
1

TCP/IP: sniffing, ARP attacks, IP

fragmentation

Network Security

Lecture 3

Recap and overview

Last time

• TCP/IP

• IP

• Ethernet

• ARP

Today

• Attacks

• Sniffing

• Spoofing

• Hijacking (ARP)

• Tools/libraries

• Libnet, libpcap

• TCP/IP

• Fragmentation

Eike Ritter Network Security - Lecture 3 2

Exercise

• Alice (192.168.1.1) wants to send an IP datagram
to Bob (192.168.1.2)

• What happens? (fill in the blanks)

Eike Ritter Network Security - Lecture 2 3

Alice Bob

LAN attacks

Attack Security violation Attacker goal

Sniffing Confidentiality Access to information

Spoofing Authenticity Impersonation of trusted host

Hijacking Confidentiality,

Integrity, Authenticity

Impersonation, access to information

Denial of Service Availability Disruption

Eike Ritter Network Security - Lecture 2 4

Network sniffing

• The attacker sets his/her network interface in
promiscuous mode so that all packets can be received
(not only those directed to the attacker’s host)

• Can access all the traffic on the segment

• Note: sniffing on University network is a “disciplinary
offence”

Eike Ritter Network Security - Lecture 2 5

Network sniffing

• Many protocols (e.g., POP, TELNET, HTTP,

IMAP) transfer sensitive information (e.g.,

authentication credentials) in the clear

• By sniffing the traffic, it is possible to collect

credentials, files, content of visited web

pages, emails, etc.

• Many tools available

Eike Ritter Network Security - Lecture 2 6

2

tcpdump

• Tool to sniff and analyze the traffic on a network
segment

• One of the “standard” network tools

• Based on libpcap, which provides a platform-
independent library and API to perform traffic
sniffing

• Allows one to specify an expression that defines
which packets have to be printed

• Requires root privileges to set the interface in
promiscuous mode (regular users can read traffic
data saved in a file)

Eike Ritter Network Security - Lecture 2 7

tcpdump: command line options

• -i: use the given network interface

• -r: read packets from a file

• -w: write packets to a file

• -s: specify the amount of data to be sniffed for

each packet (0 means catch whole packets)

• -n: do not convert addresses to names

• -x: print the data of each packet in hex

Eike Ritter Network Security - Lecture 2 8

tcpdump: filters

• If a filter expression is provided, tpcdump only

processes packets matching the expression

• Expression consists of one or more primitives

• Primitives are composed of a qualifier and a

value

• Operators can be used to create complex filter

expressions

Eike Ritter Network Security - Lecture 2 9

tcpdump filters – cont’d

Qualifiers

• Type

• host (host 192.168.0.1)

• net (net 192.168)

• port (port 80)

• Dir: direction of traffic

• src (src host 192.168.0.1)

• dst

• Proto: protocol of interest

• Ether (ether src host
00:0c:29:ab:2c:18)

• ip

• arp

Operators

• Logical: and, or, not
• src host 192.168.0.01 and

dst host google.com

• Relational: <, >, >=, <=, =, !=

• Binary: +, -, *, /, &, |

• Data: proto[expr:size]
• expr: offset

• size: # bytes of interest

• ip[0] & 0xf > 5: filters IP
datagrams with options

• arp[7] = 2: ARP replies

Eike Ritter Network Security - Lecture 2 10

Wireshark

Eike Ritter Network Security - Lecture 2 11

Detecting sniffers

• Sniffers work by putting the network interface in promiscuous mode

• Ifconfig (BSD Unix/Apple Output)
• $ ifconfig en1

en1:flags=8963<UP,BROADCAST,SMART,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu
1500

ether d8:a2:5e:ab:cd:ef
inet 10.4.59.191 netmask 0xffff0000 broadcast 10.4.255.255
media: autoselect
status: active

• On recent Linux versions, this will not (always) work due to changes in
how the state of the interface is maintained in the kernel that have not
been ported back to tools
• Instead, read interface flags from /sys filesystem

• If flags & 0x100 then interface is in promiscuous mode (/include/linux/if.h)
cat /sys/class/net/eth0/flags
0x1003
tcpdump –i eth0 &
cat /sys/class/net/eth0/flags
0x1103

Eike Ritter Network Security - Lecture 2 12

3

Detecting sniffers – cont’d

• Remote detection is difficult since sniffers are typically passive programs

• Suspicious DNS lookups
• Sniffer attempts to resolve names associated with IP address (e.g., tcpdump

without –n option)

• Generate traffic to/from IP addresses and detect attempts to resolve their
names

• $ ping 173.194.37.104
16:27:38.657863 IP 172.16.48.130 > 173.194.37.104: ICMP
echo request, id 21009, seq 1, length 64
16:27:38.659014 IP 172.16.48.139.57105 > 172.16.48.2.53:
20764+ PTR? 104.37.194.173.in-addr.arpa. (45)

• Latency
• Since NIC is in promiscuous mode, it will need to process every packet

• Analyze response time of host A (e.g., sending ping packets)

• Generate lots of traffic to other hosts and analyze response time of host A

Eike Ritter Network Security - Lecture 2 13

IP spoofing

• A host impersonates another host by sending a datagram
that has the address of some other host as the source
address

• The attacker sniffs the network looking for replies from the
attacked host

• Replies would be directed to the spoofed host

Eike Ritter Network Security - Lecture 3 14

192.168.0.1192.168.0.3 192.168.0.2

From: 192.168.0.1 Response to spoofed datagram

IP spoofing goals

• Impersonate sources of security-critical

information (e.g., a DNS server or an NFS

server)

• Exploit address-based authentication

• Many tools available

Eike Ritter Network Security - Lecture 3 15

Hijacking

• Sniffing/Spoofing are the bases for hijacking

• The attacker waits for an client request

• Then, races against the legitimate host to

produce a reply that will be accepted by the

client

• ARP, UDP, and TCP-based variations of this

attack

Eike Ritter Network Security - Lecture 3 16

Hijacking ARP

• ARP does not provide any means of authentication

• Racing against the queried host it is possible to provide
a fake IP address/link-level address mapping

• Fake ARP queries can be used to store wrong ARP
mappings in a host cache, in certain configurations

- In Linux, /proc/sys/net/ipv4/conf/*/arp_accept should be
set to 1

• In both cases, the net effect is the redirection of traffic
to the attacker

• Denial of service (DoS)

• Man-in-the-middle attack (MITM)

Eike Ritter Network Security - Lecture 3 17

Hijacking ARP

Eike Ritter Network Security - Lecture 3 18

host1: 192.168.0.1

00:30:48:de:0b:3a

Host3: 192.168.0.3

00:30:48:dd:ec:2b

host2: 192.168.0.2

00:30:48:dd:ec:12

ARP request
Legitimate

ARP response

Spoofed ARP reply

4

Switched Ethernet

• Switched Ethernet does not allow direct sniffing

• ARP spoofing can be used to bypass this protection

• MAC flooding
• Switches maintain a table with MAC address/port mappings

• In some cases, flooding the switch with bogus MAC addresses
will overflow table memory and revert the behavior from
“switch” to “hub”

• MAC spoofing
• Reconfigure the host to have the same MAC address as the

machine whose traffic you're trying to sniff

• The switch will record this in its table and send the traffic to you

Eike Ritter Network Security - Lecture 3 19

Capturing and forging packets

Libpcap

• Library to sniff network

traffic

• Allows to easily filter and

process packets

• http://www.tcpdump.org/

• Good tutorial:

http://www.tcpdump.org/p

cap.html

libnet

• Library to forge packets

• Useful to send raw or
malformed packets

• https://github.com/sam-
github/libnet

• Good tutorial:
http://repura.livejournal.com/
31673.html

• Documentation:

• http://libnet.sourcearchive.co
m/documentation/1.1.2.1-4/

Eike Ritter Network Security - Lecture 3 20

libpcap

• pcap_lookupdev

• Finds a device to sniff from

• pcap_open_live

• Opens a device (returns a handle)

• pcap_compile and pcap_setfilter

• Compile a tcpdump-like traffic filter and applies it

• pcap_loop

• Registers a callback to be invoked for every
received packet

Eike Ritter Network Security - Lecture 3 21

libpcap

• void pcap_handler(u_char *user, const struct
pcap_pkthdr *hdr, const u_char *pkt)

• The pcap packet header (hdr) contains basic information
about the packet
• When it was captured (ts)

• The length of the portion that was captured (caplen)

• The length of the packet (len)

• The actual packet (pkt) is returned as a pointer to memory

• Packets can be parsed by “casting” it to appropriate
protocol-specific structures

• Remember that endianness is important!
• ntohs, ntohl

• htons, htonl

Eike Ritter Network Security - Lecture 3 22

libnet

• libnet_init
• Initializes the library

• libnet_autobuild_ethernet
• Builds ethernet header

• libnet_autobuild_arp

• libnet_autobuild_ipv4

• libnet_build_tcp

• …

• libnet_write
• Writes packet to wire

• Libnet_clear_packet
• Clears current packet

Eike Ritter Network Security - Lecture 3 23

IP fragmentation

• When a datagram is encapsulated in lower level
protocols (e.g., Ethernet) it may be necessary to split
the datagram in smaller portions

• Link layer specifies a Maximum Transmission Unit
(MTU): the size in bytes of the largest data unit that
can be transferred on the layer

• If datagram size is bigger than MTU, then
fragmentation

• Fragmentation can be performed at source host or at
an intermediate step in the datagram delivery

• If the datagram has the “don’t fragment” flag set, an
ICMP error message is sent back to the source host

Eike Ritter Network Security - Lecture 3 24

5

IP fragmentation

Eike Ritter Network Security - Lecture 3 25

Version HL ToS Total length

Identifier Flags Fragment offset

Time To Live Protocol Header checksum

Source IP address

Destination IP address

Options Padding

0 4 8 12 16 20 24 28 31

Flags:

• bit 0: reserved

• bit 1: don’t fragment (DF)

• bit 2: more fragments (MF)

IP fragmentation

• If datagram can be fragmented

• Header is copied in each fragment

• The MF flag is set in all fragments except the last one

• The fragmentation offset field contains the position of the
fragment with respect to the original datagram (as 8-byte
units)

• Total length field is adjusted to match the fragment size

• Each fragment is delivered as a separate datagram

• If one fragment is lost, entire datagram is discarded

Eike Ritter Network Security - Lecture 3 26

IP fragmentation

$ ifconfig en1

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

$ ping –c1 –s 1472 192.168.0.1

00:00:00.000000 IP (tos 0x0, ttl 64, id 43907, offset 0, flags [none], proto ICMP (1), length
1500) 192.168.0.100 > 192.168.0.1: ICMP echo request, id 9497, seq 0, length 1480

$ ping –c1 –s 1473 192.168.0.1

00:00:45.969839 IP (tos 0x0, ttl 64, id 35311, offset 0, flags [+], proto ICMP (1), length
1500) 192.168.0.100 > 192.168.0.1: ICMP echo request, id 20249, seq 0, length 1480

00:00:00.000708 IP (tos 0x0, ttl 64, id 35311, offset 1480, flags [none], proto ICMP (1),
length 21) 192.168.0.100 > 192.168.0.1: icmp

$ ping –c1 –s 1473 –D 192.168.0.1

ping: sendto: Message too long

$ ping -c1 -s 1472 -D www.google.com

PING www.l.google.com (74.125.230.83): 1472 data bytes

36 bytes from adsl211-220.aknet.it (194.242.211.220): frag needed and DF set (MTU 1492)

00:00:18.349153 IP (tos 0x0, ttl 64, id 24038, offset 0, flags [DF], proto ICMP (1), length
1500) 192.168.0.100 > 74.125.230.83: ICMP echo request, id 28185, seq 0, length 1480

00:00:00.056466 IP (tos 0xc0, ttl 63, id 24038, offset 0, flags [none], proto ICMP (1), length
56) 194.242.211.220 > 192.168.0.100: ICMP 74.125.230.83 unreachable - need to frag (mtu
1492), length 36

Eike Ritter Network Security - Lecture 3 27

IP fragmentation attacks:

ping of death
• The offset of the last

fragment is such that

the total size of the

reassembled datagram

is bigger than the

maximum allowed size

• Static buffer in the

kernel is overflowed,

causing a kernel panic

• Circa 1998

Eike Ritter Network Security - Lecture 3 28

The Linux 2.0.24 patch:

/*

* Attempt to construct an

* oversize packet.

*/

if(ntohs(iph->tot_len) +

(int)offset > 65535)

{

skb->sk = NULL;

frag_kfree_skb(skb,

FREE_READ);

ip_statistics.IpReasmFails++;

return NULL;

}

IP fragmentation attacks:

evasion
• Firewalls and intrusion detection systems analyze

incoming datagrams using the information contained
in both the datagram header and the datagram
payload (TCP ports, UDP ports, SYN and ACK flags in
the TCP header)

• An attacker may use fragmentation to avoid filtering
• Some firewalls may make a decision on the first fragment

and let the other fragments through (based on the
datagram ID)

• Payload data can be divided in multiple fragments
• Setup flags can be postponed in successive fragments

• Setup flags (SYN/ACK) can be overwritten by using overlapping
fragments

Eike Ritter Network Security - Lecture 3 29

IP fragmentation attacks:

evasion

• An attacker may use fragmentation to avoid

detection

• Some intrusion detection systems (IDS) may not

reassemble datagrams

• An IDS may reassemble datagram differently than

target system

• Tools exist to fragment traffic in different

ways

• http://monkey.org/~dugsong/fragroute/

Eike Ritter Network Security - Lecture 3 30

6

Eike Ritter
Network Security -
Lecture 3

IP indirect delivery

(routing)
We have already seen direct delivery

If two hosts are in different physical networks the
IP datagram is encapsulated in a lower level
protocol and delivered to the directly connected
gateway

The gateway decides which is the next step in the
delivery process

This step is repeated until a gateway that is in the
same physical subnetwork of the destination host
is reached

Then direct delivery is used

Eike Ritter Network Security - Lecture 3 31 Eike Ritter
Network Security -
Lecture 3

IP indirect delivery

(routing)

Eike Ritter Network Security - Lecture 3 32

Host1: 194.242.211.220

aa:bb:cc:dd:ee:ff

host2: 147.188.193.15

11:22:33:44:55:66

gw1: 194.242.211.1

a0:b0:c0:d0:e0:f0

From: aa:bb:cc:dd:ee:ff

To: a0:b0:c0:d0:e0:f0

gw2: 147.188.193.1

a1:b1:c1:d1:e1:f1

From: 194.242.211.220

To: 147.188.193.15

From: a1:b1:c1:d1:e1:f1

To: 11:22:33:44:55:66

• Src and dst IP addresses are

the same at every hop

• Link layer address changes at

every hop

• TTL field is decreased at

every hop

Eike Ritter
Network Security -
Lecture 3

Routing

Hop-by-hop routing

The delivery route is determined by the gateways

that are traversed in the delivery process

Source routing

The sender (source of datagram) specifies a partial

or complete list of gateways the datagram must

pass through in sequence before being delivered

to destination (IP option)

Eike Ritter Network Security - Lecture 3 33 Eike Ritter
Network Security -
Lecture 3

Hop-by-hop routing

The information needed to deliver datagram to next hop
is stored in the routing table
$ netstat –rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt
Iface
172.16.48.0 0.0.0.0 255.255.255.0 U 0 0 0
eth0
0.0.0.0 172.16.48.2 0.0.0.0 UG 0 0 0
eth0

Flags
U: route is up

H: target is host

G: use gateway

D: dynamically installed by daemon or redirect message

M: modified by daemon or redirect message

Eike Ritter Network Security - Lecture 3 34

Eike Ritter
Network Security -
Lecture 3

Hop-by-hop routing

Search for a matching host address

Search for a matching network address

Search for a default entry

If a match is not found a message of “host
unreachable” or “network unreachable” is
returned (by the kernel or by a remote gateway
by using ICMP)

Routing tables can be set
Statically, at boot or by using route command

Dynamically, using routing protocols

Eike Ritter Network Security - Lecture 3 35 Eike Ritter
Network Security -
Lecture 3

Source routing

Type Length Pointer Route[]

Eike Ritter Network Security - Lecture 3 36

0 7 15 23 31…

• Type:

• 131 Loose Source and Record Route (LSRR)

• 137 Strict Source and Record Route (SSRR)

• Length: total length of the option

• Pointer: pointer into the route data (4, 8, etc.)

• Route data: array of IP addresses

SS R1R1 R2R2 R3R3 DD

dst = D

[#R1,R2,R3]

dst = R1

[#R2,R3,D]

dst = R2 dst = R3 dst = D

[R1,#R3,D] [R1,R2,#D] [R1,R2,R3#]

7

Eike Ritter
Network Security -
Lecture 3

Source routing

• Frequently blocked
by routers

• Perfect for spoofing
attacks
– alice: 1.1.1.1
– bob: 2.2.2.2
– malice: 6.6.6.6

• Malice sends a
datagram with alice’s
spoofed source address
(1.1.1.1) to bob (2.2.2.2)
and specifies malice’s
gateway (6.6.6.1) in the
source routing list

• When bob responds, its
data passes through
malice’s gateway

Eike Ritter Network Security - Lecture 3 37

$ traceroute www.google.co.uk

traceroute to www.google.co.uk

(173.194.37.104), 30 hops max, 40

byte packets

1 rita-rw (147.188.193.6) 1.455

ms 1.401 ms 1.372 ms

...

16 lhr14s02-in-f104.1e100.net

(173.194.37.104) 9.097 ms 9.556 ms

9.522 ms

$ traceroute –g 147.188.193.6

www.google.co.uk

1 * * *

...

30 * * *

