Open Sources: Voices from the Open Source Revolution

O’REILLY Online Catalog SEARCH THE LATALOG
‘_:::3:" Open Sources: Voices from the

OPENSOURCES | Open Source Revolution
Mwrn 1st Edition January 1999

1-56592-582-3, Order Number: 5823

280 pages, $24.95

Twenty Years of Berkeley Unix

From AT&T-Owned to Freely Redistributable

Marshall Kirk McKusick

Early History

Ken Thompson and Dennis Ritchie presented the first Unix paper at the
Symposium on Operating Systems Principles at Purdue University in November
1973. Professor Bob Fabry, of the University of Californiaat Berkeley, wasin
attendance and immediately became interested in obtaining a copy of the system
to experiment with at Berkeley.

At the time, Berkeley had only large mainframe computer systems doing batch
processing, so the first order of business was to get a PDP-11/45 suitable for
running with the then-current Version 4 of Unix. The Computer Science
Department at Berkeley, together with the Mathematics Department and the
Statistics Department, were able to jointly purchase a PDP-11/45. In January
1974, aVersion 4 tape was delivered and Unix was installed by graduate student
Keith Standiford.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (1 of 19)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

Although Ken Thompson at Purdue was not involved in the installation at
Berkeley as he had been for most systems up to that time, his expertise was soon
needed to determine the cause of several strange system crashes. Because
Berkeley had only a 300-baud acoustic-coupled modem without auto answer
capability, Thompson would call Standiford in the machine room and have him
insert the phone into the modem; in this way Thompson was able to remotely
debug crash dumps from New Jersey.

Many of the crashes were caused by the disk controller'sinability to reliably do
overlapped seeks, contrary to the documentation. Berkeley's 11/45 was among
the first systems that Thompson had encountered that had two disks on the same
controller! Thompson's remote debugging was the first example of the
cooperation that sprang up between Berkeley and Bell Labs. The willingness of
the researchers at the Labs to share their work with Berkeley was instrumental in
the rapid improvement of the software available at Berkeley.

Though Unix was soon reliably up and running, the coalition of Computer
Science, Mathematics, and Statistics began to run into problems; Math and
Statistics wanted to run DEC's RSTS system. After much debate, a compromise
was reached in which each department would get an eight-hour shift; Unix
would run for eight hours followed by sixteen hours of RSTS. To promote
fairness, the time slices were rotated each day. Thus, Unix ran 8 am. to 4 p.m.
one day, 4 p.m. to midnight the next day, and midnight to 8 am. the third day.
Despite the bizarre schedule, students taking the Operating Systems course
preferred to do their projects on Unix rather than on the batch machine.

Professors Eugene Wong and Michael Stonebraker were both stymied by the
confinements of the batch environment, so their INGRES database project was
among the first groups to move from the batch machines to the interactive
environment provided by Unix. They quickly found the shortage of machine
time and the odd hours on the 11/45 intolerable, so in the spring of 1974, they
purchased an 11/40 running the newly available Version 5. With their first
distribution of INGRES in the fall of 1974, the INGRES project became the first
group in the Computer Science department to distribute their software. Severa
hundred INGRES tapes were shipped over the next six years, helping to
establish Berkeley's reputation for designing and building real systems.

Even with the departure of the INGRES project from the 11/45, there was still
insufficient time available for the remaining students. To alleviate the shortage,
Professors Michael Stonebraker and Bob Fabry set out in June 1974, to get two

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (2 of 19)

Open Sources: Voices from the Open Source Revolution

instructional 11/45's for the Computer Science department's own use. Early in
1975, the money was obtained. At nearly the same time, DEC announced the
11/70, a machine that appeared to be much superior to the 11/45. Money for the
two 11/45s was pooled to buy asingle 11/70 that arrived in the fall of 1975.
Coincident with the arrival of the 11/70, Ken Thompson decided to take a one-
year sabbatical as avisiting professor at the University of Californiaat Berkeley,
his alma mater. Thompson, together with Jeff Schriebman and Bob Kridle,
brought up the latest Unix, Version 6, on the newly installed 11/70.

Also arriving in the fall of 1975 were two unnoticed graduate students, Bill Joy
and Chuck Haley; they both took an immediate interest in the new system.
Initially they began working on a Pascal system that Thompson had hacked
together while hanging around the 11/70 machine room. They expanded and
improved the Pascal interpreter to the point that it became the programming
system of choice for students because of its excellent error recovery scheme and
fast compile and execute time.

With the replacement of Model 33 teletypes by ADM-3 screen terminals, Joy
and Haley began to feel stymied by the constraints of the ed editor. Working
from an editor named em that they had obtained from Professor George
Coulouris at Queen Mary's College in London, they worked to produce the line-
at-a-time editor ex.

With Ken Thompson's departure at the end of the summer of 1976, Joy and
Haley begin to take an interest in exploring the internals of the Unix kernel.
Under Schriebman's watchful eye, they first installed the fixes and
improvements provided on the "fifty changes' tape from Bell Labs. Having
learned to maneuver through the source code, they suggested several small
enhancements to streamline certain kernel bottlenecks.

Early Distributions

Meanwhile, interest in the error recovery work in the Pascal compiler brought in
requests for copies of the system. Early in 1977, Joy put together the "Berkeley
Software Distribution.” Thisfirst distribution included the Pascal system, and, in
an obscure subdirectory of the Pascal source, the editor ex. Over the next year,
Joy, acting in the capacity of distribution secretary, sent out about thirty free
copies of the system.

With the arrival of some ADM-3aterminals offering screen-addressable cursors,

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (3 of 19)

Open Sources: Voices from the Open Source Revolution

Joy was finally able to write vi, bringing screen-based editing to Berkeley. He
soon found himself in aquandary. Asis frequently the case in universities
strapped for money, old equipment is never replaced all at once. Rather than
support code for optimizing the updating of several different terminals, he
decided to consolidate the screen management by using a small interpreter to
redraw the screen. This interpreter was driven by a description of the terminal
characteristics, an effort that eventually became termcap.

By mid-1978, the software distribution clearly needed to be updated. The Pascal
system had been made markedly more robust through feedback from its
expanding user community, and had been split into two passes so that it could be
run on PDP-11/34s. The result of the update was the " Second Berkeley Software
Distribution,” a name that was quickly shortened to 2BSD. Along with the
enhanced Pascal system, vi and termcap for several terminals was included.
Once again Bill Joy single-handedly put together distributions, answered the
phone, and incorporated user feedback into the system. Over the next year nearly
seventy-five tapes were shipped. Though Joy moved on to other projects the
following year, the 2BSD distribution continued to expand. The final version of
thisdistribution, 2.11BSD, is a complete system used on hundreds of PDP-11's
still running in various corners of the world.

VAX Unix

Early in 1978, Professor Richard Fateman began looking for a machine with a
larger address space on which he could continue hiswork on Macsyma
(originally started on a PDP-10). The newly announced VAX-11/780 fulfilled
the requirements and was available within budget. Fateman and thirteen other
faculty members put together an NSF proposal that they combined with some
departmental funds to purchase a VAX.

Initially the VAX ran DEC's operating system VMS, but the department had
gotten used to the Unix environment and wanted to continue using it. So, shortly
after the arrival of the VAX, Fateman obtained a copy of the 32/V port of Unix
to the VAX by John Reiser and Tom London of Bell Labs.

Although 32/V provided aVersion 7 Unix environment on the VAX, it did not
take advantage of the virtual memory capability of the VAX hardware. Like its
predecessors on the PDP-11, it was entirely a swap-based system. For the
Macsyma group at Berkeley, the lack of virtual memory meant that the process
address space was limited by the size of the physical memory, initially 1

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (4 of 19)

Open Sources: Voices from the Open Source Revolution
megabyte on the new VAX.

To aleviate this problem, Fateman approached Professor Domenico Ferrari, a
member of the systems faculty at Berkeley, to investigate the possibility of
having his group write avirtual memory system for Unix. Ozalp Babaoglu, one
of Ferrari's students, set about to find some way of implementing aworking set
paging system on the VAX; histask was complicated because the VAX lacked
reference hits.

As Babaoglu neared the completion of hisfirst cut at an implementation, he
approached Bill Joy for some help in understanding the intricacies of the Unix
kernel. Intrigued by Babaoglu's approach, Joy joined in helping to integrate the
code into 32/V and then with the ensuing debugging.

Unfortunately, Berkeley had only asingle VAX for both system development
and general production use. Thus, for several weeks over the Christmas break,
the tolerant user community alternately found themselves logging into 32/V and
"Virtual VAX/Unix." Often their work on the latter system would come to an
abrupt halt, followed several minutes later by a 32/V login prompt. By January,
1979, most of the bugs had been worked out, and 32/V had been relegated to
history.

Joy saw that the 32-bit VAX would soon make the 16-bit PDP-11 obsolete, and
began to port the 2BSD software to the VAX. While Peter Kessler and | ported
the Pascal system, Joy ported the editors ex and vi, the C shell, and the myriad
other smaller programs from the 2BSD distribution. By the end of 1979, a
complete distribution had been put together. This distribution included the
virtual memory kernel, the standard 32/V utilities, and the additions from 2BSD.
In December, 1979, Joy shipped the first of nearly a hundred copies of 3BSD,
the first VAX distribution from Berkeley.

Thefinal release from Bell Laboratories was 32/V; thereafter al Unix releases
from AT&T, initialy System |1l and later System V, were managed by a
different group that emphasized stable commercial releases. With the
commercialization of Unix, the researchers at Bell Laboratories were no longer
able to act as a clearing-house for the ongoing Unix research. Asthe research
community continued to modify the Unix system, it found that it needed an
organization that could produce research releases. Because of its early
involvement in Unix and its history of releasing Unix-based tools, Berkeley
quickly stepped into the role previously provided by the Labs.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (5 of 19)

Open Sources: Voices from the Open Source Revolution

DARPA Support

Meanwhile, in the offices of the planners for the Defense Advanced Research
Projects Agency (DARPA), discussions were being held that would have a major
influence on the work at Berkeley. One of DARPA's early successes had been to
set up a nationwide computer network to link together all their major research
centers. At that time, they were finding that many of the computers at these
centers were reaching the end of their useful lifetime and had to be replaced. The
heaviest cost of replacement was the porting of the research software to the new
machines. In addition, many sites were unable to share their software because of
the diversity of hardware and operating systems.

Choosing a single hardware vendor was impractical because of the widely
varying computing needs of the research groups and the undesirability of
depending on a single manufacturer. Thus, the planners at DARPA decided that
the best solution was to unify at the operating systems level. After much
discussion, Unix was chosen as a standard because of its proven portability.

In thefall of 1979, Bob Fabry responded to DARPA's interest in moving
towards Unix by writing a proposal suggesting that Berkeley develop an
enhanced version of 3BSD for the use of the DARPA community. Fabry took a
copy of his proposal to a meeting of DARPA image processing and VLS|
contractors, plus representatives from Bolt, Beranek, and Newman, the
developers of the ARPAnNet. There was some reservation whether Berkeley
could produce a working system; however, the release of 3BSD in December
1979 assuaged most of the doulbts.

With the increasingly good reputation of the 3BSD release to validate his claims,
Bob Fabry was able to get an 18-month contract with DARPA beginning in
April 1980. This contract was to add features needed by the DARPA contractors.
Under the auspices of this contract, Bob Fabry sets up an organization which
was christened the Computer Systems Research Group, or CSRG for short. He
immediately hired Laura Tong to handle the project administration. Fabry turned
his attention to finding a project leader to manage the software development.
Fabry assumed that since Joy had just passed his Ph.D. qualifying examination,
he would rather concentrate on completing his degree than take the software
development position. But Joy had other plans. One night in early March he
phoned Fabry at home to express interest in taking charge of the further
development of Unix. Though surprised by the offer, Fabry took little time to

agree.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (6 of 19)

Open Sources: Voices from the Open Source Revolution

The project started promptly. Tong set up a distribution system that could handle
a higher volume of orders than Joy's previous distributions. Fabry managed to
coordinate with Bob Guffy at AT& T and lawyers at the University of California
to formally release Unix under terms agreeable to all. Joy incorporated Jim
Kulp'sjob control, and added auto reboot, a 1K block file system, and support
for the latest VAX machine, the VAX-11/750. By October 1980, a polished
distribution that also included the Pascal compiler, the Franz Lisp system, and an
enhanced mail handling system was released as 4BSD. During its nine-month
lifetime, nearly 150 copies were shipped. The license arrangement was on a per-
institution basis rather than a per machine basis; thus the distribution ran on
about 500 machines.

With the increasingly wide distribution and visibility of Berkeley Unix, several
critics began to emerge. David Kashtan at Stanford Research Institute wrote a
paper describing the results of benchmarks he had run on both VM S and
Berkeley Unix. These benchmarks showed severe performance problems with
the Unix system for the VAX. Setting his future plans aside for several months,
Joy systematically began tuning up the kernel. Within weeks he had a rebuttal
paper written showing that Kashtan's benchmarks could be made to run as well
on Unix asthey could on VMS.

Rather than continue shipping 4BSD, the tuned-up system, with the addition of
Robert Elz's auto configuration code, was released as 4.1BSD in June, 1981.
Over itstwo- year lifetime about 400 distributions were shipped. The original
intent had been to call it the 5SBSD release; however, there were objections from
AT&T that there would be customer confusion between their commercial Unix
release, System V, and a Berkeley release named 5BSD. So, to resolve the issue,
Berkeley agreed to change the naming scheme for future releases to stay at
4BSD and just increment the minor number.

4.2BSD

With the release of 4.1BSD, much of the furor over performance died down.
DARPA was sufficiently satisfied with the results of the first contract that a new
two-year contract was granted to Berkeley with funding amost five times that of
the original. Half of the money went to the Unix project, the rest to other
researchers in the Computer Science department. The contract called for major
work to be done on the system so the DARPA research community could better
do their work.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (7 of 19)

Open Sources: Voices from the Open Source Revolution

Based on the needs of the DARPA community, goals were set and work begun
to define the modifications to the system. In particular, the new system was
expected to include a faster file system that would raise throughput to the speed
of available disk technology, support processes with multi-gigabyte address
space requirements, provide flexible interprocess communication facilities that
allow researchers to do work in distributed systems, and would integrate
networking support so that machines running the new system could easily
participate in the ARPANet.

To assist in defining the new system, Duane Adams, Berkeley's contract monitor
at DARPA, formed a group known as the "steering committee" to help guide the
design work and ensure that the research community's needs were addressed.
This committee met twice ayear between April 1981 and June 1983. It included
Bob Fabry, Bill Joy, and Sam Leffler of the University of California at Berkeley;
Alan Nemeth and Rob Gurwitz of Bolt, Beranek, and Newman; Dennis Ritchie
of Bell Laboratories; Keith Lantz of Stanford University; Rick Rashid of
Carnegie-Meéllon University; Bert Halstead of the Massachusetts I nstitute of
Technology; Dan Lynch of The Information Sciences Institute; Duane Adams
and Bob Baker of DARPA; and Jerry Popek of the University of California at
Los Angeles. Beginning in 1984, these meetings were supplanted by workshops
that were expanded to include many more people.

Aninitial document proposing facilities to be included in the new system was
circulated to the steering committee and other people outside Berkeley in July,
1981, sparking many lengthy debates. In the summer of 1981, | became involved
with the CSRG and took on the implementation of the new file system. During
the summer, Joy concentrated on implementing a prototype version of the
interprocess communication facilities. In the fall of 1981, Sam L effler joined the
CSRG as afull-time staff member to work with Bill Joy.

When Rob Gurwitz released an early implementation of the TCP/IP protocols to
Berkeley, Joy integrated it into the system and tuned its performance. During
thiswork, it became clear to Joy and Leffler that the new system would need to
provide support for more than just the DARPA standard network protocols.
Thus, they redesigned the internal structuring of the software, refining the
interfaces so that multiple network protocols could be used simultaneously.

With the internal restructuring completed and the TCP/IP protocols integrated
with the prototype | PC facilities, several simple applications were created to
provide local users access to remote resources. These programs, rcp, rsh, rlogin,

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (8 of 19)

Open Sources: Voices from the Open Source Revolution

and rwho were intended to be temporary tools that would eventually be replaced
by more reasonable facilities (hence the use of the distinguishing "r" prefix).
This system, called 4.1a, was first distributed in April 1982 for local use; it was
never intended that it would have wide circulation, though bootleg copies of the
system proliferated as sites grew impatient waiting for the 4.2 release.

The 4.1a system was obsolete long before it was complete. However, feedback
from its users provided valuable information that was used to create a revised
proposal for the new system called the "4.2BSD System Manual." This
document was circulated in February 1982 and contained a concise description
of the proposed user interfaces to the system facilities that were to be
implemented in 4.2BSD.

Concurrent with the 4.1a development, | completed the implementation of the
new file system, and by June 1982, had fully integrated it into the 4.1a kernel.
The resulting system was called 4.1b and ran on only afew select development
machines at Berkeley. Joy felt that with significant impending changes to the
system, it was best to avoid even alocal distribution, particularly since it
required every machine's file systems to be dumped and restored to convert from
4.1ato 4.1b. Once the file system proved to be stable, Leffler proceeded to add
the new file system related system calls, while Joy worked on revising the
Interprocess communication facilities,

In the late spring of 1982, Joy announced he was joining Sun Microsystems.
Over the summer, he split his time between Sun and Berkeley, spending most of
his time polishing his revisions to the interprocess communication facilities and
reorganizing the Unix kernel sources to isolate machine dependencies. With
Joy's departure, Leffler took over responsibility for completing the project.
Certain deadlines had already been established and the release had been
promised to the DARPA community for the spring of 1983. Given the time
constraints, the work remaining to complete the rel ease was evaluated and
priorities were set. In particular, the virtual memory enhancements and the most
sophisticated parts of the interprocess communication design were relegated to
low priority (and later shelved completely). Also, with the implementation more
than ayear old and the Unix community's expectations heightened, it was
decided an intermediate release should be put together to hold people until the
final system could be completed. This system, called 4.1c, was distributed in
April 1983; many vendors used this release to prepare for ports of 4.2 to their
hardware. Pauline Schwartz was hired to take over the distribution duties starting
with the 4.1c release.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (9 of 19)

Open Sources: Voices from the Open Source Revolution

In June 1983, Bob Fabry turned over administrative control of the CSRG to
Professors Domenico Ferrari and Susan Graham to begin a sabbatical free from
the frantic pace of the previous four years. Leffler continued the completion of
the system, implementing the new signal facilities, adding to the networking
support, redoing the standalone /O system to simplify the install ation process,
integrating the disc quota facilities from Robert Elz, updating all the
documentation, and tracking the bugs from the 4.1c release. In August 1983, the
system was released as 4.2BSD.

When Leffler left Berkeley for Lucasfilm following the completion of 4.2, he
was replaced by Mike Karels. Karels' previous experience with the 2.9BSD PDP-
11 software distribution provided an ideal background for his new job. After
completing my Ph.D. in December 1984, | joined Mike Karels full-time at the
CSRG.

The popularity of 4.2BSD was impressive; within eighteen months more than
1,000 site licenses had been issued. Thus, more copies of 4.2BSD had been
shipped than of all the previous Berkeley software distributions combined. Most
of the Unix vendors shipped a4.2BSD system rather than the commercia
System V from AT&T. The reason was that System V had neither networking
nor the Berkley Fast filesystem. The BSD release of Unix only held its dominant
commercial position for afew years before returning to its roots. As networking
and other 4.2BSD improvements were integrated into the system V release, the
vendors usually switched back to it. However, later BSD developments
continued to be incorporated into System V.

4.3BSD

Aswith the 4.1BSD release, criticism was quick in coming. Most of the
complaints were that the system ran too slowly. The problem, not surprisingly,
was that the new facilities had not been tuned and that many of the kernel data
structures were not well-suited to their new uses. Karels and my first year on the
project was spent tuning and polishing the system.

After two years of work spent tuning the system and refining the networking
code, we made an announcement at the June 1985 Usenix conference that we
anticipated releasing 4.3BSD later that summer. However, our release plans
were brought to an abrupt halt by the folks at BBN. They correctly pointed out
that we had never updated 4.2BSD with the final version of their networking
code. Rather, we were still using the much-hacked initial prototype that they had

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (10 of 19)

Open Sources: Voices from the Open Source Revolution

given us many years earlier. They complained to DARPA that Berkeley was to
implement the interface while BBN was supposed to implement the protocol, so
Berkeley should replace the TCP/IP code in 4.3BSD with the BBN
implementation.

Mike Karels got the BBN code and did an evaluation of the work that had been
done since the prototype that was handed off to Berkeley. He decided that the
best plan was to incorporate the good ideas from the BBN code into the Berkeley
code base, but not to replace the Berkeley code base. The reason to retain the
Berkeley code base was that it had gotten considerabl e testing and improvements
from the widespread distribution in 4.2BSD. However, as acompromise, he
offered to include both implementations on the 4.3BSD distribution and let users
select which oneto usein their kernel.

After reviewing Mike Karels decision, DARPA decided that releasing two code
bases would lead to unnecessary interoperability problems, and that just one
implementation should be released. To decide which code base to use, they gave
both to Mike Muuse of the Ballistics Research Laboratory, who was viewed by
both Berkeley and BBN as an independent third party. After a month of
evaluation, the report came back that the Berkeley code was more efficient but
that the BBN code handled congestion better. The tie breaker was that the
Berkeley code flawlessly ran al the tests while the BBN code panicked under
some stress conditions. The final decision by DARPA was that 4.3BSD would
stick with the Berkeley code base.

The polished 4.3BSD system was finally released in June 1986. As expected, it
guelled many of the performance complaints, much asthe 4.1BSD release
guelled many of the complaints about 4BSD. Although most of the vendors had
started the switch back to System V, large parts of 4.3BSD were carried over
into their systems, particularly the networking subsystem.

In October 1986, Keith Bostic joined the CSRG. One condition of his
employment was that he be allowed to finish up a project that he had been
working on at his previous job, which wasto port 4.3BSD to the PDP-11. While
both Karels and | believed that it would be impossible to get a system that
compiled to 250 Kbytes on the VAX to fit in the 64-Kbyte address space of the
PDP-11, we agreed that Bostic could finish up his attempts to do so. Much to our
amazement, the port was done successfully, using an intricate set of overlays and
auxiliary processor states found on the PDP-11. The result was the 2.11BSD
release, done by Casey Leedom and Bostic, which is till in use on some of the

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (11 of 19)

Open Sources: Voices from the Open Source Revolution

last remaining PDP-11's still in production in 1998.

Meanwhile, it was becoming increasingly obvious that the VAX architecture
was reaching the end of its life and that it was time to begin considering other
machines for running BSD. A promising new architecture of the time was made
by Computer Consoles, Incorporated, and was called the Power 6/32.
Unfortunately, the architecture died when the company decided to change its
strategic direction. However, they did provide the CSRG with several machines
that enabled us to finish the work, started by Bill Joy, of splitting the BSD kernel
Into machine-dependent and machine-independent parts. The result of thiswork
was released as 4.3BSD-Tahoe in June 1988. The name Tahoe came from the
development name used by Computer Consoles, Incorporated, for the machine
that they eventually released as the Power 6/32. Although the useful lifetime of
the Power 6/32 machine support was short, the work done to split the kernel into
machine-independent and machine-dependent parts proved to be extremely
valuable as BSD was ported to numerous other architectures.

Networking, Release 1

Up through the release of 4.3BSD-Tahoe, al recipients of BSD had to first get
an AT&T source license. That was because the BSD systems were never
released by Berkeley in a binary-only format; the distributions always contained
the compl ete source to every part of the system. The history of the Unix system
and the BSD system in particular had shown the power of making the source
available to the users. Instead of passively using the system, they actively
worked to fix bugs, improve performance and functionality, and even add
completely new features.

With the increasing cost of the AT& T source licenses, vendors that wanted to
build standalone TCP/I P-based networking products for the PC market using the
BSD code found the per-binary costs prohibitive. So, they requested that
Berkeley break out the networking code and utilities and provide them under
licensing terms that did not requirean AT& T source license. The TCP/IP
networking code clearly did not exist in 32/VV and thus had been developed
entirely by Berkeley and its contributors. The BSD originated networking code
and supporting utilities were released in June 1989 as Networking Release 1, the
first freely-redistributable code from Berkeley.

The licensing terms were liberal. A licensee could release the code modified or
unmodified in source or binary form with no accounting or royalties to Berkeley.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (12 of 19)

Open Sources: Voices from the Open Source Revolution

The only requirements were that the copyright notices in the source file be left
intact and that products that incorporated the code indicate in their
documentation that the product contained code from the University of California
and its contributors. Although Berkeley charged a $1,000 fee to get a tape,
anyone was free to get a copy from anyone who already had received it. Indeed,
several large sites put it up for anonymous ftp shortly after it was released.
Given that it was so easily available, the CSRG was pleased that several hundred
organizations purchased copies, since their fees helped fund further

devel opment.

4.3BSD-Reno

Meanwhile, development continued on the base system. The virtual memory
system whose interface was first described in the 4.2BSD architecture document
finally cameto fruition. As was often the case with the CSRG, we always tried
to find existing code to integrate rather than write something from scratch. So,
rather than design a new virtual memory system, we looked around for existing
alternatives. Our first choice was the virtual memory system that appeared in
Sun Microsystem's SUnOS. Although there was some discussion about Sun
contributing the code to Berkeley, nothing came of those talks. So we went with
our second choice, which was to incorporate the virtual memory system from the
MACH operating system done at Carnegie-Mellon University. Mike Hibler at
the University of Utah merged the core technology from MACH with the user
interface described by the 4.2BSD architecture manual (which was also the
interface used by SunOS).

The other major addition to the system at the time was a Sun-compatible version
of the Network Filesystem (NFS). Again the CSRG was able to avoid writing the
actual NFS code, instead getting an implementation done by Rick Macklem at
the University of Geulph in Canada.

Although we did not yet have the complete feature set of 4.4BSD ready to ship,
the CSRG decided to do an interim release to get additional feedback and
experiences on the two maor new additions to the system. This licensed interim
release was called 4.3BSD-Reno and occurred in early 1990. The release was
named after a big gambling city in Nevada as an oblique reminder to its
recipients that running the interim release was a bit of a gamble.

Networking, Release 2

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (13 of 19)

Open Sources: Voices from the Open Source Revolution

During one of our weekly group meetings at the CSRG, Keith Bostic brought up
the subject of the popularity of the freely-redistributable networking release and
inquired about the possibility of doing an expanded release that included more of
the BSD code. Mike Karels and | pointed out to Bostic that releasing large parts
of the system was a huge task, but we agreed that if he could sort out how to deal
with reimplementing the hundreds of utilities and the massive C library then we
would tackle the kernel. Privately, Karels and | felt that would be the end of the
discussion.

Undeterred, Bostic pioneered the technique of doing a mass net-based
development effort. He solicited folks to rewrite the Unix utilities from scratch
based solely on their published descriptions. Their only compensation would be
to have their name listed among the Berkeley contributors next to the name of
the utility that they rewrote. The contributions started slowly and were mostly
for thetrivial utilities. But asthe list of completed utilities grew and Bostic
continued to hold forth for contributions at public events such as Usenix, the rate
of contributions continued to grow. Soon the list crossed one hundred utilities
and within 18 months nearly all the important utilities and libraries had been
rewritten.

Proudly, Bostic marched into Mike Karels' and my office, list in hand, wanting
to know how we were doing on the kernel. Resigned to our task, Karels, Bostic,
and | spent the next several months going over the entire distribution, file by file,
removing code that had originated in the 32/V release. When the dust settled, we
discovered that there were only six remaining kernel files that were still
contaminated and which could not be trivially rewritten. While we considered
rewriting those six files so that we could release a complete system, we decided
instead to release just what we had. We did, however, seek permission for our
expanded release from folks higher up in the University administration. After
much internal debate and verification of our method for determining proprietary
code, we were given the go-ahead to do the release.

Our initial thought was to come up with awhole new name for our second freely-
redistributable release. However, we viewed getting a whole new license written
and approved by the University lawyers as an unnecessary waste of resources
and time delay. So, we decided to call the new release Networking Release 2
since we could just do arevision of the approved Networking Release 1 license
agreement. Thus, our second greatly expanded freely-redistributable release
began shipping in June 1991. The redistribution terms and cost were the same as
the terms and cost of the first networking release. As before, several hundred

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (14 of 19)

Open Sources: Voices from the Open Source Revolution

individuals and organizations paid the $1,000 fee to get the distribution from
Berkeley.

Closing the gap from the Networking Release 2 distribution to afully
functioning system did not take long. Within six months of the release, Bill
Jolitz had written replacements for the six missing files. He promptly released a
fully compiled and bootable system for the 386-based PC architecture which he
called 386/BSD. Jolitz's 386/BSD distribution was done almost entirely on the
Net. He simply put it up for anonymous FTP and let anyone who wanted it
download it for free. Within weeks he had a huge following.

Unfortunately, the demands of keeping afull-time job meant that Jolitz could not
devote the time needed to keep up with the flood of incoming bug fixes and
enhancements to 386/BSD. So, within afew months of the release of 386/BSD, a
group of avid 386/BSD users formed the NetBSD group to pool their collective
resources to help maintain and later enhance the system. Their releases became
known as the NetBSD distribution. The NetBSD group chose to emphasize the
support of as many platforms as possible and continued the research style
development done by the CSRG. Until 1998, their distribution was done solely
over the Net; no distribution media was available. Their group continues to
target primarily the hardcore technical users. More information about the
NetBSD project can be found at http://mww.netbsd.org.

The FreeBSD group was formed afew months after the NetBSD group with a
charter to support just the PC architecture and to go after alarger and less
technically advanced group of users, much as Linux had done. They built
elaborate installation scripts and began shipping their system on alow cost CD-
ROM. The combination of ease of installation and heavy promotion on the Net
and at major trade shows such as Comdex led to afast, large growth curve.
Certainly FreeBSD currently has the largest installed base of al the Release 2-
derived systems.

FreeBSD has also ridden the wave of Linux popularity by adding a Linux
emulation mode that allows Linux binaries to run on the FreeBSD platform. This
feature allows FreeBSD users to use the ever-growing set of applications
available for Linux while getting the robustness, reliability, and performance of
the FreeBSD system. The group recently opened a FreeBSD Mall
(http:/mww.freebsdmall.com), which brings together many parts of the FreeBSD
community, including consulting services, derived products, books, and a

newsl etter.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (15 of 19)

Open Sources: Voices from the Open Source Revolution

In the mid-1990s, OpenBSD spun off from the NetBSD group. Their technical
focus was aimed at improving the security of the system. Their marketing focus
was to make the system easier to use and more widely available. Thus, they
began producing and selling CD-ROMs with many of the ease-of-installation
ideas from the FreeBSD distribution. More information about the OpenBSD
project can be found at http://www.openbsd.org.

The Lawsuit

In addition to the groups organized to freely redistribute systems built around the
Networking Release 2 tape, a company, Berkeley Software Design, Incorporated
(BSDI), was formed to develop and distribute a commercially supported version
of the code. (More information about BSDI can be found at

http: //www.bsdi.com.) Like the other groups, they started by adding the six
missing files that Bill Jolitz had written for his 386/BSD release. BSDI began
selling their system including both source and binaries in January 1992 for $995.
They began running advertisements touting their 99% discount over the price
charged for System V source plus binary systems. Interested readers were told to
call 1-800-1TS-Unix.

Shortly after BSDI began their sales campaign, they received aletter from Unix
System Laboratories (USL) (a mostly-owned subsidiary of AT& T spun off to
develop and sell Unix). The letter demanded that they stop promoting their
product as Unix and in particular that they stop using the deceptive phone
number. Although the phone number was promptly dropped and the
advertisements changed to explain that the product was not Unix, USL was still
unhappy and filed suit to enjoin BSDI from selling their product. The suit
alleged that the BSDI product contained proprietary USL code and trade secrets.
USL sought to get an injunction to halt BSDI's sales until the lawsuit was
resolved, claiming that they would suffer irreparable harm from the loss of their
trade secrets if the BSDI distributions continued.

At the preliminary hearing for the injunction, BSDI contended that they were
simply using the sources being freely distributed by the University of California
plus six additional files. They were willing to discuss the content of any of the
six added files, but did not believe that they should be held responsible for the
files being distributed by the University of California. The judge agreed with
BSDI's argument and told USL that they would have to restate their complaint
based solely on the six files or he would dismissit. Recognizing that they would

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (16 of 19)

Open Sources: Voices from the Open Source Revolution

have a hard time making a case from just the six files, USL decided to refile the
suit against both BSDI and the University of California. As before, USL
requested an injunction on the shipping of Networking Release 2 from the
University and on the BSDI products.

With the impending injunction hearing just a few short weeks away, preparation
began in earnest. All the members of the CSRG were deposed as were nearly
everyone employed at BSDI. Briefs, counter-briefs, and counter-counter-briefs
flew back and forth between the lawyers. Keith Bostic and | personally had to
write several hundred pages of material that found its way into various briefs.

In December 1992, Dickinson R. Debevoise, a United States District Judgein
New Jersey, heard the arguments for the injunction. Although judges usually

rule on injunction requests immediately, he decided to take it under advisement.
On a Friday about six weeks later, he issued a forty-page opinion in which he
denied the injunction and threw out all but two of the complaints. The remaining
two complaints were narrowed to recent copyrights and the possibility of the loss
of trade secrets. He aso suggested that the matter should be heard in a state court
system before being heard in the federal court system.

The University of Californiatook the hint and rushed into California state court
the following Monday morning with a counter-suit against USL. By filing first
in California, the University had established the locale of any further state court
action. Constitutional law requires all state filing to be done in asingle state to
prevent alitigant with deep pockets from bleeding an opponent dry by filing
fifty cases against them in every state. The result was that if USL wanted to take
any action against the University in state courts, they would be forcedtodo soin
Californiarather than in their home state of New Jersey.

The University's suit claimed that USL had failed in their obligation to provide
due credit to the University for the use of BSD code in System V as required by
the license that they had signed with the University. If the clam were found to
be valid, the University asked that USL be forced to reprint al their
documentation with the appropriate due credit added, to notify all their licensees
of their oversight, and to run full-page advertisements in major publications such
as The Wall Street Journal and Fortune magazine notifying the business world
of their inadvertent oversight.

Soon after the filing in state court, USL was bought from AT& T by Novell. The
CEO of Novell, Ray Noorda, stated publicly that he would rather compete in the
marketplace than in court. By the summer of 1993, settlement talks had started.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (17 of 19)

Open Sources: Voices from the Open Source Revolution

Unfortunately, the two sides had dug in so deep that the talks proceed slowly.
With some further prodding by Ray Noorda on the USL side, many of the
sticking points were removed and a settlement was finally reached in January
1994. The result was that three files were removed from the 18,000 that made up
Networking Release 2, and a number of minor changes were made to other files.
In addition, the University agreed to add USL copyrights to about 70 files,
although those files continued to be freely redistributed.

4.4BSD

The newly blessed release was called 4.4BSD-Lite and was released in June
1994 under terms identical to those used for the Networking releases.
Specifically, the terms allow free redistribution in source and binary form
subject only to the constraint that the University copyrights remain intact and
that the University receive credit when others use the code. Simultaneously, the
complete system was released as 4.4BSD-Encumbered, which still required
recipients to have a USL source license.

The lawsuit settlement also stipulated that USL would not sue any organization
using 4.4BSD-L ite as the base for their system. So, all the BSD groups that were
doing releases at that time, BSDI, NetBSD, and FreeBSD, had to restart their
code base with the 4.4BSD-L ite sources into which they then merged their
enhancements and improvements. While this reintegration caused a short-term
delay in the development of the various BSD systems, it was ablessing in
disguise since it forced all the divergent groups to resynchronize with the three
years of development that had occurred at the CSRG since the release of
Networking Release 2.

4.4BSD-Li1te, Release 2

The money received from the 4.4BSD-Encumbered and 4.4BSD-L ite releases
was used to fund a part-time effort to integrate bug fixes and enhancements.
These changes continued for two years until the rate of bug reports and feature
enhancements had died down to atrickle. The final set of changes was released
as 4.4BSD-Lite, Release 2 in June 1995. Most of these changes eventually made
it into the other systems source bases.

Following the release of 4.4BSD-Lite Release 2, the CSRG was disbanded. After
nearly twenty years of piloting the BSD ship, we felt that it wastimeto let others

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (18 of 19)

Open Sources: Voices from the Open Source Revolution

with fresh ideas and boundless enthusiasm take over. While it might seem best to
have a single centralized authority overseeing the system development, the idea
of having several groups with different charters ensures that many different
approaches will be tried. Because the system is released in source form, the best
ideas can easily be picked up by other groups. If one group becomes particularly
effective, they may eventually become the dominant system.

Today, the open source software movement is gaining increased attention and
respect. Although the Linux system is perhaps the most well-known, about half
of the utilities that it comes packaged with are drawn from the BSD distribution.
The Linux distributions are also heavily dependent on the complier, debuggers,
and other development tools written by the Free Software Foundation.
Collectively, the CSRG, the Free Software Foundation, and the Linux kernel
devel opers have created the platform from which the Open Source software
movement has been launched. | am proud to have had the opportunity to help
pioneer the Open Source software movement. | look forward to the day when it
becomes the preferred way to develop and buy software for users and companies
everywhere.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (19 of 19)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

O’REILLY Online Catalog SEARCH THE LATALOG
‘_:::3:" Open Sources: Voices from the

OPENSOURCES | Open Source Revolution
Mwrn 1st Edition January 1999

1-56592-582-3, Order Number: 5823

280 pages, $24.95

The Internet Engineering Task Force

Scott Bradner

For something that does not exist, the Internet Engineering Task Force (IETF)
has had quite an impact. Apart from TCP/IP itself, all of the basic technology of
the Internet was developed or has been refined in the IETF. IETF working
groups created the routing, management, and transport standards without which
the Internet would not exist. IETF working groups have defined the security
standards that will help secure the Internet, the quality of service standards that
will make the Internet a more predictable environment, and the standard for the
next generation of the Internet protocol itself.

These standards have been phenomenally successful. The Internet is growing
faster than any single technology in history, far faster than the railroad, electric
light, telephone, or television, and it is only getting started. All of this has been
accomplished with voluntary standards. No government requires the use of IETF
standards. Competing standards, some mandated by governments around the
world, have come and gone and the |ETF standards flourish. But not all IETF
standards succeed. It is only the standards that meet specific real-world
requirements and do well that become true standards in fact as well asin name.

http://www.oreilly.com/catalog/opensources/book/ietf.html (1 of 8)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

The IETF and its standards have succeeded for the same sorts of reasons that the
Open Source community is taking off. IETF standards are developed in an open,
al-inclusive process in which any interested individual can participate. All IETF
documents are freely available over the Internet and can be reproduced at will. In
fact the IETF's open document process is a case study in the potential of the
Open Source movement.

This essay will give a short history of the IETF, areview of the IETF
organization and processes and, at the end, some additional thoughts on the
importance of open standards, open documents, and Open Source.

TheHistory of the IETF

The IETF started in January of 1986 as a quarterly meeting of U.S. government
funded researchers. Representatives from non-government vendors were invited,
starting with the fourth IETF meeting in October of that year. Since that time all
|ETF meetings are open to anyone who would like to attend. The initial meetings
were very small, with less than 35 people in attendance at each of thefirst five
meetings and with the peak attendance in the first 13 meetings only 120
attendees, at the 12th meeting in January of 1989. The IETF has grown quite a
bit since then, with more than 500 attendees at the 23rd meeting in March 1992,
more than 750 attendees at the 29th meeting in March 1994, more than 1,000
attendees at the 31st meeting in December 1994, and almost 2,000 attendees at
the 37th meeting in December 1996. The rate of growth in attendance has
slowed to the point that there were 2,100 attendees at the 43rd meeting in
December 1998. Along the way, in 1991, the IETF reduced the number of
meetings from four to three per year.

The IETF makes use of asmall Secretariat, currently operating out of Reston,
VA, and an RFC Editor, currently operated by the University of Southern
California's Information Sciences Institute.

The IETF itself has never been incorporated as a legal entity. It has merely been
an activity without legal substance. Up until the end of 1997, the IETF's
expenses were covered by a combination of U.S. government grants and meeting
fees. Since the beginning of 1998 the expenses have been covered by meeting
fees and the Internet Society.

The Internet Society was formed in 1992, partially to provide alegal umbrella
over the IETF standards process and to provide some funding for |IETF-related

http://www.oreilly.com/catalog/opensources/book/ietf.html (2 of 8)

Open Sources: Voices from the Open Source Revolution

activities. The Internet Society, an international membership-based non-profit
organization, also evangelizes for the Internet in parts of the world that the
Internet has not yet reached. At thistime the IETF can be best described as a
standards devel opment function operating under the auspices of the Internet
Society.

The concept of working groups was introduced at the 5th IETF meeting in
February 1987 and there are now over 110 working groups operating within the
IETF.

|ETF Structure and Features

The IETF can be described as a membership organization without a defined
membership. There are no specific criteriafor membership other than to note
that people and not organizations or companies are members of the IETF. Any
individual who participatesin an IETF mailing list or attends an IETF meeting
can be said to be an IETF member.

At thiswriting there are 115 officially chartered working groupsin the IETF.
These working groups are organized into eight areas. Applications, General,
Internet, Operations and Management, Routing, Security, Transport, and User
Services. Each of the areas is managed by one or two volunteer Area Directors.
The Area Directors sitting as a group, along with the chair of the IETF, form the
Internet Engineering Steering Group (IESG). The IESG is the standards approval
board for the IETF. In addition there is a 12-member Internet Architecture Board
(IAB), which provides advice to the IESG on working group formation and the
architectural implications of IETF working group efforts.

The members of the IAB and the Area Directors are selected for their two year
terms by a nominations committee randomly selected each year from among
volunteers who have attended at least two out of the previousthree IETF
meetings.

|ETF Working Groups

One of the principal differences between the IETF and many other standards
organizations is that the IETF is very much a bottom-up organization. It is quite
rare for the IESG or the |AB to create a working group on their own to work on
some problem that is felt to be an important one. Almost all working groups are
formed when a small group of interested individuals get together on their own

http://www.oreilly.com/catalog/opensources/book/ietf.html (3 of 8)

Open Sources: Voices from the Open Source Revolution

and then propose a working group to an Area Director. This does mean that the
|ETF cannot create task plans for future work, but at the sametime it helps
ensure that there is enough enthusiasm and expertise to make the working group
a success,

The Area Director works with the people proposing the working group to
develop acharter. Working group charters are used to list the specific
deliverables of the working group, any liaison activities that might be needed
with other groups, and, often most important, the limits on what the working
group will explore. The proposed charter is then circulated to the IESG and |IAB
mailing lists for their comments. If significant issues do not arise within aweek
the charter is posted to the public IETF list and to alist of liaisons from other
standards organizations to see if there is work going on in other forums which
the IETF should be aware of. After another week for any additional comments,
the IESG can then approve the charter and thereby create the working group.

| ETF Documents

All [ETF documents are public documents freely available over the Internet. The
|ETF does get alimited copyright from the authors when the documents are
published to ensure the document remains freely available (the author can not
decide to withdraw the document at some future time), republishable in its
entirety by anyone, and, for most documents, that the IETF can make derivative
works within the IETF standards process. The author retains all other rights.

The basic publication seriesfor the IETF is the RFC series. RFC once stood for
"Request for Comments," but since documents published as RFCs have
generally gone through an extensive review process before publication, RFC is
now best understood to mean "RFC." RFCsfall into two basic categories.
standards track and non-standards track. Standards track RFCs can have
Proposed Standard, Draft Standard, or Internet Standard status. Non-standards
track RFCs can be classified as Informational, Experimental, or Historic.

In addition to RFCs, the IETF makes use of Internet-Drafts. These are temporary
documents whose purpose is close to the original "request for comment” concept
of RFCs and which are automatically removed after six months. Internet-Drafts
are not to be cited or otherwise referenced other than as works in progress.

Thel ETF Process

http://www.oreilly.com/catalog/opensources/book/ietf.nhtml (4 of 8)

Open Sources: Voices from the Open Source Revolution

The IETF motto is "rough consensus and running code." Working group
unanimity is not required for a proposal to be adopted, but a proposal that cannot
demonstrate that most of the working group members think that it is the right
thing to do will not be approved. There is no fixed percentage support that a
proposal must achieve, but most proposals that have more than 90% support can
be approved and those with less than 80% can often be rejected. IETF working
groups do not actually vote, but can resort to a show of hands to see if the
consensusis clear.

Non standards track documents can originate in IETF working group activity or
from individuals who would like to make their thoughts or technical proposals
available to the Internet community. Almost all proposals for RFC publication
arereviewed by the IESG, after which the IESG will provide advice to the RFC
Editor on the advisability of publishing the document. The RFC Editor then
decides whether to publish the document and, if the IESG offers one, weather to
include a note from the IESG in the document. IESG notes in this case are used
to indicate discomfort with the proposal if the IESG feels that some sort of
warning label would be helpful.

In the normal case of a standards track document an IETF working group will
produce an Internet-Draft to be published as the RFC. The final step in the
working group evaluation of the proposal isa"last call," normally two weeks
long, where the working group chair asks the working group mailing list if there
are any outstanding issues with the proposal. If the result of the working group
last call indicates that the consensus of the group is that the proposal should be
accepted, the proposal is then forwarded to the IESG for their evaluation. The
first step in the IESG evaluation is an IETF-wide last call sent to themain IETF
announcement mailing list. Thisis so that people who have not been following
the working group work can comment on the proposal. The normal IETF last
call istwo weeks for proposals that come from |ETF working groups and four
weeks for proposals not originating from |ETF working groups.

The IESG uses the results of the IETF last-call asinput to its deliberations about
the proposal. The IESG can approve the document and request its publication, or
it can send the proposal back to the author(s) for revision based on the IESG's
evaluation of the proposal. This same processis used for each stage of the
standards track.

Proposals normally enter the standards track as Proposed Standards, but
occasionally if thereis uncertainty about the technology or if additional testing is

http://www.oreilly.com/catalog/opensources/book/ietf.html (5 of 8)

Open Sources: Voices from the Open Source Revolution

felt to be useful adocument isinitially published as an Experimental RFC.
Proposed Standards are meant to be good ideas with no known technical flaws.
After aminimum of six months as a Proposed Standard, a proposal can be
considered for Draft Standard status. Draft Standards must have demonstrated
that the documentation is clear and that any intellectual property rights issues
with the proposal are understood and resolvable. Thisis done by requiring that
there be at least two genetically independent, interoperable implementations of
the proposal with separate exercises of licensing procedures if there are any.
Note that it also requires that all of the separate features of the protocol be
multiply-implemented. Any feature not meeting these requirements must be
removed before the proposal can advance. Thus IETF standards can get ssmpler
asthey progress. Thisisthe "running code" part of the IETF motto.

Thefinal step in the IETF standards processis Internet Standard. After being at
Draft Standard status for at least four months and demonstrating significant
marketplace success, a proposal can be considered for Internet Standard status.

Two major differences stand out if one compares the |IETF standards track with
the process in other standards organizations. First, the final result of most
standards bodies is approximately equivalent to the IETF Proposed Standard
status. A good idea but with no requirement for actual running code. The second
IS that rough consensus instead of unanimity can produce proposals with fewer
features added to quiet anoisy individual.

In brief, the IETF operates in a bottom-up task creation mode and believesin
“fly before you buy."

Open Standards, Open Documents,
and Open Source

It is quite clear that one of the mgjor reasons that the |ETF standards have been
as successful as they have been isthe IETF's open documentation and standards
development policies. The IETF is one of the very few mgjor standards
organizations that make all of their documents openly available, aswell as al of
its mailing lists and meetings. In many of the traditional standards organizations,
and even in some of the newer Internet-related groups, access to documents and
meetingsis restricted to members or only available by paying afee. Sometimes
this is because the organizations raise some of the funds to support themselves
through the sale of their standards. In other casesit is because the organization

http://www.oreilly.com/catalog/opensources/book/ietf.html (6 of 8)

Open Sources: Voices from the Open Source Revolution

has fee-based memberships, and one of the reasons for becoming a member isto
be able participate in the standards devel opment process and to get access to the
standards as they are being devel oped.

Restricting participation in the standards devel opment process often resultsin
standards that do not do as good a job of meeting the needs of the user or vendor
communities as they might or are more complex than the operator community
can reasonably support. Restricting access to work-in-progress documents makes
it harder for implementors to understand what the genesis and rational is for
specific features in the standard, and this can lead to flawed implementations.
Restricting access to the final standards inhibits the ability for students or
developers from small startups to understand, and thus make use of, the
standards.

The IETF supported the concept of open sources long before the Open Source
movement was formed. Up until recently, it was the normal case that "reference
implementations” of IETF technologies were done as part of the multiple
implementations requirement for advancement on the standards track. This has
never been aformal part of the IETF process, but it was generally avery useful
by-product. Unfortunately this has slowed down somewhat in this age of more
complex standards and higher economic implications for standards. The practice
has never stopped, but it would be very good if the Open Source movement were
to reinvigorate this unofficia part of the |IETF standards process.

It may not be immediately apparent, but the availability of open standards
processes and documentation is vital to the Open Source movement. Without a
clear agreement on what is being worked on, normally articulated in standards
documents, it is quite easy for distributed development projects, such as the
Open Sources movement, to become fragmented and to flounder. Thereisan
intrinsic partnership between open standards processes, open documentation, and
open sources. This partnership produced the Internet and will produce additional
wondersin the future.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/ietf.html (7 of 8)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

http://www.oreilly.com/catalog/opensources/book/ietf.html (8 of 8)

Open Sources: Voices from the Open Source Revolution

O’REILLY Online Catalog SEARCH THE LATALOG
‘_:::3:" Open Sources : Voices from the

OPENSOURCES | Open Source Revolution
Mwrn 1st Edition January 1999

1-56592-582-3, Order Number: 5823

280 pages, $24.95

The GNU Operating System and the Free
Software Movement

Richard Stallman

The First Software-Sharing Community

When | started working at the MIT Artificial Intelligence Lab in 1971, | became
part of a software-sharing community that had existed for many years. Sharing
of software was not limited to our particular community; it isasold as
computers, just as sharing of recipesis asold as cooking. But we did it more
than most.

The Al Lab used atime-sharing operating system called I TS (the Incompatible
Timesharing System) that the Lab's staff hackers[1] had designed and written in
assembler language for the Digital PDP-10, one of the large computers of the
era. Asamember of thiscommunity, an Al Lab staff system hacker, my job was
to improve this system.

We did not call our software "free software," because that term did not yet exist,
but that is what it was. Whenever people from another university or a company
wanted to port and use a program, we gladly let them. If you saw someone using

http://www.oreilly.com/catalog/opensources/book/stallman.html (1 of 21)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

an unfamiliar and interesting program, you could always ask to see the source
code, so that you could read it, change it, or cannibalize parts of it to make a new
program.

The Collapse of the Community

The situation changed drastically in the early 1980s when Digital discontinued
the PDP-10 series. Its architecture, elegant and powerful in the 60s, could not
extend naturally to the larger address spaces that were becoming feasible in the
80s. This meant that nearly all of the programs composing I TS were obsol ete.

The Al Lab hacker community had already collapsed, not long before. In 1981,
the spin-off company Symbolics had hired away nearly all of the hackers from
the Al Lab, and the depopulated community was unable to maintain itself. (The
book Hackers, by Steve Levy, describes these events, and gives a clear picture of
this community inits prime.) When the Al Lab bought a new PDP-10in 1982,
its administrators decided to use Digital's non-free timesharing system instead of
ITS.

The modern computers of the era, such asthe VAX or the 68020, had their own
operating systems, but none of them were free software: you had to sign a
nondisclosure agreement even to get an executable copy.

This meant that the first step in using a computer was to promise not to help your
neighbor. A cooperating community was forbidden. The rule made by the
owners of proprietary software was, "If you share with your neighbor, you are a
pirate. If you want any changes, beg us to make them."

The idea that the proprietary software social system--the system that says you
are not allowed to share or change software--is antisocial, that it is unethical, that
it issimply wrong, may come as a surprise to some readers. But what else could
we say about a system based on dividing the public and keeping users hel pless?
Readers who find the idea surprising may have taken the proprietary socia
system as given, or judged it on the terms suggested by proprietary software
businesses. Software publishers have worked long and hard to convince people
that there is only one way to look at the issue.

When software publishers talk about "enforcing” their "rights" or "stopping
piracy,” what they actually say is secondary. The real message of these
statementsisin the unstated assumptions they take for granted; the publicis
supposed to accept them uncritically. So let's examine them.

http://www.oreilly.com/catalog/opensources/book/stallman.html (2 of 21)

Open Sources: Voices from the Open Source Revolution

One assumption is that software companies have an unquestionable natural right
to own software and thus have power over al its users. (If thiswere a natural
right, then no matter how much harm it does to the public, we could not object.)
Interestingly, the U.S. Constitution and legal tradition reject this view; copyright
Is not a natural right, but an artificial government-imposed monopoly that limits
the users natural right to copy.

Another unstated assumption is that the only important thing about softwareis
what jobs it alows you to do--that we computer users should not care what kind
of society we are allowed to have.

A third assumption is that we would have no usable software (or would never
have a program to do this or that particular job) if we did not offer a company
power over the users of the program. This assumption may have seemed
plausible, before the free software movement demonstrated that we can make
plenty of useful software without putting chains on it.

If we decline to accept these assumptions, and judge these issues based on
ordinary common-sense morality while placing the usersfirst, we arrive at very
different conclusions. Computer users should be free to modify programs to fit
their needs, and free to share software, because helping other peopleisthe basis
of society.

Thereisno room here for an extensive statement of the reasoning behind this
conclusion, so | refer you to the web page, http://www.gnu.org/philosophy/why-

free.html.

A Stark Moral Choice

With my community gone, not continuing as before was impossible. Instead, |
faced amoral choice.

The easy choice was to join the proprietary software world, signing
nondisclosure agreements and promising not to help my fellow hacker. Most
likely | would also be developing software that was released under nondisclosure
agreements, thus adding to the pressure on other people to betray their fellows
too.

| could have made money this way, and perhaps amused myself writing code.
But | knew that at the end of my career, | would look back on years of building
walls to divide people, and feel | had spent my life making the world aworse

http://www.oreilly.com/catalog/opensources/book/stallman.html (3 of 21)

Open Sources: Voices from the Open Source Revolution
place.

| had already experienced being on the receiving end of a nondisclosure
agreement, when someone refused to give me and the MIT Al Lab the source
code for the control program for our printer. (The lack of certain featuresin this
program made use of the printer extremely frustrating.) So | could not tell myself
that nondisclosure agreements were innocent. | was very angry when he refused
to share with us; | could not turn around and do the same thing to everyone el se.

Another choice, straightforward but unpleasant, was to leave the computer field.
That way my skills would not be misused, but they would still be wasted. |
would not be culpable for dividing and restricting computer users, but it would
happen nonethel ess.

So | looked for away that a programmer could do something for the good. |
asked myself, was there a program or programs that | could write, so asto make
acommunity possible once again?

The answer was clear: what was needed first was an operating system. That is

the crucial software for starting to use a computer. With an operating system,

you can do many things; without one, you cannot run the computer at al. With a
free operating system, we could again have a community of cooperating hackers--
and invite anyone to join. And anyone would be able to use a computer without
starting out by conspiring to deprive his or her friends.

As an operating system developer, | had the right skills for thisjob. So even
though | could not take success for granted, | realized that | was elected to do the
job. | chose to make the system compatible with Unix so that it would be
portable, and so that Unix users could easily switch to it. The name GNU was
chosen following a hacker tradition, as a recursive acronym for "GNU's Not
Unix."

An operating system does not mean just a kernel, barely enough to run other
programs. In the 1970s, every operating system worthy of the name included
command processors, assemblers, compilers, interpreters, debuggers, text
editors, mailers, and much more. I TS had them, Multics had them, VM S had
them, and Unix had them. The GNU operating system would include them too.
L ater | heard these words, attributed to Hillel:[2]

If I am not for myself, who will be for me?

If I am only for myself, what am 1?

http://www.oreilly.com/catalog/opensources/book/stallman.html (4 of 21)

Open Sources: Voices from the Open Source Revolution
If not now, when?

The decision to start the GNU project was based on the same spirit.

Freeasin Freedom

The term "free software" is sometimes misunderstood--it has nothing to do with
price. It is about freedom. Here, therefore, is the definition of free software. A
program is free software, for you, a particular user, if:

. You have the freedom to run the program, for any purpose.

. You have the freedom to modify the program to suit your needs. (To make
this freedom effective in practice, you must have access to the source
code, since making changes in a program without having the source code
Is exceedingly difficult.)

.« You have the freedom to redistribute copies, either gratis or for afee.

. You have the freedom to distribute modified versions of the program, so
that the community can benefit from your improvements.

Since "free" refersto freedom, not to price, there is no contradiction between
selling copies and free software. In fact, the freedom to sell copiesis crucial:
collections of free software sold on CD-ROMs are important for the community,
and selling them is an important way to raise funds for free software
development. Therefore, a program that people are not free to include on these
collections is not free software.

Because of the ambiguity of "free," people have long looked for alternatives, but
no one has found a suitable alternative. The English language has more words
and nuances than any other, but it lacks a simple, unambiguous word that means
"free," asin freedom--"unfettered" being the word that comes closest in
meaning. Such alternatives as "liberated," "freedom,” and "open" have either the
wrong meaning or some other disadvantage.

GNU Software and the GNU System

Developing awhole system isavery large project. To bring it into reach, |
decided to adapt and use existing pieces of free software wherever that was
possible. For example, | decided at the very beginning to use TeX asthe
principal text formatter; afew years later, | decided to use the X Window

http://www.oreilly.com/catalog/opensources/book/stallman.html (5 of 21)

Open Sources: Voices from the Open Source Revolution

System rather than writing another window system for GNU.

Because of this decision, the GNU system is not the same as the collection of all
GNU software. The GNU system includes programs that are not GNU software,
programs that were developed by other people and projects for their own
purposes, but which we can use because they are free software.

Commencing the Project

In January 1984 | quit my job at MIT and began writing GNU software. Leaving
MIT was necessary so that MIT would not be able to interfere with distributing
GNU as free software. If | had remained on the staff, MIT could have claimed to
own the work, and could have imposed their own distribution terms, or even
turned the work into a proprietary software package. | had no intention of doing
alarge amount of work only to see it become useless for its intended purpose:
creating a new software-sharing community.

However, Professor Winston, then the head of the MIT Al Lab, kindly invited
me to keep using the Lab's facilities.

TheFirst Steps

Shortly before beginning the GNU project, | heard about the Free University
Compiler Kit, also known as VUCK. (The Dutch word for "free" iswritten with
aV.) Thiswas a compiler designed to handle multiple languages, including C
and Pascal, and to support multiple target machines. | wrote to its author asking
if GNU could useit.

He responded derisively, stating that the university was free but the compiler
was not. | therefore decided that my first program for the GNU project would be
a multi-language, multi-platform compiler.

Hoping to avoid the need to write the whole compiler myself, | obtained the
source code for the Pastel compiler, which was a multi-platform compiler
developed at Lawrence Livermore Lab. It supported, and was written in, an
extended version of Pascal, designed to be a system-programming language. |
added a C frontend, and began porting it to the Motorola 68000 computer. But |
had to give that up when | discovered that the compiler needed many megabytes
of stack space, and the available 68000 Unix system would only allow 64K,

| then determined that the Pastel compiler was designed to parse the entire input

http://www.oreilly.com/catalog/opensources/book/stallman.html (6 of 21)

Open Sources: Voices from the Open Source Revolution

file into a syntax tree, convert the whole syntax tree into a chain of
"instructions," and then generate the whole output file, without ever freeing any
storage. At this point, | concluded | would have to write a new compiler from
scratch. That new compiler is now known as GCC; none of the Pastel compiler
isused init, but | managed to adapt and use the C frontend that | had written.
But that was some years later; first, | worked on GNU Emacs.

GNU Emacs

| began work on GNU Emacsin September 1984, and in early 1985 it was
beginning to be usable. This enabled me to begin using Unix systems to do
editing; having no interest in learning to use vi or ed, | had done my editing on
other kinds of machines until then.

At this point, people began wanting to use GNU Emacs, which raised the
question of how to distribute it. Of course, | put it on the anonymous ftp server
on the MIT computer that | used. (This computer, prep.ai.mit.edu, thus became
the principal GNU ftp distribution site; when it was decommissioned afew years
later, we transferred the name to our new ftp server.) But at that time, many of
the interested people were not on the Internet and could not get a copy by ftp. So
the question was, what would | say to them?

| could have said, "Find afriend who is on the Net and who will make a copy for
you." Or | could have done what | did with the original PDP-10 Emacs: tell
them, "Mail me atape and a SASE, and | will mail it back with Emacson it."
But | had no job, and | was looking for ways to make money from free software.
So | announced that | would mail atape to whoever wanted one, for afee of
$150. Inthisway, | started afree software distribution business, the precursor of
the companies that today distribute entire Linux-based GNU systems.

|sa Program Freefor Every User?

If aprogram is free software when it leaves the hands of its author, this does not
necessarily mean it will be free software for everyone who has a copy of it. For
example, public domain software (software that is not copyrighted) is free
software; but anyone can make a proprietary modified version of it. Likewise,
many free programs are copyrighted but distributed under simple permissive
licenses that allow proprietary modified versions.

The paradigmatic example of this problem isthe X Window System. Developed

http://www.oreilly.com/catalog/opensources/book/stallman.html (7 of 21)

Open Sources: Voices from the Open Source Revolution

at MIT, and released as free software with a permissive license, it was soon
adopted by various computer companies. They added X to their proprietary Unix
systems, in binary form only, and covered by the same nondisclosure agreement.
These copies of X were no more free software than Unix was.

The developers of the X Window System did not consider this a problem--they
expected and intended this to happen. Their goal was not freedom, just
"success,” defined as "having many users." They did not care whether these
users had freedom, only that they should be numerous.

Thislead to a paradoxical situation where two different ways of counting the
amount of freedom gave different answers to the question, "Is this program
free?"' If you judged based on the freedom provided by the distribution terms of
the MIT release, you would say that X was free software. But if you measured
the freedom of the average user of X, you would have to say it was proprietary
software. Most X users were running the proprietary versions that came with
Unix systems, not the free version.

Copyleft and the GNU GPL

The goal of GNU was to give users freedom, not just to be popular. So we
needed to use distribution terms that would prevent GNU software from being
turned into proprietary software. The method we useis called "copyleft."[3]

Copyleft uses copyright law, but flips it over to serve the opposite of its usual
purpose: instead of a means of privatizing software, it becomes a means of
keeping software free.

The central idea of copyleft isthat we give everyone permission to run the
program, copy the program, modify the program, and distribute modified
versions--but not permission to add restrictions of their own. Thus, the crucial
freedoms that define "free software" are guaranteed to everyone who has a copy;
they become inalienable rights.

For an effective copyleft, modified versions must also be free. This ensures that
work based on ours becomes available to our community if it is published. When
programmers who have jobs as programmers volunteer to improve GNU
software, it is copyleft that prevents their employers from saying, "Y ou can't
share those changes, because we are going to use them to make our proprietary
version of the program.”

http://www.oreilly.com/catalog/opensources/book/stallman.html (8 of 21)

Open Sources: Voices from the Open Source Revolution

The requirement that changes must be freeis essential if we want to ensure
freedom for every user of the program. The companies that privatized the X
Window System usually made some changesto port it to their systems and
hardware. These changes were small compared with the great extent of X, but
they were not trivial. If making changes was an excuse to deny the users
freedom, it would be easy for anyone to take advantage of the excuse.

A related issue concerns combining a free program with non-free code. Such a
combination would inevitably be non-free; whichever freedoms are lacking for
the non-free part would be lacking for the whole aswell. To permit such
combinations would open a hole big enough to sink a ship. Therefore, acrucia
requirement for copyleft is to plug this hole: anything added to or combined with
a copylefted program must be such that the larger combined version is also free
and copylefted.

The specific implementation of copyleft that we use for most GNU software is
the GNU General Public License, or GNU GPL for short. We have other kinds
of copyleft that are used in specific circumstances. GNU manuals are copylefted
also, but use a much simpler kind of copyleft, because the complexity of the
GNU GPL is not necessary for manuals.

The Free Software Foundation

As interest in using Emacs was growing, other people became involved in the
GNU project, and we decided that it was time to seek funding once again. Soin
1985 we created the Free Software Foundation, a tax-exempt charity for free
software development. The FSF also took over the Emacs tape distribution
business; later it extended this by adding other free software (both GNU and non-
GNU) to the tape, and by selling free manuals as well.

The FSF accepts donations, but most of itsincome has always come from sales--
of copies of free software, and of other related services. Today it sells CD-

ROMs of source code, CD-ROMs with binaries, nicely printed manuals (all with
freedom to redistribute and modify), and Deluxe Distributions (where we build
the whole collection of software for your choice of platform).

Free Software Foundation employees have written and maintained a number of
GNU software packages. Two notable ones are the C library and the shell. The
GNU C library iswhat every program running on a GNU/Linux system uses to
communicate with Linux. It was developed by a member of the Free Software

http://www.oreilly.com/catalog/opensources/book/stallman.html (9 of 21)

Open Sources: Voices from the Open Source Revolution

Foundation staff, Roland McGrath. The shell used on most GNU/Linux systems
is BASH, the Bourne Again Shell,[4] which was developed by FSF employee

Brian Fox.

We funded devel opment of these programs because the GNU project was not
just about tools or a development environment. Our goal was a complete
operating system, and these programs were needed for that goal.

Free Software Support

The free software philosophy rejects a specific widespread business practice, but
it is not against business. When businesses respect the users freedom, we wish
them success.

Selling copies of Emacs demonstrates one kind of free software business. When
the FSF took over that business, | needed another way to make aliving. | found
it in selling services relating to the free software | had developed. Thisincluded
teaching, for subjects such as how to program GNU Emacs and how to
customize GCC, and software development, mostly porting GCC to new
platforms.

Today each of these kinds of free software business is practiced by a number of
corporations. Some distribute free software collections on CD-ROM; others sell
support at levels ranging from answering user questions to fixing bugs to adding
major new features. We are even beginning to see free software companies
based on launching new free software products.

Watch out, though--a number of companies that associate themselves with the
term "Open Source" actually base their business on non-free software that works
with free software. These are not free software companies, they are proprietary
software companies whose products tempt users away from freedom. They call
these "value added," which reflects the values they would like us to adopt:
convenience above freedom. If we value freedom more, we should call them
"freedom subtracted" products.

Technical Goals

The principal goal of GNU was to be free software. Even if GNU had no
technical advantage over Unix, it would have a social advantage, allowing users
to cooperate, and an ethical advantage, respecting the user's freedom.

http://www.oreilly.com/catalog/opensources/book/stallman.html (10 of 21)

Open Sources: Voices from the Open Source Revolution

But it was natural to apply the known standards of good practice to the work--for
example, dynamically allocating data structures to avoid arbitrary fixed size
limits, and handling all the possible 8-bit codes wherever that made sense.

In addition, we rejected the Unix focus on small memory size, by deciding not to
support 16-bit machines (it was clear that 32-bit machines would be the norm by
the time the GNU system was finished), and to make no effort to reduce memory
usage unless it exceeded a megabyte. In programs for which handling very large
fileswas not crucial, we encouraged programmersto read an entire input file
into core, then scan its contents without having to worry about 1/0O.

These decisions enabled many GNU programs to surpass their Unix counterparts
in reliability and speed.

Donated Computers

Asthe GNU project's reputation grew, people began offering to donate machines
running Unix to the project. These were very useful, because the easiest way to
develop components of GNU wasto do it on a Unix system, and replace the
components of that system one by one. But they raised an ethical issue: whether
it was right for usto have a copy of Unix at all.

Unix was (and is) proprietary software, and the GNU project's philosophy said
that we should not use proprietary software. But, applying the same reasoning
that leads to the conclusion that violence in self-defenseisjustified, | concluded
that it was legitimate to use a proprietary package when that was crucial for
developing free replacement that would help others stop using the proprietary
package.

But, even if thiswas ajustifiable evil, it was still an evil. Today we no longer
have any copies of Unix, because we have replaced them with free operating
systems. If we could not replace a machine's operating system with afree one,
we replaced the machine instead.

The GNU Task List

Asthe GNU project proceeded, and increasing numbers of system components
were found or developed, eventually it became useful to make alist of the
remaining gaps. We used it to recruit developers to write the missing pieces.
Thislist became known as the GNU task list. In addition to missing Unix

http://www.oreilly.com/catalog/opensources/book/stallman.html (11 of 21)

Open Sources: Voices from the Open Source Revolution

components, we listed various other useful software and documentation projects
that, we thought, a truly complete system ought to have.

Today, hardly any Unix components are left in the GNU task list--those jobs
have been done, aside from afew inessential ones. But the list isfull of projects
that some might call "applications." Any program that appeals to more than a
narrow class of users would be a useful thing to add to an operating system.

Even games are included in the task list--and have been since the beginning.
Unix included games, so naturally GNU should too. But compatibility was not
an issue for games, so we did not follow the list of games that Unix had. Instead,
we listed a spectrum of different kinds of games that users might like.

The GNU Library GPL

The GNU C library uses a special kind of copyleft called the GNU Library
General Public License (LPGL), which gives permission to link proprietary
software with the library. Why make this exception?

It is not amatter of principle; there is no principle that says proprietary software
products are entitled to include our code. (Why contribute to a project predicated
on refusing to share with us?) Using the LGPL for the C library, or for any
library, is amatter of strategy.

The C library does a generic job; every proprietary system or compiler comes
with aC library. Therefore, to make our C library available only to free software
would not have given free software any advantage--it would only have
discouraged use of our library.

One system is an exception to this. on the GNU system (and thisincludes
GNU/Linux), the GNU C library isthe only C library. So the distribution terms
of the GNU C library determine whether it is possible to compile a proprietary
program for the GNU system. There is no ethical reason to allow proprietary
applications on the GNU system, but strategically it seems that disallowing them
would do more to discourage use of the GNU system than to encourage
development of free applications.

That iswhy using the Library GPL isagood strategy for the C library. For other
libraries, the strategic decision needs to be considered on a case-by-case basis.
When alibrary does a special job that can help write certain kinds of programs,
then releasing it under the GPL, limiting it to free programs only, isaway of

http://www.oreilly.com/catalog/opensources/book/stallman.html (12 of 21)

Open Sources: Voices from the Open Source Revolution

helping other free software devel opers, giving them an advantage against
proprietary software.

Consider GNU Readline, alibrary that was developed to provide command-line
editing for BASH. Readline is released under the ordinary GNU GPL, not the
Library GPL. This probably does reduce the amount Readline is used, but that is
no loss for us. Meanwhile, at least one useful application has been made free
software specifically so it could use Readline, and that isareal gain for the
community.

Proprietary software devel opers have the advantages money provides; free
software developers need to make advantages for each other. | hope some day
we will have alarge collection of GPL-covered libraries that have no parallel
available to proprietary software, providing useful modulesto serve as building
blocks in new free software, and adding up to amajor advantage for further free
software development.

Scratching an Itch?

Eric Raymond says that "Every good work of software starts by scratching a
developer's personal itch." Maybe that happens sometimes, but many essential
pieces of GNU software were developed in order to have a complete free
operating system. They come from avision and a plan, not from impul se.

For example, we developed the GNU C library because a Unix-like system
needs a C library, the Bourne-Again Shell (BASH) because a Unix-like system
needs a shell, and the GNU tar because a Unix-like system needs atar program.
The same s true for my programs, the GNU C compiler, GNU Emacs, GDB,
and GNU Make.

Some GNU programs were developed to cope with specific threats to our
freedom. Thus, we developed gz p to replace the Compress program, which had
been lost to the community because of the LZW patents. We found people to
develop LessTif, and more recently started GNOME and Harmony, to address
the problems caused by certain proprietary libraries (see below). We are
developing the GNU Privacy Guard to replace popular non-free encryption
software, because users should not have to choose between privacy and freedom.

Of course, the people writing these programs became interested in the work, and
many features were added to them by various people for the sake of their own
needs or interests. But that is not why the programs exist.

http://www.oreilly.com/catalog/opensources/book/stallman.html (13 of 21)

Open Sources: Voices from the Open Source Revolution

Unexpected Developments

At the beginning of the GNU project, | imagined that we would develop the
whole GNU system, then release it asawhole. That is not how it happened.

Since each component of the GNU system was implemented on a Unix system,
each component could run on Unix systems, long before a complete GNU
system existed. Some of these programs became popular, and users began
extending them and porting them--to the various incompatible versions of Unix,
and sometimes to other systems as well.

The process made these programs much more powerful, and attracted both funds
and contributors to the GNU project. But it probably also delayed completion of
aminimal working system by several years, as GNU developers' time was put
into maintaining these ports and adding features to the existing components,
rather than moving on to write one missing component after another.

The GNU HURD

By 1990, the GNU system was almost compl ete; the only major missing
component was the kernel. We had decided to implement our kernel asa
collection of server processes running on top of Mach. Mach is a microkernel
developed at Carnegie Mellon University and then at the University of Utah; the
GNU HURD isacollection of servers (or "herd of gnus') that run on top of
Mach, and do the various jobs of the Unix kernel. The start of development was
delayed as we waited for Mach to be released as free software, as had been
promised.

One reason for choosing this design was to avoid what seemed to be the hardest
part of the job: debugging akernel program without a source-level debugger to
do it with. This part of the job had been done aready, in Mach, and we expected
to debug the HURD servers as user programs, with the GNU debugger (GDB).
But it took along time to make that possible, and the multi-threaded servers that
send messages to each other have turned out to be very hard to debug. Making
the HURD work solidly has stretched on for many years.

Alix
The GNU kernel was not originally supposed to be called the HURD. Its original

http://www.oreilly.com/catalog/opensources/book/stallman.html (14 of 21)

Open Sources: Voices from the Open Source Revolution

name was Alix--named after the woman who was my sweetheart at the time.
She, aUnix system administrator, had pointed out how her name would fit a
common naming pattern for Unix system versions; as a joke, she told her
friends, "Someone should name a kernel after me." | said nothing, but decided to
surprise her with akernel named Alix.

It did not stay that way. Michael Bushnell (now Thomas), the main devel oper of
the kernel, preferred the name HURD, and redefined Alix to refer to a certain
part of the kernel--the part that would trap system calls and handle them by
sending messages to HURD servers.

Ultimately, Alix and | broke up, and she changed her name; independently, the
HURD design was changed so that the C library would send messages directly to
servers, and this made the Alix component disappear from the design.

But before these things happened, afriend of hers came across the name Alix in
the HURD source code, and mentioned the name to her. So the name did its job.

Linux and GNU/Linux

The GNU HURD is not ready for production use. Fortunately, another kernel is
available. In 1991, Linus Torvalds developed a Unix-compatible kernel and
called it Linux. Around 1992, combining Linux with the not-quite-complete
GNU system resulted in a complete free operating system. (Combining them was
asubstantial job initself, of course.) It isdue to Linux that we can actually run a
version of the GNU system today .

We call this system version GNU/Linux, to express its composition as a
combination of the GNU system with Linux as the kerndl.

Challengesin Our Future

We have proved our ability to develop a broad spectrum of free software. This
does not mean we are invincible and unstoppable. Several challenges make the
future of free software uncertain; meeting them will require steadfast effort and
endurance, sometimes lasting for years. It will require the kind of determination
that people display when they value their freedom and will not et anyone take it

away.
The following four sections discuss these challenges.

http://www.oreilly.com/catalog/opensources/book/stallman.html (15 of 21)

Open Sources: Voices from the Open Source Revolution

Secret Hardware

Hardware manufactures increasingly tend to keep hardware specifications secret.
This makesit difficult to write free drivers so that Linux and XFree86 can
support new hardware. We have complete free systems today, but we will not
have them tomorrow if we cannot support tomorrow's computers.

There are two ways to cope with this problem. Programmers can do reverse
engineering to figure out how to support the hardware. The rest of us can choose
the hardware that is supported by free software; as our numbers increase, secrecy
of specifications will become a self-defeating policy.

Reverse engineering is abig job; will we have programmers with sufficient
determination to undertake it? Y es--if we have built up a strong feeling that free
software is amatter of principle, and non-free drivers are intolerable. And will
large numbers of us spend extra money, or even alittle extratime, so we can use
free drivers? Yes, if the determination to have freedom is widespread.

Non-FreeLibraries

A non-free library that runs on free operating systems acts as atrap for free
software developers. The library's attractive features are the bait; if you use the
library, you fall into the trap, because your program cannot usefully be part of a
free operating system. (Strictly speaking, we could include your program, but it
won't *run* with the library missing.) Even worse, if a program that uses the
proprietary library becomes popular, it can lure other unsuspecting programmers
into the trap.

Thefirst instance of this problem was the Motif toolkit, back in the 80s.
Although there were as yet no free operating systems, it was clear what problem
Motif would cause for them later on. The GNU Project responded in two ways:
by asking individual free software projects to support the free X toolkit widgets
aswell as Motif, and by asking for someone to write a free replacement for
Motif. The job took many years; LessTif, developed by the Hungry
Programmers, became powerful enough to support most Motif applications only
in 1997.

Around the same time, another non-free GUI toolkit library began to gainin
popularity. Thiswas Qt, from Troll Technologies. Ultimately Qt was used in a
substantial collection of free software, the desktop KDE.

Free GNU/Linux systems were unable to use KDE, because we could not use the

http://www.oreilly.com/catalog/opensources/book/stallman.html (16 of 21)

Open Sources: Voices from the Open Source Revolution

library. However, some commercial distributors of GNU/Linux systems who
were not strict about sticking with free software added KDE to their systems--
producing a system with more capabilities, but less freedom. The KDE group
was actively encouraging more programmers to use Qt, and millions of new
"Linux users' had never been exposed to the idea that there was a problem in
this. The situation appeared grim.

The free software community responded to the problem in two ways. GNOME
and Harmony.

GNOME, the GNU Network Object Model Environment, is GNU's desktop
project. Started in 1997 by Miguel de Icaza, and developed with the support of
Red Hat Software, GNOME set out to provide similar desktop facilities, but
using free software exclusively. It has technical advantages as well, such as
supporting a variety of languages, not just C++. But its main purpose was
freedom: not to require the use of any non-free software.

Harmony is a compatible replacement library, designed to make it possible to
run KDE software without using Qt.

In November 1998, the developers of Qt announced a change of license which,
when carried out, should make Qt free software. There is no way to be sure, but |
think that this was partly due to the community's firm response to the problem
that Qt posed when it was non-free. (The new license isinconvenient and
inequitable, so it remains desirable to avoid using Qt.)

How will we respond to the next tempting non-free library? Will the whole
community understand the need to stay out of the trap? Or will many of us give
up freedom for convenience, and produce a mgor problem? Our future depends
on our philosophy.

Software Patents

The worst threat we face comes from software patents, which can put algorithms
and features off-limits to free software for up to twenty years. The LZW
compression algorithm patents were applied for in 1983, and we still cannot

rel ease free software to produce proper compressed GIFs. In 1998, afree
program to produce MP3 compressed audio was removed from distribution
under threat of a patent suit.

There are ways to cope with patents. we can search for evidence that a patent is
invalid, and we can look for aternative waysto do ajob. But each of these

http://www.oreilly.com/catalog/opensources/book/stallman.html (17 of 21)

Open Sources: Voices from the Open Source Revolution

methods works only sometimes; when both fail, a patent may force all free
software to lack some feature that users want. What will we do what this
happens?

Those of us who value free software for freedom'’s sake will stay with free
software anyway. We will manage to get work done without the patented
features. But those who value free software because they expect it to be
technically superior are likely to call it afailure when a patent holds it back.
Thus, whileit is useful to talk about the practical effectiveness of the "cathedral”
model of development, and the reliability and power of some free software, we
must not stop there. We must talk about freedom and principle.

Free Documentation

The biggest deficiency in our free operating systemsis not in the software--it is
the lack of good free manuals that we can include in our systems.
Documentation is an essential part of any software package; when an important
free software package does not come with a good free manual, that is a major
gap. We have many such gaps today.

Free documentation, like free software, is a matter of freedom, not price. The
criterion for afree manual is pretty much the same as for free software: itisa
matter of giving all users certain freedoms. Redistribution (including commercial
sale) must be permitted, online and on paper, so that the manual can accompany
every copy of the program.

Permission for modification is crucial too. Asagenera rule, | don't believe that
it isessential for people to have permission to modify all sorts of articles and
books. For example, | don't think you or | are obliged to give permission to
modify articles like this one, which describe our actions and our views.

But there is a particular reason why the freedom to modify is crucial for
documentation for free software. When people exercise their right to modify the
software, and add or change its features, if they are conscientious they will
change the manual too--so they can provide accurate and usable documentation
with the modified program. A manua which does not allow programmersto be
conscientious and finish the job does not fill our community's needs.

Some kinds of limits on how modifications are done pose no problem. For
example, requirements to preserve the original author's copyright notice, the
distribution terms, or the list of authors, are OK. It is aso no problem to require

http://www.oreilly.com/catalog/opensources/book/stallman.html (18 of 21)

Open Sources: Voices from the Open Source Revolution

modified versions to include notice that they were modified, even to have entire
sections that may not be deleted or changed, as long as these sections deal with
non-technical topics. These kinds of restrictions are not a problem because they
don't stop the conscientious programmer from adapting the manual to fit the
modified program. In other words, they don't block the free software community
from making full use of the manual.

However, it must be possible to modify all the technical content of the manual,
and then distribute the result in al the usual media, through all the usual
channels; otherwise, the restrictions do obstruct the community, the manual is
not free, and we need another manual.

Will free software developers have the awareness and determination to produce
afull spectrum of free manuals? Once again, our future depends on philosophy.

We Must Talk About Freedom

Estimates today are that there are ten million users of GNU/Linux systems such
as Debian GNU/Linux and Red Hat Linux. Free software has developed such
practical advantages that users are flocking to it for purely practical reasons.

The good consequences of this are evident: more interest in developing free
software, more customers for free software businesses, and more ability to
encourage companies to develop commercial free software instead of proprietary
software products.

But interest in the software is growing faster than awareness of the philosophy it
Is based on, and this leads to trouble. Our ability to meet the challenges and
threats described above depends on the will to stand firm for freedom. To make
sure our community has thiswill, we need to spread the idea to the new users as
they come into the community.

But we are failing to do so: the efforts to attract new usersinto our community
are far outstripping the efforts to teach them the civics of our community. We
need to do both, and we need to keep the two efforts in balance.

" Open Source"

Teaching new users about freedom became more difficult in 1998, when a part
of the community decided to stop using the term "free software" and say "open-
source software" instead.

http://www.oreilly.com/catalog/opensources/book/stallman.html (19 of 21)

Open Sources: Voices from the Open Source Revolution

Some who favored this term aimed to avoid the confusion of "free" with "gratis"-
-avalid goal. Others, however, aimed to set aside the spirit of principle that had
motivated the free software movement and the GNU project, and to appeal
instead to executives and business users, many of whom hold an ideology that
places profit above freedom, above community, above principle. Thus, the
rhetoric of "Open Source" focuses on the potential to make high quality,
powerful software, but shuns the ideas of freedom, community, and principle.

The"Linux" magazines are a clear example of this--they arefilled with
advertisements for proprietary software that works with GNU/Linux. When the
next Motif or Qt appears, will these magazines warn programmers to stay away
from it, or will they run adsfor it?

The support of business can contribute to the community in many ways; all else
being equal, it is useful. But winning their support by speaking even less about
freedom and principle can be disastrous; it makes the previous imbalance
between outreach and civics education even worse.

"Free software" and "Open Source" describe the same category of software,
more or less, but say different things about the software, and about values. The
GNU Project continues to use the term "free software," to express the idea that
freedom, not just technology, isimportant.

Try!

Y oda's philosophy (Thereis no "try") sounds neat, but it doesn't work for me. |
have done most of my work while anxious about whether | could do the job, and
unsure that it would be enough to achieve the goal if | did. But | tried anyway,
because there was no one but me between the enemy and my city. Surprising
myself, | have sometimes succeeded.

Sometimes | failed; some of my cities have fallen. Then | found another
threatened city, and got ready for another battle. Over time, I've learned to look
for threats and put myself between them and my city, calling on other hackersto
come and join me.

Nowadays, I'm often not the only one. Itisarelief and ajoy when | seea
regiment of hackers digging in to hold the line, and | realize this city may
survive--for now. But the dangers are greater each year, and now Microsoft has
explicitly targeted our community. We can't take the future of freedom for
granted. Don't take it for granted! If you want to keep your freedom, you must be

http://www.oreilly.com/catalog/opensources/book/stallman.html (20 of 21)

Open Sources: Voices from the Open Source Revolution

prepared to defend it.

1. The use of "hacker" to mean "security breaker" is a confusion on the part of the mass
media. We hackers refuse to recognize that meaning, and continue using the word to mean,
"Someone who loves to program and enjoys being clever about it."

2. Asan atheist, | don't follow any religious leaders, but | sometimes find | admire something
one of them has said.

3.1n 1984 or 1985, Don Hopkins (avery imaginative fellow) mailed me aletter. On the
envelope he had written several amusing sayings, including this one: " Copyleft--all rights
reversed." | used the word "copyleft” to name the distribution concept | was developing at the
time.

4. "Bourne Again Shell" is ajoke on the name "Bourne Shell," which was the usual shell on
Unix.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/stallman.html (21 of 21)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

Why Software Should Not Have Owners

by Richard Stallman

[Catalan | Croatian | Czech | Danish | English | French | German |
Hungarian | Indonesian | Italian | Japanese | Korean | Polish | Portuguese | Russian | Spanish | Turkish]

Digital information technology contributes to the world by making it easier to copy and modify
information. Computers promise to make this easier for all of us.

Not everyone wants it to be easier. The system of copyright gives software programs ~ owners’, most of
whom aim to withhold software's potential benefit from the rest of the public. They would like to be the
only ones who can copy and modify the software that we use.

The copyright system grew up with printing---a technology for mass production copying. Copyright fit in
well with this technology because it restricted only the mass producers of copies. It did not take freedom
away from readers of books. An ordinary reader, who did not own a printing press, could copy books
only with pen and ink, and few readers were sued for that.

Digital technology is more flexible than the printing press. when information has digital form, you can
easily copy it to share it with others. This very flexibility makes a bad fit with a system like copyright.
That's the reason for the increasingly nasty and draconian measures now used to enforce software
copyright. Consider these four practices of the Software Publishers Association (SPA):

. Massive propaganda saying it iswrong to disobey the owners to help your friend.
. Solicitation for stool pigeonsto inform on their coworkers and colleagues.

. Raids (with police help) on offices and schooals, in which people are told they must prove they are
innocent of illegal copying.

http://www.gnu.org/philosophy/why-free.html (1 of 6)

http://www.stallman.org/
http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/philosophy/why-free.ca.html
http://www.gnu.org/philosophy/why-free.hr.html
http://www.gnu.org/philosophy/why-free.cs.html
http://www.gnu.org/philosophy/why-free.da.html
http://www.gnu.org/philosophy/why-free.fr.html
http://www.gnu.org/philosophy/why-free.de.html
http://www.gnu.org/philosophy/why-free.hu.html
http://www.gnu.org/philosophy/why-free.id.html
http://www.gnu.org/philosophy/why-free.it.html
http://www.gnu.org/philosophy/why-free.ja.html
http://www.gnu.org/philosophy/why-free.ko.html
http://www.gnu.org/philosophy/why-free.pl.html
http://www.gnu.org/philosophy/why-free.pt.html
http://www.gnu.org/philosophy/why-free.ru.html
http://www.gnu.org/philosophy/why-free.es.html
http://www.gnu.org/philosophy/why-free.tr.html

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

. Prosecution (by the US government, at the SPA's request) of people such as MIT's David
LaMacchia, not for copying software (he is not accused of copying any), but merely for leaving
copying facilities unguarded and failing to censor their use.

All four practices resemble those used in the former Soviet Union, where every copying machine had a
guard to prevent forbidden copying, and where individuals had to copy information secretly and pass it
from hand to hand as " "samizdat”. Thereis of course a difference: the motive for information control in
the Soviet Union was political; in the US the motive is profit. But it is the actions that affect us, not the
motive. Any attempt to block the sharing of information, no matter why, leads to the same methods and
the same harshness.

Owners make several kinds of arguments for giving them the power to control how we use information:
. Name calling.

Owners use smear words such as ~ piracy" and " theft", aswell as expert terminology such as
“intellectual property” and "~ damage”, to suggest a certain line of thinking to the public---a
simplistic analogy between programs and physical objects.

Our ideas and intuitions about property for material objects are about whether it isright to take an
object away from someone else. They don't directly apply to making a copy of something. But the
owners ask usto apply them anyway.

. Exaggeration.

Owners say that they suffer “"harm" or ““economic loss" when users copy programs themselves.
But the copying has no direct effect on the owner, and it harms no one. The owner can lose only if
the person who made the copy would otherwise have paid for one from the owner.

A little thought shows that most such people would not have bought copies. Y et the owners
compute their “"losses” asif each and every one would have bought a copy. That is exaggeration---
to put it kindly.

. Thelaw.

Owners often describe the current state of the law, and the harsh penalties they can threaten us
with. Implicit in this approach is the suggestion that today's law reflects an unquestionable view of
morality---yet at the same time, we are urged to regard these penalties as facts of nature that can't
be blamed on anyone.

Thisline of persuasion isn't designed to stand up to critical thinking; it's intended to reinforce a

http://www.gnu.org/philosophy/why-free.html (2 of 6)

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

habitual mental pathway.

It's elementary that laws don't decide right and wrong. Every American should know that, forty
years ago, it was against the law in many states for a black person to sit in the front of a bus; but
only racists would say sitting there was wrong.

. Natural rights.

Authors often claim a special connection with programs they have written, and go on to assert
that, as aresult, their desires and interests concerning the program simply outweigh those of
anyone else---or even those of the whole rest of the world. (Typically companies, not authors,
hold the copyrights on software, but we are expected to ignore this discrepancy.)

To those who propose this as an ethical axiom---the author is more important than you---1 can
only say that |, a notable software author myself, call it bunk.

But peoplein general are only likely to feel any sympathy with the natural rights claims for two
reasons.

Onereason is an overstretched analogy with material objects. When | cook spaghetti, | do object if
someone else eats it, because then | cannot eat it. His action hurts me exactly as much asit
benefits him; only one of us can eat the spaghetti, so the question is, which? The smallest
distinction between usis enough to tip the ethical balance.

But whether you run or change a program | wrote affects you directly and me only indirectly.
Whether you give a copy to your friend affects you and your friend much more than it affects me.
| shouldn't have the power to tell you not to do these things. No one should.

The second reason is that people have been told that natural rights for authors is the accepted and
unquestioned tradition of our society.

Asamatter of history, the oppositeistrue. The idea of natural rights of authors was proposed and
decisively regjected when the US Constitution was drawn up. That's why the Constitution only
permits a system of copyright and does not require one; that's why it says that copyright must be
temporary. It also states that the purpose of copyright isto promote progress---not to reward
authors. Copyright does reward authors somewhat, and publishers more, but that isintended as a
means of modifying their behavior.

The real established tradition of our society is that copyright cuts into the natural rights of the
public---and that this can only be justified for the public's sake.

. Economics.

http://www.gnu.org/philosophy/why-free.html (3 of 6)

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

The final argument made for having owners of software is that this leads to production of more
software.

Unlike the others, this argument at |east takes a legitimate approach to the subject. It isbased on a
valid goal---satisfying the users of software. And it isempirically clear that people will produce
more of something if they are well paid for doing so.

But the economic argument has aflaw: it is based on the assumption that the differenceisonly a
matter of how much money we have to pay. It assumesthat ~ production of software" iswhat we
want, whether the software has owners or not.

People readily accept this assumption because it accords with our experiences with material
objects. Consider a sandwich, for instance. Y ou might well be able to get an equivalent sandwich
either free or for aprice. If so, the amount you pay isthe only difference. Whether or not you have
to buy it, the sandwich has the same taste, the same nutritional value, and in either case you can
only eat it once. Whether you get the sandwich from an owner or not cannot directly affect
anything but the amount of money you have afterwards.

Thisistrue for any kind of material object---whether or not it has an owner does not directly
affect what it is, or what you can do with it if you acquireit.

But if a program has an owner, this very much affects what it is, and what you can do with a copy
if you buy one. The difference is not just a matter of money. The system of owners of software
encourages software owners to produce something---but not what society really needs. And it
causes intangible ethical pollution that affectsus all.

What does society need? It needs information that is truly available to its citizens---for example,
programs that people can read, fix, adapt, and improve, not just operate. But what software owners
typically deliver is ablack box that we can't study or change.

Society also needs freedom. When a program has an owner, the users lose freedom to control part of their
own lives.

And above all society needs to encourage the spirit of voluntary cooperation in its citizens. When
software ownerstell usthat helping our neighborsin a natural way is " piracy", they pollute our society's
civic spirit.

Thisiswhy we say that free software is a matter of freedom, not price.

The economic argument for ownersis erroneous, but the economic issueisreal. Some people write useful
software for the pleasure of writing it or for admiration and love; but if we want more software than those

http://www.gnu.org/philosophy/why-free.html (4 of 6)

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

people write, we need to raise funds.

For ten years now, free software developers have tried various methods of finding funds, with some
success. There's no need to make anyone rich; the median US family income, around $35k, proves to be
enough incentive for many jobs that are less satisfying than programming.

For years, until afellowship made it unnecessary, | made aliving from custom enhancements of the free
software | had written. Each enhancement was added to the standard released version and thus eventually
became available to the general public. Clients paid me so that | would work on the enhancements they
wanted, rather than on the features | would otherwise have considered highest priority.

The Free Software Foundation (FSF), a tax-exempt charity for free software devel opment, raises funds by
selling GNU CD-ROMs, T-shirts, manuals, and deluxe distributions, (all of which users are free to copy
and change), as well as from donations. It now has a staff of five programmers, plus three employees who
handle mail orders.

Some free software devel opers make money by selling support services. Cygnus Support, with around 50
employees [when this article was written], estimates that about 15 per cent of its staff activity isfree
software devel opment---a respectabl e percentage for a software company.

Companiesincluding Intel, Motorola, Texas Instruments and Analog Devices have combined to fund the
continued development of the free GNU compiler for the language C. Meanwhile, the GNU compiler for
the Adalanguage is being funded by the US Air Force, which believes thisis the most cost-effective way
to get a high quality compiler. [Air Force funding ended some time ago; the GNU Ada Compiler is now
in service, and its maintenance is funded commercially.]

All these examples are small; the free software movement is still small, and still young. But the example
of listener-supported radio in this country [the US] showsit's possible to support alarge activity without
forcing each user to pay.

As acomputer user today, you may find yourself using a proprietary (18k characters) program. If your
friend asks to make a copy, it would be wrong to refuse. Cooperation is more important than copyright.
But underground, closet cooperation does not make for a good society. A person should aspireto live an
upright life openly with pride, and this means saying = "No" to proprietary software.

Y ou deserve to be able to cooperate openly and freely with other people who use software. Y ou deserve
to be able to learn how the software works, and to teach your students with it. Y ou deserve to be able to
hire your favorite programmer to fix it when it breaks.

Y ou deserve free software.

http://www.gnu.org/philosophy/why-free.html (5 of 6)

http://www.gnu.org/fsf/fsf.html
http://order.fsf.org/
http://www.gnu.org/software/software.html
http://order.fsf.org/
http://www.gnu.org/doc/doc.html
http://order.fsf.org/
http://donate.fsf.org/

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

This essay is published in Free Software, Free Society: The Selected Essays of Richard

M. Stallman.

Other Texts to Read

[Catalan | Croatian | Czech | Danish | English | French | German | Hungarian | Indonesian | Italian |
Japanese | Korean | Polish | Portuguese | Russian | Spanish | Turkish]

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmaster s@www.gnu.org, send other questions to gnu@gnu.org.

Copyright 1994 Richard Stallman

Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice
IS preserved.

Updated: $Date: 2003/06/17 03:30:59 $ $Author: gurhanozen $

http://www.gnu.org/philosophy/why-free.html (6 of 6)

http://www.gnu.org/doc/book13.html
http://www.gnu.org/doc/book13.html
http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/philosophy/why-free.ca.html
http://www.gnu.org/philosophy/why-free.hr.html
http://www.gnu.org/philosophy/why-free.cs.html
http://www.gnu.org/philosophy/why-free.da.html
http://www.gnu.org/philosophy/why-free.fr.html
http://www.gnu.org/philosophy/why-free.de.html
http://www.gnu.org/philosophy/why-free.hu.html
http://www.gnu.org/philosophy/why-free.id.html
http://www.gnu.org/philosophy/why-free.it.html
http://www.gnu.org/philosophy/why-free.ja.html
http://www.gnu.org/philosophy/why-free.ko.html
http://www.gnu.org/philosophy/why-free.pl.html
http://www.gnu.org/philosophy/why-free.pt.html
http://www.gnu.org/philosophy/why-free.ru.html
http://www.gnu.org/philosophy/why-free.es.html
http://www.gnu.org/philosophy/why-free.tr.html
http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

The Free Software Definition - GNU Project - Free Software Foundation (FSF)

The Free Software Definition

[Croatian | Czech | Danish | Dutch | English | French | Galician | German |
Hungarian | Indonesian | Italian | Japanese | Korean | Norwegian | Polish | Portuguese | Romanian |
Russian | Slovenian | Spanish | Swedish | Turkish]

We maintain this free software definition to show clearly what must be true about a particular software
program for it to be considered free software.

“"Free software” is a matter of liberty, not price. To understand the concept, you should think of ““free" as
in "“free speech,” not asin " “free beer.”

Free software is a matter of the users freedom to run, copy, distribute, study, change and improve the
software. More precisely, it refersto four kinds of freedom, for the users of the software:

. Thefreedom to run the program, for any purpose (freedom 0).

. Thefreedom to study how the program works, and adapt it to your needs (freedom 1). Accessto
the source code is a precondition for this.

. Thefreedom to redistribute copies so you can help your neighbor (freedom 2).

. Thefreedom to improve the program, and release your improvements to the public, so that the
whole community benefits (freedom 3). Access to the source code is a precondition for this.

A program is free software if users have al of these freedoms. Thus, you should be free to redistribute
copies, either with or without modifications, either gratis or charging afee for distribution, to anyone

anywhere. Being free to do these things means (among other things) that you do not have to ask or pay
for permission.

Y ou should also have the freedom to make modifications and use them privately in your own work or
play, without even mentioning that they exist. If you do publish your changes, you should not be required
to notify anyone in particular, or in any particular way.

http://www.gnu.org/philosophy/free-sw.html (1 of 4)

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/philosophy/free-sw.hr.html
http://www.gnu.org/philosophy/free-sw.cs.html
http://www.gnu.org/philosophy/free-sw.da.html
http://www.gnu.org/philosophy/free-sw.nl.html
http://www.gnu.org/philosophy/free-sw.fr.html
http://www.gnu.org/philosophy/free-sw.gl.html
http://www.gnu.org/philosophy/free-sw.de.html
http://www.gnu.org/philosophy/free-sw.hu.html
http://www.gnu.org/philosophy/free-sw.id.html
http://www.gnu.org/philosophy/free-sw.it.html
http://www.gnu.org/philosophy/free-sw.ja.html
http://www.gnu.org/philosophy/free-sw.ko.html
http://www.gnu.org/philosophy/free-sw.no.html
http://www.gnu.org/philosophy/free-sw.pl.html
http://www.gnu.org/philosophy/free-sw.pt.html
http://www.gnu.org/philosophy/free-sw.ro.html
http://www.gnu.org/philosophy/free-sw.ru.html
http://www.gnu.org/philosophy/free-sw.sl.html
http://www.gnu.org/philosophy/free-sw.es.html
http://www.gnu.org/philosophy/free-sw.sv.html
http://www.gnu.org/philosophy/free-sw.tr.html

The Free Software Definition - GNU Project - Free Software Foundation (FSF)

The freedom to use a program means the freedom for any kind of person or organization to use it on any
kind of computer system, for any kind of overall job, and without being required to communicate
subsequently with the developer or any other specific entity.

The freedom to redistribute copies must include binary or executable forms of the program, as well as
source code, for both modified and unmodified versions. (Distributing programsin runnable formis
necessary for conveniently installable free operating systems.) It is ok if there is no way to produce a
binary or executable form for a certain program (since some languages don't support that feature), but
you must have the freedom to redistribute such forms should you find or develop away to make them.

In order for the freedoms to make changes, and to publish improved versions, to be meaningful, you must
have access to the source code of the program. Therefore, accessibility of source code is a necessary
condition for free software.

In order for these freedoms to be real, they must be irrevocable as long as you do nothing wrong; if the
developer of the software has the power to revoke the license, without your doing anything to give cause,
the software is not free.

However, certain kinds of rules about the manner of distributing free software are acceptable, when they
don't conflict with the central freedoms. For example, copyleft (very simply stated) is the rule that when
redistributing the program, you cannot add restrictions to deny other people the central freedoms. This
rule does not conflict with the central freedoms; rather it protects them.

Thus, you may have paid money to get copies of free software, or you may have obtained copies at no
charge. But regardless of how you got your copies, you aways have the freedom to copy and change the
software, even to sell copies.

“"Free software" does not mean " non-commercial”. A free program must be available for commercial
use, commercia development, and commercia distribution. Commercial development of free softwareis
no longer unusual; such free commercia software is very important.

Rules about how to package a modified version are acceptable, if they don't effectively block your
freedom to release modified versions. Rules that "if you make the program available in this way, you
must make it available in that way also" can be acceptable too, on the same condition. (Note that such a
rule still leaves you the choice of whether to publish the program or not.) It is also acceptable for the
license to require that, if you have distributed a modified version and a previous developer asks for a
copy of it, you must send one.

In the GNU project, we use "~ copyleft” to protect these freedoms legally for everyone. But non-
copylefted free software also exists. We believe there are important reasons why it is better to use
copyleft, but if your program is non-copylefted free software, we can still use it.

http://www.gnu.org/philosophy/free-sw.html (2 of 4)

http://www.gnu.org/copyleft/copyleft.html
http://www.gnu.org/philosophy/pragmatic.html
http://www.gnu.org/philosophy/pragmatic.html

The Free Software Definition - GNU Project - Free Software Foundation (FSF)

See Categories of Free Software (18k characters) for a description of how " free software," "~ copylefted
software" and other categories of software relate to each other.

Sometimes government export control regulations and trade sanctions can constrain your freedom to
distribute copies of programs internationally. Software developers do not have the power to eliminate or
override these restrictions, but what they can and must do is refuse to impose them as conditions of use
of the program. In thisway, the restrictions will not affect activities and people outside the jurisdictions
of these governments.

When talking about free software, it is best to avoid using termslike “"give away" or ““for free", because
those terms imply that the issue is about price, not freedom. Some common terms such as piracy”
embody opinions we hope you won't endorse. See Confusing Words and Phrases that are Worth

Avoiding for adiscussion of these terms. We also have alist of trandlations of "free software" into
various languages.

Finally, note that criteria such as those stated in this free software definition require careful thought for
their interpretation. To decide whether a specific software license qualifies as a free software license, we
judge it based on these criteriato determine whether it fits their spirit as well as the precise words. If a
license includes unconscionable restrictions, we reject it, even if we did not anticipate the issue in these
criteria. Sometimes a license requirement raises an issue that calls for extensive thought, including
discussions with alawyer, before we can decide if the requirement is acceptable. When we reach a
conclusion about a new issue, we often update these criteriato make it easier to see why certain licenses
do or don't qualify.

If you are interested in whether a specific license qualifies as a free software license, see our list of
licenses. If the license you are concerned with is not listed there, you can ask us about it by sending us
email at <licensing@gnu.org>.

Other Texts to Read

Another group has started using the term "open source" to mean something close (but not identical) to
"free software". We prefer the term "free software" because, once you have heard it refers to freedom
rather than price, it calls to mind freedom.

[Croatian | Czech | Danish | Dutch | English | French | Galician | German | Hungarian | Indonesian |
Italian | Japanese | Korean | Norwegian | Polish | Portuguese | Romanian | Russian | Slovenian | Spanish |
Turkish]

http://www.gnu.org/philosophy/free-sw.html (3 of 4)

http://www.gnu.org/philosophy/words-to-avoid.html
http://www.gnu.org/philosophy/words-to-avoid.html
http://www.gnu.org/philosophy/fs-translations.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
mailto:licensing@gnu.org
http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://www.gnu.org/philosophy/free-sw.hr.html
http://www.gnu.org/philosophy/free-sw.cs.html
http://www.gnu.org/philosophy/free-sw.da.html
http://www.gnu.org/philosophy/free-sw.nl.html
http://www.gnu.org/philosophy/free-sw.fr.html
http://www.gnu.org/philosophy/free-sw.gl.html
http://www.gnu.org/philosophy/free-sw.de.html
http://www.gnu.org/philosophy/free-sw.hu.html
http://www.gnu.org/philosophy/free-sw.id.html
http://www.gnu.org/philosophy/free-sw.it.html
http://www.gnu.org/philosophy/free-sw.ja.html
http://www.gnu.org/philosophy/free-sw.ko.html
http://www.gnu.org/philosophy/free-sw.no.html
http://www.gnu.org/philosophy/free-sw.pl.html
http://www.gnu.org/philosophy/free-sw.pt.html
http://www.gnu.org/philosophy/free-sw.ro.html
http://www.gnu.org/philosophy/free-sw.ru.html
http://www.gnu.org/philosophy/free-sw.sl.html
http://www.gnu.org/philosophy/free-sw.es.html
http://www.gnu.org/philosophy/free-sw.tr.html

The Free Software Definition - GNU Project - Free Software Foundation (FSF)

Return to GNU's home page.

Please send FSF & GNU inquiries & questions to gnu@gnu.org. There are also other ways to contact the
FSF.

Please send comments on these web pages to webmaster s@gnu.org, send other questions to
gnu@gnu.org.

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111, USA

Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice
IS preserved.

Updated: $Date: 2003/02/07 16:52:55 $ $Author: rps $

http://www.gnu.org/philosophy/free-sw.html (4 of 4)

http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@gnu.org
mailto:gnu@gnu.org

Selling Free Software - GNU Project - Free Software Foundation (FSF)

Selling Free Software

—
P

Z &

=
WN\
[Catalan | Czech | English | French | Indonesian | Italian | Japanese | Polish |
Romanian | Russian | Spanish |

Table of Contents

. Will ahigher distribution price hurt some users?

. Will ahigher distribution price discourage use of free software?
. Theterm selling software" can be confusing too

. High or low fees, and the GNU GPL

« Other Textsto Read

Many people believe that the spirit of the GNU project is that you should not charge money for
distributing copies of software, or that you should charge aslittle as possible -- just enough to cover the
Cost.

Actually we encourage people who redistribute free software to charge as much as they wish or can. If
this seems surprising to you, please read on.

Theword "“free" has two legitimate general meanings; it can refer either to freedom or to price. When we
speak of " “free software”, we're talking about freedom, not price. (Think of "~ free speech”, not ““free
beer".) Specificaly, it meansthat a user is free to run the program, change the program, and redistribute
the program with or without changes.

http://www.gnu.org/philosophy/selling.html (1 of 4)

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/philosophy/selling.ca.html
http://www.gnu.org/philosophy/selling.cs.html
http://www.gnu.org/philosophy/selling.fr.html
http://www.gnu.org/philosophy/selling.id.html
http://www.gnu.org/philosophy/selling.it.html
http://www.gnu.org/philosophy/selling.ja.html
http://www.gnu.org/philosophy/selling.pl.html
http://www.gnu.org/philosophy/selling.ro.html
http://www.gnu.org/philosophy/selling.ru.html
http://www.gnu.org/philosophy/selling.es.html
http://www.gnu.org/philosophy/philosophy.html

Selling Free Software - GNU Project - Free Software Foundation (FSF)

Free programs are sometimes distributed gratis, and sometimes for a substantial price. Often the same
program is available in both ways from different places. The program isfree regardless of the price,
because users have freedom in using it.

Non-free programs are usually sold for a high price, but sometimes a store will give you a copy at no

charge. That doesn't make it free software, though. Price or no price, the program is non-free because
users don't have freedom.

Since free software is not a matter of price, alow price isn't more free, or closer to free. So if you are
redistributing copies of free software, you might as well charge a substantial fee and make some money.
Redistributing free software is a good and legitimate activity; if you do it, you might as well make a
profit from it.

Free software is a community project, and everyone who depends on it ought to look for ways to
contribute to building the community. For a distributor, the way to do thisisto give a part of the profit to
the Free Software Foundation or some other free software development project. By funding

development, you can advance the world of free software.

Distributing free softwar e is an opportunity to raise fundsfor development. Don't waste it!

In order to contribute funds, you need to have some extra. If you charge too low afee, you won't have
anything to spare to support development.

Will a higher distribution price hurt some users?

People sometimes worry that a high distribution fee will put free software out of range for users who
don't have alot of money. With proprietary software (18k characters), a high price does exactly that --

but free software is different.

The difference is that free software naturally tends to spread around, and there are many ways to get it.

Software hoarders try their damnedest to stop you from running a proprietary program without paying
the standard price. If this priceis high, that does make it hard for some users to use the program.

With free software, users don't have to pay the distribution fee in order to use the software. They can
copy the program from afriend who has a copy, or with the help of afriend who has network access. Or
severa users can join together, split the price of one CD-ROM, then each in turn can install the software.
A high CD-ROM price is not amajor obstacle when the software is free.

Will a higher distribution price discourage use of free software?

http://www.gnu.org/philosophy/selling.html (2 of 4)

http://www.gnu.org/fsf/fsf.html

Selling Free Software - GNU Project - Free Software Foundation (FSF)

Another common concern is for the popularity of free software. People think that a high price for
distribution would reduce the number of users, or that alow priceislikely to encourage users.

Thisistrue for proprietary software -- but free software is different. With so many ways to get copies,
the price of distribution service has less effect on popularity.

In the long run, how many people use free software is determined mainly by how much free software can
do, and how easy it isto use. Many users will continue to use proprietary software if free software can't
do all the jobs they want to do. Thus, if we want to increase the number of usersin the long run, we
should above all develop more free software.

The most direct way to do thisis by writing needed free software or manuals yourself. But if you do
distribution rather than writing, the best way you can help is by raising funds for others to write them.

The term selling software" can be confusing too

Strictly speaking, " selling” means trading goods for money. Selling a copy of afree programis
legitimate, and we encourage it.

However, when people think of ~"selling software”, they usually imagine doing it the way most
companies do it: making the software proprietary rather than free.

So unless you're going to draw distinctions carefully, the way this article does, we suggest it is better to
avoid using the term "“selling software" and choose some other wording instead. For example, you could
say " distributing free software for afee"--that is unambiguous.

High or low fees, and the GNU GPL

Except for one specia situation, the GNU Genera Public License (20k characters) (GNU GPL) has no
requirements about how much you can charge for distributing a copy of free software. Y ou can charge
nothing, a penny, adollar, or abillion dollars. It's up to you, and the marketplace, so don't complain to us
if nobody wantsto pay abillion dollars for a copy.

The one exception is in the case where binaries are distributed without the corresponding complete
source code. Those who do this are required by the GNU GPL to provide source code on subsequent
request. Without alimit on the fee for the source code, they would be able set afee too large for anyone
to pay--such as a billion dollars--and thus pretend to rel ease source code while in truth concealing it. So
in this case we have to limit the fee for source, to ensure the user's freedom. In ordinary situations,
however, there is no such justification for limiting distribution fees, so we do not limit them.

Sometimes companies whose activities cross the line of what the GNU GPL permits plead for

http://www.gnu.org/philosophy/selling.html (3 of 4)

http://www.gnu.org/projects/help-wanted.html
http://www.gnu.org/doc/doc.html#PleaseHelpWriteDocumentation
http://www.gnu.org/philosophy/words-to-avoid.html#SellSoftware
http://www.gnu.org/copyleft/gpl.html

Selling Free Software - GNU Project - Free Software Foundation (FSF)

permission, saying that they ““won't charge money for the GNU software" or such like. They don't get
anywhere thisway. Free software is about freedom, and enforcing the GPL is defending freedom. When
we defend users' freedom, we are not distracted by side issues such as how much of adistribution feeis
charged. Freedom is the issue, the whole issue, and the only issue.

Other Texts to Read

[Catalan | Czech | English | French | Indonesian | Italian | Japanese | Polish | Russian | Spanish |

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmaster s@www.gnu.org, send other questions to gnu@gnu.org.

Copyright (C) 1996, 1997, 1998, 2001 Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111, USA

Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice
IS preserved.

Updated: $Date: 2002/08/26 22:03:49 $ $Author: rms $

http://www.gnu.org/philosophy/selling.html (4 of 4)

http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/philosophy/selling.ca.html
http://www.gnu.org/philosophy/selling.cs.html
http://www.gnu.org/philosophy/selling.fr.html
http://www.gnu.org/philosophy/selling.id.html
http://www.gnu.org/philosophy/selling.it.html
http://www.gnu.org/philosophy/selling.ja.html
http://www.gnu.org/philosophy/selling.pl.html
http://www.gnu.org/philosophy/selling.ru.html
http://www.gnu.org/philosophy/selling.es.html
http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Categories of Free and Non-Free Software

—
P

Z &

=
w%
[Catalan | Czech | English | French | German | Indonesian | Italian |
Japanese | Polish | Portuguese | Russian | Spanish |

Hereisaglossary of various categories of software that are often mentioned in discussions of free
software. It explains which categories overlap or are part of other categories.

Other Textsto Read | “"Free software" | "Open source” | " Public domain software" | " Copylefted
software" | "Non-copylefted free software" | " GPL-covered software" | " The GNU system” | " GNU
programs” | "GNU software" |~ Semi-free software” | " Proprietary software" | " Shareware” |
“Freeware" | "Commercia software" | Other Texts to Read

Also note Confusing Words which You Might Want to Avoid.

http://www.gnu.org/philosophy/categories.html (1 of 8)

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/philosophy/categories.ca.html
http://www.gnu.org/philosophy/categories.cs.html
http://www.gnu.org/philosophy/categories.fr.html
http://www.gnu.org/philosophy/categories.de.html
http://www.gnu.org/philosophy/categories.id.html
http://www.gnu.org/philosophy/categories.it.html
http://www.gnu.org/philosophy/categories.ja.html
http://www.gnu.org/philosophy/categories.pl.html
http://www.gnu.org/philosophy/categories.pt.html
http://www.gnu.org/philosophy/categories.ru.html
http://www.gnu.org/philosophy/categories.es.html
http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/philosophy/words-to-avoid.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

[Free Sofidvare i - -
i _|"I -,
(‘!(Public domain j Proprietary
[
|
IC I XFree86 Style) - -
|
i ,‘ N Closed
Copylefted \
[GPL’ed] w4
L Shareware
S y
b, T y -
L % Open Source |

\\ Free Download

This diagram by Chao-
Kuel explainsthe different categories of software. It's available as an XFig file, as a JPEG picture (23K)
and as a 1.5 magnified PNG image (7k).

Free software

Free software is software that comes with permission for anyone to use, copy, and distribute,
either verbatim or with modifications, either gratis or for afee. In particular, this means that
source code must be available. “"If it's not source, it's not software.” Thisisasimplified definition;
see also the full definition.

We aso have alist of tranglations of the term "free software” into various other languages.

If aprogram isfree, then it can potentially be included in a free operating system such as GNU, or
free versions of the GNU/Linux system.

There are many different ways to make a program free---many questions of detail, which could be
decided in more than one way and still make the program free. Some of the possible variations are
described below.

Free software is a matter of freedom, not price. But proprietary software companies sometimes
use the term " “free software” to refer to price. Sometimes they mean that you can obtain a binary
copy at no charge; sometimes they mean that a copy isincluded on a computer that you are
buying. This has nothing to do with what we mean by free software in the GNU project.

http://www.gnu.org/philosophy/categories.html (2 of 8)

http://www.gnu.org/philosophy/category.fig
http://www.gnu.org/philosophy/category.jpg
http://www.gnu.org/philosophy/category.png
http://www.gnu.org/philosophy/fs-translations.html
http://www.gnu.org/gnu/linux-and-gnu.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Because of this potential confusion, when a software company says its product is free software,
always check the actual distribution terms to see whether usersreally have all the freedoms that
free software implies. Sometimes it really is free software; sometimesit isn't.

Many languages have two separate words for ~“free" asin freedom and " “free" asin zero price. For
example, French has " libre" and ““gratuit”. English hasaword "“gratis" that refers unambiguously
to price, but no common adjective that refers unambiguously to freedom. Thisis unfortunate,
because such aword would be useful here.

Free software is often more reliable than non-free software.

Open Sour ce software

Theterm ““open source” software is used by some people to mean more or less the same thing as
free software. However, their criteria are somewhat less strict; they have accepted some kinds of
license restrictions that we have rejected as unacceptable. We prefer the term ™ free software”;

follow that link to see the reasons.

Public domain software

Public domain software is software that is not copyrighted. If the source code isin the public
domain, that is a special case of non-copylefted free software, which means that some copies or

modified versions may not be free at all.

In some cases, an executable program can be in the public domain but the source code is not
available. Thisis not free software, because free software requires accesibility of source code.
Meanwhile, most free software is not in the public domain; it is copyrighted, and the copyright
holders have legally given permission for everyone to use it in freedom, using a free software
license.

Sometimes people use the term ~"public domain” in aloose fashion to mean " “free" or ““available
gratis." However, ""public domain” is alegal term and means, precisely, ~ not copyrighted". For
clarity, we recommend using " public domain” for that meaning only, and using other termsto
convey the other meanings.

Copylefted software
Copylefted software is free software whose distribution terms do not let redistributors add any
additional restrictions when they redistribute or modify the software. This means that every copy
of the software, even if it has been modified, must be free software.

In the GNU Project, we copyleft amost all the software we write, because our goal isto give
every user the freedoms implied by the term "~ “free software.” See Copylefted for more

explanation of how copyleft works and why we useit.

http://www.gnu.org/philosophy/categories.html (3 of 8)

http://www.gnu.org/software/reliability.html
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://www.gnu.org/copyleft/copyleft.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Copyleft isageneral concept; to actually copyleft a program, you need to use a specific set of
distribution terms. There are many possible ways to write copyleft distribution terms, soin
principle there can be many copyleft free software licenses. However, in actual practice nearly all
copylefted software uses the GNU General Public License. Two different copyleft licenses are
usually ““incompatible”, which meansit isillegal to merge the code using one license with the
code using the other license; therefore, it is good for the community if people use a single copyleft
license.

Non-copylefted free software
Non-copylefted free software comes from the author with permission to redistribute and modify,
and also to add additional restrictions to it.

If aprogram is free but not copylefted, then some copies or modified versions may not be free at
all. A software company can compile the program, with or without modifications, and distribute
the executable file as a proprietary software product.

The X Window System illustrates this. The X Consortium releases X11 with distribution terms
that make it non-copylefted free software. If you wish, you can get a copy which has those
distribution terms and is free. However, there are non-free versions as well, and there are popul ar
workstations and PC graphics boards for which non-free versions are the only ones that work. If
you are using this hardware, X11 is not free software for you. The developers of X11 even made

X11 non-free for awhile.

GPL -cover ed software
The GNU GPL (Genera Public License) (20k characters) is one specific set of distribution terms
for copylefting a program. The GNU Project uses it as the distribution terms for most GNU
software.

The GNU system
The GNU system is a complete free Unix-like operating system.

A Unix-like operating system consists of many programs. The GNU system includes all the GNU
software, as well as many other packages such as the X Window System and TeX which are not
GNU software.

We have been devel oping and accumulating components for the GNU system since 1984; the first
test release of a =" complete GNU system” was in 1996. In 2001 the GNU system with the Hurd
began working reliably. In the mean time, the GNU/Linux system, an offshoot of the GNU system

which uses Linux as the kernel, became a great success in the 90s.

http://www.gnu.org/philosophy/categories.html (4 of 8)

http://www.gnu.org/copyleft/gpl.html
http://www.x.org/
http://www.gnu.org/philosophy/x.html
http://www.gnu.org/philosophy/x.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/gnu/gnu-history.html
http://www.gnu.org/gnu/linux-and-gnu.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Since the purpose of GNU isto be free, every single component in the GNU system has to be free
software. They don't all have to be copylefted, however; any kind of free softwareislegally
suitable to include if it helps meet technical goals. We can and do use non-copylefted free
software such as the X Window System.

GNU programs
“"GNU programs" is equivalent to GNU software. A program Foo isa GNU program if it is GNU
software. We also sometimes say itisa GNU package".

GNU software
GNU software is software that is released under the auspices of the GNU Project. Most GNU
software is copylefted, but not al; however, all GNU software must be free software.

If aprogram is GNU software, we also say that it isa GNU program.

Some GNU software is written by staff of the Free Software Foundation, but most GNU software
Is contributed by volunteers. Some contributed software is copyrighted by the Free Software
Foundation; some is copyrighted by the contributors who wrote it.

Semi-free software
Semi-free software is software that is not free, but comes with permission for individual s to use,
copy, distribute, and modify (including distribution of modified versions) for non-profit purposes.
PGP is an example of a semi-free program.

Semi-free software is much better ethically than proprietary software, but it still poses problems,
and we cannot use it in afree operating system.

The restrictions of copyleft are designed to protect the essential freedomsfor all users. For us, the
only justification for any substantive restriction on using a program is to prevent other people
from adding other restrictions. Semi-free programs have additional restrictions, motivated by
purely selfish goals.

It is impossible to include semi-free software in afree operating system. Thisis because the
distribution terms for the operating system as a whole are the conjunction of the distribution terms
for all the programsin it. Adding one semi-free program to the system would make the system as
a whole just semi-free. There are two reasons we do not want that to happen:

o We believe that free software should be for everyone--including businesses, not just
schools and hobbyists. We want to invite business to use the whole GNU system, and
therefore we must not include a semi-free program init.

http://www.gnu.org/philosophy/categories.html (5 of 8)

http://www.gnu.org/software/software.html
http://www.gnu.org/gnu/gnu-history.html
http://www.gnu.org/copyleft/copyleft.html
http://www.gnu.org/people/people.html
http://www.gnu.org/fsf/fsf.html
http://www.gnu.org/people/people.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

o Commercial distribution of free operating systems, including the GNU/Linux system, is
very important, and users appreciate the convenience of commercial CD-ROM
distributions. Including one semi-free program in an operating system would cut off
commercial CD-ROM distribution for it.

The Free Software Foundation itself is non-commercial, and therefore we would be legally
permitted to use a semi-free program "internally”. But we don't do that, because that would
undermine our efforts to obtain a program which we could also include in GNU.

If there is ajob that needs doing with software, then until we have afree program to do the job,
the GNU system has a gap. We haveto tell volunteers, "We don't have a program yet to do this
job in GNU, so we hope you will write one." If we ourselves used a semi-free program to do the
job, that would undermine what we say; it would take away the impetus (on us, and on others who
might listen to our views) to write a free replacement. So we don't do that.

Proprietary software
Proprietary software is software that is not free or semi-free. Its use, redistribution or modification
Is prohibited, or requires you to ask for permission, or is restricted so much that you effectively
can'tdoit freely.

The Free Software Foundation follows the rule that we cannot install any proprietary program on
our computers except temporarily for the specific purpose of writing a free replacement for that
very program. Aside from that, we feel there is no possible excuse for installing a proprietary
program.

For example, we felt justified in installing Unix on our computer in the 1980s, because we were
using it to write afree replacement for Unix. Nowadays, since free operating systems are
available, the excuse is no longer applicable; we have eliminated all our non-free operating
systems, and any new computer we install must run a completely free operating system.

We don't insist that users of GNU, or contributors to GNU, haveto live by thisrule. Itisarule we
made for ourselves. But we hope you will decide to follow it too.

Freeware

The term "~“freeware" has no clear accepted definition, but it is commonly used for packages
which permit redistribution but not modification (and their source code is not available). These
packages are not free software, so please don't use " freeware" to refer to free software.

Shareware

Shareware is software which comes with permission for people to redistribute copies, but says
that anyone who continues to use a copy isrequired to pay alicense fee.

http://www.gnu.org/philosophy/categories.html (6 of 8)

http://www.gnu.org/gnu/linux-and-gnu.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Shareware is not free software, or even semi-free. There are two reasonsit is not:

o For most shareware, source code is not available; thus, you cannot modify the program at
all.

o Shareware does not come with permission to make a copy and install it without paying a
license fee, not even for individuals engaging in nonprofit activity. (In practice, people
often disregard the distribution terms and do this anyway, but the terms don't permit it.)

Commercial Software

Commercial software is software being developed by a business which aims to make money from
the use of the software. "Commercia" and ~“proprietary” are not the same thing! Most
commercial softwareis proprietary, but there is commercial free software, and there is non-
commercial non-free software.

For example, GNU Adais always distributed under the terms of the GNU GPL, and every copy is
free software; but its developers sell support contracts. When their salesmen speak to prospective
customers, sometimes the customers say, " We would feel safer with acommercial compiler.” The
salesmen reply, "GNU Adaisacommercial compiler; it happens to be free software.”

For the GNU Project, the emphasisis in the other order: the important thing isthat GNU Adais
free software; whether it iscommercial is not a crucial question. However, the additional
development of GNU Ada that results from its being commercial it is definitely beneficial.

Please help spread the awareness that commercial free software is possible. Y ou can do this by
making an effort not to say ~"commercial” when you mean " proprietary.”

Other Texts to Read

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmaster s@www.gnu.org, send other questions to gnu@gnu.org.

Copyright (C) 1996, 1997, 1998, 2001 Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111, USA

http://www.gnu.org/philosophy/categories.html (7 of 8)

http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice
IS preserved.

Updated: Last modified: Sun Dec 29 23:54:00 BRST 2002

http://www.gnu.org/philosophy/categories.html (8 of 8)

Open Sources: Voices from the Open Source Revolution

O’REILLY Online Catalog SEARCH THE LATALOG
‘_:::3:" Open Sources: Voices from the

OPENSOURCES | Open Source Revolution
Mwrn 1st Edition January 1999

1-56592-582-3, Order Number: 5823

280 pages, $24.95

Future of Cygnus Solutions

An Entrepreneur’'s Account

Michael Tiemann

Founded in 1989, Cygnus Solutions was the first, and according to a survey by
Forbes magazine in August 1998, is by far the largest Open Source business
today. Cygnus has established its primary product, the GNUPro Developers Kit,
as both the leading compiler product and the leading debugger product in the
embedded software tools market. Cygnus customers include the world's top
microprocessor companies as well as leading consumer-electronics, Internet,
telecommunications, office automation, networking, aerospace, and automotive
companies. With headquarters in Sunnyvale, CA, and officesin Atlanta (GA),
Boston (MA), Cambridge (UK), Tokyo (JP), Toronto (CN), and remote
employees working from various locations ranging from Australia to Oregon,
Cygnusisthe largest privately held company in the embedded software industry,
larger than two publicly-held companies and about to overtake the third largest.
With a CAGR greater than 65% since 1992, Cygnus has been on the San Jose
Business Journal's Top 100 Fastest Growing Private Companies three yearsin a
row, and now ranks on the Software 500 list (based on revenue of all software

http://www.oreilly.com/catalog/opensources/book/tiemans.html (1 of 22)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

businesses in the world).

In this essay, | will describe the Open Source model that provided the blueprint
for our success, and how we are revising and enhancing it for our future
endeavors.

It wasn't until November 13th, 1989 that we finally received the letter from the
California Department of Corporations informing us that our application had
been approved, and that we could deposit our $6,000 startup capital and begin
transacting business as "Cygnus Support.” That day was the culmination of a
vision that began more than two years earlier, and the beginning of ajourney
which continues today, ailmost 10 years later.

The vision began innocently enough. My dad once told me, "If you're going to
read a book, make sure you read it cover to cover." Like most fatherly advice, |
applied it only when it suited me, and in 1987, when | had become bored with

my job and interested in GNU software, | decided to read Richard Stallman'’s self-
published book GNU Emacs Manual cover to cover. (This book was self-
published because at that time, no self-respecting publisher would print a book
that encouraged people to freely make legal copies of the text. In fact today, it's
still adifficult concept for some publishers to grasp.)

Emacs is afascinating program. More than atext editor, it has been customized
to let you read and respond to email, read and post to newsgroups, start a shell,
run compilations and debug the resulting programs, and it even gives you
interactive access to the LISP interpreter that drivesit. Creative users (or
similarly bored hackers) have extended emacs with whimsical features, such as
"doctor" mode (a Rogerian psychoanalytic program inspired by John McCarthy's
ELIZA program), "dissociated-press,” which scrambles text in away that makes
for difficult and sometimes hilarious reading, and even a program that will
animate the solution of the Towers of Hanoi on atext screen. It was this depth
and richness that drove me to want to learn more, to read the GNU Emacs
Manual and the GNU Emacs source code.

The last chapter of the book, "The GNU Manifesto," was a personal answer from
the author to the overarching question that nagged throughout my entire reading:
why is such a cool program available as freely redistributable software (a.k.a
Open Source)? Stallman answers in the general question:

Why | Must Write GNU

| consider that the golden rule requiresthat if | like aprogram | must share it

http://www.oreilly.com/catalog/opensources/book/tiemans.html (2 of 22)

Open Sources: Voices from the Open Source Revolution

with other people who like it. Software sellers want to divide the users and
conguer them, make each user agree not to share with others. | refuse to break
solidarity with other usersin thisway.

There is much more to Stallman's manifesto--too much to quote here. (A
reference is http://www.fsf.org/gnu/manifesto.html.) Suffice it to say that on the
surface, it read like a socialist polemic, but | saw something different. | saw a
business plan in disguise. The basic idea was simple: Open Source would unify
the efforts of programmers around the world, and companies that provided
commercial services (customizations, enhancements, bug fixes, support) based
on that software could capitalize on the economies of scale and broad appeal of
this new kind of software.

Emacs was not the only mind-blowing program to come from the Free Software
Foundation. There was the GNU Debugger (GDB), which Stallman had to write
because the debuggers from Digital Equipment Corporation (now part of
Compaq) and Sun Microsystems were ssmply not up to the task of debugging
something as complex as Emacs. Not only could it handle big tasks, but it
handled them elegantly, with commands and extensions that were geared
towards programmers. And because GDB was open-source software,
programmers began adding more extensions that made GDB even more
powerful. Thiswas akind of scalability that did not exist in proprietary software.

The real bombshell came in June of 1987, when Stallman released the GNU C
Compiler (GCC) Version 1.0. | downloaded it immediately, and | used all the
tricks I'd read about in the Emacs and GDB manuals to quickly learn its 110,000
lines of code. Stallman's compiler supported two platformsinitsfirst release: the
venerable VAX and the new Sun3 workstation. It handily generated better code
on these platforms than the respective vendors compilers could muster. In two
weeks, | had ported GCC to a new microprocessor (the 32032 from National
Semiconductor), and the resulting port was 20% faster than the proprietary
compiler supplied by National. With another two weeks of hacking, | had raised
the delta to 40%. (It was often said that the reason the National chip faded from
existence was because it was supposed to be a1 MIPS chip, to compete with
Motorola's 68020, but when it was released, it only clocked .75 MIPS on
application benchmarks. Note that 140% * 0.75 MIPS = 1.05 MIPS. How much
did poor compiler technology cost National?) Compilers, Debuggers, and
Editors are the Big 3 tools that programmers use on a day-to-day basis. GCC,
GDB, and Emacs were so profoundly better than the proprietary aternatives, |
could not help but think about how much money (not to mention economic

http://www.oreilly.com/catalog/opensources/book/tiemans.html (3 of 22)

Open Sources: Voices from the Open Source Revolution

benefit) there would be in replacing proprietary technology with technology that
was not only better, but also getting better faster.

Again, a quote from the GNU Manifesto:

There is nothing wrong with wanting pay for work, or seeking to maximize
one'sincome, as long as one does not use means that are destructive. But the
means customary in the field of software today are based on destruction.

Extracting money from users of a program by restricting their use of it is
destructive because the restrictions reduce the amount and the ways that the
program can be used. This reduces the amount of wealth that humanity derives
from the program. When there is a deliberate choice to restrict, the harmful
consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become
wealthier isthat, if everyone did so, we would all become poorer from the
mutual destructiveness.

Heavy stuff, but the GNU Manifesto is ultimately arational document. It
dissects the nature of software, the nature of programming, the great tradition of
academic learning, and concludes that regardless of the monetary consequences,
there are ethical and moral imperativesto freely share information that was
freely shared with you. | reached a different conclusion, one which Stallman and
| have often argued, which was that the freedom to use, distribute, and modify
software will prevail against any model that attemptsto limit that freedom. It
will prevail not for ethical reasons, but for competitive, market-driven reasons.

At first | tried to make my argument the way that Stallman made his: on the
merits. | would explain how freedom to share would lead to greater innovation at
lower cost, greater economies of scale through more open standards, etc., and
people would universally respond "It's a great idea, but it will never work,
because nobody is going to pay money for free software." After two years of
polishing my rhetoric, refining my arguments, and delivering my messages to
people who paid for meto fly all over the world, | never got farther than "lt'sa
great idea, but . . .," when | had my second insight: if everybody thinksit'sa
great idea, it probably is, and if nobody thinks it will work, I'll have no
competition!

-F=-ma

|saac Newton

http://www.oreilly.com/catalog/opensources/book/tiemans.html (4 of 22)

Open Sources: Voices from the Open Source Revolution

Y ou'll never see aphysics textbook introduce Newton's law in this way, but
mathematically speaking, itisjust asvalid as"F = ma'. The point of this
observation isthat if you are careful about what assumptions you turn upside
down, you can maintain the validity of your equations, though your result may
look surprising. | believed that the model of providing commercial support for
open-source software was something that looked impossible because people
were so excited about the minus signs that they forgot to count and cancel them.

An invasion of armies can be resisted, but not an idea whose time has come.

Victor Hugo

There was one final (and deeply hypothetical) question | had to answer before |
was ready to drop out of the Ph.D. program at Stanford and start a company.
Suppose that instead of being nearly broke, | had enough money to buy out any
proprietary technology for the purposes of creating a business around that
technology. | thought about Sun's technology. | thought about Digital's
technology. | thought about other technology that | knew about. How long did |
think | could make that business successful before somebody else who built their
business around GNU would wipe me out? Would | even be able to recover my
initial investment? When | realized how unattractive the position to compete
with open-source software was, | knew it was an idea whose time had come.

The difference between theory and practice tends to be very small in theory, but
in practiceit isvery large indeed.

Anonymous

In this section, | will detail the theory behind the Open Source business model,
and ways in which we attempted to make this theory practical.

We begin with afew famous observations:

Free markets are self-organizing, permitting the most efficient use of resources
for the greatest creation of value.

Adam Smith

I nformation, no matter how expensive to create, can be replicated

and shared at little or no cost.

http://www.oreilly.com/catalog/opensources/book/tiemans.html (5 of 22)

Open Sources: Voices from the Open Source Revolution

Thomas Jefferson

The concept of free market economicsis so vast that | often like to joke that each
year when it comes time to award the Nobel prize in economics, it goesto the
economist who most eloquently paraphrases Adam Smith. But behind that joke
lies akernel of truth: there is untapped and unlimited economic potential waiting
to be harnessed by using a more true free market system for software.

In the days of Adam Smith, free market economics went as far as one could
travel or trade in person, but larger trades, especially trades between nations,
were heavily controlled. When a sufficient number of business people became
disenchanted with the prevailing royalty-based system, they revolted and created
anew government that was designed to take less interest in their affairs than
amost any government that had come before it. Indeed, it was freedom that
provided the underlying architecture and vision of the Constitution of the
American government, and freedom again that seems to be at the root of every
important cause or action in today's global economic and political arena. What
makes freedom so compelling? And what has made freedom so responsible for
economic prosperity? We will address these questions shortly.

The more you understand what iswrong with afigure,
the more valuable that figure becomes.

Lord Kelvin

Clearly, when it came to tools for programmers in 1989, proprietary software
wasin adismal state. First, the tools were primitive in the features they offered.
Second, the features, when available, often had built-in limitations that tended to
break when projects started to get complicated. Third, support from proprietary
vendors was terrible; unless you were in the process of buying lots of hardware
or renewing alarge software site license, and could use the power of the purseto
your advantage, you were out of luck when you ran into one of these built-in
limitations. And finally, every vendor implemented their own proprietary
extensions, so that when you did use the meager features of one platform, you
became, imperceptibly at first, then more obviously later, inextricably tied to that
platform. All in al, it was quite clear that whatever the merits of free market
economics, they were not at work in the software marketplace. The extent to
which the proprietary software model was a broken model made the study of that
model extremely valuable indeed.

http://www.oreilly.com/catalog/opensources/book/tiemans.html (6 of 22)

Open Sources: Voices from the Open Source Revolution

Today, as then, free market economics lives within the walls of proprietary
software companies (where competing engineers and product groups vie for
funding and favor). Outside their proprietary walls, the use and distribution of
that software is heavily controlled by license agreements, patents, and trade
secrets. One can only wonder what power, what efficiency islost by practicing
freedom at the micro level, and not at the macro level. By starting a company
prepared to support users at the level of source code, we were going to find out.

>|nvention is 1% inspiration and 99% perspiration.

Thomas Edison

The simplistic view of a software company is that once you've created some
software that people want to buy, the act of printing copies of that software and
distributing it is not unlike printing money: the cost of goodsis negligible, and
the margin nearly perfect. | believe that one reason software reached such a poor
state of affairsin the 1980s was that people focused on perfecting the abstract
model of printing money, without concern for what happened once people
actually started using the currency. The concept of software support was seen as
a degenerate by-product of some flaw in the software product process, and that
by minimizing software support investment, one could maximize profits.

This not only frustrated users, but it was bad for the software as well. Features
that were easy to implement were often dismissed as "non-strategic." Without
access to source code, features that customers would otherwise be able to
implement themsel ves remained points of speculation and contention. And
ultimately vendors (and their marketing departments), not customers, defined the
arena of competition with a myriad of useless but easy-to-express features. Free
market economics had been turned upside down.

>Nobody has a monopoly on the truth.

Anonymous

Common Law islegal codethat isfreeto all people equally.

Michael Tiemann
Itisall very well and good to have wonderful theories about how to make the

world abetter place. It is another thing entirely to get those theories funded to
the point that they are self-sustaining. Although service-based companies were

http://www.oreilly.com/catalog/opensources/book/tiemans.html (7 of 22)

Open Sources: Voices from the Open Source Revolution

rare in the world of software products, there were many cases to study in other
areas.

Consider the practice of law in America (or Great Britain). Common law is
freely available to al who wish to use it. One need not license a decision such as
Roev. Wade in order to use it for arguments. Indeed, the decisions, once made,
and at whatever cost, are freeto all. Yet for al this freedom, lawyers are among
the most expensive professionals to be found. How can a practice of law, which
has no primary proprietary code, command such value?

It is not just the act of prosecuting law that people value so highly. It isalso the
cumulative value of that prosecution. If you hire agood lawyer, and in the
course of the prosecution, adecision is made in your favor, that precedent
becomes a new part of the law. Justice is not blind; it isfull of history.

Thisis somewhat analogous to the concept of creating and maintaining standards
with open-source software. It is very expensive to create a standard and get it
right. But it isfar more expensive to work without standards or to try to maintain
astandard if the standard is bogus. There is great value in having good people
working on software whose precedents will set the standards of tomorrow. We
believed at the beginning that people would understand this value proposition,
and would value the opportunity to pay us to create high-quality, open-source
programs that would become the de facto standard of the software world.

Cygnusin the Early Years

Having mapped out the theory, it was time to put the theory into practice.
Creating a service-based business is easy enough, if you know anything about
business. Unfortunately, between the three founders of Cygnus, not one had any
experience in running a business.

Always make new mistakes.
Esther Dyson

We used books from the Nolo Press to incorporate our business, establish our by-
laws, and complete various other formalities. For every penny we saved in the
first year, we paid out dollars by the thousands later on down the road. (It's not
clear that we could have done any better hiring professional advice since the first
such advice we received cost us hundreds per hour, and still cost us tens of
thousands later to fix. For the most part, that still says more about our inability at

http://www.oreilly.com/catalog/opensources/book/tiemans.html (8 of 22)

Open Sources: Voices from the Open Source Revolution

the time to properly judge the scope of |egal/corporate problems and to request
the proper advice than it does about the particular incompetence of the many
lawyers we tried talking to.)

Having created a completely new business model, we also created our own
concepts of finance, accounting, marketing, sales, customer information, and
support. Each of these creations served us adequately in the first year of
business, where everything was chaotic, and everybody was focused on doing
whatever job was necessary to get the business off the ground, but each needed
to be completely retooled as the business grew.

Cygnus--We Make Free Software Affordable

John Gilmore

To combat the chaos, we worked hard to make the basic business premise as
simple as possible: we were going to provide proven technical support for
proven technical software, and we were going to use economies of scale to make
it profitable. In our estimation, we were going to provide two to four times the
guality of support and development capabilities that in-house people could
deliver, and we were going to provide these services for a half to a quarter of the
cost. We downplayed all the other stuff about open-source software because it
was far too nebulous to sell. We just focused on giving people better tools for
less money, and contract by contract, we learned how to do that.

We wrote our first contract in February of 1990, and by the end of April, we had
already written over $150,000 worth of contracts. In May, we sent letters to 50
prospects we had identified as possibly interested in our support, and in June, to
another 100. Suddenly, the business was real. By the end of the first year, we
had written $725,000 worth of support and development contracts, and
everywhere we looked, there was more opportunity.

For all this success, we were brewing some serious problems. If we were selling
our services for half to a quarter what an internal resource would cost, then were
writing contracts that would cost in total between $1.5M to $3M to deliver, yet
we only had five people in the whole company: one sales person, one part-time
graduate student, and three founders doing everything from Ethernet wiring to
|etterhead proofing. How big would the business have to be before economies of
scalereally kicked in? At its current rate of growth, how many more al-nighters
would we have to pull to get to that point? Nobody knew, because we didn't
have any financial or operational models.

http://www.oreilly.com/catalog/opensources/book/tiemans.html (9 of 22)

Open Sources: Voices from the Open Source Revolution

GNUPro

We decided that we needed to achieve economies of scale before burnout
became areal problem. And, thinking like engineers, we decided that the fastest
way to achieve these economies of scale was to ruthlessly focus on the smallest
set of open-source technology that we could reasonably sell as a useful solution.
The smaller the focus, we reasoned, the easier it would be to achieve some
concept of scale.

First, establish afirm base.
Un Tzu

Throwing away plansto support shell tools, file utilities, source code control
software, and even plansto write afree kernel for the Intel 386, we settled on
selling the GNU compiler and debugger as a shrink-wrapped product. There
were a dozen or so companies that sold third-party 32-bit compilers, and there
were another dozen internal compiler groups at companies like Sun, HP, IBM,
etc. Adding up the numbers, we felt that if we could take over the 32-bit
compiler market, we'd be big enough to do all the other cool things we had
envisioned from the outset (a full-on Open Source play, analogous to the EDS
outsourcing model for IBM systems).

The GNU compiler already supported dozens of host environments and over a
dozen target architectures (I had written six of the ports myself), making it one
of the most widely ported compilers of itstime. The GNU debugger ran on about
five native platforms, and severa people had adapted it to support embedded
systems as well. We naively assumed that making a shrink-wrapped product was
amere matter of collecting bits onto a single distribution, writing a README,
adding an install script, getting some product collateral, testing it, and shipping
it. The reality was far more challenging.

First, GCC was in the process of transitioning from Version 1.42 to Version 2.0.
While GCC Version 1 was good enough to beat most compilers on CISC
machines like the m68k and the VAX, lots of new optimizations were needed to
make it competitive on RISC platforms. When | did the first GCC port to the
SPARC in 1988, GCC was 20% slower than Sun's compiler. | wrote an
instruction scheduler in 1989 that narrowed the gap to 10%, and | worked on a
branch scheduler that same year that, with the instruction scheduler, got GCC to

http://www.oreilly.com/catalog/opensources/book/tiemans.html (10 of 22)

Open Sources: Voices from the Open Source Revolution

within 5% of Sun's compiler. With the world transitioning from CISC to RISC,
we went from having hands-down the best compiler in amost every regard to a
more complex set of tradeoffs the customer would have to evaluate. It was no
longer asimple, straightforward sell.

Second, GNU C++ was falling behind. | wrote GNU C++ in the fall of 1987,
making it the first native-code C++ compiler in the world. C++ was amuch
more complex language than C, and it was still evolving when we started
Cygnus. In 1990, several new, even more complex features became "standard,"
and with all the distractions of Cygnus, | had no time to keep GNU C++ current.

Third, GDB was all over the map. While GCC and G++ had remained
reasonably coherent, with regular releases being made from a central location,
GDB suffered fragmentation. Open-source opponents will argue that a benefit of
proprietary software is that there's only one "true" version, whereas open-source
software can fragment into a million out-of-sync releases, not one of them a
legitimate "standard." Because there was no strong maintainer of GDB, it
fragmented, with hundreds of people around the world making their own
versions to meet their own needs.

Fourth, we did not in fact have a complete toolchain: we had an assembler,
linker, and other binary utilities (a.k.a. binutils) that worked on some, but not
most, of the platforms supported by GCC and GDB. By the time you took the
platforms that GCC supported, intersected that with GDB's supported platforms,
intersected with GAS, GLD, and so forth, there were exactly zero platforms that
worked from a common source base.

Fifth, we had no C library, which was not a problem for native platforms like the
Sun or HP, but aBig Deal for embedded systems developers who needed its
functionality for their standalone applications.

Sixth, while our competitors had nothing that could match our just-in-time
engineering feats, each of them had already-complete products that they sold
very effectively in their respective niches. By building and selling a shrink-
wrapped product, we were changing our attack plan from an elaborate flanking
maneuver to afrontal assault against companies that had 10 to 100 times our
revenues.

And finaly, there was the matter of our own confidence. The nice thing about
being the integrators of many quickly evolving toolsis that the need for your
servicesis so obvious. Skeptics challenged the very notion of a shrink-wrapped

http://www.oreilly.com/catalog/opensources/book/tiemans.html (11 of 22)

Open Sources: Voices from the Open Source Revolution

Open Source product by claiming that as soon as we produced anything of
passing quality, there would be no need for our support business, and we'd be
out of businessin six months. It was a challenge to our business | would hear for
the next four years.

The world isfull of insurmountable opportunities.

Yogi Berra

There was nothing to do but to go for it, and with aninitial estimate of 6 months
to do the work, we all agreed to "double up" and make it happen. | was tasked
with growing the top line by day, and helping complete the work for GCC 2.0
and G++ by night. David Henkel-Wallace (a.k.a. Gumby), the second Cygnus
founder, took on the so-called binutils and the library in addition to his duties as
CFO and Director of Support. And John Gilmore, the third Cygnus founder, took
on GDB. We hired some new people to help us (1) put the whole works into
CV S (an open-source source code control system), (2) write configuration and
installation scripts that could handle the hundreds of possible platforms our
shrink-wrapped product might work on, (3) automate our testing procedures, and
(4) help us with the heavy lifting on the new development contracts that we were
closing at an accelerating rate.

Six months later, the job had inexplicably grown, and some people had grown
bored with our strict (some would say restrictive) product focus. While the GNU
product was the bulk of our sales and engineering efforts, we sold contracts for
other technology, such as Kerberos (network security software), Emacs, and
even our bug tracking and test framework software (which was still under
development at that time).

John had sent a message to the Net saying essentially "I'm going to be the new
GDB maintainer. If you want the features you've implemented in GDB to be
maintained in the next version, send me your complete GDB sources and I'll
figure out how to integrate them." In six weeks, he collected 137 versions of
GDB (mostly hacksto Version 3.5), all of which had one or more features that
needed to be integrated. John began designing the architecture for GDB 4.0 to
support all of these features. Who was | to argue that it couldn't be done?

Gumby had decided that all the binary file utilities should use a common library
that described all known object file and debugging formats. The reason behind
this decision was clear when one looked at the functionality of the various tools
that sit behind the compiler:

http://www.oreilly.com/catalog/opensources/book/tiemans.html (12 of 22)

Open Sources: Voices from the Open Source Revolution

Tool Reads Writes
Compiler |ASCII |ASCII
Assembler ASCII |Binary
Archiver |Binary |Binary
Linker Binary Binary
Size Binary Binary
Strip Binary Binary
Binary Binary Binary
Nm Binary Binary

Debugger |Binary \none

Each tool had its own implementation for reading and/or writing binary file
formats, and each of these implementations had varying levels of support for
each binary format: a.out, b.out, coff, ecoff, xcoff, elf, ieee695, and others.
Moreover, when each tool was configured it supported only a single kind of
binary file format. A fix to the m68k-a.out assembler might also need to be made
in al the other a.out-specific tools, or it might need to propagate as a object file-
independent change. Depending on how a utility was written, it might be an
a.out-specific change for one tool, and a generic change for another!

By building asingle library that supported all functionality from a single source
base, it would be possible to achieve economies of scale sooner because
everything could be factored and maintained in a consistent fashion. Besides, it
would be neat to demonstrate the ability to link a.out object code to a coff library
and generate an ieee695 executable! Gumby began designing the library and
discussing the design with Stallman. Stallman said that the job was too difficult--
it would require a complete rewrite of all the tools, and it would be too difficult
to maintain. Gumby told him it wasn't such a"Big F*cking Deal" and hence
named this new creation the BFD library. (We explained to our customers that
BFD stood for the binary file descriptor library.)

But while John and Gumby hacked, | still had to sell contracts to keep cash
coming in. Every quarter | would have new top-line goals that required more
resources to fulfill more contracts, and all the best engineers were tied up on this
release into which | had no visibility. Tensions rose between sales and
engineering while the Open Source model seemed be working in reverse: the
more development we did on GNU software, the less we got back from the Net,

http://www.oreilly.com/catalog/opensources/book/tiemans.html (13 of 22)

Open Sources: Voices from the Open Source Revolution

until we were doing over 50% of all GNU toolchain devel opment.

Neither was this atemporary state of affairs. It would take ayear and a half (!)
before the first "Progressive Release" was finally completed. On that momentous
day, | was assured that for the first time, a complete C and C++ devel opment
toolkit could be built from a single source base, and that we could support two
platforms: the Sun3 and the Sun4. | was dumbfounded. | had written 6 GCC
ports, 3 GDB ports, and a native-code C++ compiler and debugger in lesstime
than it took ateam of hackers to get two toolchains to work from a single source
base! ?

There were two mitigating facts. (1) the tools worked better than they ever
worked before, with many new and useful features, and (2) because of al the
infrastructure work we'd put into the job (not just rewriting the tools, but
implementing a configuration script and an automated testing framework), we
could expect to support many more host/target combinations in the future,
including avirtually unlimited range of embedded system platforms.

We put this framework to the test, and it passed with flying colors:

Date Release Name |Native Embedded Total Platforms
Mar 1992 pl 2 0 2
Junel992 |p2 5 0 5
Sep 1992 |p3 5 10 15
Dec 1992 p4 5 20 25
Mar 1993 g1 5 30 35
Jun 1993 (g2 5 45 50
Sep 1993 (g3 7 53 60
Dec 1993 (g4 8 67 75
Mar 1994 rl 10 75 85
Jun 1994 r2 10 80 90
Sep 1994 |r3 10 85 95
Decl004 |r4 10 90 100

While the engineers were doing great things to create the GNUPro product, our
sales team was working out how to sell it. In 1991, we hired ayoung business
student, recently laid off from Applied Materials, who wanted to learn how to
sell software. Though her native language was not English, she picked things up

http://www.oreilly.com/catalog/opensources/book/tiemans.html (14 of 22)

Open Sources: Voices from the Open Source Revolution

very quickly. By no means a hacker (though she spent some weekends at Cygnus
teaching herself to program in C), she nevertheless became areally strong
advocate of the Open Source approach. After six months of very successful
selling, she invited me to see her make a customer presentation. | was floored. |
had always sold Open Source the way a hacker would sell it: focusing mainly on
the technical merits. She explained the intrinsic complexity of the job we were
doing and the business value of the software we delivered, and this helped us
finally explain to customers why they should buy from usinstead of trying to do
the work with their own people. | was selling the fact that our engineers were
somehow better than theirs (not a message most managers want to hear),
whereas she could explain how their engineers would benefit from having us do
the baseline porting, support, and maintenance work. In the end, the mix of our
technical prowess and business benefits led to equally powerful sales
accomplishments:

Bookings ($K) |Profitability (%) |Cumulative CAGR
1990: 725 epsilon N/A

1991: 1500 1 106%

1992: 2800 2 96%

1993: 4800 3 87%

1994: 5700 4 67%

Watson! Come herel
Alexander Graham Bell

Out of this effort has come significant new technologies that have been returned
to the Net and become standards in their own right: GNU configure (a generic
configuration script that can configure software based on three independent
variables. a build platform, a host platform, and atarget platform), autoconf (a
higher-level script for creating configure scripts), automake (a makefile
generator for autoconf-driven environments), DgjaGNU (aregression testing
framework), GNATS (a problem report management system), and others.

Today, the GNUPro toolkit supports over 175 host/target combinations, a
number that is now limited by the actual diversity of the market, not a limitation
in our release or configuration technology.

In fact, GNUPro has become so dominant that several of our competitors have

http://www.oreilly.com/catalog/opensources/book/tiemans.html (15 of 22)

Open Sources: Voices from the Open Source Revolution

announced their intention to sell commercia support for GNU software to
compete with us! Fortunately, the Open Source model comes to the rescue again.
Unless and until a competitor can match the 100+ engineers we have on staff
today, most of whom are primary authors or maintainers of the software we
support, they cannot displace us from our position as the "true GNU" source (we
supply over 80% of all changes made to GCC, GDB, and related utilities). The
best they can hope to do is add incremental features that their customers might
pay them to add. But because the software is Open Source, whatever value they
add comes back to Cygnus as open-source software, for usto integrate if it's
good, or ignoreif it's not. Unlike proprietary software in which competitors fight
in atwo-sided win/lose contest, with Open Source it's more like fighting on a

M oebius strip, and everything flows to the side of the primary maintainer. So,
while our competitors may get some tactical advantage in the "me-too" GNU
space, Cygnus benefits in the long run. Founded in 1989, our first-mover
advantage is ten years ahead of the competition.

Challenges

As can be seen from the chart above, while our growth rate remained impressive,
it dowed as we grew. While we tried to sell the merits and value of Open Source
software, skeptics and potential customers challenged our model with respect to:

Sanity

Why would a customer pay for a competitor's advantage?
Scalability

How can a service-based business scal€?
Sustainability

Will Cygnus be around when customers need it?

Profitability
How can open-source software be profitable?

Manageability
How can open-source software be managed to deliver quality consistently?

Investibility
How can a company with no software IP ever attract investors?

Can you imagine trying to sell a $10,000 support contract to a manager of five
embedded systems programmers, and getting hung up on whether or not Cygnus

http://www.oreilly.com/catalog/opensources/book/tiemans.html (16 of 22)

Open Sources: Voices from the Open Source Revolution

can go public based on its business model ? For all that Open Source was a great
way to open doors into the best and most innovative software devel opment
groups, it proved to be amaor roadblock when selling to the mainstream
market. We were about to learn first-hand what Geoffrey Moore meant in his
book Crossing the Chasm.

This challenge became absolutely clear when | visited a group of developers
who were building wireless communications systems at a Fortune 100 company.
As part of their quality process, they not only evaluated their own quality, but
the quality of their vendors according to a number of metrics. Of all the different
vendors with whom they did business, most ranked "Very Good to Excellent” in
most or all of the metrics. Their supplier of embedded tools, however, placed
dead last with "Poor or Unacceptable" in all categories for each of the three
years this quality monitoring process had been in place. Y et they would not buy
our tools because despite our testimonials (from their customers, no less!),
superior technical features, and lower price, management did not want to go with
an unknown solution. | left wondering why they even bothered to collect data if
they'd never use it to act, but that was the wrong question. | should have instead
realized that this was typical mainstream behavior, and that the way to fix the
problem was not to fault the customer, but to improve our marketing and

messaging.

Our problems were not solely external, however. Many customers did not
believe that we could hire enough people to scale our support business much
beyond whatever we told them was our current state. They were both quite
wrong and quite right. When it came to hiring engineers, they were quite wrong.
Cygnus was founded by engineers, and our culture, Open Source business
model, and the opportunity to join the preeminent Open Source engineering team
in the world has always made Cygnus attractive to the devel opers we've wanted
to hire. Turnover, compared to the national average (and especialy compared to
the average in Silicon Valley) is something like a quarter to a tenth what other
companies experience.

But when it came to hiring managers, it was another story altogether. Sharing
many of the same concerns and prejudices that our mainstream customers
expressed, most managers we contacted had no interest in working for Cygnus.
Those that did were not attracted to it. Those who were attracted to it were often
attracted to it for the wrong reasons. By the time we had two managersin our
engineering department, we had over 50 engineers. Communication, process,
management controls, and employee satisfaction all declined as managers

http://www.oreilly.com/catalog/opensources/book/tiemans.html (17 of 22)

Open Sources: Voices from the Open Source Revolution

struggled, often unsuccessfully, to come to grips with what it meant to be and
manage an Open Source company.

Ironically enough, we also disqualified managers who could not accept creating
a closed-source component to our business. Open Source was a business
strategy, not a philosophy, and we did not want to hire managers who were not
flexible enough to manage either open or closed source products to meet overal
company objectives.

We have come to accept the fact that you cannot expect to hire managers who
understand all the implications of open-source software right away. Y ou have to
expect them to make mistakes (which means you have to budget for the costs of
those mistakes), and they have to be able to learn from those mistakes. Most
managers who bring experience with them try to change things to fit that
experience--arecipe for failure at Cygnus. It was very hard to find managers
who could both manage from, and quickly learn from, experience. And we
needed them by the dozens.

The Open Source model, for all its challenges, proved to be remarkably resilient.
Though we did occasionally lose customers through poorly set expectations or
poor execution, our annual renewal rate has remained roughly 90% by dollar
value since 1993, and the number one reason we lose customersis "retirement":
the conclusion of the customer's project. Two factors helped us survive where
other companies would have failed: (1) every person, regardless of title or
seniority, recognized the importance of meeting customer commitments (nobody
was "above" doing customer support), and (2) when all else failed, the customer
was empowered to help themselves (because all customers had source code).
Thus, despite amazing amounts of turmoil inside Cygnusin those days, very few
customers were ever left holding the bag because the software failed to deliver, a
stunning contrast to stories we heard about our proprietary competition as well
as people who used unsupported open-source software.

Getting Funded Beyond Open Source--eCos

Theredlity of the embedded systems world is that there are arelatively small
number of companies that make the silicon and there are arelatively small
number of Outside Equipment Manufacturers (OEMs) who buy the majority of
the silicon for use in their embedded systems products. The rest of the market
consists of alarge number of small-volume players who build interesting stuff,
but they do not drive the volumes necessary to mandate new chip designs or

http://www.oreilly.com/catalog/opensources/book/tiemans.html (18 of 22)

Open Sources: Voices from the Open Source Revolution

software solutions.

Between the semiconductor vendors and the OEMs there are hundreds of little
software companies, all of whom are selling their wares. For example, there are
over 120 commercially supported Real Time Operating Systems (RTOSes) in
the market today. Not one of these RTOSes has more than a 6% market share,
according to IDC. It's like the Unix world ten years ago, only twenty times more
fragmented! This fragmentation leads to all the classic degenerative cases of free
market economics. redundancy, incompatibility, price gouging, etc. What the
semiconductor vendors and the OEM s wanted were standards that would
accelerate TTM (time to money), and the commercial RTOS vendors were either
taking too much time, costing too much money, or both.

In the embedded systems market we were the rising star: we were growing twice
as fast asthe leader in our market, and we were keeping our top four competitors
to single-digit growth. Y et we were not treated like, nor did we act like, true
market leaders. In 1995, after many conversations with our key customers about
what did and did not work in their embedded systems world, we began to
understand that our GNUPro compilers and debuggers could only go so far in
addressing their problems. What customers needed was a silicon abstraction
layer--alayer of software that sat underneath the standard C library or areal-
time POSIX API. There was a new opportunity to expand our product offering in
anon-trivial way.

We sharpened our pencils and took note of the obvious. 120+ commercial
RTOSes and 1000+ in-house RTOSes meant that at the technical level nobody
had yet built a sufficiently configurable RTOS to achieve "one sizefits all," and
from a business perspective we noted that run-time royalties were killing
margins, so the RTOS had to be royalty-free. In other words, to consolidate the
market around our solution, we needed to create a completely new, world-class
technology, and we needed to give it away. Management kicked the idea around
for ayear before finally acting on it.

Once we did decide to go forward with this strategy, our management team
continued to wrestle with the question "How is it going to make money?' Even
as we continued to consolidate the market around GNUPro, it was not obvious to
the team how we could repeat that model for an embedded operating system.

We did the smart thing that any business does when faced with a completely
inconsistent problem: we made assumptions. Assuming we would figure out
how to make money, we asked ourselves what were the N other things we

http://www.oreilly.com/catalog/opensources/book/tiemans.html (19 of 22)

Open Sources: Voices from the Open Source Revolution

needed to do in order to solve our customers' problems and become #1 in the
market? (1) We needed to devel op this whizzy new configuration technology,
(2) we needed to build the rest of the system so that people would have
something to configure, and (3) we needed to do all of this before the market
opportunity evaporated. Software devel opment costs money, and product-
oriented software development on atimetable costs |ots of money.

When we started Cygnus, we had all assumed that the V Cs would never
understand what we did, and if they did, it would not be until five or more years
down the road, when there was nothing useful they could do for us. Happily, we
were wrong on both counts.

Our first outside board member, Philippe Courtot, wasted no time in introducing
meto leading VCsin early 1992. | was very open with each of them about our
model, technology, and goals for the future, and | was equally open about the
fact that we had designed Cygnus to be self-funding and hence did not need their
money. Indeed, the fact that we could increase profitability a percentage point
per year while growing the company at 80% per year was a pretty good
indication (asfar as | was concerned) that we were maturing the business nicely.
Roger McNamee, aleading software industry analyst for the VC community,
said it best when he said "I am both amazed and surprised by your business
model. | am amazed at how well it isworking, but the more | think about it, the
more surprised | am that | didn't think of it first!"

Whileit was gratifying to think that we had aced the problem and didn't need
outside funding, the reality was that by 1996, we had created so much
opportunity beyond our self-funding GNUPro business that we needed a new
plan and new partners.

We found two investors, Greylock Management and August Capital, who
understood what we did and how we did it, understood what we could do with
the right guidance and discipline, and had access to enough capital to execute
our plan. They invested $6.25M, the largest private placement for a software
company in the first half of 1997, and the execution began in earnest.

| do not like them, Sam-I-am. | do not like green eggs and ham.
Dr. Seuss

While the technical team ramped up, the business people continued to thrash on
how the money was going to work, because at first we did not see the connection

http://www.oreilly.com/catalog/opensources/book/tiemans.html (20 of 22)

Open Sources: Voices from the Open Source Revolution

between the architecture of eCos and the business model we could use to
commerciaizeit. On the technical front, we knew that the configurability of the
system was key to delivering a"one size fits all" architecture. On the business
front, we knew that a"one sizefits al" was key to creating a unifying and
beneficial standard for embedded systems devel opment. But we still could not
figure out who was going to pay for this benefit. The two sides worked on their
problem independently for ayear and a half. R&D costs mounted. Unable to
reconcile the Open Source paradox, many managers didn't make it.

When the technical people were finally able to demonstrate what they first
envisioned, it became clear to the business people what we were actually
creating: the world's first Open Source architecture. To me, it was as exciting as
the first time | looked at GCC.

Open Sourceis al well and good for the hacker, and the way that Open Source
can create standards is great for the end user, but there's a gap between what
hackers can do with open-source software and what regular users can do. We
wanted eCos to be a product that could be embraced by the mainstream
embedded devel oper, not just the hacker community. Our ideawas to empower
users with high-level tools that could configure, customize, and perform basic
validation of eCosin an automated fashion, replacing the manual steps that in-
house RTOS developers perform today. By making the high-level tools control
eCos at the source-code level, and by architecting the source code so that it
could be managed viathese tools, we made it possible for end users to work
virtually at the source-code level, without ever needing to read or write aline of
C or C++ code. The proof of our successis that eCos can be scaled from 700
bytes (bare minimum silicon abstraction layer) to over 50 Kbytes (full-featured
RTOS with Internet stack and filesystem)!

Once we realized that Open Source was not just afeature, but the technical
enabler of eCos, and once we proved to ourselves that with this feature, we had a
10x performance advantage over our competition (10x space savings over object-
level configurability and 10x-100x programmer efficiency over source-available,
but not source-architected RTOSes), we packaged solutions to deliver that
performance advantage to the market, and the preliminary response from the
market has been extremely positive,

When one considers the past impossibilities of our GNU-based business, one can
only imagine the possibilities that eCos will create for Cygnus Solutions and the
world.

http://www.oreilly.com/catalog/opensources/book/tiemans.html (21 of 22)

Open Sources: Voices from the Open Source Revolution

Reflections and Vision of the Future

Open-source software taps the intrinsic efficiency of the technical free market,
but it does so in an organic and unpredictable way. Open Source businesses take
on the role of Adam Smith's "invisible hand," guiding it to both help the overall
market and to achieve their own microeconomic goals. The most successful
Open Source businesses will be the ones who can successfully guide

technol ogies that engender the greatest cooperation from the Net community and
solve the greatest technical and business challenges of the user community.

Created from open-source software, the Internet has been a fantastic enabler for
the development of new open-source software. As people continue to connect on
the Internet and through Open Source, we will witness changesin the
development and use of software in much the same way that the Renaissance
changed how we devel oped and used academic knowledge. With the freedoms
provided by open-source software, | expect nothing less!

He set his mind to work on unknown arts,
thereby changing the laws of nature.

James Joyce

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/tiemans.html (22 of 22)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

Other Texts to Read

Copyright (C) 1985, 1993 Free Software Foundation, Inc.

Permission is granted to anyone to make or distribute verbatim copies of this document, in any medium,
provided that the copyright notice and permission notice are preserved, and that the distributor grants the
recipient permission for further redistribution as permitted by this notice.

Modified versions may not be made.

The GNU Manifesto

[Czech | Dutch | English | French | German | Italian | Korean | Portuguese | Spanish |

The GNU Mani festo (which appears below) was witten by

Richard Stallman at the begi nning of the G\NU Project, to ask for
partici pation and support. For the first few years, it was
updated in mnor ways to account for devel opnents, but now it
seens best to |l eave it unchanged as nost people have seen it.

Since that tinme, we have | earned about certain conmon
m sunder st andi ngs that different wording could help avoid.
Foot notes added in 1993 help clarify these points.

For up-to-date information about the avail able GNU sof twar e,
pl ease see the information available on our web server,

in particular our |ist of software.

What's GNU? Gnu's Not Unix!

http://www.fsf.org/gnu/manifesto.html (1 of 11)

http://www.fsf.org/philosophy/philosophy.html
http://www.fsf.org/gnu/manifesto.cs.html
http://www.fsf.org/gnu/manifesto.nl.html
http://www.fsf.org/gnu/manifesto.fr.html
http://www.fsf.org/gnu/manifesto.de.html
http://www.fsf.org/gnu/manifesto.it.html
http://www.fsf.org/gnu/manifesto.ko.html
http://www.fsf.org/gnu/manifesto.pt.html
http://www.fsf.org/gnu/manifesto.es.html
http://www.stallman.org/
http://www.fsf.org/home.html
http://www.fsf.org/software/software.html
http://www.fsf.org/graphics/whatsgnu.html

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

Trandations of the GNU Manifesto are available in French, German, Japanese, K orean, Russian,
Swedish and Spanish.

GNU, which stands for Gnu's Not Unix, is the name for the complete Unix-compatible software system
which | am writing so that | can give it away free to everyone who can useit. (1) Several other volunteers

are helping me. Contributions of time, money, programs and equipment are greatly needed.

So far we have an Emacs text editor with Lisp for writing editor commands, a source level debugger, a
yacc-compatible parser generator, alinker, and around 35 utilities. A shell (command interpreter) is
nearly completed. A new portable optimizing C compiler has compiled itself and may be released this
year. Aninitial kernel exists but many more features are needed to emulate Unix. When the kernel and
compiler are finished, it will be possible to distribute a GNU system suitable for program devel opment.
We will use TeX as our text formatter, but an nroff is being worked on. We will use the free, portable X
window system as well. After this we will add a portable Common Lisp, an Empire game, a spreadshest,
and hundreds of other things, plus on-line documentation. \We hope to supply, eventually, everything
useful that normally comes with a Unix system, and more.

GNU will be able to run Unix programs, but will not be identical to Unix. We will make all
improvements that are convenient, based on our experience with other operating systems. In particular,
we plan to have longer file names, file version numbers, a crashproof file system, file name completion
perhaps, terminal-independent display support, and perhaps eventually a Lisp-based window system
through which several Lisp programs and ordinary Unix programs can share a screen. Both C and Lisp
will be available as system programming languages. We will try to support UUCP, MIT Chaosnet, and
Internet protocols for communication.

GNU isamed initially at machines in the 68000/16000 class with virtual memory, because they are the
easiest machines to make it run on. The extra effort to make it run on smaller machines will be left to
someone who wants to use it on them.

To avoid horrible confusion, please pronounce the "G' in the word "GNU' when it is the name of this
project.

Why | Must Write GNU

| consider that the golden rule requiresthat if | like a program | must share it with other people who like
it. Software sellers want to divide the users and conquer them, making each user agree not to share with
others. | refuse to break solidarity with other usersin thisway. | cannot in good conscience sign a
nondisclosure agreement or a software license agreement. For years | worked within the Artificial
Intelligence Lab to resist such tendencies and other inhospitalities, but eventually they had gone too far: |

http://www.fsf.org/gnu/manifesto.html (2 of 11)

http://www.dtext.com/hache/manifeste-GNU.html
http://www.gnu.de/mani-ger.html
http://www.fsf.org/japan/manifesto-1993j-plain.html
http://www.fsf.org/gnu/manifesto.ko.html
http://www.gnu.org.ru/manifesto.html
http://www.df.lth.se/~triad/artiklar/GNU_Manifesto-swe.html
http://www.fsf.org/gnu/manifesto.es.html

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)
could not remain in an institution where such things are done for me against my will.
So that | can continue to use computers without dishonor, | have decided to put together a sufficient body

of free software so that | will be able to get along without any software that is not free. | have resigned
from the Al lab to deny MIT any legal excuse to prevent me from giving GNU away.

Why GNU Will Be Compatible with Unix

Unix isnot my ideal system, but it is not too bad. The essential features of Unix seem to be good ones,
and | think | can fill in what Unix lacks without spoiling them. And a system compatible with Unix
would be convenient for many other people to adopt.

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and redistribute GNU, but no
distributor will be allowed to restrict its further redistribution. That isto say, proprietary (18k characters)

modifications will not be allowed. | want to make sure that all versions of GNU remain free.

Why Many Other Programmers Want to Help
| have found many other programmers who are excited about GNU and want to help.

Many programmers are unhappy about the commercialization of system software. It may enable them to
make more money, but it requires them to feel in conflict with other programmers in general rather than
feel as comrades. The fundamental act of friendship among programmers is the sharing of programs;
marketing arrangements now typically used essentially forbid programmers to treat others as friends. The
purchaser of software must choose between friendship and obeying the law. Naturally, many decide that
friendship is more important. But those who believe in law often do not feel at ease with either choice.
They become cynical and think that programming isjust away of making money.

By working on and using GNU rather than proprietary programs, we can be hospitable to everyone and
obey the law. In addition, GNU serves as an example to inspire and a banner to rally othersto join usin
sharing. This can give us afeeling of harmony which isimpossible if we use software that is not free. For
about half the programmers | talk to, thisis an important happiness that money cannot replace.

How You Can Contribute

| am asking computer manufacturers for donations of machines and money. I'm asking individuals for
donations of programs and work.

http://www.fsf.org/gnu/manifesto.html (3 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

One consequence you can expect if you donate machinesis that GNU will run on them at an early date.
The machines should be complete, ready to use systems, approved for usein aresidential area, and not in
need of sophisticated cooling or power.

| have found very many programmers eager to contribute part-time work for GNU. For most projects,
such part-time distributed work would be very hard to coordinate; the independently-written parts would
not work together. But for the particular task of replacing Unix, this problem is absent. A complete Unix
system contains hundreds of utility programs, each of which is documented separately. Most interface
specifications are fixed by Unix compatibility. If each contributor can write a compatible replacement for
asingle Unix utility, and make it work properly in place of the original on a Unix system, then these
utilities will work right when put together. Even allowing for Murphy to create afew unexpected
problems, assembling these components will be afeasible task. (The kernel will require closer
communication and will be worked on by a small, tight group.)

If | get donations of money, | may be able to hire afew people full or part time. The salary won't be high
by programmers' standards, but I'm looking for people for whom building community spirit is as
important as making money. | view this as away of enabling dedicated people to devote their full
energies to working on GNU by sparing them the need to make a living in another way.

Why All Computer Users Will Benefit
Once GNU iswritten, everyone will be able to obtain good system software free, just like air.(2)

This means much more than just saving everyone the price of a Unix license. It means that much
wasteful duplication of system programming effort will be avoided. This effort can go instead into
advancing the state of the art.

Complete system sources will be available to everyone. As aresult, a user who needs changes in the
system will always be free to make them himself, or hire any available programmer or company to make
them for him. Users will no longer be at the mercy of one programmer or company which owns the
sources and isin sole position to make changes.

Schools will be able to provide a much more educational environment by encouraging all students to
study and improve the system code. Harvard's computer lab used to have the policy that no program
could beinstalled on the system if its sources were not on public display, and upheld it by actualy
refusing to install certain programs. | was very much inspired by this,

Finally, the overhead of considering who owns the system software and what oneis or is not entitled to
do with it will be lifted.

Arrangements to make people pay for using a program, including licensing of copies, alwaysincur a
tremendous cost to society through the cumbersome mechanisms necessary to figure out how much (that

http://www.fsf.org/gnu/manifesto.html (4 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

IS, which programs) a person must pay for. And only a police state can force everyone to obey them.
Consider a space station where air must be manufactured at great cost: charging each breather per liter of
air may befair, but wearing the metered gas mask all day and all night isintolerable even if everyone can
afford to pay the air bill. And the TV cameras everywhere to see if you ever take the mask off are
outrageous. It's better to support the air plant with a head tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as breathing, and as productive. It ought
to be asfree.

Some Easily Rebutted Objections to GNU's Goals
“Nobody will useit if it isfree, because that meansthey can't rely on any support.”
"You haveto chargefor the program to pay for providing the support."

If people would rather pay for GNU plus service than get GNU free without service, acompany to
provide just service to people who have obtained GNU free ought to be profitable.(3)

We must distinguish between support in the form of real programming work and mere handholding. The
former is something one cannot rely on from a software vendor. If your problem is not shared by enough
people, the vendor will tell you to get lost.

If your business needs to be able to rely on support, the only way isto have all the necessary sources and
tools. Then you can hire any available person to fix your problem; you are not at the mercy of any
individual. With Unix, the price of sources puts this out of consideration for most businesses. With GNU
thiswill be easy. It is still possible for there to be no available competent person, but this problem cannot
be blamed on distribution arrangements. GNU does not eliminate all the world's problems, only some of
them.

Meanwhile, the users who know nothing about computers need handholding: doing things for them
which they could easily do themselves but don't know how.

Such services could be provided by companies that sell just hand-holding and repair service. If it istrue
that users would rather spend money and get a product with service, they will also be willing to buy the
service having got the product free. The service companies will compete in quality and price; users will
not be tied to any particular one. Meanwhile, those of us who don't need the service should be able to use
the program without paying for the service.

"You cannot reach many people without advertising, and you must charge for the program to
support that."

http://www.fsf.org/gnu/manifesto.html (5 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

"It'sno use advertising a program people can get free."

There are various forms of free or very cheap publicity that can be used to inform numbers of computer
users about something like GNU. But it may be true that one can reach more microcomputer users with
advertising. If thisisreally so, a business which advertises the service of copying and mailing GNU for a
fee ought to be successful enough to pay for its advertising and more. Thisway, only the users who
benefit from the advertising pay for it.

On the other hand, if many people get GNU from their friends, and such companies don't succeed, this
will show that advertising was not really necessary to spread GNU. Why isit that free market advocates
don't want to let the free market decide this?(4)

"My company needs a proprietary operating system to get a competitive edge.”

GNU will remove operating system software from the realm of competition. Y ou will not be able to get
an edgein this area, but neither will your competitors be able to get an edge over you. Y ou and they will
compete in other areas, while benefiting mutually in this one. If your businessis selling an operating
system, you will not like GNU, but that's tough on you. If your business is something else, GNU can save
you from being pushed into the expensive business of selling operating systems.

| would like to see GNU development supported by gifts from many manufacturers and users, reducing
the cost to each.(5)

“Don't programmersdeserve areward for their creativity?"

If anything deserves areward, it is social contribution. Creativity can be a social contribution, but only in
so far as society isfree to use the results. If programmers deserve to be rewarded for creating innovative
programs, by the same token they deserve to be punished if they restrict the use of these programs.

" Shouldn't a programmer be ableto ask for areward for hiscreativity?"

There is nothing wrong with wanting pay for work, or seeking to maximize one's income, as long as one
does not use means that are destructive. But the means customary in the field of software today are based
on destruction.

Extracting money from users of a program by restricting their use of it is destructive because the
restrictions reduce the amount and the ways that the program can be used. This reduces the amount of
wealth that humanity derives from the program. When there is a deliberate choice to restrict, the harmful
consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become wealthier isthat, if everyone

http://www.fsf.org/gnu/manifesto.html (6 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

did so, we would all become poorer from the mutual destructiveness. Thisis Kantian ethics; or, the
Golden Rule. Since | do not like the consequences that result if everyone hoards information, | am
required to consider it wrong for one to do so. Specifically, the desire to be rewarded for on€e's creativity
does not justify depriving the world in general of al or part of that creativity.

"Won't programmers starve?"

| could answer that nobody is forced to be a programmer. Most of us cannot manage to get any money
for standing on the street and making faces. But we are not, as aresult, condemned to spend our lives
standing on the street making faces, and starving. We do something else.

But that is the wrong answer because it accepts the questioner's implicit assumption: that without
ownership of software, programmers cannot possibly be paid a cent. Supposedly it isall or nothing.

The real reason programmers will not starveisthat it will still be possible for them to get paid for
programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is the most common basis because it
brings in the most money. If it were prohibited, or rejected by the customer, software business would
move to other bases of organization which are now used less often. There are always numerous ways to
organize any kind of business.

Probably programming will not be as lucrative on the new basis asit is now. But that is not an argument
against the change. It is not considered an injustice that sales clerks make the salaries that they now do. If
programmers made the same, that would not be an injustice either. (In practice they would still make
considerably more than that.)

" Don't people have aright to control how their creativity isused?"

"Control over the use of one'sideas’ really constitutes control over other people's lives; and it is usualy
used to make their lives more difficult.

People who have studied the issue of intellectual property rights carefully (such as lawyers) say that there
Isno intrinsic right to intellectual property. The kinds of supposed intellectual property rights that the
government recognizes were created by specific acts of legislation for specific purposes.

For example, the patent system was established to encourage inventors to disclose the details of their
inventions. Its purpose was to help society rather than to help inventors. At the time, the life span of 17
years for a patent was short compared with the rate of advance of the state of the art. Since patents are an
issue only among manufacturers, for whom the cost and effort of alicense agreement are small compared
with setting up production, the patents often do not do much harm. They do not obstruct most individuals
who use patented products.

http://www.fsf.org/gnu/manifesto.html (7 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

The idea of copyright did not exist in ancient times, when authors frequently copied other authors at
length in works of non-fiction. This practice was useful, and is the only way many authors works have
survived even in part. The copyright system was created expressly for the purpose of encouraging
authorship. In the domain for which it was invented--books, which could be copied economically only on
aprinting press--it did little harm, and did not obstruct most of the individuals who read the books.

All intellectual property rights are just licenses granted by society because it was thought, rightly or
wrongly, that society as awhole would benefit by granting them. But in any particular situation, we have
to ask: are we really better off granting such license? What kind of act are we licensing a person to do?

The case of programs today is very different from that of books a hundred years ago. The fact that the
easiest way to copy a program is from one neighbor to another, the fact that a program has both source
code and object code which are distinct, and the fact that a program is used rather than read and enjoyed,
combine to create a situation in which a person who enforces a copyright is harming society as awhole
both materially and spiritually; in which a person should not do so regardless of whether the law enables
him to.

" Competition makesthings get done better."

The paradigm of competition is arace: by rewarding the winner, we encourage everyone to run faster.
When capitalism really works this way, it does a good job; but its defenders are wrong in assuming it
always works thisway. If the runners forget why the reward is offered and become intent on winning, no
matter how, they may find other strategies--such as, attacking other runners. If the runners get into afist
fight, they will all finish late.

Proprietary and secret software is the moral equivalent of runnersin afist fight. Sad to say, the only
referee we've got does not seem to object to fights; he just regulates them ("For every ten yards you run,
you can fire one shot"). He really ought to break them up, and penalize runners for even trying to fight.

"Won't everyone stop programming without a monetary incentive?"

Actually, many people will program with absolutely no monetary incentive. Programming has an
irresistible fascination for some people, usually the people who are best at it. There is no shortage of
professional musicians who keep at it even though they have no hope of making aliving that way.

But really this question, though commonly asked, is not appropriate to the situation. Pay for
programmers will not disappear, only become less. So the right question is, will anyone program with a
reduced monetary incentive? My experience shows that they will.

For more than ten years, many of the world's best programmers worked at the Artificial Intelligence Lab
for far less money than they could have had anywhere else. They got many kinds of non-monetary

http://www.fsf.org/gnu/manifesto.html (8 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

rewards. fame and appreciation, for example. And creativity is aso fun, areward in itself.
Then most of them left when offered a chance to do the same interesting work for alot of money.

What the facts show is that people will program for reasons other than riches; but if given a chance to
make alot of money as well, they will come to expect and demand it. Low-paying organizations do
poorly in competition with high-paying ones, but they do not have to do badly if the high-paying ones are
banned.

"We need the programmer s desper ately. If they demand that we stop helping our neighbors, we
have to obey."

Y ou're never so desperate that you have to obey this sort of demand. Remember: millions for defense,
but not a cent for tribute!

" Programmer s need to make a living somehow."

In the short run, thisis true. However, there are plenty of ways that programmers could make aliving
without selling the right to use a program. Thisway is customary now because it brings programmers and
businessmen the most money, not because it is the only way to make aliving. It is easy to find other
ways if you want to find them. Here are a number of examples.

A manufacturer introducing a new computer will pay for the porting of operating systems onto the new
hardware.

The sale of teaching, hand-holding and maintenance services could also employ programmers.

People with new ideas could distribute programs as freeware, asking for donations from satisfied users,
or selling hand-holding services. | have met people who are already working this way successfully.

Users with related needs can form users groups, and pay dues. A group would contract with
programming companies to write programs that the group's members would like to use.

All sorts of development can be funded with a Software Tax:

Suppose everyone who buys a computer has to pay x percent of the price as a software tax. The
government gives this to an agency like the NSF to spend on software devel opment.

But if the computer buyer makes a donation to software development himself, he can take a credit against
the tax. He can donate to the project of his own choosing--often, chosen because he hopes to use the
results when it is done. He can take a credit for any amount of donation up to the total tax he had to pay.

http://www.fsf.org/gnu/manifesto.html (9 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

The total tax rate could be decided by avote of the payers of the tax, weighted according to the amount
they will be taxed on.

The consequences.

. The computer-using community supports software development.
« Thiscommunity decides what level of support is needed.
. Userswho care which projects their share is spent on can choose this for themselves.

In the long run, making programs free is a step toward the post-scarcity world, where nobody will have
to work very hard just to make aliving. People will be free to devote themselvesto activities that are fun,
such as programming, after spending the necessary ten hours a week on required tasks such as
legidlation, family counseling, robot repair and asteroid prospecting. There will be no need to be ableto
make a living from programming.

We have already greatly reduced the amount of work that the whole society must do for its actual
productivity, but only alittle of this has trandated itself into leisure for workers because much
nonproductive activity is required to accompany productive activity. The main causes of thisare
bureaucracy and isometric struggles against competition. Free software will greatly reduce these drainsin
the area of software production. We must do this, in order for technical gainsin productivity to trandate
into lesswork for us.

Footnotes

(1) The wording here was careless. The intention was that nobody would have to pay for * permission* to
use the GNU system. But the words don't make this clear, and people often interpret them as saying that
copies of GNU should always be distributed at little or no charge. That was never the intent; later on, the
manifesto mentions the possibility of companies providing the service of distribution for a profit.
Subsequently | have learned to distinguish carefully between "free" in the sense of freedom and "free" in
the sense of price. Free software is software that users have the freedom to distribute and change. Some
users may obtain copies at no charge, while others pay to obtain copies--and if the funds help support
improving the software, so much the better. The important thing is that everyone who has a copy has the
freedom to cooperate with othersin using it.

(2) Thisisanother place | failed to distinguish carefully between the two different meanings of "free".
The statement asit standsis not false--you can get copies of GNU software at no charge, from your

friends or over the net. But it does suggest the wrong idea.

(3) Several such companies now exist.

http://www.fsf.org/gnu/manifesto.html (10 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

(4) The Free Software Foundation raises most of its funds from a distribution service, although itisa
charity rather than a company. If *no one* chooses to obtain copies by ordering them from the FSF, it

will be unable to do its work. But this does not mean that proprietary restrictions are justified to force
every user to pay. If asmall fraction of all the users order copies from the FSF, that is sufficient to keep
the FSF afloat. So we ask users to choose to support usin this way. Have you done your part?

(5) A group of computer companies recently pooled funds to support maintenance of the GNU C
Compiler.

Other Texts to Read

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmaster s@www.gnu.org, send other questions to gnu@gnu.org.

Copyright notice above.
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA

Updated: $Date: 2003/06/05 16:07:35 $ $Author: luferbu $

http://www.fsf.org/gnu/manifesto.html (11 of 11)

http://www.fsf.org/order/order.html
http://www.fsf.org/philosophy/philosophy.html
http://www.fsf.org/home.html
mailto:gnu@gnu.org
http://www.fsf.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

Open Sources: Voices from the Open Source Revolution

O’REILLY Online Catalog SEARCH THE LATALOG
‘_:::3:" Open Sources: Voices from the

Mwrn 1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

ENSOURCES | Open Source Revolution

Software Engineering

Paul Vixie

Software engineering is awider field than "writing programs.” Y et, in many
Open Source projects, programs are simply written and given away. It's clear
from historical examples that software need not be engineered in order to be
widely used and enjoyed. In this essay we'll ook at some general elements of
software engineering, then at the Open Source community's usual equivalents to
these elements, and then finally at the implications of the differences between
the two approaches.

The Software Engineering Process

The elements of a software engineering process are generally enumerated as:

. Marketing Requirements
. System-Level Design

. Detailed Design

. Implementation

. Integration

http://www.oreilly.com/catalog/opensources/book/vixie.html (1 of 12)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

. Field Testing
. Support

No element of this process ought to commence before the earlier ones are
substantially complete, and whenever a change is made to some element, all
dependent elements ought to be reviewed or redone in light of that change. It's
possible that a given module will be both specified and implemented before its
dependent modules are fully specified--thisis called advanced devel opment or
research.

It is absolutely essential that every element of the software engineering process
include several kinds of review: peer review, mentor/management review, and
cross-disciplinary review.

Software engineering elements (whether documents or source code) must have
version numbers and auditable histories. "Checking in" a change to an element
should require some form of review, and the depth of the review should
correspond directly to the scope of the change.

Marketing Requirements

Thefirst step of a software engineering process isto create a document which
describes the target customers and their reason for needing this product, and then
goes on to list the features of the product which address these customer needs.
The Marketing Requirements Document (MRD) is the battleground where the
answer to the question "What should we build, and who will useit?' is decided.

In many failed projects, the MRD was handed down like an inscribed stone
tablet from marketing to engineering, who would then gripe endlessly about the
laws of physics and about how they couldn't actually build that product since
they had no ready supply of Kryptonite or whatever. The MRD isajoint effort,
with engineering not only reviewing but also writing alot of the text.

System-Level Design

Thisisahigh-level description of the product, in terms of "modules” (or
sometimes "programs") and of the interaction between these modules. The goals
of this document are first, to gain more confidence that the product could work
and could be built, and second, to form abasis for estimating the total amount of
work it will take to build it.

http://www.oreilly.com/catalog/opensources/book/vixie.html (2 of 12)

Open Sources: Voices from the Open Source Revolution

The system-level design document should also outline the system-level testing
plan, in terms of customer needs and whether they would be met by the system
design being proposed.

Detailed Design

The detailed design is where every module called out in the system-level design
document is described in detail. The interface (command line formats, calling
API, externally visible data structures) of each module has to be completely
determined at this point, as well as dependencies between modules. Two things
that will evolve out of the detailed designisa PERT or GANT chart showing
what work hasto be done and in what order, and more accurate estimates of the
time it will take to complete each module.

Every module needs a unit test plan, which tells the implementor what test cases
or what kind of test cases they need to generate in their unit testing in order to
verify functionality. Note that there are additional, nonfunctional unit tests which
will be discussed later.

| mplementation

Every module described in the detailed design document has to be implemented.
This includes the small act of coding or programming that is the heart and soul
of the software engineering process. It's unfortunate that this small act is
sometimes the only part of software engineering that is taught (or learned), since
it isalso the only part of software engineering which can be effectively self-
taught.

A module can be considered implemented when it has been created, tested, and
successfully used by some other module (or by the system-level testing process).
Creating a module is the old edit-compile-repeat cycle. Module testing includes
the unit level functional and regression tests called out by the detailed design,
and also performance/stress testing, and code coverage analysis.

| ntegration

When all modules are nominally complete, system-level integration can be done.
Thisiswhere al of the modules move into a single source pool and are compiled
and linked and packaged as a system. Integration can be done incrementally, in
parallel with the implementation of the various modules, but it cannot
authoritatively approach "doneness' until all modules are substantially complete.

http://www.oreilly.com/catalog/opensources/book/vixie.html (3 of 12)

Open Sources: Voices from the Open Source Revolution

Integration includes the development of a system-level test. If the built package
has to be able to install itself (which could mean just unpacking atarball or
copying files from a CD-ROM) then there should be an automated way of doing
this, either on dedicated crash and burn systems or in containerized/simulated
environments.

Sometimes, in the middleware arena, the package isjust a built source poal, in
which case no installation tools will exist and system testing will be done on the
as-built pool.

Once the system has been installed (if it isinstallable), the automated system-
level testing process should be able to invoke every public command and call
every public entry point, with every possible reasonable combination of
arguments. If the system is capable of creating some kind of database, then the
automated system-level testing should create one and then use external
(separately written) tools to verify the database's integrity. It's possible that the
unit tests will serve some of these needs, and all unit tests should be runin
sequence during the integration, build, and packaging process.

Field Testing

Field testing usually beginsinternally. That means employees of the
organization that produced the software package will run it on their own
computers. This should ultimately include all "production level" systems--
desktops, laptops, and servers. The statement you want to be able to make at the
time you ask customers to run a new software system (or anew version of an
existing software system) is "we run it ourselves." The software developers
should be available for direct technical support during internal field testing.

Ultimately it will be necessary to run the software externally, meaning on
customers (or prospective customers) computers. It's best to pick “friendly"
customers for this exercise sinceit's likely that they will find alot of defects--
even some trivial and obvious ones--simply because their usage patterns and
habits are likely to be different from those of your internal users. The software
devel opers should be close to the front of the escalation path during external
field testing.

Defects encountered during field testing need to be triaged by senior developers
and technical marketers, to determine which ones can be fixed in the
documentation, which ones need to be fixed before the current version is
released, and which ones can be fixed in the next release (or never).

http://www.oreilly.com/catalog/opensources/book/vixie.html (4 of 12)

Open Sources: Voices from the Open Source Revolution

Support

Software defects encountered either during field testing or after the software has
been distributed should be recorded in atracking system. These defects should
ultimately be assigned to a software engineer who will propose a change to
either the definition and documentation of the system, or the definition of a
module, or to the implementation of a module. These changes should include
additions to the unit and/or system-level tests, in the form of aregression test to
show the defect and therefore show that it has been fixed (and to keep it from
recurring later).

Just asthe MRD was ajoint venture between engineering and marketing, so it is
that support is ajoint venture between engineering and customer service. The
battlegrounds in this venture are the bug list, the categorization of particular
bugs, the maximum number of critical defectsin a shippable software release,
and so on.

Testing Detalls

Code Coverage Analysis

Code coverage testing begins with the instrumentation of the program code,
sometimes by a preprocessor, sometimes by an object code modifier, sometimes
using a special mode of the compiler or linker, to keep track of all possible code
pathsin a block of source code and to record, during its execution, which ones
were taken.

Consider the following somewhat typical C snippet:

If (read(s, buf, sizeof buf) ==-1)
error++;

else

error = 0;

Al A

If the error variable has not been initialized, then the code is buggy, and if line 2
IS ever executed then the results of the rest of the program will be undefined. The
likelihood of an error in read (and areturn value of -1 from it) occurring during
normal testing is somewhat low. The way to avoid costly support events from
this kind of bug isto make sure that your unit tests exercise every possible code

http://www.oreilly.com/catalog/opensources/book/vixie.html (5 of 12)

Open Sources: Voices from the Open Source Revolution

path and that the results are correct in every case.

But wait, it gets better. Code paths are combinatorial. In our example above, the
error variable may have been initialized earlier--let's say by asimilar code
snippet whose predicate ("system call failure") was false (meaning no error
occurred). The following example, which is patently bad code that would not
pass any kind of code review anyway, shows how easy it isfor ssmple things to
become complicated:

if (connect(s, &sa, &sa len) ==-1)
error++;

else

error = 0;

if (read(s, buf, sizeof buf) == -1)
error++;

else

error = 0;

NG~ wWNE

There are now four code pathsto test:

1. lines 1-2-5-6.
2. lines 1-2-5-8.
3. lines 1-4-5-6.
4. lines 1-4-5-8.

It's usually impossible to test every possible code path--there can be hundreds of
paths through even a small function of afew dozen lines. And on the other hand,
merely ensuring that your unit tests are capable (on successive runs, perhaps) of
exercising every line of codeis not sufficient. Thiskind of coverage analysisis
not in the tool bag of every software engineer in the field--and that'swhy QA is
its own specialty.

Regression Tests

Fixing a bug isjust not enough. "Obvious by inspection” is often a cop-out used
to cover the more insidious "writing the smoking gun test would be difficult."
OK, so there are many bugs which are obvious by inspection, like division by
the constant zero. But to figure out what to fix, one must ook at the surrounding

http://www.oreilly.com/catalog/opensources/book/vixie.html (6 of 12)

Open Sources: Voices from the Open Source Revolution

code to find out what the author (who was hopefully somebody else) intended.
Thiskind of analysis should be documented as part of the fix, or as part of the
comments in the source code, or both.

In the more common case, the bug isn't obvious by inspection and the fix will be
in adifferent part of the source code than the place where the program dumped
core or otherwise behaved badly. In these cases, a new test should be written
which exercises the bad code path (or the bad program state or whatever) and
then the fix should be tested against this new unit test. After review and check-
in, the new unit test should also be checked in, so that if the same bug is
reintroduced later as a side effect of some other change, QA will have some
hope of catching it before the customers do.

Open Source Software Engineering

An Open Source project can include every single one of the above elements, and
to be fair, some have. The commercial versions of BSD, BIND, and Sendmail
are all examples of the standard software engineering process--but they didn't
start out that way. A full-blown software engineering processis very resource-
hungry, and instantiating one usually requires investment, which usually requires
some kind of revenue plan.

The far more common case of an open-source project is one where the people
involved are having fun and want their work to be as widely used as possible so
they give it away without fee and sometimes without restrictions on
redistribution. These folks might not have access to so-called "commercial
grade" software tools (like code coverage analyzers, bounds-checking
interpreters, and memory integrity verifiers). And the primary things they seem
to find fun are coding, packaging, and evangelizing--not QA, not MRDs, and
usually not hard and fast ship dates.

Let'srevisit each of the elements of the software engineering process and see
what typically takesits place in an unfunded Open Source project--a labor of
love.

Marketing Requirements

Open Source folks tend to build the tools they need or wish they had. Sometimes
this happens in conjunction with one's day job, and often it's someone whose
primary job is something like system administration rather than software

http://www.oreilly.com/catalog/opensources/book/vixie.html (7 of 12)

Open Sources: Voices from the Open Source Revolution

engineering. If, after several iterations, a software system reaches critical mass
and takes on alife of itsown, it will be distributed via Internet tarballs and other
users will start to either ask for features or just sit down and implement them and
send themin.

The battleground for an open-source MRD isusualy amailing list or
newsgroup, with the users and devel opers bantering back and forth directly.
Consensus is whatever the developers remember or agree with. Failure to
consense often enough results in "code splits," where other devel opers start
releasing their own versions. The MRD equivalent for Open Source can be very
nurturing but it has sharp edges--conflict resolution is sometimes not possible (or
not attempted).

System-Level Design

There usually just is no system-level design for an unfunded Open Source effort.
Either the system design isimplicit, springing forth whole and complete straight
from Zeus's forehead, or it evolves over time (like the software itself). Usually
by Version 2 or 3 of an open-source system, there actually is a system design
even if it doesn't get written down anywhere.

It is here, rather than in any other departure from the normal rules of the
software engineering road, that Open Source earns its reputation for being alittle
bit flakey. Y ou can compensate for alack of aformal MRD or even formal QA
by just having really good programmers (or really friendly users), but if there's
no system design (even if it'sonly in someone's head), the project's quality will
be self-limited.

Detailed Design

Another casualty of being unfunded and wanting to have fun is a detailed design.
Some people do find DDDs fun to work on, but these people generally get all the
fun they can stand by writing DDDs during their day jobs. Detailed design ends
up being a side effect of the implementation. "l know | need a parser, so I'll write
one." Documenting the API in the form of external symbolsin header files or
manpages is optional and may not occur if the API isn't intended to be published
or used outside of the project.

Thisisashame, since alot of good and otherwise reusable code gets hidden this
way. Even modules that are not reusable or tightly bound to the project where
they are created, and whose APIs are not part of the feature deliverables, realy

http://www.oreilly.com/catalog/opensources/book/vixie.html (8 of 12)

Open Sources: Voices from the Open Source Revolution

ought to have manpages explaining what they do and how to call them. It's
hugely helpful to the other people who want to enhance the code, since they
have to start by reading and understanding it.

| mplementation

Thisisthe fun part. Implementation is what programmers love most; it's what
keeps them up late hacking when they could be sleeping. The opportunity to
write code is the primary motivation for almost all open-source software
development effort ever expended. If one focuses on this one aspect of software
engineering to the exclusion of the others, there's a huge freedom of expression.

Open-source projects are how most programmers experiment with new styles,
either styles of indentation or variable naming or "try to save memory" or "try to
save CPU cycles' or what have you. And there are some artifacts of great beauty
waiting in tarballs everywhere, where some programmer tried out a style for the
first time and it worked.

An unfunded Open Source effort can have as much rigor and consistency as it
wants--users will run the code if it's functional; most people don't care if the
developer switched styles three times during the implementation process. The
developers generally care, or they learn to care after awhile. In this situation,
Larry Wall's past comments about programming being an artistic expression
very much hit home.

The main difference in an unfunded Open Source implementation is that review
isinformal. There's usually no mentor or peer looking at the code before it goes
out. There are usually no unit tests, regression or otherwise.

| ntegration

Integration of an open-source project usually involves writing some manpages,
making sure that it builds on every kind of system the devel oper has access to,
cleaning up the Makefile to remove the random hair that creepsin during the
implementation phase, writing aREADME, making atarball, putting it up for
anonymous FTP somewhere, and posting a note to some mailing list or
newsgroup where interested users can find it.

Note that the comp.sources.unix newsgroup was rekindled in 1998 by Rob
Braun, and it's a fine place to send announcements of new or updated open-
source software packages. It also functions as a repository/archive.

http://www.oreilly.com/catalog/opensources/book/vixie.html (9 of 12)

Open Sources: Voices from the Open Source Revolution

That's right, no system-level testing. But then there's usually no system-level test
plan and no unit tests. In fact, Open Source efforts are pretty light on testing
overall. (Exceptions exist, such as Perl and PostgreSQL .) Thislack of pre-
release testing is not a weakness, though, as explained below.

Field Testing

Unfunded open-source software enjoys the best system-level testing in the
industry, unless we include NASA's testing on space-bound robots in our
comparison. The reason is simply that users tend to be much friendlier when
they aren't being charged any money, and power users (often developers
themselves) are much more helpful when they can read, and fix, the source code
to something they're running.

The essence of field testing isitslack of rigor. What software engineering is
looking for from itsfield testersis patterns of use which are inherently
unpredictable at the time the system is being designed and built--in other words,
real world experiences of real users. Unfunded open-source projects are ssmply
unbeatable in this area.

An additional advantage enjoyed by open-source projectsis the "peer review" of
dozens or hundreds of other programmers looking for bugs by reading the source
code rather than just by executing packaged executables. Some of the readers
will be looking for security flaws and some of those found will not be reported
(other than among other crackers), but this danger does not take away from the
overall advantage of having uncounted strangers reading the source code. These
strangers can really keep an Open Source developer on his or her toesin away
that no manager or mentor ever could.

Support

"Oops, sorry!" iswhat's usually said when a user finds a bug, or "Oops, sorry,
and thanks!" if they also send a patch. "Hey, it works for me" is how Open
Source developers do bug triage. If this sounds chaotic, it is. The lack of support
can keep some users from being willing (or able) to run unfunded Open Source
programs, but it also creates opportunities for consultants or software
distributors to sell support contracts and/or enhanced and/or commercial
Versions.

When the Unix vendor community first encountered a strong desire from their
users to ship prepackaged open-source software with their base systems, their

http://www.oreilly.com/catalog/opensources/book/vixie.html (10 of 12)

Open Sources: Voices from the Open Source Revolution

first reaction was pretty much "Well, OK, but we're not going to support it." The
success of companies like Cygnus has prompted reexamination of that position,
but the culture clash runs pretty deep. Traditional software houses, including
Unix vendors, just cannot plan or budget for the cost of sales of a support
business if there are unreviewed changes being contributed by uncounted
strangers.

Sometimes the answer isto internalize the software, running it through the
normal QA process including unit and system testing, code coverage analysis,
and so on. This can involve areverse-engineered MRD and DDD to give QA
some kind of context (i.e., what functionality to test for). Other times the answer
IS to rewrite the terms of the support agreement to "best efforts" rather than
"guaranteed results." Ultimately the software support market will be filled by
who can get leverage from all those uncounted strangers, since alot of them are
good people writing good software, and the Open Source culture is more
effective in most cases at generating the level of functionality that users actually
want (witness Linux versus Windows).

Conclusions

Engineering is an old field, and no matter whether one is building software,
hardware, or railroad bridges, the elements of the engineering process are
essentially the same:

. ldentify arequirement, and its requirers.

. Design a solution that meets the requirement.

. Modularize the design; plan the implementation.
. Buildit; test it; deliver it; support it.

Some fields put greater emphasis on some phases. For example, railroad bridge
builders don't usually have to put alot of thought into an MRD, the
implementation process, or support--but they have to pay very close attention to
the SDD and DDD and of course QA.

The seminal moment in the conversion of a"programmer” into a " software
engineer" isthat instant when they realize that engineering is afield and that
they are able to enter that field but that it will require a fundamentally different
mindset--and alot more work. Open Source devel opers often succeed for years

http://www.oreilly.com/catalog/opensources/book/vixie.html (11 of 12)

Open Sources: Voices from the Open Source Revolution

before the difference between programming and software engineering finally
catches up to them, simply because Open Source projects take longer to suffer
from the lack of engineering rigor.

This chapter has given avery shallow overview of software engineering, and
hopefully provided some motivation and context for Open Source programmers
to consider entering that field. Remember that the future is always a hybrid of all
the best of what has gone into the past and present. Software engineering isn't
just for the slide rule and pocket protector set--it'sarich field with alot of
proven techniques for building high-quality systems, especially high-quality
systems that aren't amenable to the "one smart programmer" approach common
to Open Source projects.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/vixie.html (12 of 12)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

O’REILLY Online Catalog SEARCH THE LATALOG
= Open Sources: Voices from the

OPENSOURCES | Open Source Revolution

Mwrn 1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

The Linux Edge

Linus Torvalds

Linux today has millions of users, thousands of developers, and a growing
market. It is used in embedded systems; it is used to control robotic devices; it
has flown on the space shuittle. I'd like to say that | knew this would happen, that
it'sall part of the plan for world domination. But honestly this has all taken me a
bit by surprise. | was much more aware of the transition from one Linux user to
one hundred Linux users than the transition from one hundred to one million
uSers.

Linux has succeeded not because the original goal was to make it widely
portable and widely available, but because it was based on good design
principles and a good development model. This strong foundation made
portability and availability easier to achieve.

Contrast Linux for amoment with ventures that have had strong commercial
backing, like Java or Windows NT. The excitement about Java has convinced
many people that "write once, run anywhere" is aworthy goal. We're moving
into atime when awider and wider range of hardware is being used for
computing, so indeed thisis an important value. Sun didn't invent the idea of
"write once, run anywhere," however. Portability haslong been aholy grail of

http://www.oreilly.com/catalog/opensources/book/linus.html (1 of 13)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

the computer industry. Microsoft, for example, originally hoped that Windows
NT would be a portable operating system, one that could run on Intel machines,
but also on RISC machines common in the workstation environment. Linux
never had such an ambitious original goal. It'sironic, then, that Linux has
become such a successful medium for cross-platform code.

Originally Linux was targeted at only one architecture: the Intel 386. Today
Linux runs on everything from PaimPilots to Alpha workstations; it is the most
widely ported operating system available for PCs. If you write a program to run
on Linux, then, for awide range of machines, that program can be "write once,
run anywhere." It's interesting to look at the decisions that went into the design
of Linux, and how the Linux development effort evolved, to see how Linux
managed to become something that was not at all part of the original vision.

Amiga and the Motorola Port

Linux isa Unix-like operating system, but not aversion of Unix. Thisgives
Linux adifferent heritage than, for example, Free BSD. What | mean is this. the
creators of Free BSD started with the source code to Berkeley Unix, and their
kernel is directly descended from that source code. So Free BSD isaversion of
Unix; it'sin the Unix family tree. Linux, on the other hand, aims to provide an
interface that is compatible with Unix, but the kernel was written from scratch,
without reference to Unix source code. So Linux itself is not a port of Unix. It'sa
new operating system.

Porting this new operating systems to other platforms was really not on my mind
at the beginning. At first | just wanted something that would run on my 386.

A serious effort to make the Linux kernel code portable began with the effort to
port Linux to DEC's Alpha machine. The Alpha port was not the first port,
however.

The first port came from ateam who ported the Linux kernel to the Motorola
68K series, which was the chip in the early Sun, Apple, and Amiga computers.
The programmers behind the Motorola port really wanted to do something low-
level and in Europe you had a number of people who werein the Amiga
community who were especially disenchanted with the idea of using DOS or
Windows.

While the Amiga people did get a system running on the 68K, | don't really think
of this as a successful port of Linux. They took the same kind of approach | had

http://www.oreilly.com/catalog/opensources/book/linus.html (2 of 13)

Open Sources: Voices from the Open Source Revolution

taken when writing Linux in the first place: writing code from scratch targeted to
support a certain kind of interface. So that first 68K port could be considered a
Linux-like operating system, and afork off the original codebase.

In one sense thisfirst 68K Linux was not helpful in creating a portable Linux,
but in another sense it was. When | started thinking about the Alpha port | had to
think about the 68K experience. If we took the same approach with Alpha, then |
would have three different code bases to support in order to maintain Linux.
Even if this had been feasible in terms of coding, it wasn't feasible in terms of
management. | couldn't manage the development of Linux if it meant keeping
track of an entirely new code base every time someone wanted Linux on a new
architecture. Instead, | wanted to do a system where | have an Alpha specific
tree, a 68K specific tree, and an x86 specific tree, but all in acommon code base.

So the kernel underwent a major rewrite at this time. But that rewrite was
motivated by how to work with a growing community of developers.

Microkernels

When | began to write the Linux kernel, there was an accepted school of thought
about how to write a portable system. The conventional wisdom was that you
had to use a microkernel-style architecture.

With a monolithic kernel such asthe Linux kernel, memory is divided into user
space and kernel space. Kernel space is where the actual kernel code is loaded,
and where memory is allocated for kernel-level operations. Kernel operations
include scheduling, process management, signaling, device /O, paging, and
swapping: the core operations that other programs rely on to be taken care of.
Because the kernel code includes low-level interaction with the hardware,
monolithic kernels appear to be specific to a particular architecture.

A microkernel performsamuch smaller set of operations, and in more limited
form: interprocess communication, limited process management and scheduling,
and some low-level 1/0. Microkernels appear to be less hardware-specific
because many of the system specifics are pushed into user space. A microkernel
architecture is basically away of abstracting the details of process contral,
memory allocation, and resource allocation so that a port to another chipset
would require minimal changes.

So at thetime | started work on Linux in 1991, people assumed portability
would come from a microkernel approach. Y ou see, this was sort of the research

http://www.oreilly.com/catalog/opensources/book/linus.html (3 of 13)

Open Sources: Voices from the Open Source Revolution

darling at the time for computer scientists. However, | am a pragmatic person,
and at the time | felt that microkernels (a) were experimental, (b) were obviously
more complex than monoalithic Kernels, and (c) executed notably slower than
monolithic kernels. Speed matters alot in areal-world operating system, and so
alot of the research dollars at the time were spent on examining optimization for
microkernels to make it so they could run as fast as a normal kernel. The funny
thing isif you actually read those papers, you find that, while the researchers
were applying their optimizational tricks on a microkernel, in fact those same
tricks could just as easily be applied to traditional kernelsto accelerate their
execution.

In fact, this made me think that the microkernel approach was essentialy a
dishonest approach aimed at receiving more dollars for research. | don't
necessarily think these researchers were knowingly dishonest. Perhaps they were
simply stupid. Or deluded. | mean thisin avery real sense. The dishonesty
comes from the intense pressure in the research community at that time to pursue
the microkernel topic. In a computer science research lab, you were studying
microkernels or you weren't studying kernels at all. So everyone was pressured
into this dishonesty, even the people designing Windows NT. Whilethe NT
team knew the final result wouldn't approach a microkernel, they knew they had
to pay lip service to the idea.

Fortunately | never felt much pressure to pursue microkernels. The University of
Helsinki had been doing operating system research from the late 60s on, and
people there didn't see the operating system kernel as much of aresearch topic
anymore. In away they were right: the basics of operating systems, and by
extension the Linux kernel, were well understood by the early 70s; anything
after that has been to some degree an exercise in self-gratification.

If you want code to be portable, you shouldn't necessarily create an abstraction
layer to achieve portability. Instead you should just program intelligently.
Essentialy, trying to make microkernels portable is awaste of time. It's like
building an exceptionally fast car and putting squaretires on it. The idea of
abstracting away the one thing that must be blindingly fast--the kernel--is
inherently counter-productive.

Of course there's abit more to microkernel research than that. But a big part of
the problem is adifference in goals. The aim of much of the microkernel
research was to design for atheoretical ideal, to come up with a design that
would be as portable as possible across any conceivable architecture. With Linux

http://www.oreilly.com/catalog/opensources/book/linus.html (4 of 13)

Open Sources: Voices from the Open Source Revolution

| didn't have to aim for such alofty goal. | was interested in portability between
real world systems, not theoretical systems.

From Alpha to Portability

The Alpha port started in 1993, and took about a year to complete. The port
wasn't entirely done after ayear, but the basics were there. While this first port
was difficult, it established some design principles that Linux has followed
since, and that have made other ports easier.

The Linux kernel isn't written to be portable to any architecture. | decided that if
atarget architecture is fundamentally sane enough, and follows some basic rules
then Linux would fundamentally support that kind of model. For example,
memory management can be very different from one machine to another. | read
up on the 68K, the Sparc, the Alpha, and the PowerPC memory management
documents, and found that while there are differences in the details, there was a
lot in common in the use of paging, caching, and so on. The Linux kernel
memory management could be written to a common denominator among these
architectures, and then it would not be so hard to modify the memory
management code for the details of a specific architecture.

A few assumptions simplify the porting problem alot. For example, if you say
that a CPU must have paging, then it must by extension have some kind of
tranglation lookup buffer (TLB), which tells the CPU how to map the virtual
memory for use by the CPU. Of course, what form the TLB takes you aren't

sure. But really, the only thing you need to know is how to fill it and how to
flush it when you decide it has to go away. So in this sane architecture you know
you need to have a few machine-specific partsin the kernel, but most of the code
is based on the general mechanisms by which something like the TLB works.

Another rule of thumb that | follow isthat it is always better to use a compile
time constant rather than using a variable, and often by following thisrule, the
compiler will do alot better job at code optimization. Thisis obviously wise,
because you can set up your code so asto be flexibly defined, but easily
optimized.

What's interesting about this approach--the approach of trying to define a sane
common architecture--is that by doing this you can present a better architecture
to the OS than is really available on the actual hardware platform. This sounds
counter-intuitive, but it's important. The generalizations you're looking for when

http://www.oreilly.com/catalog/opensources/book/linus.html (5 of 13)

Open Sources: Voices from the Open Source Revolution

surveying systems are frequently the same as the optimizations you'd like to
make to improve the kernel's performance.

Y ou see, when you do alarge enough survey of things like page table
implementation and you make a decision based on your observations--say, that
the page tree should be only three deep--you find later that you could only have
doneit that way if you were truly interested in having high performance. In other
words, if you had not been thinking about portability as a design goal, but had
just been thinking about optimization of the kernel on a particular architecture,
you would frequently reach the same conclusion--say, that the optimal depth for
the kernel to represent the page tree is three deep.

Thisisn't just luck. Often when an architecture deviates from a sane general
design in some of its details that's because it's a bad design. So the same
principles that make you write around the design specifics to achieve portability
also make you write around the bad design features and stick to a more
optimized general design. Basically | have tried to reach middle ground by
mixing the best of theory into the readlistic facts of life on today's computer
architectures.

Kernel Space and User Space

With amonolithic kernel such as the Linux kernel, it'simportant to be very
cautious about allowing new code and new features into the kernel. These
decisions can affect a number of things later on in the development cycle beyond
the core kernel work.

Thefirst very basic ruleisto avoid interfaces. If someone wants to add
something that involves a new system interface you need to be exceptionally
careful. Once you give an interface to users they will start coding to it and once
somebody starts coding to it you are stuck with it. Do you want to support the
exact same interface for the rest of your system'slife?

Other code is not so problematic. If it doesn't have an interface, say adisk driver,
there isn't much to think about; you can just add a new disk driver with little risk.
If Linux didn't have that driver before, adding it doesn't hurt anyone already
using Linux, and opens Linux to some new users.

When it comes to other things, you have to balance. Is this a good
implementation? Is this really adding a feature that is good? Sometimes even
when the feature is good, it turns out that either the interface is bad or the

http://www.oreilly.com/catalog/opensources/book/linus.html (6 of 13)

Open Sources: Voices from the Open Source Revolution

implementation of that feature kind of implies that you can never do something
else, now or in the future.

For example--though thisis sort of an interface issue--suppose somebody has
some stupid implementation of afilesystem where names can be no longer than
14 characters. The thing you really want to avoid having these limitationsin an
interface that is set in stone. Otherwise when you look to extend the filesystem,
you are screwed because you have to find away to fit within this lesser interface
that was locked in before. Worse than that, every program that requests a
filename may only have space in avariable for, say, 13 characters, so if you
were to pass them alonger filename it would crash them.

Right now the only vendor that does such a stupid thing is Microsoft.
Essentially, in order to read DOS/Windows files you have this ridiculous
interface where all files had eleven characters, eight plus three. With NT, which
allowed long filenames, they had to add a complete set of new routines to do the
same things the other routines did, except that this set can also handle larger
filenames. So thisis an example of abad interface polluting future works.

Another example of this happened in the Plan 9 operating system. They had this
really cool system call to do a better process fork--a simple way for a program to
split itself into two and continue processing along both forks. This new fork,

which Plan 9 called R-Fork (and SGI later called S-Proc) essentially creates two
Separate process spaces that share an address space. Thisis helpful for threading

especidly.

Linux does thistoo with its clone system call, but it was implemented properly.
However, with the SGI and Plan9 routines they decided that programs with two
branches can share the same address space but use separate stacks. Normally
when you use the same address in both threads, you get the same memory
location. But you have a stack segment that is specific, so if you use a stack-
based memory address you actually get two different memory locations that can
share a stack pointer without overriding the other stack.

Whilethisisaclever feat, the downside is that the overhead in maintaining the
stacks makes thisin practice really stupid to do. They found out too late that the
performance went to hell. Since they had programs which used the interface they
could not fix it. Instead they had to introduce an additional properly-written
interface so that they could do what was wise with the stack space.

While a proprietary vendor can sometimes try to push the design flaw onto the

http://www.oreilly.com/catalog/opensources/book/linus.html (7 of 13)

Open Sources: Voices from the Open Source Revolution

architecture, in the case of Linux we do not have the latitude to do this.

Thisis another case where managing the development of Linux and making
design decisions about Linux dictate the same approach. From a practical point
of view, | couldn't manage lots of developers contributing interfaces to the
kernel. | would not have been able to keep control over the kernel. But from a
design point of view thisis aso the right thing to do: keep the kernel relatively
small, and keep the number of interfaces and other constraints on future
development to a minimum.

Of course Linux is not completely clean in this respect. Linux hasinherited a
number of terrible interfaces from previous implementations of Unix. So in some
cases | would have been happier if | did not have to maintain the same interface
as Unix. But Linux is about as clean as a system can be without starting
completely from scratch. And if you want the benefit of being able to run Unix
applications, then you get some of the Unix baggage as a consequence. Being
able to run those applications has been vital to Linux's popularity, so the tradeoff
isworth it.

GCC

Unix itself isagreat success story in terms of portability. The Unix kernel, like
many kernels, counts on the existence of C to give it the majority of the
portability it needs. Likewise for Linux. For Unix the wide availability of C
compilers on many architectures made it possible to port Unix to those
architectures.

So Unix underscores how important compilers are. The importance of compilers
was one reason | chose to license Linux under the GNU Public License (GPL).
The GPL was the license for the GCC compiler. | think that al the other projects
from the GNU group are for Linux insignificant in comparison. GCC isthe only
onethat | really care about. A number of them | hate with a passion; the Emacs
editor is horrible, for example. While Linux is larger than Emacs, at least Linux
has the excuse that it needs to be.

But basically compilers are really a fundamental need.

Now that the Linux kernel follows a generally portable design, at least for
reasonably sane architectures, portability should be possible aslong as a
reasonably good compiler is available. For the upcoming chips | don't worry
much about architectural portability when it comes to the kernel anymore; |

http://www.oreilly.com/catalog/opensources/book/linus.html (8 of 13)

Open Sources: Voices from the Open Source Revolution

worry about the compilers. Intel's 64-bit chip, the Merced, is an obvious
example, because Merced is very different for acompiler.

So the portability of Linux isvery much tied to the fact that GCC is ported to
major chip architectures.

Kernel Modules

With the Linux kernel it became clear very quickly that we want to have a
system which is as modular as possible. The open-source development model
really requires this, because otherwise you can't easily have people working in
parallel. It's too painful when you have people working on the same part of the
kernel and they clash.

Without modularity | would have to check every file that changed, which would
be alot, to make sure nothing was changed that would effect anything else. With
modularity, when someone sends me patches to do a new filesystem and | don't
necessarily trust the patches per se, | can still trust the fact that if nobody's using
thisfilesystem, it's not going to impact anything else.

For example, Hans Reiser is working on a new filesystem, and he just got it
working. | don't think it's worth trying to get into the 2.2 kernel at this point. But
because of the modularity of the kernel | could if | really wanted to, and it
wouldn't be too difficult. The key isto keep people from stepping on each other's
toes.

With the 2.0 kernel Linux really grew up alot. This was the point that we added
|oadable kernel modules. This obviously improved modularity by making an
explicit structure for writing modules. Programmers could work on different
modules without risk of interference. | could keep control over what was written
into the kernel proper. So once again managing people and managing code led to
the same design decision. To keep the number of people working on Linux
coordinated, we needed something like kernel modules. But from a design point
of view, it was also the right thing to do.

The other part of modularity is less obvious, and more problematic. Thisisthe
run-time loading part, which everyone agrees is a good thing, but leads to new
problems. The first problem is technical, but technical problems are (almost)
aways the easiest to solve. The more important problem is the non-technical
issues. For example, at which point is amodule a derived work of Linux, and
therefore under the GPL?

http://www.oreilly.com/catalog/opensources/book/linus.html (9 of 13)

Open Sources: Voices from the Open Source Revolution

When the first module interface was done, there were people that had written
driversfor SCO, and they weren't willing to release the source, as required by
the GPL, but they were willing to recompile to provide binaries for Linux. At
that point, for moral reasons, | decided | couldn't apply the GPL in this kind of
Situation.

The GPL requires that works "derived from" awork licensed under the GPL also
be licensed under the GPL. Unfortunately what counts as a derived work can be
abit vague. As soon as you try to draw the line at derived works, the problem
immediately becomes one of where do you draw the line?

We ended up deciding (or maybe | ended up decreeing) that system calls would
not be considered to be linking against the kernel. That is, any program running
on top of Linux would not be considered covered by the GPL. This decision was
made very early on and | even added a special read-me file (see Appendix B) to
make sure everyone knew about it. Because of this commercial vendors can
write programs for Linux without having to worry about the GPL.

The result for module makers was that you could write a proprietary module if
you only used the normal interface for loading. Thisis still agray area of the
kernel though. These gray areas leave holes for people to take advantage of
things, perhaps, and it's partly because the GPL really isn't clear about thingslike
module interface. If anyone were to abuse the guidelines by using the exported
symbolsin such away that they are doing it just to circumvent the GPL, then |
feel there would be a case for suing that person. But | don't think anyone wants
to misuse the kernel; those who have shown commercial interest in the kernel
have done so because they are interested in the benefits of the devel opment
model.

The power of Linux is as much about the community of cooperation behind it as
the code itsalf. If Linux were hijacked--if someone attempted to make and
distribute a proprietary version--the appeal of Linux, which is essentially the
open-source development model, would be lost for that proprietary version.

Portability Today

Linux today has achieved many of the design goals that people originally
assumed only amicrokernel architecture could achieve.

By constructing a general kernel model drawn from elements common across
typical architecture, the Linux kernel gets many of the portability benefits that

http://www.oreilly.com/catalog/opensources/book/linus.html (10 of 13)

Open Sources: Voices from the Open Source Revolution

otherwise require an abstraction layer, without paying the performance penalty
paid by microkernels.

By alowing for kernel modules, hardware-specific code can often be confined to
amodule, keeping the core kernel highly portable. Device drivers are a good
example of effective use of kernel modules to keep hardware specificsin the
modules. Thisis agood middle ground between putting all the hardware
specificsin the core kernel, which makes for a fast but unportable kernel, and
putting all the hardware specificsin user space, which resultsin asystem that is
either slow, unstable, or both.

But Linux's approach to portability has been good for the development
community surrounding Linux aswell. The decisions that motivate portability
also enable alarge group to work simultaneously on parts of Linux without the
kernel getting beyond my control. The architecture generalizations on which
Linux is based give me aframe of reference to check kernel changes against, and
provide enough abstraction that | don't have to keep completely separate forks of
the code for separate architectures. So even though a large number of people
work on Linux, the core kernel remains something | can keep track of. And the
kernel modules provide an obvious way for programmers to work independently
on parts of the system that really should be independent.

The Future of Linux

I'm sure we made the right decision with Linux to do as little as possible in the
kernel space. At this point the honest truth is| don't envision major updatesto
the kernel. A successful software project should mature at some point, and then
the pace of changes slows down. There aren't alot of major new innovationsin
store for the kernel. It's more a question of supporting awider range of systems
than anything else: taking advantage of Linux's portability to bring it to new
systems.

There will be new interfaces, but | think those will come partly from supporting
the wider range of systems. For example, when you start doing clustering,
suddenly you want to tell the scheduler to schedule certain groups of processes
as gang scheduling and things like that. But at the same time, | don't want
everybody just focusing on clustering and super-computing, because alot of the
future may be with laptops, or cards that you plug in wherever you go, or
something similar, so I'd like Linux to go in that direction too.

http://www.oreilly.com/catalog/opensources/book/linus.html (11 of 13)

Open Sources: Voices from the Open Source Revolution

And then there are the embedded systems were there is no user interface at all,
really. Y ou only access the system to upgrade the kernel perhaps, but otherwise
they just sit there. So that's another direction for Linux. | don't think Java or
Inferno (Lucent's embedded operating system) are going to succeed for
embedded devices. They have missed the significance of Moore's Law. At first it
sounds good to design an optimized system specific for a particular embedded
device, but by the time you have aworkable design, Moore's Law will have
brought the price of more powerful hardware within range, undermining the
value of designing for a specific device. Everything is getting so cheap that you
might as well have the same system on your desktop asin your embedded
device. It will make everyone'slife easier.

Symmetric Multi-Processing (SMP) is one area that will be developed. The 2.2
Linux kernel will handle four processors pretty well, and we'll develop it up to
eight or sixteen processors. The support for more than four processorsis aready
there, but not really. If you have more than four processors now, it's like
throwing money at a dead horse. So that will certainly be improved.

But, if people want sixty-four processors they'll have to use a special version of
the kernel, because to put that support in the regular kernel would cause
performance decreases for the normal users.

Some particular application areas will continue to drive kernel development.
Web serving has always been an interesting problem, because it's the one real
application that is really kernel-intensive. In away, web serving has been
dangerous for me, because | get so much feedback from the community using
Linux as aweb-serving platform that | could easily end up optimizing only for
web serving. | have to keep in mind that web serving is an important application
but not everything.

Of course Linux isn't being used to its full potential even by today's web servers.
Apache itself doesn't do the right thing with threads, for example.

This kind of optimization has been slowed down by the limitsin network
bandwidth. At present, you saturate ten-megabit networks so easily that there's
no reason to optimize more. The only way to not saturate ten-megabit networks
isto have lots and lots of heavy duty CGls. But that's not what the kernel can
help with. What the kernel could potentially do is directly answer requests for
static pages, and pass the more complicate requests to Apache. Once faster
networking is more commonplace, thiswill be more intriguing. But right now
we don't have the critical mass of hardware to test and develop it.

http://www.oreilly.com/catalog/opensources/book/linus.html (12 of 13)

Open Sources: Voices from the Open Source Revolution

The lesson from all these possible future directionsis that | want Linux to be on
the cutting edge, and even a bit past the edge, because what's past the edge today
iIswhat's on your desktop tomorrow.

But the most exciting developments for Linux will happen in user space, not
kernel space. The changesin the kernel will seem small compared to what's
happening further out in the system. From this perspective, where the Linux
kernel will be isn't asinteresting a question as what features will be in Red Hat
17.5 or where Wine (the Windows emulator) isgoing to bein afew years.

In fifteen years, | expect somebody else to come along and say, hey, | can do
everything that Linux can do but | can be lean and mean about it because my
system won't have twenty years of baggage holding it back. They'll say Linux
was designed for the 386 and the new CPUs are doing the really interesting
things differently. Let's drop this old Linux stuff. Thisis essentially what | did
when creating Linux. And in the future, they'll be able to ook at our code, and
use our interfaces, and provide binary compatibility, and if all that happens I'll

be happy.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/linus.html (13 of 13)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

O’REILLY Online Catalog SEARCH THE LATALOG
= Open Sources: Voices from the

OPENSOURCES | Open Source Revolution

Mwrn 1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Giving It Away

How Red Hat Software Stumbled Across a
New Economic Model and Helped Improve
an Industry

Robert Young

As afounder of one of the leading commercial companies offering open-source
software, anything | say istainted for the purpose of objective academic research
or analysis. The skeptical reader will not view thisis a definitive paper on this
topic, but ssmply a collection of interesting, enlightening, or just plain curious
stories of the moments and events that have influenced the progress of Red Hat
Software, Inc.

Where Did Red Hat Come From?

In the early days of the Linux OS (1993), we were asmall software distribution
company. We offered Unix applications, books, and low-cost CD-ROMs from
vendors like Walnut Creek and Infomagic. In addition to conventional Unix

http://www.oreilly.com/catalog/opensources/book/young.html (1 of 15)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

offerings, these vendors were beginning to offer anew line: Linux CD-ROMSs.
The Linux CDs were becoming bestsellers for us. When we'd ask where this
Linux stuff was coming from, we'd get answerslike, "It's from the programmers
according to their skill to the users according to their needs.”

If the collapse of the Berlin Wall had taught us anything, it was that socialism
alone was not a sustainable economic model. Hopeful slogans aside, human
activities did not replicate themselves without a good economic model driving
the effort. Linux seemed to lack such amodel. We reasoned, therefore, that the
whole Linux thing was a big fluke. A fluke that was generating enough cash to
keep our little business and a number of other small businesses in the black, but
afluke nonetheless.

However, we found that instead of this bizarre Linux OS effort collapsing, it
continued to improve. The number of users continued to grow and the
applications they were putting it to were growing in sophistication.

So we began to study the OS development more carefully. We spoke to the key
developers and the largest users. The more we studied, the more of a solid, albeit
unusual, economic model we saw.

This economic model was effective. More importantly, our sales of Linux
compared to our sales of other Unixes were sufficient to convince us that this
was areal technology with areal future. At this point (fall of 94) we were
looking for Linux products that we could sell into CompUSA and other leading
retall distribution outlets. So Marc Ewing and | hooked up to create Red Hat
Software, Inc. in January of 1995, and the rest of this chapter is devoted to the
trials and errors of developing a business plan that was compatible with the
bizarre economic model. Bizarre as it was, this model was producing a
remarkable OS, providing value to our customers, and providing profit for our
shareholders.

At Red Hat, our roleisto work with all the development teams across the
Internet to take some four hundred software packages and assemble them into a
useful operating system. We operate much like a car assembly plant--we test the
finished product and offer support and services for the users of the Red Hat
Linux OS.

The "unigue value proposition" of our business plan was, and continues to be, to
cater to our customers need to gain control over the operating system they were
using by delivering the technical benefits of freely-redistributable software

http://www.oreilly.com/catalog/opensources/book/young.html (2 of 15)

Open Sources: Voices from the Open Source Revolution

(source code and a free license) to technically-oriented OS consumers.

How Do You Make Money in Free Software?

That question assumes that it is easy, or at least easier, to make money selling
proprietary binary-only software.

Thisisamistake. Most software ventures, whether based on free or proprietary
software, fail. Given that until very recently all software ventures were of the
proprietary binary-only kind, it is therefore safe to say that the IP (Intellectua
Property) model of software development and marketing is a very difficult way
to make aliving. Of course so was panning for gold during the gold rushes of the
19th century. But when software companies strike it rich they generate alot of
money, just like past gold rushes, so lots of people are willing to assume the
risks in order to have an opportunity to "strike gold."

NO one expectsit to be easy to make money in free software. While making
money with free software is a challenge, the challenge is not necessarily greater
than with proprietary software. In fact you make money in free software exactly
the same way you do it in proprietary software: by building a great product,
marketing it with skill and imagination, looking after your customers, and
thereby building a brand that stands for quality and customer service.

Marketing with skill and imagination, particularly in highly competitive markets,
requires that you offer solutions to your customers that others cannot or will not
match. To that end Open Source is not aliability but a competitive advantage.
The Open Source development model produces software that is stable, flexible,
and highly customizable. So the vendor of open-source software starts with a
quality product. The trick isto devise an effective way to make money
delivering the benefits of open-source software to you clients.

Inventing new economic modelsis not atrivial task, and the innovations that
Red Hat has stumbled upon certainly do not apply to everyone or every product.
But there are some principles that should apply to many software ventures, and
to many Open Source ventures.

Many companies attempt a partially open-source approach to the market. Most
commonly they will adopt alicense that allows for free distribution of their
software if the user is not using the software for acommercial purpose, but if he
is he must pay the publisher alicense fee or royalty. Open Source is defined as
software that includes source code and afree license--these partially open-source

http://www.oreilly.com/catalog/opensources/book/young.html (3 of 15)

Open Sources: Voices from the Open Source Revolution

companies provide source code but without afree license.

And remember, we're in the very early days of the deployment and growth of
market share for free software. If you aren't making money today it may be
simply because the market for your product is still small. While we are pleased
with the growth of the Linux OS, estimates being as high as 10 million users
today (1998), you need to remember that there are some 230 million
DOS/Windows users.

We Are in the Commodity Product Business

If we do not own intellectual property the way almost all of today's software
companies do, and if those companies insist that their most valuable asset isthe
intellectual property represented by the source code to the software they own,
then it is safe to say that Red Hat is not in the Software Business. Red Hat is not
licensing intellectual property over which it has ownership. That's not the
economic model that will support our customers, staff, and shareholders. So the
guestion became: What business are wein?

The answer was to look around at other industries and try and find one that
matched. We wanted an industry where the basic ingredients were free, or at
least freely available. We looked at the legal industry; you cannot trademark or
patent legal arguments. If alawyer winsacasein front of the Supreme Court,
other lawyers are allowed to use those arguments without requesting permission.
In effect, the arguments have become public domain.

We looked at the car industry; you can get parts from alarge number of
suppliers. No one drives a car--we al drive Hondas or Fords or any of several
hundred alternative models of cars assembled from the collective parts available
in that industry. Few people have the technical ability to assemble their own car.
Those who do seldom have the time or inclination. Assembly and service form
the core of the automotive business model.

We looked at the commodity industries and began to recognize some ideas. All
leading companies selling commaodity products, including bottled water (Perrier
or Evian), the soap business (Tide), or the tomato paste business (Heinz), base
their marketing strategies on building strong brands. These brands must stand for
guality, consistency, and reliability. We saw something in the brand
management of these commodity products that we thought we could emulate.

Ketchup is nothing more than flavored tomato paste. Something that looks and

http://www.oreilly.com/catalog/opensources/book/young.html (4 of 15)

Open Sources: Voices from the Open Source Revolution

tastes alot like Heinz Ketchup can be made in your kitchen sink without so
much as bending a copyright rule. It is effectively all freely-redistributable
objects. tomatoes, vinegar, salt, and spices. So why don't we, as consumers,
make ketchup in our kitchen sink, and how does Heinz have 80% of the ketchup
market?

We don't make ketchup because it is cheaper and much more convenient to buy
ketchup from Heinz, Hunts, or Del Monte than it isto make it. But convenience
isonly part of the story. Convenience alone would suggest that Heinz, Hunts,
and Del Monte share the market equally because they offer roughly equivalent
convenience. In fact, Heinz owns 80% of the market.

Heinz owns 80% of the market not because Heinz tastes better. If you go to the
Third World and find 100 people who have never tasted ketchup before, you find
out two things: oneisthat people don't actually like tomato ketchup, the other is
that they didike all ketchups equally.

Heinz has 80% of the ketchup market because they have been able to define the
taste of ketchup in the mind of ketchup consumers. Now the Heinz Ketchup
brand is so effective that as consumers we think that ketchup that will not come
out of the bottle is somehow better than ketchup that pours easily!

Thiswas Red Hat's opportunity: to offer convenience, to offer quality, and most
importantly to help define, in the minds of our customers, what an operating
system can be. At Red Hat, if we do a good job of supplying and supporting a
consistently high-quality product, we have a great opportunity to establish a
brand that Linux OS customers simply prefer.

But how do we reconcile our need to create more Linux users with our need to
ensure that those Linux users use Red Hat? We looked at industries where the
participants benefit because of, not despite, the activities of the other
participants.

Drinking water can be had in most industrial countries simply by turning on the
nearest tap, so why does Evian sell millions of dollars of French tap water into
those markets? It boils down to alargely irrational fear that the water coming
from your tap is not to be trusted.

Thisis the same reason that many people prefer to purchase "Officia" Red Hat
Linux in abox for $50 when they could download it for free or buy unofficial
CD-ROM copies of Red Hat for aslittle as $2. Evian does have the advantage
that most of humanity drinks water--we still have to create alot of Linux

http://www.oreilly.com/catalog/opensources/book/young.html (5 of 15)

Open Sources: Voices from the Open Source Revolution

consumersin order to have a market to sall our brand into.

The challenge is to focus on market size, not just market share. When consumer
demand for bottled water grows, Evian benefits, even though many of those
consumers start with a bottle other than Evian. Red Hat, like Evian, benefits
when other Linux suppliers do a great job building ataste for the product. The
more Linux users there are overall, the more potential customers Red Hat has for
our flavor.

The power of brands translate very effectively into the technology business. We
have evidence of thisin the Venture Capital investors who have recently
invested in several Open Source software companies. The one common
denominator between all of the investments to date have been that the companies
or their products have great name recognition, and are recognized as being
guality products. In other words, they have successfully established a brand.

The Strategic Appeal of This Model to the
Corporate Computing I ndustry

Much of brand management comes down to market positioning. Consider the
challenges that a new OS facesin trying to gain significant marketshare. The
current OS market is crowded, and dominated by a definite market favorite from
a brilliant marketing organization. Positioning a competing product correctly is
crucial to competitive success.

Linux fills thisrole naturally and extremely well. The primary complaint about
the market leader is the control that vendor has over the industry. A new OS
must deliver control over the OS platform to its user and not become just another
proprietary binary-only OS whose owner would then gain the same dominant
market position that consumers are currently complaining about.

Consider that Linux is not really an OS. It has come to describe awhole
collection of open-source components much like the term "car" describes an
industry better than the thing we drive on the highway. We don't drive cars--we
drive Ford Tauruses or Honda Accords. Red Hat is the equivalent of an OS
assembly plant of the Free Software operating system industry. Red Hat
succeeds when customers perceive themselves not as purchasing an operating
system, or even purchasing Linux, but purchasing Red Hat first and foremost.

Honda buys tires from Michelin, airbags from TRW, and paint from Dupont and

http://www.oreilly.com/catalog/opensources/book/young.html (6 of 15)

Open Sources: Voices from the Open Source Revolution

assembl es these diverse pieces into an Accord that comes with certification,
warranties, and a network of Honda and independent repair shops.

Red Hat takes compilers from Cygnus, web servers from Apache, an X Window
System from the X Consortium (who built it with support from Digital, HP,
IBM, Sun, and others), and assembl es these into a certifiable, warranted, and
award-winning Red Hat Linux OS.

Much like the car industry, it is Red Hat's job to take what it considers the best
of the available open-source components to build the best OS we can. But
control over the OSis not held by Red Hat or anyone else. If a Red Hat customer
disagrees with our choice of Sendmail and want to use Qmail or some other
solution, they continue to have the control that enables them to do this. In much
the same way, someone buying a Ford Taurus may want a higher performance
manifold installed on the engine in place of the one that was shipped from the
factory. Because the Taurus owner can open the hood of the car they have
control over the car. Similarly, Red Hat users have control over the Linux OS
they use, because they have license to open and modify the source code.

Y ou can't compete with a monopoly by playing the game by the monopolist's
rules. The monopoly has the resources, the distribution channels, the R& D
resources; in short, they just have too many strengths. Y ou compete with a
monopoly by changing the rules of the game into a set that favors your strengths.

At the end of the 19th century, the big American monopoly concern was not
operating systems, but railroads. The major railroads held effective monopolies
on transportation between major cities. Indeed, major American cities, like
Chicago, had grown up around the central railway terminals owned by the
railroad companies.

These monopolies were not overcome by building new railroads and charging
several fewer dollars. They were overcome with the building of the interstate
highway system and the benefit of door-to-door delivery that the trucking
companies could offer over the more limited point-to-point delivery that the
railroad model previoudly offered.

Today the owners of the existing proprietary OSes own atechnology that is
much like owning the railway system. The APIs of a proprietary OS are much
like the routes and timetables of arailroad. The OS vendors can charge whatever
toll they like. They can also control and change the "route" the APIs take
through the OS to suit the needs of the applications they sell, without regard to

http://www.oreilly.com/catalog/opensources/book/young.html (7 of 15)

Open Sources: Voices from the Open Source Revolution

the needs of the applications that their competitors sell. These OS vendors
biggest competitive advantage is that they control access to the source code that
both their applications and the Independent Software Vendors (ISVS)
applications must run on.

To escape the confines of this model, ISVs need an OS model where the vendor
of that OS (Linux) does not control the OS; where the supplier of the OSis
responsible for the maintenance of the OS only; and where the ISV can sell his
application secure in the knowledge that the OS vendor is not his biggest
competitive threat. The appeal of this OS model has begun to take hold in the
software world. Thisisabig part of the reasoning behind Corel's port of
WordPerfect to Linux, behind Oracle's port of their database software to Linux,
and behind IBM's support for Apache.

The benefit an open-source OS offers over the proprietary binary-only OSesis
the control the users gain over the technology they are using. The proprietary OS
vendors, with their huge investment in the proprietary software that their
products consist of, would be crazy to try and match the benefit we are offering
their customers, as we generate a fraction of the revenue per user that the current
proprietary OS vendors rely on.

Of course if our technology model becomes accepted by alarge enough group of
computer users, the existing OS vendors are going to have to react somehow.
But that's still several yearsin the future. If they do react by "freeing” their code
the way Netscape "freed" the code to the Navigator browser, it would result in
better products at dramatically lower cost. The industry at large will be well
served if that were the only result of our efforts. Of courseit isnot Red Hat's
goal to stop there.

Asan illustration of the importance of the "control" benefit of the Linux OS, it is
Interesting to note Fermilab's experience. Fermilab is the big particle accelerator
research laboratory outside Chicago. They employ over athousand high-level
physics engineers who need state-of-the-art technology that they can customize
to the needs of the projects they are working on. An example of the benefit of
Linux isits ability to be used in cluster farms to build massively parallel super-
computers. Fermilab needs this feature, as they are proposing to increase the
performance of their accelerator. As aresult of this performance increase, they
expect to need to analyze almost 10 times more data per second than they have
been. Their budgets simply will not enable them to acquire the computing power
they need from the existing super-computer suppliers.

http://www.oreilly.com/catalog/opensources/book/young.html (8 of 15)

Open Sources: Voices from the Open Source Revolution

For this and other reasons Fermilab wanted something Open Source. They
recognized that Red Hat Linux was one of the more popular Open Source
choices, so they called us. In fact they called us six timesin the four months
during the system selection phase of the project, and we did not respond even
once to their inquiries. Nonetheless the result of their study was to select Red
Hat Linux as an officialy supported OS at Fermilab. The moral hereisthat (a)
we need to learn how to answer our phones better (we have), and (b) that
Fermilab was able to recognize that our business model was delivering them the
control over the Red Hat Linux OS they were intending to use--whether or not
Red Hat Software, Inc. was in position to support them.

So whether it is the large computer consuming organizations, or the large
computer technology suppliers (ISVs), the Linux OS provides benefitsand is
free from the maor limitations of all the proprietary binary-only OSes available
today. Careful brand management of Red Hat Linux among Linux distributions,
and careful market position of Linux among OS alternatives, enables Red Hat to
enjoy the growth and success we have today.

Licensing, Open Source, or Free Software

The benefit to using Linux is not the high reliability, ease of use, robustness, or
the tools included with the Linux OS. It is the benefit of control that results from
the two distinctive features of this OS; namely, that it ships with complete source
code, and that you can use this source code for whatever you chose--without so
much as asking our permission.

NASA, the outfit that rockets people off into outer space for aliving, has an
expression: " Software is not software without source code."

To the engineers at NASA, high reliability is not good enough. Extremely high
reliability it not good enough. NASA need perfect reliability. They cannot afford
to suffer the "blue screen of death" with twelve trusting souls rocketing at a
thousand miles an hour around the earth, depending on their systems to keep
them adlive.

NASA needs access to the source code of the software they are using to build
these systems. And they need that software to come with alicense that allows
them to modify it to meet their needs. Now I'll admit that the average dental
office billing system does not need the standards of reliability that NASA
astronauts depend on to bill patients for their annual teeth cleaning, but the

http://www.oreilly.com/catalog/opensources/book/young.html (9 of 15)

Open Sources: Voices from the Open Source Revolution

principle remains the same.

And unlike proprietary binary-only OSes, with Linux our users can modify the
product to meet the needs of the application they are building. Thisisthe unique
value proposition that Red Hat offers our customers. Thisis the proposition that
none of our much bigger competitors are willing or able to offer.

Thisisavalue proposition that overturns usual notions of intellectual property.
Rather than using a license to lock customersin and wall them off from the
source code, Red Hat needs a license that embodies the very idea of accessto
and control over source code. So what is an acceptable license for the purpose of
delivering this unigque value proposition? Reasonabl e people in the Open Source
community can and do differ in how they answer this question. But at Red Hat
we do have our current opinions on the subject and here they are;

The General Public License from the Free Software Foundation isin the spirit of
Open Source and, because it ensures that the modifications and improvements
made to the OS remain public, most effective for managing a cooperative
development project.

Our definition of "effective" goes back to the old days of Unix development.
Prior to 1984, AT& T used to share the source code to the Unix OS with any
team who could help them improve it. When AT& T was broken up, the resulting
AT&T was no longer restricted to being atelephone company. It decided to try
and make money selling licenses to the Unix OS. All the universities and
research groups who had helped build Unix suddenly found themselves having
to pay for licenses for an OS that they had helped build. They were not happy,
but could not do much about it--after all, AT& T owned the copyright to Unix.
The other development teams had been helping AT& T at AT& T's discretion.

Our concern isthe same. If Red Hat builds an innovation that our competitors
are able to use, the least we can demand is that the innovations our competitors
build are available to our engineering teams aswell. And the GPL is the most
effective license for ensuring that this forced cooperation among the various
team members continues to occur regardless of the competitive environment at
the time.

Keep in mind that one of the great strengths of the Linux OSisthat it isahighly
modular technology. When we ship aversion of Red Hat Linux we are shipping
over 435 separate packages. So licensing also has a practical dimension to it. A
license that enables Red Hat to ship the software but not make modifications to it

http://www.oreilly.com/catalog/opensources/book/young.html (10 of 15)

Open Sources: Voices from the Open Source Revolution

creates problems because users cannot correct or modify the software to their
needs. A less restrictive license that requires that the user ask the permission of
the original author before making changes still burdens Red Hat and our users
with too many restrictions. Having to ask possibly 435 different authors or
development teams for permission to make modifications is simply not practical.

But we are not ideological about licenses. We are comfortable with any license
that provides us with control over the software we are using, because that in turn
enables us to deliver the benefit of control to our customers and users, whether
they are NASA engineers or application programmers working on a dental office
billing system.

The Economic Engine Behind Devel opment
of
Open Source Software

The interesting stories of where Linux comes from helps illustrate the strong
economic model that is driving the development of this OS.

The Open Source community has had to overcome the stereotype of the hobbyist
hacker. According to this stereotype, Linux, for example, is built by fourteen-
year-old hackersin their bedrooms. We see here an example of the Fear,
Uncertainty, and Doubt (FUD) foisted on the software industry by vendors of
proprietary systems. After all, who wants to trust their mission-critical enterprise
applications to software written by afourteen-year-old in his spare time?

The redlity, of course, isvery different from this stereotype. While the "lone
hacker" is avaluable and important part of the development process, such
programmers account for aminority of the code that make up the Linux OS.
Linux's creator, Linus Torvalds, began work on Linux while he was a student,
and much of the codein the Linux OSis built by professional software
developers at major software, engineering, and research organizations.

A few examplesinclude the GNU C and C++ compilers that come from Cygnus
Solutions Inc. of Sunnyvale, California. The X Window System originally came
from the X Consortium (made up of support from IBM, HP, Digital, and Sun). A
number of ethernet drivers are now largely the responsibility of engineers at
NASA. Devicedrivers are now coming frequently from the device
manufacturers themselves. In short, building open-source software is often not

http://www.oreilly.com/catalog/opensources/book/young.html (11 of 15)

Open Sources: Voices from the Open Source Revolution

so different from building conventional software, and the talent behind Open
Source is by and large the same talent that is behind conventional software.

Grant Guenther, at the time a member of Empress Software's database
development team, wanted to enable his co-workers to work on projects from
home. They needed a secure method of moving large files from their office to
home and back. They were using Linux on PCs and using Zip drives. The only
problem was that at the time (1996), good Zip drive support was not available in
Linux.

So Grant had a choice: throw out the Linux solution and purchase a much more
expensive proprietary solution, or stop what he was doing and spend a coupl e of
days writing adecent Zip drive driver. He wrote one, and worked with other Zip
drive users across the Internet to test and refine the driver.

Consider the cost to Red Hat, or any other software company, of having to pay
Empress and Grant to develop that driver. Safe to say the cost would have been
in the tens of thousands of dollars, and yet Grant chose to "give away" his work.
In return, instead of money he received the use of agreat solution for his
problem of enabling Empress programmers to work from home, at a fraction of
the cost of the alternatives. Thisisthe kind of win-win proposition offered by
cooperative models like the Open Source devel opment model.

Unique Benefits

It's easy to confuse features with benefits. The Open Source model in general
and Linux in particular certainly have some unique features, and it's tempting to
say that those features are the reason that the world is adopting Linux with such
enthusiasm. As hundreds of MIS managers have commented to me, "Why would
anyone want source code to their OS?' The point is no one wants source code.
No one needs a Free Software license. Those are simply features of the OS. But
afeature is not necessarily a benefit. So what's the benefit associated with that
feature?

To the ongoing disappointment of the technical computing community, the best
technology seldom wins in even the most technical markets. Building a better
mousetrap does not assure you of success. Linux is not going to be successful
because it can be installed on a machine with less memory than alternative OSes,
or because it costs less than other OSes, or because it ismore reliable. Those are
al just features that make Linux arguably a better mousetrap than NT or OS/2.

http://www.oreilly.com/catalog/opensources/book/young.html (12 of 15)

Open Sources: Voices from the Open Source Revolution

The forces that will ultimately drive the success or failure of the Linux OS work
at adifferent level. In effect those factors are lumped generally under the topic
of "market positioning." Asasenior executive at Lotus asked us recently, "Why
does the world need another OS?" Linux will succeed only if it isnot "just
another OS." In other words, does Linux represent a new model for the
development and deployment of OSesor isit "just another OS'?

That is the question. And the answer is: Linux and the whole Open Source
movement represent a revolution in software development that will profoundly
improve the computing systems we are building now and in the future.

Open-source code is afeature. Control is the benefit. Every company wants
control over their software, and the feature of Open Source is the best way the
industry has found so far to achieve that benefit.

The Great Unix Flaw

The best example | know of to illustrate that the Linux model is a profoundly
different approach to building OSesisto look at what many people are
convinced is the ultimate outcome of this OS effort, namely that Linux will
balkanize the same way all the Unixes have. There are apparently thirty
different, largely incompatible, versions of the Unix OS available today.

But the forces that drive the various Unixes apart are working to unify the
various Linuxes.

The primary difference between Unix and Linux is not the kernel, or the Apache
server, or any other set of features. The primary difference between thetwo is
that Unix isjust another proprietary binary-only or IP-based OS. The problem
with aproprietary binary-only OS that is available from multiple suppliersis that
those suppliers have short-term marketing pressures to keep whatever
innovations they make to the OS to themselves for the benefit of their customers
exclusively. Over time these "proprietary innovations' to each version of the
Unix OS cause the various Unixes to differ substantially from each other. This
occurs when the other vendors do not have access to the source code of the
innovation and the license the Unix vendors use prohibit the use of that
innovation even if everyone else involved in Unix wanted to use the same
innovation.

In Linux the pressures are the reverse. If one Linux supplier adopts an
innovation that becomes popular in the market, the other Linux vendors will

http://www.oreilly.com/catalog/opensources/book/young.html (13 of 15)

Open Sources: Voices from the Open Source Revolution

immediately adopt that innovation. This is because they have access to the
source code of that innovation and it comes under alicense that allows them to
use it.

An example of how thisworksisthe very example that all the Linux skeptics
have been using to predict the downfall of the OS, namely the debate in 1997
between the older libc C libraries and the new glibc libraries. Red Hat adopted
the newer glibc libraries for strong technical reasons. There were popular
versions of Linux that stuck with the older libc libraries. The debate raged for all
of six months. Y et as 1998 drew to aclose all the popular Linux distributions
had either switched or announced plans to switch to the newer, more stable,
more secure, and higher performance glibc libraries.

That is part of the power of Open Source: it creates this kind of unifying
pressure to conform to a common reference point--in effect, an open standard--
and it removes the intellectual property barriers that would otherwise inhibit this
convergence.

|t's Your Choice

Whenever arevolutionary new practice comes along there are always skeptics
who predict itsinevitable downfall, pointing out all the obstacles the new model
must overcome before it can be called a success. There are aso the ideologues
who insist that it is only the purest implementation of the new model that can
possibly succeed. And then there are the rest of us who are just plugging away,
testing, innovating, and using the new technology model for those applications
where the new model works better than the old one.

The primary benefit of this new technology model can be seen in the birth of the
PC. When IBM published the specs to its PC in 1981, why did the world adopt
the PC computing model with such enthusiasm? It was not that the IBM PC was
a better mousetrap. The original 8086-based PCs shipped with 64K (yes, K)
bytes of main memory. They had an upper memory limit of 640K. No one could
imagine that a single user would need more that 640K on their individual
machine. A tape cassette recorder was available for data back-up.

What drove the PC revolution was that it provided its users with control over
their computing platform. They could buy their first PC from IBM, their second
from Compaq, and their third from HP. They could buy memory or hard drives
from one of a hundred suppliers, and they could get an amost infinite range of

http://www.oreilly.com/catalog/opensources/book/young.html (14 of 15)

Open Sources: Voices from the Open Source Revolution
peripheral equipment for almost any purpose or application.

This new model introduced a huge number of inconsistencies, incompatibilities,
and confusion, between technologies, products, and suppliers. But as the world
now knows, consumers love choice. Consumers will put up with a measure of
confusion and inconsistency in order to have choice--choice and control.

Notice also that the PC hardware business did not fragment. Specifications have
generally remained open, and there is strong pressure to conform to standards to
preserve interoperability. No one has a sufficiently better mousetrap with which
to entice users and then hold them hostage by going proprietary. Instead
iNnovations--better mousetraps--accrue to the community at large.

The Linux OS gives consumers choice over the technology that comes with their
computers at the operating system level. Does it require awhole new level of
responsibility and an expertise on the part of the user? Certainly.

Will that user prefer to go back to the old model of being forced to trust his
proprietary binary-only OS supplier once he has experienced the choice and
freedom of the new model? Not likely.

Criticswill continue to look for, and occasionally find, serious problems with
Linux technology. But consumers love choice, and the huge I nternet-based open-
source software devel opment marketplace is going to figure out ways to solve all
of them.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/young.html (15 of 15)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

O’REILLY Online Catalog SEARCH THE LATALOG
= Open Sources: Voices from the

OPENSOURCES | Open Source Revolution

Mwrn 1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Diligence, Patience, and Humility

Larry Wall

We have afondness for sayings in the Perl community. One of them is"There's
more than one way to do it." Thisistruein Perl. It'salso true of Perl. And it's
true of the Open Source community, as the essaysin this volume illustrate. |
won't tell you everything about how Open Source works; that would be like
trying to explain why English works. But | can say something about the state of
Perl, and where it's going.

Here's another saying: Three great virtues of programming are laziness,
impatience, and hubris. Great Perl programmers embrace those virtues. So do
Open Source developers. But here I'm going to talk about some other virtues:
diligence, patience, and humility. If you think these sound like the opposite,
you're right. If you think a single community can't embrace opposing values,
then you should spend more time with Perl. After all, there's more than one way
todoit.

Written languages probably began with impatience. Or laziness. Without written
language, you had to meet another person face to face to communicate with
them, or you had to persuade another person to convey your message for you.
And there was no way to know what had previously been said except to

http://www.oreilly.com/catalog/opensources/book/larry.html (1 of 24)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

remember it. But written language gave people symbols, symbols that could
stand for things--if the community could agree on what the symbols stood for.
So language requires consensus. It's something a group can agree on. Itis, in
short, a symbol that ties a community together. Most symbols work that way.

So let's ook at some symbols:

Study it carefully. It's called acircle. It'savery nicecircle, ascirclesgo. Very
pretty. Very symmetrical. Very ssimple.

Now if you're areductionist, you'll say it'sonly acircle, and nothing more. Well,
actudly, if you're really areductionist, you'll say it's ajust bunch of photons, but
we won't go there, because it wouldn't shed any light on the subject.

If you're not areductionist, then the circle you see here does not exist in
isolation. It exists in relationship to many other things, and in fact takesits
meaning from them. In order to understand this ssmple circle, you have to
understand its context, which means you have to understand something about
reality.

S0 here's apicture of reality:

Aswe al know, redlity isamess.

Thisisapicture of many things. It's a picture of air molecules bouncing around.
It's a picture of the economy. It's a picture of all the relationships of the peoplein
thisroom. It's a picture of what the typical human language looks like. It'sa
picture of your company's information systems. It's a picture of the World Wide

http://www.oreilly.com/catalog/opensources/book/larry.html (2 of 24)

Open Sources: Voices from the Open Source Revolution

Web. It's a picture of chaos, and of complexity.

It's certainly a picture of how Perl is organized, since Perl is modeled on human
languages. And the reason human languages are complex is because they have to
deal with reality.

We all have to deal with reality one way or another. So we simplify. Often we
oversimplify.

Our ancestors oversimplified. They fooled themselves into thinking that God
only created circles and spheres. They thought God would always prefer
simplicity over complexity. When they discovered that reality was more
complicated than they thought, they just swept the complexity under a carpet of
epicycles. That is, they created unnecessary complexity. Thisisan important
point. The universe is complex, but it's usefully complex.

Evidence abounds that people continue to oversimplify today. Some people
prefer to oversimplify their cosmology. Others prefer to oversimplify their
theology. Many computer language designers oversimplify their languages, and
end up sweeping the universe's complexity under the carpet of the programmer.

It's anatural human trait to look for patternsin the noise, but when we look for
those patterns, sometimes we see patterns that aren't really there. But that doesn't
mean there aren't real patterns. If we can find a magic wand to suppress the
noise, then the signal pops right out. Abracadabra . . . Here is the shape of the
big bang, and of stars, and of soap bubbles:

Hereisthe shape of dimensionality, of salt crystals, and the spaces between tree
trunks:

http://www.oreilly.com/catalog/opensources/book/larry.html (3 of 24)

Open Sources: Voices from the Open Source Revolution

Here is the shape of an anthill, or a Christmas tree. Or the shape of atrinity:

/N

And, of course, once you know the patterns are there, you can pick out the
simple figures without the extra chromatic help:

T

FAN

Our brains are built to do that.

Now, you may be wondering what all this hasto do with Perl. Thefact is, your
brain is built to do Perl programming. Y ou have a deep desire to turn the
complex into the ssmple, and Perl isjust another tool to help you do that--just as
| am using English right now to try to ssimplify readlity. | can use English for that
because English is amess.

Thisisimportant, and alittle hard to understand. English is useful becauseit's a
mess. Since English isamess, it maps well onto the problem space, which is
also amess, which we call reality. Similarly, Perl was designed to be a mess
(though in the nicest of possible ways).

Thisis counterintuitive, so let me explain. If you've been educated as any kind of
an engineer, it has been pounded into your skull that great engineering issimple

http://www.oreilly.com/catalog/opensources/book/larry.html (4 of 24)

Open Sources: Voices from the Open Source Revolution

engineering. We are taught to admire suspension bridges more than railroad
trestles. We are taught to value ssimplicity and beauty. That's nice. | like circles
too.

However, complexity is not always the enemy. What's important is not
simplicity or complexity, but how you bridge the two.

T

FAN

Y ou need a certain amount of complexity to do any particular job. A Saturn V
rocket is said to have had seven million parts, all of which had to work. But
that's not entirely true. Many of those parts were redundant. But that redundancy
was absolutely necessary to achieve the goal of putting someone on the moonin
1969. So if some of those rocket parts had the job of being redundant, then each
of those parts still had to do their part. So to speak. They also serve who only
stand and wait.

We betray ourselves when we say "That's redundant,” meaning "That's useless."”
Redundancy is not always "redundant,” whether you're talking about rockets or
human languages or computer languages. In short, simplicity is often the enemy
of success.

Suppose | want to take over the world. Simplicity says | should just take over the
world by myself. But the reality of the situation isthat | need your help to take
over the world, and you're all very complex. | actually consider that afeature.

Y our relationships are even more complex. | usually think of those as features.
But sometimes they're bugs. We can debug relationships, but it's always good
policy to consider the people themselves to be features. People get annoyed
when you try to debug them.

We mentioned that some complexity is useless, and someis useful. Here's
another example of useful complexity:

http://www.oreilly.com/catalog/opensources/book/larry.html (5 of 24)

Open Sources: Voices from the Open Source Revolution

Now, most of you sitting here are probably prejudiced in favor of western
writing systems, and so you think an ideographic writing system is needlessly
complex. Y ou may even be thinking that this picture is as complicated as the
previous one. But again, it's akind of engineering tradeoff. In this case, the
Chinese have traded learnability for portability. Does that sound familiar?

Chineseisnot, in fact, asingle language. It's about five major languages, any of
which are mutually unintelligible. And yet, you can write Chinese in one
language and read it in another. That'swhat | call a portable language. By
choosing ahigher level of abstraction, the Chinese writing system optimizes for
communication rather than for ssimplicity. There are abillion people in China
who can't al talk to each other, but at least they can pass notes to each other.

Computers also like to pass notes to each other. Only we call it networking.

A lot of my thinking this year has been influenced by working with Unicode and
with XML. Ten years ago, Perl was good at text processing. It's even better at it
now, for the old definition of text. But the definition of "text" has been changing
out from under Perl over those ten years.

Y ou can blame it al on the Internet.

5'”'[]‘::?;;‘"’ — Hipoll

It seems that when you click buttons on your browser, it makes computers want
to pass notes to each other. And they want to pass these notes over cultural
boundaries. Just as you want to understand what pops up on your screen, your
computer wants to understand what it's about to pop up on your screen, because,
believe it or not, the computer would actually like to do it right. Computers may
be stupid, but they're always obedient. Well, almost always.

http://www.oreilly.com/catalog/opensources/book/larry.html (6 of 24)

Open Sources: Voices from the Open Source Revolution

That's where Unicode and XML come in. Unicodeisjust a set of universal
ideographs so that the world's computers can pass notes around to each other,
and have some chance of doing the right thing with them. Some of the
ideographs in Unicode happen to match up with various national character sets
such as ASCII, but nobody in the world will ever learn all of those languages.
Nobody is expecting you to learn all those languages. That's not the point.

Here's the point. Last month | was working on my church's web page. Our
church has just started a Chinese congregation, so it now has two names, one of
which can be represented in ASCI|I, and one of which cannot. Here's what the

page looks like:

Ao Lo e
Cuperting Church of the

hazarena Prinp

Thersere. F aspase i o Chns, e i a new creaiien, el
£ M Qi maay babokt af iags s

DA B

I

D0 KTl Ao
Capesrira, Th BG314
(438} 287=3=1

Lar Manman

& Toencoeregs & pessensl redronatip wich Hhe
Chibt o e Bids

o Ta bald indslhaibe cormmaty S0 ik

o Ta shing e lovs and e omeng power al
Sapaw Chne

Wi Eripharsize

& An e relibonshep aith Gad

u Woshep beth gethered snd smerie

u kdirkdry by ol od's paople

& Tha chiarch geattenad

& Fnbing up TiE i peaaialtian

& Felewibip avong Ood's Peopks
W llabasn

e e

£ Carar £1F

& bl ghadw chages

@~ Bk Sy raipd

o Mirn's i e mi
i e rinem

@ S0 P b lor tedie!

@ Shlf 1t snpashr S teomd

m Pl oshar ndom teon wh
rere kiind2

o)

& Sundsy schasl Sascn

& W pram Kede coddmn s aonehp
Hisali

If your browser isfairly recent, and if you have a Unicode font loaded, then this
Iswhat you see. There's something important | want you to notice here.

If I'd done this ayear ago, this block of Chinese characters would probably have
been a GIF image. But there's a problem with images. Y ou can't cut and paste
characters from a GIF image. I've tried it often enough to know, and I'm sure you
have too. If I'd done this ayear ago, I'd also have had to add another layer of
complexity to the page. I'd need something like a CGlI script to detect whether
the browser supports Unicode, because if it doesn't, these characters splatter
garbage all over the page. Garbage is usually construed as useless complexity.

Anyway, back to simplicity:

http://www.oreilly.com/catalog/opensources/book/larry.html (7 of 24)

Open Sources: Voices from the Open Source Revolution

We use circles to represent many things. Our circle of friends. A hug, when
written on the back of an envelope. The circle of awedding ring, which stands
for unending love.

Proceeding from the sublime to the ridiculous, we aso have the round file,
which isakind of hell for dead paperwork.

Spheres of light. Black holes. Or at least their event horizons.

Onering to rule them al, and in the darkness bind them.

Crystal balls. Pearls.

Onions. Pearl onions.

Circlesfigure heavily in our symbology. And in particular, by adding various

http://www.oreilly.com/catalog/opensources/book/larry.html (8 of 24)

Open Sources: Voices from the Open Source Revolution

appurtenances to circles, we sometimes represent some rather complicated
notions with simple symbols. These symbols are the bridges between simplicity
and complexity.

Here'sareal Zen diagram:

Well, actually, it's not. In fact, the yinyang comes from the Tao, or Dao if you
can't pronounce an unaspirated "t". The Tao is an ancient oriental philosophy,
and predates Zen by more than a millennium.

Anyway, back to yins and yangs.

The yinyang represents a dualistic philosophy, much like The Forcein Sar
Wars. You know, how is The Force like duct tape? Answer: it hasalight side, a
dark side, and it holds the universe together. I'm not a dualist myself, because |
believe the light is stronger than the darkness. Neverthel ess, the concept of
balanced forcesis useful at times, especially to engineers. When an engineer
wants to balance forces, and wants them to stay balanced, he reaches for the duct

tape.

When | made this yinyang, | wondered whether | was doing it right. It'd be a
shame to get it backwards, or sideways, or something.

WEell, you know, sometimes that sort of thing matters. It matters alot to organic
chemists, who call it chirality--if you take a molecule of spearmint flavor and
flip it left for right, you end up with a molecule of caraway flavor. Yuck. | used
to think | hated rye bread, till | discovered it was the caraway seedsthey put in
that | didn't like.

http://www.oreilly.com/catalog/opensources/book/larry.html (9 of 24)

Open Sources: Voices from the Open Source Revolution

Now, which of those flavors you prefer isjust a matter of taste, but doctors and
organic chemists will tell you that there are times when chirality is a matter of
life and death. Or of deformed limbs, in the case of Thalidomide. It was the
"wrong" kind of Thalidomide that actually caused the problems. Dyslexics will
tell you that chirality mattersalot in visual symbols. Thistalk is brought to you
by the letters"b" and "d". And "p" and "g". And the number 6. Not to mention
the number 9. You can seea 6 and a9 in the yinyang, in this orientation.

In short, | wondered whether the yinyang is like a swastika, where which way
you make it determines who gets mad at you.

So | did some research, on the Web, of course. The fact is, the Web is the perfect
example of TMTOWTDI--there's more than one way to do it. In this case, there's
every way to doit. You can find the yinyang in every possible orientation. | still
don't know whether any of them is more right than the others.

A TYEDYE WORLD is some folks on the Web who sell tie-dyed tee shirts. |
guess they'd be Tao-dyed in this case. They think it looks like this:

| supposeif you want it the other way you just put the shirt on inside-out. Putting
it on upside-down is going to get you stared at.

The folks at the Unicode consortium think it looks like this. | don't know if
they'reright, but if they're not, it doesn't matter. They published it this way, and
now it's right by definition.

http://www.oreilly.com/catalog/opensources/book/larry.html (10 of 24)

Open Sources: Voices from the Open Source Revolution

Of course, my dictionary hasit upside from that:

WEell, back to Unicode. Unicodeisfull of circles. Many national scripts within
Unicode make use of the circle, and in most of those, it represents the digit O.
Hereis Unicode number 3007 (hex). It's the ideographic symbol for O:

O

Surprise, surprise. It looks like our 0. Chalk one up for cultural imperialism. In
English, of course, we tend to squish our 0 sideways to distinguish it from the
letter O.

-

In Bengali, they squish it the other way, but for similar reasons:

http://www.oreilly.com/catalog/opensources/book/larry.html (11 of 24)

Open Sources: Voices from the Open Source Revolution

O

| find it interesting that the world has so many different representations for
nothing. One could make endless jokes on it: Much ado about nothing, or
Nothing can stop an idea whose time has come. Here's something related to
nothing:

Thisisthe universal "prohibited" symbol. In Unicode, it's classified asa
combining character.

Of course, in Perl culture, amost nothing is prohibited. My feeling is that the
rest of the world already has plenty of perfectly good prohibitions, so why invent
more? That applies not just to programming, but also to interpersonal
relationships, by the way. | have upon more than one occasion been requested to
gject someone from the Perl community, generally for being offensive in some
fashion or other. So far | have consistently refused. | believe thisisthe right
policy. At least, it'sworked so far, on a practical level. Either the offensive
person has left eventually of their own accord, or they've settled down and
learned to deal with others more constructively. It's odd. People understand
instinctively that the best way for computer programs to communicate with each
other isfor each of the them to be strict in what they emit, and liberal in what
they accept. The odd thing is that people themselves are not willing to be strict in
how they speak and liberal in how they listen. Y ou'd think that would also be
obvious. Instead, we're taught to express ourselves.

On the other hand, we try to encourage certain virtues in the Perl community. As
the apostle Paul points out, nobody makes laws against love, joy, peace,
patience, kindness, goodness, gentleness, meekness, or self-control. So rather
than concentrating on forbidding evil, let's concentrate on promoting good.
Here's the Unicode for that:

http://www.oreilly.com/catalog/opensources/book/larry.html (12 of 24)

Open Sources: Voices from the Open Source Revolution

Of course, if you're aflower child, you might prefer this one:

Some of the positive Unicodes aren't so obvious.

Here's the symbol for abilabial click, one of the symbolsin the International
Phonetic Alphabet. Y ou may not know it, but many of you make this noise
regularly. If you want to try doing one, here's how. Y ou just kind of put your lips
together, then make an affricated sort of noise with ingressive mouth air.

Of course, in English we write that with an X, to go with those O's on the back
of the envelope. But you're witnessing the passing of an era. What with email
taking over, sending hugs and kisses on the backs of envelopesisbecoming a
lost art. It just doesn't have quite the same effect as a header line in email.
Content-type: text/hugs& kisses.

Y ou know, it's also rather difficult to perfume an email message. Content-type:
text/scented. The mind boggles.

Here are more simple circles that represent complicated things. Here's the
symbol for earth:

http://www.oreilly.com/catalog/opensources/book/larry.html (13 of 24)

Open Sources: Voices from the Open Source Revolution

Here's the symbol for Mars:

And here's the symbol for Venus:

Now, | used to work at Jet Propulsion Laboratory, and | helped just alittle to
discover that Mars and Venus are pretty complicated. But asif things weren't
complicated enough, the ancients complicated things further by overloading
those symbols to represent male and female. Men are from Mars, women are
from Venus, we are told, but that is not a new idea.

Here's some more history.

If you cut an onion, it looks like this. If we take this to be a picture of the world
of Perl, then | must be that little bit of onion inside.

http://www.oreilly.com/catalog/opensources/book/larry.html (14 of 24)

Open Sources: Voices from the Open Source Revolution

O

Around me are some of the early adopters of Perl, who are now revered as
heroes of the revolution. As more people have joined the movement, new layers
have been added. Y ou can also picture this as an atom, with layers of electron
shells. Of course, no atom we know of has quite that many electron shells. So
stick with the onion.

Now the thing about the onion is that it teaches me something about my own
importance, or lack thereof. Namely, that while | may have started all this, I'm
still alittle bit of the onion. Most of the massisin the outer layers. (That'swhy |
like to see grassroots movements like the Perl Mongers springing up.) But here |
sitinthe middle. | get abit of honor for my historical significance, but in actual
fact, most people see the outside of the onion, not the inside. Unless they make
onion rings. But even then, the bigger rings have more to them than the smaller
rings. Let that be alesson to those of you who wish to be "inner ringers.” That's
not where the real power is. Not in this movement, anyway. |'ve tried to model
the Perl movement on another movement I'm a member of, and the founder of
that movement said, "He who wishes to be greatest among you must become the
servant of all." Of histwelve inner ringers, one betrayed him, and ten of the
other eleven went on to suffer a martyr's death. Not that I'm asking any of my
friends to throw themselvesto the lionsjust yet.

But back to growth patterns. Natural pearls grow in layers too, around agrain of
sand that irritates the oyster in question, which forms layers of pretty stuff. This
could be the cross-section of a pearl. People cut up onions frequently, but they
almost never cut up pearls. So it's even truer of pearlsthan of onions. The outer
layer is the most important. It's what people see. Or if the pearl is still growing,
it'sthe layer that will support the layer after it. | realize that that classifies me as
amereirritant. | am content to be so classified.

Other things grow over time too. Perhaps if we change the picture to a set of tree
rings, it'll be clearer:

http://www.oreilly.com/catalog/opensources/book/larry.html (15 of 24)

Open Sources: Voices from the Open Source Revolution

If you're familiar with abit of physics, you know that a pipeisamost as strong
as asolid bar of the same diameter, because most of the force is transmitted in
the outer layers. Thefact is, the center of the tree can rot, but the tree remains
perfectly healthy. In asimilar fashion, most of the health of Perl cultureisin
what is happening in the periphery, not in the center. People are saving
themselves billions of dollars every year by programming in Perl, but most of
those savings are happening out in the trenches. Even closer into the center, alot
more work is going into hooking Perl up to other things than into changing Perl
itself. And | think thisis asit should be. Core Perl is stabilizing somewhat. Even
with core changes such as multithreading and Unicode support, we pretend that
we're adding extension modul es, because that's cleaner, and people don't have to
invoke the new functionality if they don't want to.

All this stuff about growth ringsisfine for talking about the past, but what about
the future? | don't have acrystal ball. | do own two pairs of binoculars. Here's
the typical symbol for that:

Thisis, of course, the usual cinematic device for indicating that someoneis
looking through binoculars. | don't know offhand what | should put for the field
of view here, so let's see what's at the other end of the binoculars:

http://www.oreilly.com/catalog/opensources/book/larry.html (16 of 24)

Open Sources: Voices from the Open Source Revolution

Of courseg, this can also be a picture of two tidally locked bodies rotating around

each other:

Each of these planetsis raising tides on the other one. People usually understand
why thereis atidal bulge on the side facing the other planet. What they don't
understand so easily iswhy there's a bulge on the other side of the planet. But it
makes sense when you consider that the other planet is not only pulling the near
bulge away from the center of the planet, but it's also pulling the center of the
planet away from the far bulge.

Thisisarealy good picture of the relationship of the free software community
with the commercial software community. We might even label some of the
extremes. Let's just make up some names. We could call the left extreme, um,
"Richard." And we could call the right extreme something like, oh, "Bill."

The middle bulges are alittle harder to name, but just for today we can call this
one on the middle left "Larry," and that one on the middle right "Tim."

Thisis, of course, another oversimplification, because various people and
organizations aren't at a single spot in the diagram, but tend to rattle around.
Some people manage to oscillate back and forth from one bulge to the other.
One moment they're in favor of more cooperation between the freeware and
commercial communities, and the next moment they're vilifying anything
commercia. At least our hypothetical Richard and Bill are consistent.

But the action isin the middle.

That's where everybody's been looking, to see what's going to happen. In fact,
thisisreally last year's picture. Thisyear it looks more like this:

http://www.oreilly.com/catalog/opensources/book/larry.html (17 of 24)

Open Sources: Voices from the Open Source Revolution

Robert L. Forward has written a book, actually a series of books, about a place
called Rocheworld. It's named after afellow named Roche, surprise, surprise.
He's the fellow who defined Roche's limit, which predicted that planets would
break up if they got too close to each other. It turns out he oversimplified
because his math wasn't powerful enough. If you allow your planets to deform
into shapes like these, you can get them very much closer together, and keep
them stable. Mind you, the net gravitational pull on these pointsisvery low, but
it's enough to keep the planets together.

In similar fashion, the freeware and commercial communities are much closer
together this year than many people thought possible by the old calculations. In
Rocheworld, the planets did not touch, but they shared atmospheres. If we fuzz
things out a little with the magic of xpaint, then we kind of get the picture:

Y ou see how you can fly from one planet to the other, but not walk. It's
reminiscent of quantum mechanical tunneling, where you can't get from here to
there but you do it anyway with aflying leap.

What we have flowing between the freeware and commercial communitiesis a
lot of ideas. Together, these two inner lobes define what we're now calling the
Open Source movement. What we have here is something brand new: former
enemies agreeing on a common good that transcends any particular business
model. And that common good is better software sooner. Here's what made it all
possible. People realized the power of asimple idea. We don't need software
patents or trade secrets. All we need another ssimple circle:

http://www.oreilly.com/catalog/opensources/book/larry.html (18 of 24)

Open Sources: Voices from the Open Source Revolution

A circlewitha"c" init. Open Source lives or dies on copyright law. Our fond
hopeisthat it lives. Please, let's all do our part to keep it that way. If you have a
chance to plug copyrights over patents, please do so. | know many of you are
already plugging copyrights over trade secrets. Let's also uphold copyright law
by respecting the wishes of copyright holders, whether or not they are spelled
out to the satisfaction of everyone's lawyer. The"c" in the circle should stand for
civility.

When we think of civility, we think of cities, and of doing thingsfair and square.
So herée's the requisite square:

And indeed, cities are built on squares, and rectangles. We call them blocks. And
if the city planners leave the buildings off of ablock, we call it asquare. Even if
it isn't square. Go figure.

Sometimes the buildings themselves are square:

But often they're not. Similarly, if you look through the Unicode book, there are
not nearly so many sguares as there are circles. | think there's a fundamental
underlying reason for that. When we build buildings, and when we write
characters, we install them into arectilinear framework. In terms of writing, we
write left-to-right, or right-to-left, or top-to-bottom. The abstract cells into which
we install the characters or buildings are squarish. But both buildings and
characters tend to disappear visually if they follow the same lines as the overall
text. So most characters tend to contain lines at odd angles, just as many modern
skyscrapers are designed to avoid looking like boxes. Nobody really likes the

http://www.oreilly.com/catalog/opensources/book/larry.html (19 of 24)

Open Sources: Voices from the Open Source Revolution

skyscrapers of the 1960s, because they're too boxy. People like things to be
visually distinct from their surroundings.

That is also why the various classes of operators and variablesin Perl are
visually distinct from each other. It's just sound human engineering, asfar as|'m
concerned. | don't like the fact that all the operators|ook the samein Lisp. | don't
like the fact that most the street signslook alike in Europe. And | applaud the
decision of Germany to make their stop signs look different from all the other
signs. Of coursg, it's also helpful to us ignorant Americans that they made them
look like American stop signs. Chalk up another one for cultural imperialism.

However, in repentance for American cultural imperialism, let me point out
another advantage of the ideographic system of writing. Because ideographs are
written into square cells, they can just as easily be written horizontally as
vertically. Or vice versa. Our variable-width characters do not have that nice
property. Especialy in afont like Helvetica, where you have trouble telling i's
and I's apart even when they're next to each other. Put one above the other and
it'd just look like a dotted line. Chalk one up for the Chinese, the Japanese, and
the Koreans.

To wrap up, I'd like to talk about triangles. Here's a sample:

Triangles are related to circles in the same way that arrowheads are related to
targets. Here's atarget:

| know | got this oneright. | looked it up on the Web. More importantly, |
stopped as soon as | found the first one.

http://www.oreilly.com/catalog/opensources/book/larry.html (20 of 24)

Open Sources: Voices from the Open Source Revolution

Actualy, thisisthe Unicode character named "bulls-eye."

I'm not quite sure what it's supposed to mean. But that's never stopped me
before. I'll make it mean something.

I've shot alot of arrows in this essay, and | don't know whether I've hit any bulls-
eyesyet. We put triangles on the front of arrows because they're sharp. Triangles
are associated with pain, especially if you step on one. The angles of the triangle
tend to suggest the hard work of climbing a mountain:

On the other hand, looks can be deceiving. A triangle aso represents aflat road
stretching to the horizon:

It's all a matter of perspective. Y ou can choose your view by choosing where to
stand. | can't predict whether Perl's road ahead will be bumpy or smooth, but |
can predict that the more perspectives we can see things from, the easier it will
be to choose the perspectives we like. And thisis, after al, the job of alanguage
designer, to survey the problem from many perspectives, to be just alittle bit
omniscient, so that other people can benefit. | do alittle triangulation, and | map

http://www.oreilly.com/catalog/opensources/book/larry.html (21 of 24)

Open Sources: Voices from the Open Source Revolution
the territory. That's my job. If my map gets you where you're going, I'm happy.

If you take a section out of the Perl onion, it looks kind of like atriangle. Put in
on its side and you have a growth chart for Perl over the last ten years:

All fine and dandy. This chart is notional, of course. | have no way of measuring
Perl's actual growth. But obvioudly it is still growing. We're doing alot of things
right, and by and large we should keep doing just what we're doing.

Now suppose we shrink this triangle and extend the chart to show the whole
lifetime of Perl. Wereally don't know how long it might last.

It's hard to say what will make the difference here. But | have to tell you that |
don't evaluate the success of Perl in terms of how many people like me. When |
integrate these curves, | count the number of people I've helped get their job
done.

| can tell you that | think the difference between curve 1 and curve 2 might
depend on adding in all the potential Windows users, and all the problems they
need to solve. Which are many. It's no accident that we've just put out a Win32
Perl Resource Kit.

And | can tell you that the difference between curve 2 and curve 3 may depend
on adding in al the international users that could benefit from Perl. It'sno
accident that the latest development version of Perl lets you name your variables
with any charactersthat are considered to be alphanumeric in Unicode. That
includes ideographs. There are abillion people in China. And | want them to be
able to pass notes to each other written in Perl. | want them to be able to write

http://www.oreilly.com/catalog/opensources/book/larry.html (22 of 24)

Open Sources: Voices from the Open Source Revolution
poetry in Perl.
That is my vision of the future. My chosen perspective.

| began by talking about the virtues of a programmer: laziness, impatience, and
hubris.

Diligence

Pofiance Humility

These are virtues of passion. They are also virtues of an individual. They are not,
however, virtues of community. The virtues of community sound like their
opposites. diligence, patience, and humility.

Leziness

Imgpatience Hubris

They're not really opposites, because you can do them all at the sametime. It's
another matter of perspective. These are the virtues that have brought us this far.
These are the virtues that will carry our community into the future, if we do not
abandon them.

Basically, we just have to stay the course. Friedrich Nietzsche called it a"long
obedience in the same direction,” which is a good snappy slogan. But | like the
full quote too:

The essential thing "in heaven and earth” is. . . that there should be long
obedience in the same direction; there thereby results, and has always resulted
in the long run, something which has made life worth living.

And now we've come full circle, back to the circle. Here is the front door of
Bilbo Baggins house. There's aroad that goes from that door, and Bilbo wrote a

http://www.oreilly.com/catalog/opensources/book/larry.html (23 of 24)

Open Sources: Voices from the Open Source Revolution

poem about it.

The Road goes ever on and on,
Down from the door where it began.
Now far ahead the Road has gone,
And | must follow, if | can,

Pursuing it with eager feet,

Until it joins some larger way
Where many paths and errands meet.
And whither then? | cannot say.

J.RR. Tolkien,

The Hobbit

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/larry.html (24 of 24)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

O’REILLY Online Catalog SEARCH THE LATALOG

llllll

ENmELE

Open Sources: Voices from the

OPENSOURCES | Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Open Source as a Business Strategy

Brian Behlendorf

Over 1997 and 1998, open-source software such as Linux, FreeBSD, Apache,
and Per| started to attract widespread attention from a new audience: engineering
managers, executives, industry analysts, and investors.

Most of the developers of such software welcomed this attention: not only does
it boost the pride of developers, it also alows them to justify their efforts (now
increasingly related to their salaried positions) to upper management and their

peers.

But this new audience has hard questions:

. Isthisreally anew way of building software?

. Are each of the successes in open-source software a fluke of circumstance,

or isthere arepeatable methodology to al this?

. Why on earth would | allocate scarce financial resources to a project

where my competitor would get to use the same code, for free?

. How reliant is this whole development model upon the hobbyist hacker or

computer science student who just happens to put the right bits together to

http://www.oreilly.com/catalog/opensources/book/brian.html (1 of 26)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

make something work well?

. Doesthisthreaten or obsolesce my company's current methods for
building software and doing business?

| suggest that the open-source model isindeed areliable model for conducting
software development for commercial purposes. | will attempt to lay out the
preconditions for such a project, what types of projects make sense to pursuein
this model, and the steps a company should go through to launch such a project.
This essay is intended for companies who either release, sell, and support
software commercialy, or for technology companies that use a given piece of
software as a core component to their business processes.

|t's All About Platforms

While I'm indeed a big fan of the open-source approach to software
development, there are definitely situations where an open-source approach
would not benefit the parties involved. There are strong tradeoffs to this model,
and returns are never guaranteed. A proper analysis requires asking yourself
what your goals as a company are in the long term, as well as what your
competitive advantages are today.

Let's start first with a discussion about Application Programming Interfaces
(APIs), platforms, and standards. For the purposes of thisessay, I'll wrap APIs
(such as the Apache server API for building custom modules), on-the-wire
protocols like HTTP, and operating system conventions (such as the way Linux
organizes system files, or NT servers are administered) into the generic term
"platform."

Win32, the collection of routines and facilities provided and defined by
Microsoft for all Windows 95 and NT application developers, is aplatform. If
you intend to write an application for people to use on Windows, you must use
this API. If you intend, as IBM once did with OS/2, to write an operating system
which can run programs intended for MSWindows, you must implement the
Win32 API initsentirety, as that's what Windows applications expect to be able
to use.

Likewise, the Common Gateway Interface, or "CGl," isaplatform. The CGI
specification allows web server devel opers to write scripts and programs that run
behind aweb server. CGI is amuch much ssimpler platform than Win32, and of
course does much less, but its existence was important to the web server market

http://www.oreilly.com/catalog/opensources/book/brian.html (2 of 26)

Open Sources: Voices from the Open Source Revolution

because it allowed application devel opersto write portable code, programs that
would run behind any web server. Besides afew orders of magnitudein
complexity, akey difference between CGI and Win32 was that no one really
owned the CGlI specification; it was simply something the major web servers
implemented so that they could run each others' CGI scripts. Only after several
years of use was it deemed worthwhile to define the CGI specification as an
informational Request for Comments (RFCs) at the Internet Engineering Task
Force (IETF).

A platform iswhat essentially defines a piece of software, any software, beit a
web browser like Netscape, or be it Apache. Platforms enable people to build or
use one piece of software on top of another, and are thus essential not just for the
Internet space, where common platformslike HTTP and TCF/IP are what really
facilitated the Internet's explosive growth, but are becoming more and more
essential to consider within a computer environment, both in a server context
and in an end-user client context.

In the Apache project, we were fortunate in that early on we developed an
internal API to allow usto distinguish between the core server functionality (that
of handling the TCP connections, child process management, and basic HTTP
request handling) and almost all other higher-level functionality like logging, a
module for CGl, server-side includes, security configuration, etc. Having areally
powerful API has aso allowed us to hand off other big pieces of functionality,
such as mod_perl (an Apache module that bundles a Perl interpreter into
Apache) and mod_jserv (which implements the Java Servilet API), to separate
groups of committed developers. This freed the core development group from
having to worry about building a"monster” to support these large effortsin
addition to maintaining and improving the core of the server.

There are businesses built upon the model of owning software platforms. Such a
business can charge for all use of this platform, whether on a standard software
installation basis, or a pay-per-use basis, or perhaps some other model.
Sometimes platforms are enforced by copyright; other times platforms are
obfuscated by the lack of awritten description for public consumption; other
times they are evolved so quickly, sometimes other than for technical reasons,
that others who attempt to provide such a platform fail to keep up and are
perceived by the market as "behind" technologically speaking, even though it's
not a matter of programming.

Such a business model, while potentially beneficial in the short term for the

http://www.oreilly.com/catalog/opensources/book/brian.html (3 of 26)

Open Sources: Voices from the Open Source Revolution

company who owns such a platform, works against the interests of every other
company in the industry, and against the overall rate of technological evolution.
Competitors might have better technology, better services, or lower costs, but are
unable to use those benefits because they don't have access to the platform. On
the flip side, customers can become reliant upon a platform and, when prices
rise, be forced to decide between paying alittle more in the short run to stick
with the platform, or spending a large quantity of money to change to a different
platform, which may save them money in the long run.

Computers and automation have become so ingrained and essential to day-to-day
business that a sensible business should not rely on a single vendor to provide
essential services. Having a choice of service means not just having the freedom
to choose; a choice must also be affordable. The switching cost is an important
aspect to this freedom to choose. Switching costs can be minimized if switching
software does not necessitate switching platforms. Thusit isawaysin a
customers interests to demand that the software they deploy be based on non-
proprietary platforms,

Thisisdifficult to visualize for many people because classic economics, the
supply and demand curves we were all taught in high school, are based on the
notion that products for sale have arelatively scalable cost--that to sell ten times
as much product, the cost of raw goods to a vendor typically rises somewhere on
the order of ten times as well. No one could have foreseen the dramatic economy
of scale that software exhibits, the almost complete lack of any direct correlation
between the amount of effort it takes to produce a software product and the
number of people who can thus purchase and useiit.

A reference body of open-source software that implements awire protocol or
APl is more important to the long-term health of that platform than even two or
three independent non-open-source implementations. Why is this? Because a
commercia implementation can always be bought by a competitor, removing it
from the market as an alternative, and thus destroying the notion that the
standard was independent. It can also serve as an academic frame of reference
for comparing implementations and behaviors.

There are organizations like the IETF and the W3C who do a more-or-less
excellent job of providing aforum for multiparty standards development. They
are, overall, effective in producing high-quality architectures for the way things
should work over the Internet. However, the long-term success of a given
standard, and the widespread use of such a standard, are outside of their

http://www.oreilly.com/catalog/opensources/book/brian.html (4 of 26)

Open Sources: Voices from the Open Source Revolution

jurisdiction. They have no power to force member organizations to create
software that implements the protocols they define faithfully. Sometimes, the
only recourse is a body of work that shows why a specific implementation is
correct.

For example, in December of 1996, AOL made adight change to their custom
HTTP proxy serverstheir customers use to access web sites. This "upgrade" had
acute little political twist to it: when AOL users accessed a web site using the
Apache 1.2 server, at that time only afew months old and implementing the new
HTTP/1.1 specification, they were welcomed with this rather informative

message:
UNSUPPORTED WEB VERSION

The Web address you requested is not available in a version supported by AOL.
Thisis an issue with the Web site, and not with AOL. The owner of thissiteis
using an unsupported HT TP language. If you receive this message frequently,
you may want to set your web graphics preferences to COMPRESSED at
Keyword: PREFERENCES

Alarmed at this "upgrade," Apache core developers circled the wagons and
analyzed the situation. A query to AOL's technical team came back with the
following explanation:

New HTTP/1.1 web servers are starting to generate HTTP/1.1 responses to
HTTP/1.0 requests when they should be generating only HTTP/1.0 responses.
We wanted to stem the tide of those faults proliferating and becoming a de facto
standard by blocking them now. Hopefully the authors of those web servers will
change their software to only generate HTTP/1.1 responses when an HTTP/1.1
request is submitted.

Unfortunately AOL engineers were under the mistaken assumption that
HTTP/1.1 responses were not backward-compatible with HTTP/1.0 clients or
proxies. They are; HT TP was designed to be backward-compatible within minor-
number revisions. But the specification for HTTP/1.1 is so complex that aless
than thorough reading may lead one to have concluded this was not the case,
especialy with the HTTP/1.1 document that existed at the end of 1996.

So we Apache devel opers had a choice--we could back down and give HTTF/1.0
responses to HTTP/1.0 requests, or we could follow the specification. Roy
Fielding, the"HTTP cop" in the group, was able to clearly show us how the
software's behavior at the time was correct and beneficial; there would be cases
where HTTP/1.0 clients may wish to upgrade to an HTTP/1.1 conversation upon

http://www.oreilly.com/catalog/opensources/book/brian.html (5 of 26)

Open Sources: Voices from the Open Source Revolution

discovering that a server supported 1.1. It was also important to tell proxy
serversthat even if the first request they proxied to an origin server they saw was
1.0, the origin server could aso support 1.1.

It was decided that we'd stick to our guns and ask AOL to fix their software. We
suspected that the HTTP/1.1 response was actually causing a problem with their
software that was due more to sloppy programming practices on their part than
to bad protocol design. We had the science behind our decision. What mattered
most was that Apache was at that point on 40% of the web servers on the Net,
and Apache 1.2 was on a very healthy portion of those, so they had to decide
whether it was easier to fix their programming mistakes or to tell their users that
some 20% or more of the web sites on the Internet were inaccessible through
their proxies. On December 26th, we published a web page detailing the dispute,
and publicized its existence not just to our own user base, but to several major
news outlets as well, such as C|Net and Wired, to justify our actions.

AOL decided to fix their software. Around the same time, we announced the
availability of a"patch" for sites that wanted to work around the AOL problem
until it was rectified, a patch that degraded responsesto HTTF/1.0 for AOL. We
were resol ute that this was to remain an "unofficial" patch, with no support, and
that it would not be made a default setting in the official distribution.

There have been severa other instances where vendors of other HT TP products
(including both Netscape and Microsoft) had interoperability issues with
Apache; in many of those cases, there was a choice the vendor had to make
between expending the effort to fix their bug, or writing off any sites which
would become inoperable because of it. In many cases a vendor would
implement the protocol improperly but consistently on their clients and servers.
The result was an implementation that worked fine for them, but imperfectly at
best with either aclient or server from another vendor. Thisis much more subtle
than even the AOL situation, as the bug may not be apparent or even significant
to the maority of people using this software--and thus the long-term
ramifications of such abug (or additional bugs compounding the problem) may
not be seen until it'stoo late.

Were there not an open-source and widely used reference web server like
Apache, it's entirely conceivable that these subtle incompatibilities could have
grown and built upon each other, covered up by mutual blame or Jedi mind
tricks ("We can't repeat that inthelab. . . ."), where the response to "I'm having
problem when | connect vendor X browser to vendor Y server” is, "Well, use

http://www.oreilly.com/catalog/opensources/book/brian.html (6 of 26)

Open Sources: Voices from the Open Source Revolution

vendor Y client and it'll be all better." At the end of this process we would have
ended up with two (or more) World Wide Webs--one that was built on vendor X
web servers, the other on vendor Y servers, and each would only work with their
respective vendors clients. There is ample historic precedence for this type of
anti-standard activity, apolicy ("locking in") which is encoded as abasic
business practice of many software companies.

Of course thiswould have been a disaster for everyone else out there--the
content providers, service providers, software developers, and everyone who
needed to use HT TP to communicate would have had to maintain two separate
serversfor their offerings. While there may have been technical customer
pressure to "get along together," the contrary marketing pressure to "innovate,
differentiate, lead the industry, define the platform" would have kept either party
from attempting to commodify their protocols.

We did, in fact, see such a disaster with client-side JavaScript. There was such a
big difference in behavior between different browsers, even within different beta
versions of the same browser, that developers had to create code that would
detect different revisions and give different behavior--something that added
significantly more development time to interactive pages using JavaScript. It
wasn't until the W3C stepped in and laid the groundwork for a Document Object
Model (DOM) that we actually saw a serious attempt at creating a multiparty
standard around JavaScript.

There are natural forces in today's business world that drive for deviation when a
specification isimplemented by closed software. Even an accidental misreading
of acommon specification can cause a deviation if not corrected quickly.

Thus, | argue that building your services or products on top of a standards-based
platform is good for the stability of your business processes. The success of the
Internet has not only shown how common platforms help facilitate
communication, it has also forced companies to think more about how to create
value in what gets communicated, rather than trying to take value out of the
network itself.

Analyzing Your Goalsfor an Open-Source
Project

What you need to ask yourself, as a company, is to what degree your products
implement a new platform, and to what extent isit in your business interests to

http://www.oreilly.com/catalog/opensources/book/brian.html (7 of 26)

Open Sources: Voices from the Open Source Revolution

maintain ownership of that platform. How much of your overall product and
service set, and thus how much of your revenue, is above that platform, or below
it? Thisis probably something you can even apply numbers to.

Let's say you're a database company. Y ou sell a database that runs on multiple
OSes; you separately sell packages for graphical administration, rapid
development tools, alibrary of common stored procedures people can use, €tc.
Y ou sell support on ayearly basis. Upgrades require a new purchase. Y ou also
offer classes. And finally, you've got a growing but healthy consulting group
who implement your database for customers,

L et's say your revenue balance looks something like this;

. 40%--Sales of the database software

« 15%--Support

. 10%--Consulting work

. 10%--Rapid development tools

« 10%--Graphical administration tools

. 10%--Library of stored procedures/applications on top of this DB
. 5%--Manuals/classes

At first glance, the suggestion that you give away your database software for free
would be ludicrous. That's 40% of your revenue gone. If you're lucky asa
company you're profitable, and if you're even luckier you've got maybe a 20%
profit margin. 40% wipes that out completely.

This of course assumes nothing else changes in the equation. But the chances
are, if you pull this off right, things will change. Databases are the type of
application that companies don't just pull off the shelf at CompUSA, throw the
CD into their machine, and then forget about. All of the other categories of
revenue are still valid and necessary no matter how much was charged for the
OS. In fact, there is now more freedom to charge more for these other services
than before, when the cost of the software ate up the bulk of what a customer
typically paid for when they bought database software.

So very superficially speaking, if the free or low-cost nature of the database were
to cause it to be used on twice as many systems, and users were as equally
motivated as before to purchase consulting and support and devel opment tools

http://www.oreilly.com/catalog/opensources/book/brian.html (8 of 26)

Open Sources: Voices from the Open Source Revolution

and libraries and such from your company, you'd see a 20% gain in the overall
amount of revenue. What's more likely isthat three to four times as many new
users are introduced to your software, and while the take-up rate of your other
servicesislower (either because people are happy just using the free version, or
you have competitors now offering these services for your product), so long as
that take-up rate doesn't go too low, you've probably increased overall revenue
into the company.

Furthermore, depending on the license applied, you may see lower costs
involved in development of your software. You're likely to see bugs fixed by
motivated customers, for example. You're aso likely to see new innovationsin
your software by customers who contribute their code to the project because they
want to see it maintained as a standard part of the overall distribution. So overall,
your development costs could go down.

It's also likely that, given a product/services mix like the above example,
releasing this product for free does little to help your competitors compete
against you in your other revenue spaces. There are probably already consultants
who do integration work with your tools; already independent authors of books;
aready libraries of code you've encouraged other companies to build. The
availability of source code will marginally help competitors be able to provide
support for your code, but as the original developers, you'll have a cache to your
brand that the others will have to compete against.

Not all iswine and roses, of course. There are costs involved in this process that
are going to be difficult to tie to revenue directly. For example, the cost of
infrastructure to support such an endeavor, while not significant, can consume
systems administration and support staff. There's also the cost of having

devel opers communicating with others outside the company, and the extra
overhead of developing the code in a public way. There may be significant cost
involved in preparing the source code for public inspection. And after all this
work, there may ssimply not be the "market need" for your product as freeware.
I'll address all these pointsin the rest of this essay.

Evaluating the Market Need for Your Project

It may be very tempting for a company to look to Open Source as away to save
aparticular project, to gain notoriety, or to simply have a good story to end a
product category. These are not good reasons to launch an open-source project.
If acompany is serious about pursuing this model, it needsto do itsresearch in

http://www.oreilly.com/catalog/opensources/book/brian.html (9 of 26)

Open Sources: Voices from the Open Source Revolution

determining exactly what the product needs to be for an open-source strategy to
be successful.

Thefirst step isto conduct a competitive analysis of the space, both for the
commercial competitors and the freeware competitors, no matter how small. Be
very careful to determine exactly what your product offers by componentizing
your offering into separable "chunks' that could be potentially bundled or sold
or open-sourced separately. Similarly, don't exclude combinations of freeware
and commercialware that offer the same functionality.

L et's continue with the database vendor example above. Let's say there are
actually three components to the vendor's database product: a core SQL server, a
backup/transaction logging manager, and a developer library. Such a vendor
should not only compare their product's offering to the big guys like Oracle and
Sybase, not only to the smaller but growing commercial competitors like Solid
and Velocis, but also to the free databases like MySQL and Postgres. Such an
analysis may conclude that the company's core SQL server provides only alittle
more functionality than MySQL, and in an area that was never considered a
competitive advantage but merely a necessary feature to keep up with the other
DB vendors. The backup/transaction logging manager has no freeware
competition, and the developer library is surpassed by the Perl DBI utilities but
has little Java or C competition.

This company could then consider the following strategies:

1. Replace the core SQL server with MySQL, and then package up the
core SQL server functionality and backup/transaction logging
manager, and sell JavalC libraries while providing and supporting the
free Perl library. This would ride upon the momentum generated by
the MySQL package, and the incredible library of add-on code and
plug-in modules out there for it; it would aso allow you to keep
private any pieces of code you may believe have patents or patent-
able code, or code you simply think is cool enough that it'sa
competitive advantage. Market yourself as a company that can scale
MySQL up to larger deployments.

2. Contribute the "extra core SQL server functionality" to MySQL, then
design the backup/transaction logger to be sold as a separate product
that works with awider variety of databases, with a clear preference
for MySQL. This has smaller revenue potential, but allowsyou as a
company to be more focused and potentially reach a broader base of

http://www.oreilly.com/catalog/opensources/book/brian.html (10 of 26)

Open Sources: Voices from the Open Source Revolution

customers. Such a product may be easier to support as well.

3. Gointhe other direction: stick with acommercia product strategy for
the core SQL server and libraries, but open-source the
backup/transaction logger as a general utility for awide array of
databases. Thiswould cut down on your development costs for this
component, and be a marketing lead generator for your commercial
database. It would also remove a competitive advantage some of your
commercial competitors would have over open source, even though it
would also remove some of yours too.

All of these are valid approaches to take. Another approach:

1. Open-source the entire core server as its own product, separate from
MySQL or Postgres or any of the other existing packages, and provide
commercial support for it. Sell as standard non-open-source the
backup/logging tool, but open-source the development librariesto
encourage new users. Such a strategy carries morerisk, as a popular
package like MySQL or Postgres tends to have been around for quite
some time, and there's inherently much developer aversion to
swapping out a database if their current one isworking fine. To do
this, you'd have to prove significant benefit over what people are
currently using. Either it has to be dramatically faster, more flexible,
easier to administer or program with, or contain sufficiently new
features that users are motivated to try it out. Y ou also have to spend
much more time soliciting interest in the project, and you probably
will have to find away to pull developers away from competing
products.

| wouldn't advocate the fourth approach in this exact circumstance, as MySQL
actually has a very healthy head start here, lots and lots of add-on programs, and
arather large existing user base.

However, from time to time an open source project loses momentum, either
because the core devel opment team is not actively doing development, or the
software runs into core architectural challenges that keep it from meeting new
demands, or the environment that created this demand simply dries up or
changes focus. When that happens, and it becomes clear people are looking for
alternatives, there is the possibility of introducing a replacement that will attract

http://www.oreilly.com/catalog/opensources/book/brian.html (11 of 26)

Open Sources: Voices from the Open Source Revolution

attention, even if it does not immediately present a significant advance over the
status quo.

Analyzing demand is essential. In fact, it's demand that usually creates new open-
source projects. Apache started with a group of webmasters sharing patches to
the NCSA web server, deciding that swapping patches like so many baseball
cards was inefficient and error-prone, and electing to do a separate distribution

of the NCSA server with their patches built in. None of the principalsinvolved

in the early days got involved because they wanted to sell acommercial server
with Apache asits base, though that's certainly avalid reason for being involved.

So an analysis of the market demand for a particular open-source project also
involves joining relevant mailing lists and discussion forums, cruising discussion
archives, and interviewing your customers and their peers; only then can you
realistically determine if there are people out there willing to help make the
project bear fruit.

Going back to Apache's early days:. those of us who were sharing patches around
were also sending them back to NCSA, hoping they'd be incorporated, or at the
very least acknowledged, so that we could be somewhat assured that we could
upgrade easily when the next release came out. NCSA had been hit when the
previous server programmers had been snatched away by Netscape, and the
flood of email was too much for the remaining developers. So building our own
server was more an act of self-preservation than an attempt to build the next
great web server. It'simportant to start out with limited goals that can be
accomplished quite easily, and not have to rely upon your project dominating a
market before you realize benefits from the approach.

Open Source's Position in the Spectrum of
Software

To determine which parts of your product line or components of a given product
to open-source, it may be helpful to conduct asimple exercise. First, draw aline
representing a spectrum. On the left hand side, put "Infrastructural,” representing
software that implements frameworks and platforms, all the way down to
TCP/IP and the kernel and even hardware. On the right hand side, put "End-user
applications," representing the tools and applications that the average, non-
technical user will use. Along thisline, place dots representing, in relative terms,
where you think each of the components of your product offering lie. From the

http://www.oreilly.com/catalog/opensources/book/brian.html (12 of 26)

Open Sources: Voices from the Open Source Revolution

above example, the GUI front-ends and administrative tools lie on the far right-
hand side, while code that manages backups is off to the far left. Development
libraries are somewhat to the right of center, while the core SQL facilities are
somewhat to the left. Then, you may want to throw in your competitors products
aswell, also separating them out by component, and if you're really creative,
using a different color pen to distinguish the free offerings from the commercia
offerings. What you are likely to find is that the free offerings tend to clump
towards the left-hand side, and the commercial offerings towards the right.

Open-source software has tended to be slanted towards the infrastructural/back-
end side of the software spectrum represented here. There are several reasons for
this:

. End-user applications are hard to write, not only because a programmer
has to deal with a graphical, windowed environment which is constantly
changing, nonstandard, and buggy ssimply because of its complexity, but
also because most programmers are not good graphical interface
designers, with notable exceptions.

. Culturally, open-source software has been conducted in the networking
code and operating system space for years.

. Open-source tends to thrive where incremental change is rewarded, and
historically that has meant back-end systems more than front-ends.

. Much open-source software was written by engineers to solve atask they
had to do while developing commercial software or services; so the
primary audience was, early on, other engineers.

Thisiswhy we see solid open-source offerings in the operating system and
network services space, but very few offerings in the desktop application space.

There are certainly counterexamplesto this. A great exampleisthe GIMP, or
GNU Image Manipulation Program, an X 11 program comparable in feature set
to Adobe Photoshop. Y et in some ways, this product is also an "infrastructure"
tool, aplatform, since it owes its success to its wonderful plug-in architecture,
and the dozens and dozens of plug-ins that have been developed that alow it to
import and export many different file formats and which implement hundreds of
filter effects.

L ook again at the spectrum you've drawn out. At some point, you can look at
your offering in the context of these competitors, and draw avertical line. This

http://www.oreilly.com/catalog/opensources/book/brian.html (13 of 26)

Open Sources: Voices from the Open Source Revolution

line denotes the separation between what you open-source and what you may
choose to keep proprietary. That line itself represents your true platform, your
interface between the public code you're trying to establish as a standard on the
left, and your private code you want to drive demand for on the right.

Nature Abhors a Vacuum

Any commercial-software gaps in an otherwise open-source infrastructural
framework are a strong motivating force for redevelopment in the public space.
Like some force of nature, when acommercial wall exists between two strong
pieces of open-source software, there's pressure to bridge that gap with a public
solution. Thisis because every gap can be crossed given enough resources, and
if that gap is small enough for your company to cross with your own
development team, it's likely to be small enough for a set of motivated
developers to also cross.

L et's return to the database example: say you decide to open-source your core
SQL server (or your advanced code on top of MySQL), but decide to make
money by building acommercial, non-source-available driver for plugging that
database into aweb server to create dynamic content. Y ou decide the database
will be aloss leader for this product, and therefore you'll charge far higher than
normal margins on this component.

Since hooking up databases to web serversis avery common and desirable
thing, developers will either have to go through you, or find another way to
access the database from the web site. Each developer will be motivated by the
idea of saving the money they'd otherwise have to pay you. If enough developers
pool their resources to make it worth their while, or a single talented individual
simply can't pay for the plug-in but still wants to use that database, it's possible
you could wake up one morning to find an open-source competitor to your
commercia offering, completely eliminating the advantage of having the only
solution for that task.

Thisisapiece of alarger picture: relying upon proprietary source codein
strategic places as your way of making money has become arisky business
venture. If you can make money by supporting the web server + plug-in +
database combination, or by providing an interface to managing that system as a
whole, you can protect yourself against these types of surprises.

Not all commercial software has this vulnerability--it is specifically a

http://www.oreilly.com/catalog/opensources/book/brian.html (14 of 26)

Open Sources: Voices from the Open Source Revolution

characteristic of commercia software that triesto slot itself into a niche directly
between two well-established open-source offerings. Putting your commercial
offering as an addition to the current set of open-source offeringsis amore solid

strategy.

Donate, or Go It Alone?

Open-source software exists in many of the standard software categories,
particularly those focused on the server side. Obviously we have operating
systems; web servers; mail (SMTP, POP, IMAP), news (NNTP), and DNS
servers,; programming languages (the "glue" for dynamic content on the Web);
databases; networking code of all kinds. On the desktop you have text editors
like Emacs, Nedit, and Jove; windowing systems like Gnome and KDE; web
browsers like Mozilla; and screen savers, calculators, checkbook programs,
PIMs, mail clients, image tools--the list goes on. While not every category has
category-killers like Apache or Bind, there are probably very few commercial
niches that don't have at least the beginnings of a decent open source alternative
available. Thisis much less true for the Win32 platform than for the Unix or
Mac platforms, primarily because the open-source culture has not adopted the
Win32 platform as "open" enough to really build upon.

Thereisacompelling argument for taking advantage of whatever momentum an
existing open-source package has in a category that overlaps with your potential
offering, by contributing your additional code or enhancements to the existing
project and then aiming for areturn in the form of higher-quality code overall,
marketing lead generation, or common platform establishment. In evaluating
whether this is an acceptable strategy, one needs to look at licensing terms:

. Aretheterms on the existing package copacetic to your long-term goals?
. Canyou legally contribute your code under that license?

. Doesit incent future devel opers sufficiently? If not, would the developers
be willing to accommodate you by changing the license?

. Areyour contributions general enough that they would be of value to the
developers and users of the existing project? If all they do isimplement an
API to your proprietary code, they probably won't be accepted.

. If your contributions are hefty, can you have "peer" status with the other
developers, so that you can directly apply bug fixes and enhancements you
make later?

http://www.oreilly.com/catalog/opensources/book/brian.html (15 of 26)

Open Sources: Voices from the Open Source Revolution

. Arethe other developers people you can actually work with?

. Areyour developers people who can work with othersin a collaborative
setting?

Satisfying developersis probably the biggest challenge to the open-source
development model, one which no amount of technology or even money can
really address. Each developer has to feel like they are making a positive
contribution to the project, that their concerns are being addressed, their
comments on architecture and design questions acknowledged and respected,
and their code efforts rewarded with integration into the distribution or areally
good reason why not.

People mistakenly say "open-source software works because the whole Internet
becomes your R& D and QA departments!” In fact, the amount of talented
programmer effort available for agiven set of tasksisusually limited. Thus, itis
usually to everyone'sinterestsif parallel development efforts are not undertaken
simply because of semantic disputes between developers. On the other hand,
evolution works best when alternatives compete for resources, so it's not a bad
thing to have two competing solutions in the same niche if there's enough talent
pool for critical mass--some real innovation may be tried in one that wasn't
considered in the other.

Thereis strong evidence for competition as a healthy trait in the SMTP server
space. For along time, Eric Allman's " Sendmail" program was the standard
SMTP daemon every OS shipped with. There were other open-source
competitors that came up, like Smail or Zmailer, but the first to really crack the
usage base was Dan Bernstein's Qmail package. When Qmail came on the scene,
Sendmail was 20 years old, and had started to show its age; it was also not
designed for the Internet of the late 90s, where buffer overflows and denial of
service attacks are as common as rainfall in Seattle. Qmail was aradical break in
many ways--program design, administration, even in its definition of what good
"network behavior" for an SMTP server is. It was an evolution that would have
been exceedingly unlikely to have been made within Allman's Sendmail
package. Not because Allman and his team weren't good programmers or
because there weren't motivated third-party contributors; it's just that sometimes
aradical departure is needed to really try something new and see if it works. For
similar reasons, IBM funded the development of Weiste Venema's
"SecureMailer" SMTP daemon, which as of thiswriting also appearsto be likely
to become rather popular. The SMTP daemon space is well-defined enough and

http://www.oreilly.com/catalog/opensources/book/brian.html (16 of 26)

Open Sources: Voices from the Open Source Revolution

important enough that it can support multiple open-source projects; time will tell
which will survive.

Bootstrapping

Essential to the health of an open-source project is that the project have
sufficient momentum to be able to evolve and respond to new challenges.
Nothing is static in the software world, and each maor component requires
maintenance and new enhancements continually. One of the big selling points of
this model is that it cuts down on the amount of development any single party
must do, so for that theory to become fact, you need other active developers.

In the process of determining demand for your project, you probably ran into a
set of other companies and individuals with enough interest here to form a core
set of developers. Once you've decided on a strategy, shop it to this core set even
more heavily; perhaps start a ssimple discussion mailing list for this purpose, with
nothing set in stone. Chances are this group will have some significant ideas for
how to make this a successful project, and list their own set of resources they
could apply to make it happen.

For the simplest of projects, acommitment from this group that they'll give your
product atry and if they're happy stay on the development mailing list is
probably enough. However, for something more significant, you should try and
Size up just how big the total resource baseis.

Hereiswhat | would consider a minimum resource set for a project of moderate
complexity, say a project to build acommon shopping cart plug-in for aweb
server, or anew type of network daemon implementing a simple protocol. In the
process I'll describe the various roles needed and the types of skills necessary to
fill them.

. Role 1: Infrastructure support: Someone to set up and maintain the
mailing list aliases, the web server, the CV'S (Concurrent Versioning
System) code server, the bug database, etc.

Sartup: 100 hours
Maintenance: 20 hrs/week.

. Role 2: Code "captain": Someone who watches all commits and has
overall responsibility for the quality of the implemented code. Integrates

http://www.oreilly.com/catalog/opensources/book/brian.html (17 of 26)

Open Sources: Voices from the Open Source Revolution

patches contributed by third parties, fixing any bugs or incompatibilitiesin
these contributions. Thisis outside of whatever new devel opment work
they are also responsible for.

Sartup: 40-200 hours (depends on how long it takes to clean up the code for
public consumption!)
Maintenance: 20 hrs/week

. Role 3: Bug database maintenance: While thisis not free "support,” it is
Important that the public have an organized way of communicating bug
reports and issues to the server developers. In afree setting, the developers
are of course not even obliged to answer al mail they get, but they should
make reasonabl e efforts to respond to valid issues. The bug database
maintainer would be the first line of support, someone who goes through
the submissions on aregular basis and weeds out the simple questions,
tosses the clueless ones, and forwards the real issues on to the devel opers.

Sartup: just enough to learn their way around the code
Maintenance: 10-15 hrs/week

. Role 4. Documentation/web site content maintenance: This position is
often left unattended in open-source projects and left to the engineers or to
people who really want to contribute but aren't star programmers; all too
often it's simply left undone. So long as we're going about this process
deliberately, locating dedicated resources to make sure that non-technical
people can understand and appreciate the tools they are deploying is
essential to widespread usage. It helps cut down on having to answer bug
reports which are really just misunderstandings, and it also helps
encourage new peopleto learn their way around the code and become
future contributors. A document that describes at a high level the internal
architecture of the software is essential; documentation that explains major
procedures or classes within the code is almost as important.

Sartup: 60 hours (presuming little code has been documented)
Maintenance: 10 hrs/week

. Role 5: Cheerleader/zeal ot/evangelist/strategist: Someone who can work
to build momentum for the project by finding other developers, push

http://www.oreilly.com/catalog/opensources/book/brian.html (18 of 26)

Open Sources: Voices from the Open Source Revolution

specific potential customersto giveit atry, find other companies who
could be candidates for adopting this new platform, etc. Not quite a
marketer or salesperson, as they need to stay close to the technology; but
the ability to clearly see therole of the project in alarger perspectiveis
essential.

Sartup: enough to learn the project
Maintenance: 20 hrs/week

So here we have five roles representing almost three full-time people. Inredlity,
some of these roles get handled by groups of people sharing responsibility, and
some projects can survive with the average core participant spending less than 5
hrs/week after the first set of release humps are passed. But for the early days of
the project it is essential that devel opers have the time and focus they would if
the project were aregular development effort at the company.

These five roles also do not cover any resources that could be put towards new
development; thisis purely maintenance. In the end, if you can not find enough
resources from peers and partners to cover these bases and enough extra
developers to do some basic new development (until new recruits are attracted),
you may want to reconsider open-sourcing your project.

What Licenseto Use?

Determining which license to use for your project can be afairly complex task;
it's the kind of task you probably don't enjoy but your legal team will. There are

other papers and web sites that cover copyright issuesin finer detail; I'll provide
an overview, though, of what | see as the business considerations of each style of
license.

The BSD-Style Copyright

Thisisthe copyright used by Apache and by the BSD-based operating systems
projects (FreeBSD, OpenBSD, NetBSD), and by and large it can be summed up
as, "Here's this code, do what you like with it, we don't care, just give us credit if
you try and sell it." Usually that credit is demanded in different forms--on
advertising, or in aREADME file, or in the printed documentation, etc. It has
been brought up that such a copyright may be inscalable--that is, if someone ever
released a bundle of software that included 40 different open-source modules, all
BSD-based, one might argue that there'd be 40 different copyright notices that

http://www.oreilly.com/catalog/opensources/book/brian.html (19 of 26)

Open Sources: Voices from the Open Source Revolution

would be necessary to display. In practice this has not been aproblem, and in
fact it's been seen as a positive force in spreading awareness of the use of open-
source software.

From a business perspective, thisisthe best type of license for jumping into an
existing project, as there are no worries about licenses or restrictions on future
use or redistribution. Y ou can mix and match this software with your own
proprietary code, and only release what you feel might help the project and thus
help you in return. Thisis one reason why we chose it for the Apache group--
unlike many free software projects, Apache was started largely by commercial
webmasters in search of a better web server for their own commercial needs.
While probably none of the original team had a goal of creating acommercial
server on top of Apache, none of us knew what our futures would hold, and felt
that limiting our options at the beginning wasn't very smart.

Thistype of licenseisideal for promoting the use of areference body of code
that implements a protocol or common service. Thisis another reason why we
chose it for the Apache group--many of us wanted to see HTTP survive and
become a true multiparty standard, and would not have minded in the dightest if
Microsoft or Netscape chose to incorporate our HT TP engine or any other
component of our code into their products, if it helped further the goal of
keeping HT TP common.

This degree of openness has risks. No incentive is built into the license to
encourage companies to contribute their code enhancements back to the project.
There have certainly been cases in Apache's history where companies have
devel oped technology around it that we would have like to have seen offered
back to the project. But had we had a license which mandated that code
enhancements be made available back to the project, such enhancements would
perhaps never have been made in the first place.

All this means that, strategically speaking, the project needs to maintain
sufficient momentum, and that participants realize greater value by contributing
their code to the project, even code that would have had value if kept
proprietary. Thisisatricky ratio to maintain, particularly if one company
decidesto dramatically increase the amount of coding they do on aderivative
project; and begins to doubt the potential return in proportion to their
contribution to the project, e.g., "We're doing all this work, more than anyone
else combined, why should we share it?" The author has no magic bullet for that
scenario, other than to say that such a company probably has not figured out the

http://www.oreilly.com/catalog/opensources/book/brian.html (20 of 26)

Open Sources: Voices from the Open Source Revolution

best way to inspire contributions from third parties to help meet their
engineering goals most efficiently.

The Mozlla Public License

The MozillaPublic License (MPL) was devel oped by the Netscape Mozilla team
for use on their project. It was the first new license in several years when it was
released, and really addressed some key issues not addressed by the BSD or
GNU licenses. It is adjacent to the BSD-style license in the spectrum of open-
source software licenses. It has two key differences:

It mandates that changes to the "distribution” also be released under the same
copyright as the MPL, which thus makes it availa