

A Practical Guide to

By

Manas Tungare

www.manastungare.com

Active Server Pages
Microsoft

3.0

http://www.manastungare.com/
http://www.manastungare.com/

ACTIVE SERVER PAGES 3.0

2

About this guide ...

This practical guide aims to be a complete programming guide as well as a
reference for the serious ASP programmer.

It does not assume any prior knowledge of ASP, and starts from the ground
up. The chapters are organized according to the increasing complexity of ASP
scripts that you will be writing. Simple scripts come first, and then the
techniques needed for more complex scripts are covered. This is especially
useful for the beginner who is usually inundated by long, boring technical
dissertations in the first chapter of any book.

Experienced programmers will also find this guide useful, for it contains the
following references in one easy-to-locate booklet.

VBScript Reference

A complete documentation of all VBScript functions with the necessary
information for using them. Ideal for those situations where you know
what you want to do, but can't remember the function that will do it for
you.

SQL Reference

This includes complete syntactic specifications of the Structured Query
Language, along with examples to demonstrate the use.

ADO Reference

A guide on ASP cannot miss out this quintessential section. It gives
complete details on most of the objects in the ADO hierarchy.

The examples and samples used in this guide can be found on the web at:
http://www.manastungare.com/asp

Thanks to Pankaj Kamat for proofreading this document.

Copyright © 2000 - 2001, Manas Tungare.
http://www.manastungare.com/

Every effort has been made to ensure correctness & reliability of the
information provided, however the author may not be held responsible for any
errors that may have crept in.

http://www.manastungare.com/asp/
http://www.manastungare.com/

ACTIVE SERVER PAGES 3.0

3

INTRODUCTION 7

THE NEED FOR ASP 7
SO WHAT IS ASP ? 7
WHAT CAN YOU DO WITH ACTIVE SERVER PAGES? 8
WHAT DO SERVER-SIDE SCRIPTS LOOK LIKE? 8
WHAT YOU NEED TO RUN ASP 8

INTERNET INFORMATION SERVICES 8
PERSONAL WEB SERVER 9

BEFORE YOU BEGIN … 9
STEPS FOR INSTALLATION 9
CREATING VIRTUAL DIRECTORIES 9
ACCESSING YOUR WEBPAGE 9
WHAT IS LOCALHOST? 10

HELLO, WORLD (AND MORE) ! 11

ANOTHER WAY … 11
DISPLAYING THE DATE … 12
… AND MORE 12

VARIABLES AND CONSTRUCTS 13

DIM ‘EM FIRST 13
THE BIG IF 14
FOR-NEXT LOOPS 16
FOR EACH OBJECT IN COLLECTION ... 17
WHILE ... WEND 18
SELECT CASE: 18
COMPLEX CONDITIONS & CONNECTIVES: 19

AND, OR AND NOT 19

SUBROUTINES, FUNCTIONS AND INCLUDES 20

SUBROUTINES 20
FUNCTIONS 20
INCLUDES 21

THE OBJECT MODEL 23

THE REQUEST OBJECT 23
SYNTAX 24
COLLECTIONS 24
METHODS 24
NOTE 24

REQUEST.SERVERVARIABLES 25
THE RESPONSE OBJECT 26

SYNTAX 26
COLLECTIONS 26
PROPERTIES 26
METHODS 27

THE SERVER OBJECT 27
SYNTAX 28
PROPERTIES 28
METHODS 28

THE SESSION OBJECT 28
SYNTAX 28
COLLECTIONS 29
PROPERTIES 29
METHODS 29
EVENTS 29

THE APPLICATION OBJECT 29
SYNTAX 30
COLLECTIONS 30
EVENTS 30

HANDLING USER INPUT : FORMS & QUERYSTRINGS 31

ACTIVE SERVER PAGES 3.0

4

THE REQUEST.FORM COLLECTION 31
THE REQUEST.QUERYSTRING COLLECTION 32
GET AND POST 33

WHEN TO USE GET? 33
WHEN TO USE POST? 33

DATA MANIPULATION USING ASP 34

DISPLAYING DATA FROM A TABLE 34
RETRIEVING DATA 34
MOVING ON TO COMPLEX QUERIES 37

INSERTING DATA INTO A TABLE 37
UPDATING RECORDS 38
DELETING RECORDS 39
MORE ... 40

VBSCRIPT REFERENCE 41

STATEMENTS AND KEYWORDS 41
OPERATORS 41
VBSCRIPT FUNCTIONS 42

TYPE CHECKING FUNCTIONS 42
VALUE 42
CONSTANT 42
DATA TYPE 42
TYPECASTING FUNCTIONS 43
FORMATTING FUNCTIONS 44
MATH FUNCTIONS 44
DATE FUNCTIONS 45
DATE CONSTANTS 45
DAY OF THE WEEK CONSTANTS 46
STRING FUNCTIONS 46
OTHER FUNCTIONS 48
CONTROL STRUCTURES 48

SQL REFERENCE 52

THE SELECT STATEMENT 52
INNER AND OUTER JOIN STATEMENTS 53
CALCULATED VALUES AND THE GROUP BY CLAUSE 54
THE INSERT STATEMENT 54
THE UPDATE STATEMENT 55
THE DELETE STATEMENT 56

ACTIVEX DATA OBJECTS (ADO) REFERENCE 57

THE CONNECTION OBJECT 57
OPENING A DATABASE CONNECTION 57
THE CONNECTMODEENUM CONSTANTS 58
THE CONNECTIONSTRING 58
THE CONNECTION.EXECUTE METHOD 60
MANAGING TRANSACTIONS WITH A CONNECTION OBJECT 60

THE RECORDSET OBJECT 61
USING THE RECORDSET.OPEN METHOD 61
POSITIONING A RECORDSET OBJECT — THE MOVE METHODS 63
RECORDSET SORTING AND SEARCHING METHODS 63

THE FIELD OBJECT 65

EXTENDING ASP : COM COMPONENTS 66

THE BASICS 66
PROPERTIES 66
METHODS 67
ARGUMENTS 67
COLLECTIONS 68
THE DEFAULT METHOD OR PROPERTY 68

ACTIVE SERVER PAGES 3.0

5

INSTANTIATING AN OBJECT 69
BUILT-IN COM OBJECTS 70
PROGID 70
FURTHER ON ... 70

COPY & PASTE ASP SCRIPTS 71

FEEDBACK PAGE 71
TELL A FRIEND ABOUT THIS SITE 71
FURTHER EXAMPLES 73

THE ASP RESOURCE GUIDE 74

EDITORS 74
TEXTPAD 74
MACROMEDIA DREAMWEAVER ULTRADEV 1.0 74

ASP HOSTING 74
DOMAINDLX 74
BRINKSTER 75
SOFTCOM TECHNOLOGIES 75

COM COMPONENTS FOR USE WITH ASP 77
ASPEMAIL 77
JMAIL 77
ASPUPLOAD 77

ACTIVE SERVER PAGES 3.0

7

INTRODUCTION

The need for ASP
Why bother with ASP at all, when HTML can serve your needs? If you want
to display information, all you have to do is fire up your favorite text editor,
type in a few HTML tags, and save it as an HTML file. Bingo, you’re done!

But wait – what if you want to display information that changes? Supposing
you’re writing a page that provides constantly changing information to your
visitors, for example, weather reports, stock quotes, a list of your girlfriends,
etc, HTML can no longer keep up with the pace. What you need is a system
that can present dynamic information. And ASP fits the bill perfectly.

So what is ASP ?
In the language of Microsoft,
Active Server Pages is an open, compile-free application environment in
which you can combine HTML, scripts, and reusable ActiveX server
components to create dynamic and powerful Web-based business solutions.
Active Server Pages enables server side scripting for IIS with native support
for both VBScript and JScript.

Translated into plain English, that reads -
Active Server Pages (ASPs) are Web pages that contain server-side scripts in
addition to the usual mixture of text and HTML tags. Server-side scripts are
special commands you put in Web pages that are processed before the pages
are sent from the server to the web-browser of someone who's visiting your
website. When you type a URL in the Address box or click a link on a
webpage, you're asking a web-server on a computer somewhere to send a file
to the web-browser (also called a "client") on your computer. If that file is a
normal HTML file, it looks the same when your web-browser receives it as it
did before the server sent it. After receiving the file, your web-browser
displays its contents as a combination of text, images, and sounds.

In the case of an Active Server Page, the process is similar, except there's an
extra processing step that takes place just before the server sends the file.

ACTIVE SERVER PAGES 3.0

8

Before the server sends the Active Server Page to the browser, it runs all
server-side scripts contained in the page. Some of these scripts display the
current date, time, and other information. Others process information the user
has just typed into a form, such as a page in the website's guestbook. And you
can write your own code to put in whatever dynamic information you want.

To distinguish Active Server Pages from normal HTML pages, Active Server
Pages are given the ".asp" extension.

What Can You Do with Active Server Pages?
There are many things you can do with Active Server Pages.

§ You can display date, time, and other information in different ways.
§ You can make a survey form and ask people who visit your site to fill it
§ out, send emails, save the information to a file, etc
§ You can have a database which people can access via the web. People can

get information from the database as well as update or insert information
into it.

§ You can password-protect certain sections of your site, and make sure that
only authorized users can see that information.

§ The possibilities are virtually endless. Most widgetry that you see on
webpages nowadays can be easily done using ASP.

What Do Server-Side Scripts Look Like?
Server-side scripts typically start with <% and end with %>. The <% is called an
opening tag, and the %> is called a closing tag. In between these tags are the
server-side scripts. You can insert server-side scripts anywhere in your
webpage - even inside HTML tags.

What you need to run ASP
Since the server must do additional processing on the ASP scripts, it must
have the ability to do so. The only servers which support this facility are
Microsoft Internet Information Services & Microsoft Personal Web Server.
Let us look at both in detail, so that you can decide which one is most suitable
for you.

Internet Information Services
This is Microsoft’s web server designed for the Windows NT platform. It can
only run on Microsoft Windows NT 4.0, Windows 2000 Professional, &
Windows 2000 Server. The current version is 5.0, and it ships as a part of the
Windows 2000 operating system.

ACTIVE SERVER PAGES 3.0

9

Personal Web Server
This is a stripped-down version of IIS and supports most of the features of
ASP. It can run on all Windows platforms, including Windows 95, Windows
98 & Windows Me. Typically, ASP developers use PWS to develop their sites
on their own machines and later upload their files to a server running IIS. If
you are running Windows 9x or Me, your only option is to use Personal Web
Server 4.0.

Before you begin …
Here a few quick tips before you begin your ASP session!

Unlike normal HTML pages, you cannot view Active Server Pages without
running a web-server. To test your own pages, you should save your pages in
a directory mapped as a virtual directory, and then use your web-browser to
view the page.

Steps for Installation
§ From the CD, run the SETUP.EXE program for starting the web-server

installation.
§ After the installation is complete, go to

Start > Programs > Microsoft PWS > Personal Web Manager.

 and click the “Start” button under Publishing.

§ Now your web-server is up & running.

Creating Virtual Directories
After you have installed the web-server, you can create virtual directories as
follows:

§ Right-Click on the folder that you wish to add as a virtual directory.
§ Select “Properties” from the context-menu.
§ In the second tab titled “Web Sharing,” click “Share this folder,” then

“Add Alias”.

(If you do not see these options enabled, your web-server is not properly
running. Please see the steps above under “Installation.”)

Accessing your webpage
Now that your server is completely configured and ready to use, why not give
it a try?
Start your web-browser, and enter the following address into the address-bar.

 http://localhost/

ACTIVE SERVER PAGES 3.0

10

You should see a page come up that tells you more about Microsoft IIS (or
PWS, as the case may be)

What is localhost?
Let us first see, what we mean by a hostname. Whenever you connect to a
remote computer using it’s URL, you are in effect calling it by its hostname.
For example, when you type in

 http://www.google.com/

you are really asking the network to connect to a computer named
www.google.com. It is called the “hostname” of that computer.

localhost is a special hostname. It always references your own machine. So
what you just did, was to try to access a webpage on your own machine
(which is what you wanted to do anyway.) For testing all your pages, you will
need to use localhost as the hostname. By the way, there is also a special IP
address associated with localhost, that is

 127.0.0.1

So you could as well have typed:

 http://127.0.0.1/

and would have received the same page.

To access pages in a virtual directory called myscripts for example, you
should type in:

 http://localhost/myscripts/

in the address bar. I hope the concept is now clear …

ACTIVE SERVER PAGES 3.0

11

HELLO, WORLD (AND MORE) !

Now let’s write the ubiquitous first program, Hello World.

<HTML>
<HEAD>
<TITLE>Hello, World !</TITLE>
</HEAD>
<BODY>
<%
 Response.Write “Hello, World!”
%>
</BODY>
</HTML>

As you can see above, we have enclosed a single line of VBScript within the
opening and closing tags. It says,

 Response.Write “Hello, World!”

This statement displays the string “Hello, World!” on the webpage.

Another way …
Let us try that in a different way that is shorter than this one.

<HTML>
<HEAD>
<TITLE>Hello, World !</TITLE>
</HEAD>
<BODY>
 <%= “Hello, World!” %>
</BODY>
</HTML>

Notice the presence of the = sign just after the <%. It has a similar effect to that
of the Response.Write statement.

ACTIVE SERVER PAGES 3.0

12

Displaying the Date …
Now let us go one step further, and make a page that tells you the date today!

<HTML>
<HEAD>
<TITLE>Hello, World !</TITLE>
</HEAD>
<BODY>
 <%= Date %>
</BODY>
</HTML>

Using the function “Date” gives you the current date. And the function,
“Time” returns the time. To get both, use the function, “Now”.

The following code shows how the “Now” function is used.

<HTML>
<HEAD>
<TITLE>Hello, World !</TITLE>
</HEAD>
<BODY>
<%
 Response.Write Now
%>
</BODY>
</HTML>

… and more
You can also get the individual elements, Year, Date, Month, Hour,

Minute & Second of the time by using the above functions.

<HTML>
<HEAD>
<TITLE>Hello, World !</TITLE>
</HEAD>
<BODY>
<%
Response.Write “Year: ” & Year (Now)
Response.Write “Month: ” & Month (Now)
Response.Write “MonthName: ” & MonthName (Month(Now))

Response.Write “Hour: ” & Hour (Now)
Response.Write “Minute: ” & Minute (Now)
Response.Write “Second: ” & Second (Now)
%>
</BODY>
</HTML>

Notice the mixing of plain text and VBScript code. With this beginning, let us
now move on to handling variables, constants, and various constructs.

ACTIVE SERVER PAGES 3.0

13

VARIABLES AND CONSTRUCTS

Dim ‘em first
To “Dim” it means to Dimension it. That’s VB lingo. A variable is declared in
VBScript using the Dim keyword.

<%
 Dim myVar
%>

VB programmers will notice here, that we have not included any indication of
the type of the said variable. E.g. Dim myString as String, or Dim
myString$.

In VBScript, all variables are variants. Their type is determined automatically
by the runtime interpreter, and the programmer need not (and should not)
bother with them.

By default, VBScript does not force requiring variable declaration. That is, it
is allowed to use a variable directly without declaring it first. However,
experienced programmers know the importance of making it compulsory to
declare all your variables first – without that, the bugs that may result are
verrry difficult to detect. Considering this, we have here a simple directive to
make variable declaration compulsory.

<%
 Option Explicit
 Dim myVar
%>

Remember that Option Explicit must necessarily be the first statement of
your ASP page, otherwise a server error is generated.

To illustrate what I mean, if you had a page that read:

ACTIVE SERVER PAGES 3.0

14

<%
 Pi = 3.141592654
 Response.Write Pi
%>

this is a perfectly valid page. You will get the value of Pi written back to the
page, as you really expected.
Now, using the Option Explicit directive as above, let’s rewrite the same page
as follows:

<%
 Option Explicit
 Pi = 3.141592654
%>

Now you have an error that says:

Microsoft VBScript runtime (0x800A01F4)
Variable is undefined: 'Pi'
/asp/test.asp, line 3

The reason is that, now, with the Option Explicit directive, IIS expects to see
a declaration of every variable that is used.

So, in this case, the correct script must read:

<%
 Option Explicit
 Dim Pi
 Pi = 3.141592654
%>

The Big If
The simplest of constructs, found in every language, is the If-Then-Else
statement. I think it’s familiar to everyone, so let’s start with an example.

<%
 If OK = True Then
 Response.Write “OK”
 Else
 Response.Write “Error”
 End If
%>

Some important points to note:

ACTIVE SERVER PAGES 3.0

15

§ The condition after the If must be followed by the Then keyword. This is
unlike C, C++ or Java which do not require the Then keyword to follow.

§ If only a single statement is to be executed in the Then block, it may
directly follow the Then on the same line. If there are multiple statements
to execute in the Then-block, the first statement should begin on the line
after Then.

§ The Else-block, as in most languages, is optional.
§ The complete set of statements in the Then-block as well as the Else-

block need to be “closed” by the End If keyword. This is very important,
and the source of many hard-to-locate errors! Take care not to forget it!

The following are further examples of valid as well as invalid If-constructs:

<%
 If OK = True Then Response.Write “OK” Else Response.Write
“Error”
%>

This is valid. Since only one statement is to be executed in each of the Then-
& Else-blocks, we do not require an End If. In addition, the Else
statement must be on the same line.

<%
 If OK = True Then Response.Write “OK”
 Else Response.Write “Error”
%>

This is invalid. Since only one statement belongs to the Then-block, the first
part of the construct above is fine. However, the Else cannot continue on the
next line in such a case.

A simple rule of thumb to follow, is to use only one form of the If-statement
for all your needs:

<%
 If OK = True Then
 Response.Write “OK”
 ‘ ... Any more statements
 Else
 Response.Write “Error”
 ‘ ... Any more statements
 End If
%>

Incidentally, any line that begins with an apostrophe, ‘, is a comment; it is
ignored by the interpreter. The following line is partly executable and partly a
comment.

<%
 OK = True ‘Sets OK to True

ACTIVE SERVER PAGES 3.0

16

%>

The comment begins after the apostrophe.

For-Next Loops
The syntax is as follows

<%
 For I = 1 to 10
 Response.Write “Number = ” & I & vbCrLf
 Next
%>

And the output ...

Number = 1
Number = 2
Number = 3
Number = 4
Number = 5
Number = 6
Number = 7
Number = 8
Number = 9
Number = 10

The vbCrLf used in the statement above is a predefined constant that equals
the combination of the Carriage-Return character (CR for short), and the Line
Feed character (LF for short.) Using it causes the output to continue on the
next line.

Without the vbCrLf, our output would have appeared on one long line:

Number = 1Number = 2Number = 3Number = 4Number = 5Number =
6Number = 7Number = 8Number = 9Number = 10

Let us take a case of nested loops to clarify things:

<%
 For I = 1 to 8
 For j =1 to 8
 Response.Write “X”
 Next
 Response.Write vbCrLf
 Next
%>

ACTIVE SERVER PAGES 3.0

17

This will draw a nice chessboard pattern on the screen. (You will need to
view the source of the page in your browser however. If you look at the page
in the browser itself, you will not see the true result. More about that later.)

A very important point to note is that the Next statement that completes the
For does not take an argument. You cannot say:

Next I

Or

Next J

This is invalid. Each Next statement encountered is automatically assumed to
complete the immediately preceding For statement.

Finally, VBScript also allows the Step keyword to modify the interval or step-
size of the For-loop variable.

<%
 For I = 1 to 10 Step 2
 Response.Write “Number = ” & I & vbCrLf
 Next
%>

gives you:

Number = 1
Number = 3
Number = 5
Number = 7
Number = 9

The loop counted I in steps of 2, thus taking on only odd values from the
entire set of 10.

For Each Object In Collection ...
The For-Each construct is unique to VBScript (and its parent, Visual Basic, of
course!) It allows you to iterate through the items in a collection one by one.

<%
 For Each Member in Team
 Response.Write Member
 Next
%>

ACTIVE SERVER PAGES 3.0

18

Here, Team is assumed to be a collection of items. This statement is very
useful in scenarios, where the size of the collection is not known in advance.
Using the For Next statement assures that all items in that collection will be
processed, and no “Array Index Out Of Bounds” errors will be generated.

While ... Wend
Again, here is one of the popular looping constructs of all time.

<%
 While Not RS.EOF
 Response.Write RS.Fields (“Name”)
 RS.MoveNext
 Wend
%>

or,

<%
 Do While Not RS.EOF
 Response.Write RS.Fields (“Name”)
 RS.MoveNext
 Loop
%>

The While statement executes the statements in its loop until the given
condition remains true. The moment it becomes false, the loop halts.

Remember to end the While Statement with the Wend Keyword.

A variation of the While loop that tests the condition after the loop is the Do-
loop.

<%
 Do
 TimePass()
 Until ExamDate – Now = 30
%>

I hope the meaning is amply clear from the example above.

Select Case:
To make a choice between a set of items that can be assigned to a variable,
use the Select Case statement.

<%

ACTIVE SERVER PAGES 3.0

19

 Select Case Choice
 Case “1”:
 Response.Write “You chose 1”
 Case “2”:
 Response.Write “You chose 2”
 Case “3”:
 Response.Write “You chose 3”
 Case “4”:
 Response.Write “You chose 4”
 End Select
%>

Complex conditions & connectives:
You may use more than one condition within each of the constructs above.

And, Or and Not

Condition1 And Condition2 Or Condition3

The conditional connectives are the words, And, Or and Not themselves. The
C symbols ||, && and ! are no longer valid.

The precedence is Not having the highest priority, followed by And and
finally Or. So, use brackets when necessary to separate your connectives.

ACTIVE SERVER PAGES 3.0

20

SUBROUTINES, FUNCTIONS AND INCLUDES

Like any programming language worth it’s salt, VBScript allows you to
define and use your own Subroutines, Functions & Includes.

Subroutines
Subroutines are defined via the Sub keyword.

<%
 Sub SayHello
 Response.Write “Hello !”
 End Sub
%>

A subroutine may accept parameters too, which can be of any type.

<%
 Sub SayHelloTo (Person)
 Response.Write “Hello, ” & Person & “!”
 End Sub
%>

Parameters do not have defined types; their usage determines the type. All
parameter types are variants by default.

Subroutines cannot return a value; that is, they can only be called, their value
cannot be used. To return values to calling programs, we use Functions.

Functions
Functions are defined similar to Subroutines:

<%
 Function Add (A, B)
 Add = A + B
 End Function

ACTIVE SERVER PAGES 3.0

21

%>

As seen above, the function Add adds two numbers and returns their result.
You can call this function as:

<%
 Response.Write Add (2, 3)
%>

which will produce the sum as the output. More complex processing may be
done inside function bodies.

<%
 Function Calculate (A, B, Op)
 Select Case Op
 Case “+”
 Calculate = A + B
 Case “-”
 Calculate = A - B
 Case “*”
 Calculate = A * B
 Case “/”
 Calculate = A / B
 End Select
 End FunctionEnd Function
%>

<%
 Response.Write Calculate(2, 3, “+”)
 Response.Write Calculate(2, 3, “-”)
%>

Includes
Server Side Includes or SSI is a very simple programming language but it also
has a very limited number of instructions. We will consider only one option
SSI allows us to use within our asp scripts: include/virtual.

<!-- #INCLUDE FILE=”filename.inc” -->

As we have the #include <stdio.h> statement in C, we have the #include
directive here. The purpose is exactly similar: #INCLUDE actually includes
the said file at the given location. Any script that is present within that file is
automatically executed.

Include files are typically used to store application-wide functions and
procedures, as well as various utility functions, e.g. IsValidEmail (...) a
function that checks if a given string is a valid email address. You can put
such functions in just 1 file, and include that on each one of your pages.

ACTIVE SERVER PAGES 3.0

22

Or, you may use this functionality to insert headers & footers on every page.
Putting all the standard content in one file, you simply include that file in each
of your pages, so you do not need to copy & paste it everywhere. Updates are
easier too, since you can modify just one file and not worry about forgetting
to update another.

Another form of the INCLUDE directive uses the keyword virtual:

<!-- #INCLUDE VIRTUAL=”/directory/file.inc” -->

which will locate the file considering it as the virtual path. According to the
line above, the file is expected to be found at

www.domain.com/directory/file.inc

Note that the virtual path of the file above, is the one that is entered in the
#INCLUDE statement.

ACTIVE SERVER PAGES 3.0

23

THE OBJECT MODEL

ASP is a scripting environment revolving around its Object Model. An Object
Model is simply a hierarchy of objects that you may use to get services from.
In the case of ASP, all commands are issued to certain inbuilt objects, that
correspond to the Client Request, Client Response, the Server, the Session &
the Application respectively. All of these are for global use

Request: To get information from the user

Response: To send information to the user

Server: To control the Internet
Information Server

Session: To store information about and
change settings for the user's
current Web-server session

Application: To share application-level
information and control settings
for the lifetime of the application

The Request and Response objects contain collections (bits of information
that are accessed in the same way). Objects use methods to do some type of
procedure (if you know any object-oriented programming language, you
know already what a method is) and properties to store any of the object's
attributes (such as color, font, or size).

The Request object
The Request object retrieves the values that the client browser passed to the
server during an HTTP request.

Request

Response

Server

Session

Application

Scripting Context

ACTIVE SERVER PAGES 3.0

24

Syntax

Request[.collection|property|method](variable)

Collections

ClientCertificate
To get the certification fields from the request issued by the Web browser.
The fields that you can request are specified in the X.509 standard

Cookies
The values of cookies sent in the HTTP request.

Form
The values of form elements in the HTTP request body.

QueryString
The values of variables in the HTTP query string.

ServerVariables
The values of predetermined environment variables.
Properties

TotalBytes
Read-only. Specifies the total number of bytes the client is sending in the
body of the request.

Methods

BinaryRead
Retrieves data sent to the server from the client as part of a POST request.
Variable parameters are strings that specify the item to be retrieved from a
collection or to be used as input for a method or property.

Note
All variables can be accessed directly by calling Request(variable) without the
collection name. In this case, the Web server searches the collections in the
following order.

§ QueryString
§ Form
§ Cookies
§ ClientCertificate
§ ServerVariables

If a variable with the same name exists in more than one collection, the
Request object returns the first instance that the object encounters.

ACTIVE SERVER PAGES 3.0

25

It is strongly recommended that when referring to members of the
ServerVariables collection the full name be used. For example, rather than
Request.(AUTH_USER) use Request.ServerVariables(AUTH_USER).

Request.ServerVariables
A complete list of all server variables is as below:

Variable Meaning
ALL_HTTP HTTP Headers from client
ALL_RAW Raw HTTP Headers from client
APPL_MD_PATH Metabase path for the ISAPI DLL
APPL_PHYSICAL_PATH Physical path to the metabase

AUTH_PASSWORD
What the user entered in the client's
authentication dialog

AUTH_TYPE Authentication the server used
AUTH_USER Authenticated user name
CERT_COOKIE Unique ID of the client certificate
CERT_FLAGS Is client certification valid?
CERT_ISSUER Issuer of the client certificate
CERT_KEYSIZE Number of bits in the SSL key
CERT_SECRETKEYSIZE Number of bits in the secret key
CERT_SERIALNUMBER Serial Number for the client certificate
CERT_SERVER_ISSUER Issuer of the the server certificate
CERT_SERVER_SUBJECT Subject of the server certificate
CERT_SUBJECT Subject of the client certificate
CONTENT_LENGTH Length of the content
CONTENT_TYPE MIME type of the current page
GATEWAY_INTERFACE CGI version from server
HTTPS Is this secure through SSL?
HTTPS_KEYSIZE Number of bits in the SSL key
HTTPS_SECRETKEYSIZE Number of bits in the secret key
HTTPS_SERVER_ISSUER Issuer of the server certificate
HTTPS_SERVER_SUBJECT Subject of the server certificate
INSTANCE_ID ID for this instance in IIS
INSTANCE_META_PATH Metabase path for this instance
LOCAL_ADDR IP of server
LOGON_USER NT login for current user
PATH_INFO Server virtual path
PATH_TRANSLATED Server absolute path
QUERY_STRING Variable name value pairs from the url string
REMOTE_ADDR Client IP address for requesting machine
REMOTE_HOST Client IP address for requesting host
REMOTE_USER Remote User
REQUEST_METHOD Method of request
SCRIPT_NAME virtual path and file name of current script
SERVER_NAME Server name
SERVER_PORT Port being accessed
SERVER_PORT_SECURE 0=not secure, 1=secure

ACTIVE SERVER PAGES 3.0

26

SERVER_PROTOCOL Name/Version of protocol used
SERVER_SOFTWARE HTTP software used on the server
URL URL without the domain name
HTTP_ACCEPT MIME types the browser knows
HTTP_ACCEPT_LANGUAGE Browser's language setting
HTTP_CONNECTION HTTP Connection
HTTP_HOST Domain hosting this request
HTTP_USER_AGENT Browser being used
HTTP_PRAGMA Cache page or not?
HTTP_COOKIE Cookie related to this page
HTTP_ACCEPT_CHARSET ISO character set being accepted

The Response object
The Response object is used to send information to the user. The Response
object supports only Cookies as a collection (to set cookie values). The
Response object also supports a number of properties and methods.

Syntax
Response.collection|property|method

Collections

Cookies
Specifies cookie values. Using this collection, you can set cookie values.

Properties

Buffer
Indicates whether page output is buffered.

CacheControl
Determines whether proxy servers are able to cache the output generated by
ASP.

Charset
Appends the name of the character set to the content-type header.

ContentType
Specifies the HTTP content type for the response.

Expires
Specifies the length of time before a page cached on a browser expires.

ExpiresAbsolute
Specifies the date and time on which a page cached on a browser expires.

ACTIVE SERVER PAGES 3.0

27

IsClientConnected
Indicates whether the client has disconnected from the server.

Pics
Adds the value of a PICS label to the pics-label field of the response header.

Status
The value of the status line returned by the server.

Methods

AddHeader
Sets the HTML header name to value.

AppendToLog
Adds a string to the end of the Web server log entry for this request.

BinaryWrite
Writes the given information to the current HTTP output without any
character-set conversion.

Clear
Erases any buffered HTML output.

End
Stops processing the .asp file and returns the current result.

Flush
Sends buffered output immediately.

Redirect
Sends a redirect message to the browser, causing it to attempt to connect to a
different URL.

Write
Writes a variable to the current HTTP output as a string. This can be done by
using the construct

Response.Write("Hello")

or the shortcut command

<%= "Hello" %>

The Server object
The Server object provides access to methods and properties on the server.
Most of these methods and properties serve as utility functions.

ACTIVE SERVER PAGES 3.0

28

Syntax

Server.property|method

Properties

ScriptTimeout
The amount of time that a script can run before it times out.

Methods

CreateObject
Creates an instance of a server component. This component can be any
component that you have installed on your server (such as an ActiveX).

HTMLEncode
Applies HTML encoding to the specified string.

MapPath
Maps the specified virtual path, either the absolute path on the current server
or the path relative to the current page, into a physical path.

URLEncode
Applies URL encoding rules, including escape characters, to the string.

The Session object
You can use the Session object to store information needed for a particular
user-session. Variables stored in the Session object are not discarded when the
user jumps between pages in the application; instead, these variables persist
for the entire user-session.

The Web server automatically creates a Session object when a Web page from
the application is requested by a user who does not already have a session.
The server destroys the Session object when the session expires or is
abandoned.

One common use for the Session object is to store user preferences. For
example, if a user indicates that they prefer not to view graphics, you could
store that information in the Session object.

Note Session state is only maintained for browsers that support cookies.

Syntax

Session.collection|property|method

ACTIVE SERVER PAGES 3.0

29

Collections

Contents
Contains the items that you have added to the session with script commands.

StaticObjects
Contains the objects created with the <OBJECT> tag and given session scope.

Properties

CodePage
The codepage that will be used for symbol mapping.

LCID
The locale identifier.

SessionID
Returns the session identification for this user.

Timeout
The timeout period for the session state for this application, in minutes.

Methods

Abandon
This method destroys a Session object and releases its resources.

Events
Scripts for the following events are declared in the global.asa file.

Session_OnEnd

Session_OnStart

The Application object
The Application object can store information that persists for the entire
lifetime of an application (a group of pages with a common root). Generally,
this is the whole time that the IIS server is running. This makes it a great
place to store information that has to exist for more than one user (such as a
page counter). The downside of this is that since this object isn't created anew
for each user, errors that may not show up when the code is called once may
show up when it is called 10,000 times in a row. In addition, because the
Application object is shared by all the users, threading can be a nightmare to
implement.

You can use the Application object to share information among all users of a
given application. An ASP-based application is defined as all the .asp files in
a virtual directory and its subdirectories. Because the Application object can
be shared by more than one user, there are Lock and Unlock methods to
ensure that multiple users do not try to alter a property simultaneously.

ACTIVE SERVER PAGES 3.0

30

Syntax

Application.method

Collections

Contents
Contains all of the items that have been added to the Application through
script commands.

StaticObjects
Contains all of the objects added to the session with the <OBJECT> tag.

Lock
The Lock method prevents other clients from modifying Application object
properties.

Unlock
The Unlock method allows other clients to modify Application object
properties.

Events

Application_OnEnd

Application_OnStart
Scripts for the preceding events are declared in the global.asa file. For more
information about these events and the global.asa file, see the Global.asa
Reference.

Remarks
You can store values in the Application Collections. Information stored in the
Application collections is available throughout the application and has
application scope.

ACTIVE SERVER PAGES 3.0

31

HANDLING USER INPUT : FORMS & QUERYSTRINGS

What good is a language that won’t allow you to read user input effectively!
HTML, the good old markup language provides the user with forms to enter
his data in, and you, as an ASP programmer, can write scripts to process the
input.

The Request.Form Collection
When you have an HTML form, say,

<FORM METHOD=”post” ACTION=”process.asp”>
 <INPUT TYPE=”text” NAME=”FirstName”>
 <INPUT TYPE=”text” NAME=”LastName”>
 <INPUT TYPE=”radio” NAME=”Sex” VALUE=”M”>
 <INPUT TYPE=”radio” NAME=”Sex” VALUE=”F”>
 <TEXTAREA NAME=”Address”>
 </TEXTAREA>
 <INPUT TYPE=”submit” VALUE=”Send”>
</FORM>

you have within it a number of elements, each with a unique name. The fields
in the form above are FirstName (Text), LastName (Text), Sex (Option: M or
F), and Address (Multiline Text). The last input type is “submit” that is a
button required to submit the user input to your script. On clicking the Submit
button, the contents of each of these fields are posted to the script that you
specified in the FORM Action attribute. In the above example, it is
“process.asp”.

The form processing script can access these input values as below:

Request.Form (“FirstName”)

Request.Form (“LastName”)

Once you have this value, you can process it as you need – enter it into a
database, mail it to yourself, - anything you want.

ACTIVE SERVER PAGES 3.0

32

Please note that the METHOD specified in the FORM tag must be POST if
you want to use the Request.Form collection to process it.

To know how to enter these into a database, skip to the next chapter. To know
about another technique of passing input to an ASP page, read on ...

The Request.QueryString Collection
Quite often, you might have seen page URL’s like the one below:

http://www.greetings.com/show.asp?CardID=128762173676

This is a direct link to a card that your friend sent you. You just need to click
on the link, and the card shows up. You do not need to identify yourself or
enter any code number anywhere. All the information that the site needs, is
encoded in the string,

CardID=128762173676

This is known as the Query String and forms part of a URL.

You can pass multiple values too, using something like:

Page.asp?FirstName=Manas&LastName=Tungare&Sex=M

The Request.QueryString Collection helps you sort this stuff out and extract
only what you need – the values of the variables themselves.

So to access the data contained in the variable FirstName above, you would
use:

Request.QueryString (“FirstName”)

This again, is a regular variable that you can assign to another, or do
arithmetic on.

The Request.QueryString collection gives you access to yet another class of
variables – those passed via a FORM with it’s METHOD = “get.” However,
there is a limit to the amount of data that can be passed on via the QueryString
and you are expected to use a form for more data.

ACTIVE SERVER PAGES 3.0

33

GET and POST
One thing we ignored in our discussion about forms was that the METHOD
by which the form is submitted may be one of the two: GET or POST.

When to use GET?
Any data that you pass via a GET can be retrieved in your script by using the
Request.QueryString collection. GET may be used for small amounts of data
– the reason being that, the data items are appended to the URL by your
browser, and obviously, you cannot have an infinitely long URL (with the
QueryString).

When to use POST?
Almost always. Stick to POST for your forms, and be sure to use the
Request.Form collection to access them (and not the Request.QueryString
collection.)

ACTIVE SERVER PAGES 3.0

34

DATA MANIPULATION USING ASP

Here we shall look at a practical example of using ASP & ADO to create a
database-driven website. We’ll tackle it piecemeal, looking at the simpler
queries first and then moving on to more complex ones.

Displaying Data from a Table
Let us have a running database example for this section. Consider a database
for a class of students.

The database schema is as follows:

Table: Student
IDID Student ID Numbers; also the primary key of the table.
FirstName First name of the Student.
LastName Last name of the Student.
DateofBirth Birthdate of the Student.
Email Email address of the student.

Retrieving Data
You’ll need to use the SQL SELECT statement for reading in data from a
table. (More about SQL can be found in a later chapter, an SQL Reference).

Let’s say, we want to display a complete list of all the students in the class.
Here is a complete page that lists out all the student records in a Table.

<HTML>

<HEAD>
 <TITLE>Student Records</TITLE>
</HEAD>

<BODY>
<%
Dim DB

ACTIVE SERVER PAGES 3.0

35

Set DB = Server.CreateObject (“ADODB.Connection”)
DB.Open ("PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=" +
“C:\Databases\Students.mdb”)

Dim RS
Set RS = Server.CreateObject (“ADODB.Recordset”)
RS.Open “SELECT * FROM Students”, DB

If RS.EOF And RS.BOF Then
 Response.Write “There are 0 records.”
Else
 RS.MoveFirst
 While Not RS.EOF
 Response.Write RS.Fields (“FirstName”)
 Response.Write RS.Fields (“LastName”)
 Response.Write “<HR>”
 RS.MoveNext
 Wend
End If
%>
</BODY>
</HTML>

Let’s look at the example line by line.
The first few lines are the opening HTML tags for any page. There’s no ASP
code within them. The ASP block begins with the statement,

Dim DB

which is a declaration of the variable that we’re gonna use later on. The
second line,

Set DB = Server.CreateObject (“ADODB.Connection”)

does the following two things:
Firstly, the right-hand-side statement, Server.CreateObject() is used to
create an instance of a COM object which has the ProgID
ADODB.Connection. The Set Statement then assigns this reference to our
variable, DB. Now, we use the object just created to connect to the database
using a Connection String.

The string,

"PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=" +
“C:\Databases\Students.mdb”

is a string expression that tells our object where to locate the database, and
more importantly, what type the database is – whether it is an Access
database, or a Sybase database, or else, is it Oracle. (Please note that this is a
Connection String specific to Access 2000 databases. This example does not
use ODBC.)

ACTIVE SERVER PAGES 3.0

36

If the DB.Open statement succeeds without an error, we have a valid
connection to our database under consideration. Only after this can we begin
to use the database.

The immediate next lines,

Dim RS
Set RS = Server.CreateObject (“ADODB.Recordset”)

serve the same purpose as the lines for creating the ADODB.Connection
object. Only now we’re creating an ADODB.Recordset!

Now,

RS.Open “SELECT * FROM Students”, DB

is perhaps the most important line of this example. Given an SQL statement,
this line executes the query, and assigns the records returned to our Recordset
object. The bare-minimum syntax, as you can see, is pretty straight-forward.
Of course, the Recordset.Open (...) method takes a couple of more
arguments, but they are optional, and would just complicate things at this
juncture.

Now, assuming that all the records we want are in our Recordset object, we
proceed to display it.

If RS.EOF And RS.BOF Then
 Response.Write “There are 0 records.”

In any scenario where it is expected that no records might exist, this is an
important error check to be performed. In case your query returned no results,
the Recordset.BOF (beginning of file) & Recordset.EOF (end of file) are
both True at the same time. So you can easily write an If-statement to
perform a very basic error check. (If you don't do this now, you’ll encounter
errors in the later part of the script. It’s always wise to prevent rather than
cure errors.)

We shall look at the next few lines as a complete block and not as separate
lines of code.

Else
 RS.MoveFirst
 While Not RS.EOF
 Response.Write RS.Fields (“FirstName”)
 Response.Write RS.Fields (“LastName”)
 Response.Write “<HR>”

ACTIVE SERVER PAGES 3.0

37

 RS.MoveNext
 Wend
End If

RS.MoveFirst is a method that moves the record pointer (for now, consider
this to be an imaginary structure that always points to the current record in the
Recordset) to the First record. By default, it may or may not be positioned
correctly, so it is imperative to position it before you begin any operations.

Then we have a While-loop that iterates through all the records contained in
the Recordset. The condition that we check is that RS.EOF should be False.
The moment it is True, it can be inferred that there are no more records to be
found.

RS.Fields(“FirstName”) retrieves the value of the “FirstName” field of
the current record. We use a Response.Write statement to write it out to the
page. Similarly, we write the RS.Fields (“LastName”) after the first name.

You may also use a shortcut syntax for this, which takes the form:

RS (”FirstName”)

After you’re done displaying, you must advance the record pointer to the next
record, so you execute a RS.MoveNext. And that’s all you wanted to do within
the loop, so you end the loop now. Just write Wend and the loop ends! And so
does our little example!

Moving on to complex queries
Queries are what get complex, not the method of accessing data! So no matter
what data you want, you use exactly the same syntax in your code. The only
thing that changes is the SQL statement, and perhaps, the fields that you
actually display on the page.

Inserting Data into a Table
Although SQL provides us the INSERT INTO statement for inserting records
into a database, I would suggest using the ADODB.Recordset object for doing
this to make things simpler.

So here’s how you insert a new record:

<HTML>

<HEAD>
 <TITLE>Student Records</TITLE>
</HEAD>

<BODY>
<%
Dim DB

ACTIVE SERVER PAGES 3.0

38

Set DB = Server.CreateObject (“ADODB.Connection”)
DB.Mode = adModeReadWrite
DB.Open ("PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=" +
“C:\Databases\Students.mdb”)

Dim RS
Set RS = Server.CreateObject (“ADODB.Recordset”)
RS.Open “Students”, DB, adOpenStatic, adLockPessimistic

RS.AddNew
 RS (“FirstName”) = “Manas”
 RS (“LastName”) = “Tungare”
 RS (“Email”) = “manas@manastungare.com”
 RS (“DateOfBirth”) = CDate(“4 Feb, 1980”)
RS.Update
%>
</BODY>
</HTML>

The first few lines are exactly the same as in the previous example. Note that
we set the Connection.Mode to adModeReadWrite since we are going to
insert data, which is a Write-operation. We also use the ADO constants,
adOpenStatic & adLockOptimistic while opening the Recordset for it to
be updateable.

The lines,

RS.AddNew
 RS (“FirstName”) = “Manas”
 RS (“LastName”) = “Tungare”
 RS (“Email”) = “manas@manastungare.com”
 RS (“DateOfBirth”) = CDate(“4 Feb, 1980”)
RS.Update

are what do the main processing. RS.AddNew adds a new, blank record to the
database. Then you set the fields by assigning your data to the respective
fields of the Recordset. Note the short-cut syntax used in this example.

Finally, when you’re done assigning all the values, execute the
Recordset.Update method to commit all changes to the record.

Updating Records
If you know how to insert records, then updating them is a breeze. Because
you’re already come more than halfway while inserting records!

<HTML>

<HEAD>
 <TITLE>Student Records</TITLE>
</HEAD>

<BODY>

ACTIVE SERVER PAGES 3.0

39

<%
Dim DB

Set DB = Server.CreateObject (“ADODB.Connection”)
DB.Mode = adModeReadWrite
DB.Open ("PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=" +
“C:\Databases\Students.mdb”)

Dim RS
Set RS = Server.CreateObject (“ADODB.Recordset”)
RS.Open “SELECT * FROM Students WHERE FirstName = ‘Manas’”,
DB, adOpenStatic, adLockPessimistic

RS (“Email”) = “mynewemail@manastungare.com”
RS (“DateOfBirth”) = CDate(“4 Feb, 1980”)
RS.Update
%>
</BODY>
</HTML>

As you can see, everything else remains the same. Firstly, you need just
position the current pointer to the record that you wish to update. Use a proper
SQL statement to achieve this. (It is advisable to check if that record exists,
prior to modifying it.)

Then, as earlier, modify the records by assigning new values to them. You
need not assign values to all fields; just modify the fields you need. Then
execute the RS.Update statement to write the changes back to the database.
Lo!

Deleting Records
Use the SQL DELETE statement to delete one or more records satisfying a
particular criterion.

<HTML>
<HEAD>
 <TITLE>Student Records</TITLE>
</HEAD>
<BODY>
<%
Dim DB
Set DB = Server.CreateObject (“ADODB.Connection”)
DB.Mode = adModeReadWrite
DB.Open ("PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=" +
“C:\Databases\Students.mdb”)

DB.Execute (“DELETE * FROM Students WHERE FirstName =
‘Manas’”)

%>
</BODY>
</HTML>

Exercise the utmost caution while using the DELETE statement for two
reasons:

ACTIVE SERVER PAGES 3.0

40

§ Firstly, because there’s no Undo available to restore your changes! Once
it’s gone, it’s gone.

§ And secondly, because if you forget the WHERE clause, it proceeds to
delete all of the records in the table.

There – we’re done!

More ...
To gain an in-depth understanding of accessing data and complex queries,
please refer to the SQL reference and ADO reference in this booklet. These
are pretty exhaustive guides that you can refer to anytime for looking up a
particular item easily.

ACTIVE SERVER PAGES 3.0

41

VBSCRIPT REFERENCE

This section covers the VBScript keywords, operators, functions, and control
structures.

Statements and Keywords
Dim is used to declare variables. VBScript variables are variants, which means
that they do not have to have a fixed data type.

Const is used to declare constants, which are like variables except that they
cannot be changed in the script.

Option Explicit is put at the top of a page to force explicit declaration of
all variables.

Operators
In order of precedence, this is a list of operators supported in VBScript.
§ Anything in parentheses.
§ Exponentiation (^)
§ Negation (-)
§ Multiplication, Division (*, /)
§ Integer Division (\)
§ Modulus (Mod)
§ Addition, Subtraction (+,-)
§ String Concatenation (&)
§ Comparison Operators (=, <>, <, >, <=, >==)
§ Not
§ And
§ Or
§ Xor
§ Eqv
§ Imp

ACTIVE SERVER PAGES 3.0

42

VBScript Functions
This will provide you with a quick look at the more important VBScript
functions. They include functions for type checking, typecasting, formatting,
math, date manipulation, string manipulation, and more.

Type Checking Functions
These functions allow you to determine the data subtype of a variable or
expression.

§ VarType (expression) returns an integer code that corresponds to the

data type.

§ TypeName (expression) returns a string with the name of the data type

rather than a code.

§ IsNumeric (expression) returns a Boolean value of True if the
expression is numeric data, and False otherwise.

§ IsArray (expression) returns a Boolean value of True if the
expression is an array, and False otherwise.

§ IsDate(expression) returns a Boolean value of True if the expression

is date/time data, and False otherwise.

§ IsEmpty (expression) returns a Boolean value of True if the expression
is an empty value (uninitialized variable), and False otherwise.

§ IsNull (expression) returns a Boolean value of True if the expression

contains no valid data, and False otherwise.

§ IsObject (expression) returns a Boolean value of True if the
expression is an object, and False otherwise.

Value Constant Data Type
0

vbEmpty

Empty (This is the type for a variable that
has not been used yet. In other words.
Empty is the default datatype.)

1 vbNull Null (No valid data)
2 vbInteger Integer
3 vbLong Long
4 vbSingle Single
5 vbDouble Double
6 vbCurrency Currency
7 vbDate Date
8 vbString String
9 vbObject Object

ACTIVE SERVER PAGES 3.0

43

10 vbError Error
11 vbBoolean Boolean
12 vbVariant Variant (used with vbArray)
13 vbDataObject Data Access Object
14 vbDecimal Decimal
17 vbByte Byte
8192

vbArray

Array (VBScript uses 8192 as a base for
arrays and adds the code for the data type
to indicate an array. 8204 indicates a
variant array, the only real kind of array in
VBScript.)

Typecasting Functions
Typecasting allows you to convert between data subtypes.

§ CInt(expression) casts expression to an integer. If expression is a

floating-point value or a currency value, it is rounded. If it is a string that
looks like a number, it is turned into that number and then rounded if
necessary. If it is a Boolean value of True, it becomes -1. False becomes 0.
It also must be within the range that an integer can store.

§ CByte(expression) casts expression to a byte value provided that

expression falls between 0 and 255. expression should be numeric or
something that can be cast to a number.

§ CDbl(expression) casts expression to a double, expression should be

numeric or something that can be cast to a number.

§ CSng(expression) casts expression to a single. It works like CDbl(), but
must fall within the range represented by a single.

§ CBool(expression) casts expression to a Boolean value. If expression is

zero, the result is False. Otherwise, the result is True. Expression should be
numeric or something that can be cast to a number.

§ CCur(expression) casts expression to a currency value, expression

should be numeric or something that can be cast to a number.

§ CDate(expression) casts expression to a date value, expression should
be numeric or something that can be cast to a number, or a string of a
commonly used date format. DateValue(expression) or TimeValue
(expression) can also be used for this.

§ CStr(expression) casts expression to a string, expression can be any

kind of data.

ACTIVE SERVER PAGES 3.0

44

Formatting Functions
FormatDateTime(expression, format) is used to format the date/time
data in expression. format is an optional argument that should be one of the
following:

§ vbGeneralDate Display date, if present, as short date. Display time, if

present, as long time. Value is 0. This is the default setting if no format is
specified.

§ vbLongDate Display date using the server's long date format. Value is 1.
§ vbShortDate Display date using the server's short date format. Value is 2.
§ vbLongTime Display time using the server's long time format. Value is 3.
§ vbShortTime Display time using the server's short time format. Value is

4.

FormatCurrency (value, numdigits, leadingzero, negparen,

delimiter) is used to format the monetary value specified by value.

§ numdigits specifies the number of digits after the decimal place to
display. -1 indicates to use the system default.

§ Tristate options have three possible values. If the value is -2, it means
use the system default. If it is -1, it means turn on the option. If it is 0, turn
off the option.

§ leadingzero is a Tristate option indicating whether to include leading
zeroes on values less than 1.

§ negparen is a Tristate option indicating whether to enclose negative values
in parentheses.

§ delimeter is a Tristate option indicating whether to use the delimiter
specified in the computer's settings to group digits.

FormatNumber is used to format numerical values. It is almost exactly like
FormatCurrency, only it does not display a dollar sign.
FormatPercent works like the previous two. The options are the same, but it
turns the value it is given into a percentage.

Math Functions
§ Abs(number) returns the absolute value of number.
§ Atn(number) returns the arctangent, in radians, of number.
§ Cos(number) returns the cosine of number, number should be in radians.
§ Exp(number) returns e (approx. 2.71828) raised to the power number.
§ Fix(number) returns the integer portion of number. If number is negative.

Fix returns the first integer greater than or equal to number.
§ Hex(number) converts number from base 10 to a hexadecimal string.
§ Int(number) returns the integer portion of number. If number is negative,

Int returns the first integer less than or equal to number.
§ Log(number) returns the natural logarithm of number.
§ Oct(number) converts number from base 10 to an octal string.
§ Rnd(number) returns a random number less than one and greater than or

equal to zero.

ACTIVE SERVER PAGES 3.0

45

 If the argument number is less than 0, the same random number is always
returned, using number as a seed. If number is greater than zero, or not
provided, Rnd generates the next random number in the sequence. If
number is 0, Rnd returns the most recently generated number.

§ Randomize initializes the random number generator.
§ Round(number) returns number rounded to an integer.
§ Round(number, dec) returns number rounded to dec decimal places.
§ Sgn(number) returns 1 if number is greater than zero, 0 if number equals

zero, and -1 if number is less than zero.
§ Sin(number) returns the sine of number, number should be in radians.
§ Sqr(number) returns the square root of number, number must be positive.
§ Tan(number) returns the tangent of number, number should be in radians.

Date Functions
§ Date returns the current date on the server.
§ Time returns the current time on the server.
§ Now returns the current date and time on the server.
§ DateAdd(interval, number, date) is used to add to the date specified

by date. Interval is a string that represents whether you want to add
days, months, years, and so on. Number indicates the number of intervals
you want to add; that is, the number of days, months, years, and so on.

§ DateDiff(interval, date1, date2, firstDOW, firstWOY) is used
to find the time between two dates. DateDiff returns the number of
intervals elapsed between date1 and date2. The optional integer
firstDOW specifies what day of the week to treat as the first. The optional
firstWOY specifies which week of the year to treat as the first.

§ DateSerial(year, month, day) takes the integers year, month, and
day and puts them together into a date value. They may be negative.

§ TimeSerial(hour, minute, second) is similar to DateSerial. Timer
returns the number of seconds elapsed since midnight.

§ DatePart (interval, datetime, firstDOW, firstWOY) allows you
to retrieve the part of datetime specified by interval. The optional
integer firstDOW specifies what day of the week to treat as the first. The
optional firstWOY specifies which week of the year to treat as the first.

Date Constants

Value Meaning

yyyy" Year
"q" Quarter
"m" Month
"y" Day of year
"D" Day
"w" Weekday
"ww" Week of year
"h" Hour
"n" Minute

ACTIVE SERVER PAGES 3.0

46

"s" Second

Day of the Week Constants

0 vbUseSystem National Language Support API Setting
1 vbSunday Sunday (default
2 vbMonday Monday
3 vbTuesday Tuesday

4 vbWednesday Wednesday
5 vbThursday Thursday
6 vbFriday Friday
7 vbSaturday Saturday
 vbUseSystem National Language Support API Setting
 vbFirstJan1 Week of January 1
 vbFirstFourDays First week with four days of new yea
 vbFirstFullWeek First full week

§ Year(date) returns the year portion from date as a number.
§ Month(date) returns the month portion from date as a number.
§ MonthName(date) returns the month portion from date.
§ Day(date) returns the day portion from date as a number.
§ Weekday(date) returns the day of the week of date as a number.
§ Hour(time) returns the hour portion from time.
§ Minute(time) returns the minute portion from time.
§ Second(time) returns the second portion from time.

String Functions
§ UCase(string) returns string with all its lowercase letters converted to

uppercase letters.
§ LCase(string) returns string with all its uppercase letters converted to

lowercase letters.
§ LTrim(string) removes all the spaces from the left side of string.
§ RTrim(string) removes all the spaces from the right side of string.
§ Trim(string) removes spaces from both the left and the right sides.
§ Space(number) returns a string consisting of number spaces.
§ String(number, character) returns a string consisting of character

repeated number times.
§ Len(string) returns the number of characters in string.
§ Len(variable) returns the number of bytes required by variable.
§ LenB(string) returns the number of bytes required to store string.
§ StrReverse(string) returns string with the characters in reverse order.
§ StrComp(string1,string2,comparetype) is used to perform string

comparisons. If comparetype is zero or omitted, the two strings are
compared as if uppercase letters come before lowercase letters. If
comparetype is one, the two strings are compared as if upper and
lowercase letters are the same. StrComp returns -1 if string1 is less than

ACTIVE SERVER PAGES 3.0

47

string2. It returns 0 if they are the same, and 1 if string1 is greater than
string2.

§ Right(string,number) returns the number rightmost characters of string.
§ RightB(string,number) works like Right, but number is taken to be a

number of bytes rather than characters.
§ Left(string,number), as you may guess, returns the number leftmost

characters of string.
§ LeftB(string,number) works like Left, but number is taken to be a

number of bytes rather than characters.
§ Mid(string,start,length) returns length characters from string,

starting at position start. When length is greater than the number of
characters left in the string, the rest of the string is returned. If length is not
specified, the rest of the string starting at the specified starting position is
returned.

§ MidB(string,start,length) works like Mid, but start and length are
both taken to be byte numbers rather than character numbers.

§ InStr(start,stringi,strlng2,comparetype) is used to check if and
where string2 occurs within string1. Start is an optional argument
that specifies where in string1 to start looking for string2.
comparetype is an optional argument that specifies which type of
comparison to perform. If comparetype is 0, a binary comparison is per-
formed, and uppercase letters are distinct from lowercase letters. If
comparetype is 1, a textual comparison is performed, and uppercase and
lowercase letters are the same. InStr returns zero if string1 is empty
(""), if string2 is not found in string1, or if start is greater than the
length of string2. It returns Null if either string is Null, It returns start
if string2 is empty. If string2 is successfully found in string1, it
returns the starting position where it is first found.

§ InStrB works like InStr except that the start position and return value
are byte positions, not character positions.

§ InStrRev(string1,string2,start,comparetype) starts looking for a
match at the right side of the string rather than the left side. start is by
default -1, which means to start at the end of the string.

§ Replace(string,find,replace,start,count,comparetype) is used to
replace occurrences of find with replace in string. start, count, and
comparetype are optional, but if you want to use one, you must use the
ones that come before it. start indicates where the resulting string will
start and where to start searching for find. It defaults to 1. count indicates
how many times to perform the replacement. By default, count is -1,
which means to replace every occurrence. If comparetype is 0, a binary
comparison is performed, and uppercase letters are distinct from lowercase
letters. If comparetype is 1, a textual comparison is performed, and
uppercase and lowercase letters are the same.

§ Filter(arrStrings,SearchFor,include,comparetype) searches an
array of strings, arrStrings, and returns a subset of the array, include is
a Boolean value. If include is True, Filter searches through all the
strings in arrStrings and returns an array containing the strings that
contain SearchFor. If include is False, Filter returns an array of the
strings that do not contain SearchFor. include is optional and defaults to

ACTIVE SERVER PAGES 3.0

48

True. comparetype works the same as in the other string functions we
have discussed. If you want to use comparetype, you must use include.

§ Split(expression,delimiter,count,comparetype) takes a string and
splits it into an array of strings. expression is the string to be split up. If
expression is zero length. Split returns an array of no elements,
delimiter is a string that indicates what is used to separate the sub-strings
in expression. This is optional; by default the delimiter is the space. If
delimiter is zero length (""), an array of one element consisting of the
whole string is returned, count is used to specify a maximum number of
sub-strings to be created. The default for count is -1, which means no
limit. If comparetype is 0, a binary comparison is performed, and
uppercase letters are distinct from lowercase letters. If comparetype is 1, a
textual comparison is performed, and uppercase and lowercase letters are
the same. comparetype is only useful when the delimiter you have chosen
is a letter.

§ Join(stringarray,delimiter) does just the opposite of Split. It takes
an array of strings and joins them into one string, using delimiter to
separate them. delimiter is optional; the space is the default.

Other functions
§ LBound(array) returns the smallest valid index for array.
§ UBound(array) returns the largest valid index for array.
§ Asc(string) returns the ANSI character code for the first character of

string.
§ Chr(integer) returns a string consisting of the character that matches the

ANSI character code specified by integer.
§ Array(value1, value2, ..., valueN) returns an array containing the

specified values. This is an alternative to assigning the values to array
elements one at a time.

Control Structures
Control structures allow you to control the flow of execution of your scripts.
You can specify that some code should be executed only under certain
circumstances, using conditional structures. You can specify that some code
should be executed repeatedly, using looping structures. Lastly, you can
specify that code from somewhere else in the script should be executed using
branching controls.

Conditional Structures
The If...Then...Else construct allows you to choose which block of code to
execute based on a condition or series of conditions.

<%
If condition1 Then
 codeblock1
ElseIf condition2 Then
 codeblock2
Else

ACTIVE SERVER PAGES 3.0

49

 codeblock3
End If
%>

If condition1 is true, codeblock1 is executed. If it is false, and condition2 is
true, codeblock 2 is executed. If condition1 and condition2 are both false,
codeblock3 executes. An If-Then construct may have zero or more ElseIf
statements, and zero or one Else statements.

In place of some really complex If ...Then constructs, you can use a Select
Case statement. It takes the following form:

Select Case variable
 Case choice1
 codeblock1
 Case choice2
 codeblock2
 Case choicen
 codeblockn
 Case default
 default code block
End Select

This compares the value of variable with choicel, choice2, and so on. If it
finds a match, it executes the code associated with that choice. If it does not, it
executes the default code.

Looping Structures
Looping structures allow you to execute the same block of code repeatedly.
The number of times it executes may be fixed or may be based on one or
more conditions.

The For...Next looping structure takes the following form:

For counter = start to stop
 codeblock
Next

codeblock is executed with counter having the value start, then with counter
having the value start+1, then start+2, and so forth through the value stop.

Optionally, you may specify a different value to increment counter by. In this
case the form looks like this:

For counter = start to stop Step stepvalue
 codeblock
Next

Now counter will take the values start+stepvalue, start+stepvalue+stepvalue,
and so forth. Notice that if stepvalue is negative, stop should be less than start.

ACTIVE SERVER PAGES 3.0

50

The For Each...Next looping structure takes the following form:

For Each item In Set
 codeblock
Next

codeblock is executed with item taking the value of each member of Set. Set
should be an array or a collection.

The Do While-Loop looping structure has the following form:

Do While booleanValue
 code block
Loop

codeblock is executed as long as booleanValue is True. If it is False to begin
with, the loop is not executed at all.

The While...Wend looping structure has the following form:

While booleanValue
 codeblock
Wend

codeblock is executed as long as booleanValue is True. If it is False to begin
with, the loop is not executed at all.

The Do-Loop While looping structure has the following form:

Do
 code block
Loop While booleanValue

codeblock is executed as long as booleanValue is True. The loop is executed
at least once no matter what.

The Do Until-Loop looping structure has the following form:

Do Until booleanValue
 codeblock
Loop

code block is executed as long as booleanValue is false. If it is true to begin
with, the loop is not executed at all.

The Do...Loop Until looping structure has the following form:

ACTIVE SERVER PAGES 3.0

51

Do
 code block
Loop Until booleanValue

code block is executed as long as booleanValue is false. The loop is executed
at least once no matter what.

Branching Structures
Branching structures allow you to jump from one position in the code to
another. A subroutine does not return a value. It simply executes. Subroutines
look like this:

Sub name (argumentlist)
 code block
End Sub

Functions do return values and have the following form:

Function name (argumentlist)
 code block
 name = expression
End Function

ACTIVE SERVER PAGES 3.0

52

SQL REFERENCE

Structured Query Language (SQL) is a straightforward subject, partly because
it doesn't do much, and partly because the language is standardized. Most
modern databases use a variant of SQL that, for the most part, conforms to the
American National Standards Institute (ANSI) 92 standard. That standard
means you can use similar, although not quite identical, SQL code to access
many different databases. Fortunately, for basic operations, there's no
difference between most common databases.

SQL lets you perform four basic operations:
§ SELECT - Retrieve data
§ INSERT - Add data
§ UPDATE - Change data
§ DELETE - Remove data

The SELECT Statement
The SELECT statement retrieves data from the database. To retrieve the data,
you specify a field list, a table list, a list of fields to sort by, and the sort order.
The parts of a SQL statement are called clauses. A basic SELECT statement
has up to four clauses. For example:

SELECT (fieldl [, field2] ...)
FROM (table1 [, table2] ...)
WHERE (condition1 [, condition2] ...)
ORDER BY (fieldl [ASC|DESC] [, fie1d2 [ASC|DESC]] ...)

The WHERE and ORDER BY clauses are optional. If you omit the WHERE
clause, the query returns all rows from the specified tables. If you omit the
ORDER BY clause, SQL retrieves rows in the sequence in which they're
stored in a table. By default, when you retrieve data from multiple tables,
SQL uses the row order from the first specified field.
At the most basic level, you can obtain all the information from a table using
an asterisk (*) as a shorthand way of specifying all fields.

ACTIVE SERVER PAGES 3.0

53

Of course, you don't have to select all fields, you can specify the exact fields
and field order that you wish.

Programmers moving from file-based databases to relational databases often
make the mistake of thinking that the simple SELECT statement is all they
need. They are accustomed to scrolling (moving sequentially from field to
field) through a set of records to find the info they need. That's absolutely the
wrong way to approach relational databases. Don't search for records yourself
— let the database do the work. That's what the WHERE clause does — it
limits the returned records to exactly the ones you need

The ORDER BY clause of the SELECT statement controls the order of the
records returned by the query.

The fields in the ORDER BY clause do not have to appear in the selected
field list. The default sort order is ascending (ASC), but you can retrieve
fields in reverse order by specifying the DESC keyword after the appropriate
field name. You don't have to select all the fields, and you may select them in
any order you desire.

The following SELECT statement includes all the basic SELECT clauses:

SELECT StudentID, LastName, FirstName
FROM Students
ORDER BY Grade DESC

INNER and OUTER JOIN Statements
You can use the SELECT statement to retrieve data from more than one table
at a time. SQL statements referencing more than one table typically (but not
necessarily) use a JOIN statement to connect the tables on a common field or
value.

For example:

SELECT StudentID
FROM TeacherStudent INNER JOIN Teachers ON
TeacherStudent.TeacherID=Teachers.TeacherID
WHERE Teachers.LastName=’Franklin' AND
Teachers.FirstName='Marsha'

When you use two tables, you can't use the asterisk shorthand to retrieve all
the fields from only one of the tables (although you can use it to retrieve all
the fields in both tables). In such cases, the tablename.* syntax selects all
the fields from the named table.
The INNER JOIN statement requires that you specify which tables and fields
the database should join to produce the query. Also, when you work with
more than one table you must specify the table name as well as the column
name for each field where the field name appears in more than one table. In

ACTIVE SERVER PAGES 3.0

54

other words, if the column name is not unique among all fields in all tables in
the FROM clause, the server will raise an error, because it can't distinguish
the table from which to extract the data.

When you know that a foreign key may not exist, or may not match a key
value in the joined table, you can perform a LEFT (OUTER) JOIN or a
RIGHT (OUTER) JOIN. The OUTER keyword is optional. Outer joins return
all the values from one of the tables even if there's no matching key.

Calculated Values and the GROUP BY Clause
Transact-SQL (T-SQL) contains a number of functions to calculate values. A
calculated value is a result of an operation on one or more columns in
multiple rows. For example, a sum, average, or total. In T-SQL, calculated
values are called aggregates, and the functions are aggregate functions
because they aggregate, or collect a number of values into a single value using
a calculation. For example, yea can retrieve the total number of rows in any
table with the following SELECT statement, substituting an appropriate table
name in the FROM clause:

SELECT count(*) FROM <tab1ename>

The syntax of the GROUP BY clause is:

SELECT (fieldl [, fie1d2] ...)
FROM (table1 [, table2] ...)
WHERE (condition)
GROUP BY (fieldl [, fie1d2] ...)
HAVING (condition)
ORDER BY (fieldl [ASC|DESC] [, fie1d2 [ASC|DESC]] ...)

You've seen the rudiments of how to select data. Selecting data doesn't change
it, so selecting is a safe operation. All the other statements change data in
some way. You'll be happy to know that the other statements are considerably
less complex than the SELECT statement. I suggest you make a backup copy
of your database before you continue.

The INSERT Statement
SQL INSERT statements add one or more new rows to a table The INSERT
statement has two variations The first variation adds one row by assigning
values to a specified list of columns m a specified table. The values you want
to insert follow a VALUES statement. You put parentheses around both the
field list and the values list.

For example:

ACTIVE SERVER PAGES 3.0

55

INSERT INTO tablename (field1 [, field2] ...)
VALUES (value1 [, value2] ...)

You must provide a value for all fields that cannot accept a null value and do
not have a default value. You do not have to provide values for identity
columns.

The second variation lets you add multiple rows using a SELECT query in
place of the VALUES list, as follows:

INSERT INTO tablename (field1 [, field2] ...) SELECT query

If you're inserting data into all the columns in the target table, you can omit
the field list. The SELECT statement you use to obtain the data you want to
insert can include any clause or condition discussed in the previous section,
including calculated fields and a GROUP BY clause.

The UPDATE Statement
UPDATE statements change data in one or more columns and in one or more
rows. The UPDATE statement is dangerous, because if you forget to specify
conditions, your database will happily update all the rows in the table. You
should always specify a WHERE condition when updating data. The
UPDATE statement has the following syntax:

UPDATE (tablename)
SET fieldl=(value|expression) [, field2=(value|expression)]...
FROM (table|query source)
WHERE (condition)

The UPDATE statement has four clauses. In the UPDATE clause, you must
specify a table name containing the fields to update. You may not update
multiple tables simultaneously.

The SET clause contains the list of fields you wish to update. You separate
the list with commas. Each item in the list consists of a field name, an equals
sign, and a new value. You can use a constant, a variable, a field from another
table, or an expression for the value on the right-hand side of the equals sign.

The FROM clause is optional. If you're updating a single row with constant
values, you can omit the FROM clause. You need the FROM clause when
you're updating data in one table from values stored in a different table (or in
another place in the same table). Fortunately, the FROM clause is identical to
the FROM clause you saw earlier in The SELECT Statement section. You
may update from multiple tables using JOIN statements as appropriate.
The WHERE clause (Important: don't forget the WHERE clause!), again,
is a condition that identifies the rows in the target table you wish to update.

ACTIVE SERVER PAGES 3.0

56

The DELETE Statement
The DELETE statement is the simplest of all, but quite powerful. You can use
the DELETE statement to delete one or more rows in one or more tables. The
DELETE statement is just as dangerous as the UPDATE statement, as you
can see, because it cheerfully deletes data without prompting. If you
accidentally run a DELETE statement, it's difficult to recover your data. You
should rarely use a DELETE statement without a WHERE clause. If you want
to delete all the data from a table it's much more efficient to use a different
type of statement, one of a group of statements that alters the datable itself-
the TRUNCATE TABLE statement.

Truncating a table removes all the data and resets the identity column value to
its default.

You should rarely use DELETE without a WHERE clause. There is one
reason to do so. The TRUNCATE statement is not logged — that means you
can't recover if you use it automatically, whereas the DELETE statement is a
logged operation. That’s the reason TRUNCATE is so much more efficient—
it avoids the log operations, but it also means the data is unrecoverable from
the transaction log.

ACTIVE SERVER PAGES 3.0

57

ACTIVEX DATA OBJECTS (ADO) REFERENCE

ASP's primary interface to relational databases is through Microsoft's ActiveX
Data Objects (ADO). This ability to access multiple types of data stores,
along with a relatively simple and flat object model, make ADO the simplest
method yet devised for retrieving data.

The three main objects in the ADO object model and their most useful and
common methods are reviewed here. In ADO, there are often several ways to
accomplish a task. However, there are reasons why you should prefer one
object or method instead of another.

The Connection Object
Before you can retrieve any data from a database, you have to create and
initialize a connection to that database. In ADO, you use a Connection object
to make and break database connections. A Connection object is a high-level
object that works through a provider (think driver) mat actually makes the
data requests.

Opening a Database Connection
A single project called ActiveX Data Objects Database (ADODB) contains all
the ADO objects. You create a Connection object in the same way as any
other ASP object - with the Server.CreateObject method.

Dim Conn
Set Conn = Server.CreateObject(“ADODB.Connection")

By default, connections are read-only, but you can create a read-write or
write-only connection by setting the Connection object's Mode property.
There are several Mode constants - in fact, ADO is rife with constants. You
have to include the adovbs.inc file (provided in the appendix to this guide).
To use the ADO constants, include the following line in each file where you
use ADO, substituting the appropriate drive and path for your server:

<!-- #INCLUDE FILE=”adovbs.inc” -->

ACTIVE SERVER PAGES 3.0

58

If you open the adovbs.inc file with Notepad or another text editor, you'll
see groups of constants.

The ConnectModeEnum constants
Typically, you only need to select one of the first three values. If you only
need to read information from the database (the most common action), use the
adModeRead constant. If you only need to write data, use the adModeWrite
constant. If you need to read and write data within a single page, use the
adModeReadWrite constant. Some people always use the adModeReadWrite
constant, but that slows down data access when you only need to read or
write, but not both.

The last five constants are of less use in a Web application where you may not
know how many people are simultaneously connected. The
adModeShareDenyRead constant prevents other connections from reading the
database. Similarly, the adModeShareDenyWrite constant lets other
connections read from, but not write to the database. The misnamed
adModeShareExclusive constant prevents all other connections from
opening the database. To thoroughly confuse the issue, the
adModeShareDenyNone constant allows all other connections to attach to the
database with any type of permission. The adModeRecursive constant works
in concert with all of the Share-type constants except adModeShareDenyNone
to propagate the setting to sub-records of the current record. For example, you
can use adShareDenyRead + adModeRecursive to deny read permissions to
sub-records.

The ConnectionString
After setting the mode, you must set the Connection object's
ConnectionString property. Although you must set this property each time
you open a new Connection object, you should define the connection string
(or strings) in your application's global.asa file as an application-level or
session-level variable. There are at least three reasons to define the connection
string in the global.asa file; it means you only have one place to check for
connection string problems, you can change the connection from one database
to another with minimal code changes during development, and you can copy
or move your application from one server to another very quickly.

The ConnectionString property is both simple and complicated. It has
several parts, all of which are optional, depending on which type of
connection string you're using, but typically, you specify the following:

§ Provider name
§ Name of the database server
§ Name of the database you want to use
§ User ID (UID) with which to connect
§ Password (PWD) for that user ID.

ACTIVE SERVER PAGES 3.0

59

You separate the parts of the connection string with semicolons. For example,
at the simplest level, you can use an Open Database Connectivity (ODBC)
Data Source Name (DSN), a user ID, and password to connect to your
database. A DSN already contains the provider, the database server, and the
database name, so you don't have to specify those again.

For example:

Dim Conn
Set Conn = Server.Create0bject(“ADODB.Connection")
Conn.Mode = adModeReadWrite
Conn.ConnectionString = “DSN=myDSN;UID=manas;PWD=manas;"

Unfortunately, that's not the best method. By default, ODBC DSNs use the
MSDASQL provider, but the JET OLEDB provider is faster and provides
more functionality. Use this type of connection string instead.

Dim Conn, ConnStr
ConnStr= "PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=" +
Server.MapPath(Path2DB)
Set Conn = Server.CreateObject(“ADODB.Connection")
Conn.Mode = adModeReadWrite
Conn.ConnectionString = ConnStr

The connection string contains the provider name, the name of the server (in
this case, and the path to the MDB file. We use the Server.MapPath function
to translate the virtual path to the actual path on the server’s disk. For
example, a database at the location

 http://www.manastungare.com/users.mdb

can actually be the file

 E:\Web\Databases\users.mdb

Server.MapPath translates the first address to the second (which is what is
needed by the ADODB.Connection object.)

You must set most of the Connection object's properties before opening the
connection. If you later want to change a property, close the connection,
change the property value, and then reopen the connection.

To open a connection, use the Open method of the Connection object.

Conn.Open

If the Open method executes without errors, you have a working connection
to the database.

ACTIVE SERVER PAGES 3.0

60

All the procedures so far can be simplified with an alternate syntax. The Open
method accepts up to four optional arguments: a ConnectionString, a user ID,
a password, and the Options argument consisting of a ConnectOptionEnum
constant.

Conn.Open ConnStr, "manas", "manas", adAsyncConnect

You can specify more than one value for the options by adding the constants
together.

The Connection.Execute Method
There are three ways to obtain data from a database using ADO. All of them
require a connection. The simplest way is to use the Execute method of the
Connection object.

The Execute method accepts three arguments
§ An SQL statement or query, table, view, or stored procedure name called

the CommandText argument
§ A variable called RecordsAffected that will contain the number of records

affected by the statement or query after the Execute method completes
§ And a CommandTypeEnum constant called Options that tells the database

what type of statement or query you want to run, and whether to return a
Recordset object.

Connection objects can open tables directly, and can execute SQL in either
pre-compiled form (called stored procedures) or dynamically by interpreting
and executing the SQL statement at runtime. All these types of requests return
records. The returned records are called result sets, and ADO wraps the
resulting rows in a Recordset object.

The return value of the Execute method, by default, is a Recordset object that
contains the result of the statement or query. You can control whether the
Execute method returns a Recordset object by adding the
adExecuteNoRecords constant to the Options constant. If you're running a
SELECT statement, you generally need the resulting Recordset object; but
when you're running an INSERT or UPDATE query, you usually don't need
any records returned.

Managing Transactions with a Connection Object
When you submit a command that changes data to SQL Server, such as an
UPDATE, INSERT, or DELETE query, it always treats the statement as a
transaction. If the statement fails, all operations in the statement fail-
However, you often need to execute one or more statements as a transaction.
To do that, you must wrap the statements in a high-level transaction yourself.

ACTIVE SERVER PAGES 3.0

61

You manage transactions with the Connection object's BeginTrans,
CommitTrans, and RollbackTrans methods.

The Recordset Object
Recordset objects provide more functionality than simply a method for
holding and scrolling through data. A Recordset object is a table of values. It
has rows and columns like a database table; but a Recordset object is not a
table. It's more like a virtual table or view.

First, the values of the Recordset object's columns may come from several
different tables via a JOIN operation. Second, the column values may be
calculated values — they may not match any value in the database. Finally,
you can search and sort Recordset objects, rum them into strings or arrays,
and even persist them to and retrieve them from disk storage as objects or as
XML data.

Using the Recordset.Open Method
If you need a Recordset object with any type of cursor other than a forward-
only, read-only cursor, you need to open it directly rather than calling the
Execute method of a Connection object. Recordset objects also have an Open
method, which takes several arguments

Recordset.Open CommandText, Connection|ConnectionString,
Cursor-Type, LockType, Options

The CommandText argument contains the SQL query. The Connection |
ConnectionString argument contains either a reference to an open Connection
object or a valid ConnectionString argument If you use a ConnectionString
argument, the Open method creates a Connection object for you.

If you're going to make only one call to the database in a page, letting ADO
create a Connection object is a viable option. However, if you're going to
make more than one call, you should create and open your own Connection
object. The reason is that you have more control over the type and duration of
the Connection object if you open and close it yourself.
The CursorType argument is a value derived from one or more
adCursorTypeEnum values. The following list shows the valid values and a
description of each:

§ adOpenForwardOnly

Returns a forward-only cursor. This is the default cursor type. If you don't
specify a cursor type, ADO always returns a forward-only cursor. As the
name implies, you can only move forward, not backward, through the
Recordset object. You should use this whenever you need to make only
one pass through a Recordset object because it's the fastest type of cursor.

§ adOpenKeyset

Returns a keyset cursor. You can move in any direction with this cursor

ACTIVE SERVER PAGES 3.0

62

type first, last, forward, backward, skip, or move to bookmark (if the
provider supports bookmarks). You can see changes that others make to
the records in the Recordset object, but you can't see records added since
you opened the Recordset object. You cannot access or change records that
other users delete. Use a keyset cursor for large record sets where you need
to be able to scroll backward or you need to change. The server creates a
unique bookmark for each row when you first run the query. Those
bookmarks don't change during the life of the Recordset object, which is
why you can't see new records.

§ adOpenDynamic

Returns a dynamic cursor. This type is exactly like a keyset cursor except
that you can see new records that others add. A dynamic cursor checks
constantly for updates and additions to the result set. It does not build a set
of bookmarks for the result set, so a dynamic cursor often opens more
quickly than a keyset cursor. Dynamic cursors require the most resources
of all cursor types, so you should not use them unless you need to see
additions to the result set while the Recordset object is open.

§ adOpenStatic

Returns a static cursor, which is a fixed copy of a set of records. You
cannot see any changes or inserts by others without querying the database
again. Recordset objects with static cursors can be updated.

Depending on the provider, you may be able to see changes your application
makes to data with a static cursor.

The LockType argument tells ADO how to treat database locks In general,
you want to avoid locking data for updates or inserts because locks created by
one user can cause problems for other users in your application. Read-only
locks do not cause such problems. The valid LockType arguments are:

§ adLockReadOnly

Read-only — you cannot alter the data.

§ adLockPessimistic

Pessimistic locking is the strongest type of lock. Records with pessimistic
locking are unavailable to other users of your application. Pessimistic locks
occur when the server delivers the record. The record remains locked until
you close the Recordset object You should avoid pessimistic locking in
Web applications whenever possible.

§ adLockOptimistic

Optimistic locking locks records just before an update occurs, and unlocks
them immediately afterward. Other users can access data during the time
you're updating the record, which means they may potentially be viewing
outdated data. Similarly, with optimistic locking, multiple users may

ACTIVE SERVER PAGES 3.0

63

simultaneously try to update the same data, leading to problems. You
should avoid optimistic locking in Web applications whenever possible.

§ adLockBatchOptimistic

Optimistic batch locks act like optimistic locks, except they work for batch
updates — deferring immediate updates in favor of updating many records
at one time rather than updating each record immediately as with
adLockOptimistic locking. It's your call whether batch updates or
immediate updates are better for your application, in part, it depends on the
level of interactivity your application demands and how people expect to
use the application.

The final Recordset.Open argument is the Options flag. The Options flag
takes exactly the same values as the Connection.Execute options argument.
Again, the options argument is not required, but you should always include it.
It tells ADO whether the query is a table, view, stored procedure, or dynamic
SQL statement.

The Update method fails because even though the Recordset object may have
an updateable cursor type, the underlying connection is read-only. To open an
updateable Recordset object you must set the ConnectionMode property to
adModeReadWrite.

Positioning a Recordset Object — the Move Methods
After opening a Recordset object, you can use the Move methods to move
forward and (depending on the cursor) backward through the data rows.
Recordset objects provide a RecordCount property, which tells you the
number of records in the Recordset object.

Think of a Recordset object as a table with an empty row at the top and
bottom, and a current-record pointer. The record pointer points to only one
record at a time. When you use one of the Move methods, you don't scroll the
record set - you move the record pointer. Recordset objects have EOF (end-
of-file) and BOF (beginning-of-file) methods to let you know when the record
pointer has moved past the last record or prior to the first record. EOF and
BOF are Boolean properties.

While Not R.EOF
 'Do something
 R.MoveNext
Wend

It's important to check whether a Recordset object is at the BOF or EOF
position before requesting data, because Recordset objects raise an error if
you request data when the Recordset object is at either of these two positions.

Recordset Sorting and Searching Methods
You can search and sort data with Recordset methods, although it’s much
more efficient to obtain only the data you need from the server and retrieve it

ACTIVE SERVER PAGES 3.0

64

already sorted. To sort a record set, assign its Sort property the names of the
field(s) you want to sort by. For example, to sort the Recordset:

SELECT * FROM Students

by LastName, you would write:

R.Sort = "LastName"

To sort by more than one field, separate the field names with commas, as
follows:

R.Sort = "LastName, FirstName"

The default sort order is always ascending, so you don't need to write an
explicit direction (although you can). To sort in a specific order, append either
ASC or DESC to the end of the sort string.

R.Sort = "LastName, FirstName DESC”

You can also search for specific records in a record set. To perform the
search, use the Recordset.Find method. You specify the search conditions
with the equivalent of a SQL WHERE clause, without the word WHERE.
After performing a find, the Recordset object is positioned at the first record
found, or if no records are found, at the end of the Recordset (EOF).

You may include multiple conditions, just as in a WHERE clause. In addition
to the search criteria, the Find method accepts three other optional arguments:

§ SkipRecords

The number of records to skip before beginning the search. This argument
is particularly useful when you're searching in a loop. By setting
SkipRecords to 1, you can begin searching in the record following the
current record. When searching backward, set this value to a negative
number.

§ SearchDirection:

The direction to search, either adSearchForward or adSearchBackward.

§ Start:
The number or bookmark of the record where the search should begin. You
should specify either SkipRecords or Start, but not both.

ACTIVE SERVER PAGES 3.0

65

The Field Object
Although we’ve been talking of Recordset objects as tables, that's just a
convenient mental model. Recordset objects actually consist of a two-
dimensional array of Field objects. In the ADO object model, Field objects
contain the data. Therefore, each Field object has a type, a size, and a value. A
Field object also has properties for the numeric scale of its value, the original
value, the underlying value (in the database), the defined size, the actual size,
and the precision, as well as a list of other attributes. Most of the time you
will not need to deal with the Field object properties and methods, but its
useful to study them in case you do need them.

ACTIVE SERVER PAGES 3.0

66

EXTENDING ASP : COM COMPONENTS

You have already used Component Object Model (COM) objects to create
your ASP pages. However, unless you have developed COM objects or read
a detailed book on COM, you might not know about the multitude of COM
objects that you can use in ASP. Also, without sufficient COM knowledge,
you might not be able to infer the methods and properties that exist for those
objects when reading the documentation. One of the wonderful things about
COM is that once you learn the standards and restrictions, you can quickly
learn to implement other COM objects.

This section will demonstrate and describe the basics of COM to those
familiar with VBScript and COM objects, and is especially useful to those
who have used COM objects like ActiveX™ Data Objects (ADO) without
knowing that they are COM.

The Basics
COM (http://www.microsoft.com/com/) is the standard for the interface to
objects. By definition, COM objects have only methods and properties; there
are no other interfaces. There isn’t much difference between properties and
methods from a programmer’s standpoint: Methods can take arguments,
properties can’t. Properties can be read/write; methods - if they return a value
- are read-only.

Component designers use methods and properties for different functionality.
Properties usually represent some aspect of the object’s state, whereas a
method can be a function that performs regardless of whether the object’s
state is involved.

Properties
Properties do not take any arguments and are usually used to describe or set
the state of an object. All properties return a value, however some properties
are read-only, and some are read/write. Here is an example of the VBScript
syntax for reading a property:

http://www.microsoft.com/com/

ACTIVE SERVER PAGES 3.0

67

value = object.property

Note there are no parentheses, not even a blank set; that is, (). Here is the
Visual Basic syntax for setting a property:

object.property = value

Methods
Methods can return values and take arguments. They are most often used to
initiate an event within the object. Methods can be used to set values, but
only when passing the value through the argument list. If a method returns a
value but doesn’t take an argument, the syntax will be:

value = object.method()

Note that the method has a set of blank parentheses. Methods that have a
return value must have arguments encapsulated in parentheses. For example,
the Connection object has an Execute method that returns a RecordSet
object. Here is an example:

Set RS = Conn.Execute(“SELECT * FROM TABLE”)

Methods that do not return values do not have parentheses around the
arguments. For example, the Close method of the Connection object is not
encapsulated in parentheses:

Conn.Close

Arguments
Methods can take one or more arguments, or take none at all. However,
arguments might be optional. If they are, you do not have to enter anything
for an argument. Once one argument is optional, all arguments following it
are also optional. For example, if arguments one and two are required, and
three is optional, argument four has to be optional. A good example of an
optional argument method is the Open method of the Connection object.
The Open method has eight optional arguments. The first three are for
establishing the database and the logon information.

Conn.Open “DSN”,”sa”,””

This indicates a DSN of “DSN”, a logon of “sa”, and a password of “”.You
can also call the Open method as:

ACTIVE SERVER PAGES 3.0

68

Conn.Open "driver=SQL
Server;server=yourServerName;uid=someUID;pwd=somePWD;database=
someDatabase;"

Calling the arguments by delimiting with the argument and leaving it blank
causes the method to execute with nulls instead of the optional argument’s
default values.

Conn.Open “DSN”,”sa”,””, , , ,

This calls the optional methods with null values, which is different than
earlier.

Collections
Collections are objects that represent a set of objects. All collections have
predefined methods and properties. A collection object has an Item method,
a Count property, and a _NewEnum method. A collection can also create
objects of the collection type. In other words, if a particular object can be
grouped in a set, that object will have a collection object that can create an
instance of an object within the set. For example, a Drives collection object
will contain a set of drives that can represent all the drives on a particular
computer.

The Count property returns a LONG value that specifies how many objects
are in the collection. By passing a LONG value - that is between one and the
value returned by the Count property -- to the Item method, the collection
method will return the object in the set that is associated with that position.
Accessing an item in an array works similarly.

The _NewEnum method enables a programmer to iterate through the
collection in a For…Next statement.

For Each Object in Collection
 ...
Next Object

Note that the _NewEnum method is not referenced within the syntax of the
statement in Example 6. This is because the _NewEnum method has a
special index that is used for the For…Next statement. In fact, all methods
and properties in a COM object are indexed and certain indexes are used for
particular tasks. For example, the zero index is used for the default method or
property.

The Default Method or Property
The method or property that has the COM index of zero is called the default
property. Visual Basic enables a programmer to not use the regular

ACTIVE SERVER PAGES 3.0

69

method/property syntax when calling the default value; you can leave the
syntactical call to the method/property off altogether. For example, the
default method in all collections is the Item method.

Set Object = Collection.Item(2)

This would get the second item in the collection and assign the object variable
to that object. Because the Item method is the default method, you can also
call the Item method as below:

Set Object = Collection(2)

Note that both the period and the actual name of the method are missing; only
the argument to the method remains.

Instantiating an Object
To create an instance of a COM object in ASP, you can use a statement like
the following:

Set Object = Server.CreateObject("ADODB.Connection")

There is only one argument to the CreateObject method of Server that is the
ProgId (the program ID). The ProgId is assigned by every component
vendor to uniquely identify the COM object. To create an instance of the
COM object, you must know the ProgId of the COM object.

There is another way to get an instance of a COM object. You can have
another COM object create the object and return the newly created object to
you. This is how a collection works. You call the Item method of a
collection, and a COM object is returned that represents the subset of the
collection, which you index. Whenever a COM object is returned by another
object, you must preface the statement with Set.

Set Object = Collection.Item(2)

Because Server is a COM object, both the examples above are much alike.
They both return COM objects with a call to another COM object. The
difference is that the CreateObject method of the Server object can return
any COM object, and the Item method can only return COM objects that are
stored in the collection. If you need to have a COM object to create another
COM object, where did the Server object come from? ASP has a set of built-
in COM objects that solve this chicken-or-the-egg problem.

ACTIVE SERVER PAGES 3.0

70

Built-in COM Objects
There are six built-in COM objects in the ASP environment:
§ Server
§ Request
§ Response
§ ObjectContext
§ Application
§ Session

The difference between these COM objects and the others is that you do not
need to create an instance of these objects to call them. Built-in objects are
present in the page without instantiation. They adhere to all the other rules of
COM and have their own methods and properties. You do not need to know
their ProgIds because you don't have to call the CreateObject method to
instantiate them.

ProgId
If one of the major ways to create a COM object is by using the
CreateObject method, knowing the ProgIds of the objects you are creating is
very important. So where are the ProgIds located? The component vendor
should supply the component ProgIds as part of the documentation.

However, not all ProgIds are supplied, because a vendor doesn’t always want
you to create an instance of the object using the CreateObject method. Some
objects inherit properties from the object that creates them, so if they are not
created from calling a method in that object they are not initialized correctly.
For example, creating an instance of an ADO Field object would not do you
much good without going through the RecordSet object, because the ADO
Field object would not contain any data unless you went through the
RecordSet object.

Further On ...
In a booklet as brief as this, there is not much scope to include how to write
your own COM objects. The idea is to use languages such as Visual Basic
(not the scripting language VBScript) or Visual C++ (or any language that
allows you to generate Win32 COM objects).

COM objects, as you must have noted, are typically compiled code. Hence
they execute faster than ASP scripts. In a complex project with stringent
efficiency requirements, you might want to code the Business Rules layer in a
COM object rather than ASP scripts.

ACTIVE SERVER PAGES 3.0

71

COPY & PASTE ASP SCRIPTS

Feedback Page
You can use this simple page to get feedback from your visitors. This will
generate a form to ask your visitors the information that you want, and then it
will mail the same to you. It assumes that you have the Persits Software
AspEmail Component installed on the Server.

<HTML>
<HEAD>
<TITLE>Feedback</TITLE>
</HEAD>
<BODY>
<% If Request (“Action”) <> “Send” Then %>
 <FORM METHOD=”post” ACTION=”<%= Request.ServerVariables
(“PATH_INFO”)%>”>
 <P>Name:

 <INPUT TYPE=”text” NAME=”Name”>
 <P>Email:

 <INPUT TYPE=”text” NAME=”Email”>
 <P>Comments:

 <TEXTAREA NAME=”Comments” ROWS=3 COLS=30>
 </TEXTAREA>
 <P><INPUT TYPE=”submit” NAME=”Action” VALUE=”Send”>
 </FORM>
<% Else
 Set Mail = Server.CreateObject("Persits.MailSender")
 Mail.Host = "smtp.your-isp.com"
 Mail.From = Request (“Email”)
 Mail.FromName = Request (“Name”)
 Mail.AddAddress "you@domain.com", "Your Name"
 Mail.Subject = "Web Feedback"
 Mail.Body = Request (“Comments”)
 Mail.Send
 Response.Write “Your message was delivered.”
End If %>
</BODY>
</HTML>

Tell a Friend about this site
<HTML>

ACTIVE SERVER PAGES 3.0

72

<HEAD>
<TITLE>Tell a Friend</TITLE>
</HEAD>
<BODY>
<%
 URL = Request.QueryString("URL")
 If Len(URL) = 0 Then URL = "http://www.manastungare.com/"
 'We need a Default URL

 If Len(Request("SenderEmail")) > 0 Then _
 Dim Mail, FriendEmail, I
 sBody = Request ("SenderName") + " wants to tell you that
he found the webpage at " & URL & " very interesting. He would
like you to visit it. " & vbCrLf & "A personal message
follows: " & vbCrLf & Request("Message")

 I = 1
 Do While True
 FriendEmail = Request("FriendEmail" & I)
 If Len(FriendEmail) = 0 Then
 Exit Do
 Else
 Set Mail =
Server.CreateObject("Persits.MailSender")
 Mail.Host = "smtp.domaindlx.com"
 Mail.From = "webmaster@yourdomain.com"
 Mail.FromName = "Webmaster at yourdomain.com"
 Mail.AddAddress FriendEmail
 Mail.Subject = "Recommended Page"
 Mail.Body = sBody
 Mail.Send
 End If
 I=I+1
 Loop

 Response.Write "<H1>Thank you for spreading the word</H1>"
 Response.Write "Click here to return
to " & URL & ""
Else
 %>
<FORM METHOD="post" ACTION="<%=
Request.ServerVariables("PATH_INFO") %>?URL=<%= URL %>">
<P>
 Recommended URL: <%= URL %>

 Your Name:<INPUT TYPE="text" NAME="SenderName"
SIZE="25">

 Your Email:<INPUT TYPE="text" NAME="SenderEmail"
SIZE="25">

<P>Your friends' emails:

 <INPUT TYPE="text" NAME="FriendEmail1">

 <INPUT TYPE="text" NAME="FriendEmail2">

 <INPUT TYPE="text" NAME="FriendEmail3">

 <INPUT TYPE="text" NAME="FriendEmail4">

 <INPUT TYPE="text" NAME="FriendEmail5">

<P>Message:

<TEXTAREA NAME="Message" ROWS="6" COLS="41"></TEXTAREA>

<P><INPUT TYPE="submit" VALUE="Recommend Page">
</FORM>

ACTIVE SERVER PAGES 3.0

73

<% End If %>

Further examples
Further examples can be found on the web at my website,
http://www.manastungare.com/asp
or by request, at manas@manastungare.com

Since these are long and complex, they cannot be included in a booklet of this
size.

http://www.manastungare.com/asp/
mailto:manas@manastungare.com

ACTIVE SERVER PAGES 3.0

74

THE ASP RESOURCE GUIDE

Editors
Once you start writing ASP code, you’ll soon realize that Notepad makes it a
tedious job. You could do with a more feature-packed editor for ASP scripts.

TextPad
www.textpad.com
TextPad is my personal favorite. It’s a plain-jane ASCII text editor, with lots
of features to simplify your job. For one, it provides Syntax Highlighting for a
wide variety of source files, so whether you are writing ASP, or C, or C++,
Java, HTML – you name it – TextPad supports it. Definitely worth more than
a dekko.

Macromedia Dreamweaver UltraDev 1.0
http://www.macromedia.com/
UltraDev is a WYSIWYG HTML editor with enhancements for ASP.
Although I do not use the ASP-wizards that come with UD, they’re there for
those want to. The best part is integrated site-management with superior ASP
support (it won’t mess up your code like FrontPage does.)

ASP Hosting
Once you’re ready with your pages, you’ll need a server to host your site.
Since Active Server Pages may be hosted only on Windows NT servers
(though the scene is fast changing with the advent of Chili!ASP,) ASP hosting
is usually costlier than regular hosting. (Maintaining NT costs more than
Linux-Apache)

But, of course, there are freebies – here is a pick of some of the free ASP
hosts around. They insert their ads on your pages, and that’s how they earn.

DomainDLX
http://www.domaindlx.com/

http://www.textpad.com/
http://www.macromedia.com/
http://www.chilisoft.com/
http://www.domaindlx.com/

ACTIVE SERVER PAGES 3.0

75

§ DomainDeluxe offer the following features to their members:
§ Microsoft Windows 2000
§ Internet Information Server 5.0
§ 15 MB of Space
§ Additional 25 MB Free Server Disk Space Upgrade!
§ Unlimited Bandwidth
§ Unlimited 24/7 Account Access via FTP
§ 6MB Free Web Based E-mail
§ Free Statistical Counter
§ Free Intranet
§ SSI (DHTML)
§ Active Server Pages Support (ASP 3.0)
§ AspEmail Component
§ Free Database Connectivity: MS Access databases

Brinkster
http://www.brinkster.com/
They offer two hosting plans, General & Premium.

General
§ Cost: FREE!
§ 30 MBs of Web Space
§ ASP Support
§ MS Access DB Support
§ Web Based File Manager
§ ADO & FileSystemObject
§ No Ads On Your Site

Premium Plan
§ $10.95/Setup $10.95/Month
§ All FREE Features PLUS
§ FTP To Upload Files
§ Your Own Domain Name
§ 1 POP3 Email Address
§ 2000 MB/Month Data Transfer
§ 15+ 3rd Party Components

SoftCom Technologies
http://www.softcomca.com/
SoftCom offers four plans: Standard, Premium, Gold, and Platinum. The
Standard plan is an excellent start for those hosting a site for the first time. It
gives you all of the features you need to get your site up and running.
With one mailing list, 50 MB of disk storage, and 20 e-mail accounts you
have all the features to get your business on-line.

The Standard plan
For the monthly fee of $9.95 you will receive:
§ Free domain name registration / transfer

http://www.brinkster.com/
http://www.softcomca.com/

ACTIVE SERVER PAGES 3.0

76

§ Microsoft® FrontPage® 2000 Extensions
§ 50 MB disk space
§ Microsoft® Active Server Pages
§ 20 e-mail accounts
§ Microsoft® Visual InterDev Support
§ Unlimited web traffic
§ Your own cgi-bin
§ Unlimited FTP updates and traffic
§ Audio/Video streaming
§ Unlimited e-mail forwarding
§ Account management console
§ 1 mailing list
§ Monthly billing cycle with no minimum contract
§ Web site statistics
§ Access to raw web site log files
§ E-mail autoresponders
§ Redundant Internet connections
§ Dedicated IP address
§ Daily tape backups
§ Free scripts
§ UPS protection

After you begin to build your web presence, you can consider purchasing
advanced services to enhance the functionality of your site. Compare the
standard hosting plan with other plans.

The Premium plan - improve your Web presence.
For $14.95 per month you will receive all the same features of the standard
plan plus an additional mailing list, an ODBC connection for a Microsoft
Access database, a secure web site connection using SoftCom's key, (SSL), 25
MB more storage space and 5 more e-mail accounts.

The Gold plan - as you expand so can your service.
2 mailing lists, 2 ODBC connections to Microsoft Access database, a secure
website connection (SSL), directory password protection (for membership
based services), an additional FTP user with upload capability, twice the
amount of storage space and 10 more e-mail accounts.

The Platinum plan - increase your storage space as your business
grows.
For $44.95 per month you will receive all the features of the standard plan
plus 3 mailing lists, 3 ODBC connections to a Microsoft Access database, a
secure web site (SSL) connection, directory password protection (for
membership based services), two additional FTP users with upload capability,
100 MB more of storage space and 20 more e-mail accounts.

ACTIVE SERVER PAGES 3.0

77

Feature plus services
As you begin to build your online presence you can purchase advanced
services to enhance the functionality of your site, as well as gaining more
control of how you conduct business online.

COM Components for use with ASP

AspEmail
http://www.aspemail.com/
AspEmail 4.4 is a free active server component that enables your ASP
application to send email messages via any external SMTP server. The
component supports multiple file attachments, multiple recipients, Cc's,
Bcc’s, and Reply-To.

In addition to basic functionality available for free, AspEmail 4.4 offers a
number of premium features that require a registration key after a 30-day
evaluation period. These features are support for message queuing, embedded
images, Quoted-Printable format and authentication. Regular file attachments
are still free, of course.

JMail
http://tech.dimac.net/
JMail is another email component, much more powerful than AspEmail and
offers a whole lot of functions including POP3 support, MailMerge with a
simple template, PGP signing, etc.

Nonetheless, JMail is fairly complex to use, and exceeds the needs of most
ASP sites. Highly recommended for large sites, not so useful for small ones.
AspEmail will suffice just the same!

AspUpload
http://www.aspupload.com/
AspUpload is an Active Server component which enables an ASP application
to accept, save and manipulate files uploaded with a browser. The files are
uploaded via an HTML POST form with one or more <INPUT TYPE=FILE>
tags. The <FORM> tag must contain the attribute
ENCTYPE="multipart/form-data".

Its rich set of features include
§ Uploads to memory.
§ Directory uploads.
§ Image size extraction functionality.
§ Compatibility with IIS 3, IIS 4, IIS 5 (Window 2000), and PWS.
§ Ability to upload multiple files at once.
§ Ability to change file attributes.

http://www.aspemail.com/
http://tech.dimac.net/
http://www.aspupload.com/

ACTIVE SERVER PAGES 3.0

78

§ Ability to save files in the database as blobs.
§ Ability to export files from the database.
§ Automatic generation of unique file names to prevent collisions with

existing files.
§ Ability to put a limit on the size of files being uploaded.
§ Encryption support.
§ Directory Listing with sorting.
§ File copying, moving and deletion.
§ Directory creation and deletion.

Again, this is not something everybody will need. Evaluate your budget &
requirements before going in for any component.

	Introduction
	Hello, World (and more) !
	Variables and Constructs
	Subroutines, Functions and Includes
	The Object Model
	Handling User Input : Forms & QueryStrings
	Data Manipulation using ASP
	VBScript Reference
	SQL Reference
	ActiveX Data Objects (ADO) Reference
	Extending ASP : COM Components
	Copy & Paste ASP Scripts
	The ASP Resource Guide

