
Linux-Kurs Themen - Network File Transfer 4 November 2003 Michel Bisson

90 - Network File Transfer90 - Network File Transfer
Single Host to Single Host secure copy

gftp FTP Client

Settings in SSH Server:
- sshd must be running

- /etc/ssh/sshd_config (at the end of file)
Subsystem sftp /usr/lib/ssh/sftp-server

Settings in gftp client:
- (Menu)FTP---->Options---->Tab SSH ---->(enable)Use SSH2 SFTP subsys
- Normal server and user entries, the port is 22 , Transport type is SSH2
 no password needed for now: it is asked later

If BlaBlaBla.... (yes/no) window appears:
- type yes and press <Enter>

SCP - The Secure remote Copy program is also a secure program used to copy files to
and from a remote host. It replaces the insecure rcp.
The ssh or Openssh package MUST be installed on both client and server.
The sshd Daemon must be started on the remote host.

The syntax is quite similar to the normal copy (cp) program except that the source
or destination can include the user (optional) and remote hostname with the
destination path. Before executing the copy scp will ask for the remote user's
password.

Syntax:

scp [-options] [user@]remotehost:/sourcefile(s) /local/destination
or

scp [-r] /local/source/directory [user@]remotehost:/destination/path

-r = Recursive

eg.
scp root@dozlinux.linux.local:/etc/*.conf /home/michel/confdata

Logs-in as root on dozlinux.linux.local and copies all of the .conf files from /etc directory to
local /home/michel/confdata directory.

90_Network_File_Transfer.sxw - 1

Linux-Kurs Themen - Network File Transfer 4 November 2003 Michel Bisson

Single Host to Single Host secure copy/update/mirroring

rsync - The program runs just the same way as the scp except that it allows also to only
update the remote host instead of copying the whole lot. It can use the ssh for
secure transfer. Although there exists an rsyncd server daemon available for the
remote host, it is not necessary for normal operation as host to host copy/update.
It is necessary to have the program rsync in the PATH of the remote host.

Syntax:
rsync [-options] -e ssh /Source [user@]remotehost:/remotepath
rsync [-options] -e ssh [User@]Host:/RemoteSource /LocalDestination

eg.
rsync -vazu --delete --force -e ssh /home/ joe@dozlinux:/temp/ad

Updates recursively all files from my /home/ directory to /temp/ad/ of dozlinux host.
The /temp/ad/ directory MUST exist before copying.
Note: if the source directory is ended by '/' then the transferring will be recursive.

eg. rsync -avz foo:src/bar/ /data/tmp
A trailing slash on the source changes this behavior to transfer all files from the

 directory src/bar on the machine foo into the /data/tmp/.
A trailing / on a source name means: "Copy the contents of this directory".
Without a trailing slash it means: "Copy the directory".
This difference becomes particularly important when using the --delete option.

Options:
-a Archive Mode (preserves all attributes,like -a in cp)
-u Update (Do not overwrite newer files in destination)
-v Verbose
-z gzip compression is applied before transfering

--delete Deletes all the files existing in the destination that are not present
in the source.

--force Forces deletion of directories even if not empty.

--exclude dir/to/exclude
Excludes the directories/files from being copied to destination.
Note: This --exclude path is relative to the source path.
eg. to prevent to copy the subdirectory /usr/local/httpd
rsync -vazu -e ssh --delete --force \

 --exclude local/httpd /usr/ remote:/tmp/
Will copy recursively all the files in the /usr/ directory including subdirs

 except the subdirectory /usr/local/httpd.

Notes: 1) --force together with --delete allows for full mirroring of directories.
2) --exclude can be used more than once as argument.
3) BE CAREFUL! adding a / at the end of the source directory means the same
 as /* except that /* doesn't honor the --delete for files at this directory
 level.

File listing : We can get a listing of files on the remote host:
eg. rsync -e ssh dozlinux:/etc/*
Makes a listing of all the files in the /etc directory of dozlinux host.

90_Network_File_Transfer.sxw - 2

Linux-Kurs Themen - Network File Transfer 4 November 2003 Michel Bisson

Single Host to Single Host secure directory mirroring

unison
Unison is a file synchronizing program that can be used for mirroring.
Conditions to mirror over the network using ssh:

- sshd must be running on the remote host
- unison must be in the local host and in the path of the remote host

The following command formats ensures that the destination directories are exact copies
of the original and that the files or directories existing in the destination directory that don't
exist in the source directory are erased. The advantage of this one over rsync is that
the timestamp is not the factor that helps deciding which files will get updated.
This provides full mirroring of 2 directories.
Syntax for mirroring directories:

From local to remote:
unison -ui text -batch -force localdir localdir ssh://rhost//remotedir
eg.
unison -ui text -batch -force /data /data ssh://laptop//databackup

From remote to local:
unison -ui text -batch -force ssh://rhost//remotedir \

 ssh://rhost//remotedir localdir
eg.
unison -ui text -batch -force ssh://laptop//databackup \

ssh://laptop//databackup /data

From local to local:
unison -ui text -batch -force localdir1 localdir1 localdir2
eg.
unison -ui text -batch -force /data /data /databackup

Note: The parameter after the option -force MUST be the same as the source
directory(next parameter) to ensure the direction of the mirroring.
As noticed in the examples, the source directory is written twice:

- once as the parameter of -force option to specify the source of copy.
- once as the directory of files to mirror.

90_Network_File_Transfer.sxw - 3

Linux-Kurs Themen - Network File Transfer 4 November 2003 Michel Bisson

Interactive Single Host to Single Host
Midnight Commander

mc (as client) and sshd(as server)
The combination of mc as client and sshd as server allows to transfer,edit,change access
rights,etc interactively on remote files and directories. mc uses the fish protocol for all
transactions with sshd.

Single Host to Multi Host secure copy/update/mirroring
rdist - Allows to copy/update/mirror a full diretory tree to multiple remote hosts

simultaneously. This program can use the ssh for secure transfer.
It uses a configuration file in which list of hosts and files to transfer are defined.
The ssh or Openssh package MUST be installed on both client and server.
Although there exists an rdistd server daemon available, it is not necessary for normal
operation as host to multi-host copy/update/mirroring.

eg. content of the config file /root/.rdist/rdistfile

HOSTS = (moon.linux.local john@dozlinux.linux.local)
FILES = (/home/public /var/log/httpd/*.conf)
${FILES} -> ${HOSTS}

 install -oremove /home/pub ;

Command: rdist -P /usr/bin/ssh -f /root/.rdist/rdistfile

The result of this command with the would be to mirror all files in the local /home/public/
directory to remote hosts directory /home/pub at hosts moon.linux.local (logged in as
the same user as local) and john@dozlinux.linux.local.

Options
The option remove deletes the files that are present in the remote destination but not present
locally in the source.(perfect for mirroring)
NOTE:If no destination path is given in the install line then the destination path is the same as the
local source path.
The option nodescend option can be used to turn the default recursive off.
This nodescend option doesn't work together with the remove option.
Options can be combined in the install line separeted with a comma.
eg. install -oremove,verify /tmp/pub

To find out which files would be updated but not do it (debugging), use the option: -verify
See man rdist for more info and options.

90_Network_File_Transfer.sxw - 4

Linux-Kurs Themen - Network File Transfer 4 November 2003 Michel Bisson

Logging of rdist actions:

This program allow for transfer logging as well.
The -l logopts option to rdist tells rdist what logging options to use locally
The form of logopts should be of form:
 facility=types:facility=types...
The valid facility names are:
 stdout Messages to standard output.

file Log to a file. To specify the file name, use the format
 file=filename=types. e.g. ``file=/tmp/rdist.log=all,debug''.

syslog Use the syslogd(8) facility.

notify Use the internal rdist notify facility. This facility is used in conjunction
 with the notify keyword in a distfile to specify what messages are

mailed to the notify address.

Types should be a comma separated list of message types. Each message type specified
enables that message level. This is unlike the syslog(3) system facility which uses an ascending
order scheme. The following are the valid types:

change Things that change. This includes files that are installed or updated in some way.

info General information.

notice General info about things that change. This includes things like making
directories which are needed in order to install a specific target, but
which are not explicitly specified in the distfile.

nerror Normal errors that are not fatal.

ferror Fatal errors.

warning Warnings about errors which are not as serious as nerror type messages.

debug Debugging information.

all All but debug messages.

Here is a sample command line option:

rdist -P /usr/bin/ssh -f /root/.rdist/rdistfile \
 -l stdout=all:syslog=change,notice:file=/tmp/rdist.log=all

This entry will set local message logging to have all but debug messages sent to standard
output, change and notice messages will be sent to syslog(3), and all messages will be written
to the file /tmp/rdist.log.

90_Network_File_Transfer.sxw - 5

Linux-Kurs Themen - Network File Transfer 4 November 2003 Michel Bisson

Single Host to Single Host NON-secure copy
Using netcat

For quick and dirty file transfers which dont require a bit of security, netcat is your friend. Using
netcat you perform a network tar:
These 2 commands will copy recursively a directory from host2 to host1
host1 > netcat -l -p <port> | tar -zxv
host2 > tar -zcv <directory to transfer> | netcat host1 <port> -vv

NOTE: Host 1 must initiate its command before the host 2 does his.
When all the files of tared directory are listed in Host2 screen then and nothing moves any more,
then host2 presses Ctrl-C to break the connection. The transfer is done.

<port> Can be any unused port. Must be the same in both hosts.
<Directory> Is the diredtory to send from Host2 to host1

These 2 commands act as follows:
- Host1's command starts and waits.
- Host2 Tar recursively the full directory and shows its file list to screen.
- netcat receives the content of tar file and sends it to netcat on Host1
- netcat on host1 receives the tar file and sends it to tar to extract it.
 The transfered directory is this way saved in the current directory of host1.

H D Moore says:
This is exactly what the FTP protocol does, except you dont need to send your password across
the network to do it. You also have all the features of a unix shell pipe combination. If you have a
command-line encryption utility, you can use it to send your files encrypted across the network.

90_Network_File_Transfer.sxw - 6

