mq;

JSF Quickstart |—
C Gclipse

Last Revision: September 26, 2005

Outline

1. Preface

2. Introduction

3. Requirements

4. New Project Setup & Structure
5. Creating the Message Bundle
6. Creating the Managed Bean

7. Creating the JSP Pages

8. Running the Application

9

1

. Summary
0.User Feedback

1. Preface

This document was written using Sun JDK 1.5.0, Eclipse 3.1 and MyEclipse 4.0. If you notice discrepancies between
this document and the version of Eclipse/MyEclipse you are using to perform the install that make it difficult or
impossible to follow this guide, please see the User Feedback section on how to report the issue.

Back to Top

2. Introduction

In this tutorial we will be walking through a small JSF demo application using MyEclipse Enterprise Workbench.
Previous knowledge of JSF and/or MyEclipse is not necessary, but would be helpful.

Since Struts is such a prevalent web application framework, similarities between JSF and Struts will be noted, where
appropriate, to help the reader with previous Struts experience. However, if you have no prior experience with Struts,
you may feel free to skip these sections .

Back to Top

3. Requirements
Below is a list of software used by this guide:

« JDK 1.4+ (Sun or IBM)
- http://java.sun.com/j2se/downloads/index.html


http://java.sun.com/j2se/downloads/index.html
http://www.myeclipseide.com/index.php

- Eclipse 3.1 SDK
+ http://www.eclipse.org/downloads/index.php

« MyEclipse 4.1
 http://www.myeclipseide.com/ContentExpress-display-ceid-10.html

- Tomcat 5.x (5.5.9 Preferred, or other compliant Servlet/EJB container)
- http://jakarta.apache.org/tomcat/index.html

« For this demo the User Name is "myeclipse" and the Password is "myeclipse" as well.

Note: After installing the JDK and restarting your computer, be sure to install Eclipse then MyEclipse next followed by
Tomcat. After all the software have been installed, be sure to setup the Tomcat 5 connector in MyEclipse accordingly;
using the correct Tomcat Home directory and valid JDK that you just installed. You may refer to the Using Application
Servers Quickstart guide if you don't know how to setup Tomcat in MyEclipse.

Back to Top

4. New Project Setup & Structure

To organize our development artifacts, we will need to create a new Web Module Project in MyEclipse that has JSF
Capabilities added to it. You can create a web project using the wizard located at File > New > Other > Project >
J2EE > Web Project, as shown in Figure 4.1, below.

= New Project §|

Select a wizard
Create JZEE Web Project [

Wizards;

1§ Java Project
% Java Project from Existing Ant Buildfile
;‘E‘E Plug-in Project
H [ WS
+-[== Java
== MwvEclipse
—l-[= ]ZEE Projects
@ EJB Project
'|_‘=€f Enterprise Application Project Select web project
i LCIOE] = and hitNext
+-[== Plug-in Development
+-[==% Simple
+-[== Examples

[ Show all Wizards.

| Mexk = | Cancel

Figure 4.1: Create a new web project



http://www.myeclipseide.com/images/tutorials/quickstarts/appservers/
http://www.myeclipseide.com/images/tutorials/quickstarts/appservers/
http://jakarta.apache.org/tomcat/index.html
http://www.myeclipseide.com/ContentExpress-display-ceid-10.html
http://www.eclipse.org/downloads/index.php

e

Mew JZEE Web Project

Create web project Enter name i /

Web Project Details

X]

Project Mame | JSFLDginDemD|
Location v Use default lacation
Source Folder | src

web rook Folder | WebRoot

Cantexk root LIRL | 1J5FLoginDemo

J2EE Specification Lewvel
" 1ZEE 1.3 {* 12EE 1.4 [default]

J5TL Suppork
[ Add I5TL libraries to WEB-INF/lib Falder?

S ‘- Click Finish

< Back | Finish | Cancel

Figure 4.2: Web Project Wizard Dialog

The wizard will allow you to customize your project settings by entering your preferences into the dialog fields, as
demonstrated in Figure 4.2.

Note: It is popular when developing JSF applications to also use the JSTL libraries, so selecting add "JSTL Libraries"
during project creation is recommended. However, it is also possible to add the JSTL libraries later, via the "Add JSTL
Libraries" item from the MyEclipse context menu.

Once the Web Project is created, we need to add JSF Capabilities to it. This is done by right clicking on the root of our
project in the Package Explorer View, and selecting MyEclipse > Add JSF Capabilities, as shown in Figure 4.3.



& MyEclipse - Eclipse SDK
File Edit Source Refactor Mawigate Search  Project  MyEdipse Run  Window  Help

wRAERENE: FORY-NERY, BY IR Rl P LR

Hierarchy | Mavigator

Right click

[ sec e »
=i JRE S 50 Inkao

-3 \WebR Open in Mew Window
= M Cpen Type Higrarchy F4

& (=] Copy Chrl+C
Y [ Paste Chrl+4
¥ Delete Delete

Build Path r
SOuUrce Alk+s5hifk+5 ¥
Refackar Alk+Shifk+T ¥
fug Import. ..
L= Export..,
éh Refresh FS

Close Projeck

Click Add JSF
Capabilities...

Run As
Debug As
Team

b A A S

Compare \With

Restore From Local History. ..

MyEclipse
PDE Tools L

Propettigs Alk+Enker

Add J5TL Libraries. ..
Add Hibernate Capabilities. ..

Fun ¥Daoclet

Run Yalidation
Remove All Yalidation Markers

Figure 4.3: Adding JSF Capabilities to a Web Project

The default values for the JSF dialog are fine for the purposes of this tutorial. Advanced users may perform additional
configuration by changing the default settings in the dialog, as shown in Figure 4.4.



& New [z|
JavaServer Faces Suppart for MyEclipse WWeb Project ——
Enable project For JavaServer Faces development:
USF|
Web project; J5FLoginDemo

Web-rook Folder; IwebRook
Servlet specification: 2.4
15F specification; 1.1

{* Sun 15F Reference Implementation 1.1.01
15F Implementation:
" MyFaces 1,0,9

15F config path: | I'"WEB-IMFFaces-config. xml Browse, .,

Faces servlet name: | Faces Servlet

URL pattern | * Faces ﬂ

[v Inskall 15F Jars and packaged TLDS
v Install 15F TLDs

Click Finish

Finish | Cancel

Figure 4.4: Configuring JSF Capabilities

After the wizard completes, the project structure will look like what is shown in Figure 4.5.

J5FLoginDermo
8 src
=i JRE Swskem Library [jdkl.5.0_04]
=i, JZEE 1.4 Library Container
commons-beanutils, jar
cormmons-colleckions, jar
commons-digester, jar
commons-logging. jar
jsf-api.jar
jsf-impl.jar
jstl.jar
i standard.jar
(& WebRoot JSF library
+- = META-INF ot
2 [ WEB-IMF .
= Iib dependencies
& Faces-config.xml
|77 html_hasic.tid
|77 s _core.tid
| %] web.xml

0 0

|+++++++++++ﬁ:‘;I

JSF config
Figure 4.5: Project Layout After Configuration



Now that the project has been created, we can start editing and creating our application.

Back to Top

5. Creating the Message Bundle

Let's start off our new application with the creation of the MessageBundle file. This is a simple property file that stores
all our messages along with their associated keys. Then the bundle can be used in any of our JSP pages to allow our
application to be easily internationalized. As an analogy, Struts provided similar support in this area by using the
ApplicationResources.properties file, the various <bean /> tags, and the message bundle attributes that the bean tags
accepted.

In JSF, we can load a message bundle into a page with the line:
<f:loadBundle basename="com.jsfdemo.MessageBundle" var= "bundle"/>

Note: This line of code creates a page-scoped message bundle that we can reference later in the page via the ‘bundle’
variable name, use to lookup messages keys, and return the associated message value.

Before creating the message bundle file, create a com.jsfdemo package in the source folder by right-clicking it and
selecting New > Package. To create the message bundle file, we'll use the New File Wizard that is accessed from the
context menu of the project by right-clicking on the project's 'source' folder and selecting New > File, as shown in
Figure 5.1 below.

& MyEclipse - MessageBundle. properties - Eclipse SDK
File Edit Mavigate Search Project MwEclipse Run  Window Help

-H@ B89 %0 |BEHG- |®F |wE-
i3 Package Explorer 22 Hierarchy | Mavigakar = O | g MessageBundle. propetties

0G5 <

N

- ID‘-;' J5FLoginDemo
=22 src
=1-H com.jsfdema
MessageBundle, properties
=i, JRE System Library [jdkl, 4]
=i, JZEE 1.4 Library Container
() commons-beanutils, jar
| commons-collections. jar
commons-digester.jar ~ N@W message
commans-lagging. jar bundle file
jsf-api.jar
jsf-impl.jar
jstl.jar
standard,jar

Figure 5.1: Creating the Message Bundle file

1

O O O O O v O A

Tl

When specifying the file location, select Browse..., choose the directory /JJSFLoginDemo/src/com/jsfdemo, name the
file MessageBundle.properties, and select Finish.

After successfully creating the new message bundle file, we need to fill the file with key/value pairs for each label
or text string that we want to display in the JSP page. Paste the contents from Figure 5.2 into your message bundle file
and save it:

MessageBundle.properties

user_name_label=User Name:



user_password_label=Passwor
d:
login_button_label=Login

Figure 5.2: Contents of MessageBundle.properties

Now that we have the MessageBundle complete, in the next section we will create the ManagedBean now that will
handle our user logging in.

Back to Top

6. Creating the Managed Beans

In this section we'll see how to create the ManagedBean that will perform the login operation when prompted by the
login JSP page as well as store the user name and password entered by the user. For the purpose of this demo, the
login operation simply checks if the username and password are both "myeclipse" and then redirects the user to the
userLoginSuccess.jsp page. Otherwise it sends them back to the login page.

First open up the faces-config.xml file with the MyEclipse JSF Editor:

& MyEclipse - faces-config.xml - Eclipse SDK

File Edit Wiew Mavigate Search Project MyEclpse FRun  Window  Help

Ci-HEe &8 48-9 |%-0-- | EFG- & [wC

2 Package Explorer 23 Hierarchy | Mavigator = O \i‘» Faces-config.xml X
=55 7|

= bﬁ' J5FLoginDemo
=22 src
+-H, com. jsfdema
=i, JRE Swstem Library [jdkl.5.0_04]
=i, JZEE 1.4 Library Container
(1 commons-beanutils, jar
() commons-collections. jar
commons-digester, jar
commans-logging. jar
jsf-api.jar
jsf-impl.jar
jstl. jar Open faces-config.xml
() standard.jar
= WwebRook
+- (7= META-INF
= (2= WEB-INF
= lib
dp Faces-config.xml
17 html_basic.tld
17 jsf_caore.tid
|%] web. =l

< el | @ (€]
L ¥ LE L +

o O O O O O vy O

Figure 6.1: Opening faces-config.xml file for editing

With MyEclipse 4.0 the faces-config.xml editor has been enhanced from previous releases, not only can you create
and manage your application flow (Navigation Cases) you can also create/edit and manage all the resources that go
into the config file from the Outline View. You will click the down arrow in the top right corner of the Outline View in
order to add the new bean as shown in Figure 6.2:



g =0

== v G Link with Editor
...K
- J5F Qutling
. 15F Qutling with Catgaries
AML Outline

Add Application
Ea.ﬁ.dd Factory

1 Add Componernt
Fa-add Converter

=, Add ManagedBean

F8 ol Lifecycle
@ dd Yalidataor

2) Add a ManagedBean

1) Click the down arrow
Figure 6.2: Launch the ManagedBean wizard from the Outline View

You will then be presented with the new Managed Bean wizard; Fill out the values as shown in Figures 6.3 and 6.4

below:



New Managed Bean Enter in bean Name and
Creake new managed bean entry Class, select Session fﬂl'[% Q

the scope
/ /’
Class: | com.jsfdemo. bean, LserBean / Browse. ..

=}

Mame: | UserBean

Scope: |sessiu:un

Properties lDescriptiDn ]

Marne | Class Yalue | Add. ..
useriame java.lang, string
passwiard java.lang, String

Add 2 String properties,
userName and password

[v Generate Java code

[v iZenerate missing getters/setters For properties! k

the class and properties

Click Next sesesdp iext > | | Cancel

Tell the wizard to generate

& Managed Bean Wizard [z

Figure 6.3: Setup the new ManagedBean's class and properties




]

& Managed Bean Wizard

Generated Resources

Wizard will generate Following resources [@

Following resources that will be generated:

com. jsfdemo.bean.lserBean

Review your choices, hit
Finish when ready.

Target Source Folder: |,|'JSFL-:||;|inDem|:|,l'sr|: ﬂ

v Open new and modified types in the editors

Einish Cancel

Figure 6.4: Managed Bean Wizard Final Page

You will now notice that the new UserBean was added to the Outline View as shown in Figure 6.5:

il

= Outline X
=4 Managed Beans
@& UserBean

MNotice our new
UserBean

Figure 6.5: UserBean now shown in the Outline View

And the new UserBean.java source file will also be opened in the java editor:



@ *faces-config.xml A UserBean.java X

= B

“public final class UserBean extends Chiject |

l,.-'w*

*

wf
private 2tring password:
l,.-'ww

*

"/

private S3tring userMName:

= public UserBeani() 1
super () ;
A TODD huto-generated constructor stub

13

= l.."#?f
* @return RBeturns the password.
Ly
= public 3tring getPassword() |
return password:

= ,-"'""""""
* @param password The password to set.
Ly
= public void setPassword(3tring password) |
this.password = password:

- ll."ﬂ'ﬂ'
* @return Beturns the userlName.
L
= public 3tring getUserMName () |
return userMName:

Figure 6.6: UserBean Java source opened up in an editor

Notice that the getters and setters for our two properties (username and password) were already generated for us, so
the only thing we need to add to this class is the implementation of the loginUser method that will be called to process

the user login.

The code snippet for the loginUser method is in Figure 6.7 below. Please copy and paste it into your file, adding any

new imports as necessary:
UserBean.java

public String loginUser () {

0= Outline 52

#  com.jsfdema.bean
- (&F UserBean

GC

@
@
@
@

passwiard ¢ String
userMame : String
serBean()
getPassword()
sekPassword(String)
getUsertlame)
sekUsertamel String)

if ("myeclipse".equals (getUserName ()) && "myeclipse".equals (getPassword()))

return '"success'";

FacesContext facesContext = FacesContext.getCurrentInstance () ;
new FacesMessage (
"You have entered an invalid user name and/or password");

FacesMessage facesMessage

facesContext.addMessage ("loginForm", facesMessage) ;



return "failure";

Figure 6.7: loginUser code for the new UserBean.java file

Looking at the bean code, we can notice some unique properties about it. For example, the UserBean class doesn't
extend or implement any classes or interfaces tied to JSF. It is simply a javabean that includes the additional logic to
perform a useful operation. In Struts terms, it contains all the functionality of a Struts Form and a Struts Action,
conveniently located in one class.

Another thing to note is that unlike Struts, these methods do not return special classes, like an ActionForward, because
navigation is specified externally in a declarative fashion in the faces-config.xml deployment descriptor. And, in
Section 8 we will show how this descriptor is created and configured.

Back to Top

7. Creating the JSP Pages

In this section we are going to focus on creating the JSP pages for our example JSF application, which will mimic a
simple website login screen. As a result, we will only need 2 JSP pages, one to prompt the user to login and the other
to indicate that login was successful. We will call these pages loginUser.jsp and loginUserSuccess.jsp, respectively.
For simplicity, if there is an authorization error during the login attempt, we will redirect the user back to the
loginUser.jsp page. To avoid confusion, we are not using any validation in this demo, but you can easily add validators
to the two inputText/Secret JSF components. We will use these fields to validate the user's entry for length and
additionally display an error message if the login was incorrect.

Another new feature in MyEclipse 4.0 is the ability to create the web pages for our JSF application by editing the faces-
config.xml file in the MyEclipse JSF Editor. So make sure that file is still open and we can get started creating our
userlLogin.jsp page.

To create our userlLogin.jsp page we are going to first click the JSP button, then click on our canvas. When the new
JSP wizard comes up, type in the File Name and select the JSF template as shown in Figure 7.1:



1 Faces-config.xml X

1) Click JSP button

2) Click on the canvas
where the JSP node

-+
o]
&

should go
*_ Create a new JSP page. |5|
JSP Wizard )
File Path: | 115FLoginDermo/ebRook Browse, .. |
File Marme: | userLogin,jsp
Template ko use; IEu] Default 15F templake ;I

3) Change name and
select JSF template

4) Click Finigh ==——$p [ g | cance

Figure 7.1: Creating userLogin.jsp using the faces-config.xml editor

We can also create our userLoginSuccess.jsp now in the same manner:



5 X0 |J7 userLogin.jsp

S

EJ‘ JuserLogin.jsp

FEEICIGIEES

& Create a new JSP page.

J5P Wizard
Click the JSP control and
click again on the canvas
to add it
File Path: | 1J5FLoginDemoWebRook
File Marne: | userLDginSuccessljsp

Template ko use; |Eu] Default 15F kemplate

™

Enter in the File b
be sure to select
template, then cli

Finish

Fnigl-JreF7.2: Creating userLoginSuccess.jsp using the faces-config.xml editor

Let's start working on our application now by opening up the userLogin.jsp page:



& MyEclipse - userLogin. jsp - Eclipse SDK

File Edit Source Mavigate Search  Project  MyEclipse Rum Window  Help

Ci-He &89 [$-0-Q-  EHFG- @S |6

] Package Explorer &3 Hierarchy | Mavigator = 8
EfY [—] =

'y

<%[ page language="java”™ pageEncoding="UTF-2":%:>
<%[l taglibh uri="http: /S java. sun. comd 3£/ html™ pre
<%l taglibh uri="http:/ S java.sun. comwd j3£/ core™ pre

- g J5FLoginCerno
- spe

B, JRE Swstem Library [jdk1.5.0_04]

=i, JZEE 1.4 Library Container
commons-beanutils, jar
commons-collections. jar
commons-digester . jar
commons-logging. jar

<%

String path = reguest.getContextPathi):

String basePath = request.get3cheme () +":// "+reque
£

e o o o

-+ [F]- [ [ [ [ [ [ [ [
i ]

i) jsf-api.jar
1) jsf-impl. jar <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Trar
,Z, jstl.jar New JSP file chtmls
i) standard.jar cheads>
= E’gﬁ;:; NE <haze href="<:=hasePathi>">
¥ _
= WEB-IMF
E}E}hb <titlexMy J3F 'userlogin.jsp' starting page</
&# Faces-config.
7* hkml_basic <metsa http-equiv="pradgma™ content="no-cache™>
ﬁjjﬂ &r <meta http-equiv="cache-control™ content="no-
ta web.x <meta http-equiv="expires" content="0">
dflﬁenugmﬁp <mets http-sgquiv="keywords" content="keywordl
<meta http-equiv="description™ content="This=
Ll—
<link rel="stylesheet"™ type="text/c=z" href="
-
</ heads> Notice the source editor,
Visual Designer and
<hodys Preview tabs
<frview:

<f:loadBundle b

Thiz iz wy J3

<ffiviews
</bhody>
</ html>

ensme="EUNDLE MNAME HERE"
JZP page. <br:

Source | Design | Design)Source | Preview

Figure 7.3: Begin editing the userLogin.jsp page

Something to notice from Figure 7.3 are the tabs that run along the bottom of the MyEclipse editor (MyEclipse JSP
Designer), you have your choice to edit this page in Source mode, Design mode, Design/Source mode or just Preview.
For this demo we will switch to the Design/Source as it is very handy to have both views available while editing a page.
What you will see right away looks very similar to Figure 7.4 below:



& *faces-config,xml

Kl userlogin.jsp X

[.= Skrutks-Basic
[-== Skruks-Form
[.== J5F-Basic

=n Hyperlink

ﬂ Image

abc Label

|| Panel

] Panel Grid

[.== JSF-Farm

4 Butkon

[« Checkbox
Checkbox Group
Bj Ciata Table

s, Hidden Field

== Link

[=f Listbo

T Merw

li= Passward

(® Radio Butkon Group
230 Text Area

[ Text Field

q o |Nu:urma| j|Times Mews FLoman j|l"-.|l:urma| j B I U E=E= dgly =E ==
1 Palette
L= HTML-Basic This 1z my J5F TSP page.
[-== HTML-Form

Expand the 2 JSF tool
groups

<meta http-equiv="expires" contenc="0":>
<meta http-equiv="keywordz" content="kevywordl, keyvwords, keywordi ">
<meta http-equiv="description™ content="Thiz iz my page™>
Sle ey
<link rel="sztylesheet™ type="text/cs3"™ href="styles.css">
——x
</ head>
<hody:=
<fLiviews

<f:loadBundle hasensme="EUNDLE NAME HERE® war="bundle™/ >

Thiz iz wy J3F J3F page. <hr>
: <ffrviews
</body: Click Design/Source split
</ htmlx> view

Source | Design | DesignfSource | Preview

Figure 7.4: Switched to Design/Source mode and expanded JSF palettes

Now, what we need to do now on this page is:

« Add an h:inputText component for the user name
« Add an h:inputSecret component for the password
« Add an h:outputLabel for the user name inputText
« Add an h:outputLabel for the password

NOTE: In version 4.0 the JSF designer does not support rendering the MessageBundle values for outputLabel, so in
order to see our outputLabels in the designer, we are going to manually change them in the code to wrap outputText
components that have their values bound to our MessageBundle. This will be fixed in MyEclipse 4.1 release.

First thing we need to do is remove the default template text as well as type in our bundle basename so our page can
use our MessageBundle. We will end up with JSP that looks like Figure 7.5:



<meta http-equiv="expires"™ content="07">
<meta http-equiv="keywordzs" content="kevywordl, keyword:, keyvword: ™=
<meta http-equiv="description™ content="Thiz iz mwmy page™:>

<link rel="stylesheset™ type="text/cs3"™ href="stylez.css">

</ heads

<hody:=
<fiviews

<f: loadBundle bhasename=

<ffrviews
</bodys>
</ html>

Enter out message bundle
name here

foom,. Jafdemo. HessagebBundle

war="bundle™/ >

Figure 7.5: Remove template text and add our MessageBundle to the JSP page



LIk £§5 |I"-.I|:|rma| ﬂ |Times Mews Rom : i m m

! Palette Mew J5F Farm
[== HTML-Easic
Create J5F Form, <h:formz=
[-== HTML-Farm
[=% Struts-Basic

(= Struts-Farm Component ID: | loginForm| -
[-—% J5F-Basic * _ g
Einding: |

== Hyperlink

ﬂ Image

abe Label Parameters: Marne | value | Binding | add...

Rendered: ™ 3. Name the form element

| | Pamel

] Panel Grid
[~ J5F-Farm *

-4 Butkon

aals

<meta | K=

[« Checkbo “meta

Checkbox Group s 4. Click Finish
] Data Table 2. Click the Form button

i_..i Form <fhead> Finish Cancel
[, Hidden Field

== Link,

<hody=
<fiview:r

[ Listho <f:loadBundle hasensmme="com. jsfdemo. MessageBundle™ x[ﬁrﬁ'bundle

T Menu .
44— 1. Position cursor here
fi= Password PP p—
(% Radio Butkon Group </ hody>
ﬂ Text Area </html>
[ Text Field ¢

Source | Desian | Design/Source | Preview

Figure 7.5a: Create the new form

In Figure 7.5a we create the new HTML form element that will contain our login controls. Now we need to actually
create the input text boxes!

Now let's create our h:inputText component for the user name, this is shown in Figures 7.6 and 7.7:



1 Palette
[ HTML-Basic

(= HTML-Farm E
[-= Struts-Basic
[== Skruks-Form

[-= J5F-Basic -
== Hyperlink
L3 Image
ahc Label
M Messanes
[ pane 2) Click the Text Field JSF
7 panel Grid control
[== 15F-Farm -
4 Button
v Checkbox <link rel="ztyleshest™ ty
heckb link 1=r lesh e
-
Checkbox Group
H d heads>
G Data Table 1) Position cursor inside
i} Farm <hody> form
. <fiwvienw:
M. Hidden Field e
<T i MadBundle basenam
== Link
Listbios < ormw id="loginForm®" re
14
T Menu -
fi= Password </h:form>
& Radio Button </ Liviews
o </body:>
:i:ilj Texk Area /htmls

[ Text Field

Source | Design | Design)Source | Preview

[£1 problems &2

Tasks | Properties | Web Browser | Consale | Progress

& New JSF Text

MNews 15F Texk
Create 15F text Field, <h:inputText =

| #4{UserBean usertlame}

™

Initial Text:

Rendered;

Converker Id;

AN

|
|
v ‘___

Walidator:
Required:
3) Enter the val
click requir

4) Click Next

Mext = | Finish

Figure 7.6: AddinQ new inputText component



& New JSF Text

Advanced Propetties

Edit component advanced properties

&

Camponent ID: | userr'-lamel

Binding: |

Processing:

* Default

" Immigiate

Yalue change |
liskenetr method:

N\

Yalue change v
listeners: Enter ccmponent ID and
click Finish
Parameters: Marne | value | Binding |
< Back | Finish |

Add...

fdd

Al

Cancel

Figure 7.7: Adding new inputText component continued

Now let's add our h:inputSecret component (no labels yet):




1 Palette
[ HTML-Basic

[== HTML-Faorm
[-=% Skruts-Basic
[:== Struks-Form
[-= J5F-Basic

== Hyperlink

L&l Image

abc Label

[ ] Panel

] panel Grid
[== I5F-Farm
A Button
[+ Checkbox

o Data Table

== Link,

li= Password

21 Text area
[ Text Field

Source | Design | Design)Source | Preview

[21 problems 2

Checkbox Group

(*! Radio Butkon Group

2) Click the Password JSF
confrol

1) Position cursor after
userName inputText

<link
-
</ head>

rel="stylesheet™ t¥

<hody>
<fivjen:-
f:loadBundle basenam
<h:f@rm id="loginForm" re
h:inputText wvalue="#

' regquired="true™ i

enbhsp:

</ hrform:
<ffrviews
<fhodys

Tasks | Properties | WWeb Brawser | Consale | Progress

& New JSF Password Entry

Mews 15F Password Entry
Create 15F password entry, <hiinputSecretx

Walue: | #{UserBean, password})
Redisplay: [

Rendered: v

Converter Id: |

Yalidator: |
Required: v

J) Enter the Value a
click Required

4) Click Next

Mext = | Finish

Figure 7.8 Addingj new inputSecret component



& New JSF Password Entry

Advanced Propetties

Edit component advanced properties @Q

Caomponent ID: | passwnrdl ;
Binding: |
Processing: * Default Immediate
Yalue change |
listener method: \
Yalue change add. ..
listeners: Enter the component ID
and click Finish [ Remove |
Parameters: T - | Yalue | Bindilg | add. .,

< Back | Finish | Cancel

Figure 7.9 Adding new inputSecret component continued

Now let's add the outputLabel's for both of our input components, starting with our userLabel:



1 Palette —
[== HTML-Easic P

L= HTML-Form | #{UserBean userllame] |essssssssssssssse:
[==Strubs-Basic || [T

[== Struks-Form
[-= J5F-Basic *
== Hyperlink 2] Click the Label JSF

o / control
abc Label
i Messages = Mew JSF Label

[ ] Panel 1) Position the cursor Mew J5F Label
I Panel rid before the userName Create J5F label, <h:outputlabel=

inputText
[== J5F-Form +
=2 Button 1 Yalue: |
[+ Checkhax <lin}f rel="stylesheet” vyl componert: |userr'-.lame

-

Checkbox Group </head> Rendered: v
] Data Table
i} Form <hodys Converter Id: | \
M, Hidden Field “hiviEm

4f : loadEundle basensnd 3] Enter the |
== Link

n component v

'=H Listhox <h:wm id="loginForm™ rejy
Eﬁ Menu .

<h:inputText wvalue="# A Cli P
: ick Finish
= Password required="trus" id ]

<h:inputiecret wvalue=
regquired="true® rq

Enbsp: Mext = | Finish

(& Radio Butkon Group

Text Area
[[1 Texk Field

L L R L TR C L . TR PR

Figure 7.10: Adding outputLabel component to our userName component

We will also need to add a label for our h:inputSecret component in the same manner. After we are done, as
mentioned above, let's manually change our h:outputLabel components to wrap h:outputText components that are
bound to our MessageBundle so we can see them in the designer, it will look something like this:



(# {bundle.user_name _la El}ii|#{UserBean.userName;| |||||||||||||||||||

Add an outputTextinside of the
outputLabel with the bundle
value for userName so it can be
displayed in the designer view

<link rel="stylesheet'y type="text/ez3"™ href="zatylez.css">
——x

</ heads

<hody>
<fiwviews
<f:loadBundlg hasename="com. jafdemo. Hessagebundle™ war="
<h:form id="loginForm™ rendered="trus":>
<h:output 2]l rendered="true’ for="uzerlNamne'>
<hioutputText walue="#{bundle.user nawe label}"” fﬂ
</h:outputLabels

Figure 7.11: Adding outputText components to our labels
Be sure to make the modification to both the userName label and password label.

Now it is time to add our login button, we will do that almost identically to how we have added the other components so
far, as shown in Figures 7.12 and 7.13:



# New JSF Command Button @

Mew 15F Command Butkon

Create J5F command button, =h:commandButton =

Label/Yalue: |#{bundle.Iu:ugin_l:uuttu:un_label}-
Ackion: | #{UserBean. loginUser| ‘

Image: | Browse

Type: o+ Submit  Reset
Rendered: v

Enter the Value and
Action then click Next

Mext = | Finish | Cancel

Figure 7.12: Adding a new commandButton component




X

& New JSF Command Button

Advanced Properties

Edit component advanced properties

Component ID: | submit|

Bindirg: |
Processing: {+ Defaul " Immediate
Action listener |
method: \
Ackion liskeners; kY add. .
Enter the component ID
and hit Finish
Parameters: Mame | Yalue | BindinJ | Add..

il

< Back | Finish | Cancel

Figure 7.13: Adding a new commandButton component continued

Now we have a page that looks something like this:

__________________________________________________________________________________________________________________________

Add some <br> in the source editor to putthings on separ
Figure 7.14: Our almost-complete userLogin.jsp page

You might notice that everything looks pretty ugly on 1 line, so let's add some space to put things on separate lines:

Figure 7.15: Nicely laid out userLogin.jsp page



Now that our userLogin.jsp page is done, let's quickly do our userLoginSuccess.jsp page which is much simpler. Open
that file up and edit it, simply adding a line to print out the name of the user that logged in as shown in Figure 7.16:

@“ *f acas-config. xml B userloginsuccess.jsp
LI Qﬁ'ﬁ |Nu:urma| j |Times Mew Roman j|NDrmaI j
1 palette —
= G Hello #{UserBeanuserlame} yvou successfully logged in!
[:== HTML-Form

[.= Skruts-Basic
[:=% Skruks-Form

[~ I5F-Basic  d

& Hyperlink Enter in some text to

14 Image show we successfully

be Label logged in, here we print

diiC

T out the person's name.

” Messages I
|| Panel

] Panel Grid
[.=% ISF-Farm »

-4 Button

[« Theckbox <meta htti:u—ec;uiv foache—control™ content="no-cache™>

Checkbox Graup <metsa http-equiyFETexpires"™ content="0":>

E

<meta http-equir="keyworda" content="kevywordl, kevwordZ, keyvwordi ">

Bj Data Table <meta http-—equlv="description™ content="This is wy page™:

i Form <=

M, Hidden Field <link rel="sfvlesheet™ type="text/css" href="styles.css">

=

== Link </ head:>

[ Listho

: <hody=

—

M

LE Tend <frview:

= Passward Hello <h:outputText waluse="#{TzerBean.userNames: " />, vou succe
(=) Radio Button Group <ffrviems

i </ hody:>

cdl] Text Area </html>

[ Text Field

Source | Design | DesignfSource | Preview

Figure 7.16: Making userLoginSuccess.jsp page print out the user's name

Now that we have created our two pages, the only thing left for us to do is hook them together with proper Navigation
Cases, that is done by visual editing our faces-config.xml file, so open that file. After the file is open for editing, perform
the following steps to create the navigation case:

1. Click the Navigation Case tool

2. Click your userLogin.jsp file

3. Then click on your userLoginSuccess.jsp file

4. You will be prompted with a wizard to create the navigation case.

Follow Figures 7.17 and 7.18 for creating the success navigation case. In order to create the failure navigation case,
we simply do the same steps as before but click twice on the userLogin.jsp file, in order to create a circular navigation
case.



\_i_ *faces-config.xml g,“ userLogin. jsp

1. . TR
N 1]‘3"3'[‘:?:::::;9“'0“ 2) Click on the userLogin
S / page
+
E IiT ,fuserLu:ugil'*
I
—a
[H |
—a
|

3) Click again on the =3

. [userLoginSuccess, jsp
userLoginSuccess page __i%

Figure 7.17: Creating the success navigation case

£ Navigation Case Wizard

Edit Mavigation Case

Edit exisking navigation case enkry

From Action: |

From Dubcome: | success|

[ Redirect
Descripkion: Ny,

Enter in the Outcome that

would send us to this
page and click Finish

| Finish | Cancel

Figure 7.18: Creating the success navigation case continued

After we have created both navigation cases, our file will look something like this:



faces-config.xml X J7 userLogin.jsp

|

= ..
J | JuserLogin.jsp i ilre

<l =l [l | @ [F]

SUCCESS

=
g fuserloginsuccess. jsp

Figure 7.19: Reviewing navigation cases for our app

Now that we have created all our JSP pages and added our Navigation Cases correctly, the only thing left is to run our
application!

Back to Top

8. Running the Application

In this section we will quickly show what our new application looks like when its running.

We will use MyEclipse to deploy our application to Tomcat 5 and then launch the server so we can run the application.
Complete details in how to set up an application server and deploy to it within MyEclipse is available in the Application
Server Quickstart. For the purposes of this example, we're going to assume that Tomcat 5 has already been
configured for our use and we simply need to deploy our application to it. Deployment is done by the Manage
Deployments dialog, which can be activated from the project's context menu by right-clicking on the project in the
Package Explorer View and selecting MyEclipse > Add / Remove Deployments... The Manage Deployments dialog,
shown in Figure 8.2, will be launched. To add a deployment, simply click the Add button and the New Deployment
wizard, will be opened.

& MykEclipse - faces-config.xml - Eclipse SDK

File Edit Wiew MNavigate Search Project MyEclipse Run %

Ci-EH & 5-9[%@*@ ¥-0-Q- &
% Package Explorer E|IZ:1E|:|I|:|~;.-' MyEclipse 12EE Projeck ko Server. ..
— = = [[4

Figure 8.1: Open the Manage Deployments Dialog



file:///C:/dev/workspaces/myeclipse3.1-production-build/com.genuitec.myeclipse.doc/html/quickstarts/appservers/index.html
file:///C:/dev/workspaces/myeclipse3.1-production-build/com.genuitec.myeclipse.doc/html/quickstarts/appservers/index.html

# Project Deployments

Manage Deployments 1] Select prnject
4.E' Deploy and undeploy 12EE prajects, /

2) Click Add

Praoject IJSFLDginDemD ;I

Deployments

& New Deployment

Mew Deployment Remowve

Create new project deployment For JSFLoginDemo

3) Select your server

Fedeploy

Browse

[

Web Project: JSFLoginDemo

Server:

Deploy tvpe: i Exploded archive © Packaged Archive

Deploy Location: | [ Javatjakarka-tomcat-5.5, 9webapps! ISFLoginDemo

Ik

4) Click Finish === "Fnsn | cancel |

Figure 8.2: Creating the new deployment for our project

Select Tomcat 5 as the server, exploded archive as the deployment type, and select Finish as shown in Figure 8.2.
After the wizard completes execution, the Deployment Manager will show that the deployment was successful. This is
depicted in Figure 8.3. Now that the deployment has completed, you can select OK to close the dialog.



& Project Deployments

Manage Deplovments

Deploy and undeplow JZEE projects.

Praject |JSFLDginDemD j [%
Deployments
| Server Type | Locakion #dd
v ﬁ Tomcat 5 Exploded [ Javatjakarka-tomcat-5.5, 9webapps

Remove

Redeploy

[T
[ oo |
N
[ sme= |

< > Browse

Deployment Skakus

Successfully deploved, ‘\

Check that deployment
was successful

Click OK ﬁ oK

Figure 8.3: Successful Deployment

At this point the Tomcat 5 server can be started by selecting Start from the Tomcat 5 management menu from the main
Eclipse toolbar, as shown in Figure 8.4, below.

& MyEclipse - faces-config.xml - Eclipse SDK
File Edit Wiew Mavigate Search Project MyEclipse F

- & |&fH-9 [H%-0-9-

omcat 5 b
% Package Explorer 51 Ml m

$ stop

- 1,-2 J5FLoginCema
Figure 8.4: Starting Tomcat 5

The output from the server log will be redirected to the Eclipse Console View. From the log shown in Figure 8.5, itis
evident that the sever started successfully.



Problems | Tasks | Properties | ‘Web Browss Console Progress

FomcatSServer [Remote Java Application] fiavaw, exe (Sep 23, 2005 11:23:55 AM)
IMFIUY SESS10HLISTEREY Y ool =]

Sep 23, 2005 11:24:01 AM Drg.apache.catalina.cnre.Applica@}DnCDntext log
INFO: ContextlListener: contextlInitializedi)

Sep 23, Z005 11:24:01 AM org.apache.catalina.core.lApplicationContext log
INFO: Sessionlistener: contextInitializedi)

Dep 23, 2005 11:24:01 AM org.apache.coyote.httpll.HttcpllProtocol start
INFO: Starting Coyote HTTPS/1.1 on http-3030

Sep 23, 2005 11:24:01 AM org.apache. jk.conmoon.Channel3ocket init

INFO: JE: ajpl3i listening on f0.0.0.0:5009

Sep 23, 2005 11:24:01 AM org.apache.jk.server.JkMain start

INFO: Jk runtning ID=0 tiwme=0/31 config=null

Sep 23, Z005 11:24:01 AM org.apache.catalina.storeconfig.Storeloader load
INFO: Find registry server-registry.xml at classpath resource

Sep 23, 2005 11:24:02 AM org.apache.catalina.startup.Catalina start

IMNFO: 3Zerver startup in S047 ms Wait for startup to finish

Figure 8.5: Tomcat 5 Startup Log

Once Tomcat 5 is running, we can test it by opening the MyEclipse Browser View. This can be done by clicking the
Browser button as shown in Figure 8.6.

& MykEclipse - faces-config.xml - Eclipse SDK

File Edit Wiew Mawigate Search Project  MwEclipse  Run

L=<j = ;E BE - @ #5; = ﬁ = {% = EJ
[ Package Explorer &2 Hiera%pen MyEclipse Weh Browser |
i

Figure 8.6: Opening the Web Browser View

In the browser's address bar, enter http://localhost:8080/JSFLoginDemo/userlLogin.faces to activate the example
application, as shown in Figure 8.7.

NOTE :The reason the URL ends in .faces and not .jsp is because above, we mapped our FacesServlet to the *.faces
extension, that means in order for JSF to be given a chance to process the request and build out the component tree,
we must use the .faces extension to access the actual pages. If you don't, you will get an exception along the lines of
"FacesContext cannot be found".

&;‘ Faces-canfig.xml 3 MyEclips

| http: /flocalhost: 8030/ J5FLoginDemouserLogin, faces

TTzer Mame:

Pazzword:

Figure 8.7: Accessing the Example Application

Now type in myeclipse for the user name and password and click Login to see your app in action!


http://localhost:8080/JSFLoginDemo/userLogin.faces

@‘ Faces-config.:ml #. MyEclipse Web Browser X

| hitkp s fflocalhost; 8050/ 13FLoginDermo/userLogin, faces

Teer Mame: |m§,-'eclipse |

Fassword: |iiiiiiiii |

Enter "myeclipse"” as User
Name and Password A

Figure 8.8: Logging in...

& faces-config.xml . MyEclipse Web Browser X

| hkkp:f flocalhost: 8080/ 15FLoginDema/userLagin, Faces

Hello myechpse, vou successfully logged ml

Success!

Figure 8.9: Successful Login

We see our navigation rules kick in as we are validated and directed to the userLoginSuccess.jsp page where our
name is displayed. While this application is certainly simple, it does convey the basics of developing a JSF application
using MyEclipse.

Back to Top

9. Summary

In this demo we took a look at developing a simple JSF application using MyEclipse Enterprise Workbench. If you
would like to download a zipped up version of the MyEclipse project used to create this demo, click here . This
concludes your introduction to JSF. Additional Quickstart documents are available that introduce working with Web
Projects, editing, application server configuration, enterprise application projects and database development. For more

information visit the MyEclipse Quickstart library .

Back to Top

10. User Feedback

We welcome all constructive feedback. If you have comments or ideas for how to improve this document please go to
the Documentation Forum on our Support Site. MyEclipse Documentation Forum

Back to Top

Copyright © 2003 - 2005 by Genuitec L.L.C


http://www.myeclipseide.com/PNphpBB2+file-viewforum-f-6.html
http://myeclipseide.com/ContentExpress-display-ceid-67.html#quickstarts
file:///C:/dev/workspaces/myeclipse3.1-production-build/com.genuitec.myeclipse.doc/html/quickstarts/jsf/JSFLoginDemo.zip

	Outline
	1. Preface
	2. Introduction
	3. Requirements
	4. New Project Setup & Structure 
	5. Creating the Message Bundle
	6. Creating the Managed Beans
	7. Creating the JSP Pages
	8. Running the Application
	9. Summary
	10. User Feedback

