66 - DNS - Domain Name Service

- What is DNS: Domain Name Service
- Resolution of:

```
HostName --->IP Number Forward resolving
IP ---->HostName Reverse Resolving
```

- Distributed Database of
 - hostnames
 - Ip Addresses
 - Hosts hardware information
 - Sub-Domain DNS addresses
- · What are Domains
 - Host Name System in a similar hierarchy as a <u>UNIX file system</u>.
 Difference is that expression of names are in the <u>reverse order</u> as with a path in a file system.

```
eg. UNIX File system: /usr/local/httpd/htdocs/gif/
Domain names: phd.math.berkley.edu.
```

- Access hiearchy of DNS servers in internet
- 1.- nodes: eg. berkley.edu (see Oreilly Page 24)
- 2. domain: eg. berkley.edu and all its sub sub-nodes and sub-domains
- 3.- zones: Part of domain served authoritatively from a name server
- Domains hiearchy:
 - root domain '.'
 - SubDomains or Domains can contain hosts and (sub)domains
 - Sometimes name is terminated by '.', it is said to be absolute name (used by some software)
 - Fully Qualified Domain Name (FQDN)
 - Root Name Servers 13 of them) are responsible for Top Level Domains (.com .de .org .net .fr .uk etc)
 - 1 in PSINet (commercial Internet Backbone)
 - 1 in NASA (National American Space Agency)
 - 2 in Europe
 - 1 in Japan

Name -> IP Address resolving Sequence in Linux system:

- If destination host is seen as a name instead of an IP then the resolver of the local system is asked to resolve the name.
- 2. The /etc/host.conf is read to know the sequence of search:

 Note: /etc/nsswitch has a similar function but has more flexibility to define
 the order of search for each specific service. host.conf is fading out slowly.
 In SuSE this file is only available in packet ypserv(NIS services)

most used entries in /etc/host.conf

```
order hosts, bind, nis Order of name -> IP search
(Berkley Internet Name Domain software)
multi on Allows to return multiple host addresses for one
hostname if they are present in /etc/hosts
```

less used entries in /etc/host.conf

```
nospoof on After name-->IP, do IP--> name then compare if names don't match, NS query fails
```

spoofalert on If above nospoof is on and names don't match then error message is logged through syslog.

(see man host.conf for more information about entries)

- 3. If <u>order hosts</u> is in /etc/host.conf then /etc/hosts is searched through for name resolution.
- 4. Entries in /etc/nsswitch.conf (Example)

```
# An example Name Service Switch config file. This file should be
# sorted with the most-used services at the beginning.
# The entry '[NOTFOUND=return]' means that the search for an
# entry should stop if the search in the previous entry turned
# up nothing. Note that if the search failed due to some other reason
# (like no NIS server responding) then the search continues with the
# next entry.
# Legal entries are:
                         Use compatibility setup
#
       compat
       nisplus
                               Use NIS+ (NIS version 3)
#
#
       nis
                               Use NIS (NIS version 2), also called
ΥP
      dns
                              Use DNS (Domain Name Service)
#
      files
                              Use the local files
                              Use the /var/db databases
      [NOTFOUND=return] Stop searching if not found so far
# For more information, please read the nsswitch.conf.5 manual page.
passwd:
group:
hosts:
             compat
            compat
             files lwres dns
hosts:
networks:
             files dns
             files
files
services:
protocols:
            files
ethers:
             files
```

netmasks: files
netgroup: files
publickey: files
bootparams: files
automount: files nis

5. If name is not found in /etc/hosts

```
and order hosts, bind is in /etc/host.conf
then /etc/resolv.conf file is read to get first name server IP.
nameserver 123.456.789.123
nameserver 123.456.789.124
nameserver 123.456.789.125
#domain linux.local (almost same as search. Deprecated)
search linux.local linux.home
(Domains added to names without '.')
```

- 6. This DNS server is then contacted
 - if DNS is alive then answer is expected fom it.
 - if DNS is NOT alive then <code>/etc/resolv.conf</code> is read for another nameserver IP address. (up to 3 nameserver possible)

 (See next section for Full DNS Queries sequence)
- 7. If resolver comes back from /etc/hosts or <u>DNS</u> with an IP Addr. then client program makes its service request to this IP. Address.
- Full DNS Queries sequence: (see O'reilly page 28)
 - Program ------joe.foo.de-----> Local Host Resolver
 - Local Host Resolver <-----NOT FOUND in /etc/hosts
 - Local Host Resolver---recursive -joe.foo.de----> DNS-1
 - DNS-1 -----iterative -- joe.foo.de ---> Root DNS
 - DNS-1 <-----Root DNS
 - DNS-1 -----iterative--joe.foo.de ---> DNS-of.de
 - DNS-1 <---DNS-name and addr. of foo.de----DNS-of .de
 - DNS-1 ---<u>iterative</u>--joe.foo.de -----> DNS-of foo.de
 - DNS-1 <-----ANSWER of Host addr-----DNS-of foo.de
 - Local Host Resolver<---joe.foo.de=IP.ADDR----> DNS-1
 - Program <----joe.foo.de=IP.Addr---Local Host Resolver
- Recursive and Iterative (non-recursive) queries

Recursive: Ask the DNS to resolve the name and return ONLY with a final answer.

Normally made by:

Resolvers to DNS
or by DNS to forwarders DNS.

Iterative: Ask the DNS to either return with a final answer

or a list of DNS-addresses who might know the answer.

Normally made by: DNS to DNS.

What is Source Of Authority(SOA) in DNS

- When a DNS is responsible for keeping the main database of a domain, it is said that he is Source Of Authority for this domain.
 - If he gives the responsability to keep the database of one of his sub-domains to anothe DNS server that this scond DNS will be **S**ource **O**f **A**uthority for this sub-domain. In other words he has Authority to that Name Resolution system for this sub-domain.
- <u>Slaves</u> for the main server can also have authority on the same domain since they normally always have an intact copy of the main database.

DNS Clients setup

- Enter the DNS adresses in the /etc/resolv.conf eq.

```
search linux.local
nameserver 192.168.100.133
nameserver 194.25.0.52
nameserver 194.25.0.60
```

Liste of Deutsche DNS found at:

www.fli41.de/german/extern/docu/stable/doc/deutsch/html/skap.html

DNS Server Setup

- Install package bind9 and bind9-utils
- Files involved:

-Editing /etc/named.conf File:

- Server options section
- Localhost and Root servers zones section
 - '.' root servers zone
 - localhost forward zone
 - localhost reverse zone
- Domaine Zones sections

- Forward master zones
- Reverse master zones
- Forward slave zones
- Reverse slave zones

Cache only DNS (Bind 8/9)

• Cache only DNS (Bind 4)

/etc/named.root:

```
directory /var/lib/named

cache
primary localhost localhost.zone
primary 0.0.127.in-addr.arpa 127.0.0.zone

forwarders 172.16.2.1 172.16.2.2
```

Example of master /etc/named.conf

```
# overall options of the server section
options {
         directory "/var/named";
          # the default is to fail,
          # if the master file is not correct
         check-names master warn;
          # checks in the master zone
          # if the hostname is valid in the client's context.
         pid-file "/var/run/named.pid";
         datasize default;
         stacksize default;
         coresize default;
         files unlimited;
         recursion yes;
         multiple-cnames no;
         #The forwarders are used if answer not found locally
         forwarders { 212.185.252.9; 194.25.0.125; };
};
# defining an additional ACL:
acl can_download { localnets; };
# Root servers zone
zone "." in {
        type hint;
        file "root.hint";
};
# Localhost forward zone
zone "localhost" in {
         type master;
         file "localhost.zone";
         check-names fail;
         allow-update { none; };
};
# Localhost reverse zone
zone "0.0.127.in-addr.arpa" in {
         type master;
          file "127.0.0.zone";
         check-names fail;
         allow-update { none; };
};
# Forward master zone (includes 2 subnets in this example)
zone "stars.priv" in {
         type master;
         file "stars.priv.zone";
         notify yes;
                                     };
# Reverse master zone
zone "10.168.192.in-addr.arpa" in {
         type master;
         file "192.168.10.zone";
         notify yes;
};
```

Syntax of named database files

(see page 77 of POSTFIX manual)

- 1. Coments are starting with ';'
- 2. Each empty line should be closed with ';'. No real empty lines allowed
- 3. Except for the StartOfAuthority record each record is on one line.
- 4. Records types:

[TTL] is optional and is in seconds. [class] is normally always IN (internet)

Start Of Authority Record (SOA)

domainname [TTL] [class] SOA origin. hostmaster (extras) domainname is the domain that this DNS is Authoritative for. @ for local origin is the FQDN-hostname where the master zone Database is located including the trailing dot'.'

hostmaster is the email address of the hostmaster and replacing the @ with a dot.

eg. michel.linux.local instead of michel@linux.local

extras is the list of values like serial number, etc. all inside paraenteses set .

Name server(NS)

domainname [TTL] [class] NS ServerName

If domainname is blank, then it refers th SOA-record zone

Slaves NS declarations are needed to allow slaves updates on master restart.

Address record(A)

[FQDN-]host [TTL] [class] A IP-address If [FQDN-]host is blank, then it refers the the name in previous record.

Canonical Name record (CNAME)

nickname [TTL] [class] CNAME [FQDN-]host

Host Information (HINFO)

[FQDN-]host [TTL] [class] HINFO Hardware Software Hardware and Software are text describing them.

Mail Exchanger Record (MX)

DestinationHost [TTL] [class] MX Pref. MailServerHost DestinationHost is the mail destination host name. Blank is localhost Pref. is the preference number for MailServerhost to use Smaller numbers have priority

MailServerhost is the Mail Exchange Server to use for this destination. It MUST contain the FQDN including the trailing dot '.'

Pointer Record(PTR)

```
rev-IP.in-addr.arpa [TTL] [class] PTR HQDN-hostname.
rev-IP.in-addr.arpa is the IP in reverse order with .in-addr.arpa
HQDN-hostname. is the FQDN of the host including the last dot'.'
It MUST contain the FQDN including the trailing dot'.'
```

/var/named/stars.priv.zone Database file

```
;file /var/named/stars.priv.zone
   ; SOA Record
                                SOA=Start of Authority
   $TTL 2D
             IN SOA
                                SIRIUS root.localhost (
             2000121501
                                ; serial = Date YYYYMMDDxx
                                ; refresh = how often the slave has
             24H
                                ; to check that its data are up to date
                                ; retry=if the slave fails to reach his master,
             2Н
                                ; tries to reconnect every retry seconds
                                ; expire=if the slave fails to contact his master
             30D
                                ; for expire sec, it stops to give out his data.
                                ; minimum TTL (time to live) = the
             4D )
                                ; maximum time other servers are allowed to
                                ; cache these data
   ; NS Records
             IN NS SIRIUS ; Inet Address of name server
             IN NS MOON
                                ; Inet Address of slave name server
                                ; Inet Address of slave name server
             IN NS SUN
                                ; Slaves NS are NEEDED so that the
                                ; server updates slaves on reload/restart
   ; Address and Alias Records
            IN A
  MOON
                                192.168.2.1
            IN A
  MOON
SIRIUS IN A
IN A
  MOON
                                192.168.10.1
                                 192.168.10.10
                                192.168.10.14
            IN CNAME SIRIUS
  TSDN
           IN CNAME SIRIUS
  GLOBEALL IN CNAME SIRIUS
  VIVATION IN CNAME SIRIUS
  EARTH
           IN A
                                192.168.2.12
/var/named/192.168.10.zone:
   ; file /var/named/192.168.10.zone
   $TTL 2D
                               ; TTL 2 Days
                     SIRIUS.stars.priv. root.localhost. (
         IN SOA
               2000071501 ; serial
                           ; refresh = 86400 sec
; retry = 7200 sec
; expiry = 2592999 sec
               24H
               2H
               30D
                4D )
                           ; minimum TTL = 345600 sec
             IN NS
                               SIRIUS.stars.priv.
             IN NS
                               MOON.stars.priv.
             IN NS
                                SUN.stars.priv.
   ; PTR Record
  ï
                            MOON.stars.priv.
SIRIUS.stars.priv.
SSV046.stars.priv.
EARTH.stars.priv.
SUN.stars.priv.
             IN PTR
  10
            IN PTR
            IN PTR
  11
            IN PTR
  12
            IN PTR
  14
           IN PTR
                               BIDON.stars.priv.
  15
        IN PTR BIDON2.stars.priv.
```

Slave configuration files

```
/etc/named.conf
# a slave zone (das ist nur ein Beispiel!)
zone "stars.priv" in {
         type slave;
         file "slave/stars.priv.zone";
         masters { 192.168.10.10; };
} ;
zone "10.168.192.in-addr.arpa" in {
         type slave;
         file "slave/192.168.10.zone";
         masters { 192.168.10.10; };
};
zone "2.168.192.in-addr.arpa" in {
         type slave;
         file "slave/192.168.2.zone";
         masters { 192.168.10.10; };
};
```

Mail Exchanger MX Record:

Syntax:

```
Domainname IN MX Priority-Number hostname Examples:

stars.priv. IN MX 10 SIRIUS.stars.priv.
stars.priv. IN MX 20 MOON.stars.priv.
stars.priv. IN MX 30 SUN.stars.priv.
```

The smallest Number has the highest Priority !!!

Server stat/stop

```
rcnamed start
"" "" stop
"" "" restart
"" "" status
```

- Testing DNS with nslookup, host and dig
 - nslookup

```
>Hostname or IP-Addr.
>ls -d Domainname
>server ServerName
>help
>exit Or <Str>d
```

• host [-v] hostname Resolve the hostname.

-v = verbose, the output is like with dig.

host hostname DNS-Server

Use the DNS-Server to resolve the hostname

```
Reverse resolve the IP-Address.
  host IP-Address
  host -1 Domain
                          Show all hosts addresses of Domain.
  host -t mx Domain
                          Show Mail-Exchange-Servers of Domain
                          Shows all DNS info about the Host
  host -a Hostname
                                 like host but with more functions
• diq [@server] name [type]
  (type = any, a, mx, ns etc.)
  dig sun.linux.local
                          Resolve sun.linux.local
                          Resolve sun vom DNS-Server dozlinux
  dig @dozlinux sun
                          Show all of Domain linux.local
  dig linux.local any
                          Reverse resolve an IP-Address.
  dig -x IP-Adresse
```

Dynamic Updating of DNS

nsupdate

This utility allows to update records in the DNS dynamically.

Conditions:

- There should be No fixed records for new dynamic requests.
- The dynamically entered hosts must be from the same domain.

The examples below show how nsupdate could be used to insert and delete resource records from the <code>example.com</code> zone. Notice that the input in each example contains a trailing blank line so that a group of commands are sent as one dynamic update request to the master name server for <code>example.com</code>.

Note: If bind is in the order line in /etc/host.conf in a server then each new connection might be attempted to reverse resolve the IP of incoming client before continuing.

Updating root servers hint file root.hint:

```
cd /var/named
dig @e.root-servers.net . ns > root.hint.new
or
dig @a.root-servers.net . ns > root.hint.new
mv root.hint root.hint.old
mv root.hint.new root.hint
rcnamed restart
```

A master for one zone can also be a slave of another zone

```
#exapmle of slave zone (the master is at 192.168.71.37)
# Forward slave zone
zone "elop.temp.berlin" in {
        type slave;
        file "slave/elop.temp.berlin.zone";
        masters { 192.168.71.37; };
};
# Reverse slave zone
zone "70.168.192.in-addr.arpa" in {
        type slave;
        file "slave/192.168.70.zone";
        masters { 192.168.71.37; };
};
zone "71.168.192.in-addr.arpa" in {
        type slave;
        file "slave/192.168.71.zone";
        masters { 192.168.71.37; };
};
```

IMPORTANT NOTE:

 Make sure that the master has the IPs/Addr of all the slaves as NS records in its databases, otherwise the master won't know which slaves should be notified when a change in master occurs.

eg.

```
IN NS slave1.linux.site.
IN NS slave2.linux.site.
```

- Make sure that the master database Serial Number is increased each time you do a change to the master databases.
- bind4 configuration files (Only as information)

```
/etc/named.boot
    /var/named/localhost.rev
    /var/named/domainname.zone
    /var/named/domainname.rev (.rev = reverse)
```

Troubleshooting

/var/log/messages shows all messages of bind

Supporting sub-domains in the same DNS

- Usefull to create multiple Apache VirtualHosts in laptop.linux.local web server without any extra DNS entries needed for new virtual hosts.
- Each sub-domain node (sub-domain host) should have its own database file in the DNS and the resolving of its name and all of the sub-domain names will be done by this file and not the file of the main domain.
- Only if a normal host in the same domain will be resolved by the main domain database file.

Example: A main domain (linux.local) has 5 hosts of which 1 is a sub-domain node (laptop.linux.local).

```
part of /etc/named.conf
#-- Forward resolution for domain linux.local
zone "linux.local" IN {
       type master;
       file "linux.local.zone";
       notify yes;
};
#-- Forward resolution for subdomain *.laptop.linux.local
zone "laptop.linux.local" IN {
       type master;
       file "laptop.linux.local.zone";
       notify yes;
};
#-- Reverse resolution for 192.168 subnet
#-- Here all the domain hosts are part of the same subnet
#(including the sub-domain node)
zone "168.192.in-addr.arpa" IN {
       type master;
       file "192.168.zone";
       notify yes;
} ;
_____
; --- foreward zone file for domain linux.local -----
; /var/named/linux.local.zone
$TTL 2D
        IN SOA dozlinux root.localhost (
                      2002091201 ; serial
                                    ; refresh
                      3H
                      15M
                                    ; retry
                      1W
                                   ; expiry
                      1D )
                                    ; minimum
                     IN NS
                                   dozlinux
                    IN NS
laptop.linux.local
                                    dozlinux
                                    192.168.100.166
                     IN A
irmgardm
lapwin2000
                     IN A
                                    192.168.100.61
                     IN A
idefix
                                    192.168.100.200
                                    192.168.100.233
proxix
                     IN A
```

Here the address of laptop.linux.local is not listed (as laptop).
 It only resolved by its own sub-domain database file shown below.

dozlinux.linux.local. is the main DNS server where this file resides.

- * means all the names belonging to sub-domain laptop.linux.local eg. my.virtual.host.laptop.linux.local
- Here (because of the all names called <code>anything.laptop.linux.local</code> will be resolved to the IP no. of the sub-domain node(host) <code>laptop.linux.local</code>.