
NtSetDebugFilterState as Anti-Dbg Trick Reverse Engineering
Author: Giuseppe 'Evilcry' Bonfa'
E-mail: evilcry {AT} gmail {DOT} com
Website: http://evilcry.netsons.org ~ http://evilcodecave.wordpress.com

The Essay
The following paper will uncover some intersting Undocumented functions relative
to Windows Debugging Support. NT is capable of generating and collecting text
Debug Messages with an high grade of customization. User-mode and kernel-mode
drivers use different routines to send output to the debugger.

User Mode: Uses OutputDebugString, that sends a null-terminated string to the
debugger of the calling process. In a user-mode driver, OutputDebugString
displays the string in the Debugger Command window. If a debugger is not
running, this routine has no effect. OutputDebugString does not support the
variable arguments of a printf formatted string.
Kernel Mode: Uses DbgPrint, that displays output in the debugger window. This
routine supports the basic printf format parameters. Only kernel-mode drivers
can call DbgPrint. There is also DbgPrintEx that is similar to DbgPrint, but it
allows you to "tag" your messages. When running the debugger, you can permit
only those messages with certain tags to be sent. This allows you to view only
those messages that you are interested in.

This operation is called Filtering Debug Messages, how it works is a little bit
undocumented, to understand how to go inside this aspect, let's start from
DbgPrint / DbgPrintEx.

In Windows XP, DbgPrint has been extended by adding _vDbgPrintExWithPrefix, in
this way DbgPrint and DbgPrintEx became wrappers of this function.
ULONG
 vDbgPrintExWithPrefix (

IN PCCH Prefix,
IN ULONG ComponentId,
IN ULONG Level,
IN PCCH Format,
IN va_list arglist
);

vDbgPrintExWithPrefix routine sends a string to the kernel debugger if certain
conditions are met. This routine can append a prefix to debugger output to help
organize debugging results.

Let's see what ComponentId means:
The component that is calling this routine. This parameter must be one of the
component name filter IDs that are defined in Dpfilter.h. Each component is
referred to in different ways, depending on the context. In the ComponentId
parameter of DbgPrintEx, the component name is prefixed with DPFLTR_ and
suffixed with _ID. In the registry, the component filter mask has the same name
as the component itself. In the debugger, the component filter mask is prefixed
with Kd_ and suffixed with _Mask.
Now let's see Level parameter:
The severity of the message that is being sent. This parameter can be any 32-bit
integer. Values between 0 and 31 (inclusive)) are treated differently than
values between 32 and 0xFFFFFFFF.
Filter masks that are created by the debugger take effect immediately and

http://evilcry.netsons.org/
http://evilcodecave.wordpress.com/

persist until Windows is restarted.

The debugger can override a value that is set in the registry, but the component
filter mask returns to the value that is specified in the registry if the
computer is restarted. There is also a system-wide mask called WIN2000. By
default, this mask is equal to 0x1, but you can change it through the registry
or the debugger like all other components. When filtering is performed, each
component filter mask is first combined with the WIN2000 mask by using a bitwise
OR. In particular, this combination means that components whose masks have never
been specified default to 0x1.

By inspecting deeply vDbgPrintExWithPrefix we can see that it represent a wrap
around NtQueryDebugFilterState that retrieves the state of the selected Debug
Filter Mask. By inspecting xRefs we discover that NtQueryDebugFilterState is
also used by DbgQueryDebugFilterState()

NTSTATUS __stdcall DbgQueryDebugFilterState(ULONG ComponentId, ULONG Level)
0045000C ComponentId = dword ptr 8
0045000C Level = dword ptr 0Ch
0045000C
0045000C mov edi, edi
0045000E push ebp
0045000F mov ebp, esp
00450011 pop ebp
00450012 jmp NtQueryDebugFilterState
00450012 _DbgQueryDebugFilterState end proc

As is obvious, DbgQueryDebugFilterState asks for the actual state of Debug
Filters. Near the Query function we can se DbgSetFilterState()

NTSTATUS __stdcall DbgSetDebugFilterState(ULONG ComponentId, ULONG Level,
BOOLEAN State)
0045001C mov edi, edi
0045001E push ebp
0045001F mov ebp, esp
00450021 pop ebp
00450022 jmp NtSetDebugFilterState
00450022 DbgSetDebugFilterState endp

DbgSetDebugFilterState is a wrapper of a native NtSetDebugFilterState(ULONG
ComponentId, ULONG Level, BOOLEAN State)
As you can understand this is an intersting API cause attempts to modify the
Debug Filter Mask:

0056384C NtSetDebugFilterState(ULONG ComponentId, unsigned int Level, char
State)
0056384C mov edi, edi
0056384E push ebp
0056384F mov ebp, esp
00563851 mov eax, large fs:124h ;KTHREAD
00563857 movsx eax, byte ptr [eax+140h] ;KTHREAD->PreviousMode
0056385E push eax
0056385F push ds:_SeDebugPrivilege.HighPart
00563865 push ds:_SeDebugPrivilege.LowPart ;PrivilegeValue
0056386B call SeSinglePrivilegeCheck
00563870 test al, al
00563872 jz short loc_5638BE ;If PrivilegeValue does not match, exit

and return 0xC00000022 error
SeSinglePrivilegeCheck checks for the passed privilege value in the context of
the current thread, If PreviousMode is KernelMode, the privilege check always
succeeds. Otherwise, this routine uses the token of the user-mode thread to
determine whether the current (user-mode) thread has been granted the given
privilege.
Here the rest of the function

v3 = &Kd_WIN2000_Mask;
 if (ComponentId >= KdComponentTableSize)
 {
 if (ComponentId != 0xFFFFFFFF)
 return 0xC00000EF;
 }
else
 {
 v3 = (int *)*(&KdComponentTable + ComponentId);
 }
 if (Level <= 0x1F)
 v4 = 1 << (char)Level;
 else
 v4 = Level;
 v6 = v4;
 if (!State)
 v6 = 0;
 *v3 = v6 | *v3 & ~v4;
 result = STATUS_SUCCESS;
 }
Now we can implement a little Anti-Debug trick based on Debug State Awareness,
indeed with NtSetDebugFilterState we are able to determine if the process is
debugged or not:

#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#include <stdio.h>
#include <stdlib.h>
#include "ntDefs.h"

#pragma comment(lib,"ntdll.lib")

int main(void)
{

NTSTATUS ntStatus;

ntStatus = NtSetDebugFilterState(0,0,TRUE);

if (ntStatus != STATUS_SUCCESS)
MessageBoxA(NULL,"Not Debugged","Warning",MB_OK);

else
MessageBoxA(NULL,"Debugged","Warning",MB_OK);

return (EXIT_SUCCESS);
}

→ ntDefs.h
typedef LONG NTSTATUS;
#define STATUS_SUCCESS ((NTSTATUS)0x00000000L)

extern "C"
__declspec(dllimport)
ULONG __stdcall
NtSetDebugFilterState(

 ULONG ComponentId,
 ULONG Level,
 BOOLEAN State
);

Trick is really basilar if the Process is Debugged NtSetDebugFilterState returns
STATUS_SUCCESS else returns 0xC00000022 Error Code. May be that this trick is
already used, but for sure I haven's seen nothing about NtQueryDebugFilterState/
NtSetDebugFilterState =)

Refs:
http://msdn.microsoft.com/en-us/library/ms792789.aspx
http://msdn.microsoft.com/en-us/library/ms804344.aspx

Regards,
Giuseppe 'Evilcry' Bonfa'

http://msdn.microsoft.com/en-us/library/ms804344.aspx
http://msdn.microsoft.com/en-us/library/ms792789.aspx

