

Kernel-22

Mike McCarl
ICSA Labs
1000 Bent Creek Blvd., Suite 200
Mechanicsburg, PA 17050

ICSA Labs, an independent division of Verizon Business

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

ws2_32.c

#include <stdio.h>
#define _WIN32_WINNT 0x0501
#define WINSOCK_API_LINKAGE
#include <winsock2.h>
#include <ws2tcpip.h>
#define WSAAPI FAR PASCAL
#define WSPAPI WSAAPI
 .
 .
 .
BOOL WINAPI DllMain(
 HINSTANCE hinstDLL,
 DWORD fdwReason,
 LPVOID lpvReserved)
{
 .
 .
 .
}

SOCKET PASCAL FAR accept (
 IN SOCKET s,
 OUT struct sockaddr FAR *addr,
 IN OUT int FAR *addrlen)
{
 // implementation of accept
}
 .
 .
 .
 etc.

ws2_32.def

; Module definition for wsock32
LIBRARY ws2_32.dll
EXPORTS
 accept @1
 bind @2
 closesocket @3
 connect @4
 getpeername @5
 getsockname @6
 getsockopt @7
 htonl @8
 htons @9
 ioctlsocket @10
 inet_addr @11
 inet_ntoa @12
 listen @13
 ntohl @14
 ntohs @15
 recv @16
 recvfrom @17
 select @18
 .
 .
 .
 etc.

Listing 1: Implementation of
ws2_32

The idea of spoofing DLLs is not new. It is a
technique used for analysis tools as well as
malicious programs. By offering the same
set of functions as another DLL, a calling
program can unknowingly provide the
means to load and execute alternate code,
which can then completely change the
actions of a program for good or bad
purposes. In the world of malware
analysis, a handy use for spoofing is to
simply log each time a function in a DLL is
called, which can help determine what a
malicious program is attempting. But there
is more than one way to spoof a DLL, and
some DLLs are easier to spoof than others.

A basic spoofing technique is to offer each
of the functions of another DLL –
completely implementing the behavior for
each function. With this technique, a C
header file or other documentation for the
functions of the DLL is usually available. A
DLL named the same as the DLL that is to
be spoofed is then built from scratch.

Consider a DLL that implements the
functions of ws2_32.dll. The header file
“winsock2.h”, available in the Microsoft
Platform SDK, provides the function
prototypes and data structures for the
functions; therefore it is just a matter of
inserting the bodies for each function.
Listing 1 shows excerpts from the source
files used to build such a DLL. The file
ws2_32.c contains the DllMain function as
well as each of the functions declared in the
winsock2.h file. The file ws2_32.def
defines the functions to be exported and
the ordinals for those exported functions.
By giving our new DLL the name
“ws2_32.dll” and placing it in a directory
that is at the beginning of the search path,
applications that use ws2_32.dll will now
use the spoofing module instead.

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

ws2_32.c

#include <stdio.h>
#define _WIN32_WINNT 0x0501
#define WINSOCK_API_LINKAGE
#include <winsock2.h>
#include <ws2tcpip.h>
#define WSAAPI FAR PASCAL
#define WSPAPI WSAAPI

HMODULE ghModule;
FILE *gpLog;

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason,LPVOID lpvReserved)
{
 return TRUE;
}

HMODULE LoadRealDll ()
{
 if (!ghModule) {
 ghModule = LoadLibrary ("\\windows\\system32\\ws2_32.dll");
 gpLog = fopen ("ws2_32.log", "a");
 fprintf (gpLog, "*********** New Dll Instance ************\n");
 }
 return ghModule;
}

FARPROC GetRealProcAddress (char *pFunction)
{
 if (LoadRealDll ()) {
 if (gpLog) {
 fprintf (gpLog, "pid: %d tid: %d Entering %s\n",
 GetCurrentProcessId (),
 GetCurrentThreadId (),
 pFunction);
 fflush (gpLog);
 }
 return GetProcAddress (ghModule, pFunction);
 }
 return NULL;
}

SOCKET PASCAL FAR accept (
 IN SOCKET s,
 OUT struct sockaddr FAR *addr,
 IN OUT int FAR *addrlen)
{
 FARPROC pProc;
 SOCKET rc = -1;

 pProc = GetRealProcAddress ("accept");
 if (pProc) rc =(pProc)(s, addr, addrlen);

 fprintf (gpLog, pid: %d tid: %d Leaving %s rc: %d\n",
 GetCurrentProcessId (),
 GetCurrentThreadId (),
 "accept",
 rc);
 fflush (gpLog);

 return rc;
}

Listing 2: Alternate implementation of ws2_32

But there are plenty of drawbacks to this technique. A header file or documentation
needs to be available in order to determine what to implement. Also, every function
needs to be fully implemented from scratch – even to just “fake” functionality. It would be

nicer if we could leverage the existing DLL so that only the functions we wish to modify
need to be re-coded. Fortunately, there is a relatively simple way to accomplish this,
too. The key is to load and access the “real” version of the DLL being spoofed. Then, in

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

File Type: DLL

 Section contains the following exports for WS2_32.dll

 0 characteristics
 41107EDA time date stamp Wed Aug 04 02:14:50 2004
 0.00 version
 1 ordinal base
 500 number of functions
 117 number of names

 ordinal hint RVA name

 27 0 00002B0B FreeAddrInfoW
 24 1 00002899 GetAddrInfoW
 25 2 0000C4EC GetNameInfoW
 500 3 00012105 WEP
 28 4 00011CA7 WPUCompleteOverlappedRequest
 29 5 00010DA9 WSAAccept
 30 6 000091F6 WSAAddressToStringA
 31 7 000062B2 WSAAddressToStringW
 102 8 0000EA2B WSAAsyncGetHostByAddr
 103 9 0000E985 WSAAsyncGetHostByName
 105 A 0000EAD5 WSAAsyncGetProtoByName
 104 B 0000E2AB WSAAsyncGetProtoByNumber

Listing 3: Dumpbin output

the implementation, call the appropriate routine in the real module, returning those
values to the caller. Listing 2 shows what source files for such an implementation might
look like.

In this implementation, functions LoadRealDll and GetRealProcAddress have been
added along with 2 global variables gpLog and ghModule. LoadRealDll calls the
LoadLibrary function to load the real ws2_32.dll (from \windows\system32) and saves
the instance handle in the global variable ghModule. Once ghModule is set, LoadRealDll
won’t call LoadLibrary again. LoadRealDll also opens a logging file saving the FILE
pointer in gpLog. The GetRealProcAddress function calls LoadRealDll to ensure the real
ws2_32.dll has been loaded, and then calls GetProcAddress to resolve the address of
the passed function name within the real ws2_32.dll. The accept function (and all other
functions) just have to call GetRealProcAddress and can call just about anything else to
augment the behavior of the function. In this case, it calls the real accept function then
writes some basic information to the log file. Since all functions are now implemented in
essentially the same manner, it is much easier to implement all the functions of
ws2_32.dll.

Although we now have a simpler method for implementing the functions, it still relies on
having a header file that provides the signature of each function. This information is
essential in order to construct the call to the “real” functions. In practice, though, if you
want to log the calls to an arbitrary DLL, there won’t be a header file or even a LIB file to
help. The only thing you will have is the DLL itself. Fortunately, a DLL can be subjected
to a utility like “dumpbin” to
get a list of the functions it
implements. Listing 3
shows an excerpt of a
dumpbin output for
ws2_32.dll. From this
output, it is easy to create
a DEF file as in Listing 1,
and it seems likely that it
should be equally simple to
create a “C”
implementation file – but
we need to come up with
bodies for each function to
write a log entry then call
the real function.

Since we’ll be exporting
the same functions as the
original DLL (ws2_32.dll),
our functions will receive
control when called from
an application, but aside from knowing where the return address is stored on the stack,
we don’t know anything about the number or type of parameters being passed in. If the
calling convention of the function we’re implementing is “cdecl”, we would probably be
safe calling another function to log the event then execute a return statement back to the
calling application. However, if the calling convention is “stdcall” or “fastcall”, our
function would be responsible for clearing the stack when returning. Since we don’t

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

push ebp
mov ebp,esp
sub esp,xxx

 .
 . function body
 . here

mov esp,ebp
pop ebp
ret

ebp

Local Variable n

Local Variable 1

Etc.

Parameter 2

Return Address

Parameter 1

.

.

.

esp

ebp

Prolog and Epilog code

Stack after Prolog code

Figure 1: Prolog and Epilog Code

void __declspec(naked) accept ()
{
 LogFunctionCall (“accept”);
 GetRealProcAddress (“accept”);
 _asm {
 jmp eax
 }
}

Listing 4: Naked function

know what has been pushed onto the stack, we can’t execute the proper “retn”
statement. Furthermore, no matter what the calling convention, we could not properly
reconstruct the stack to call the real function.

But if you think about it for
just a moment, you’ll
realize the parameters are
already on the stack in the
right order, just below any
automatic variables and
registers saved when the
stack frame was
constructed by the prolog
code generated by the
compiler (Figure 1).

By adjusting the stack
pointer to ebp and popping
ebp (we need to properly
restore ebp as the epilog
would), we could jump to
the real function which
would execute the
appropriate ret (or retn)
instruction to return to the
caller. The epilog code
would not be executed. But
if we’re not going to
execute it, why have it
there in the first place? We can eliminate it (which would also make stack adjustment
easier) if we use the “declspec(naked)” calling convention, which tells the compiler to not
generate prolog and epilog
code. Listing 4 shows an
implementation of this
technique. Notice that the
return type of the function is
“void” and there are no
parameters. Because we’re
letting the called function do
the return and the calling
function builds the stack, we
don’t have to worry about
either. We can even take
this one step further and
create a macro that can be used to implement any function. Listing 5 shows such a
macro and the implementation of several functions using it. Note that the value returned
from the call to GetRealProcAddress is not assigned to any variable because, by
convention, the function returns its result in the eax register. We can take advantage of
this fact and jump to the address in the eax register (as long as GetRealProcAddress
always returns a valid address!).

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

Listing 5: Implementation via Macro

#define IMPLEMENT_SPOOF(func) \
void __declspec (naked) func () \
{ \
 LogFunctionCall (#func); \
 GetRealProcAddress (#func); \
 _asm \
 { \
 jmp eax \
 } \
}

IMPLEMENT_SPOOF(accept)
IMPLEMENT_SPOOF(FreeAddrInfoW)
IMPLEMENT_SPOOF(GetAddrInfoW)
IMPLEMENT_SPOOF(GetNameInfoW)
IMPLEMENT_SPOOF(WEP)

cl /Od /I "..\PVLib" /D "WIN32" /D "_DEBUG" /D
"_WINDOWS" /D "_USRDLL" /D "WS2_32_EXPORTS" /D
"_WINDLL" /D "_MBCS" /Gm /EHsc /RTC1 /MTd /Fo"Debug/"
/Fd"Debug/vc70.pdb" /W3 /nologo /c /Wp64 /ZI /TC ws2_32.c

link /OUT:"Debug/ws2_32.dll" /INCREMENTAL /NOLOGO
/DLL /DEF:"ws2_32.def" /DEBUG /PDB:"Debug/ws2_32.pdb"
/SUBSYSTEM:WINDOWS /IMPLIB:"Debug/ws2_32.lib"
/MACHINE:X86 kernel32.lib
ws2_32.obj user32.lib gdi32.lib winspool.lib comdlg32.lib
advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib
odbc32.lib odbccp32.lib

Listing 6: Build Commands

So, before moving on, let’s take an inventory of files in a complete project. The project
consists of 2 source files: ws2_32.c and ws2_32.def. Listing 6 shows the compiler and
linker statements generated by Microsoft Visual C++ (version 7.1) used to build the
project.

Granted, this ws2_32.dll doesn’t do
much other than identify the functions
that were called, but having such a
simple source code makes it very easy
to create new implementations of
functions that will show much more
detail In malware analysis, the huge
variety of malware makes such an
easily modifiable utility a necessity.

Now, in case you’ve forgotten, the title
of this paper is “Kernel-22”, but not one
thing about a kernel or “22” has yet
been mentioned. For certain, the
inspiration for this paper came from
attempting to develop a spoofing module for kernel32.dll, but the interesting items aren’t
the ideas that succeeded – the interesting things are the failures and their resolutions. In
the remainder of this paper, I’d like to share those “interesting things” with you while still
providing the source for a useful
spoofing kernel32.dll.

For a malware researcher, the idea of
spoofing kernel32 is quite appealing. For
starters, it could not only show the
functions being called, it could be
configured to limit the total number of
calls into the kernel before automatically
terminating the program, thereby
preventing the malware from completing
its mission and possibly infecting other
components of the analysis network.
Output gathered could then be reviewed
to determine where breakpoints could be
set in a debugger for further analysis of
the malware. Other options include
modifying functions like GetVersion to
return values not normally associated
with the particular OS version actually
running. The list of potential features is almost endless.

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

;; Module definition for kernel32.dll
LIBRARY kernel32.dll
EXPORTS
ActivateActCtx @1
AddAtomA @2
AddAtomW @3
AddConsoleAliasA @4
AddConsoleAliasW @5
AddLocalAlternateComputerNameA @6

Listing 7: Kernel32.dll source files

#define IMPLEMENT_SPOOF(func) \
__declspec (naked) func () { \
 LogFunctionCall (#func); \
 GetRealProcAddress (#func); \
 _asm { \
 jmp eax \
 } \
}

HANDLE ghKernelKernel = NULL;

LogFunctionCall (char *pFunction)
{
 // write function name to log file …
}

__declspec(naked) NotImplemented () {
 _asm {
 int 3
 ret
 }
}

void * GetRealProcAddress (char *lpProcName) {
 void *addr;

 if (!ghKernelKernel)
 ghKernelKernel = LoadLibrary (
 "\\windows\\system32\\kernel32.dll");
 }
 addr = GetProcAddress (ghKernelKernel,
 lpProcName);

 addr ? return addr : return NotImplemented;
}

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD
fdwReason, LPVOID lpvReserved) {
 return TRUE;
}

IMPLEMENT_SPOOF(ActivateActCtx)
IMPLEMENT_SPOOF(AddAtomA)
IMPLEMENT_SPOOF(AddAtomW)
IMPLEMENT_SPOOF(AddConsoleAliasA)
IMPLEMENT_SPOOF(AddConsoleAliasW)
IMPLEMENT_SPOOF(AddLocalAlternateComputerNameA)
IMPLEMENT_SPOOF(AddLocalAlternateComputerNameW)

So let’s get started! Using the
concepts already discussed, we get
the list of exports from kernel32.dll
and create 2 files: kernel32.c and
kernel32.def. The kernel32.c file will
contain DllMain,
GetRealProcAddress, LoadRealDll,
LogFunctionCall, NotImplemented,
the IMPLEMENT_SPOOF macro, and
all the kernel32 functions from the
dumpbin output. The kernel32.def file
will contain the LIBRARY statement
followed by the EXPORTS statement
with all the functions (and ordinals)
from the dumpbin output. The
kernel32.c file contains functions
much like those in Listing 2, but they
have been condensed a bit. Listing 7
contains excerpts from these files.

Let’s now consider how this program
might actually execute. When loaded,
the DllMain function will be called to
perform any initialization. In this
particular version of the program, we
might consider initializing a global
variable to hold the handle of the
“real” kernel32.dll obtained via
LoadLibrary, but the SDK
documentation is pretty clear that you
may not call the LoadLibrary function
from DllMain. Therefore, we’ll save
the initialization of that for later. Since
we have nothing else to do, DllMain
can just return TRUE.

So what might happen next?
Presumably, the application will
eventually call a kernel32 function. It
doesn’t matter which, the macro
guarantees the same thing is going to
happen: LogFunctionCall,
GetRealProcAddress, then jump to
the real implementation of the called function. For now, let’s assume that
LogFunctionCall can output the passed string to a file. The GetRealProcAddress should
draw your attention. Notice the first thing it does is check if the real kernel32 has been
loaded. If not, it calls LoadLibrary… Ok, you saw this coming. If you call LoadLibrary
here, it’s going to call the function in this DLL, not the one we actually want to call. The
LoadLibrary in this DLL would call LogFunctionCall then GetRealProcAddress then
LoadLibrary and so on, and so on.

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

I suppose instead of calling the LoadLibrary function in kerne32.dll, we could call the
LdrLoadDll function in ntdll.dll, but I really don’t want to dig up the DDK (the .lib file
ntdll.lib is not available in the Platform SDK). Besides, it’s more fun to work through this
problem. (In all honesty, I did try using ntdll functions, but for lots of reasons, this attempt
failed miserably).

Clearly, we have a paradox: we need the real kernel32 to be able to load the real
kernel32. I’m reminded of the paradox Yossarian encountered in the novel Catch-22:

“There was only one catch and that was Catch-22, which specified that a concern for
one's own safety in the face of dangers that were real and immediate was the process of
a rational mind. Orr was crazy and could be grounded. All he had to do was ask; and as
soon as he did, he would no longer be crazy and would have to fly more missions. Orr
would be crazy to fly more missions and sane if he didn't, but if he was sane he had to
fly them. If he flew them he was crazy and didn't have to; but if he didn't want to he was
sane and had to. Yossarian was moved very deeply by the absolute simplicity of this
clause of Catch-22 and let out a respectful whistle.
‘That's some catch, that catch-22,’ he observed.
’It's the best there is’ Doc Daneeka agreed.”1

You don’t have to be crazy to analyze malware, but it helps.

There must be some way to resolve this paradox. There are 2 ways to load a DLL in a
process: explicitly via LoadLibrary or implicitly by the loader when the program is started.
The explicit method has already been eliminated, so the answer must be to load it
implicitly.

So now, our immediate goal is to find a way to get a module named kernel32 to implicitly
load a module named kernel32. The loader isn’t going to like that. Our kernel32.dll can
load a module named “fred”, “alice”, or just about anything else, but attempting to load
kernel32 would be self-referential. However, the kernel32.dll we want to load is just a
file, and files can be copied and renamed, so why not copy the real kernel32.dll to a file
named “KernelKernel.dll” (suggesting a kernel for our kernel)? This brings our task
within the realm of possibility; we just need a KernelKernel.lib that we can supply to the
linker so our kernel32.dll will import KernelKernel.dll.

Shipped with Microsoft Visual C++ (also available from other sources) is a utility called
lib.exe. This utility is used to manipulate .lib files. Among its features is the ability to
create a .lib file from a .def file, and we just created a .def file for our kernel32. So, we
can copy it, change the LIBRARY statement to be “LIBRARY KernelKernel.dll” and build
a KernelKernel.lib. Just execute the following command:

c:\>lib /DEF:KernelKernel.def /MACHINE:x86 /OUT:KernelKernel.lib

kernel32stub.c that will be called from kernel32.c. Listing 8 shows the new files.

Beyond the addition of the #include statement for windows.h, examination of the
modifications show the initialization of ghKernelKernel has been moved to DllMain. This
can be done because it is no longer set from a call to LoadLibrary, but instead from a

1
 Joseph Heller, Catch-22 chapter 5: Chief White Halfoat

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

call to GetModuleHandle. This will also reduce the overhead whenever
GetRealProcAddress is called because it won’t have to continuously check if the real
module has been loaded.

While these changes should satisfy the compiler, the linker will still have a problem.
When kernel32.c is compiled, the object file kernel32.obj will be produced. Inside this
object file are the same functions that are in the KernelKernel.lib we built earlier. How
does the linker know which to use? The answer is that it doesn’t. We’re going to have to
find a way to differentiate the functions we produce from the functions in the
KernelKernel.lib, yet still have our DLL export the those same function names. Another
paradox is revealed.

// kernel32stub.h
#ifndef KERNEL32STUB_INCLUDED
#define KERNEL32STUB_INCLUDED
LogFunctionCall (char *pFunction);
LogParams (char *pFormat);
GetRealProcAddress (char *pFunction);

#endif

// kernel32stub.c
#include <windows.h>

#define IMPLEMENT_SPOOF(func) \
__declspec (naked) func () { \
 LogFunctionCall (#func); \
 GetRealProcAddress (#func); \
 _asm { \
 jmp eax \
 } \
}

HANDLE ghKernelKernel = NULL;

LogFunctionCall (char *pFunction)
{
 // write function name to log file …
}

__declspec(naked) NotImplemented () {
 _asm {
 int 3
 ret
 }
}

void * GetRealProcAddress (char *lpProcName)
{
 void *addr;

 addr = GetProcAddress (ghKernelKernel,
 lpProcName);

 addr ? return addr : return NotImplemented;
}

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD
 fdwReason, LPVOID lpvReserved) {
 ghKernelKernel =
 GetModuleHandle("KernelKernel.dll");

 return (BOOL) ghKernelKernel;
}

;; Module definition for kernel32.dll
LIBRARY kernel32.dll
EXPORTS
ActivateActCtx @1
AddAtomA @2
AddAtomW @3
AddConsoleAliasA @4
AddConsoleAliasW @5
AddLocalAlternateComputerNameA @6

// kernel32.c
#include “kernel32stub.h”

#define JIMPLEMENT(func) \
__declspec (naked) J##func () \
{ \
 LogFunctionCall (#func); \
 GetRealProcAddress (#func); \
 _asm \
 { \
 jmp eax \
 } \
}

IMPLEMENT_SPOOF(ActivateActCtx)
IMPLEMENT_SPOOF(AddAtomA)
IMPLEMENT_SPOOF(AddAtomW)
IMPLEMENT_SPOOF(AddConsoleAliasA)
IMPLEMENT_SPOOF(AddConsoleAliasW)
IMPLEMENT_SPOOF(AddLocalAlternateComputerNameA)
IMPLEMENT_SPOOF(AddLocalAlternateComputerNameW)
 .

Listing 8: Kernel32.dll source files

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

;; Module definition for kernel32.dll
LIBRARY kernel32.dll
EXPORTS
ActivateActCtx = JActivateActCtx @1
AddAtomA = JAddAtomA @2
AddAtomW = JAddAtomW @3
AddConsoleAliasA = JAddConsoleAliasA @4
AddConsoleAliasW = JAddConsoleAliasW @5
 .
 .
 .

#define IMPLEMENT_SPOOF(func) \
__declspec (naked) J##func () { \
 LogFunctionCall (#func); \
 GetRealProcAddress (#func); \
 _asm { \
 jmp eax \
 } \
}

Listing 9: Def and Macro Changes

The solution this time is found in the .def file and our IMPLEMENT_SPOOF macro. One
of the features of a def file is that you can assign an export name to a function that is
different from the actual function name. It’s as easy as “ExportName=InternalName”. If
we modify the IMPLEMENT_SPOOF macro to add a prefix to each of the functions, they
will be different from those in KernelKernel.lib. Listing 9 shows the changes to the macro
and the def file. Note that the changes to the def file are still easily created from the
output of the dumpbin utility.

The IMPLEMENT_SPOOF macro now utilizes the “##” concatenation operator to prefix
the function name with the letter “J”. The def file assigns the export name to the “J”
prefixed name.

We have now resolved the linker conflict. What do you think will be next?

Instead of keeping you in suspense, I’ll
just get to it. After all the work we’ve done
trying to satisfy the compiler and linker,
building these files results in an
unresolved external for
_GetModuleHandleA@4,
_GetProcAddress@8, and every other
kernel32 function referenced in
kernel32stub.c. Obviously, building
KernelKernel.lib from a def file which was
built from dumpbin output of kernel32.dll
didn’t work – but why? For certain,
dumpbin didn’t lie about what is exported
by kernel32. Could it be that a def file that

maps external names to internal names
was used by the developers of
kernel32.dll? Well, not exactly. Yes,
kernel32 is built using a def file, but not to map export names of kernel32.dll to these
weird names prefixed with an underscore and suffixed with an ‘@’ symbol and a number.
These weird (decorated) names are actually generated by the compiler as a result of the
stdcall calling convention used. The number following the ‘@’ symbol in each name
specifies the number of bytes that are cleared from the stack by the retn instruction
when the function returns.

So it appears that to generate a KernelKernel.lib file, we need to prefix all the functions
in our KernelKernel.def file with underscore characters and suffix them with the ‘@’
values. But rather than carefully typing each value, I thought it would be faster to run
dumpbin on the kernel32.lib file that is in the Platform SDK then, once again, use the lib
utility to generate a new KernelKernel.lib.

Now, the project compiles, links and creates kernel32.dll! Now how do we load it?

Unlike other DLL’s like ws2_32.dll, kernel32.dll is a special DLL to Windows. It is a
“Known DLL”. A Known DLL is a DLL that Windows loads from disk once at boot time,
and when any new process requires it, it is not reloaded from disk. The copy already in
memory is just shared with the new process.

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

This is a problem for us because our kernel32.dll will never get loaded, but there is a
way around this problem, too. Known DLLs are “known” because they are listed in the
registry under “\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Contol\Session
Manager\KnownDLLs”. When a DLL is listed under this key, it and all DLLs it depends
upon, become Known DLLs. This means that a DLL can be a Known DLL even if it isn’t
listed under this key. For example, ole32.dll is listed as known DLL. It imports msvcrt.dll,
ntdll.dll, gdi32.dll, kernel32.dll, user32.dll, advapi32.dll, and rpcrt4.dll. All these DLLs
become Known DLLs even if they are not listed explicitly. Therefore, you cannot just
remove kernel32.dll from the list of known DLLs. You have to add it to the value
“ExcludeFromKnownDlls” that is found under the key
“\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Contol\Session Manager”. Make
sure to reboot.

Now, if our spoofing kernel is found in the search path before
\windows\system32\kernel32.dll, it will be loaded. To keep things simple, I just prefix my
search path with “.\;” to make sure the current directory is checked first. To use the
spoofing DLL, create an empty directory and copy the spoofing kernel32.dll,
KernelKernel.dll (which is a copy of the real kernel32.dll), and the program you want to
monitor into the new directory. Start the program from that directory and BOOM! It
doesn’t work. Actually, less of a BOOM and more of “A Dll Failed to Initialize Properly”.

Now, a sane person might give up by now, but sanity is overrated.

If you’ve ever written a DLL before and you’ve seen this message, you might guess that
the error is probably somewhere in the DllMain function. It is possible to debug this
using the Microsoft Visual C++ debugger by setting the property values in the project
configuration. But, if you do this, you might be surprised to see that the program fails
before DllMain is ever called by the loader. The Visual C++ debugger won’t debug this.

Maybe sanity isn’t overrated.

In order to debug this problem, a kernel debugger is necessary. The Microsoft
debugging tools are available for this purpose. Included in these tools is “WinDbg.exe”, a
windows-based debugging tool capable of debugging the kernel. I’ll skip the debugging
details and get right to the problem. The reason the DLL failed to initialize is because the
functions imported by kernel32.dll were not found in KernelKernel.dll. Since the imports
in kernel32.dll could not be resolved, DllMain was never called.

But which functions are missing? As it turns out, all of them. If you run dumpbin to list
the imports on any program that is dependent upon kernel32.dll, you’ll see the same
function names that you find when you examine the exports of kernel32.dll. If you run the
dumpbin utility against the spoofing kernel32.dll to see what it is importing from
KernelKernel.dll, you’ll see every function is prefixed with an underscore and suffixed
with an ‘@’ symbol and a number. (I wish I did this before all those WinDbg sessions).
So what happened? The dumpbin on the kernel32.lib from the Platform SDK showed the
same exported functions as the KernelKernel.lib created via the lib utility and def file. A
more detailed look at the 2 files revealed a subtle difference. The “Microsoft Portable
Executable and Common Object File Format Specification” indicates that the format of
an import library includes a flag called “Import Type” that can have a setting of
“IMPORT_NAME_UNDECORATE”. If this flag is set, the linker will remove the leading
underscore and “@” suffix when building the import table for an executable (or dll).

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

Closer examination of the kernel32.lib shows that this bit is set, while in KernelKernel.lib,
it is not. So how do we get it be set in our KernelKernel.lib? From what I have been able
to determine, this bit cannot be set with just the lib utility and a def file. Another method
for creating the KernelKernel.lib file needs to be found.

The only thing I could think of was to actually build a KernelKernel.dll from source code,
throw away the resulting DLL and keep the .lib and .exp files that were created in the
process. I really don’t want to type in all those functions, though. Since the decorated
names don’t include any information about the return type of the functions, they can be
all the same. In fact, it doesn’t say anything about the types of arguments, either, so
those can all be the same, too. All that needs to be in agreement with the decorated
name is the stdcall calling convention and the number of parameters. It turns out that it’s
pretty easy to create a source file from the exports from kernel32.lib of the Platform
SDK. Listing 10 shows an excerpt from the source file. The KernelKernel.def file doesn’t
change.

Compilation of KernelKernel.c and subsequent linking of the resultant object file with the
def file will produce a lib file which has the IMPORT_NAME_UNDECORATE flag set.
Discard the KernelKernel.dll produced and link kernel32.obj with the lib file to produce
kernel32.dll. Finally, a working spoofing DLL is made!

Now, it wouldn’t be wise to assume that if this works for one or two programs, it will work
for all programs, and it didn’t take long to find a program that failed, but why?

Debugging revealed that the failure occurred shortly after the function GetProcAddress
was called to obtain the address of the function “RtlEnterCriticalSection” in the spoofing
kernel32. Because this function was not exported, a valid address could not be returned.
Perhaps I missed an export from the real kernel32, but when I checked, I found the real
kernel32.dll doesn’t export this function, either -- at least, not directly.

If we examine the dumpbin output for the real kernel32 more closely (Listing 11), we find
that the function “EnterCriticalSection” is exported, but is forwarded to
“NTDLL.RtlEnterCriticalSection”. The spoofing kernel does export EnterCriticalSection,
but it is not forwarded in the same manner, so RtlEnterCriticalSection is not. When
GetProcAddress (in the real kernel32) is called for RtlEnterCriticalSection, it returns the
address of for EnterCriticalSection. We need to make the spoofing DLL behave the
same way -- not just for RtlEnterCriticalSection, but for all functions forwarded by
kernel32.dll.

Note that of all the functions forwarded, not all are forwarded with a different name. For
instance, RtlDecodePointer is forwarded as DecodePointer, but RtlCaptureContext is
forwarded as the same name, RtlCaptureContext. Therefore, it is only necessary to add

void __stdcall ActivateActCtx(void *p, void *q) {}
void __stdcall AddAtomA(void *p) {}
void __stdcall AddAtomW(void *p) {}
void __stdcall AddConsoleAliasA(void *p, void *q, void *r) {}
void __stdcall AddConsoleAliasW(void *p, void *q, void *r) {}
void __stdcall AddLocalAlternateComputerNameA(void *p, void *q) {}
void __stdcall AddLocalAlternateComputerNameW(void *p, void *q) {}
void __stdcall AddRefActCtx(void *p) {}

Listing 10: Excerpt from KernelKernel.c

Kernel-22

Copyright © 2010 Verizon. All Rights Reserved.

the different names to the .def file. Since this is a trivial exercise, I’ve omitted the listing
of the updated .def file.

Conclusion

I don’t think it’s possible to list all the potential uses for spoofing of kernel32, but the
source code framework provided makes it very simple to intercept any kernel32 function,
insert new processing, and optionally continue with the original processing. All you have
to do is remove the function of interest from kernel32.c and implement it (with proper
signature and “J” prefix) in kernel32stub.c. It’s up to you to decide if the “real” function is
called or not.

One of the features I like most is that I don’t have to have a specially built system where
this is installed to be able to perform analysis of a program. I can install this on any
system very quickly by changing 1 registry key and copying a couple files – and it
uninstalls just as easily. This is especially nice when examining your friend’s home
computer because he knows you can fix it for free (there’s no sense copying that nasty
virus he got onto your machine).

One final note: I’ve attempted to chronicle my own experience when developing the
spoofing kernel and tried to be as accurate as possible with respect to the sequence of
events and the errors I encountered (or caused). To be sure, I omitted several things
either intentionally (like the cursing) or accidentally (you might find these when you try
this yourself). There may be instances where I describe a certain error, but it can’t be
recreated by the code snippets I supplied here. If this occurs, I apologize, but please
remember I did get these errors and the prescribed solutions solved them. So, even if
you can’t recreate one of these errors, you might see it in some other context in the
future. If you do, you might now know how to fix it.

 AddVectoredExceptionHandler (forwarded to NTDLL.RtlAddVectoredExceptionHandler)
 DecodePointer (forwarded to NTDLL.RtlDecodePointer)
 DecodeSystemPointer (forwarded to NTDLL.RtlDecodeSystemPointer)
 DeleteCriticalSection (forwarded to NTDLL.RtlDeleteCriticalSection)
 EncodePointer (forwarded to NTDLL.RtlEncodePointer)
 EncodeSystemPointer (forwarded to NTDLL.RtlEncodeSystemPointer)
 EnterCriticalSection (forwarded to NTDLL.RtlEnterCriticalSection)
 GetLastError (forwarded to NTDLL.RtlGetLastWin32Error)
 HeapAlloc (forwarded to NTDLL.RtlAllocateHeap)
 HeapFree (forwarded to NTDLL.RtlFreeHeap)
 HeapReAlloc (forwarded to NTDLL.RtlReAllocateHeap)
 HeapSize (forwarded to NTDLL.RtlSizeHeap)
 InitializeSListHead (forwarded to NTDLL.RtlInitializeSListHead)
 InterlockedFlushSList (forwarded to NTDLL.RtlInterlockedFlushSList)
 InterlockedPopEntrySList (forwarded to NTDLL.RtlInterlockedPopEntrySList)
 InterlockedPushEntrySList (forwarded to NTDLL.RtlInterlockedPushEntrySList)
 LeaveCriticalSection (forwarded to NTDLL.RtlLeaveCriticalSection)
 QueryDepthSList (forwarded to NTDLL.RtlQueryDepthSList)
 RemoveVectoredExceptionHandler (forwarded to NTDLL.RtlRemoveVectoredExceptionHandler)
 RestoreLastError (forwarded to NTDLL.RtlRestoreLastWin32Error)
 RtlCaptureContext (forwarded to NTDLL.RtlCaptureContext)
 RtlCaptureStackBackTrace (forwarded to NTDLL.RtlCaptureStackBackTrace)
 RtlFillMemory (forwarded to NTDLL.RtlFillMemory)
 RtlMoveMemory (forwarded to NTDLL.RtlMoveMemory)
 RtlUnwind (forwarded to NTDLL.RtlUnwind)
 RtlZeroMemory (forwarded to NTDLL.RtlZeroMemory)
 SetCriticalSectionSpinCount (forwarded to NTDLL.RtlSetCriticalSectionSpinCount)
 SetLastError (forwarded to NTDLL.RtlSetLastWin32Error)
 TryEnterCriticalSection (forwarded to NTDLL.RtlTryEnterCriticalSection)
 VerSetConditionMask (forwarded to NTDLL.VerSetConditionMask)

Listing 11: Functions Forwarded by Kernel32.dll

