
Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 1

Network Programming
in Python

Steve Holden
Holden Web

LinuxWorld
January 20, 2004

Here’s the plan for the three-hour session:

0:10 Introductions
0:20 Network Layering and Client/Server Services

Put you at ease with the communications concepts involved and focus
on the task ahead. You will probably be familiar with at least some
of this material.

0:10 Connectionless programming.
Up through Mr. Creosote, a useful remote debugging paradigm.

0:10 Connectionless programming demonstration.
0:30 Connection-oriented programming.

The bind/accept paradigm. How clients and servers communicate.
0:15 "Write a client and a server" demonstrations.
0:25 Some client libraries: the ftp, smtp and pop modules.
0:15 Mail or ftp client demonstration
0:25 HTTP and HTML libraries
0:15 Working with the web
0:05 Pointers for future network programming

There will be a 15-minute break at approximately 10:15. We can also take a couple of short comfort breaks as
necessary. But you have to let me know that they're necessary!

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 2

Steve Holden - LinuxWorld, January 20, 2004

Introductions
• Steve Holden

– Professional instructor
• TCP/IP
• Database
• Security topics

– Consultant
• Over thirty years as a programmer

– Author of Python Web Programming
• New Riders, 2002

I've been involved in teaching for a long time, both as an academic and as a commercial instructor.
This slide is just to let you know a bit about me (you turn will come on the next slide).

I first became involved with TCP/IP in 1981, when I met my first BSD VAX 11/750. In 1985 I was
appointed Senior Technical Support Specialist for Sun Microsystems in the UK, and a part of my
duties was helping to manage the Sun global wide-area network.

When I moved to the USA in the 1990s I had to manage a web server farm controlling about three
hundred domains, and developing the associated sites. This stretched my TCP/IP knowledge
considerably, and got me deeply involved in web programming. I had done some socket
programming in C as a part of my duties at Sun, but hadn't really got very involved with it, as C
wasn't my favorite language. The Perl that many sites were written in didn't appeal much more than
C. Perl is great when it's used in a disciplined way, but many early web authors took a "program
with a shovel" approach.

When I met Python, however, it was a whole different story. Python was everything I wanted in a
language – easy to write, easy to read, object-oriented and with a really useful set of libraries, many
of which provided networking functionality. When New Riders asked me to write Python Web
Programming I jumped at the chance.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 3

Steve Holden - LinuxWorld, January 20, 2004

Pleased to Meet You …
• In less than 30 seconds:

– Your name
– Your organization
– Your current position
– Your interest in this tutorial

• Now we all know each other

It helps to know why everyone is in the room. You may even find someone else who'd been
working on the same problems as you, so pay attention!

Mentally divide ten minutes by the number of students in the class, and try to make sure your
introductions don't overrun!

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 4

Steve Holden - LinuxWorld, January 20, 2004

Course Objectives
• Review principles of networking
• Contrast TCP and UDP features
• Show how Python programs access networking

functionality
• Give examples of client and server program

structures
• Demonstrate some Python network libraries
• Give pointers to other network functionality

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 5

Steve Holden - LinuxWorld, January 20, 2004

One-Minute Overview
• Introduction to TCP/IP networking

– Not IPv6
• Though Python 2.3 handles IPv6

• Sockets: servers and clients
• Popular client libraries
• HTTP servers and clients
• What’s in the future?

The idea behind this workshop is to quickly get you to the stage where you can write useful
network-based Python applications.

We start out by looking at an overview of networking in the TCP/IP world, and then examine the
basic functionality Python offers for network programming, through the so-called sockets interface.

Then we move on to looking at some of the canned libraries you can use for specific purposes.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 6

Steve Holden - LinuxWorld, January 20, 2004

Network Layering
• Applications talk to each other

– Call transport layer functions
• Transport layer has to ship packets

– Calls network layer
• Network layer talks to next system

– Calls subnetwork layer
• Subnetwork layer frames data for transmission

– Using appropriate physical standards
– Network layer datagrams "hop" from source to

destination through a sequence of routers

The ISO spent a long time developing a standardized open systems interconnection (OSI) model,
based on seven layers. This model was the basis of early networking systems using X.25 as the
network layer. As we will see later, TCP/IP uses a simplified model more appropriate to modern
transmission systems. This reduced protocol overhead is one of the major reasons for TCP/IP's
success in the Open Systems world.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 7

Steve Holden - LinuxWorld, January 20, 2004

Inter-Layer Relationships
• Each layer uses the layer below

– The lower layer adds headers to the data from
the upper layer

– The data from the upper layer can also be a
header on data from the layer above …

PROTOCOL DATA

DATA

Upper layer

Lower layer HDR

Protocol layering is really quite easy to understand. The advantage is that different layers can cope
with different functions.

It would be a very difficult world if a file transfer application had to know whether it was running
over an Etherenet or a token ring network and take different actions accordingly. Fortunately the
physical network is several layers down from the application code, which is more or less
completely isolated from such issues.

We usually think of the application data as traveling "down the stack" to emerge, at the bottom, as a
transmission across some network interface. When the transmission reaches its destination it flows
"up the stack" again until it is delievered, with all lower-level headers stripped off, to the receiving
application process.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 8

Steve Holden - LinuxWorld, January 20, 2004

The TCP/IP Layering Model
• Simpler than OSI model, with four layers

A

T

N

DATA

DL CRC

Application

Host-to-host

Internetwork

Subnetwork

Socket API

A TCP/IP application must provide its own presentation- and session-layer services if it needs to
use them. Many times the data that are interchanged are simple enough not to require presentation
layer services, and the interactions are short so no session-layer services are needed. The TCP/IP
application layer therefore corresponds to the top three layers of the OSI model. From an
application point of view the distinction between datalink and physical layer is irrelevant. They are
both collapsed into a single subnetwork layer.

The really important point is that the application can treat the transport-layer API as its way to
communicate with remote processes. The layered complexity is essentially invisible to the
application code, and is called on by the transport layer libraries without any action being required
by the application..

The subnetwork layer data is actually an IP datagram, whose data is a TCP or UDP segment, whose
data is an application protocol data unit.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 9

Steve Holden - LinuxWorld, January 20, 2004

TCP/IP Components
• Just some of the protocols we expect to be

available in a “TCP/IP” environment

Telnet SSH SMTP FTP NFS DNS SNMP

TCP UDP

IP
Ethernet, Token Ring, RS232, IEEE 802.3, HDLC,
Frame Relay, Satellite, Wireless Links, Wet String

Application

Host-to-host

Internetwork

Subnetwork

Another advantage of TCP/IP is the incredible adaptability of the network layer. It’s hard to think
of a transmission medium that hasn’t been used to carry IP datagrams in some network or other!
Two major transport layer protocols (TCP and UDP) are used, though IP can carry many others,
including ISO protocols in some cases.

Most applications are designed to run over one or the other of these two major transport protocols,
but certain applications such as NFS (the Network File System) and DNS (the Domain Name
System) are designed to use either transport layer. Usually TCP is used over wide-area links, and
UDP is used over LANs, which are typically rather more reliable.

When we talk about "TCP/IP" we actually assume the presence of all the components shown above,
and more besides.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 10

Steve Holden - LinuxWorld, January 20, 2004

IP Characteristics
• Datagram-based

– Connectionless
• Unreliable

– Best efforts delivery
– No delivery guarantees

• Logical (32-bit) addresses
– Unrelated to physical addressing
– Leading bits determine network membership

The network layer of TCP/IP makes no guarantees of delivery: at any hop along the way a packet
may be discarded, either because transmission errors have been detected or simply because the
receiving equipment does not have the capacity to process it.

In such circumstances the originating host may or may not receive an ICMP (Internet Control
Message Protocol) message detailing the reason for non-delivery. ICMP messages can be useful in
helping hosts to change to more appropriate behavior, but are not always actioned even when
raised.

Since different physical network use different addressing schemes it's important that IP provides a
unified scheme independent of the underlying hardware. This is crucial when building large
internets (an "internet" with a small "I" is any interconnected collection of IP networks). You can
find a detailed description of IP addressing at

http://www.holdenweb.com/students/3comip.pdf

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 11

Steve Holden - LinuxWorld, January 20, 2004

UDP Characteristics
• Also datagram-based

– Connectionless, unreliable, can broadcast
• Applications usually message-based

– No transport-layer retries
– Applications handle (or ignore) errors

• Processes identified by port number
• Services live at specific ports

– Usually below 1024, requiring privilege

You can think of UDP as similar to the postal service – packets go out, they can be lost along the
way if an intermediate router runs out of resources or if they are mangled by noise, no
acknowledgements are issued. UDP applications are therefore usually simpler messaging-style
applications, where the only recovery action will be a fixed number of retries.

DNS is a good example -- although it can use TCP, most DNS traffic is carried by UDP. If a server
does not reply, or if the reply (or the request) gets lost, the consequences are usually not tragic. If
you fail to resolve a host name because of such an error you (as a user) will usually be quite happy
to try again, and this failure will not have been significant.

As you will see later, a server binds to a specific port when it starts up. Originally a client had to
"just know" what port the server would be listening on, and so default port numbers were allocated:
80 for HTTP, 25 for SMTP and so on. Later on, services like the PortMapper were introduced so
that a server could use any port, and register it with the Portmapper – the clients would start with a
PortMapper enquiry to find out which port their server was listening on.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 12

Steve Holden - LinuxWorld, January 20, 2004

TCP Characteristics
• Connection-oriented

– Two endpoints of a virtual circuit
• Reliable

– Application needs no error checking
• Stream-based

– No predefined blocksize
• Processes identified by port numbers
• Services live at specific ports

A TCP conversation requires specific endpoints, so you can think of it as more like a telephone
call: one system calls another, and has to get a reply before communication can take place.

Because of the need for defined endpoints, TCP has no broadcast capability, unlike UDP. Because
TCP is a reliable protocol the possibility of error is rather low (though not zero) – errors are
detected and corrected in the transport layer. This makes it relatively easy to use, since the
applications can assume the data they send will, eventually, be received in the absence of a
complete connectivity failure.

TCP is a much more sophisticated protocol than UDP and includes both error detection and
correction, relieving applications of housekeeping tasks which would otherwise quickly become
burdensome. There is no need to transmit data is any particular block size, and an application is free
to send as few as one byte or as much as several megabytes at a time. The transport layer will take
responsibility for buffering this data and sending it out as a stream of packets of an appropriate size.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 13

Steve Holden - LinuxWorld, January 20, 2004

Client/Server Concepts
• Server opens a specific port

– The one associated with its service
– Then just waits for requests
– Server is the passive opener

• Clients get ephemeral ports
– Guaranteed unique, 1024 or greater
– Uses them to communicate with server
– Client is the active opener

Although not all client/server systems are based around the idea of a passive and an active opener
this is currently the dominant paradigm for networking, used by FTP, Telnet, DNS, SMTP, SNMP
and many others.

The client and the server will typically use the socket API, originally devised as part of the bsd
Unix implementation, to interact with the networking features of their host operating system. A
socket gives the application code access to the network interface using convenient calls to transmit
and receive data. Python standardizes access to sockets to eliminate the need to worry about
platform differences -- network programming is remarkably consistent among Linux, UNIX and
Windows.

The fact that a client port number is guaranteed unique on its host allows traffic to be multiplexed
and demultiplexed over shared network paths. Even when two telnet clients on the same host are in
touch with telnet servers on the same host the client address/port number combination is unique,
allowing the traffic to be delivered to the correct process.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 14

Steve Holden - LinuxWorld, January 20, 2004

Connectionless Services
socket()

bind()

recvfrom()

sendto()

[blocked]

SERVER

socket()

bind()

recvfrom()

[blocked]

sendto()

CLIENT

When UDP is used, the server creates a socket and binds address(es) and a port number to it. The
server then waits for incoming data (remember: UDP is connectionless).

The clients also create a socket, then they bind it to the appropriate interface – typically allowing
the transport layer to choose an epehemeral (short-lived) port number rather than specifying a
particular port.

The client sends data to the server, which awakes from its blocked state and starts to compute its
response. Meantime the client has issued a recvfrom() using the same address it sent the data to,
and is blocked awaiting the response which should eventually arrive from the server.

When the server sends its result back, it goes to the address and port number the incoming data was
received from. The server then loops around to wait for another request. The arrival of the server’s
data unblocks the client, which can then continue.

This is something of a simplification: using a library based on the select() system call it is
possible to use sockets in a non-blocking fashion. This does complicate the code somewhat,
however.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 15

Steve Holden - LinuxWorld, January 20, 2004

Simple Connectionless Server

from socket import socket, AF_INET, SOCK_DGRAM
s = socket(AF_INET, SOCK_DGRAM)
s.bind(('127.0.0.1', 11111))
while 1: # nowadays, "while True"

data, addr = s.recvfrom(1024)
print "Connection from", addr
s.sendto(data.upper(), addr)

• How much easier does it need to be?

Note that the bind() argument is a two-element tuple of address and port number

It's more usual to import the whole socket library and use qualified names, but the from statement
is a convenient way to access only specific names from a module. I did this to keep code lines on
the slide shorter, and hence more readable. The following code is an equivalent but rather more
conventional way to create the socket:

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

This achieves exactly the same ends. Which style you use is largely a matter of taste and
readability. The remainder of the code will run unchanged since the other features it uses are
attributes of the socket, and are accessed the same way no matter how the socket was created.

Note carefully that the bind() call takes a single argument, a tuple containing an IP address string
and a port number. If the IP address is the empty string then the code will bind to all interfaces,
which is how most servers actually start up. The example above is a little more secure, since only
local processes can connect via the local loopback interface.

The code on this slide is on your CD as udpserv1.py if you want to run it now.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 16

Steve Holden - LinuxWorld, January 20, 2004

Simple Connectionless Client

from socket import socket, AF_INET, SOCK_DGRAM
s = socket(AF_INET, SOCK_DGRAM)
s.bind(('127.0.0.1', 0)) # OS chooses port
print "using", s.getsocketname()
server = ('127.0.0.1', 11111)
s.sendto("MixedCaseString", server)
data, addr = s.recvfrom(1024)
print "received", data, "from", addr
s.close()

• Relatively easy to understand?

The client specifies port number zero to indicate that it simply wants an ephemeral port – this is
more efficient than attempting to use a specific port number because the port requested might
already be in use and then the bind() call would fail.

The getsocketname() call tells the user the address and port number being used for the client
end of the communication. While this isn't an essential part of the program it's useful debugging
data.

The client simply sends the data and (usually) receives a reply from the server. This particular
program is somewhat inadequate in terms of error checking: if the server's response is somehow
lost then the client will hang forever. The socket library was recently (2.3) updated to include
timeout features that previously had only been available in third-party additions.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 17

Steve Holden - LinuxWorld, January 20, 2004

Exercise 1: UDP Client/Server
• Run the sample UDP client and server I have

provided (see 00_README.txt)
– udpserv1.py
– udpcli1.py

• Additional questions:
– How easy is it to change the port number and

address used by the service?
– What happens if you run the client when the

server isn't listening?

This simple exercise allows you to verify that your networking setup is OK and that Python is
making things happen as it should.

The programs are very simple, with no error checking at all. When you run the client with no server
listening it will hang, waiting forever for a non-existent server to reply. Clearly this situation isn’t
ideal when everything is supposed to run unattended ☺

Note that these programs will run on almost an platform that Python supports. The socket layer is
very robust, and considerably eases portability problems in networked applications. Once I found
out how easy Ptyhon was to use in this way I entirely abandoned any idea of using C or C++. No
hair shirts for me …

You could also try to run two copies of the server. What happens then?

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 18

Steve Holden - LinuxWorld, January 20, 2004

Sample Python Module
• Problem: remote debugging

– Need to report errors, print values, etc.
– Log files not always desirable

• Permissions issues
• Remote viewing often difficult
• Maintenance (rotation, etc.) issues

• Solution: messages as UDP datagrams
– e.g. "Mr. Creosote" remote debugger
– http://starship.python.net/crew/jbauer/creosote/

Please try to overlook the fact that certain inhabitants of Pythonia appear to find it necessary to drag
in obscure references to Monty Python's Flying Circus. The name is in no way meaningful.

The creosote module shows how useful UDP can be for messaging-style applications. Debugging
messages can be emitted by a program, and it doesn't matter whether anything is listening or not.
You could even use IP address 255.255.255.255 (the local broadcast address) as the destination for
reports, or the directed broadcast address of your local subnet.

In either case, any machine on the LAN that was running a creosote debugger would pick uo the
broadcasts and display them!

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 19

Steve Holden - LinuxWorld, January 20, 2004

Creosote Output
def spew(msg, host='localhost', port=PORT):

s = socket.socket((socket.AF_INET,
socket.SOCK_DGRAM))

s.bind(('', 0))
while msg:

s.sendto(msg[:BUFSIZE], (host, port))

msg = msg[BUFSIZE:]

• Creates a datagram (UDP) socket
• Sends the message

– In chunks if necessary

This is pretty much the output routine from the Mr. Creosote module.

The definition line shows how Python allows you to define default values. In this case the
(destination) host defaults to the machine the code is running on, and the (destination) port number
to a value previously defined globally in the module.

The bind() call requests an ephemeral port usable on any interface. The while loop sends chunks
(whose size, BUFSIZE, is also a module parameter) which are successively deleted from the
message. The loop terminates when the message is reduced to an empty string.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 20

Steve Holden - LinuxWorld, January 20, 2004

Creosote Input
def bucket(port=PORT, logfile=None):

s = socket.socket(socket.AF_INET,
socket.SOCK_DGRAM)

s.bind(('', port))
print 'waiting on port: %s' % port
while 1:

try:
data, addr = \

s.recvfrom(BUFSIZE)
print `data`[1:-1]
except socket.error, msg:

print msg

• An infinite loop, printing out received messages

This slide is a simplification of the real code, which has logging abilities that I have omitted clarity.

Again the port defaults to a value preset elsewhere in the module. The function binds to all local
addresses on the given port number (the empty string) and proceeds to receive messages on that
socket.

The print statement uses backticks to produce a readable representation of the message even if it
contains binary characters, and strips the quotes off with the [1:-1] slicing.

The while 1 loop is typical of server code: a good server will run forever. In the case of the
recvfrom() call the argument sets the maximum message size than can be received.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 21

Steve Holden - LinuxWorld, January 20, 2004

Exercise 2: Mr Creosote Demo
• This module includes both client and server

functionality in a single module
– creosote.py

• Very simple module with no real attemot to
use object-oriented features

• The production code is more complex
– creosoteplus.py
– Defines a bucket listener class
– Instance created when called with no arguments

You may not necessarily have a laptop with you today, but I am hoping that enough of you will
have brought them with you to make exercises practical. All the code is available on CD or via the
web, so you will be able to run the exercises when you get back home anyway.

To assist those who aren't able to work hands-on I will demonstrate how code can be written and
run on my own laptop, and field questions interactively.

Because a current focus is integration of Windows and open source technologies I will be running
the exercise code on a Windows 2000 laptop, sometimes in a command window and sometimes
under Cygwin. The exercises have all been carefully tested on Linux, Windows and Cygwin, and so
you shouldn't have any portability problems. That's one of Python's strengths!

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 22

Steve Holden - LinuxWorld, January 20, 2004

Connection-Oriented Services
socket()

bind()

listen()

accept()

read()

write()

[blocked]

socket()

connect()

write()

read()

[blocked]

[blocked]

Server Client

When interaction is over, server
loops to accept a new connection

A connection-oriented server creates a socket, binds it to one or more local ports on which it will
listen for connections, and then puts the socket into the listening state to wait for incoming
connections. At this point the server process blocks until a connection request arrives.

A client creates its own socket, usually without specifying any particular port number, and then
connects to the endpoint the server is listening on. The server’s accept() call returns a new
socket that the server can use to send data across this particular connection..

The two parties then exchange data using read() and write() calls.

The major limitation of this structure is the non-overlapped nature of the request handling in the
server. Theoretically it's possible for the server to use its original socket to listen for further
requests while the current request is being handled, but that isn't shown here. You will learn how to
overcome this limitation using standard library classes.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 23

Steve Holden - LinuxWorld, January 20, 2004

Connection-Oriented Server
from socket import \

socket, AF_INET, SOCK_STREAM
s = socket(AF_INET, SOCK_STREAM)
s.bind(('127.0.0.1', 9999))
s.listen(5) # max queued connections
while 1:

sock, addr = s.accept()
use socket sock to communicate
with client process

• Client connection creates new socket
– Returned with address by accept()

• Server handles one client at a time

Connection-oriented servers are a little more complex because the connection allows clients and
servers to interact across multiple send() and recv() calls.

The server blocks in accept() until a server connects. The return value from accept() is a
tuple consisting of a socket and the client address (which is the usual (address, port) tuple).

The server can, if it chooses, use multitasking techniques such as creating a new thread or forking a
new process to allow it to handle several concurrent connections. Either solution allows the
connection to be processed while the main control loop returns to execute another accept() and
deal with the next client connection.

Since each connection generates a new server-side socket there is no conflict between the different
conversations, and the server can continue to use the listen()ing socket to listen for incoming
connections while it serves already-connected clients.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 24

Steve Holden - LinuxWorld, January 20, 2004

Connection-Oriented Client
s = socket(AF_INET, SOCK_STREAM)
s.connect((HOST, PORT))
s.send('Hello, world')
data = s.recv(1024)
s.close()
print 'Received', `data`

• This is a simple example
– Sends message, receives response
– Server receives 0 bytes after close()

This very simple client just sends a single message and receives a single response.

More typical code will send a request and use its understanding of the application protocol to
determine when the response to that request has been completed.

Protocols like HTTP 1.0 use a separate connection for each request. Protocols like telnet can
exchange thousands of messages before the connection is closed, and the code tends to be more
complex iin that case.

Under normal circumstances a recv() call guarantees that at least one byte of data will be
returned. When a program seems the empty string (zero bytes) returned from the recv() it knows
that the other end has terminated the connection by calling close() on its socket.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 25

Steve Holden - LinuxWorld, January 20, 2004

Some socket Utility Functions

• htonl(i), htons(i)

– 32-bit or 16-bit integer to network format
• ntohl(i), ntohs(i)

– 32-bit or 16-bit integer to host format
• inet_aton(ipstr), inet_ntoa(packed)

– Convert addresses between regular strings and
4-byte packed strings

Although there is no formal presentation layer in the TCP/IP suite, certain data types are so
commonly interchanged that it is useful to be able to transmit them in network-neutral format. This
makes it easy for little-endian and big-endian machines to communicate with each other.

l stands for long, a 32-bit value, and s signifies a 16-bit short.

If you need to communicate IP addresses as a part of your application, the inet_*() functions
allow you to do so efficiently.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 26

Steve Holden - LinuxWorld, January 20, 2004

Handling Names & Addresses
• getfqdn(host='')

– Get canonical host name for host
• gethostbyaddr(ipaddr)

– Returns (hostname, aliases, addresses)
• Hostname is canonical name
• Aliases is a list of other names
• Addresses is a list of IP address strings

• gethostbyname_ex(hostname)

– Returns same values as gethostbyaddr()

These utility functions are useful ways to access the domain name of the host your are running on,
and other DNS services.

A typical use would be as follows:

>>> import socket

>>> socket.gethostbyaddr("10.0.0.10")

('prom01.holdenweb.com', [], ['10.0.0.10'])

This shows interactive use of the Python interpreter, which is handy for debugging purposes. If you
simply enter an expression, the interpreter prints out the resulting value.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 27

Steve Holden - LinuxWorld, January 20, 2004

Treating Sockets as Files

• makefile([mode[, bufsize]])
– Creates a file object that references the socket
– Makes it easier to program to handle data

streams
• No need to assemble stream from buffers

Sometimes if the protocol involves variable-length strings it's easier to use the file-based functions
like readline() and write() to handle I/O.

Calling s.makefile() on a socket s yields an object sufficiently "file-like" that it allows you to
write your programs in this more familiar style. Otherwise it's sometimes necessary to assemble
input strings from a sequence of recv() calls, and add line terminators to the strings you pass to
send().

The socket-based file object can be closed without closing the underlying socket.

This paradigm also makes it easier to adapt existing code, written to handle files, to network
applications.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 28

Steve Holden - LinuxWorld, January 20, 2004

Exercise 3: TCP Client/Server
• Run the sample client and server I have

provided
– tcpserv1.py
– tcpcli1.py

• Additional questions:
– What happens if the client aborts (try entering

CTRL/D as input, for example)?
– Can you run two clients against the same

server?

The idea of this exercise is to show two programs: one acts as a server, and each time it receives a
connection it repeatedly reads strings from the client, returning the same string in upper case.

The second simply acts as a client, reading strings from the user, sending them to the server and
echoing the server's output back until an empty line is entered, at which time it closes the
connection to the server and terminates.

This is a somewhat fragile set-up for a number of reasons. The first is that if a client terminates
without properly closing its server connection the server may not detect this situation, and will
continue to wait for input. The effect of this fault is magnified by the server's inability to handle
multiple connections – it won't accept a second connection until the first one terminates. We'll see
how to get around this problem shortly.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 29

Steve Holden - LinuxWorld, January 20, 2004

Summary of Address Families
• socket.AF_UNIX

– Unix named pipe (NOT Windows…)
• socket.AF_INET

– Internet – IP version 4
– The basis of this class

• socket.AF_INET6
– Internet – IP version 6
– Rather more complicated … maybe next year

Mostly we are concerned with IP v4 sockets and the related services, although IPv6 is coming, and
Python 2.3 is expanding socket support to include it.

Unix named pipes are available if you need them, and work in more or less the same ways as the IP
version 4 sockets we'll be using in the class.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 30

Steve Holden - LinuxWorld, January 20, 2004

Summary of Socket Types
• socket.SOCK_STREAM

– TCP, connection-oriented
• socket.SOCK_DGRAM

– UDP, connectionless
• socket.SOCK_RAW

– Gives access to subnetwork layer
• SOCK_RDM, SOCK_SEQPACKET

– Very rarely used

Most of the services we are interested in will be TCP-based, and therefore use SOCK_STREAM
sockets. We do look briefly at SOCK_DGRAM sockets. SOCK_RAW sockets have been the basis
of (for example) ping programs to generate and handle ICMP traffic, but this is beyond the scope of
this presentation.

Still. It's always useful to know that you can get access to the network hardware if you need it –
most times you don't, but typically when you need such access you really need it.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 31

Steve Holden - LinuxWorld, January 20, 2004

Other socket.* Constants

• The usual suspects
– Most constants from Unix C support
SO_*, MSG_*, IP_* and so on

• Most are rarely needed
– C library documentation should be your guide

If you are an experienced C network programmer you will be familiar with the socket library
provided to programmers in that language, which has been widely ported to various OS platforms.

Although most of the features of these libraries are available from the socket modue, it is surprising
how much you can do without using more than the basics outlined in this tutorial. We are focusing
on the features you need to get your network applications up and running – the rest can follow later.

There is a wealth of Python code already in the public domain that you can use as examples.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 32

Steve Holden - LinuxWorld, January 20, 2004

Timeout Capabilities
• Originally provided by 3rd-party module

– Now (Python 2.3) integrated with socket
module

• Can set a default for all sockets
– socket.setdefaulttimeout(seconds)

– Argument is float # of seconds
– Or None (indicates no timeout)

• Can set a timeout on an existing socket s
– s.settimeout(seconds)

A big problem with network programming is: what do you do when the expected responses aren't
received?

In the case of TCP connection attempts, if no reply is received to the initial connection attempt it
isn't unusual for the adaptive timeout to keep retrying at exponentially larger intervals, with the
result that no exception occurs for over an hour. UDP sockets will hang indefinitely if they are
awaiting a message that somehow gets lost, or is never transmitted.

Timeouts are therefore a valuable way to ensure that failures are detected in a timely manner, and I
encourage you to use this feature, which has been added to the standard library in the most recent
release. If you are using an older release then you should download the timeoutsocket module
from

http://www.timo-tasi.org/python/timeoutsocket.py

Having made you aware of the problems we are going to ignore them for the rest of the class –
timeouts, although invaluable in practice, can complicate the code to the extent that useful
programs take more than one slide ☺

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 33

Steve Holden - LinuxWorld, January 20, 2004

Server Libraries

• SocketServer module provides basic server
features

• Subclass the TCPServer and UDPServer classes
to serve specific protocols

• Subclass BaseRequestHandler, overriding its
handle() method, to handle requests

• Mix-in classes allow asynchronous handling

The SocketServer module is the basis for (among other things) a family of HTTP servers
which are also a part of the standard Python library. It offers a framework that allows you to write
some quite sophisticated servers, and is very useful for rapid network experimentation. You should
be aware, though, that robustness and throughput are both somewhat below professional servers, so
you should not make this the basis of production servers unless you are fairly certain the load will
be light.

Having said that, the ability to build an experimental server with a (very) few lines of code is
invaluable, so SocketServer should definitely be a part of your programming vocabulary if you
do a lot of protocol development or similar work. Python's conciseness and readability are a real
asset here.

Python's ability to handle multiple inheritance is also useful -- the module lets you add the ability
to handle each request in a separate thread or a separate process by adding so-called mixin classes
to your server's base classes. This is particularly useful for connection-oriented servers, which
would otherwise stall additional clients until an existing session was completely terminated, as we
saw in the earlier demonstration.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 34

Steve Holden - LinuxWorld, January 20, 2004

Using SocketServer Module
• Server instance created with address and

handler-class as arguments:
SocketServer.UDPServer(myaddr,

MyHandler)

• Each connection/transmission creates a request
handler instance by calling the handler-class*

• Created handler instance handles a message
(UDP) or a complete client session (TCP)

* In Python you instantiate a class by calling it like a function

The SocketServer framework is quite easy to use and yet, as the HTTP server modules we
examine later will show, it can be the basis of some very powerful functionality.

The UDP server code treats each incoming packet as a standalone request, which is pretty much
what you expect with UDP – there's no such thing as a connection, and so all the request's data has
to arrive at once.

The address you provide is normally a two-element tuple: the first element is a string containing the
address you want to bind to (the empty string means "bind to all addresses") and the port number to
listen on. This approach is common to almost all Python socket code.

For the handler you provide a class, and the server framework creates a brand new instance of that
class each time a new request comes in. [Technically you provide a callable, but when you call it
the result must be an object that possesses all required methods and attributes: in practice it's easiest
to provide a subclass of the SocketServer.BaseRequestHandler class provided with the
library]. Usually all you have to define in your subclass is your own handle() method.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 35

Steve Holden - LinuxWorld, January 20, 2004

Writing a handle() Method
• self.request gives client access

– (string, socket) for UDP servers
– Connected socket for TCP servers

• self.client_address is remote address
• self.server is server instance
• TCP servers should handle a complete client

session

The key to SocketServer programs is to get the handle() method right. It isn't difficult, as
the framework is fairly intelligent and does most of what needs to be done.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 36

Steve Holden - LinuxWorld, January 20, 2004

Skeleton Handler Examples
• No error checking
• Unsophisticated session handling (TCP)
• Simple tailored clients

– Try telnet with TCP server!
• Demonstrate the power of the Python network

libraries

To give an immediate flavor of the utility of this library, we present an example of both a
connectionless and a connection-oriented server. The service is simply that of translating the case
of text.

As the slides point out, though, the code is easily adapted to providing other functionality – the
server framework gives you pretty much everything you need.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 37

Steve Holden - LinuxWorld, January 20, 2004

UDP Upper-Case SocketServer
udps1.py
import SocketServer
class UCHandler(SocketServer.BaseRequestHandler):

def handle(self):
remote = self.client_address
data, skt = self.request
print data
skt.sendto(data.upper(), remote)

myaddr = ('127.0.0.1', 2345)
myserver = SocketServer.UDPServer(myaddr, UCHandler)
myserver.serve_forever()

•Note: this server never terminates!

Change this function to
alter server's functionality

This server example shows the basic way to reply to a UDP client.

UCHandler is an upper-case handler class. Its handle() method gets the data and the return
address from the instance's request attribute. It replies to the client using the socket's sendto()
method.

Python strings are objects with their own methods. The upper() method of a string simply returns
the upper-case conversion of the string. It would be easy to replace the data.upper()
expression with a more complicate function of data to implement different handler functionality.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 38

Steve Holden - LinuxWorld, January 20, 2004

UDP Upper-Case Client
udpc1.py
from socket import socket, AF_INET, SOCK_DGRAM
srvaddr = ('127.0.0.1', 2345)
data = raw_input("Send: ")
s = socket(AF_INET, SOCK_DGRAM)
s.bind(('', 0))
s.sendto(data, srvaddr)
data, addr = s.recvfrom(1024)
print "Recv:", data

• Client interacts once then terminates
• hangs if no response

Since we can't make connections using UDP, each input generates a datagram to the server, and the
client then waits for the server's return datagram.

In practice, of course, it would be rather better to set a timeout on the receive so that the program
doesn't hang forever if something goes wrong.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 39

Steve Holden - LinuxWorld, January 20, 2004

TCP Upper-Case SocketServer
tcps1.py
import SocketServer
class UCHandler(SocketServer.BaseRequestHandler):

def handle(self):
print "Connected:", self.client_address
while 1:

data = self.request.recv(1024)
if data == "\r\n":

break
print data[:-2]

self.request.send(data.upper())
myaddr = ('127.0.0.1', 2345)
myserver = SocketServer.TCPServer(myaddr, UCHandler)
myserver.serve_forever()

Change this function to
alter server's functionality

The TCP server structure is somewhat different from the UDP server because the handle()
method has to handle a complete connection from beginning to end, potentially involving a number
of interations between the client and the server. So it implements a loop, which requires a
terminating condition.

This server's handle() method terminates when it receives a blank line from the client. It would
be more usual to terminate when a zero-length input was received, as this is the conventional
indication that the client has closed the socket from its end. However that would need a client that
closes the socket, so the empty line is rather easier to deal with on the client side.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 40

Steve Holden - LinuxWorld, January 20, 2004

TCP Upper-Case Client
tcpc1.py
from socket import socket, AF_INET, SOCK_STREAM
srvaddr = ('127.0.0.1', 2345)
s = socket(AF_INET, SOCK_STREAM)
s.connect(srvaddr)
while 1:

data = raw_input("Send: ")
s.send(data + "\r\n")
if data == "":

break
data = s.recv(1024)
print data[:-2] # Avoids doubling-up the newline

s.close()

As you can see, the client connects to the server and then repeatedly reads data from the user. In
line with the server's requirements, the client sends the blank line that terminates the input before
closing the socket.

The Python socket is supposed to be closed automatically when the program ends, but it is akways
safe to explicitly close the socket, and it's better practice than relying on something that may or may
not happen.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 41

Steve Holden - LinuxWorld, January 20, 2004

Exercise 4: SocketServer Usage
• Run the TCP and UDP SocketServer-based

servers with the same clients you used before
– SockServUDP.py
– SockServTCP.py

• Additional questions:
– Is the functionality any different?
– What advantages are there over writing a

"classical" server?
– Can the TCP server accept multiple

connections?

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 42

Steve Holden - LinuxWorld, January 20, 2004

Skeleton Server Limitations (1)
• UDP server adequate for short requests

– If service is extended, other clients must wait
• TCP server cannot handle concurrent sessions

– Transport layer queues max 5 connections
• After that requests are refused

• Solutions?
– Fork a process to handle requests, or
– Start a thread to handle requests

Clearly a server will be able to handle more work if processing one request doesn't hold others up.
The basic SocketServer server, however, only handles a single request at a time.

Fortunately the solution is ready to hand – the SocketServer module's author has already
thought about this problem, and provided mixin classes to give forking and threading as alternative
server behaviors.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 43

Steve Holden - LinuxWorld, January 20, 2004

Simple Server Limitations (2)

accept()

read()

write()

[blocked]

[blocked]

Client connection

Forked server process or
thread runs independently

Remote
Client

Process

Server creates a new
thread or forks a new
process to handle
each request

This diagram shows what needs to happen to allow parallel handling of concurrent requests.

In the case of a forking server process, the forked child handles the request and the parent loops
around to accept() another connection.

In the case of a threading server the two threads coexist in the same process, and the process shares
its CPU allocation between the new thread that processes the request and the original thread, which
loops around to accept() another connection.

The essential point is that the server no longer has to handle one connection completely before it
can handle the next request. This isn't so important for UDP servers, where the request and
response tend to be short and sweet. In the TCP world, however, a "request" is actually a
connection that can be exceedingly long-lived – think of a Telnet or ssh session, for example.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 44

Steve Holden - LinuxWorld, January 20, 2004

Asynchronous Server Classes

• Use provided asynchronous classes
myserver = SocketServer.TCPServer(

myaddr, UCHandler)

becomes
myserver = SocketServer.ThreadingTCPServer(

myaddr, UCHandler)

or
myserver = SocketServer.ForkingTCPServer(

myaddr, UCHandler)

This is a very powerful way to make your servers asynchronous. In the forking and threading
variants, service for one request becomes independent of the main server loop because the handler
gets its own process (in the forking model) or thread (in the threading model). Once the server has
started the request handler it is free to loop round again and accept another request almost
immediately.

A measure of Python's power is how easily it is possible to adapt the standard servers – the
ThreadingTCPServer and ThreadingTCPServer classes are actually quite simple, as you will see on
the next slide.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 45

Steve Holden - LinuxWorld, January 20, 2004

Implementation Details
• This is the implementation of all four

servers (from SocketServer.py):
class ForkingUDPServer(ForkingMixIn,

UDPServer): pass
class ForkingTCPServer(ForkingMixIn,

TCPServer): pass
class ThreadingUDPServer(ThreadingMixIn,

UDPServer): pass
class ThreadingTCPServer(ThreadingMixIn,

TCPServer): pass

• Uses Python's multiple inheritance
– Overrides process_request() method

You might think the mix-in classes would be complex, but this is not the case. Forking adds maybe
thirty lines of code, and threading around twenty lines. The mix-in classes override the
process_request() method of their client classes, and so their definition is used in preference
to the definition in the server class (TCPServer or UDPServer). This inheritance model makes
it relatively easy to add orthogonal functionality to classes.

The forking variants do not work on Windows platforms because the os.fork() primitive is
unavailable. The threading variants work on all common platforms.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 46

Steve Holden - LinuxWorld, January 20, 2004

More General Asynchrony
• See the asyncore and asynchat modules
• Use non-blocking sockets
• Based on select using an event-driven model

– Events occur at state transitions on underlying
socket

• Set up a listening socket
• Add connected sockets on creation

Another, different way to specify asynchronous processing uses these modules. They are based on
the use of the select() system call to define "events" that can occur asynchronously, and each
active or lstening socket is a "channel".

A basic asyncore server program will create a single channel which is its listening socket, and
then call the asyncore.loop() function. As connections come in the server will add further
channels to handle events related to these connections.

Events cause the loop to call channel methods such as handle_read() and
handle_write(), which cause data transfer between the server and the remote client.

The asynchat module adds the ability to generate events when particular strings appear in the
incoming data stream, which is useful for handling protocols that use delimiters rather than fixed-
length strings.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 47

Steve Holden - LinuxWorld, January 20, 2004

Exercise 5: Async TCP servers
• Can also be used with UDP, but less often

required (UDP often message-response)
– SockServTCPThread.py

• Very simple to replace threading with forking
– Non-portable, since forking not supported

under Windows (like you care … ☺)

This shows that it isn't too difficult to adapt the original servers so they can handle multiple
concurrent connections. SocketServer limits Windows to multi-threading solutions, but on Unix
you have the choice of multithreading or process forking.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 48

Steve Holden - LinuxWorld, January 20, 2004

Network Client Libraries
• Python offers a rich variety of network client

code
– Email: smtplib, poplib, imaplib

•rfc822 and email modules handle content
– File transfer: ftplib
– Web: httplib, urllib

• More on these later
– Network news: nntplib
– Telnet: telnetlib

The news is realtively good if you want to use the more common protocols. Lots of batteries
included, although it would always be nice to see more client modules incorporated into the core.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 49

Steve Holden - LinuxWorld, January 20, 2004

General Client Strategy

• Library usually defines an object class
• Create an instance of the object to interact with

the server
• Call the instance's methods to request

particular interactions

Since Python is inherently object-oriented, it makes sense to encapsulate the connection with the
server as an instance of some class. Then you have no problems about where to store connection
state, and it's easy to generate multiple connections in the same program – if you do that, of course,
you can get problems unless each client has its own thread.

As we've seen, adding asynchronous behavior is relatively easy on the server side, because mixin
classes are provided for explicit support. It's less straightforward on the client side, but it's less
frequently required too, so it still tends not to be a problem.

The third-party twisted framework is worth investigating (http://www.twistedmatrix.com/) if you
have a need for an event-driven netwrok programming framework; the twisted code has been used
to implement a wide variety of client- and server-side network functionality.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 50

Steve Holden - LinuxWorld, January 20, 2004

Using smtplib
• s = smtplib.SMTP([host[, port]])

– Create SMTP object with given
connection parameters

• r = s.sendmail(from, to, msg
[, mopts[, ropts]])

– from : sender address
– to : list of recipient addresses
– msg : RFC822-formatted message

(including all necessary headers)
– mopts, ropts : ESMTP option lists

The sendmail() method either raises an exception (if none of the recipients is accepted) or
returns a dictionary.

Each dictionary entry has an unacceptable recipient address as a key, and the value associated with
thast key is a tuple consisting of the numeric error code and the error message returned by the
SMTP server.

For a completely successful send the returned dictionary will be empty. This makes it relatively
easy to decode the results of an email transmission.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 51

Steve Holden - LinuxWorld, January 20, 2004

SMTP Example (1)
import smtplib, socket

frad = "sholden@holdenweb.com"
toads = ["bookuser@holdenweb.com",

"nosuchuser@holdenweb.com",
"sholden@holdenweb.com"]

msg = """To: Various recipients
From: Steve Holden <sholden@holdenweb.com>

Hello. This is an RFC822 mail message.
"""

Note that the addresses of the sender and recipients aren't taken from the message headers, but from
the arguments to the sendmail() method. While the two sets of addresses are usually the same,
this isn't invariably the case.

This is one reason why spam is so common now – the SMTP protocol was never intended to cope
with people who lied about who they are!

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 52

Steve Holden - LinuxWorld, January 20, 2004

SMTP Example (2)
try:

server = smtplib.SMTP('10.0.0.1')
result = server.sendmail(frad, toads, msg)
server.quit()
if result:

for r in result.keys():
print "Error sending to", r
rt = result[r]
print "Code", rt[0], ":", rt[1]

else:
print "Sent without errors"

except smtplib.SMTPException, arg:
print "Server could not send mail", arg

Since it's entirely possible that the transmission will generate exceptions, it's always safest to allow
for them.

The sample code in this presentation isn't the best example of defensive programming, but the
slides would have been rather too busy if all possible exceptions had been handled.

At least it does report both partial and total failure.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 53

Steve Holden - LinuxWorld, January 20, 2004

Using poplib

• p = poplib.POP3(host[, port])

– Creates a POP object with given
connection parameters

• p.user(username)

– Provide username to server
• p.pass_(password)

– Provide password to server
• p.stat()

– Returns (# of msgs, # of bytes)

POP is probably the most popular mail user agent protocol. IMAP is coming up fast, but it's a much
more complex protocol, and well outside the scope of anything shorter than a book.

Once you have connected to a server and authenticated yourself, you can find out how much mail is
waiting in your mailbox.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 54

Steve Holden - LinuxWorld, January 20, 2004

Using poplib (continued)
• p.retr(msgnum)

– returns (response, linelist, bytecount)
• p.dele(msgnum)

– Marks the given message for deletion
• p.quit()

– Terminate the connection
– Server actions pending deletes and

unlocks the mailbox

You then retrieve the messages one at a time, and can mark them for deletion or not, as the case
may be.

The POP protocol specifies that the mailbox doesn't get updated until the client terminates the
session. That's why you sometimes get duplicate messages when a network connection goes down
during a POP3 session.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 55

Steve Holden - LinuxWorld, January 20, 2004

poplib Example (1)
import poplib, rfc822, sys, StringIO
SRVR = "mymailserver.com"
USER = "user"
PASS = "password"
try:

p = poplib.POP3(SRVR)
except:

print "Can't contact %s" % (SRVR,)
sys.exit(-1)

try:
print p.user(USER)
print p.pass_(PASS)

except:
print "Authentication failure"
sys.exit(-2)

Again the error checking is a little vestigial, but it's important that you realise how easy it is for
Python to deal with the kind of problem that network code can generate.

At the end of this first page of the code, p is an authenticated POP3 connection waiting and ready
to go.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 56

Steve Holden - LinuxWorld, January 20, 2004

poplib Example (2)
msglst = p.list()[1]
for m in msglst:

mno, size = m.split()
lines = p.retr(mno)[1]
print "----- Message %s" % (mno,)
file = StringIO.StringIO(

"\r\n".join(lines))
msg = rfc822.Message(file)
body = file.readlines()
addrs = msg.getaddrlist("to")
for rcpt, addr in addrs:

print "%-15s %s" % (rcpt, addr)
print len(body), "lines in message body"

print "-----"
p.quit()

The server returns a list of message descriptions as the second element of the result of the list()
method. The for loop iterates over this list of message descriptions to process the whole content of
the mailbox.

Each message description is itself made up of a message number and a size. These are saved in an
unpacking assignment, and the message number is used to retrieve the message. The message is
reconstituted as a file-like StringIO object to allow it to be parsed using the standard rfc822
library (more modern code would use the email library).

Some of the message's details are then printed out. This shows you how easy it is to handle email in
Python – a complete mailbox processor in less than thirty lines of code!

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 57

Steve Holden - LinuxWorld, January 20, 2004

Using ftplib
• f = ftplib.FTP(host[,user[,passwd[,acct]]])

– Creates an FTP object
• f.dir(directory)

– Send directory listing to standard output
• f.cwd(directory)

– Change to given directory
• f.mkd(directory)

– Create directory on server
• f.pwd()

– Returns current directory on server

FTP is a rather more complex protocol, so the coverage here is limited to the bare essentials.

I focus on the things that I found most difficult to comprehend when I was a Python beginner.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 58

Steve Holden - LinuxWorld, January 20, 2004

Using ftplib (continued)
• retrbinary(command, callback[,

maxblocksize[, rest]])

– Retrieve a file in binary mode
– command - an FTP command

• E.g. "RETR myfile.dat"
– callback - processes each block
– maxblocksize – how much data per block
– rest – restart position

The retrieval methods use a callback paradigm – you call the retrieval method, providing a callback
function which the method's code will call whenever it has data to dispose of. The callback can be a
plain function, or any other Python callable.

When binary files are transferred then typically the callback will be a function (or the bound
method of an object) that writes each chunk out to a local file as it is received.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 59

Steve Holden - LinuxWorld, January 20, 2004

Using ftplib (continued)
• f.retrlines(command[, callback])

– Retrieves a file in text mode
– command - an FTP command

• E.g. "RETR myfile.txt"
– callback - processes each line as an argument

• Default callback prints line to standard output
• f.storlines(command, file)

– Sends content of file line-by-line
• f.storbinary(command, file, blocksize)

– Sends content of file block-by-block

Text retrieval is similar to binary retrieval, with the exception that the callback is actiavted for each
received line.

The storage methods use a file that you have already opened to provide the transfer content, and
simply read the file as appropriate and necessary.

One of the weaknesses of the FTP module is that you have to know enough about the FTP protocol
to be able to formulate the commands to the server, which isn't strictly necessary. There's a more
complicated FTP example at

http://www.holdenweb.com/Python/PDCode/ftpStream.py

This shows transfers of different sizes, and explains how it's relatively easy to layer the behavior
you want over a Python library whose interface isn't convenient for you.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 60

Steve Holden - LinuxWorld, January 20, 2004

Abbreviated ftplib Example
class Writer:

def __init__(self, file):
self.f = open(file, "w")

def __call__(self, data):
self.f.write(data)
self.f.write('\n')
print data

FILENAME = "AutoIndent.py"
writer = Writer(FILENAME)
import ftplib
ftp = ftplib.FTP('127.0.0.1', 'book',

'bookpw')
ftp.retrlines("RETR %s" % FILENAME, writer)

A rather simple example, but at least it shoes you how you can use the library to perform real
work. Note that a Writer instance is callable – what actually gets called is its __call__()
special method.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 61

Steve Holden - LinuxWorld, January 20, 2004

HTTP and HTML Libraries
• Python applications are often web-based
• htmllib, HTMLParser – HTML parsing
• httplib – HTTP protocol client
• urllib, urllib2 – multiprotocol client
• SimpleHTTPServer, CGIHTTPServer –
SocketServer-based servers

• cgi, cgitb – CGI scripting assistance
• Various web samples also available

There's a large variety of web-related libraries. Many of the techniques you need are the same as
those used in the earlier examples.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 62

Steve Holden - LinuxWorld, January 20, 2004

Using urllib
• f = urllib.urlopen(URL)

– Create file-like object that allows you to
read the identified resource

• urlretrieve(url[, filename[,
reporthook[, data]]])

– Reads the identified resource and store it
as a local file

• See documentation for further details

• This is very convenient for interactive use

The urllib code can handle just about anything that a modern browser can handle, though it isn't
going to support secure communications any time soon. You need urllib2 for that.

Ongoing efforts in the Python community continue to try to make web services more accessible.
There are also SOAP libraries, and lots of XML handling code of various types.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 63

Steve Holden - LinuxWorld, January 20, 2004

Interactive urllib Session
>>> import urllib
>>> f = urllib.urlopen("http://www.python.org/")
>>> page = f.read() # treat as file to get body
>>> len(page)
14790
>>> h = f.info()
>>> h.getheader("Server")
'Apache/1.3.26 (Unix)'
>>> h.getheaders("Date")
['Thu, 29 May 2003 15:07:27 GMT']
>>> h.type
'text/html'

• Useful for testing & quick interactions

The interactive interpreter is a very easy way to find out how the various modules work., and you
are encouraged to try things out to assist your understanding from the documentation.

Here we see a simple exposition of urllib.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 64

Steve Holden - LinuxWorld, January 20, 2004

Using urllib2
• urllib has limitations - difficult to

– Include authentication
– Handle new protocols/schemes

• Must subclass urllib.FancyURLOpener and
bind an instance to urllib._urlopener

• urllib2 is intended to be more flexible
• The price is added complexity

– Many applications don't need the
complexity

The newer library is better organized, which means it is more flexible (for example, people have
managed to handle https communications with it), but this makes it correspondingly more difficult
to use.If urllib can handle your needs it's the best option for a quick solution. For a better-
engineered solution, however, you will find urllib2 more satisfactory.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 65

Steve Holden - LinuxWorld, January 20, 2004

urllib2.Request Class
• Instance can be passed instead of a URL

to the urllib2.urlopen() function
• r = Request(url, data=None, headers={})

– r.add_header(key, value)

• Can only add one header with a given key
– r.set_proxy(host, scheme)

• Sets the request to use a given proxy to
access the given scheme

– r.add_data(data)

• Forces use of POST rather than GET
• Requires http scheme

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 66

Steve Holden - LinuxWorld, January 20, 2004

Serving HTTP
• Several related modules:

– BaseHTTPServer defines
•HTTPServer class
•BaseHTTPRequestHandler class

– SimpleHTTPServer defines
• SimpleHTTPRequestHandler class

– CGIHTTPServer defines
• CGIHTTPRequestHandler class

• All request handlers use the standard
HTTPServer.BaseHTTPRequestHandler

All the core Python web servers are based on the same server code.

The facilities of the server are enhanced by adding methods to the request handlers.

For example, to handle POST requests the handler has to provide a do_post method.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 67

Steve Holden - LinuxWorld, January 20, 2004

The Simplest Web Server …
import CGIHTTPServer, BaseHTTPServer
httpd = BaseHTTPServer.HTTPServer(('', 8888),

CGIHTTPServer.CGIHTTPRequestHandler)
httpd.serve_forever()

• Uses the basic HTTP server class
• Request handler methods implement the

HTTP PUT/GET/HEAD requests
• Yes, this really works!

When I first published this code, sombody mailed me to compain that writing a web server couldn't
possibly be that simple! It does seem quite amazing that three (logical) lines of code will get you
on the web.

The Python tutor group spent some time playing with this code. It was fascinating for language
beginners to be able to test their own web content with such a small piece of code. Although the
server has some limitations it's ideal for local use. Your browser gets to do real HTTP (1.0)
interactions!

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 68

Steve Holden - LinuxWorld, January 20, 2004

Standard CGI Support
• cgi module provides input handling
• Recent (2.2) changes make things easier

– cgitb module traps errors
• Easier to diagnose problems

– Gives complete Python traceback

– Situation previously complicated by
differences in multi-valued form inputs

• Had to check, and program different actions
(string vs list)

• Python is excellent for producing HTML!

The code of the CGI module is rather complicated, mostly because of the need to maintain
backward compatibility with older versions and because it needs to handle the rare complexity of
forms with client-side files embedded.

Since this complexity isn’t needed by most applications, I focus on the bits you will need most of
the time. Again, you will find that you can write CGI code quite easily in Python under a variety of
web servers – the beauty of a standard environment!

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 69

Steve Holden - LinuxWorld, January 20, 2004

The cgi.FieldStorage Class
• Makes web client's input accessible

– Consumes input, so only instantiate once!
– Handles method GET or POST
– Optional argument retains blank values

• f.getfirst(name, default=None)

– Returns first (only) input value with given
name

• f.getlist(name)

– Returns a list of all values with given
name

Strictly speakling, each value stored in the FieldStorage can be another instance of
FieldStorage. Often it will instead be an instance of the (signature-compatible but considerably
less complex) MiniFieldStorage class, internal to the cgi module.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 70

Steve Holden - LinuxWorld, January 20, 2004

Error Handling
• Should use for all CGI scripts!

import cgitb; cgitb.enable()

• Traps any errors, producing legible trace

There's nothing worse than a mysterious web application error that just produces a blank page.
Unfortunately this can often be what the user sees if you just let a Python failure generate a
traceback on standard error – the traceback gets recorded in the server logs, but this isn't ideal,
especially when the server isn't directly under your control.

The cgitb module saves you from such embarrassments. Here you see the traceback from a
deliberately-provoked divide-by-zero error, somewhat truncated for space reasons.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 71

Steve Holden - LinuxWorld, January 20, 2004

Sample CGI Script
#!/usr/bin/python
import cgi, cgitb; cgitb.enable()
fields = ["subnum", "reviewer", "comments"]

form = cgi.FieldStorage()
vlist = []
for f in fields:

vlist.append("%s=%s" % (f, form.getfirst(f)))

print pgtmpl = """Content-Type: text/html

<html><head><title>Hello!</title></head>
%s
</body></html>
""" % "
".join(vlist)

This is about as short and simple as a CGI can be. It dumps the value of three named form fields to
the page output.

Note that like all CGIs it has to produce appropriate HTTP headers. The Python triple-quote
notation is very useful for generating string constants with multi-line values.

You also see here a couple of examples of string formatting, modelled after the UNIX C library's
sprintf family of functions. The left-hand operand of the % operator is the format string, the
right-hand operand is a tuple of values to be substituted. If you only have one value for substitution
you don't even need to use a tuple, as the second example at the end of the code shows.

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 72

Steve Holden - LinuxWorld, January 20, 2004

Course Summary
• Reviewed principles of networking
• Contrasted TCP and UDP features
• Shown how Python programs access

networking functionality
• Given examples of client and server program

structures
• Demonstrated some Python network libraries
• Given pointers to other network functionality

Python Network Programming LinuxWorld, New York, January 20, 2004

Steve Holden, Holden Web LLC 73

Steve Holden - LinuxWorld, January 20, 2004

Need more training?
Want to offer feedback?

Need help with a Python project?
Got budget?

Get in touch:

sholden@holdenweb.com

If you have been, thanks for listening!

Other sources of information and assistance to Python users:

I spend a lot of time explaining technologies, many of them open source, and helping clients to
implement them to solve their problems.

If I can help you, or if you have further questions, please feel free to mail me at

sholden@holdenweb.com

More background on socket programming in
Python

http://www.amk.ca/
python/howto/sockets/

Mailing list especially for learnerstutor@python.org

Relatively friendly newsgroup/mailing list with
a very inventive and helpful readership

comp.lang.python, or
python-
list@python.org

Main Python web site and a pointer to many
other useful resources

www.python.org

