceptor

package com.springinaction.training.advice;
import java.util.Date;

import org.aopalliance.intercept.MethodInvocation;
import org.springframework.aop.IntroductionInterceptor;

public class AuditableMixin
implements IntroductionInterceptor, Auditable ({

public boolean implementsInterface(Class intf) ({ Implement
return intf.isAssignableFrom(Auditable.class); Augkabh

}

public Object invoke (MethodInvocation m) throws Throwable {
if (implementsInterface (m.getMethod () .getDeclaringClass())) ({
return m.getMethod () .invoke (this, m.getArguments()) ;
}

else { Delegate Invoke introduced method
return m.proceed () ; other
} method

}

private Date lastModifiedDate;

public Date getLastModifiedDate () ({
return lastModifiedDate; Implement
} mix-in
logic
public void setLastModifiedDate (Date lastModifiedDate) {
this.lastModifiedDate = lastModifiedDate;

}

Creating introductions 117

There are a couple things worth noting in this example. First, our class imple-
ments not only the Spring interface IntroductionInterceptor but also our busi-
ness interface Auditable. This is because this class is responsible for the actual
implementation of this interface. This is evident by the two Auditable methods
and the lastModifiedDate attribute that is used to keep track of the state.

Second, implementsInterface returns true if the class declaring the invoked
method is of type Auditable. This means that for either of the two Auditable
methods, our interceptor must provide an implementation. And that is exactly
what we are doing in our invoke method; for any invocation of an Auditable
interface method, we invoke that method on our interceptor; for all others we
allow the method invocation to proceed.

This is a typical introduction scenario—so typical, in fact, that Spring provides
a convenience class that handles most of this for us: DelegatingIntroduction-
Interceptor. Listing 3.13 shows how by using this class, our previous example
becomes much simpler.

Listing 3.13 AuditableMixin.java subclassing DelegatingIntroduction-

Interceptor
package com.springinaction.training.advice.AuditableMixin;
import java.util.Date;

import org.springframework.aop.support.
=) DelegatingIntroductionInterceptor;

public class AuditableMixin
extends DelegatingIntroductionInterceptor implements Auditable {

private Date lastModifiedDate;

public Date getLastModifiedDate () {
return lastModifiedDate;

}

public void setLastModifiedDate (Date lastModifiedDate) {
this.lastModifiedDate = lastModifiedDate;

}

Notice how we don’t have to implement invoke () —DelegatingIntroductionInter-
ceptor handles that for us. DelegatingIntroductionInterceptor will also implement

118

CHAPTER 3
Creating aspects

any interface exposed on your mix-in class and delegate any calls to these meth-
ods to this mix-in. Since our class implements Auditable, all invocations for
methods on this interface will be called on our interceptor. Any other methods
are delegated to the target object. If your interceptor class implements an inter-
face you do not want exposed as a mix-in, simply pass the interface to the
suppressInterface () method of the DelegatingIntroductionInterceptor class.

Now we said that you do not have to implement invoke (), but you can if your
mix-in alters the behavior of any target method. For instance, suppose you have
an Immutable interface with a single method that you want to introduce. This
interface should provide the ability to make an object immutable—its internal
state cannot be changed. Listing 3.14 illustrates how we might do this.

package com.springinaction.chapter03.aop;

import org.aopalliance.intercept.MethodInvocation;
import org.springframework.aop.support.
DelegatingIntroductionInterceptor;

public class ImmutableMixin
extends DelegatingIntroductionInterceptor implements Immutable {

private boolean immutable;

Keep track of

public void setImmutable (boolean immutable) { immutable

this.immutable = immutable;

public Object invoke (MethodInvocation mi) throws Throwable {

String name = mi.getMethod () .getName() ; Throw
if (immutable && name.indexOf ("set") == 0) { exception

throw new IllegalModificationException/() ; if setter is
} invoked

return super.invoke (mi) ;

}
}
|

Our mix-in now overrides invoke () so that it intercepts all method invocations.
We do this so any call to a method with the signature set* will throw an exception
if immutable is set to true. Notice how we call super. invoke () if we do not throw an
exception, as opposed to calling mi.proceed (). We do this so that the Delegating-
IntroductionInterceptor superclass can determine what class is responsible for

3.4.2

Creating introductions 119

handling the method invocation (it may not be our target object). It is important
that whenever you override the invoke () method you also call super. invoke () to
ensure the method invocation proceeds correctly.

Creating an IntroductionAdvisor

Now that we have our introduction advice, we need to create an advisor. Since
introduction advice is applied only at the class level, introductions have their own
advisor: IntroductionAdvisor. Spring also provides a default implementation
that is suitable most of the time. It is aptly named DefaultIntroductionAdvisor
and takes an IntroductionInterceptor as a constructor argument. So, when we
integrate an IntroductionAdvisor into our AuditableMixin example, listing 3.15
gives an example of what our configuration might look like.

Listing 3.15 Configuring an introduction

<beans>

<bean id="courseTarget"
class="com.springinaction.training.model.Course"
singleton="false"/>

<bean id="auditableMixin"
class="com.springinaction.training.advice.AuditableMixin"
singleton="false"/>

<bean id="auditableAdvisor" class="org.springframework.
aop.support.DefaultIntroductionAdvisor"
singleton="false">
<constructor-arg>
<ref bean="auditableMixin"/>
</constructor-args>
</beans>

<bean id="course"
class="org.springframework.aop.framework.ProxyFactoryBean" >
<property name="proxyTargetClass">
<values>true</values>
</property>
<property name="singleton"s>
<value>false</value>
</property>
<property name="proxyInterfaces">
<value>com.springinaction.training.advice.Auditable</value>
</propertys>
<property name="auditableAdvisor"s>
<list>
<valuesservletAdvisor</values>

120

3.4.3

CHAPTER 3
Creating aspects

</list>
</propertys>
<property name="target">
<value ref="courseTarget">
</propertys>
</bean>

</beans>

One important thing to notice is all three of our AOP-related beans (auditable-
Mixin, auditableAdvisor, and course) have their singleton property set to false.
This is because we are introducing a stateful mixin. Therefore, we need to have a
new instance of each of these created every time we request a course bean from
the BeanFactory. If we did not set the singleton property to false, we would have
one introduction object holding the state for all of our advised objects. Clearly we
do not want this.

Using introduction advice carefully

Most other types of advice, such as before and after advice, typically introduce
new behavior. Introduction advice, on the other hand, adds new interfaces and
often new state to objects. This is a very powerful concept, but it must be used
with caution.

In our earlier example, we are introducing the Auditable interface to our
course class. However, this advice in woven into a Course object only when that
object is obtained from a Spring BeanFactory. Remember, Spring advice is woven
into your objects at runtime, as opposed to other AOP frameworks that may weave
the advice into the class’s bytecode. This means that a Course object that is cre-
ated or obtained by any other means will not have the introduced advice. This
applies to Course instances created by your code via a Course constructor,
instances created by another framework (e.g., a persistence framework such as
Hibernate), and instances that are deserialized.

This means you cannot use introductions for objects that are created with your
code. It is possible to instantiate an object somewhere in your code but still have
the introduction advice applied. The way to do this is to acquire your object from
a factory. For example, you could create a CourseFactory interface that is used to
obtain new instance of Course objects:

public interface CourseFactory ({
Course getCourse () ;

}

Creating introductions 121

Since you don’t want your classes to depend on any Spring-specific classes, any
class that needs to obtain a new instance of a Course object can be wired with an
instance of a CourseFactory. You can then create an implementation that dele-
gates to the Spring BeanFactory, as shown in listing 3.16.

Listing 3.16 BeanFactoryCourseFactory.java

package com.springinaction.training.model;

import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.BeanFactoryAware;

public BeanFactoryCourseFactory
implements CourseFactory, BeanFactoryAware {

private BeanFactory beanFactory;
public void setBeanFactory (BeanFactory beanFactory) {

this.beanFactory = beanFactory;

public Course getCourse() {
return (Course) beanFactory.getBean("course") ;
}

}
|

Now, instead of instantiating a Course object via a constructor, your code can
obtain new Course instances through a CourseFactory:

private CourseFactory courseFactory;

public void setCourseFactory (CourseFactory courseFactory) {
this.courseFactory = courseFactory;

}

public void someMethod () {
Course course = CourseFactory.getCourse() ;

}

Your class now receives the advised version of the Course object, which was our
goal. This is one solution for getting new instances of objects that have introduc-
tion. However, if you rely on frameworks that also instantiate these same objects,
you may still have some problems. You should just be aware of this issue when
dealing with introduction advice.

122 CHAPTER 3
Creating aspects

3.5 Using ProxyFactoryBean

Throughout this chapter we demonstrated how to create an advised class using a
ProxyFactoryBean. When you want to explicitly control how your advising classes
are assembled, this is your best and most flexible choice.

As you learned in the previous chapter, BeanFactory objects are JavaBeans that
are responsible for creating other JavaBeans. In this case, our ProxyFactoryBean
creates proxied objects. And like other JavaBeans, it has properties that control its
behavior. We touched on a couple of these earlier, but we are going to cover them all
in more detail right now. Table 3.3 explains each property on pProxyFactoryBean.

Table 3.3 ProxyFactoryBean properties

Property Use

target The target bean of the proxy.

proxyInterfaces A list of interfaces that should be implemented by the proxy.

interceptorNames | The bean names of the advice to be applied to the target. These can be names
of interceptors, advisors, or any other advice type. This property must be set in
order to use this bean in a BeanFactory.

singleton Whether the factory should return the same instance of the proxy for each get -
Bean invocation. If you're using stateful advice, this should be set to false.

aopProxyFactory The implementation of the ProxyFactoryBean interface to be used. Spring
comes with two implementations (JDK dynamic proxies and CGLIB). You proba-
bly won't need to use this property.

exposeProxy Whether the target class should have access to the current proxy. This is done
by calling AopContext .getCurrentProxy. Keep in mind that doing so
introduces Spring-specific AOP code into your code base, so this should be
avoided unless necessary.

frozen Whether changes can be made to the proxy’s advice once the factory is created.
When set to true, this disables runtime ProxyFactoryBean changes. You
will probably not need this property,

optimize Whether to aggressively optimize generated proxies (only applies to CGLIB prox-
ies). This can add slight performance gains, but should be used judiciously.

proxyTargetClass Whether to proxy the target class, rather than implementing an interface. You

must use CGLIB for this (i.e., the CGLIB JAR files must be deployed).

In most ProxyFactoryBean configurations, you will need to be concerned with
only a few of these properties. The three properties you will probably use most
often are target, proxyInterfaces, and interceptorNames.

Using ProxyFactoryBean 123

The target property defines what bean should be the target object of the gen-
erated proxy object. This is the object that is being advised. In this example:

<bean id="courseServiceTarget" class="com.springinaction.
training.service.CourseServiceImpl"/>

<bean id="courseService"
class="org.springframework.aop.framework.ProxyFactoryBean" >
<property name="target">
<ref bean="courseServiceTarget"/>
</property>

</beans>

As you can see, an instance of CourseServiceImpl is the target object of our
ProxyFactoryBean. However, in this configuration, both beans can be obtained
from our BeanFactory with a call to getBean (). Both beans can also be wired to
other beans with your application. If you want to avoid exposing the target class
to other beans in your application, you can declare it as an inner bean of the
ProxyFactoryBean:
<bean id="courseService"
class="org.springframework.aop.framework.ProxyFactoryBean" >
<property name="target">
<bean class"com.springinaction.training.

service.CourseServiceImpl"/>
</property>

</bean>

Now the proxyFactoryBean is the only CourseService bean that can be obtained
from the BeanFactory. This can help prevent you from accidentally wiring an
unadvised CourseService object to one of your beans.

The proxyInterfaces property is a list of interfaces that should be imple-
mented by the beans created by the factory. For example, suppose you set this
property as follows:

<property name="proxyInterfaces">
<value>com.springinaction.training.service.CourseService</value>
</property>

This would let the ProxyBeanFactory know that any bean it creates should also
implement the CourseService interface. You can supply a single interface as
above or multiple interfaces with a <list> element.

The interceptorNames property is a list of advisor or advice bean names that
should be applied to the target bean. The ordering of the list is important as this

124

CHAPTER 3
Creating aspects

dictates the order in which the advice will be applied. Returning to our Course-
Service example, here is how we would apply a series of advice beans to our
CourseServiceTarget bean:

<property name="proxyInterfaces">
<list>
<values>securityAdvice</value>
<valuestransactionAdvice</value>
</list>
</property>

In this example, securityAdvice will be applied first, followed by transaction-
Advice. You can also include the bean name of your target bean in this list, but it
must the last one in the list.
<property name="proxyInterfaces">
<list>
<value>securityAdvice</value>
<valuestransactionAdvice</values>
<value>courseServiceTarget</value>
</list>
</propertys>
In this case, both advice beans will be applied, followed by an invocation of the tar-
get bean. Although this configuration is possible, it is better to configure the target
bean using the target property, simply because it is clearer.

3.6 Autoproxying

3.6.1

So far we have created our proxy objects using the ProxyFactoryBean class. This
works fine for small applications since there are not that many classes we want to
advise. But when we have several, sometimes dozens of classes we want to advise,
it becomes cumbersome to explicitly create every proxy.

Luckily, Spring has an autoproxy facility that enables the container to gener-
ate proxies for us. We do so in a very Springy way—we configure a bean to do the
dirty work for us. Specifically, we create autoproxy creator beans. Spring comes
with two classes that provide this support: BeanNameAutoProxyCreator and
DefaultAdvisorAutoProxyCreator.

BeanNameAutoProxyCreator

BeanNameAutoProxyCreator generates proxies for beans that match a set of names.
This name matching is similar to the NameMethodMatcherPointcut discussed ear-
lier, as it allows for wildcard matching on both ends of the name. This is typically

Autoproxying 125

used to apply an aspect or a group of aspects uniformly across a set of beans that
follow a similar naming convention. For example, we may want to add a perfor-
manceThresholdInterceptor to all of our service beans. This interceptor would
track how long each service method invocation lasts, and take action if this time
exceeds a given threshold. Listing 3.17 provides a sample of what this class would
look like.

Listing 3.17 PerformanceThresholdinterceptor

package com.springinaction.training.advice;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class PerformanceThresholdInterceptor
implements MethodInterceptor {
Configure threshold

private final long thresholdInMillis;

public PerformanceThresholdInterceptor (long thresholdInMillis) {
this.thresholdInMillis = thresholdInMillis;

}

public Object invoke (MethodInvocation invocation)
throws Throwable {

long t = System.currentTimeMillis() ; Track
Object o = invocation.proceed() ; invocation
t = System.currentTimeMillis() - t; duration

if (t > thresholdInMillis) ({ -
warnThresholdExceeded () ; Take action if
) ! threshold exceeded

return o;

}

private void warnThresholdExceeded () {
System.out.println(“Danger! Danger!”) ;
}
}
|

Now we want to configure a BeanNameAutoProxyCreator that will apply this inter-
ceptor to all of our beans that end with service. Listing 3.18 demonstrates how
we would do this.

126

3.6.2

CHAPTER 3
Creating aspects

<bean id="performanceThresholdInterceptor"
class="com.springinaction.training.advice.
PerformanceThresholdInterceptor” >
<constructor-arg>
<value>5000</value>
</constructor-arg>
</bean>

<bean id="preformanceThresholdProxyCreator"
class="org.springframework.aop. framework.
autoproxy.BeanNameAutoProxyProxyCreator" >

<bean>
<property name="beanNames">
<lists>
<values>*Service</value>
</list>
</property>

<property name="interceptorNames">
<values>performanceThresholdInterceptor</value>
</property>
</beans>

The code in listing 3.17 will apply our interceptor to every method on every bean
with a name that ends in Service. Like ProxyFactoryBean, the interceptorNames
property can contain the bean names of interceptors, advice, or advisors. Keep in
mind that if the bean is an advisor or an interceptor, it will be applied to all meth-
ods in the proxied class. If it is an advisor, the advisor’s pointcut may cause the
advice to be applied differently to different beans.

So when the proxy is created, what does it look like? The autoproxy framework
makes some assumptions about what interfaces the proxy should expose. Any
interfaces implemented by the target class will be exposed by the proxy object. If
the target class does not implement an interface, the same rules apply as when we
discussed ProxyFactoryBean—a subclass will be created dynamically.

DefaultAdvisorAutoProxyCreator

The more powerful autoproxy creator is the DefaultAdvisorAutoProxyCreator.
All you need to do to make use of this class is to include it as a bean in your Bean-
Factory configuration. The magic of this class lies within its implementation of

Autoproxying 127

the BeanPostProcessor interface. After your beans’ definitions have been read in
by the ApplicationContext, the DefaultAdvisorAutoProxyCreator scours the con-
text for any advisors. It then applies these advisors to any beans that match the
advisor’s pointcut.

It is important to point out this proxy creator only works with advisors. If you
remember, an advisor is a construct that combines a pointcut and advice. The
DefaultAdvisorAutoProxyCreator needs the advisors to let it know what beans it
should advise.

Let’s take a look at a practical example of this approach. In the previous exam-
ple we applied a performance interceptor to all of our service objects. Listing 3.19
shows the same thing, only with a DefaultAdvisorAutoProxyCreator.

<bean id="performanceThresholdInterceptor"
class="com.springinaction.training.advice.
PerformanceThresholdInterceptor"s>
<constructor-arg>
<value>5000</value>
</constructor-arg>
</bean>

<bean id="advisor" class="org.springframework.aop.support.
RegexpMethodPointcutAdvisor">
<property name="advice">
<bean class="performanceThresholdInterceptor"/>
</propertys>
<property name="pattern">
<values>.+Service\..+</value>
</propertys>
</bean>

<bean id="autoProxyCreator"
class="org.springframework.aop. framework.
autoproxy.DefaultAdvisorAutoProxyCreator"/>

When all of the bean definitions are read in, all the advisors in the BeanFactory
will be cut loose so they can apply their advice to any beans that match their
pointcuts. (Remember the scene in Minority Report where the robotic spiders
where unleashed to find Tom Cruise? Well, the advisors are kind of like those spi-
ders, only much less creepy.) This allows you to really flex the power of pointcuts.

128

3.6.3

3.7

CHAPTER 3
Creating aspects

Instead of having to explicitly associate your advisors with anything, you can sim-
ply define them and have them automatically applied to any bean they are con-
figured to match. This is where the loose coupling of beans and their advice is
really achieved; you write your beans, you write your advice, and the container
plays matchmaker.

But in the words of Peter Parker, with great power comes great responsibility.
When using the DefaultAdvisorAutoProxyCreator, you are giving up control of
explicitly wiring your advice. Because it is happening “automagically,” you must
make sure that your advisor’s pointcuts are as fine-grained as possible. This will
ensure your advice is applied precisely where you want it. The last thing you want
happening is to have advice applied to classes and methods where it was never
intended. This would lead to strange application behavior indeed. So when
using this class, make should you first have a sound understanding of Spring’s
AOP framework.

Metadata autoproxying

Spring also supports auto proxying driven by metadata. In this type of autoprox-
ying, the proxy configuration is determined by source-level attributes as opposed
to external configuration (e.g., an XML file). This is quite powerful since it keeps
the AOP metadata with the source code that is being advised, letting you keep
your code and configuration metadata in one place.

The most common use for metadata autoproxying is for declarative transac-
tion support. Spring provides a powerful framework for declarative transactions
via its AOP framework. This offers the same capabilities as EJB’s declarative trans-
actions. Because this is such an important feature for enterprise development, we
cover this topic in depth in chapter 5.

Summary

AOP is a powerful complement to object-oriented programming. With aspects,
you can now group application behavior that was once spread throughout your
applications into reusable modules. You can then declaratively or programmati-
cally define exactly where and how this behavior is applied. This reduces code
duplication and lets your classes focus on their main functionality.

Spring provides an AOP framework that lets you insert aspects around method
executions. You have learned how you can weave advice before, after, and around
a method invocation, as well as add custom behavior for handling exceptions.

Summary 129

You also discovered that with Spring’s pointcut mechanism, you have several
choices of how to define where this advice is woven into your application. Typically
you will use one of Spring’s predefined static pointcuts. With these, you define
your pointcuts based on your bean’s class and method names. If this does not suit
your needs, you are free to implement your own static or dynamic pointcuts.

And on top of adding advice around method invocations, you also discovered
introductions. Using an introduction enables you to add new methods and state to
your application objects. You learned that introductions allow you to create com-
posite objects dynamically, giving you the same power as multiple inheritance.

Finally, you saw that Spring provides several convenient ways to create your
proxied objects. With the ProxyFactoryBean, you have complete control over how
your proxies are created. You also have more flexible means at your disposal
when you use autoproxying. Specifically, the DefaultAdvisorAutoProxyCreator
lets you create advice throughout your application with minimal configurations.

So now you know how to wire your beans and apply advice. In the coming
chapters, you will learn how you can apply these tools to help you more easily
develop enterprise applications.

Part 2

Spring in the business layer

In part 1, you learned about Spring’s core container and its support for
inversion of control (IoC) and aspect-oriented programming (AOP). In part 2,
you’ll learn how to apply IoC and AOP to implement business layer function-
ality for your application.

Most applications ultimately persist business information in a relational
database. Chapter 4, “Hitting the database,” will guide you in using Spring’s
support for data persistence. You'll be introduced to Spring’s JDBC support,
which helps you remove much of the boilerplate code associated with JDBC.
You’'ll also see how Spring integrates with several popular object-relational
mapping frameworks, such as Hibernate, JDO, and iBATIS.

Once you are persisting your data, you'll want to ensure that its integrity is
preserved. In chapter 5, “Managing transactions,” you’ll learn how Spring
enables you to declaratively apply transactional policies to your application
objects using AOP. You'll see that Spring affords EJB-like transaction support
to plain Java objects and even goes beyond EJB’s transactional capabilities.

In chapter 6, “Remoting,” you’ll learn how to expose your application
objects as remote services. You'll also see how to transparently access remote
services as though they are any other object in your application. Remoting
technologies explored will include RMI, Hessian/Burlap, EJB, web services,
and Spring’s own HttpInvoker.

Chapter 7, “Accessing enterprise services,” will wrap up the discussion of
Spring in the business layer by showcasing some of Spring’s support for common
enterprise services. In this chapter, you’ll learn how to use Spring to send mes-
sages using JMS, to access objects in JNDI, to send e-mails, and to schedule tasks.

Hitting the database

This chapter covers
m Defining Spring’s overall persistence support

m Configuring database resources in your
application

m Simplifying JDBC code using Spring’s JDBC
framework

m [ntegrating with third-party ORM frameworks

133

134

4.1

CHAPTER 4
Hitting the database

With the core of the Spring container now under your belt, it’s time to put it to work
in real applications. A perfect place to start is with a requirement of nearly any
enterprise application: persisting data. Each and every one of us has probably dealt
with database access in an application in the past. In doing so, you know that data
access has lots of pitfalls. We have to initialize our data access framework, manage
resources, and handle various exceptions. If we get any of this wrong, we could
potentially corrupt or delete valuable company data. For those who don’t know yet,
that is a Bad Thing.

Since we strive for Good Things, we turn to Spring. Spring comes with a family
of data access frameworks that integrate with a variety of data access technologies.
Whether you are persisting your data via direct JDBC, Java Data Objects (JDO), or
an object/relational mapping (ORM) tool like Hibernate, Spring removes the
tedium of data access from your persistence code. Instead, you can lean on Spring
to handle the low-level data-access work for you so that you can turn your atten-
tion to managing your application’s data.

Learning Spring’s DAO philosophy

Before we jump into Spring’s different DAO frameworks, let’s talk about Spring’s
DAO support in general. From the first section, you know that one of
Spring’s goals is to allow you to develop applications following the sound
object-oriented (OO) principle of coding to interfaces. Well, Spring’s data access
support is no exception.

DAO stands for data access object, which perfectly describes a DAO’s role in an
application. DAOs exist to provide a means to read and write data to the database.
They should expose this functionality through an interface by which the rest of
the application will access them. Figure 4.1 shows the proper approach to design-
ing your data access tier.

As you can see, the service objects are accessing the DAOs through interfaces.
This has a couple of advantages. First, it makes your service objects easily testable
since they are not coupled to a specific data access implementation. In fact, you
can create mock implementations of these data access interfaces. That would
allow you to test your service object without ever having to connect to the data-
base, which would significantly speed up your unit tests.

In addition, the data access tier is accessed in a persistence technology-agnos-
tic manner. That is, the data access interface does not expose what technology it
is using to access data. Instead, only the relevant data access methods are
exposed. This makes for a flexible application design. If the implementation

4.1.1

Learning Spring’s DAO philosophy 135

Service Data Access
Object Interface

Figure 4.1

Service objects should
depend on an interface
to access data.

Data Access
Implementation

details of the data access tier were to leak into other parts of the application, the
entire application becomes coupled with the data access tier, leading to a rigid
application design.

One way Spring helps you insulate your data access ties from the rest of your
application is by providing you with a consistent exception hierarchy that is used
across all of its DAO frameworks.

Understanding Spring’s DataAccessException

Spring’s DAO frameworks do not throw technology-specific exceptions, such
as SQLException or HibernateException. Instead, all exceptions thrown are
subclasses of the technology-agnostic org.springframework.dao.DataAccess-
Exception. This enables your data access interfaces to throw Spring’s general
DataAccessException instead of implementation-specific exceptions that would
force other application layers to catch them and thus become coupled to a partic-
ular persistence implementation. In fact, you can intermingle multiple persis-
tence technologies within the same application without your service objects even
knowing it.

Since DataAccessException is the root of all Spring DAO exceptions, there are
a couple of important things to know.

You are not forced to handle DataAccessExceptions

DataAccessException is a RuntimeException, so it is an unchecked exception.
This means that your code will not be required to handle these exceptions when
they are thrown by the data access tier. This follows the general Spring philoso-
phy that checked exceptions can lead to extraneous catch or throws clauses
throughout your code, cluttering things up. This is especially true for data access
exceptions. Since these are quite often unrecoverable (e.g., unable to connect to
a database, invalid column name, etc.), you are not forced to try to handle these.

136

CHAPTER 4
Hitting the database

Instead, you can catch the exceptions if recovery is possible and let others bubble
up the call stack.

Also, DataAccessException is not only a RuntimeException, but it subclasses
Spring’s NestedRuntimeException. This means that the root Exception is always
available via NestedRuntimeException’s getCause () method. So even though you
do not have to handle technology-specific exceptions, they are always available if
you need them, so no information is ever lost.

Spring classifies exceptions for you
In a perfect world, our data access APIs would always throw very meaningful
exceptions. We don’t know about you, but most of us are a long way from utopia. If
you are using JDBC, there is a greater than zero chance you will eventually get a
generic SQLException with a vendor-specific error. JDO has its own exception
hierarchy, as do all of the other persistence technologies that Spring supports. As
we said before, we do not want to expose these to the rest of our application.
Fortunately, Spring understands each of these technology-specific exceptions.
It even understands database vendors’ error codes. Because Spring can interpret
the meaning of many of these exception, it can rethrow one of the more specific
exceptions in its own exception hierarchy. As table 4.1 illustrates, Spring’s DAO
framework comes with a rich hierarchy exception.

Table 4.1 Spring’s DAO exception hierarchy

Exception Is thrown when...

CleanupFailureDataAccessException An operation completes successfully, but an excep-
tion occurs while cleaning up database resources
(e.g., closing a Connection).

DataAccessResourceFailureException A data access resource fails completely, such as not
being able to connect to a database.

DataIntegrityViolationException An insert or update results in an integrity violation,
such as a violation of a unique constraint.

DataRetrievalFailureException Certain data could not be retrieved, such as not find-
ing a row by primary key.

DeadlockLoserDataAccessException The current process was a deadlock loser.
IncorrectUpdateSemanticsData- When something unintended happens on an update,
AccessException such as updating more rows than expected. When

this exception is thrown, the operation’s transaction
has not been rolled back.

continued on next page

4.1.2

Learning Spring’s DAO philosophy 137

Table 4.1 Spring’s DAO exception hierarchy (continued)

Exception Is thrown when...

InvalidDataAccessApiUsageException A data access Java APl is used incorrectly, such as
failing to compile a query that must be compiled
before execution.

InvalidDataAccessResourceUsage- A data access resource is used incorrectly, such as

Exception using bad SQL grammar to access a relational data-
base.

OptimisticLockingFailureException There is an optimistic locking failure. This will be
thrown by ORM tools or by custom DAO implementa-
tions.

TypeMismatchDataAccessException There is a mismatch between Java type and data

type, such as trying to insert a String into a
numeric database column.

UncategorizedDataAccessException Something goes wrong, but a more specific exception
cannot be determined.

Since Spring’s DAO exception hierarchy is so fine-grained, your service objects
can select exactly what kind of exceptions they want to catch and which ones they
want to let continue up the call stack. For example, a DataAccessResourceFailure-
Exception signals a critical problem—your application cannot connect to its data
store. You probably want to catch this and start ringing some alarms (metaphori-
cally speaking). On the other hand, a DataRetrievalFailureException is not as
critical and might possibly be a user error. Catching this exception would allow
you to possibly give the user a helpful message.

So we can now properly handle exceptions thrown by our data access tools.
Now let’s see how to actually connect to the database.

Working with DataSources

In order to execute any JDBC operation on a database, you need a Connection.
In Spring’s DAO frameworks, Connection objects are obtained through a Data-
Source. Spring provides several options for making a DataSource available to
your application.

Getting a DataSource from JNDI

Quite often Spring applications will be running within a J2EE application server
or even a web server like Tomcat. One thing these servers can provide is a Data-
Source via JNDI. With Spring, we treat this we would any other service object in

138 CHAPTER 4
Hitting the database

our application—as a Spring bean. In this case, we use the JndiobjectFactory-
Bean. All we need to do is configure it with the JNDI name of our DataSource:

<bean id="dataSource"
class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" >
<value>java:comp/env/jdbc/myDatasource</value>
</property>
</beans>

We have now wired in our server’s DataSource and its connection pooling facility.
But what if we are not running within a server that provides this?

Creating a DataSource connection pool

If we are running our Spring container in an environment where a DataSource is
not already present and we want the benefits of connection pooling, we can still
provide this. All we need is a connection pooling bean that implements Data-
Source. A good example of this would be the BasicDataSource class from the
Jakarta Commons DBCP! project. Since all of its properties are exposed through
setter methods, we would configure it like we would any other Spring bean:

<bean id="dataSource"
class="org.apache.commons.dbcp.BasicDataSource" >
<property name="driver"s>
<value>${db.driver}</value>
</property>
<property name="url"s>
<value>${db.url}</value>
</property>
<property name="username">
<value>${db.username}</value>
</propertys>
<property name="password">
<value>${db.password}</value>
</property>
</bean>

We now have a DataSource with connection pooling independent of an applica-
tion server.

Using a DataSource while testing

Since making code easily testable is central to Spring’s philosophy, it would be a
shame if we could not unit-test our data access code. Fortunately, Spring comes

! Jakarta Commons DBCP is an open source database connection pool. You can learn more about this
project and download it at http://jakarta.apache.org/commons/dbcp/.

4.1.3

Learning Spring’s DAO philosophy 139

with a very lightweight DataSource implementation specifically for this: Driver-
ManagerDataSource. This class can easily be configured and used with a unit test
or suite of unit tests.

DriverManagerDataSource dataSource = new DriverManagerDataSource() ;

dataSource.setDriverClassName (driver) ;

dataSource.setUrl (url) ;

dataSource.setUsername (username) ;

dataSource.setPassword (password) ;
You now have a DataSource to use when testing your data access code.

We can connect to the database. Now let’s take a look at the overall design
of Spring’s DAO frameworks and how they make using persistence technolo-
gies easier.

Consistent DAO support

You have probably traveled by plane before. If so, you will surely agree that one of
the most important parts of traveling is getting your luggage from point A to
point B. There are lots of steps to this process. You have to drop it off at the
counter. Then it has to go through security and then be placed on the plane. If
you need to catch a connecting flight, your luggage needs to be moved as well.
When you arrive at your final destination, the luggage has to be removed from
the plane and placed on the carousel. Finally, you go down to the baggage claim
area and pick it up.

As we said, there are many steps to this process. But you are only actively
involved in a couple of those steps. The carrier itself is responsible for driving the
process. You are only involved when you need to be; the rest is just “taken care of.”
And believe or not, this mirrors a very powerful design pattern: the template
method pattern.

A template method defines the skeleton of a process. In our example, the pro-
cess is moving luggage from departure city to arrival city. The process itself is
fixed; it never changes. The overall sequence of events for handling luggage
occurs the same way every time: luggage is checked in, luggage is loaded on the
plane, etc. Some steps of the process are fixed as well. That is, some steps happen
the same way every time. When the plane arrives at its destination, every piece of
luggage is unloaded one at a time and placed on a carousel to be taken to bag-
gage claim.

But at certain points, the process delegates to other collaborators to fill in
some implementation-specific details. This is the part of the process that is vari-
able. For example, the handling of luggage starts with a passenger checking in

140

CHAPTER 4
Hitting the database

the luggage at the counter. This part of the process always has to happen at the
beginning, so its sequence in the process is fixed. But each passenger’s luggage
check-in is different. The implementation of this process is determined by the
passenger. In software terms, a template method delegates the implementation-
specific portions of the process to an interface. Different implementations of this
interface define specific implementations of this portion of the process.

Spring applies this pattern to data access. No matter what technology we are
using, certain data access steps are required. For example, we always need to
obtain a connection to our data store and clean up resources when we are done.
These are the fixed steps in a data access process. But each data access implemen-
tation we write is slightly different. We query for different objects and update the
data in different ways. These are the variable steps in a data access process.

Spring separates the fixed and variant parts of the data access process into two
distinct classes: templates and callbacks. Templates manage the fixed part of the
process while callbacks are where you fill in the implementation details.
Figure 4.2 shows the responsibilities of both of these classes.

As you can see in figure 4.2, Spring’s template classes handle the invariant
parts of data access—controlling transactions, managing resources, and handling
exceptions. Implementations of the callback interfaces define what is specific to
your application—creating statements, binding parameters, and marshalling
result sets. In practice, this makes for a very elegant framework because all you
have to worry about is your data access logic.

But that is not where these frameworks end. On top of the template-callback
design, each framework provides a support class meant to be subclassed by your
own data access classes. The relationship between your class, the support class,
and the template class is illustrated in figure 4.3.

The support classes already have a property for holding a template class, so
you will not have to create this property for each of your DAO classes. Plus, each
support class allows you to get direct access to whatever class is used to communicate

Proprietary APIs Ini DAO Template Ili DAO Support I

Your DAO Class I

Figure 4.2 Relationship between persistence APls, template class, DAO support
class, and your DAO class

4.2

DAO Template

1. Prepare Resources
2. Start Transaction

DAO Callback

3. Execute in
transaction

5. Commit/Rollback

Using JDBC with Spring

. Figure 4.3
Transaction
6. Close Resources 4. Return data Responsibilities of
and Handle Errors Spring’s DAO

141

template and
callback classes

with the database. For instance, the JdbcDaoSupport class contains a get Connection ()
method for obtaining a Connection object. You would do this if you needed to
execute an operation independent of Spring’s JDBC framework.

One other benefit you get by subclassing these support classes is that they each
implement the InitializingBean interface. This means that the Spring container
notifies them after they have been configured. If any of your DAO classes require
special initialization after they have been configured, all you have to do is over-
ride the initDao () method.

As we cover each technology separately, we will go over each of these template
and support classes in depth. And what better technology to start with than the
granddaddy of them all, JDBC.

Using JDBC with Spring

There are a lot of persistence technologies out there. Entity beans. Hibernate.
JDO. Despite this, there is a wealth of applications out there that are writing Java
objects to a database the old-fashioned way: they earn it. No, wait—that’s how
people make money. The tried-and-true method for persisting data is with good
old JDBC.

And why not? JDBC does not require learning another framework’s query lan-
guage to master. It is built on top of SQL, which is the data access language. Plus,
you can more finely tune the performance of your data access when you use JDBC
than practically any other technology. And JDBC allows you to take advantage of
your database’s proprietary features where other frameworks may discourage or
flat-out prohibit this.

But, all is not sunny in the world of JDBC. With its power, flexibility, and other
niceties also comes, well, some not-so-niceties.

142

CHAPTER 4
Hitting the database

4.2.1 The problem with JDBC code

While JDBC gives you an API that works closely with your database, you are

responsible for handling everything related to accessing the database. This

includes managing database resources and handling exceptions.

If you have ever written JDBC that inserts data into the database, the code in

listing 4.1 should look familiar.

public void insertPerson (Person person) throws SQLException {
Connection conn = null; Declare
PreparedStatement stmt = null; resources

try { Open
conn = dataSource.getConnection() ; connection
stmt = conn.prepareStatement ("insert into person (" + Create

"id, firstName, lastName) values (?, ?, ?)"); statement

stmt.setInt (0, person.getId().intValue());
stmt.setString(l, person.getFirstName());
stmt.setString (2, person.getLastName());

stmt .executeUpdate () ; <1—‘ Execute statement

1

catch (SQLException e) {
LOGGER.error (e) ;

1

finally {
try { if (stmt != null) stmt.close(); }
catch (SQLException e) { LOGGER.warn(e); } Clean up

resources

Set
parameters

Handle
exceptions

try { if (conn != null) conn.close(); }
catch (SQLException e) { LOGGER.warn(e); }
1
1

Holy runaway code, Batman! That is roughly a 25-line method to insert a simple
object into a database. As far as database operations go, this is about as simple as
it gets. So why does it take this many lines to execute this? Actually, it doesn’t, but
to properly handle errors and resources, it does. It’s too bad that of these 25 lines,
only four are unique to our particular use case: inserting a Person object.

Listing 4.2 shows how updating a person object would look strikingly similar.

Using JDBC with Spring ‘ 143

Listing 4.2 Updating data with JDBC

public void updatePerson (Person person) throws SQLException {

Connection conn = null; Declare
PreparedStatement stmt = null; resources
try { Open
conn = dataSource.getConnection() ; connection
stmt = conn.prepareStatement ("update person " + Create
"set firstName = ?, lastName = ? where id = ?"); statement
stmt.setString (0, person.getFirstName());
stmt.setString(l, person.getLastName()) ; Set
stmt.setInt (2, person.getId().intValue()):; parameters
} stmt .executeUpdate () ; <l—’ Execute statement
catch (SQLException e) {
LOGGER.error (e) ; Hand&
} exceptions
finally {
try { if (stmt != null) stmt.close(); }
catch (SQLException e) { LOGGER.warn(e); } Clean up
resources

try { if (conn !
catch (SQLException e)

null)

{

conn.close(); }
LOGGER.warn(e); }

At first glance, listing 4.1 and listing 4.2 appear to be identical. They practically
are, except for those four critical lines where we create the statement and set the
parameters. Ideally, all we would have to write are these four lines and the rest
would be handled for us. After all, those four lines are the only distinguishing
lines of the method. The rest is just boilerplate code.

What about getting data out of the database? That’s not too pretty either, as

listing 4.3 shows us.

Listing 4.3 Reading data with JDBC

public Set getAllPersons() throws SQLException {

Connection conn null;

PreparedStatement stmt = null; Declare

ResultSet rs = null; resources

try { Open
conn = dataSource.getConnection() ; connection
String sql = "select id, firstName, lastName from person"; Create
stmt = conn.prepareStatement (sql) ; statement
rs = stmt.executeQuery(); <— Execute statement

144

4.2.2

CHAPTER 4
Hitting the database

Set persons = new HashSet () ;
while (rs.next()) {
persons.add (new Person(rs.getInt("id"),
rs.getString("firstName"), rs.getString("lastName")));

} Iterate over ResultSet
return persons; <— Return results

}

catch (SQLException e) {

LOGGER.error (e) ; Hand@
throw e; exceptions

}

finally
try { i1f (rs != null) rs.close(); }

catch (SQLException e) { LOGGER.warn(e); }

Clean up

try { if (stmt != null) stmt.close(); } resources

catch (SQLException e) { LOGGER.warn(e); }

try { if (conn != null) conn.close(); }
catch (SQLException e) { LOGGER.warn(e); }

That’s about as verbose as our previous example, maybe more. It’s like Pareto’s
Principle flipped on its head; 20 percent of the code is needed for this particular
method while 80 percent is boilerplate code. With our point made, we will end
the torture here and not make you look at any more of this nasty, nasty code.

But the fact is that this boilerplate code is important. Cleaning up resources
and handling errors is what makes data access robust. Without it, errors would go
undetected and resources would be left open, leading to unpredictable code and
resource leaks. So not only do we need this code, we also need to make sure this
code is correct. This is all the more reason to use a framework where this code is
written right and written once.

That is what Spring’s JDBC framework brings to the table.

Using JdbcTemplate

Spring’s JDBC framework will clean up your JDBC code by shouldering the bur-
den of resource management and error handling. This leaves you free to write
the statements and queries to get your data to and from the database.

As we explained before, all of Spring’s data access frameworks incorporate a
template class. In this case, it is the JdbcTemplate class. All a JdbcTemplate needs
to do its work is a Datasource, which makes creating an instance simple enough:

JdbcTemplate template = new JdbcTemplate (myDataSource) ;

Using JDBC with Spring 145

And since all of Spring’s DAO template classes are thread-safe, we only need one
JdbcTemplate instance for each DataSource in our application. To make use of the
JdbcTemplate, each of your DAO classes needs to be configured with a Jdbc-
Template instance like so:

public class StudentDaoJddbc implements StudentDao
private JdbcTemplate jdbcTemplate;

public void setJdbcTemplate (JdbcTemplate jdbcTemplate) {
this.jdbcTemplate = jdbcTemplate;

}
}
This makes for easy configuration since each of your DAO classes can be config-
ured with the same JdbcTemplate, as listing 4.4 demonstrates.

<bean id="jdbcTemplate"
class="org.springframework.jdbc.core.JdbcTemplate" >
<property name="dataSource"s><ref bean="dataSource"/></propertys>
</bean>

<bean id="studentDao" class="StudentDaoJdbc">
<property name="jdbcTemplate"><ref bean="jdbcTemplate"/></property>
</bean>

<bean id="courseDao" class="CourseDaoJddbc">
<property name="jdbcTemplate"><ref bean="jdbcTemplate"/></property>
</bean>

Now we are ready to start accessing the database. To start off, let’s take a look at
how to execute database writes using the JbdcTemplate class.

Writing data
Earlier we discussed how each of Spring’s DAO template classes works in concert
with callback interfaces. The JdbcTemplate uses several of these callbacks when
writing data to the database. The usefulness you will find in each of these inter-
faces will vary. We will first introduce two of the simpler interfaces, and then we
will show you some shortcuts provided by the gdbcTemplate class.

The first callback we will explore is PreparedStatementCreator. As the name
suggests, implementers of this interface are responsible for creating a Prepared-
Statement. This interface provides one method:

146

CHAPTER 4
Hitting the database

PreparedStatement createPreparedStatement (Connection conn)
throws SQLException;
When you implement this interface, you are responsible for creating and return-
ing a PreparedStatement from the Connection argument, but you don’t have to
worry about exception handling. An implementation that inserts a Person object
might look like the example in listing 4.5.

Listing 4.5 Creating a PreparedStatement with a PreparedStatementCreator

public class InsertPersonStatementCreator
implements PreparedStatementCreator {

public PreparedStatement createPreparedStatement (
Connection conn) throws SQLException {
String sgl = "insert into person (id, first _name, last_name) " +
"values (?, ?, ?)";
return conn.prepareStatement (sqgl) ;
}
}
|

Implementers of this interface will often implement another interface as well:
SqlProvider. By implementing this interface’s one method—getSql ()—you
enable your class to provide SQL strings to the JdbcTemplate class. This is very
useful since the JdbcTemplate class can log every SQL statement it executes. List-
ing 4.6 illustrates what this would look like.

Listing 4.6 Implementing SqlProvider in a PreparedStatementCreator

public class InsertPersonStatementCreator
implements PreparedStatementCreator, SglProvider {

private final String sql =
"insert into person (id, firstName, lastName) " +
"values (?, 2, 2)";

public PreparedStatement createPreparedStatement (
Connection conn) throws SQLException {
return conn.prepareStatement (sql) ;

}

public String getSql() { return sqgl; }

}

Using JDBC with Spring 147

Now whenever the JdbcTempate calls on this class to create a PreparedStatment, it
will also be able to log the executed SQL. This can prove invaluable during devel-
opment and debugging.

The complement to PreparedStatementCreator IS PreparedStatementSetter.
Classes that implement this interface receive a PreparedStatement and are respon-
sible for setting any of the parameters, as the single method’s signature indicate:

void setValues (PreparedStatement ps) throws SQLException;

Continuing with the example above, setting parameters to insert a Person object
would look like this:

private Person person;

public void setValues (PreparedStatement ps) throws SQLException {
ps.setInt (0, person.getId().intValue()) ;
ps.setString(l, person.getFirstName()) ;
ps.setString (2, person.getLastName()) ;

}

Again, all you have to worry about is setting the parameters. Any exceptions will be
handled by the gdbcTemplate class. Notice a pattern here? You are only doing what
is necessary to define how to insert a Person object; the framework is doing the rest.

As we mentioned earlier, these are fairly simple callbacks. The former creates
a PreparedStatement and the latter sets the parameters. It almost seems like over-
kill to create a class for something so trivial. Fortunately the JdbcTemplate class
provides some convenience methods to simplify this.

Since many updates consist of creating a Preparedstatement from a SQL string
and then binding parameters, JdbcTemplate provides an execute (String sql,
Object[] params) method that facilitates just that. You would use this method in
this way:

String sgl = "insert into person (id, firstName, lastName) " +

"values (?, ?, ?)";

Object [] params = new Object[] { person.getId(),

person.getFirstName (),
person.getLastName () };

return jdbcTemplate.update(sgl, params) ;

Ahhh! Now we are getting to some nice, concise code! Behind the scenes, the
JdbcTemplate class creates a PreparedStatementCreator and PreparedStatement -
Setter. But now we don’t have to worry about that. We just supply the SQL and
the parameters.

148

CHAPTER 4
Hitting the database

One improvement we can make is to use the JdbcTemplate method that also
accepts the JDBC types of our parameters, update (String sql, Object[] args,
int [1 argTypes). This provides type safety, which allows for better support when
setting parameters to null. Let’s take a look at how we would use this method.
This time, listing 4.7 will examine the execute () of our method in the context of
one our DAO methods.

Listing 4.7 Inserting data using the JdbcTemple.execute method

public int insertPerson(Person person) {

String sgl = "insert into person (id, firstName, lastName) " + Create
"values (?, ?, ?)"; SQL
Object [] params = new Object[] { person.getId(),
person.getFirstName (), Set
person.getLastName () }; parameters
int[] types = Set
new int[] { Types.INTEGER, Types.VARCHAR, Types.VARCHAR }; datatypes
return jdbcTemplate.update (sqgl, params, types); Execute
} statement

Now we have the simplicity for which we have been searching. Four statements:
declare the SQL, declare the parameters, declare the types, execute the opera-
tion. Spring does the rest. That’s leverage. For the vast majority of your database
writes, the method in listing 4.7 will serve as a perfect template.

But what if we want to update more than one row? Suppose we also have a
method that supports adding multiple person objects en masse. In that case, we
would use the BatchPreparedStatementSetter. This interface has two methods:

setValues (PreparedStatement ps, int i) throws SQLException;

int getBatchSize() ;
getBatchSize () tells the JdbcTemplate class how many statements to create.
This also determines how many times setValues() will be called. Listing 4.8
shows how you would use this in conjunction with the JdbcTemplate.batch-
Update () method.

Listing 4.8 Using a BatchPreparedStatementCreator to insert multiple objects

public int[] updatePersons(final List persons) ({
String sgl = "insert into person (id, firstName, lastName) " + Create
"values (?, ?, ?)"; SQL
BatchPreparedStatementSetter setter = null;
setter = new BatchPreparedStatementSetter()

Using JDBC with Spring 149

public int getBatchSize() {
return persons.size() ;

}

Define number of
batch statements

public void setValues (PreparedStatement ps, int index)
throws SQLException {
Person person = (Person) persons.get (index) ;
ps.setInt (0, person.getId().intValue()) ;
ps.setString(l, person.getFirstName()) ;
ps.setString (2, person.getLastName()) ;

Set
parameters

}i

return jdbcTemplate.batchUpdate (sqgl, setter); Execute batch

1 statement
||

So if your JDBC driver supports batching, the updates will be batched, creating
more efficient database access. If not, Spring will simulate batching, but the state-
ments will be executed individually.

So now you have seen how to write data to the database. Let’s take a look at
how we can use Spring to help get data out of the database.

Reading data

As we saw in our JDBC code without Spring, when we queried the database we had
to iterate through the Resultset. Spring recognizes that this is a step that is
always required for queries, so it handles that for us. Instead, we simply need to
tell Spring what to do with each row in the ResultSet. We do so through the row-
CallbackHandler interface by implementing its only method:

void processRow(java.sgl.ResultSet rs)

This method is called for each row in our ResultSet. Going back to our person-
Dao, we are likely to have method to retrieve a Person object by its id. Listing 4.9
shows how we would do so using a RowCallbackHandler.

public Person getPerson(final Integer id) {

String sqgl = "select id, first name, last name from person " + Create
"where id = ?"; SQL

final Person person = new Person(); <— Create object being queried

final Object[] params = new Object[] { id }; <+— Create query parameters

jdbcTemplate.query (sql, params, new RowCallbackHandler () ({

150

CHAPTER 4
Hitting the database

public void processRow(ResultSet rs) throws SQLException {
person.setld(new Integer (rs.getInt("id")));
person.setFirstName (rs.getString("first name")) ; query
person.setLastName(rs.getString("last_ngme")); results
}
P
return person; <— Return queried object

}

Process

As you can see, we define our SQL and parameters as we did before. And since we
are now getting data from the database, we also supply a RowCallbackHandler that
knows how to extract the data from the ResultsSet.

There is also a subinterface you can implement that is useful for retrieving
multiple objects through a query. Suppose we want a method that retrieves all of
our Person objects. To do this we would implement ResultReader. Spring pro-
vides an implementation of this interface that does exactly what we need: Row-
MapperResultReader. But in order to use this class, we must discuss the RowMapper
interface first.

The RowMapper interface is responsible for mapping a ResultSet row to an
object. To map a row to Person object, we would create a RowMapper like this:

class PersonRowMapper implements RowMapper {
public Object mapRow (ResultSet rs, int index)
throws SQLException {
Person person = new Person() ;
person.setld(new Integer (rs.getInt("id"))) ;
person.setFirstName (rs.getString("first name")) ;

person.setLastName (rs.getString("last name")) ;
return person;

}

We now have a reusable class that can take a ResultSet row and create a Person
object. This can now be used in any Person query, as long as id, first_name, and
last_name columns are being selected as part of the query. Now let’s go back and
see how we would use this in our getAllPersons () method:
public List getAllPersons () {
String sqgl = "select id, first_name, last_name from person";

return jdbcTemplate.query (
sgl, new RowMapperResultReader (new PersonRowMapper())) ;
}

Nice and tidy. Now that we have our reusable RowMapper object, listing 4.10 illus-
trates how we can clean up our getPerson () method from earlier.

Using JDBC with Spring 151

public Person getPerson(final Integer id) {

String sqgl = "select id, first_name, last_name from person " +
"where id = ?";

final Person person = new Person() ;

final Object[] params = new Object[] { id };

List list = jdbcTemplate.query(sqgl, params,

new RowMapperResultReader (new PersonRowMapper())) ;
return (Person) list.get(0);

See, we told you that you would get great reuse from the RowMapper interface. In
fact, there is really no reason you should not encapsulate the extraction of
ResultSet data in exactly one RowMapper for each of your classes. You could con-
ceivably have dozens of query methods for a particular object, but you should
never need more than one RowMapper object.

So far we have covered queries that pull data to create domain objects. But
what about queries that just return simple types, like int or String? JdbcTemplate
also contains some convenience methods for precisely this. For instance, here’s
how you would write a query to get the count of all Person objects:

public int getNumberOfPersons () {
return jdbcTemplate.queryForInt ("select count (*) from person");
}

Similarly, to execute a query to find the last name for a particular person id, we
would write a method like this:
public String getLastNameForId (Integer id) {
String sgl = "select last_name from person where id = ?";
return (String) jdbcTemplate.queryForObject (
sql, new Object[] { id }, String.class);
}
By now you must be enjoying seeing JDBC query methods that are not littered
with try-catch-finally blocks and ResultSet iterations. Now we are going to
turn our attention to one more area where Spring’s JDBC framework can help.
Let’s look at how to call stored procedures using JdbcTemplate.

Calling stored procedures

Sometimes we choose to execute our persistence operations as stored procedures
in the database rather than SQL in our application. This may be due to perfor-
mance reasons, company policy, or just a matter of taste. Whatever the case,

152

4.2.3

CHAPTER 4
Hitting the database

Spring provides the same support for calling stored procedures as it does for exe-
cuting statements and queries. This time get the support by implementing
CallableStatementCallback.

Let’s say we have a stored procedure in our application that is responsible for
moving all old student data to archive tables. Assuming this procedure is named
ARCHIVE STUDENTS, listing 4.11 shows how we would access it.

public void archiveStudentData() {
CallableStatementCallback cb = new CallableStatementCallback() {
public Object doInCallableStatement (CallableStatement cs)
throws SQLException{
cs.execute () ;
return null;

}
Vi
jdbcTemplate.execute ("{ ARCHIVE STUDENTS }", cb);
}
|

Once again, we have all the benefits of resource management and exception han-
dling. All we have to do is define the name of our stored procedure and execute it.

You should now have a good idea of how to put the JdbcTemplate class to work
for you. Now let’s take a look at how we can represent database operations as
objects themselves.

Creating operations as objects

In the examples we just covered, you learned how you write JDBC code in a much
cleaner fashion. But the code was still tightly coupled to SQL. This is not neces-
sarily a bad thing. But what if we want to write JDBC code in a more OO fashion?
Spring provides a way to actually model database operations as objects. This adds
another layer of insulation between your code and straight JDBC.

Spring provides classes for both reading and writing data. As we work through
some examples of these, there are a couple of things you should know. First, these
database operation objects are thread-safe, meaning you need to create only one
instance per database operation. Second, any database operation object must be
compiled before being used. This lets the object know when to prepare the state-
ment so that it can be executed later. Not surprisingly, you compile a database oper-
ation object by calling the compile () method. We will demonstrate this practice in

Using JDBC with Spring 153

our examples. To start off, let’s see how we would create an object to write data to
the database.

Creating an SqlUpdate object

To create a reusable object for executing inserts or updates, you subclass the
Sqlupdate class. An object for inserting a Person object would look like this:

public class InsertPerson extends SglUpdate {

public InsertPerson(DataSource ds) {
setDataSource (ds) ;
setSqgl ("insert into person (id, firstName, lastName) " +

"values (?, 2?2, ?)";

declareParameter (new SglParameter (Types.NUMERIC)) ;
declareParameter (new SglParameter (Types.VARCHAR)) ;
declareParameter (new SglParameter (Types.VARCHAR)) ;
compile () ;

public int insert (Person person) {
Object [] params = new Object[]
person.getId()
person.getFirstName (),
person.getLastName ()

}i

return update (params) ;

}
}

There are a couple of things you should notice in this example. First, we have to
supply our sqlupdate object with a DataSource. It uses this to create a Jdbc-
Template (it uses a JdbcTemplate to do its work). Second, notice the three
declareParameter () calls after we configure the SQL. We need to call this method
for each of the parameters in our statement. Note that the order in which we issue
these statements is important; they must be issued in the same order that they
appear in the SQL.

Finally, notice that we call compile () at the end of our constructor. As we men-
tioned, every database operation object must be compiled before it can be used.
By calling compile() in the constructor, we ensure that it will always be called
when an instance is created. Speaking of constructing these objects, you can keep
an instance of this class as an instance variable in your DAO class since all of these
objects are thread-safe.

We would actually call this object like this:

154

CHAPTER 4
Hitting the database

private InsertPerson insertPerson;

public int insertPerson(Person person)
return updatePerson.insert (person) ;

}

Notice that we did not use a single JDBC API in either the InsertPerson object
or our insertPerson () method. There is no reference to a PreparedStatement or
Connection object to be found. This is the extra layer of abstraction we referred to
earlier. Now let’s take a look at how to create a query object.

Querying the database with a MappingSqlQuery
To model a query as an object, we subclass the MappingSqlQuery class like so:

private class PersonByIdQuery extends MappingSglQuery {

public PersonByIdQuery (DataSource ds) {

super (ds, "select id, first _name, last_name from person " +
"where id = ?");

declareParameter (new SglParameter ("id", Types.INTEGER)) ;

compile () ;

}

public Object mapRow (ResultSet rs, int rowNumber)
throws SQLException {
Person person = new Person() ;
person.setId((Integer) rs.getObject ("id")) ;
person.setFirstName (rs.getString("first name")) ;
person.setLastName (rs.getString("last name")) ;
return person;

}
}

Again, we supply a DataSource to the constructor and we compile at the end of
the constructor. We use this object like this:

private PersonByIdQuery personByIdQuery;

public Person getPerson(Integer id) {
Object[] params = new Object[] { id };
return (Person) personByldQuery.execute (params) .get (0) ;

}
Once again, we interact very little with the JDBC APIs. If this type of design is
attractive to you, you may prefer modeling your database operations as objects.
But deciding to take this approach or to access the gdbcTemplate directly is more
of matter of taste. One approach is not inherently better than the other.

Using JDBC with Spring 155

4.2.4 Auto-incrementing keys

When you insert a row in the database, you typically assign it a primary key that
uniquely identifies that row. It is good practice to use a surrogate key for your pri-
mary key. That is, the primary key should have no business meaning but is instead
generated within your application. Spring provides a means to do this via the
DataFieldMaxValueIncrementer interface. This interface has three different meth-
ods for obtaining the next value to be used as a key: nextIntvalue(), next-
LongValue (), and nextStringvalue ().
We would use a DataFieldMaxValueIncrementer like this:

private DataFieldMaxValuelIncrementer incrementer;

public void setIncrementer (
DataFieldMaxValueIncrementer incrementer) {
this.incrementer = incrementer;

}

public void insertPerson(Person person) {
Integer id = new Integer (incrementer.nextIntValue()) ;
JdbcTemplate jdbcTemplate = new JdbcTemplate (dataSource) ;
String sqgl = "insert into person (id, firstName, lastName) " +
"values (?, 2?2, ?)";
Object[] params = new Object[] { id,
person.getFirstName (),
person.getLastName () };
jdbcTemplate.update (sql, params) ;

// everything was successful
person.setId(id) ;

We can then wire in an implementation of this interface. Spring comes with
implementations that hook into the sequence mechanism for Oracle, Postgre-
SQL, MySQL, and Hypersonic databases. You are free to write your own imple-
mentation as well.

We have now covered the multitude of ways Spring’s JDBC framework can help
you write cleaner JDBC code. But as your applications grow larger and more com-
plex, JDBC can still become cumbersome even with this framework. To help man-
age the persistence complexities of large applications, you will need a persistence
tool. And as you will see, Spring provides great support for these tools as well.

156

CHAPTER 4
Hitting the database

4.3 Introducing Spring’s ORM framework support

When we were kids, riding a bike was fun, wasn’t it? We would ride to school in the
mornings. When school let out we would cruise to our best friend’s house. When
it got late and our parents were yelling at us for staying out past dark, we would
peddle home for the night. Gee, those days were fun.

But then we grew up—and we needed more than a bike. Sometimes we have to
travel quite a distance to work. Groceries have to be hauled and ours kids need to
get to soccer practice. And if you live in Texas, air conditioning is a must! Our
needs have simply outgrown our bike.

JDBC is the bike of the persistence world. It is great for what it does, and for
some jobs it works just fine. But as our applications become more complex, so do
our persistence requirements. We need to be able to map object properties to
database columns and have our statements and queries created for us, freeing us
from typing an endless string of question marks. We also need more sophisticated
features such as the following:

m Lazy loading—As our object graphs become more complex, we sometimes
don’t want to fetch entire relationships immediately. To use a typical exam-
ple, suppose we are selecting a collection of PurchaseOrder objects, and
each of these objects contains a collection of LineItem objects. If we are
only interested in PurchaseOrder attributes, it makes no sense to grab the
LineItem data. This could be quite expensive. Lazy loading allows us to
grab data only as it is needed.

m Eager fetching—This is the opposite of lazy loading. Eager fetching
allows you to grab an entire object graph in one query. So if we know we
need a PurchaseOrder object and its associated LineItems, eager fetch-
ing lets us get this from the database in one operation, saving us from
costly round-trips.

m Caching—For data that is read-mostly (used often but changed infre-
quently), we don’t want to fetch this from the database every time it is used.
Caching can add a significant performance boost.

m Cascading—Sometimes changes to a database table should result in
changes to other tables as well. Going back to our purchase order example,
it is reasonable that a LineItem object has an association with a Product
object. In the database, this is most likely represented as a many-to-many
relationship. So when a LineItem object is deleted, we also want to disasso-
ciate this LineItem from its Product object in the database.

4.4

4.4.1

Integrating Hibernate with Spring 157

Fortunately, there are frameworks out there that already provide these services.
The general term for these services is object/relational mapping (ORM). Using an
ORM tool for your persistence layer can save you literally thousands of lines of
code and hours of development time. This lets you switch your focus from writing
error-prone SQL code to addressing your application requirements.

Spring provides integration for Sun’s standard persistence API JDO, as well as
the open source ORM frameworks Hibernate, Apache OJB, and iBATIS SQL Maps.
Spring’s support for each of these technologies is not as extensive as its JDBC sup-
port. This is not a poor reflection on Spring’s APIs, but rather a testament to how
much work each of these ORM frameworks does. With the ORM tool doing most
of the actual persistence, Spring provides integration points to these frameworks,
as well as some additional services:

= Integrated transaction management

= Exception handling

m Thread-safe, lightweight template classes

= Convenience support classes

m Resource management
While we are going to cover Spring’s integration with all four of these ORM frame-
works, we will not go into the details of each specific framework. We will give an

explanation of their general behavior and some example configurations. If you
want to explore any of these frameworks in detail, a wealth of resources is available.

Integrating Hibernate with Spring

Hibernate is a high-performance, open source persistence framework that has
gained significant popularity recently. It provides not only basic object/relational
mapping but also all the other sophisticated features you would expect from a
full-featured ORM tool, such as caching, lazy loading, eager fetching, and distrib-
uted caching. You can learn more about it in Hibernate in Action from Manning or
at the Hibernate web site http://www.hibernate.org.

Hibernate overview

You configure how Hibernate maps your objects to a relational database through
XML configuration files. For an example of how this is done, let’s examine how we
would map the Student class from our Spring Training application. First, let’s
examine the Student class, shown in listing 4.12.

158 CHAPTER 4
Hitting the database

Listing 4.12 Student.java

import java.util.Set;
public class Student {

private Integer id;
private String firstName;
private String lastName;
private Set courses;

public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }

public String getFirstName() { return firstName; }
public void setFirstName (String firstName) {
this.firstName = firstName;

}

public String getLastName () { return lastName; }
public void setLastName (String lastName) {
this.lastName = lastName;

}

public Set getCourses() { return courses; }
public void setCourses(Set courses) { this.courses = courses; }

Typically, each persistent class will have a corresponding XML mapping file that
ends with the extension “.hbm.xml.” Let’s take a look at the mapping file for the
Student class. By convention, we would name this file Student.hbm.xml, which is
shown in listing 4.13.

Listing 4.13 Student.hbm.xml Hibernate mapping file

<?xml version="1.0"7?>

<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mappings> Define
class being
<class name="org.springinaction.training.model.Student"> mapped

<id name="id">
<generator class="assigned"/> Map primary key
</id>

4.4.2

Integrating Hibernate with Spring 159

<property name="sex"/> Map
<property name="weight"/> propmths

<set name="courses" table="transcript"s>
<key column="student_ id"/>
<many-to-many column="course_id"
class="org.springinaction.training.model.Course"/>
</set>

Map
relationships

</class>

</hibernate-mapping>

In a typical application, you will have several of these files. These configuration
files are then read in to create a SessionFactory. A SessionFactory will last the
lifetime of your application and you will use it to obtain (what else?) Session
objects. It is with these Session objects that you will access the database. So
assuming that we have a configured SessionFactory, here is how we would get a
Student object by its primary key:
public Student getStudent (Integer id) throw HibernateException {
Session session = sessionFactory.openSession() ;
Student student = (Student) session.load(Student.class, id);

session.close () ;
return student;

}

This is a trivial example of using Hibernate that excludes exception handling.
But there is one thing you should take from this: Very little code is required to
execute this operation. In fact, we actually load the Student object in one line of
code. This is because Hibernate is doing all the work based on your mappings.
Since Hibernate is taking care of making persistence easier, Spring focuses on
making it easier to integrate with Hibernate. Let’s look at some of the ways
Spring does this.

Managing Hibernate resources

As we said, you will keep a single instance of a SessionFactory throughout the life
of your application. So it makes sense to configure this object through your Spring
configuration file. You do so using the Spring class LocalSessionFactoryBean:

<bean id="sessionFactory'"class="org.springframework.
orm.hibernate.LocalSessionFactoryBean">

160

CHAPTER 4
Hitting the database

Of course the SessionFactory needs to know to which database to connect. The
preferred way to do this is to wire a DataSource to the LocalSessionFactoryBean:

<bean id="dataSource"
class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName">
<values>java:comp/env/jdbc/trainingDatasource</value>
</propertys>
</bean>

<bean id="sessionFactory" class="org.springframework.
orm.hibernate.LocalSessionFactoryBean">
<property name="dataSource"s>
<ref bean="dataSource"/>
</propertys>
</bean>

You also manage how Hibernate is configured through the same LocalSession-
FactoryBean bean. Hibernate itself has dozens of properties by which you can
tweak its behavior. When used outside of Spring, Hibernate looks for a file named
hibernate.properties somewhere on the application class path for its configura-
tions. However, with Spring you do not have to manage these configurations in a
separate properties file. Instead, you can wire them to the hibernateProperties
property of the LocalSessionFactoryBean:

<bean id="sessionFactory" class="org.springframework.
orm.hibernate.LocalSessionFactoryBean">
<property name="hibernateProperties">
<props>
<prop key="hibernate.dialect">net.sf.hibernate.
dialect.MySQLDialect</prop>
</props>
</property>

</beans>

One last thing you must configure is which mapping files Hibernate should
read in. Remember when we created a Student.hbm.xml file? Well, we actually
have to tell Hibernate it needs to use this file. Otherwise it will not know how to
map the Student class to the database. Again, we can configure this through a
property of the LocalSessionFactoryBean bean. In this case, we use the mapping-
Resources property:

<bean id="sessionFactory" class="org.springframework.

orm.hibernate.LocalSessionFactoryBean">
<property name="mappingResources">

Integrating Hibernate with Spring 161

<list>
<value>Student .hbm.xml</value>
<value>Course.hbm.xml</value>

</list>
</property>

</beans>

This example works just fine for our small Spring Training application. But what
happens if your application grows and you have dozens, if not hundreds, of per-
sistent classes? It would be cumbersome to configure them all in this fashion.
Fortunately, Spring offers you an alternative. You can also configure the mapping-
DirectoryLocations property with a path that is a subset of your application’s
class path, and Spring will configure the SessionFactory with every *.hbm.xml it
finds in this path. For example, assuming that all the persistent classes we want to
configure are contained in the com.springinaction.training.model package, we
would configure our SessionFactory like this:
<bean id="sessionFactory" class="org.springframework.
orm.hibernate.LocalSessionFactoryBean">
<property name="mappingDirectoryLocations">
<list>
<value>classpath:/com/springinaction/training/model</value>

</list>
</propertys>

</bean>

Now we have a fully configured sessionFactory and we didn’t even need to create
a second configuration file. Now all we need to do is create an object through
which we will access Hibernate. Like all of Spring’s DAO frameworks, this will be a
template class. In this case, it is the HibernateTemplate class. And because the
HibernateTemplate class is thread-safe, we can share this template class with mul-
tiple DAO objects:

<bean id="hibernateTemplate"
class="org.springframework.orm.hibernate.HibernateTemplate">
<property name="sessionFactory"s>
<ref bean="sessionFactory"/>
</propertys>
</bean>

<bean id="studentDao" class="com.springinaction.
training.dao.hibernate.StudentDaocHibernate">
<property name="hibernateTemplate">
<ref bean="hibernateTemplate"/>

162

CHAPTER 4
Hitting the database

</property>
</beans>

<bean id="courseDao" class="com.springinaction.
training.dao.hibernate.CourseDaoHibernate">
<property name="hibernateTemplate">
<ref bean="hibernateTemplate"/>
</propertys>
</bean>

And remember, if it becomes cumbersome to wire the template into each of your
DAO beans, you can always use Spring’s autowire facility to implicitly wire your DAO

beans. Now that you know how to wire a HibernateTemplate to your DAO objects,
we are ready to start using Hibernate.

4.4.3 Accessing Hibernate through HibernateTemplate

The template-callback mechanism in Hibernate is pretty simple. There is the
HibernateTemplate and one callback interface: HibernateCallback. And the
HibernateCallback interface has just one method:
Object doInHibernate (Session session)
throws HibernateException, SQLException;

As you can see, the HibernateCallback interface is pretty straightforward. Now,
let’s put the HibernateTemplate to use. We'll begin by getting an object from
the database:

public Student getStudent (final Integer id) ({
return (Student) hibernateTemplate.execute (
new HibernateCallback () {
public Object doInHibernate (Session session)
throws HibernateException {
return session.load(Student.class, id);

1
}

Since we are using an inner class, a little more code is required and is not quite as
clean as when we were not using Spring’s Hibernate support. But we can have it
both ways—clean code and Spring Hibernate support. The HibernateTemplate
class provides some convenience methods that implicitly create a HibernateCall-
back instance for you. All you have to do is call one of the convenience methods
and Spring’s framework does the rest. For example, here is how you would take
advantage of one of these methods to accomplish the exact same thing as we did
earlier—get an object from the database:

Integrating Hibernate with Spring 163

public Student getStudent (Integer id) ({
return (Student) hibernateTemplate.load(Student.class, id);
}

Now we are getting somewhere! We now have the benefits of having Spring man-
aging our resources, converting proprietary exceptions, and, if we choose, adding
transactions. The previous example is how you will access Hibernate through the
Hibernate template the majority of the time. The HibernateTemplate class con-
tains a wealth of convenience methods for you to use. For example, to update a
Student object, this is all that would be required:

public void updateStudent (Student student) {
hibernateTemplate.update (student) ;

}
Executing queries is not that much different. All we need to do is specify the
query (usually in Hibernate’s query language, HQL). Querying for students by
last name would look something like this:
public List findStudentsByLastName (String lastName) {
return hibernateTemplate.find("from Student student " +

"where student.lastName = ?",
lastName, Hibernate.STRING) ;

}
Pretty straightforward, right? Even if you have never seen HQL before, this
code should be easy to follow. As we said before, Spring’s framework makes for
easy integration.

4.4.4 Subclassing HibernateDaoSupport
Spring’s Hibernate ORM framework also comes with the convenience class Hiber-
nateDaoSupport that your DAO classes can subclass:

public class StudentDaoHibernate extends HibernateDaoSupport
implements StudentDao {

-

If you opt for this design, you need to wire in a SessionFactory—the Hibernate-
DaoSupport class comes with this property. This class provides you with a convenience
method, getHibernateTemplate (), to easily get an instance of a HibernateTemplate.
It also has a getSession() and a closeSessionIfNecessary () method if, for some
reason, you need to perform a Hibernate operation without using a Hibernate-
Template. We are sure you will find these cases will be the exception (no pun
intended). So now you can see how easily you can integrate an ORM tool like
Hibernate. We think you will find the JDO integration just as easy.

164 CHAPTER 4
Hitting the database

4.5 Spring and JDO

JDO is Sun’s standard persistence specification. The important words from that
sentence are standard specification. Like E]B, JDO is a specification developed by
Sun that is implemented by different vendors. Currently there are more than ten
different vendor implementations. To learn more about JDO, you can visit Sun’s
site at http://java.sun.com/products/jdo.

4.5.1 Configuring JDO

Similar to Hibernate’s sessionFactory, JDO has a long-lived object that holds the
persistence configurations. This is the PersistenceManagerFactory. Since JDO is a
specification, PersistenceManagerFactory is the interface that vendors must
implement. Without using Spring, we would get an instance using the javax.
jdo.JDOHelper like so:

Properties props = new Properties();

// set JDO properties

PersistenceManagerFactory factory =

JDOHelper.getPersistenceManagerFactory (props) ;
Some of these properties are defined by the JDO specification. For example,
javax.jdo.option.PersistenceManagerFactoryClass defines the class that is
implementing the PersistenceManagerFactory interface. Vendors are free to
define other properties as well.

We configure a PersistenceManagerFactory in Spring using the LocalPersis-
tenceManagerFactoryBean. If your data store is a relational database, you can also
wire in your DataSource. Let’s take a look at listing 4.14 to see who you wire in a
LocalPersistenceManagerFactoryBean.

<bean id="dataSource"
class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName"> gl’t:atse r
<value>java:comp/env/jdbc/trainingDatasource</values> b;; ource
</property>
</beans>
<bean id="persistenceManagerFactory" class="org.springframework.
orm.jdo.LocalPersistenceManagerFactoryBean"> Create
<property name="dataSource"> Wire LocalPersistence-
f _n n -
<ref bean="dataSource"/> DataSource ManagerFactory

</property> Bean

4.5.2

Spring and JDO 165

<property name="jdoProperties">
<props>
<prop key="javax.jdo.option.
PersistenceManagerFactoryClass">

S {persistenceManagerFactoryClass } </prop> ::E;lyrglle)g
</props>
</propertys>
</bean>

Now we have a JDO PersistenceManagerFactory. The next step is to wire this into
a JdoTemplate:
<bean id="jdoTemplate"
class="org.springframework.orm.jdo.JdoTemplate">
<property name="persistenceManagerFactory">
<ref bean="persistenceManagerFactory"/>
</property>
</bean>
Since this has been drilled into your head by now, we will be brief. JdoTemplate is
the Spring’s JDO framework’s central class. It is the class we will use to access the
JDO framework. And this is the object we will wire into all of our DAO classes.
<bean id="studentDao" class="com.springinaction.
training.dao.hibernate.StudentDaoJdo" >
<property name="jdoTemplate">
<ref bean="jdoTemplate"/>
</property>
</beans>
Of course, all of our JDO DAO classes must have a JdoTemplate property. We are
now up and running with JDO. It’s time to do some readin’ and writin’.

Accessing data with JdoTemplate

In Spring’s JDO framework, the template and callback classes are pretty easy to
master. There is only one method on the JdoTemplate class that you will you use
for accessing data: execute (JdoCallback). And the Jdocallback is likewise simple,
having just one method:

Object doInddo (PersistenceManager pm) throws JDOException;
So if we want to find a Student object by last name, we would use the following:

public Collection findPersonByLastName (final String lastName)
Collection persons = (Collection)
jdoTemplate.execute (new JdoCallback () {

166

4.6

CHAPTER 4
Hitting the database

public Object doInJdo(PersistenceManager pm) {
Query g = pm.newQuery (
Person.class, "lastName == " + lastName) ;
return (Collection) g.execute();

1
13K
List list = new ArrayList();
list.addAll (persons) ;
return list;

}
As you can see, all of the JDO work is done within a simple inner class implemen-
tation of JdoCallback. You then pass this callback object to the execute () method
of your JdoTemplate instance, and Spring’s JDO framework does the rest. And like
the previous template classes, JdoTemplate also has a handful of convenience
methods. For example, you would retrieve a Student object by its id using the
getObjectById() method:

public Student getStudent (Integer id) ({
return (Student) jdoTemplate.getObjectById(Student.class, id);

}

We don’t want to disappoint you, but this is really about it. You execute your JDO
code within a callback object or take advantage of a JdoTemplate convenience
method and lean on Spring for resource management and exception handling.

Spring and iBATIS

Like Hibernate, iBATIS SQL Maps is an open source persistence framework. It
provides the standard ORM features like mapping complex objects and caching,
but is not quite as feature-rich as Hibernate. To learn more about SQL Maps, visit
the iBATIS web site at http://www.ibatis.com/sqlmaps.

Spring actually supports two versions of SQL Maps: version 1.3 and the
most recent version, 2.0. It is easy to distinguish between which Spring classes
are meant for which version. All of the Spring classes that are meant for ver-
sion 1.3 are named SqglMapxXxx, and the classes to be used with version 2.0 are
named SqlMapClientXxx. For example, you would use the SqlMapTemplate class
with 1.3 and SglMapClientTemplate with 2.0. In all of our examples we will be
using version 2.0.

Speaking of examples, let’s take a peek at how to configure SQL Maps.

Spring and iBATIS 167

4.6.1 Setting up SQL Maps

Similar to how you would with Hibernate, you configure SQL Maps with an XML
configuration file. Listing 4.15 shows how to configure the Student class.

Listing 4.15 Configuring the Student class in iBATIS SQL Maps

<sgl-map name="Student"s> Define Student mappings
<result-map name="result"
class="org.springinaction.training.model.Student">
<property name="id" column="id" columnIndex="1"/>
<property name="firstName" column=" first_ name"
columnIndex="2"/>
<property name="lastName" column=" last_ name"
columnIndex="3"/>
</result-map>

<mapped-statement name="getStudentById" result-map="result"s>

select student.id, student.first name, student.last name Define
from student select
where student.id = #value# statement

</mapped-statement >

<mapped-statement name="insertAccount"s>
insert into student (id, first_name, last_name)
values (#id#, #firstName#, #lastName#)
</mapped-statement >
</sql-map>

Define insert
statement

Give this file a meaningful name, like student.xml. The next step is to create an
iBATIS SQL Maps configuration file called sql-map-config.xml. Within this file,
we configure our Student .xml file:

<sgl-map-config>
<sgl-map resource="Student.xml"/>
</sql-map-config>

Now that our configuration files are in place, we need to configure a SQLMapClient:

<bean id="sglMapClient"
class="org.springframework.orm.ibatis.SglMapClientFactoryBean">
<property name="configLocation">
<value>sqgl-map-config.xml</value>
</propertys>
<property name="dataSource"s>
<ref bean="dataSource"/>
</propertys>
</bean>

168

4.6.2

CHAPTER 4
Hitting the database

By now you should know the drill: create a template class and wire it to our
DAO objects:

<bean id="sglMapClientTemplate"
class=" org.springframework.orm.ibatis.SglMapClientTemplate">
<property name="sglMapClient">
<ref bean="sglMapClient"/>
</property>
</bean>

<bean id="studentDao"
class="org.springinaction.training.model.StudentDaoSqglMap" >
<property name="sglMapClientTemplate">
<ref bean="sglMapClientTemplate"/>
</property>
</bean>

We have our DAO objects configured and ready to go. Now we need to use the
SqlMapClientTemplate to hit the database.

Using SqlMapClientTemplate

Like the previous ORM frameworks, using the template class and its callback is
pretty straightforward. In this case, we need to implement the SqlMapClient-
Callback’s method:

Object doInSglMapClient (SglMapExecutor executor)
throws SQLException;

And just like all of the other template-callback pairs, the template manages the
nasty stuff and we worry about operating on the data. Here is an example of how
we would query for a Student using SqlMapClientCallback:

public Student getStudent (Integer id) throws DataAccessException {
return getSqglMapClientTemplate () .execute (
new SglMapClientCallback()
public Object doInSglMapClient (SglMapExecutor executor)
throws SQLException {
return (Student) executor.queryForObject ("getPerson", id);

1
}
Once again, we end up with a method that is short and sweet. And believe it or
not, it can be even shorter and sweeter, because SqlMapClientTemplate comes
with a handful of convenience methods for common data access operations.
Using one of these methods, we would rewrite the above method as so:

4.7

4.7.1

Spring and OJ]B 169

public Student getStudent (Integer id) throws DataAccessException {
return (Student) getSglMapTemplate () .executeQueryForObject (
"getStudentById", id);
}

Writing data to the database is just as simple:

public void insertStudent (Student student)
throws DataAccessException {
getSglMapTemplate () .executeUpdate ("insertStudent", student) ;

}
By now you should have noticed a theme in Spring’s ORM frameworks. Since
these persistence frameworks focus on their job (O/R mapping), the Spring inte-
gration points are simple. Once we have configured our ORM tool through
Spring’s XML files, accessing and using the tool become quite straightforward.

Spring and 0JB

ObJectRelationalBridge, or OJB, is another open source ORM framework from
Apache. Like Hibernate, is has nearly every feature you would want in an ORM
tool, including lazy loading and distributed caching. You can learn more about
OJB at the OJB web site at http://db.apache.org/ojb.

OJB supports several persistence APIs, including two standard APIs—]DO and
ODMG—as well as its own proprietary API. Spring integrates with OJB’s propri-
etary API, which is based around a PersistenceBroker class. Let’s see how we can
configure a PersistenceBroker using Spring.

Setting up 0JB’s PersistenceBroker

Like the other two open source ORM frameworks we have already discussed, OJB
defines its mapping in an XML file. Typically, you will do this in a file named 0JB-
repository.xml. This is also the file in which you tell OJB which Datasource to
use. Listing 4.16 illustrates how you would configure the Student class in OJB.

<descriptor-repository version="1.0">

<jdbc-connection-descriptor jcd-alias="dataSource"
default-connection="true"
useAutoCommit="1"/>

Configure
DataSource

<class-descriptor
class="org.springinaction.training.model.Student" l Configure
table="Student"> Student
mapping

170

CHAPTER 4
Hitting the database

<field-descriptor name="id" column="id"
primarykey="true"

autoincrement="true"/>
Configure

Student
mapping

<field-descriptor name="firstName" column="first name"/>
<field-descriptor name="lastName" column="last name"/>

</class-descriptors>
</descriptor-repositorys>

When the Spring OJB framework tries to access the database, it will use the Data-
Source whose bean name is the same as the jcd-alias property above. For exam-
ple, in the above 0JB-repository.xml file, you would need to wire a DataSource
with the name dataSource.

OJB also requires a properties file named 0JB.properties for OJB-specific
properties. When you download OJB, you get an 0JB.properties file with the
default values set. This file has a lot of properties with which you can configure
OJB. The only property you need to change to integrate Spring with OJB is the
ConnectionFactoryClass:

ConnectionFactoryClass=org.springframework.orm.ojb.
support .LocalDataSourceConnectionFactory
To see how to configure the multitude of other OJB properties, see the OJB doc-
umentation. Now we are ready to wire our Spring beans. To integrate O]B, all we
need to do is wire a DataSource as described above:

<beans>
<bean id="dataSource" ../>

<bean id="studentDao"
class="com.springinaction.training.dao.ojb.StudentDaocOjb">
</bean>

<bean id="ojbConfigurer" class="org.springframework.orm
ojb.support.LocalOjbConfigurer"/>
</beans>
Notice that we did not wire a template class this time. This is because the persis-
tenceBrokerTemplate class configures itself upon instantiation, so there is nothing
to configure. Listing 4.17 shows how studentDao would be implemented using
OJB and the PersistenceBrokerDaoSupport class.

4.8

Summary 171

public class StudentDaoOjb extends PersistenceBrokerDaoSupport
implements StudentDao {

public Student getStudent (final Integer id) ({
Criteria criteria = new Criterial();
criteria.addLike ("id", Integer.toString(id)) ; Query
return (Student) data
getPersistenceBrokerTemplate () .getObjectByQuery (
new QueryByCriteria(Student.class, criteria));

public void create (Student student)
getPersistenceBrokerTemplate () .store (student) ;

}

Write
data

As you see, we still get a template class to access the O] B framework. Since we sub-
classed the PersistenceBrokerDaoSupport class, the PersistenceBrokerTemplate
class is already available to us. Also, notice that we take advantage of some of the
convenience methods available in the PersistenceBrokerTemplate class, such as
getObjectByQuery () and store(). Like Spring’s other ORM integration frame-
works, its OJB support comes with a wealth of convenience methods that make
integration as painless as possible.

Summary

As you discovered, no matter what persistence technology you are using, Spring
aims to make this transparent to the rest of your application. The key way it does
this is by providing a consistent exception hierarchy across all of its DAO frame-
works. By interpreting technology-specific exceptions and vendor-specific error
codes, Spring allows you to throw generic DataAccessException subclasses so that
your persistence tier does not leak into the rest of your application.

Of all the persistence technologies available, straight JDBC requires the most
work from your code. And as you learned, Spring provides a wealth of support
to help write better JDBC code. By providing a clean callback design, you are
able to write your JDBC statement and queries without the hassle of resource
management and exception handling. It also provides you with other support
facilities such as a framework for generating primary keys and custom error
code interpretation.

172

CHAPTER 4
Hitting the database

Beyond plain JDBC, many applications use an ORM tool to handle more com-
plex persistence needs. You discovered that Spring has very capable support for
several of these frameworks: Hibernate, JDO, iBATIS SQL Maps, and Apache
OJB. By integrating Spring with your ORM tool, you can have a more unified con-
figuration, as well as take advantage of Spring’s resource management and excep-
tion handling.

One thing noticeably missing from this chapter is transaction management.
That is because transaction management is so complex it warrants its own chap-
ter. In chapter 5, you will learn how you can integrate Spring’s rich transaction
support into each of these persistence technologies.

Managing transactions

This chapter covers

m [ntegrating Spring with different transaction
managers

m Managing transaction programmically

m Using Spring’s declarative transactions

m Describing transactions using annotations

173

174 CHAPTER 5
Managing transactions

Take a moment to recall your younger days. If you were like many children, you
spent more than a few carefree moments on the playground swinging on the swings,
traversing the monkey bars, getting dizzy while spinning on the merry-go-round,
and going up and down on the teeter-totter.

The problem with the teeter-totter is that it is practically impossible to enjoy
on your own. You see, to truly enjoy a teeter-totter, you need another person. You
and a friend both have to agree to play on the teeter-totter. This agreement is an
all-or-nothing proposition. Both of you will either teeter-totter or you will not. If
either of you fails to take your respective seat on each end of the teeter-totter,
then there will be no teeter-tottering—there’ll just be a sad little kid sitting
motionless on the end of a slanted board.!

In software, all-or-nothing operations are called transactions. Transactions
allow you to group several operations into a single unit-of-work that either fully
happens or fully doesn’t happen. If everything goes well, then the transaction is a
success. But if anything goes wrong, then the slate is wiped clean and it’s as if
nothing ever happened.

Probably the most common example of a real-world transaction is a money
transfer. Imagine that you were to transfer $100 from your savings account to
your checking account. The transfer involves two operations: $100 is deducted
from the savings account and $100 is added to the checking account. The money
transfer must be performed completely or not at all. If the deduction from the
savings account works, but the deposit into the checking account fails, you’ll be
out $100 (good for the bank, bad for you). On the other hand, if the deduction
fails but the deposit succeeds, you'll be ahead $100 (good for you, bad for the
bank). It’s best for both parties involved if the entire transfer is rolled back if
either operation fails.

Spring has rich support for transaction management, both programmatic and
declarative. In this chapter, you’ll learn how to place application code in transac-
tions to ensure that when things go right they are made permanent—and when
things go wrong nobody needs to know.

5.1 Understanding transactions

To illustrate transactions, consider the purchase of a movie ticket. Purchasing a
ticket typically involves the following actions:

! We're still checking into it, but this may qualify as a record for the most uses of the word “teeter-totter”
in a programming book.

Understanding transactions 175

m The number of available seats will be examined to verify that there are
enough seats available for your purchase.

m The number of available seats is decremented by one for each ticket purchased.
= You provide payment for the ticket.

m The ticket is issued to you.

If everything goes well, you'll be enjoying a blockbuster movie and the theater
will be a few dollars richer. But what if something goes wrong? For instance, what
if you paid with a credit card that had reached its limit? Certainly, you would not
receive a ticket and the theater wouldn’t receive payment. But if the number of
seats isn’t reset to its value before the purchase, then the movie may artificially
run out of seats (and thus lose sales). Or consider what would happen if every-
thing else works fine, but the ticket issue fails. You’d be short a few dollars and be
stuck at home watching cable TV.

In order to ensure that neither you nor the theater loses out, the actions above
should be wrapped in a transaction. As a transaction, they’re all treated as a single
action, guaranteeing that they’ll either all fully succeed or they’ll all be rolled
back as if it never happened. Figure 5.1 illustrates how this transaction plays out.

Transactions play an important role in software, ensuring that data and
resources are never left in an inconsistent state. Without them, there is potential
for data to be corrupted or inconsistent with the business rules of the application.

Transaction Committed

1. Verify Seats

. Purchase Ticket 2 Reserve Seat
3. Receive Payment
4. Issue Ticket

Something Goes Wrong

Figure 5.1 Purchasing a movie ticket as a transaction

176 CHAPTER 5
Managing transactions

Let’s take a quick look at the four factors that guide transactions and how
they work.

5.1.1 Explaining transactions in only four words

In the grand tradition of software development, an acronym has been created to
describe transactions: ACID. In short, ACID stands for

m Atomic—Transactions are made up of one or more activities bundled
together as a single unit of work. Atomicity ensures that all of the opera-
tions in the transaction happen or that none of them happen. If all of the
activities succeed, then the transaction is a success. If any of the activities
fail, then the entire transaction fails and is rolled back.

m Consistent—Once a transaction ends (whether successful or not), the system
is left in a state that is consistent with the business that it models. The data
should not be corrupted with respect to reality.

m [solated—Transactions should allow multiple users to work with the same
data, without each user’s work getting tangled up with the others. There-
fore, transactions should be isolated from each other, preventing concur-
rent reads and writes to the same data from occurring. (Note that isolation
typically involves locking rows and/or tables in a database.)

m Durable—Once the transaction has completed, the results of the transac-
tion should be made permanent so that they will survive any sort of system
crash. This typically involves storing the results in a database or some
other form of persistent storage.

In the movie ticket example, a transaction could ensure atomicity by undoing the
result of all of the steps if any step fails. Atomicity supports consistency by ensur-
ing that the system’s data is never left in an inconsistent, partially done state. Iso-
lation also supports consistency by preventing another concurrent transaction
from stealing seats out from under you while you are still in the process of pur-
chasing them.

Finally, the effects are durable because they will have been committed to some
persistent storage. In the event of a system crash or other catastrophic event, you
shouldn’t have to worry about results of the transaction being lost.

For a more detailed explanation of transactions, we suggest that you read Pat-
terns of Enterprise Application Architecture by Martin Fowler. Specifically, chapter 5
discusses concurrency and transactions.

Understanding transactions 177

5.1.2 Understanding Spring’s transaction management support

Spring, like EJB, provides support for both programmatic and declarative trans-
action management support. But Spring’s transaction management capabilities
exceed those of EJB.

Spring’s support for programmatic transaction management differs greatly
from that of EJB. Unlike E]JB, which is coupled with a Java Transaction API (JTA)
implementation, Spring employs a callback mechanism that abstracts away the
actual transaction implementation from the transactional code. In fact, Spring’s
transaction management support doesn’t even require a JTA implementation. If
your application uses only a single persistent resource, Spring can use the trans-
actional support afforded by the persistence mechanism. This includes JDBC,
Hibernate, Java Data Objects (JDO), and Apache’s Object Relational Bridge
(OJB). However, if your application has transaction requirements that span mul-
tiple resources, Spring can support distributed (XA) transactions using a third-
party JTA implementation. We’ll discuss Spring’s support for programmatic
transactions in section 5.2.

While programmatic transaction management affords you flexibility in pre-
cisely defining transaction boundaries in your code, declarative transactions help
you decouple an operation from its transaction rules. Spring’s support for declar-
ative transactions is reminiscent of EJB’s container-managed transactions (CMT).
Both allow you to define transaction boundaries declaratively. But Spring’s
declarative transaction go beyond CMT by allowing you to declare additional
attributes such as isolation level and timeouts.? We'll begin working with Spring’s
declarative transaction support in section 5.3.

Choosing between programmatic and declarative transaction management is
largely a decision of fine-grained control versus convenience. When you program
transactions into your code, you gain precise control over transaction boundaries,
beginning and ending them precisely where you want. Typically, you will not
require the fine-grained control offered by programmatic transactions and will
choose to declare your transactions in the context definition file.

Regardless of whether you choose to program transactions into your beans or
to declare them as aspects, you'll be using a Spring transaction manager to inter-
face with a platform-specific transaction implementation. Let’s take a look at how

2 Although the EJB specification doesn’t provide for transaction isolation levels and timeouts in CMT,
several EJB containers provide these capabilities.

178

5.1.3

CHAPTER 5
Managing transactions

Spring’s transaction managers free you from dealing directly with platform-
specific transaction implementations.

Introducing Spring’s transaction manager

Spring does not directly manage transactions. Instead, it comes with a selection
of transaction managers that delegate responsibility for transaction management
to a platform-specific transaction implementation provided by either JTA or the
persistence mechanism. Spring’s transaction managers are listed in table 5.1.

Table 5.1 Spring’s selection of transaction managers for many different transaction implementations

Transaction manager implementation Purpose
org.springframework.jdbc.datasource. Manages transactions on a single JDBC
DataSourceTransactionManager DataSource
org.springframework.orm.hiber- Used to manage transactions when Hibernate is the
nate.HibernateTransactionManager persistence mechanism.
org.springframework.orm.jdo. Used to manage transactions when JDO is used for
JdoTransactionManager persistence.
org.springframework.transaction. Manages transactions using a Java Transaction API
jta.JtaTransactionManager (JTA) implementation. Must be used when a trans-

action spans multiple resources.
org.springframework.orm.ojb. Manages transactions when Apache’s Object Rela-
PersistenceBrokerTransactionManager tional Bridge (0JB) is used for persistence.

Each of these transaction managers acts as a fagade to a platform-specific trans-
action implementation (figure 5.2). This makes it possible for you to work with a
transaction in Spring with little regard to what the actual transaction implemen-
tation is.

To use a transaction manager, you'll need to declare it in your application con-
text. Let’s look at how to declare each of these transaction managers, starting with
DataSourceTransactionManager.

JDBC transactions

If you're using straight JDBC for your application’s persistence, DataSource-
TransactionManager will handle transactional boundaries for you. To use Data-
SourceTransactionManager, wire it into your application’s context definition
using the following XML:

<bean id="transactionManager" class="org.springframework.jdbc.
datasource.DataSourceTransactionManager">

Understanding transactions 179

<property name="dataSource">
<ref bean="dataSource"/>
</property>
</bean>
Notice that the dataSource property is set with a reference to a bean named data-
Source. Presumably, the dataSource bean is a javax.sgl.DataSource bean defined
elsewhere in your context definition file.

Behind the scenes, DataSourceTransactionManager manages transactions by
making calls on the java.sgl.Connection object retrieved from the DataSource.
For instance, a successful transaction is committed by calling the commit ()
method on the connection. Likewise, a failed transaction is rolled back by calling
the rollback () method.

Hibernate transactions

If your application’s persistence is handled by Hibernate, then you’ll want to
use HibernateTransactionManager. Declare it in your application using the XML
on the following page.

Spring's Transaction Managers

Platform
Transaction
Manager
AN
DataSource JDO JTA
Transaction Transaction Transaction
Manager Manager Manager
= Persistence
Hibernate Broker
Transaction Transaction
Manager Manager
JDBC Hibernate JDO OJB JTA

Platform-Specific Transaction Implementations

Figure 5.2 Spring’s transaction managers delegate transaction-management responsibility to
platform-specific transaction implementations.

180

CHAPTER 5
Managing transactions

<bean id="transactionManager" class="org.springframework.
orm.hibernate.HibernateTransactionManager">
<property name="sessionFactory">
<ref bean="sessionFactory"/>
</propertys>
</bean>

The sessionFactory property should be wired with a Hibernate SessionFactory,
here cleverly named sessionFactory. See chapter 4 for details on setting up a
Hibernate session factory.

HibernateTransactionManager delegates responsibility for transaction man-
agement to a net.sf.hibernate.Transaction object that it retrieves from the
Hibernate session. When a transaction successfully completes, HibernateTrans-
actionManager will call the commit () method on the Transaction object. Simi-
larly, when a transaction fails, the rollback() method will be called on the
Transaction object.

Java Data Objects transactions

Perhaps JDBC and Hibernate aren’t for you and you’ve decided to implement
your application’s persistence layer using Java Data Objects (JDO). In that case,
the transaction manager of choice will be JdoTransactionManager. It can be
declared into your application’s context like this:
<bean id="transactionManager"
class="org.springframework.orm.jdo.JdoTransactionManager">
<property name="persistenceManagerFactory">
<ref bean="persistenceManagerFactory"/>
</property>
</beans>
With JdoTransactionManager, you need to wire in a javax.jdo.Persistence-
ManagerFactory instance to the persistenceManagerFactory property. See chapter 4
for more information on how to set up a JDO persistence manager factory.
Under the covers, JdoTransactionManager works with the transaction object
retrieved from the JDO persistence manager, calling commit () at the end of a suc-
cessful transaction and rollback () if the transaction fails.

Object Relational Bridge transactions

Yet another persistence framework available to use within a Spring applica-
tion is Apache’s Object Relational Bridge (O]B). If you've chosen to use OJB
for persistence, you can use the PersistenceBrokerTransactionManager to man-
age transactions:

5.2

Programming transactions in Spring 181

<bean id="transactionManager" class="org.springframework.orm.
ojb.PersistenceBrokerTransactionManager">

</bean>

PersistenceBrokerTransactionManager starts a transaction by retrieving an
org.apache.ojb.broker.PersistenceBroker. When a transaction completes suc-
cessfully, the PersistenceBrokerTransactionManager calls the commitTransaction()
method on the persistenceBroker. When a transaction fails, it is rolled back by a
call to the setRollbackOnly () method.

Java Transaction API transactions

If none of the aforementioned transaction managers meet your needs or if your
transactions span multiple transaction sources (e.g., two or more different data-
bases), you’ll need to use JtaTransactionManager:

<bean id="transactionManager" class="org.springframework.

transaction.jta.JtaTransactionManager" >
<property name="transactionManagerName">
<value>java:/TransactionManager</value>
</property>

</bean>
JtaTransactionManager delegates transaction management responsibility to a JTA
implementation. JTA specifies a standard API to coordinate transactions between
an application and one or more data sources. The transactionManagerName prop-
erty specifies a JTA transaction manager to be looked up via JNDI.

JtaTransactionManager works with javax.transaction.UserTransaction and
javax.transaction.TransactionManager objects, delegating responsibility for
transaction manager to those objects. A successful transaction will be committed
with a call to the UserTransaction.commit () method. Likewise, if the transaction
fails, the UserTransaction’s rollback () method will be called.

By now, we hope you’ve found a Spring transaction manager suitable for your
application’s needs and have wired it into your Spring configuration file. Now it’s
time to put that transaction manager to work. We’ll start by employing the trans-
action manager to program transactions manually.

Programming transactions in Spring

The enrollstudentInCourse () method of Courseservice has multiple actions that
are taken during the course of enrolling a student in a course. If any of these
actions go sour, then all actions should be rolled back as if nothing happened. In
other words, enrollStudentInCourse () needs to be wrapped in a transaction.

182

CHAPTER 5
Managing transactions

One approach to adding transactions to your code is to programmatically add
transactional boundaries using Spring’s TransactionTemplate class. Like other
template classes in Spring (such as JdbcTemplate discussed in chapter 4), Trans-
actionTemplate utilizes a callback mechanism. Listing 5.1 shows how to wrap
your code within a TransactionTemplate.

public void enrollStudentInCourse() {
transactionTemplate.execute (
new TransactionCallback() {
public Object doInTransaction(TransactionStatus ts) {
try {

// do stuff <— Runs within doInTransaction()
} catch (Exception e) {

ts.setRollbackOnly(); <— Calls setRollbackOnly() to roll back

}

return null; <— If successful, transaction is committed

You start by implementing the TransactionCallback interface. Because Transac-
tionCallback has only one method to implement, it is often easiest to implement
it as an anonymous inner-class, as shown in listing 5.1. Place the code you want to
run within a transactional context in the doInTransaction () method.

Calling the execute () method on the TransactionTemplate instance will exe-
cute the code contained within the TransactionCallback instance. If your code
encounters a problem, calling setRollbackOnly() on the TransactionStatus
object will roll back the transaction. Otherwise, if the doInTransaction () method
returns successfully, the transaction will be committed.

Where does the TransactionTemplate instance come from? Good question. It
should be injected into CourseServiceImpl, as follows:

<bean id="transactionTemplate" class="org.springframework.
transaction.support.TransactionTemplate">
<property name="transactionManager">
<ref bean="transactionManager"/>

</propertys>
</bean>

<bean id="courseService"
class="com.springinaction.training.service.CourseServiceImpl">

5.3

Declaring transactions 183

<property name=" transactionTemplate">
<ref bean=" transactionTemplate"/>
</property>
</beans>

Notice that the transactionTemplate bean has a transactionManager property.
Under the hood, TransactionTemplate uses an implementation of Platform-
TransactionManager to handle the platform-specific details of transaction man-
agement. Here we’ve wired in a reference to a bean named transactionManager,
which could be any of the implementations of the platformTransactionManager
interface discussed in section 5.1.3.

Programmatic transactions are good when you want complete control over
transactional boundaries. But, as you can see from listing 5.1, they are a bit intru-
sive. You had to alter the implementation of enrollStudentInCourse ()—using
Spring-specific classes—to employ Spring’s programmatic transaction support.

Usually your transactional needs won’t require such precise control over trans-
actional boundaries. That’s why you'll typically choose to declare your transactions
outside of your application code (in the Spring configuration file, for instance).
The rest of this chapter will cover Spring’s declarative transaction management.

Declaring transactions

At one time not too long ago, declarative transaction management was a capabil-
ity only available in E]JB containers. But now Spring offers support for declarative
transactions to POJOs. This is a significant feature of Spring because your appli-
cations will no longer require complex and heavyweight EJBs just to achieve
atomic operations declaratively.

Spring’s support for declarative transaction management is implemented
through Spring’s AOP framework. This is a natural fit because transactions are a
system-level service above an application’s primary functionality. You can think of
a Spring transaction as an aspect that “wraps” a method.

To employ declarative transactions in your Spring application, you use Trans-
actionProxyFactoryBean. This proxy factory bean is similar to ProxyFactoryBean
that you learned about in chapter 3, except that it has the specific purpose of
wrapping methods in transactional contexts. (You could achieve the same results
by creating your own ProxyFactoryBean to handle transactions, but it is much eas-
ier to use a TransactionProxyFactoryBean since it is specifically designed for
declarative transactions.) Listing 5.2 shows how you can declare a Transaction-
ProxyFactoryBean.

184

CHAPTER 5
Managing transactions

<bean id="courseService" class="org.springframework.transaction.
interceptor.TransactionProxyFactoryBean">
<property name="proxyInterfaces">

<list>
<value>
com.springinaction.training.service.CourseService Interface
<(value> implemented
</list> by proxy
</propertys>

<property name="target">
<ref bean="courseServiceTarget"/> <+— Beanbdngpnmhd
</propertys>

<property name="transactionManager"s>
<ref bean="transactionManager"/> <— Transaction manager
</property>

<property name="transactionAttributeSource"s>
<ref bean="attributeSource"/> <— Transaction attribute source
</propertys>
</bean>

Notice that this bean has an id of courseService. This is so that when the appli-
cation asks for a courseService from the application context, it will retrieve an
instance that is wrapped by this TransactionProxyFactoryBean. The original
courseService bean should be renamed so that there is no conflict in bean ids.
Any name will work, but it is a recognized convention to derive the name of the
target bean by appending “Target” to the name of the target bean’s proxy. In this
case, courseServiceTarget IS appropriate:

<bean id="courseServiceTarget"
class="com.springinaction.training.service.CourseServiceImpl">

</bean>

The TransactionProxyFactoryBean has two collaborators in addition to its target
bean. The transactionManager property indicates an instance of PlatformTrans-
actionManager to use when realizing the transactional context. This can be any
one of the PlatformTransactionManagers covered in section 5.1.3.

The transactionAttributeSource property takes a reference to a Transaction-
AttributeSource bean. To understand how transaction attribute sources work,
you must first understand transaction attributes. So, let’s take a detailed look at
how transaction attributes are defined.

Declaring transactions 185

5.3.1 Understanding transaction attributes
In Spring, a transaction attribute is a description of how transaction policies
should be applied to a method. This description could include one or more of the
following parameters:
m Propagation behavior

Isolation level

Read-only hints

m The transaction timeout period

We'll see how to piece these transaction attribute parameters together to declare
a transaction policy soon. But let’s first take a look at how each of these parame-
ters impacts how a transaction is applied.

Propagation behavior

Propagation behavior defines the boundaries of the transaction with respect to
the client and to the method being called. Spring defines seven distinct propaga-
tion behaviors, as cataloged in table 5.2.

Table 5.2 Spring’s transactional propagation rules?®

Propagation behavior What it means

PROPAGATION_MANDATORY Indicates that the method must run within a transaction. If no
existing transaction is in progress, an exception will be thrown.

PROPAGATION NESTED Indicates that the method should be run within a nested transac-
tion if an existing transaction is in progress. The nested transaction
can be committed and rolled back individually from the enclosing
transaction. If no enclosing transaction exists, behaves like
PROPAGATION REQUIRED. Beware that vendor support for this
propagation behavior is spotty at best. Consult the documentation
for your resource manager to determine if nested transactions are
supported.

PROPAGATION NEVER Indicates that the current method should not run within a transac-
tional context. If there is an existing transaction in progress, an
exception will be thrown.

continued on next page

¥ The propagation behaviors described in table 5.3 are defined as constants in the org.springframe-
work.transaction.TransactionDefinition interface.

186

CHAPTER 5
Managing transactions

Table 5.2 Spring’s transactional propagation rules (continued)

Propagation behavior What it means

PROPAGATION_NOT_SUPPORTED Indicates that the method should not run within a transaction. If an
existing transaction is in progress, it will be suspended for the
duration of the method. If using JTATransactionManager,
access to TransactionManager is required.

PROPAGATION REQUIRED Indicates that the current method must run within a transaction. If
an existing transaction is in progress, the method will run within
that transaction. Otherwise, a new transaction will be started.

PROPAGATION REQUIRES NEW Indicates that the current method must run within its own transac-
tion. A new transaction is started and if an existing transaction is in
progress, it will be suspended for the duration of the method. If
using JTATransactionManager, access to Transaction-
Manager is required.

PROPAGATION SUPPORTS Indicates that the current method does not require a transactional
context, but may run within a transaction if one is already in
progress.

Most of the propagation behaviors in table 5.2 may look familiar. That’s because
they mirror the propagation rules available in EJB’s container-managed transac-
tions (CMT). For instance, Spring’s PROPAGATION REQUIRES_NEW is equivalent to
CMT’s requiresNew. Spring adds an additional propagation behavior not avail-
able in CMT, PROPAGATION NESTED, to support nested transactions.

Propagation rules answer the question of whether or not a new transaction
should be started or suspended, or if a method should even be executed within a
transactional context at all.

For example, if a method is declared to be transactional with
PROPAGATION REQUIRES NEW behavior, it means that the transactional boundaries
are the same as the method’s own boundaries: A new transaction is started when
the method begins and the transaction ends with the method returns or throws
an exception. If the method has PROPAGATION REQUIRED behavior, then the trans-
actional boundaries depend on whether a transaction is already under way.

Isolation levels

In a typical application, multiple transactions run concurrently, often working
with the same data to get their job done. Concurrency, while necessary, can lead
to the following problems:

m Dirly read—Dirty reads occur when one transaction reads data that has
been written but not yet committed by another transaction. If the

Declaring transactions 187

changes are later rolled back, the data obtained by the first transaction
will be invalid.

m Nonrepeatable read—Nonrepeatable reads happen when a transaction per-
forms the same query two or more times and each time the data is differ-
ent. This is usually due to another concurrent transaction updating the
data between the queries.

m Phantom reads—Phantom reads are similar to nonrepeatable reads. These
occur when a transaction (T1) reads several rows, then a concurrent trans-
action (T2) inserts rows. Upon subsequent queries, the first transaction
(T1) finds additional rows that were not there before.

In an ideal situation, transactions would be completely isolated from each other,
preventing these problems. However, perfect isolation can affect performance
because it often involves locking rows (and sometimes complete tables) in the
datastore. Aggressive locking can hinder concurrency, requiring transactions to
wait on each other to do their work.

Realizing that perfect isolation can impact performance and because not all
applications will require perfect isolation, sometimes it is desirable to be flexible
with regard to transaction isolation. Therefore, there are several levels of isola-
tion, as described in table 5.3.

Table 5.3 Spring’s transaction isolation levels*

Isolation level What it means

ISOLATION DEFAULT Use the default isolation level of the underlying datastore.

ISOLATION READ UNCOMMITTED | Allows you to read changes that have not yet been committed. May
result in dirty reads, phantom reads, and nonrepeatable reads.

ISOLATION_READ_COMMITTED Allows reads from concurrent transactions that have been com-
mitted. Dirty reads are prevented, but phantom and nonrepeat-
able reads may still occur.

ISOLATION REPEATABLE_READ Multiple reads of the same field will yield the same results, unless
changed by the transaction itself. Dirty reads and nonrepeatable
reads are prevented by phantom reads may still occur.

ISOLATION SERIALIZABLE This fully ACID-compliant isolation level ensures that dirty reads,
nonrepeatable reads, and phantom reads are all prevented. This is
the slowest of all isolation levels because it is typically accomplished
by doing full table locks on the tables involved in the transaction.

4 The isolation levels described in table 5.3 are defined as constants in the org.springframe-
work.transaction.TransactionDefinition interface.

188

CHAPTER 5
Managing transactions

ISOLATION READ UNCOMMITTED is the most efficient isolation level, but isolates the
transaction the least, leaving the transaction open to dirty, nonrepeatable, and
phantom reads. At the other extreme, ISOLATION SERIALIZABLE prevents all forms
of isolation problems but is the least efficient.

Be aware that not all resource managers support all of the isolation levels
listed in table 5.3. Consult the documentation for your resource manager to
determine what isolation levels are available.

Read-only

If a transaction performs only read operations against the underlying datastore,
the datastore may be able to apply certain optimizations that take advantage of
the read-only nature of the transaction. By declaring a transaction as read-only,
you give the underlying datastore the opportunity to apply those optimizations as
it sees fit.

Because read-only optimizations are applied by the underlying datastore
when a transaction begins, it only makes sense to declare a transaction as read-
only on methods with propagation behaviors that may start a new transaction
(PROPAGATION REQUIRED, PROPAGATION REQUIRES NEW, and PROPAGATION NESTED).

Furthermore, if you are using Hibernate as your persistence mechanism,
declaring a transaction as read-only will result in Hibernate’s flush mode being
set to FLUSH_NEVER. This tells Hibernate to avoid unnecessary synchronization of
objects with the database, delaying all updates until the end of the transaction.

Transaction timeout

Finally, one other attribute you may choose to set on a transaction is a timeout.
Suppose that your transaction becomes unexpectedly long-running. Because
transactions may involve locks on the underlying datastore, long-running trans-
actions may tie up database resources unnecessarily. Instead of waiting it out,
you can declare a transaction to automatically roll back after a certain number
of seconds.

Because the timeout clock begins ticking when a transaction starts, it only
makes sense to declare a transaction timeout on methods with propagation
behaviors that may start a new transaction (PROPAGATION REQUIRED, PROPAGATION
REQUIRES_NEW, and PROPAGATION NESTED).

Declaring transactions 189

5.3.2 Declaring a simple transaction policy

TransactionProxyFactoryBean consults a method’s transaction attributes to deter-
mine how to administer transaction policies on that method. But from where
does TransactionProxyFactoryBean get a method’s transaction attributes?

As you saw in listing 5.2, TransactionProxyFactoryBean has a transaction-
AttributeSource property. This property is wired to an instance of Transaction-
AttributeSource. A TransactionAttributeSource is used as a reference for looking
up transaction attributes on a method.

A TransactionAttributeSource is defined by the following interface:

public interface TransactionAttributeSource {
public TransactionAttribute getTransactionAttribute (
java.lang.reflect.Method method,
java.lang.Class targetClass
)i

}

The getTransactionAttribute() method is called to find the transaction
attributes for a particular method, given the target class and method. The Trans-
actionAttribute returned indicates the transactional policies that should be
applied to the method.

Now let’s define the transactionAttributeSource bean in the application con-
text definition XML file as follows:

<bean id="transactionAttributeSource"

class="org.springframework.transaction.interceptor.
MatchAlwaysTransactionAttributeSource">

</bean>

Voila! With the transactionAttributeSource bean declared, all the methods
proxied by the target class of TransactionProxyFactoryBean are now performed
within a transactional context. But notice that you didn’t specify which methods
are to be transactional or even what transaction policy to apply. That’s because
here we’ve decided to use MatchAlwaysTransactionAttributeSource.
MatchAlwaysTransactionAttributeSource is probably the simplest implemen-
tation of TransactionAttributeSource. When its getTransactionAttribute ()
method is called, it naively returns the same TransactionAttribute every time,
regardless of which method is being wrapped in the transaction (by default,
PROPAGATION REQUIRED and ISOLATION DEFAULT). That’s the “MatchAlways” part of
MatchAlwaysTransactionAttributeSource in play.

190

CHAPTER 5
Managing transactions

Changing the default TransactionAttribute
As mentioned earlier, MatchAlwaysTransactionAttributeSource’s getTransac-
tionAttribute () method will always return a transaction attribute with a policy of
PROPAGATION REQUIRED/ISOLATION DEFAULT Ifyou’d like MatchAlwaysTransaction-
AttributeSource to return a different TransactionAttribute than the default, you
can wire in another TransactionAttribute to the transactionAttribute property.
For example, to have MatchAlwaysTransactionAttributeSource always return
a TransactionAttribute with a policy of PROPAGATION REQUIRES NEW and of
ISOLATION_REPEATABLE_READ, place this snippet of XML into the context defini-
tion file:

<bean id="myTransactionAttribute"
class="org.springframework.transaction.interceptor.
DefaultTransactionAttribute">
<property name="propagationBehaviorName">
<Value>PROPAGATION_REQUIRES_NEW</value>
</property>
<property name="isolationLevelName">
<value>ISOLATION_REPEATABLE_READ</value>
</property>
</beans>

<bean id="transactionAttributeSource"
class="org.springframework.transaction.interceptor.
MatchAlwaysTransactionAttributeSource">
<property name="transactionAttribute"s>
<ref bean="myTransactionAttribute"/>
</property>

</bean>
The myTransactionAttribute bean defines a custom transaction attribute. The
propagationBehaviorName property sets the propagation behavior and the isola-
tionLevelName sets the isolation level. This bean is then wired into MatchAlways-
TransactionAttributeSource’s transactionAttribute property to override the
default transaction attribute.

Be aware, however, that while you may change the parameters of the transac-
tion attribute applied by MatchAlwaysTransactionAttributeSource, it will always
return the same transaction attribute, regardless of the method being transacted.

Using MatchAlwaysTransactionAttributeSource is great when you have a rela-
tively simple application and it’s okay to apply the same transaction policies to all
methods. But in more complex applications, you'll likely need to apply different
transaction policies to different methods. In that case, you’ll need more fine-
grained control over what policies are applied. So, let’s take a look at another

5.4

5.4.1

Declaring transactions by method name 191

TransactionAttributeSource that allows you to declare transactional policies on a
method-by-method basis.

Declaring transactions by method name

One of the key features of the EJB specification has always been container-
managed transactions (CMT). Using CMT, it is possible to declare transaction pol-
icies in the EJB’s deployment descriptor. For example, suppose that we’ve rewrit-
ten the Spring Training application using EJB instead of Spring. We have
declared a CourseServiceBean’s enrollStudentInCourse () method to be transac-
tional using the following declaration in the ejb-jar.xml file:

<ejb-jar>

<assembly-descriptors>
<container-transactions>
<method>
<ejb-name>CourseServiceBean</ejb-name>
<method-names>enrollStudentInCourse</method-name>
</method>
<trans-attribute>RequiresNew</trans-attributes>
</container-transactions
</assembly-descriptors>
</ejb-jar>

Spring took a page from EJB’s declarative transaction model, providing several
transaction attribute sources that let you declare transaction policies on POJOs.
We'll start by looking at NameMatchTransactionAttributeSource, a transaction

attribute source that lets you declare transactions on POJOs in a way that is remi-
niscent of EJB’s CMT.

Using NameMatchTransactionAttributeSource

The Spring-equivalent of CMT is the NameMatchAttributeSource. This transaction
attribute source lets you declare transaction attributes on a method name-by-
method name basis. For example, to declare the enrollStudentInCourse ()
method to have a propagation behavior of “requires new”, replace the declara-
tion of the transactionAttributeSource bean (from section 5.3.2) as follows:
<bean id="transactionAttributeSource"
class="org.springframework.transaction.interceptor.
NameMatchTransactionAttributeSource">
<property name="properties"s>
<props>
<prop key="enrollStudentInCourse">

192

CHAPTER 5
Managing transactions

PROPAGATION REQUIRES NEW
</prop>
</props>
</property>
</beans>

Because this bean is named transactionAttributeSource, it will be wired into
TransactionProxyFactoryBean’s transactionAttributeSource property just as
MatchAlwaysTransactionAttributeSource was in section 5.3.2. TransactionProxy-
FactoryBean will consult this transaction attribute source when it needs to know
how to administer transactions on a method.

The properties property of NameMatchTransactionAttributeSource maps
method names to a transaction property descriptor. The transaction property
descriptor takes the following form:

Is the transaction
read only?

Propagation Behavior (optional)

——

PROPAGATION, ISOLATION, readOnly, -Exeptions, +Exception

Iﬁ_l

Isolation Level Rollback Rules
(optional) (optional)

In the example above, only the propagation behavior was specified. But as you
can see, many other parameters of a transaction attribute can be defined in the
transaction attribute descriptor. Let’s take a look at the other components of a
transaction attribute descriptor.

Specifying the transaction isolation level

Up until this point, you've only seen how to use NameMatchTransactionAttribute-
Source to declare transaction propagation behavior. If this were EJB CMT, that’s
where the story would end. But with Spring, you can declare more.

For example, suppose that, in addition to “requires new” propagation behav-
ior you want the enrollStudentInCourse () method to have an isolation level of
“repeatable read”. All you need to do is add ISOLATION REPEATABLE READ to the
transaction property, separating it from the propagation behavior with a comma:

<bean id="transactionAttributeSource"

class="org.springframework.transaction.interceptor.
NameMatchTransactionAttributeSource">

Declaring transactions by method name 193

<property name="properties"s>
<props>
<prop key="enrollStudentInCourse">
PROPAGATION REQUIRES NEW, ISOLATION REPEATABLE READ
</prop>
</props>
</property>
</beans>

Using read-only transactions

But wait, there’s more. You can also declare transactions to be read-only by add-
ing readOnly to the list of transaction attributes. For example, to declare that the
getCompletedCourses method be wrapped in a transaction that is optimized for
read-only access, use the following:

<bean id="transactionAttributeSource"
class="org.springframework.transaction.interceptor.
NameMatchTransactionAttributeSource">
<property name="properties"s>
<props>
<prop key="getCompletedCourses">
PROPAGATION_REQUIRED, ISOLATION_REPEATABLE_READ, readOnly
</prop>
</props>
</property>
</bean>

Specifying rollback rules

Finally, transactions can be declared to roll back or not roll back based on excep-
tions that are thrown during the course of the transaction. By default, transac-
tions are rolled back only on runtime exceptions and not on checked exceptions.
(For those familiar with E]JB, you may recognize that this is E|B’s behavior as well.)
However, you can specify that a transaction be rolled back on specific checked
exceptions as well.

For example, to have the transaction always roll back when a CourseException
(or any subclass of CourseException) is thrown, alter the transaction attribute to
appear as follows:

<bean id="transactionAttributeSource"
class="org.springframework.transaction.interceptor.
NameMatchTransactionAttributeSource">
<property name="properties"s>
<props>
<prop key="enrollStudentInCourse">

PROPAGATION_ REQUIRES NEW, ISOLATION_REPEATABLE READ,
-CourseException

194

5.4.2

CHAPTER 5
Managing transactions

</prop>
</props>
</property>
</bean>
Notice that the CourseException is marked with a negation sign (-). Exceptions
can be marked as being either negative (-) or positive (+). Negative exceptions
will trigger a rollback if the exception (or any subclass thereof) is thrown. Positive
exceptions, on the other hand, indicate that the transaction should be committed
even if the exception is thrown. You can even mark runtime exceptions as positive
to prevent rollbacks (but carefully consider if this is what you want to do).

Using wildcard matches
Just as with EJB, you can also use wildcards to declare transaction policies for mul-
tiple methods that match a pattern. For example, to apply “supports” propaga-
tion behavior to all methods whose name start with “get”, use the following:
<bean id="transactionAttributeSource"
class="org.springframework.transaction.interceptor.
NameMatchTransactionAttributeSource">
<property name="properties">
<propss>
<prop key="get*">
PROPAGATION SUPPORTS
</prop>
</props>
</property>
</beans>
NameMatchTransactionAttributeSource is a great way to mimic EJB’s CMT, only
with POJOs and with even more power. We’ll pick up the discussion of Spring’s
other transaction attribute sources in section 5.5. First, let’s look at how you can
declare name-matched transactions directly with TransactionProxyFactoryBean,

without declaring a NameMatchTransactionAttributeSource.

Shortcutting name-matched transactions

So far, we’ve shown you how to use NameMatchTransactionAttributeSource by
defining a bean instance and naming it transactionAttributeSource. Done this
way, the transactionAttributeSource bean will be wired into TransactionProxy-
FactoryBean’s transactionAttributeSource property. This way will work fine, but
there is a slightly easier way.

As it turns out, TransactionProxyFactoryBean also has a transaction-
Attributes property. Instead of wiring a NameMatchTransactionAttributeSource

5.5

Declaring transactions with metadata 195

into this property, you can directly wire the transaction properties into Transaction-
ProxyFactoryBean’s transactionAttributes property as follows:

<bean id="courseService" class="org.springframework.transaction.
interceptor.TransactionProxyFactoryBean" >

<property name="transactionProperties"s
<propss>
<prop key="enrollStudentInCourse">
PROPAGATION REQUIRES NEW
</prop>
</props>
</propertys>
</bean>
Wiring transaction properties into the transactionProperties property is func-
tionally identical to wiring the NameMatchTransactionAttributeSource to the
transactionAttributeSource property. Under the covers, TransactionProxy-
FactoryBean Instantiates its own NameMatchTransactionAttributeSource and
passes the properties wired into its transactionProperties property into the
NameMatchTransactionAttributeSource’s setProperties() method. As a result,

you don’t need to create a separate transactionAttributeSource bean.

Declaring transactions with metadata

So far, you've seen how to declare transactions in Spring’s context definition
file using XML. This has proved to be less intrusive than programmatically
defining transactions in your code. In doing so, however, you were forced to
declare the method’s transaction policy in a file separate from the method’s
definition. Wouldn’t it be great if you could declare the transaction attributes
along with the method definition in the code itself (without resorting to pro-
grammatic transactions)?

An exciting and relatively new approach to adding information to code is to
tag classes and methods with metadata attributes. This capability has been avail-
able in C# since the beginning of the Microsoft .NET platform, but has only
recently been added to Java.

By themselves, metadata attributes do not directly alter the behavior of your
code. Instead, they provide hints and suggestions to the application’s underly-
ing platform to guide the platform on how it can apply additional behavior to
the application.

Transaction attributes are a natural use of metadata. As you've seen, trans-
action attributes do not directly alter the execution of your methods, but when a

196

5.5.1

CHAPTER 5
Managing transactions

method is proxied by a TransactionProxyFactoryBean, it may be wrapped in
a transaction.

Currently two implementations of metadata are available to Java developers:
Jakarta Commons Attributes and JSR-175 (the metadata specification for Java).
JSR-175’s metadata support was released as part of Java 5 and is probably the
most highly anticipated feature for Java in a long time. Without doubt, it will
become the standard approach to tagging code with metadata in the future. How-
ever, many developers grew impatient waiting for a standard approach to meta-
data in Java. As a result, the Jakarta Commons Attributes project was born.

At the time that this book was written, Java 5 had just been released and
Spring only supported the Jakarta Commons Attributes implementation for
metadata. We anticipate that support for JSR-175 metadata will soon be available
in a future release of Spring. If so, we recommend that you choose JSR-175 meta-
data over Jakarta Commons Attributes, primarily because JSR-175 is a standard
feature of Java 5 and requires no additional compilation step. However, if sup-
port for JSR-175 is not yet available (in either Spring or in the version of Java that
your application is targeting), then your only choice will be to use Jakarta Com-
mons Attributes.

Regardless of which implementation you use, you’ll need to give Transaction-
ProxyFactoryBean a transaction attribute source suitable for retrieving transac-
tion attributes from metadata.

Sourcing transaction attributes from metadata

For TransactionProxyFactoryBean to retrieve transaction attributes from meta-
data, 1t will need its transactionAttributeSource to be an AttributesTransaction-
AttributeSource, as follows:

<bean id="transactionAttributeSource"

class="org.springframework.transaction.interceptor.
AttributesTransactionAttributeSource">

<constructor-arg>
<ref bean="attributesImpl"/>
</constructor-args>
</bean>

Notice that we wired in a constructor argument to this transaction attribute
source with a reference to a bean named attributesImpl. The attributesImpl
bean (which we’ll define soon) will be used by the transaction attribute source
to interact with the wunderlying metadata implementation. This way,
AttributesTransactionAttributeSource is kept generic with regard to which

5.5.2

Declaring transactions with metadata 197

metadata implementation is used, whether it is Jakarta Commons Attributes or
JSR-175 annotations.

Let’s start our exploration of metadata using the Jakarta Commons Attributes
implementation.

Declaring transactions with Commons Attributes

Jakarta Commons Attributes was one of the first metadata implementations avail-
able for Java. The good thing about Commons Attributes is that it doesn’t require
that you make the jump to Java 5 to use it. So, if you are still deploying to an older
version of Java and want to declare transactions with metadata, your only option
is to use Commons Attributes.

Declaring an attributes implementation

When we declared the AttributesTransactionAttributeSource bean in section 5.5.1,
we passed a reference to the attributesImpl bean to the constructor. Now we’ll
define that bean to use Commons Attributes as the metadata implementation for
retrieving transaction attributes:

<bean id="attributesImpl" class="org.springframework.
metadata.commons.CommonsAttributes">

</beans>

With commonsAttributes wired in as the metadata implementation for Attributes-
TransactionAttributeSource, Spring will look for transaction attributes as meta-
data tagged on transactional methods. Therefore, the next thing to do is to tag
those methods with transaction attributes.

Tagging transactional methods
Jakarta Commons Attributes are applied to a class or method by placing doclet tags
in comments preceding the class/method. These doclet tags take the following form:

Constructor Argument

/**
* @@attribute-name ("argl", property="arg2")

A N
Attribute's Name Setting an Attribute
Property

In Jakarta Commons Attributes, metadata can be defined using any form of Java-
Bean. As it turns out, the classes that implement Spring’s transaction attributes are

198

CHAPTER 5
Managing transactions

perfectly suitable to be used as metadata with Jakarta Commons Attributes. This
includes DefaultTransactionAttribute and RuleBasedTransactionAttribute.

The enrollstudentInCourse () method needs to be executed within the con-
text of a transaction (although, not necessarily a new transaction). Tagging it with
the DefaultTransactionAttribute class and setting the propagationBehaviorName
property to PROPAGATION REQUIRED will do the trick:

/ **

* @@org.springframework.transaction.interceptor.

DefaultTransactionAttribute (propagationBehaviorName=
"PROPAGATION REQUIRED")
«
puglic void enrollStudentInCourse () {

}

Notice that you had to use the fully qualified class name of DefaultTransaction-
Attribute when using it as an attribute. This is important because after the
Jakarta Commons Attributes precompiler is finished with CourseServiceImpl, it
will have rewritten CourseServiceImpl to reference an instance of DefaultTrans-
actionAttribute. Unless you specify the package, you'll get compilation errors
when trying to compile the generated CourseServiceImpl class. Optionally, you
may choose to import the package so that you can use the class name by itself.

The choice between using the fully qualified class name or importing the
package is really a matter of taste. As you can see, including the fully qualified
class name is quite verbose. However, if you choose to avoid this by importing the
package, be careful that your IDE does not remove this package automatically.
Since the attribute class name is within doclet comments, your IDE may not rec-
ognize the attribute’s package as a necessary import and remove it. For our exam-
ples, we are going to use the qualified class name.

Now the enrollstudentInCourse () method is tagged to require a transactional
context. As for all of the other methods of CourseServiceImpl, you'd like them to
support transactional contexts, but they do not require a transaction. One way to
accomplish this is to tag each of the other methods with DefaultTransaction-
Attribute, setting propagationBehaviorName to PROPAGATION SUPPORTS. But there’s
a better way.

By placing transaction tags at the class level, you can specify the transaction
attributes that are to apply to all methods in the class that aren’t already tagged oth-
erwise. So, to specify that all methods of CourseServiceImpl support transactions:

/**

* @@org.springframework.transaction.interceptor.

Declaring transactions with metadata 199

DefaultTransactionAttribute (
propagationBehaviorName="PROPAGATION SUPPORTS")
*/
public class CourseServiceImpl implements CourseService {
}
Now you've tagged the service methods and classes with transactional metadata.
But how does that metadata get out of the comment block and into the code so
that AttributesTransactionAttributeSource can find it and apply the transac-
tional policies? That’s where the Commons Attributes precompiler comes in.

Setting up the build for Commons Attributes
The magic behind Jakarta Commons Attributes is a precompiler that parses the
doclet tags in your code and then rewrites your class, embedding the metadata in
its code. It’s not important to fully understand how the precompilation step
works to be able to use it to declare transactions in Spring, but it is important that
you add the precompiler to the build file so that the transaction metadata is set in
the code.

If you’re using Ant to do your build, you'll need to download the following
files and place them in your $ANT_HOME/lib directory:

= http://cvs.apache.org/~leosutic/commons-attributes-api-SNAPSHOTjar

m http://cvs.apache.org/~leosutic/commons-attributes-compiler-
SNAPSHOTjar

= http://www.ibiblio.org/maven/commons-collections/jars/commons-
collections-2.1.jar

m http://www.ibiblio.org/maven/xjavadoc/jars/xjavadoc-1.0.jar

Next, you'll need to add the following line to your build.xml file to load the pre-
compiler task into Ant:
<taskdef
resource="org/apache/commons/attributes/anttasks.properties"/>
The precompiler task is named attribute-compiler. To use it, add the following
target to your build.xml file:
<target name="compile-attributes">
<attribute-compiler destdir=".">
<fileset dir="." includes="*.java"/>

</attribute-compilers>
</target>

200

CHAPTER 5
Managing transactions

Finally, change your compile target to depend on the compile-attributes target:

<target name="compile"
depends="compile-attributes">
<javac
srcdir="."
destdir="${basedir}"
deprecation="true"
debug="true"
classpath="${ant.home}/1ib/
commons-attributes-api-SNAPSHOT.jar; ."
optimize="false">
</javac>
</targets>
Notice that you’ll also need to add the commons-attributes-api-SNAPSHOTjar file
to <javacs’s class path. This is so that <javac> can find the Commons Attributes
classes when it compiles your code.
If you’re using Maven to do your build, then setting up the precompiler is a bit
easier. First, download these two JAR files and place them in the commons-
attributes/jars directory in your local Maven repository (.maven/repository/

commons-attributes/jars):

m http://cvs.apache.org/~leosutic/commons-attributes-api-SNAPSHOT jar

m http://cvs.apache.org/~leosutic/commons-attributes-compiler-
SNAPSHOT,jar

Then download the following JAR file and place it in the Maven plugins directory
(.maven/plugins):

m http://cvs.apache.org/~leosutic/commons-attributes-plugin-2.0alpha.jar

That’s it! The plug-in sets up the attributes precompiler as a prerequisite to the
java:compile goal. This means that you won’t be able to compile Java source code
without first passing it through the attributes precompiler.

Now the application is set up to apply transactions based on transaction meta-
data. We've gone through several steps to get here, so let’s review: When you run
your build, the transaction attributes will be compiled directly into your service
classes. When AttributesTransactionAttributeSource attempts to look up the trans-
action attributes for any method in CourseServiceImpl, it will find the attributes that
were tagged on the method and TransactionProxyFactoryBean will use them when
determining the transaction policy for the method.

Trimming down transaction declarations 201

5.6 Trimming down transaction declarations

By now you’ve chosen a TransactionAttributeSource, declared your service layer
methods to be transactional, and wired in a transaction manager suited for your
persistence layer. Everything works as expected. But there’s still one thing that
nags at you.

Looking through the bean wiring file, you find several service/target pairs.
That is, you find several declarations of beans whose name implies that they are
service beans, but in fact, they are instances of TransactionProxyFactoryBean. The
real service bean is named with a Target suffix and wired into the Transaction-
ProxyFactoryBean’S target property.

For example, the course service is defined by the following two <bean> decla-
rations:

<bean id="courseService"
class="org.springframework.transaction.interceptor.
TransactionProxyFactoryBean">

<property name="target">
<ref bean="courseServiceTarget"/>
</propertys>

<property name="transactionManager">
<ref bean="transactionManager"/>
</property>

<property name="transactionAttributeSource">
<ref bean="attributeSource"/>
</property>
</bean>

<bean id="courseServiceTarget"
class="com.springinaction.training.service.CourseServiceImpl">
</bean>

What’s more, you notice that all of your service beans are defined the same way
and wired with the same transaction manager and the same transaction
attribute source. This seems like a lot of redundant XML. Auto-wiring some of
TransactionProxyFactoryBean’s properties would go a long way toward clean-
ing up the XML, but you’d still be left with a target/service pair. Wouldn’t it be
great if you could eliminate the redundant instances of TransactionProxyFactory-
Bean altogether?
Fortunately, you can. Spring offers two ways to combat the redundant XML:

202 CHAPTER 5
Managing transactions

m Bean inheritance

® AOP autoproxying

Let’s take a look at each of these approaches, starting with bean inheritance.

5.6.1 Inheriting from a parent TransactionProxyFactoryBean

One way to simplify declaration of transactions and service beans is to use
Spring’s support for parent beans. Using the parent attribute of the <bean> ele-
ment, you can specify that a bean be a child of some other bean, inheriting the
parent bean’s properties. The concept is similar to one class subclassing
another class, except that it happens at the bean declaration level. Think of it
as “sub-beaning.”

To use bean inheritance to reduce XML that results from multiple declarations
of TransactionProxyFactoryBean, start by adding an abstract declaration of
TransactionProxyFactoryBean to the context definition:

<bean id="abstractTxDefinition"

class="org.springframework.transaction.interceptor.

TransactionProxyFactoryBean"
lazy-init="true">

<property name="transactionManager"s>
<ref bean="transactionManager"/>
</propertys>

<property name="transactionAttributeSource">
<ref bean="attributeSource"/>
</property>
</bean>

This declaration is similar to the declaration of courseService from earlier,
except for two things:

m First, its lazy-init property is set to true. Application contexts will usually
instantiate all singleton beans at startup. Since our application will only
use sub-beans of abstractTxDefinition and never use abstractTxDefini-
tion directly, we don’t want the container to attempt to instantiate a bean
we’ll never use. The lazy-init property tells the container to not create
the bean unless we ask for it (which we won’t do). In effect, 1azy-init is
what makes this bean abstract.

m The target property is curiously missing. We'll set that property in the
sub-beans.

Trimming down transaction declarations 203

The next thing to do is to create the sub-bean. Consider the following declaration
of the courseService bean:

<bean id="courseService"

parent="abstractTxDefinition">
<property name="target">
<bean class="com.springinaction.training.
service.CourseServiceImpl">
</propertys>

</beans>
The parent attribute indicates that this bean should inherit its definition from the
abstractTxDefinition bean. The only thing that this bean adds is to wire in a
value for the target property. In this case, we’re taking advantage of inner-beans
to declare the target bean right where we’re using it. This keeps the XML tidy by
not declaring a separate CourseServiceImpl bean (knowing that you’ll never use a
CourseServiceImpl outside the scope of a transaction).

So far, this technique hasn’t saved us much XML. But think about what you’ll
need to do to make another bean transactional. You’ll only have to add another
sub-bean of abstractTxDefinition. For example:

<bean id="studentService"
parent="abstractTxDefinition">
<property name="target">
<bean class="com.springinaction.training.
service.StudentServiceImpl"/>
</property>
</bean>
But notice you didn’t have to completely declare another TransactionpProxy-
FactoryBean again. Now imagine if your application had dozens (or hundreds) of
service beans that need to be transactional. Bean inheritance really pays off when
you have many transactional beans.

Now let’s look at how to use AOP auto-proxying to completely eliminate the

need for TransactionProxyFactoryBean.

5.6.2 Autoproxying transactions

As you learned in chapter 3, you can eliminate instances of ProxyFactoryBean by
employing autoproxying. Since transactions in Spring are based on AOP, you can
also use auto-proxying to get rid of redundant instances of TransactionpProxy-
FactoryBean. Here’s how.

First, just as you would do any auto-advising, you need to declare a bean that is
an instance of DefaultAdvisorAutoProxyCreator:

204

CHAPTER 5
Managing transactions

<bean id="autoproxy"
class="org.springframework.aop. framework.autoproxy.
DefaultAdvisorAutoProxyCreator"s>

</beans>

DefaultAdvisorAutoProxyCreator will scour the application context for advisors,
automatically using them to proxy all beans that match the advisor’s pointcut. For
transactions, the advisor to use is TransactionAttributeSourceAdvisor:

<bean id="transactionAdvisor"
class="org.springframework.transaction.interceptor.
TransactionAttributeSourceAdvisor">
<constructor-arg>
<ref bean="transactionInterceptor"/>
</constructor-arg>
</bean>

TransactionAttributeSourceAdvisor is a full-fledged AOP advisor just like those
you read about in chapter 3. And just like any advisor, it is made up of a pointcut
and an interceptor. The pointcut is a static method pointcut that consults a trans-
action attribute source to determine if a method has any transaction attributes
associated with it. If a method has transaction attributes, then the method will be
proxied to be contained within a transaction.

As for the interceptor, it is wired into TransactionAttributeSourceAdvisor via
a constructor argument. It’s implemented by the TransactionInterceptor class
and wired into the application as follows:

<bean id="transactionInterceptor"
class="org.springframework.transaction.interceptor.
TransactionInterceptor">
<property name="transactionManager"s>
<ref bean="transactionManager"/>
</propertys>
<property name="transactionAttributeSource"s>
<ref bean="transactionAttributeSource"/>
</propertys>
</bean>

TransactionInterceptor has two collaborators that it uses to do its job. It uses a
PlatformTransactionManager, wired into the transactionManager property, to
coordinate transactions with the underlying transaction implementation. And it
uses the transaction attribute source wired into the transactionAttributeSource
property to determine the transaction policies to be applied to the methods it
will intercept. As it turns out, you've already defined transactionManager and

Trimming down transaction declarations 205

transactionAttributeSource beans when you were using TransactionProxy-
FactoryBean—they’ll do just fine for the transaction interceptor, too.

The final thing to do is to remove all instances of TransactionProxyFactory-
Bean and rename the service layer beans back to their rightful name (e.g., course-

ServiceTarget becomes courseService).

Choosing an attribute source for autoproxying

When autoproxying transactions, the transaction attribute source is the key to
whether or not a method is proxied. This fact may prompt you to choose a differ-
ent transaction attribute source. For example, consider the consequences of using
the following transaction attribute source with autoproxying:

<bean id="transactionAttributeSource"
class="org.springframework.transaction.interceptor.
NameMatchTransactionAttributeSource">
<property name="properties"s>
<props>
<prop key="get*v>PROPAGATION SUPPORTS</props>
</props>
</property>
</beans>
Used this way, all methods (regardless of which class they are in) whose name
starts with “get” will be proxied with a transaction propagation behavior of “sup-
ports”. Maybe this is what you desire, but probably not. Keep in mind that
DefaultAdvisorAutoProxyCreator will attempt to proxy all methods on all beans
within the application context. If any method on any bean has a name that starts
with “get”, it will be proxied.

When auto-proxying, a better choice for the transaction attribute source is
MethodMapTransactionAttributeSource. This transaction attribute source is simi-
lar to NameMatchTransactionAttributeSource, but lets you specify the fully quali-
fied class and method name to be transactional. For example:

<bean id="transactionAttributeSource"
class="org.springframework.transaction.interceptor.
MethodMapTransactionAttributeSource" >
<property name="methodMap">
<map>
<entry key="com.springinaction.training.service.
CourseServiceImpl.get*">
<Value>PROPAGATION_SUPPORTS</value>
</entry>
</map>
</property>
</bean>

206

CHAPTER 5
Managing transactions

Using MethodMapTransactionAttributeSource this way, you have specified that
only “get” methods of CourseServiceImpl are to have a transaction propagation
behavior of “supports”. To add transactional behavior to other methods in other
classes, you’ll need to add <entry> elements to the method map.

Now, here’s the cool part. An even better choice for transaction attribute
source when you are auto-proxying is AttributesTransactionAttributeSource.
Recall that AttributesTransactionAttributeSource pulls transaction attributes
from metadata placed directly in the code of the methods that are to be transac-
tional. This means that if you are using AttributesTransactionAttributeSource
as the attribute source and you are also using auto-proxying, making a method
transactional or not is simply a matter of adding the appropriate metadata to
the method.

Summary

Transactions are an important part of enterprise application development that
leads to more robust software. They ensure an all-or-nothing behavior, prevent-
ing data from being inconsistent should the unexpected occur. They also support
concurrency by preventing concurrent application threads from getting in each
other’s way as they work with the same data.

Spring supports both programmatic and declarative transaction manage-
ment. In either case, Spring shields you from having to work directly with a spe-
cific transaction management implementation by abstracting the transaction
management platform behind a common transaction manager fagade.

Spring employs its own AOP framework to support declarative transaction
management. Spring’s declarative transaction support rivals that of E[B’s CMT,
enabling you to declare more than just propagation behavior on POJOs, including
isolation levels, read-only optimizations, and rollback rules for specific exceptions.

Finally, when used with metadata and autoproxying, making a method
transactional is often simply a matter of tagging it with the appropriate transac-
tion attribute.

In the next chapter, we’re going to look at how Spring supports remoting
and see how you can expose your application beans to remote clients via RMI
and web services.

Remoting

This chapter covers

m Accessing and exposing RMI services

Using Caucho’s Hessian and Burlap protocol
Understanding Spring’s HTTP invoker

Using Spring with web services

207

208

6.1

CHAPTER 6
Remoting

Imagine for a moment that you are stranded on a deserted island. This may sound
like a dream come true. After all, who wouldn’t want to get some solitude on a
beach, blissfully ignorant of the goings-on of the outside world?

But on a deserted island, it’s not pifa coladas and sunbathing all of the
time. Even if you enjoy the peaceful seclusion, it won’t be long before you’ll get
hungry, bored, and lonely. You can only live on coconuts and spear-caught fish
for so long. You'll eventually need food, fresh clothing, and other supplies. And
if you don’t get in contact with another human soon, you may end up talking
to a volleyball!

Many applications that you’ll develop are like island castaways. On the surface
they may seem self-sufficient, but in reality, they may collaborate with other sys-
tems, both within your organization and external.

For example, consider a procurement system that needs to communicate with
a vendor’s supply chain system. Maybe your company’s human resources system
needs to integrate with the payroll system. Or even the payroll system may need
to communicate with an external system that prints and mails paychecks. No mat-
ter the circumstance, your application will need to communicate with the other
system to access services remotely.

Several remoting technologies are available to you, as a Java developer,
including

m Remote Method Invocation (RMI)

Caucho’s Hessian and Burlap

= Spring’s own HTTP invoker

» Enterprise JavaBeans (E]B)

= Web services
Regardless of which remoting technology you choose, Spring provides rich sup-
port for accessing and creating remote services. In this chapter, you’ll learn how

Spring both simplifies and complements these remoting services. But first, let’s
set the stage for this chapter with an overview of how remoting works in Spring.

Spring remoting overview

Remoting is a conversation between a client application and a service. On the client
side, some functionality is required that isn’t within the scope of the application.
So, the application reaches out to another system that can provide the function-
ality. The remote application exposes the functionality through a remote service.

Spring remoting overview 209

For example, when a student registers for a course in the Spring Training
application, you'd like to be able to take payment from the customer for the
course (Spring Training is a business, after all). Therefore, the Spring Training
application needs to perform credit card authorization and payment settlement.
This is functionality that is outside the scope of the Spring Training application
itself. There’s no way that Spring Training can directly debit a student’s credit
card or even know if the credit card is good for the funds. Only the bank that
issued the card can perform authorization and settlement. Therefore, it makes
sense for the Spring Training application to make a remote call to a payment ser-
vice exposed by the bank (as illustrated in figure 6.1).

The conversation between Spring Training and the bank begins with a remote
procedure call (RPC) from the Spring Training application to the bank’s payment
service. On the surface, an RPC is similar to a call to a method on a local object.
Both are synchronous operations, blocking execution in the calling code until the
called procedure is complete.

The difference is a matter of proximity, with an analogy in human communi-
cation. If you are at the proverbial watercooler at work discussing the outcome of
the weekend’s football game, you are conducting a local conversation—that is,
the conversation takes place between two people in the same room. Likewise, a
local method call is when execution flow is exchanged between two blocks of code
within the same application.

On the other hand, if you were to pick up the phone to call a client in another
city, your conversation would be conducted remotely over the telephone network.
Similarly, RPC is when execution flow is handed off from one application to
another application, theoretically on a different machine in a remote location
over the network.

Spring supports remoting for six different RPC models: Remote Method Invo-
cation (RMI), Caucho’s Hessian and Burlap, Spring’s own HTTP invoker, EJB, and
web services using JAX-RPC. Table 6.1 outlines each of these models and briefly
discusses their usefulness in various situations.

—_—— e - - — — 4 —_—— e - - — — 4

cards using a remote
payment service.

: Spring Training, Inc. : : Bank :

| o | | 4 | Figure 6.1

| pring . . ayment I Spring Trainin,
..~ | —— authorizeCreditCard ——»| . pring g

| Jrainigy ‘ \ Servicy | authorizes credit

| |

| |

210

CHAPTER 6
Remoting

Table 6.1 The RPC models supported by Spring remoting

RPC Model Useful when...

Remote Method Invocation (RMI) | Accessing/exposing Java-based services when network constraints
such as firewalls aren’t a factor

Hessian or Burlap Accessing/exposing Java-based services over HTTP when network
constraints are a factor

HTTP Invoker Accessing/exposing Spring-based services when network constraints
are a factor

EJB Accessing legacy J2EE systems implemented as Enterprise Java-
Beans
JAX-RPC Accessing web services

Regardless of which remoting model you choose, youll find that a common
theme runs through Spring’s support for each of the models. This means that
once you understand how to configure Spring to work with one of the models,
you’ll have a very low learning curve if you decide to use a different model.

In all models, services can be configured into your application as Spring-
managed beans. This is accomplished using a proxy factory bean that enables you
to wire remote services into properties of your other beans as if they were local
objects. Figure 6.2 illustrates how this works.

The client makes calls to the proxy as if the proxy were providing the ser-
vice functionality. The proxy communicates with the remote service on behalf

Service Interface Service Interface
| T
Proxy <« - - - - - - - - > Service
Remote

Communication

has a
Figure 6.2
. In Spring, remote
Client pring g
Handles marshaling services are proxied so
and unmarshalling of that they can be wired
remote method calls into client code as a

regular bean.

Spring remoting overview 211

of the client. It handles the details of connecting and making remote calls to
the remote service.

What’s more, if the call to the remote service results in a java.rmi.RemoteExcep-
tion, the proxy handles that exception and rethrows it as an unchecked
org.springframework.remoting.RemoteAccessException. Remote exceptions usu-
ally signal problems such as network or configuration issues that can’t be grace-
fully recovered from. Since there’s usually very little that a client can do to
gracefully recover from a remote exception, rethrowing a RemoteAccessException
makes it optional for the client to handle the exception.

On the service side, you are able to expose the functionality of any Spring-
managed bean as a remote service using any of the models in listed in table 6.1
(except for EJB and JAX-RPC). Figure 6.3 illustrates how remote exporters expose
bean methods as remote services.

Whether you'll be developing code that consumes remote services, imple-
ments those services, or both, working with remote services in Spring is purely a
matter of configuration. You won’t have to write any Java code to support remot-
ing. Your service beans don’t have to be aware that they are involved in an RPC
(although any beans passed to or returned from remote calls may need to imple-
ment java.io.Serializable).

Let’s start our exploration of Spring’s remoting support by looking at RMI, the
original remoting technology for Java.

Service Interface

Service Bean |q- - - - - RemoteExporter || - - - - — - P Client
Remote
Communication

Figure 6.3
Handles marshalling Spring-managed beans
and unmarshalliing of can be exported as
remote method calls remote services using

RemoteExporters.

212

6.2

6.2.1

CHAPTER 6
Remoting

Working with RMI

If you've been working in Java for any length of time, you’ve no doubt heard of
(and probably used) Remote Method Invocation (RMI). RMI—first introduced into
the Java platform in JDK 1.1—gives Java programmers a powerful way to con-
duct communication between Java programs. Before RMI, the only remoting
options available to Java programmers were CORBA (which at the time required
the purchase of a third-party Object Request Broker, or ORB) or hand-written
socket programming.

But developing and accessing RMI services is tedious, involving several steps,
both programmatic and manual. Spring simplifies the RMI model by providing a
proxy factory bean that enables you to wire RMI services into your Spring appli-
cation is if they were a local JavaBean. Spring also provides a remote exporter that
makes short work of converting your Spring-managed beans into RMI services.

To get started with Spring’s RMI, let’s see how to wire an RMI service into the
Spring Training application.

Wiring RMI services

As mentioned earlier, Spring Training, Inc. needs to be able to take payment via
credit card when their students register for a course. Fortunately, a payment ser-
vice is available that can handle this functionality on behalf of Spring Training.
All you'll need to do is hook the Spring Training application into it. As it turns
out, the payment service exposes its functionality as an RMI service.

One way to access the payment service is to write a factory method that
retrieves a reference to the payment service in the traditional RMI way:

private String payServiceUrl = "rmi:/creditswitch/PaymentService";

public PaymentService lookupPaymentService ()
throws RemoteException, NotBoundException,
MalformedURLException {

PaymentService payService = (PaymentService)
Naming.lookup (payServiceUrl) ;

return payService;
}
The payServiceUrl property will need to be set to the address for the RMI service.
Then, any time the Spring Training application needs a reference to the payment
service, it would need to call the lookupPaymentService () method. While this
would certainly work, it presents two problems:

Working with RMI 213

1 Traditional RMI lookups could result in any one of three exceptions
(RemoteException, NotBoundException, and MalformedURLException) that
must be caught or rethrown.

2 Any code that needs the payment service is responsible for retrieving a
reference to the service itself by calling lookupPaymentService ().

The exceptions thrown in the course of an RMI lookup are the kinds that typically
signal a fatal and unrecoverable condition in the application. Malformedurl-
Exception, for instance, indicates that the address given for the service is not
valid. To recover from this exception, the application will at least need to be
reconfigured and may have to be recompiled. No try/catch block will be able to
recover gracefully, so why should your code be forced to catch and handle it?

But perhaps even more sinister is the fact that lookupPaymentService() is a
direct violation of inversion of control. This is bad because it means that the client
of lookupPaymentService () is also aware of where the payment service is located
and of the fact that it is an RMI service. Ideally, you should be able to inject a
PaymentService object into any bean that needs one instead of having the bean
look up the service itself. Using dependency injection, any client of Payment-
Service can be ignorant of where the PaymentService comes from.

Spring’s RmiProxyFactoryBean is a factory bean that creates a proxy to an RMI
service. Using RmiProxyFactoryBean to reference an RMI PaymentService is as
simple as declaring the following <bean> in the Spring configuration file:

<bean id="paymentService"
class="org.springframework.remoting.rmi.RmiProxyFactoryBean">
<property name="serviceUrl"s>
<value>rmi://${paymenthost}/PayService</value>
</property>
<property name="servicelnterface">
<value>com. springinaction.payment.PaymentService</value>
</property>
</beans>

The URL of the RMI service is set through the serviceurl property. Here, the ser-
vice is named PayService and is hosted on a machine whose name is configured
using a property placeholder (see section 2.4.3 in chapter 2). The service-
Interface property specifies the interface that the service implements and
through which the client invokes methods on the service.

With the payment service defined as a Spring-managed bean, you are able to
wire it as a collaborator into another bean just as you would any other nonremote
bean. For example, suppose that StudentServiceImpl needs to use the payment

214

6.2.2

CHAPTER 6
Remoting

service to authorize a credit card payment. You'd use this code to wire the RMI
service into StudentServiceImpl:

<bean id="studentService"
class="com.springinaction.training.service.StudentServiceImpl">

<property name="paymentService"s>
<ref bean="paymentService"/>
</property>

</bean>

What’s great about accessing an RMI service in this way is that StudentService-
Impl doesn’t even know that it’s dealing with an RMI service. It simply receives a
PaymentService object via injection, without any concern for where it comes from.
Furthermore, the proxy catches any RemoteExceptions that may be thrown by the
service and rethrows them as runtime exceptions so that you may safely ignore
them. This makes it possible to swap out the remote service bean with another
implementation of the service—perhaps a different remote service or maybe a
mock implementation used when unit-testing.

RmiProxyFactoryBean certainly simplifies the use of RMI services in a Spring
application. But that’s only half of an RMI conversation. Let’s see how Spring sup-
ports the service side of RMI.

Exporting RMI services

Suppose that instead of working on the portion of the Spring Training application
that accesses the payment service, you are responsible for writing the payment ser-
vice itself. Again, the payment service should be exposed as an RMI service.

Taking a traditional approach to RMI, you might end up implementing the
payment service shown in listing 6.1.

Listing 6.1 Implementing the payment service as an RMI service in the traditional

(non-Spring) way

public class PaymentServiceImpl extends UnicastRemoteObject
implements PaymentService {

public PaymentServiceImpl () throws RemoteException {}

public String authorizeCreditCard(String creditCardNumber,
String cardHolderName, int expirationMonth,
int expirationYear, float amount)
throws AuthorizationException, RemoteException {

Working with RMI 215

String authCode = ...;
// implement authorization

return authCode;

}

public void settlePayment (String authCode, int accountNumber,
float amount) throws SettlementException, RemoteException {
// implement settlement
}

}
|

As for the paymentService interface that PaymentServiceImpl implements, you'll
need to ensure that it extends java.rmi.Remote as follows:
public interface PaymentService extends Remote {
public String authorizeCreditCard (String cardNumber,

String cardHolderName, int expireMonth, int expireYear,
float amount) throws AuthorizationException, RemoteException;

public void settlePayment (String authCode, int merchantNumber,
float amount) throws SettlementException, RemoteException;

}

But it isn’t enough that you've written a service implementation class and inter-
face. You also need to generate client stub and server skeleton classes using the
RMI compiler:

o

% rmic -d PaymentServiceImpl

Finally, you’ll need to start an RMI registry and bind the service in the registry.
The following code handles this task:

try {
PaymentService paymentService = new PaymentServiceImpl () ;

Registry registry = LocateRegistry.createRegistry(1099) ;

Naming.bind ("PayService", paymentService) ;
} catch (RemoteException e) ({

} catch (MalformedURLException e) {
}
Wow! That’s a lot of work just to publish a simple RMI service. In addition to all

the steps required, you may have noticed that RemoteExceptions and Malformed-
UrlExceptions are thrown around quite a bit, even though these exceptions

216

CHAPTER 6
Remoting

usually indicate a fatal error that can’t be recovered from in a catch block. Clearly
a lot of code and manual work is involved to publish an RMI service without Spring.

Configuring an RMI service in Spring

Fortunately, Spring provides an easier way to publish RMI services using simple
POJOs. To start, you'll need to write the service interface:
public interface PaymentService {
public String authorizeCreditCard (String cardNumber,

String cardHolderName, int expireMonth, int expireYear,
float amount) throws AuthorizationException;

public void settlePayment (String authCode, int merchantNumber,
float amount) throws SettlementException;

}
Because the service interface doesn’t extend java.rmi.Remote and none of its
methods throw java.rmi.RemoteException, this trims the interface down a bit. But
more importantly, a client accessing the payment service through this interface
will not have to catch exceptions that they probably won’t be able to deal with.
Next you'll need to define the service implementation class. Listing 6.2 shows
how this service may be implemented.

Listing 6.2 The payment service defined as a POJO

public class PaymentServiceImpl implements PaymentService {
public PaymentServiceImpl () {}

public String authorizeCreditCard(String creditCardNumber,
String cardHolderName, int expirationMonth,
int expirationYear, float amount)
throws AuthorizationException {

String authCode = ...;
// implement authorization

return authCode;

}

public void settlePayment (String authCode, int accountNumber,
float amount) throws SettlementException {
// implement settlement
}
}

Working with RMI 217

The next thing youll need to do is to configure PaymentServiceImpl as a <bean>
in the Spring configuration file:

<bean id="paymentService"
class="org.springframework.payment.PaymentServiceImpl">

</bean>

Notice that there’s nothing about this version of PaymentServiceImpl that is
intrinsically RMI. It’s just a simple POJO suitable for declaration in a Spring con-
figuration file. In fact, it’s entirely possible to use this implementation in a non-
remote manner by wiring it directly into a client.

But we're interested in using this service remotely. So, the last thing to do is to
export PaymentServiceImpl as an RMI service. But instead of generating a server
skeleton and client stub using rmic and manually adding it to the RMI registry (as
you would in conventional RMI), you can use Spring’s RmiServiceExporter.

RmiServiceExporter exports any Spring-managed bean as an RMI service. It
works by wrapping the bean in an adapter class. The adapter class is then bound
to the RMI registry and proxies requests to the service class—in this case payment -

ServiceImpl:

<bean class="org.springframework.remoting.rmi.RmiServiceExporter">
<property name="service"s>
<ref bean="paymentService"/>
</property>
<property name="serviceName">
<value>PayService</value>
</property>
<property name="servicelnterface">
<value>com.springinaction.payment.PaymentService</value>
</property>
</bean>

Here the paymentService bean is wired into the service property to indicate that
RmiServiceExporter is going to export the payment service as an RMI service. Just
as with RmiProxyFactoryBean described in section 6.2.1, the serviceName property
names the RMI service and the serviceInterface property specifies the interface
implemented by the service.

RMI is an excellent way to communicate with remote services, but it has its lim-
itations. First, RMI has difficulty working across firewalls. That’s because RMI uses
arbitrary ports for communication—something firewalls typically will not allow.
In an intranet environment, this usually isn’t a concern, but if you are working on
the “evil Internet,” you’ll probably run into trouble with RMI. Even though RMI

218

6.3

CHAPTER 6
Remoting

has support for tunneling through HTTP (which is usually allowed by firewalls),
setting up the tunneling can be tricky.

Another thing to consider is that RMI is Java-based. That means that both
the client and the service must be written in Java. This may or may not be an
issue for your application, but it is something to bear in mind when choosing
RMI for remoting.

Caucho Technology (the same people behind the Resin application server)
has developed a remoting solution that addresses the limitations of RMI. Actually,
they have come up with two solutions: Hessian and Burlap. Let’s see how to use
Hessian and Burlap to work with remote services in Spring.

Remoting with Hessian and Burlap

Hessian and Burlap are two solutions provided by Caucho Technology (http://
www.caucho.com) that enable lightweight remote services over HTTP. They each
aim to simplify web services by keeping both their API and their communication
protocols as simple as possible.

You may be wondering why Caucho has two solutions to the same problem.
Indeed, Hessian and Burlap are two sides of the same coin, but each serves
slightly different purposes. Hessian, like RMI, uses binary messages to communi-
cate between client and service. But unlike other binary remoting technologies
(such as RMI), the binary message is portable to languages other than Java. In
fact, Caucho has developed an implementation of Hessian for the Python pro-
gramming language.

Burlap is an XML-based remoting technology, which automatically makes it
portable to any language that can parse XML. And because it’s XML, it is more
easily human-readable than Hessian’s binary format. But unlike other XML-based
remoting technologies (such as SOAP or XML-RPC), Burlap’s message structure is
as simple as possible and does not require an external definition language (e.g.,
WSDL or IDL).!

Both Hessian and Burlap are also lightweight with regard to their size. Each is
fully contained in an 84K JAR file, with no external dependencies other than the
Java runtime libraries. This makes them both ideal for use in environments that
are constrained on memory, such as Java applets or handheld devices.

! Burlap’s simplicity is evident even in its name. Caucho claims that they chose the name “Burlap” be-
cause of one simple reason: it’s boring.

6.3.1

Remoting with Hessian and Burlap 219

You may be wondering how to make a choice between Hessian and Burlap. For
the most part, they are identical. The only difference is that Hessian messages are
binary and Burlap messages are XML. Because Hessian messages are binary, they
are more bandwidth-friendly. But if human-readability is important to you (for
debugging purposes) or if your application will be communicating with a lan-
guage for which there is no Hessian implementation (anything other than Java or
Python), then Burlap’s XML messages may be preferable.

To demonstrate Hessian and Burlap services in Spring, let’s revisit the pay-
ment service problem that was solved with RMI in section 6.2. This time, how-
ever, we'll look at how to solve the problem using Hessian and Burlap as the
remoting models.

Accessing Hessian/Burlap services

As you'll recall from section 6.2.1, StudentServiceImpl has no idea that the pay-
ment service is an RMI service. All of the RMI details were completely contained
in the configuration of the beans in Spring’s configuration file. The good news is
that because of the client’s ignorance of the service’s implementation, switching
from an RMI client to a Hessian client is extremely easy, requiring no changes to
the client code.

The bad news is that if you really like writing code, then this section may be a
bit of a letdown. That’s because the only difference between wiring the client side
of an RMI-based service and wiring the client side of a Hessian-based service is
that you’ll use Spring’s HessianProxyFactoryBean instead of RmiProxyFactory-
Bean. A Hessian-based payment service is declared in the client code like this:

<bean id="paymentService" class="org.springframework.

remoting.caucho.HessianProxyFactoryBean">
<property name="serviceUrl"s>
<value>http://${serverName}/${contextPath}/pay.service</value>
</propertys>
<property name="serviceInterface">
<value>com.springinaction.payment.PaymentService</value>
</propertys>

</bean>
Just as with an RMI-based service, the serviceInterface property specifies the
interface that the service implements. And, as with RmiProxyFactoryBean, service-
url indicates the URL of the service. Since Hessian is HTTP-based, it has been set
to an HTTP URL here (you'll see how this URL is derived in the next section).

As it turns out, wiring a Burlap service is equally uninteresting. The only differ-
ence is that you'll use BurlapProxyFactoryBean instead of HessianProxyFactoryBean:

220

6.3.2

CHAPTER 6
Remoting

<bean id="paymentService" class="org.springframework.
remoting.caucho.BurlapProxyFactoryBean" >
<property name="serviceUrl">
<values>http://${serverName}/${contextPath}/pay.service</value>
</propertys>
<property name="serviceInterface"s>
<value>com. springinaction.payment .PaymentService</value>
</propertys>
</bean>
Although we’ve made light of how uninteresting the configuration differences are
among RMI, Hessian, and Burlap services, this tedium is actually a benefit. It
means that you’ll be able to switch effortlessly between the various remoting tech-
nologies supported by Spring without having to learn a completely new model.
Once you've configured a reference to an RMI service, it’s short work to reconfig-
ure it as a Hessian or Burlap service.
Now let’s switch to the other side of the conversation and expose the function-

ality of a Spring-managed bean as either a Hessian or Burlap service.

Exposing bean functionality with Hessian/Burlap

Again, let’s suppose that you are tasked with implementing the payment service
and exposing its functionality as a remote service. This time, however, you're
going to expose it as a Hessian-based service.

Even without Spring, writing a Hessian service is fairly trivial. You simply write
your service class to extend com.caucho.hessian.server.HessianServlet and
make sure that your service methods are public (all public methods are consid-
ered service methods in Hessian).

Because Hessian services are already quite easy to implement, Spring doesn’t
do much to simplify the Hessian model any further. However, when used with
Spring, a Hessian service can take full advantage of the Spring framework in ways
that a pure Hessian service cannot. This includes using Spring AOP to advise a
Hessian service with systemwide services such as declarative transactions.

Exporting a Hessian service
Exporting a Hessian service in Spring is remarkably similar to implementing an
RMI service in Spring. In fact, if you followed the RMI example in section 6.2.2,
you’ve already done most of the work required to expose the payment service as a
Hessian service.

To expose the payment service as an RMI service, you configured an Rmi-
ServiceExporter bean in the Spring configuration file. In a very similar way, to

Remoting with Hessian and Burlap 221

expose the payment service as a Hessian service, you'll need to configure another
exporter bean. This time, however, it will be a HessianServiceExporter:

<bean name="hessianPaymentService" class="org.springframework.

remoting.caucho.HessianServiceExporter"s>
<property name="service">
<ref bean="paymentService"/>
</property>
<property name="servicelnterface">
<value>com.springinaction.payment.PaymentService</value>
</property>

</beans>
HessianServiceExporter performs the exact same function for a Hessian service
as RmiServiceExporter does for an RMI service. That is, it exposes the public
methods of a bean as methods of a Hessian service.

Just as with RmiServiceExporter, the service property is wired with a reference
to the bean that implements the service. Here the service property is wired with
a reference to the paymentService bean. The serviceInterface property is set to
indicate that PaymentService is the interface that the service implements.

Unlike with RmiServiceExporter, however, you do not need to set a service-
Name property. With RMI, the serviceName property is used to register a service in
the RMI registry. Hessian doesn’t have a registry and therefore there’s no need to
name a Hessian service.

Configuring the Hessian controller

Another major difference between RmiServiceExporter and HessianService-
Exporter is that because Hessian is HTTP-based, HessianServiceExporter is imple-
mented as a Spring MVC controller. This means that in order to use exported
Hessian services, you’ll need to perform two additional configuration steps:

1 Configure a URL handler in your Spring configuration file to dispatch
Hessian service URLs to the appropriate Hessian service bean.

2 Configure a Spring DispatcherServlet in web.xml and deploy your
application as a web application.

You'll learn the details of how Spring URL handlers and DispatcherServlet work
in chapter 8. But for now we’re only going to show you enough to expose the Hes-
slan payment service.

In section 6.3.1, you configured the serviceurl property on the client side to
point to http://${serverName}/${contextPath}/pay.service. The ${server-
Name} and ${contextPath} are placeholders that are configured via Property-
PlaceholderConfigurer. The last part of the URL, /pay.service, is the part we're

222

CHAPTER 6
Remoting

interested in here. This is the URL pattern that you’ll map the Hessian payment
service to.

A URL handler maps a URL pattern to a specific Controller that will handle
requests. In the case of the Hessian payment service, youwant to map /pay . service
to the hessianPaymentService bean as follows using SimpleUrlHandlerMapping:

<bean id="urlMapping" class="org.springframework.web.
servlet.handler.SimpleUrlHandlerMapping" >
<property name="mappings"s>
<props>
<prop key="/pay.service"s>hessianPaymentService</prop>
</props>
</property>
</bean>

You'll learn more about SimpleUrlHandlerMapping in chapter 8 (section 8.2.2).
For now, suffice it to say that the mappings property takes a set of properties
whose key is the URL pattern. Here it has been given a single property with a
key of /pay.service, which is the URL pattern for the payment service. The
value of the property is the name of a Spring Controller bean that will handle
requests to the URL pattern—in this case, hessianPaymentService.

Because HessianServiceExporter is implemented as a controller in Spring
MVC, you must also configure Spring’s DispatcherServlet in web.xml:

<servlet>
<servlet-namescredit</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1l</load-on-startup>
</servlets>

The name given to the servlet is significant because it is used by Dispatcher-
servlet to locate the Spring configuration file. In this case, because the servlet is
named “credit”, the configuration file must be named “credit-servlet.xml”.
One final step required to expose the Hessian service is to set up a serv-
let mapping:
<servlet-mapping>
<servlet-namescredit</servlet-name>

<url-pattern>*.service</url-pattern>
</servlet-mapping>

Configured this way, any request whose URL ends with “.service” will be given to
DispatcherServlet, which will in turn hand off the request to the controller that

6.4

Using Hitp invoker 223

is mapped to the URL. Thus requests to “/pay.service” will ultimately be handled
by the hessianPaymentService bean (which is actually just a proxy to Payment-
ServicelImpl).

Exporting a Burlap service

As an anticlimactic conclusion to this section, we thought you might like to also
see how to export a Spring-managed bean as a Burlap service. Spring’s Burlap-
ServiceExporter is used in place of HessianServiceExporter to perform this task.
For example, the following bean definition shows how to expose the payment ser-
vice as a Burlap service:

<bean name="burlapPaymentService"class="org.springframework.

remoting.caucho.BurlapServiceExporter">
<property name="service"s
<ref bean="paymentService"/>
</propertys>
<property name="serviceInterface"s>
<value>com.springinaction.payment.PaymentService</value>
</propertys>

</bean>
You’ll notice that aside from the bean’s name (which is purely arbitrary) and
the use of BurlapServiceExporter, this bean is identical to the hessianPayment-
Service. Configuring a Burlap service is otherwise the same as configuring a
Hessian service. This includes the need to set up a URL handler and the
DispatcherServlet.

Hessian and Burlap address the firewall problems that RMI suffers from. And
both are lightweight enough to be used in constrained environments where mem-
ory and space are a premium, such as applets and wireless devices.

But RMI has both Hessian and Burlap beat when it comes to serializing
objects that are sent in RPC messages. Whereas Hessian and Burlap both use a
proprietary serialization mechanism, RMI uses Java’s own serialization mecha-
nism. If your data model is complex, the Hessian/Burlap serialization model
may not be sufficient.

There is a best-of-both-worlds solution. Let’s take a look at Spring’s HTTP
invoker, which offers RPC over HTTP (like Hessian/Burlap) while at the same time
using Java serialization of objects (like RMI).

Using Http invoker

The Spring team recognized a void between RMI services and HTTP-based ser-
vices like Hessian and Burlap. On one side, RMI uses Java’s standard object

224

CHAPTER 6
Remoting

serialization but is difficult to use across firewalls. On the other side, Hessian/Bur-
lap work well across firewalls but use a proprietary object serialization mechanism.

Thus Spring’s HTTP invoker was born. HTTP invoker is a new remoting
model created as part of the Spring framework to perform remoting across
HTTP (to make the firewalls happy) and using Java’s serialization (to make pro-
grammers happy).

Working with HTTP invoker-based services is quite similar to working with
Hessian/Burlap-based services. To get started with HTTP invoker, let’s take
another look at the payment service—this time implemented as an HTTP invoker
payment service.

6.4.1 Accessing services via HTTP

To access an RMI service, you declared an RmiProxyFactoryBean that pointed to
the service. To access a Hessian service, you declared a HessianProxyFactoryBean.
And to access a Burlap service, you used BurlapProxyFactoryBean. Carrying this
monotony over to HTTP invoker, it should be of little surprise to you that to
access an HTTP invoker service, you'll need to use HttpInvokerProxyFactoryBean.
Had the payment service been exposed as an HTTP invoker-based service,
you could configure a bean that proxies it using HttpInvokerProxyFactoryBean
as follows:
<bean id="paymentService" class= "org.springframework.remoting.
httpinvoker.HttpInvokerProxyFactoryBean" >
<property name="serviceUrl">
<valueshttp://${serverName}/${contextPath}/pay.service</value>
</propertys>
<property name="serviceInterface">
<value>com. springinaction.payment .PaymentService</value>
</propertys>
</beans>
Comparing this bean definition to those in sections 6.2.1 and 6.3.1, you’'ll find
that little has changed. The serviceInterface property is still used to indicate
interface implemented by the payment service. And the serviceurl property is
still used to indicate the location of the remote payment service. Because HT TP
invoker is HT'TP-based like Hessian and Burlap, the serviceUrl can contain the
same URL as with the Hessian and Burlap versions of the bean.
Moving on to the other side of an HTTP invoker conversation, let’s now look at
how to export a bean’s functionality as an HTTP invoker-based service.

Using Hitp invoker 225

6.4.2 Exposing beans as HTTP Services

You've already seen how to expose the functionality of PaymentServiceImpl as an
RMI service, as a Hessian service, and as a Burlap service. Next let’s rework the
payment service as an HTTP invoker service using Spring’s HttpInvokerService-
Exporter to export the payment service.

At the risk of sounding like a broken record, we must tell you that exporting a
bean’s methods as remote method using HttpInvokerServiceExporter is very
much like what you’ve already seen with the other remote service exporters. In
fact, it’s virtually identical. For example, the following bean definition shows how
to export the paymentService bean as a remote HTTP invoker-based service:

<bean id="httpPaymentService" class="org.springframework.remoting.

httpinvoker.HttpInvokerServiceExporter">
<property name="service"s
<ref bean="paymentService"/>
</property>
<property name="serviceInterface">
<value>com. springinaction.payment .PaymentService</value>
</property>

</bean>
Feeling a strange sense of déja vu? You may be having a hard time finding the dif-
ference between this bean declaration and the ones in section 6.3.2. In case the
bold text didn’t help you spot it, the only difference is the use of HttpInvoker-
ServiceExporter. Otherwise, this exporter is no different than the other remote
service exporters.

HTTP invoker-based services, as their name suggests, are HT'TP-based just like
Hessian and Burlap services. And, just like HessianServiceExporter and Burlap-
ServiceExporter, HttpInvokerServiceExporter is a Spring Controller. This means
that you’ll need to set up a URL handler to map an HTTP URL to the service:

<bean id="urlMapping" class="org.springframework.web.

servlet.handler.SimpleUrlHandlerMapping" >
<property name="mappings"s>
<props>
<prop key="/pay.service"s>httpPaymentService</prop>
</props>
</property>

</bean>
And you’ll also need to deploy the payment service in a web application with
Spring’s DispatcherServlet configured in web.xml:

<servlet>
<servlet-namescredit</servlet-name>

226

6.5

CHAPTER 6
Remoting

<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1l</load-on-startup>
</servlets>

<servlet-mapping>

<servlet-namescredit</servlet-name>
<url-patterns*.service</url-patterns>

</servlet-mapping>
Configured this way, the payment service will be available at /pay.service, the
same URL as it was when exposed as either a Hessian or Burlap service.

Spring’s HTTP invoker presents a best-of-both-worlds remoting solution com-
bining the simplicity of HTTP communication with Java’s built-in object serializa-
tion. This makes HTTP invoker services an appealing alternative to either RMI or
Hessian/Burlap.

HTTP invoker has one significant limitation that you should keep in mind.
HTTP invoker is a remoting solution offered by the Spring framework only. This
means that both the client and the service must be Spring-enabled applications.
And, at least for now, this also implies that both the client and the service must be
Java-based.?

Of all of the remoting technologies discussed so far, none has received as
much attention as Enterprise JavaBeans (E]Bs). Indeed more words have proba-
bly been printed about EJB than any other Java technology. Let’s take a look at
how EJBs can fit into your Spring applications.

Working with EJBs

You may be surprised to find a section on how to use Spring with EJBs in this
book. Much of this book so far has shown you how to implement enterprise-class
applications without resorting to E]JBs. A section on EJBs may seem a bit juxta-
posed in this book. So why are we talking about E]Bs now?

The fact is that although Spring provides a lot of functionality that gives
POJOs the power of EJBs, you may not always have the luxury of working on a
project that is completely EJB-free. On the one hand, you may have to interface

2 The Java-only nature of HTTP invoker may soon not be an issue. The Spring team has started a new
project to port the Spring framework to Microsoft .NET. This may open up HT'TP invoker to be used
with .NET languages such as C# and Visual Basic (although how serialized Java objects get deserial-
ized in .NET is yet to be seen).

Working with EJBs 227

with other systems that expose their functionality through stateless session E]Bs.
On the other hand, you may be placed in a project where for legitimate technical
(or perhaps political) reasons you must write EJB code.

Whether your application is the client of an EJB or if you must write the EJB
itself, you don’t have to completely abandon all of the benefits of Spring in order
to work with EJBs. Spring provides support for E]Bs in two ways:

= Spring enables you to declare EJBs as beans within your Spring configura-
tion file. This makes it possible to wire EJB references into the properties
of your other beans as though the EJB was just another POJO.

m Spring lets you write E]JBs that act as a fagade to Spring-configured beans.

Let’s start exploring Spring’s EJB abstraction features by looking at how to
declare EJBs as beans within the Spring configuration file.

6.5.1 Accessing EJBs

To illustrate Spring’s support for accessing EJBs, let’s return to the payment ser-
vice. This time, however, suppose that the payment service is implemented as a
legacy system that exposes its functionality through a stateless session EJB.

You may recall how to access EJBs in the traditional way. You know that you
must look up the home interface through JNDI. Perhaps you’ll write something
like this to look up the payment service’s home interface:

private PaymentServiceHome paymentServiceHome;

private PaymentServiceHome getPaymentServiceHome ()
throws javax.naming.NamingException {

if (paymentServiceHome != null)
return paymentServiceHome;

javax.naming.InitialContext ctx =
new javax.naming.InitialContext () ;

try {
Object objHome = ctx.lookup ("paymentService") ;

PaymentServiceHome home =
(PaymentServiceHome) javax.rmi.PortableRemoteObject.narrow (
objHome, PaymentServiceHome.class) ;

¥ Isn’tit interesting that we're referring to an EJB-based system as a legacy system? My, how times have
changed!

228

CHAPTER 6
Remoting

return home;
} finally {
ctx.close() ;

}
}

Once you've got a reference to the home interface, you’ll then need to get a ret-
erence to the EJB’s remote (or local) interface and call its business methods. For
example, the following code shows how to call the payment service EJB’s authorize-
CreditCard () method:

try {
PaymentServiceHome home = getPaymentServiceHome () ;

PaymentService paymentService = home.create() ;

String authCode =
paymentService.authorizeCreditCard (ccNumber, cardHolderName,
expMonth, expYear, amount) ;
} catch (javax.rmi.RemoteException e) {
throw new CreditException() ;
} catch (CreateException e) ({
throw new CreditException() ;

}

Wow, that’s a lot of code! What’s disturbing is that only a few lines have anything
to do with authorizing a credit card. Most of it is there just to obtain a reference to
the EJB. This seems like a lot of work just to make a single call to the EJB’s authorize-
CreditCard () method.

Hold on. Throughout this book, you've seen ways to inject your application
beans with the services that they need. Beans don’t look up other beans...beans
are given to other beans. But this whole exercise of looking up an EJB via JNDI
and its home interface doesn’t seem to fit how the rest of the application is con-
structed. If you proceed to interact with the EJB in the traditional EJB way, it will
muddy up your code with lookup code and will definitely couple your application
with the EJB. Isn’t there a better way?

Proxying EJBs

As you've probably guessed from this lead-up, yes, there is a better way. Earlier in
this chapter we showed you how to configure proxies to various remote services,
including RMI, Hessian, Burlap, and HTTP invoker services. In much the same
way, Spring provides two proxy factory beans that proxy access to E]Bs:

B LocalStatelessSessionProxyFactoryBean—Used to access local E]Bs (E]Bs
in the same container as their clients).

Working with EJBs 229

L SimpleRemoteStatelessSessionProxyFactoryBean—Used to access remote
EJBs (E]Bs that are in a separate container from their clients).

To break the monotony of the first few sections of this chapter, you’ll configure
these proxy factory beans very differently than how you configured those for RMI,
Hessian/Burlap, and HTTP invoker. Let’s see how to use these beans to access the
payment service EJB. Suppose, for simplicity’s sake, that the E]JB is a local E]B
with a JNDI name of payService. The following XML shows how to declare the
EJB within the Spring configuration file:

<bean id="paymentService" class="org.springframework.ejb.

access.LocalStatelessSessionProxyFactoryBean"
lazy-init="true">

<property name="jndiName">
<value>payService</value>
</property>

<property name="businessInterface">
<value>com. springinaction.payment.PaymentService</valuex>
</property>

</beans>
Becauseitisalocal EJB, the LocalStatelessSessionProxyFactoryBeanis the appro-
priate proxy factory bean class to use. You also set the jndiName property to pay-
mentService so that the proxy factory bean can look up the EJB’s home interface.

An important thing to notice about this declaration is the lazy-init
attribute on the <bean> element. This is important when either of the EJB-
loading proxy factory beans is used in an ApplicationContext. This is because
ApplicationContext-style bean factories pre-instantiate singleton beans once
the Spring configuration file is loaded. This is usually a good thing, but it may
result in the EJB proxy factory beans attempting to look up the EJB’s home
interface before the EJB is bound in the naming service. Setting lazy-init to
true ensures that the “paymentService” will not attempt to look up the home
interface until it is first used—which should be plenty of time for the EJB to be
bound in the naming service.

The businessInterface property is equivalent to the serviceInterface prop-
erty used with the other remote service proxy factory beans. Again it is set to
com.springinaction.payment .PaymentService to indicate that the service adheres
to the PaymentService interface.

230

CHAPTER 6
Remoting

Wiring the EJB
Now let’s wire the payment service EJB into the studentService bean:

<bean id="studentService"
class="com.springinaction.training.service.StudentServiceImpl">

<property name="paymentService"s>
<ref bean="paymentService"/>
</property>

</bean>

Did you see that? Wiring the payment service EJB into the studentService bean
was no different than wiring a POJO. The paymentService bean (which just hap-
pens to be a proxy to the EJB) is simply injected into the paymentService property
of studentService.

The wonderful thing about using a proxy factory bean to access the payment
service E]B is that you don’t have to write your own service locator or business del-
egate code. In fact, you don’t have to write any JNDI code of any sort. Nor must
you deal with the EJB’s home interface (or local home interface in this case).

Furthermore, by hiding it all behind the paymentService business interface,
the studentService bean isn’t even aware that it’s dealing with an EJB. As far as it
knows, it’s collaborating with a POJO. This is significant because it means that you
are free to swap out the EJB implementation of PaymentService with any other
implementation (perhaps even a mock implementation that’s used when unit-
testing StudentServiceImpl).

What’s going on?

You may be wondering how all this magic works. How were you able to wire in an
EJB as if it were just any other bean? Well, there’s a lot of stuff going on under the
covers of LocalStatelessSessionProxyFactoryBean that makes this possible.

First, during startup, LocalStatelessSessionProxyFactoryBean uses the JNDI
name specified by the jndiName property to look up the EJB’s local home interface
via JNDI. It then caches this interface for later use so that it won’t have to do any
more JNDI calls.

Then, every time a method is called on the paymentService interface, the
proxy calls the create () method on the local home interface to retrieve a refer-
ence to the EJB. Finally, the proxy invokes the corresponding method on the EJB.

All of this skullduggery gives the illusion that the payment service is a simple
POJO, when in fact there is interaction with an EJB. (Pretty sneaky, huh?)

6.5.2

Working with EJBs 231

Accessing a remote EJB

Now you’ve seen how to wire a local EJB into your Spring application. But if this
were a real-world application, the payment service EJB would more likely be a
remote EJB. In that case, you'd declare it in the Spring configuration file using
SimpleRemoteStatelessSessionProxyFactoryBean as follows:

<bean id="paymentService" class="org.springframework.ejb.
access.SimpleRemoteStatelessSessionProxyFactoryBean"
lazy-init="true">

<property name="jndiName" >
<values>payService</value>
</property>

<property name="businessInterface">
<value>com.springinaction.payment .PaymentService</value>
</property>
</bean>

Notice that the only difference here is the choice of simpleRemoteStateless-
SessionProxyFactoryBean. Other than that, Spring makes the choice between
local and remote EJBs transparent in the code that uses the EJB.

But you're probably wondering about java.rmi.RemoteException. How can
the choice between local and remote E]JBs be completely transparent if invoking a
remote EJB method could throw a RemoteException? Doesn’t someone need to
catch that exception?

This is one more benefit of using Spring’s EJB support to access EJBs. As
with RMI services, any RemoteExceptions thrown from EJBs are caught and then
rethrown as org.springframework.remoting.RemoteAccessException (which is
an unchecked exception). This makes catching the exception optional for the
EJB client.

Now that you’ve seen how to wire E]JBs into your Spring application, let’s look
at how Spring supports E]B development.

Developing Spring-enabled EJBs

Although Spring provides many capabilities that make it possible to implement
enterprise applications without EJBs, you may still find yourself needing to
develop your components as E]Bs.

Up until this point, you've seen how Spring supports remoting by providing
service exporter classes that magically export POJOs into remote services. We hate

232 CHAPTER 6
Remoting

to disappoint you, but unfortunately Spring doesn’t provide an EjbService-
Exporter class that exports POJOs as E]Bs. (But we do agree that such an exporter
would be really cool.)

Nevertheless, Spring provides four abstract support classes to make develop-
ing EJBs a little bit easier:

AbstractMessageDrivenBean—Useful for developing message-driven beans
that accept messages from sources other than JMS (as allowed by the
EJB 2.1 specification)

AbstractJdmsMessageDrivenBean—Useful for developing message-driven
beans that accept messages from JMS sources

AbstractStatefulSessionBean—Useful for developing stateful session EJBs

AbstractStatelessSessionBean—Useful for developing stateless session EJBs

These abstract classes simplify EJB development in two ways:

They provide default empty implementations of EJB life-cycle methods
(e.g., ejbActivate(), ejbPassivate(), ejbRemove()). These methods are
required per the EJB specification, but are typically implemented as
empty methods.

They provide access to a Spring bean factory. This makes it possible for
you to implement an EJB as a facade that delegates responsibility for the
business logic to Spring-configured POJOs.

For example, suppose that you were to expose the functionality of the course ser-
vice bean as a stateless session EJB. Listing 6.3 shows how you might implement
this EJB.

public class CourseServiceEjb extends AbstractStatelessSessionBean

implements CourseService

private CourseService courseService; <+— Declare the POJO
protected void onEjbCreate() { Look up the course service
courseService =
(CourseService) getBeanFactory () .getBean ("courseService");

}

public Course getCourse (Integer id) {

}

return courseService.getCourse(id); <— Delegate to the POJO

6.6

Using JAX-RPC web services 233

public void createCourse (Course course) {

}

courseService.createCourse (course) ;

Delegate to

, the POJO
public Set getAllCourses() {

return courseService.getAllCourses() ;

public void enrollStudentInCourse (Course course, Student student)
throws CourseException {

courseService.enrollStudentInCourse (course, student) ; Dehgﬁkto

} 1 the P0JO
[

When the CourseServiceEjb is created, its onEjbCreate () method retrieves the
courseService bean from the Spring bean factory. Then, when any of its methods
are invoked, they delegate responsibility to the bean courseService bean.

The big unanswered question regarding the EJB in listing 6.3 is where the
bean factory comes from. In typical J2EE fashion, the abstract EJB classes retrieve
the bean factory from JNDI. By default, they will look up the bean factory using
java:comp/env/ejb/BeanFactoryPath as the JNDI name. To look up the bean fac-
tory by another JNDI name, set the beanFactoryLocatorKey property before the
bean factory is loaded (in either the constructor or in the setSessionContext ()
method). For example:

public void setSessionContext (SessionContext sessionContext) {
super.setSessionContext (sessionContext) ;

setBeanFactoryLocatorKey ("java:comp/env/ejb/MyBeanFactory") ;
}
For good or bad, EJBs have certainly been the talk of the Java development com-
munity for several years. But web services are a remoting technology that have
generated buzz that transcends language and platform boundaries. To wrap up
this chapter, let’s see how Spring supports web services via JAX-RPC.

Using JAX-RPC web services

JAX-RPC is short for “Java APIs for XML-based remote procedure call.” That’s
a mouthful of words that simply means that JAX-RPC is a means for Java pro-
grams to access remote services using XML. In particular, the services are web
services that expose their functionality using the Simple Object Access Proto-
col (SOAP).

234

6.6.1

CHAPTER 6
Remoting

The ins and outs of JAX-RPC and SOAP-based web services are outside the
scope of this book. We’re going to assume that you are already familiar with the
basics of SOAP and JAX-RPC. If you need a primer or a refresher on JAX-RPC
and SOAP, take a look at J2EE Web Services by Richard Monson-Haefel (Addison-
Wesley, 2003).

To illustrate Spring’s support for web service access through JAX-RPC, we
could revisit the payment service again, but you're probably growing quite weary
of the monotony (we know that we are). So, for JAX-RPC, we thought you’d appre-
ciate a break from the payment service example. Instead we’re going to work with
a Babel Fish service.

If you've ever read The Hitchhiker’s Guide to the Galaxy, you probably already
know what a Babel Fish is. For those of you who don’t know what we’re talking
about, a Babel Fish is a small yellow fish that, when placed in the ear, translates
one spoken language to another. In short, it enables anyone with the fish placed
in their ear to understand anything that is spoken, regardless of what language it
is spoken in.

We recognize that most readers probably don’t have access to a real Babel Fish
(and even if you did, you might find it creepy to put a fish in your ear). But there
is a web service that performs a similar function. In fact, it is appropriately named
“BabelFishService.” You can find the Web Service Definition Language (WSDL)
file for the Babel Fish web service at the following URL: http://www.xmethods.com/
sd/2001/BabelFishService.wsdl.

Referencing a web service with JAX-RPC

To use the Babel Fish web service, you'll need to create an interface that defines
the service. Looking at the WSDL, you’ll find that the Babel Fish web service has
a single operation called BabelFish. This operation takes two arguments: A
string that indicates the translation mode (see SIDEBAR) and another String
that is the original untranslated text. It returns a String that contains the trans-
lated text. BabelFishRemote.java (listing 6.4) shows the remote interface that
defines this service.

package com.springinaction.chapter06.babelfish;

import java.rmi.Remote;
import java.rmi.RemoteException;

Using JAX-RPC web services 235

public interface BabelFishRemote extends Remote {
public String BabelFish(String translationMode,
String sourceData) throws RemoteException;

SIDEBAR The translation mode is made up of two language codes separated by an
underscore (_). Some valid language codes are “en” for English, “fr” for
French, “dr” for German, and “es” for Spanish. The language code that
precedes the underscore is the language that the source text is in. The
language code that is after the underscore is the language that you want
to the source text to be translated to. For example, a translation mode of
“de_en” will translate German text into English text.

The BabelFishRemote interface contains the single BabelFish() method. This
method name comes from the operation name in the WSDL. Unfortunately this
web service begins with a capital “B,” unlike Java conventions where method
names begin with lowercase letters. The following code shows how you might
obtain a reference to the Babel Fish service using conventional JAX-RPC (that is,
without Spring’s help):
String wsdlDocumentUrl =
"http://www.xmethods.com/sd/2001/BabelFishService.wsdl";
String namespaceUri =
"http://www.xmethods.net/sd/BabelFishService.wsdl";
String serviceName = "BabelFishService";
String portName = "BabelFishPort";

QOName serviceQN = new QName (namespaceUri, serviceName) ;
QName portQN = new QName (namespaceUri, portName) ;

ServiceFactory sf = ServiceFactory.newInstance() ;
Service service =
sf.createService (new URL (wsdlDocumentUrl), serviceQN) ;

BabelFishRemote babelFish = (BabelFishRemote)
service.getPort (BabelFishRemote.class, portQN) ;

With a reference to the service in hand, you can use it to translate any text you
want. For example, to translate “Hello world” from English (en) to Spanish (es):

String translated = babelFish.BabelFish("en_es", "Hello World");
Likewise, you could translate from Spanish (es) to French (fr) using the following:

String translated = babelFish.BabelFish("es_fr", "Hola Mundo");

236

6.6.2

CHAPTER 6
Remoting

Or from French (fr) to German (de):
String translated = babelFish.BabelFish("fr_ de", "Bonjour Monde") ;

The Babel Fish service is a lot of fun, but one problem with the standard JAX-RPC
approach is that it results in a lot of code just to be able to look up the payment
service. To make it a bit briefer, you could take the approach recommended by
JSR-109 (Implementing Enterprise Web Services) and use JNDI to retrieve the
web service:

Context ic = new InitialContext () ;
BabelFishService babelFishService =

(BabelFishService) ic.lookup("java:comp/env/service/BabelFish") ;
BabelFishRemote babelFish =

(BabelFishRemote) babelFishService.getBabelFishPort () ;

But, even though the JNDI version is more concise, it still leaves the client respon-
sible for obtaining its own reference to the service. In doing that, it doesn’t
embrace the spirit of inversion of control. What’s more, it places the burden of
handling RemoteExceptions on the client.

Now that you’ve seen the conventional way to access a web service using JAX-
RPC, let’s see the Spring way to do it.

Wiring a web service in Spring

Just as with the other remoting technologies discussed in this chapter, Spring
provides a proxy factory bean, JaxRpcPortProxyFactoryBean, that enables you to
seamlessly wire a web service in as a collaborator of another bean in the applica-
tion. Under the hood, JaxRpcPortProxyFactoryBean uses JAX-RPC to access the
remote web service.

The XML in listing 6.5 shows how to declare the Babel Fish service as a bean in
the Spring configuration file.

<bean id="babelFish" class="org.springframework.remoting.
jaxrpc.JaxRpcPortProxyFactoryBean" >

<property name="wsdlDocumentUrl">
<value>http://www.xmethods.com/sd/2001/ "
BabelFishService.wsdl</value> P
</propertys>

Using JAX-RPC web services ‘ 237

<property name="serviceInterface">
<value>com.springinaction.chapter06.babelfish.
BabelFishService</value>
</property>

<property name="portInterface">
<value>com.habuma.remoting.client .BabelFishRemote</value> G’
</propertys>

<property name="namespaceUri">
<value>http://www.xmethods.net/sd/BabelFishService.wsdl</value> (’
</property>

<property name="serviceName">
<value>BabelFishService</value> ‘3
</propertys>

<property name="portName">
<value>BabelFishPort</value> ‘3
</propertys>

<property name="serviceFactoryClass">
<values>org.apache.axis.client.ServiceFactory</value> ‘i
</property>
</bean>

The first property set on this JaxRpcPortProxyFactoryBean is wsd1DocumentUrl (13
This tells the proxy where the web service’s WSDL document is.

The serviceInterface property @ defines the interface that the client of the
Babel Fish service uses to access the service. Here it has been set to use the
BabelFishService interface, which is defined as follows:

public interface BabelFishService {
public String BabelFish(String translationMode,
String sourceData) ;

}

The BabelFishService interface closely resembles the remote interface, which is
set to the portInterface property ©. The difference is that the remote interface
is considered an RMI interface in that it extends javax.rmi.Remote and the
BabelFish() method throws javax.rmi.RemoteException. JaxRpcPortProxy-
FactoryBean uses the BabelFishRemote interface when it accesses the remote ser-
vice. But if any RemoteExceptions are thrown, the proxy will catch them and
rethrow them as (runtime) RemoteAccessExceptions so that the client won’t have
to deal with them.

238

6.7

CHAPTER 6
Remoting

The next three properties are used to construct qualified names (QNames) for
the Babel Fish service and its port. The namespaceuri property @ is used with the
serviceName property @ to construct the gname for the service and is also used
with the portName property @ to construct a gName for the port. The values of all
three of these fields can be found by examining in the WSDL definition for the
Babel Fish service.

By default, JaxRpcPortProxyFactoryBean uses javax.xml.rpc.ServiceFactory
as its service factory. But you may choose to use another service factory, such as
Apache Axis’s service factory, by setting the serviceFactoryclass property @.

With the Babel Fish service configured in the Spring configuration file in this
way, you can use it just like you would any other bean in the application context.
This includes retrieving it from the application context directly or wiring it as a
collaborator into a property on another bean. For example, use this to pull the
bean out of the application context directly:

ApplicationContext context =

new FileSystemXmlApplicationContext ("babelFish.xml") ;
BabelFishService babelFish =

(BabelFishService) context.getBean (babelFish) ;
String translated = babelFish.BabelFish("en_es", "Hello World");

When the previous snippet of code is complete, the translated variable will con-
tain the text “Hola Mundo,” which is the Spanish way of saying “Hello World.”

FUNWITH For fun, here are some other phrases you might try to translate using the

A EI@?-IEL Babel Fish service:

® “Qui a couple le fromage” using “fr_en” as the translation mode
m “Mi perro is muy feo” using “es_en” as the translation mode

m “Ich habe eine socke voll der Zehen” using “de_en” as the transla-
tion mode

= “No me gusto a comer los cocos” using “es_en” as the translation mode

= “Mon volleyball est mon meilleur ami” using “fr_en” as the transla-
tion mode

Summary

Working with remote services is typically a tedious chore. But Spring provides
remoting support that makes working with remote services as simple as working
with any regular JavaBean.

Summary 239

On the client side, Spring provides proxy factory beans that enable you to con-
figure remote services in your Spring application. Regardless of whether you are
using RMI, Hessian, Burlap, HTTP invoker, E]B, or web services, you can wire
remote services into your application as if they were POJOs. Spring even catches
any RemoteExceptions that are thrown and rethrows runtime RemoteAccessExcep-
tions in their place, freeing your code from having to deal with an exception that
it probably can’t recover from.

Spring’s support for the service side is varied. For RMI, Hessian, Burlap, and
HTTP invoker services, Spring provides remote exporters that expose the func-
tionality of your Spring-managed beans as remote services to be consumed by
another application. Although Spring doesn’t enable you to export POJOs as EJB,
it does provide support classes that make it possible for your E]JBs to access a
Spring application context.

Even though Spring hides many of the details of remote services, making
them appear as though they are local JavaBeans, you should bear in mind the
consequences of remote services. Remote services, by their nature, are typically
less efficient than local services. You should take this into consideration when
writing code that accesses remote services, limiting remote calls to avoid perfor-
mance bottlenecks.

In the next chapter, you’ll learn how to use Spring’s support for several enter-
prise services, including JNDI, e-mail, scheduling, and messaging.

Accessing enterprise services

This chapter covers

m Accessing JNDI resources

m Sending and formatting email
m Scheduling tasks

m |ntegrating with EJBs

240

7.1

7.1.1

Retrieving objects from JNDI 241

There are several enterprise services that Spring doesn’t support directly. Instead
Spring relies on other APIs to provide the services, but then places them under an
abstraction layer so that they’re easier to use.

You've already seen a few of Spring’s abstraction layers. In chapter 4, you saw how
Spring abstracts JDBC and Hibernate. In addition to eliminating the need to write
certain boilerplate code, these abstractions eliminated the need for you to catch
checked exceptions.

In this chapter, we're going to take a whirlwind tour of the abstraction layers that
Spring provides for several enterprise services, including Spring’s support for

® Java Naming and Directory Interface (JNDI)
= E-mail

m Scheduling

m Java Message Service (JMS)

We’ll begin by looking at Spring’s support for JNDI, since this provides the basis
for several of the other abstraction layers.

Retrieving objects from JNDI

JNDI affords Java applications a central repository to store application objects.
For example, a typical J2EE application uses JNDI to store and retrieve such
things as JDBC data sources and JTA transaction managers.

But why would you want to configure these objects in JNDI instead of in
Spring? Certainly, you could configure a DataSource object in Spring’s configura-
tion file, but you may prefer to configure it in an application server to take advan-
tage of the server’s connection pooling. Likewise, if your transactional
requirements demand JTA transaction support, you'll need to retrieve a JTA
transaction manager from the application server’s JNDI repository.

Spring’s JNDI abstraction makes it possible to declare JNDI lookups in your
application’s configuration file. Then you can wire those objects into the proper-
ties of other beans as though the JNDI object were just another POJO. Let’s take a
look at how to use Spring’s JNDI abstraction to simplify lookup of objects in JNDI.

Working with conventional JNDI

Looking up objects in JNDI can be a tedious chore. For example, suppose you
need to retrieve a javax.sql.DataSource from JNDI. Using the conventional JNDI
APIs, your might write some code that looks like this:

242 CHAPTER 7
Accessing enterprise services

InitialContext ctx = null;

try {

ctx = new InitialContext () ;

DataSource ds =
(DataSource) ctx.lookup ("java:comp/env/jdbc/myDatasource") ;
} catch (NamingException ne) {

// handle naming exception

} finally {
if (ctx != null) {

try {
ctx.close() ;

} catch (NamingException ne) {}

}
}

At first glance, this may not look like a big deal. But take a closer look. There are
a few thi