
Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Twenty Years of Berkeley Unix

From AT&T-Owned to Freely Redistributable

Marshall Kirk McKusick

Early History

Ken Thompson and Dennis Ritchie presented the first Unix paper at the
Symposium on Operating Systems Principles at Purdue University in November
1973. Professor Bob Fabry, of the University of California at Berkeley, was in
attendance and immediately became interested in obtaining a copy of the system
to experiment with at Berkeley.

At the time, Berkeley had only large mainframe computer systems doing batch
processing, so the first order of business was to get a PDP-11/45 suitable for
running with the then-current Version 4 of Unix. The Computer Science
Department at Berkeley, together with the Mathematics Department and the
Statistics Department, were able to jointly purchase a PDP-11/45. In January
1974, a Version 4 tape was delivered and Unix was installed by graduate student
Keith Standiford.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (1 of 19)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

Although Ken Thompson at Purdue was not involved in the installation at
Berkeley as he had been for most systems up to that time, his expertise was soon
needed to determine the cause of several strange system crashes. Because
Berkeley had only a 300-baud acoustic-coupled modem without auto answer
capability, Thompson would call Standiford in the machine room and have him
insert the phone into the modem; in this way Thompson was able to remotely
debug crash dumps from New Jersey.

Many of the crashes were caused by the disk controller's inability to reliably do
overlapped seeks, contrary to the documentation. Berkeley's 11/45 was among
the first systems that Thompson had encountered that had two disks on the same
controller! Thompson's remote debugging was the first example of the
cooperation that sprang up between Berkeley and Bell Labs. The willingness of
the researchers at the Labs to share their work with Berkeley was instrumental in
the rapid improvement of the software available at Berkeley.

Though Unix was soon reliably up and running, the coalition of Computer
Science, Mathematics, and Statistics began to run into problems; Math and
Statistics wanted to run DEC's RSTS system. After much debate, a compromise
was reached in which each department would get an eight-hour shift; Unix
would run for eight hours followed by sixteen hours of RSTS. To promote
fairness, the time slices were rotated each day. Thus, Unix ran 8 a.m. to 4 p.m.
one day, 4 p.m. to midnight the next day, and midnight to 8 a.m. the third day.
Despite the bizarre schedule, students taking the Operating Systems course
preferred to do their projects on Unix rather than on the batch machine.

Professors Eugene Wong and Michael Stonebraker were both stymied by the
confinements of the batch environment, so their INGRES database project was
among the first groups to move from the batch machines to the interactive
environment provided by Unix. They quickly found the shortage of machine
time and the odd hours on the 11/45 intolerable, so in the spring of 1974, they
purchased an 11/40 running the newly available Version 5. With their first
distribution of INGRES in the fall of 1974, the INGRES project became the first
group in the Computer Science department to distribute their software. Several
hundred INGRES tapes were shipped over the next six years, helping to
establish Berkeley's reputation for designing and building real systems.

Even with the departure of the INGRES project from the 11/45, there was still
insufficient time available for the remaining students. To alleviate the shortage,
Professors Michael Stonebraker and Bob Fabry set out in June 1974, to get two

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (2 of 19)

Open Sources: Voices from the Open Source Revolution

instructional 11/45's for the Computer Science department's own use. Early in
1975, the money was obtained. At nearly the same time, DEC announced the
11/70, a machine that appeared to be much superior to the 11/45. Money for the
two 11/45s was pooled to buy a single 11/70 that arrived in the fall of 1975.
Coincident with the arrival of the 11/70, Ken Thompson decided to take a one-
year sabbatical as a visiting professor at the University of California at Berkeley,
his alma mater. Thompson, together with Jeff Schriebman and Bob Kridle,
brought up the latest Unix, Version 6, on the newly installed 11/70.

Also arriving in the fall of 1975 were two unnoticed graduate students, Bill Joy
and Chuck Haley; they both took an immediate interest in the new system.
Initially they began working on a Pascal system that Thompson had hacked
together while hanging around the 11/70 machine room. They expanded and
improved the Pascal interpreter to the point that it became the programming
system of choice for students because of its excellent error recovery scheme and
fast compile and execute time.

With the replacement of Model 33 teletypes by ADM-3 screen terminals, Joy
and Haley began to feel stymied by the constraints of the ed editor. Working
from an editor named em that they had obtained from Professor George
Coulouris at Queen Mary's College in London, they worked to produce the line-
at-a-time editor ex.

With Ken Thompson's departure at the end of the summer of 1976, Joy and
Haley begin to take an interest in exploring the internals of the Unix kernel.
Under Schriebman's watchful eye, they first installed the fixes and
improvements provided on the "fifty changes" tape from Bell Labs. Having
learned to maneuver through the source code, they suggested several small
enhancements to streamline certain kernel bottlenecks.

Early Distributions
Meanwhile, interest in the error recovery work in the Pascal compiler brought in
requests for copies of the system. Early in 1977, Joy put together the "Berkeley
Software Distribution." This first distribution included the Pascal system, and, in
an obscure subdirectory of the Pascal source, the editor ex. Over the next year,
Joy, acting in the capacity of distribution secretary, sent out about thirty free
copies of the system.

With the arrival of some ADM-3a terminals offering screen-addressable cursors,

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (3 of 19)

Open Sources: Voices from the Open Source Revolution

Joy was finally able to write vi, bringing screen-based editing to Berkeley. He
soon found himself in a quandary. As is frequently the case in universities
strapped for money, old equipment is never replaced all at once. Rather than
support code for optimizing the updating of several different terminals, he
decided to consolidate the screen management by using a small interpreter to
redraw the screen. This interpreter was driven by a description of the terminal
characteristics, an effort that eventually became termcap.

By mid-1978, the software distribution clearly needed to be updated. The Pascal
system had been made markedly more robust through feedback from its
expanding user community, and had been split into two passes so that it could be
run on PDP-11/34s. The result of the update was the "Second Berkeley Software
Distribution," a name that was quickly shortened to 2BSD. Along with the
enhanced Pascal system, vi and termcap for several terminals was included.
Once again Bill Joy single-handedly put together distributions, answered the
phone, and incorporated user feedback into the system. Over the next year nearly
seventy-five tapes were shipped. Though Joy moved on to other projects the
following year, the 2BSD distribution continued to expand. The final version of
this distribution, 2.11BSD, is a complete system used on hundreds of PDP-11's
still running in various corners of the world.

VAX Unix
Early in 1978, Professor Richard Fateman began looking for a machine with a
larger address space on which he could continue his work on Macsyma
(originally started on a PDP-10). The newly announced VAX-11/780 fulfilled
the requirements and was available within budget. Fateman and thirteen other
faculty members put together an NSF proposal that they combined with some
departmental funds to purchase a VAX.

Initially the VAX ran DEC's operating system VMS, but the department had
gotten used to the Unix environment and wanted to continue using it. So, shortly
after the arrival of the VAX, Fateman obtained a copy of the 32/V port of Unix
to the VAX by John Reiser and Tom London of Bell Labs.

Although 32/V provided a Version 7 Unix environment on the VAX, it did not
take advantage of the virtual memory capability of the VAX hardware. Like its
predecessors on the PDP-11, it was entirely a swap-based system. For the
Macsyma group at Berkeley, the lack of virtual memory meant that the process
address space was limited by the size of the physical memory, initially 1

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (4 of 19)

Open Sources: Voices from the Open Source Revolution

megabyte on the new VAX.

To alleviate this problem, Fateman approached Professor Domenico Ferrari, a
member of the systems faculty at Berkeley, to investigate the possibility of
having his group write a virtual memory system for Unix. Ozalp Babaoglu, one
of Ferrari's students, set about to find some way of implementing a working set
paging system on the VAX; his task was complicated because the VAX lacked
reference bits.

As Babaoglu neared the completion of his first cut at an implementation, he
approached Bill Joy for some help in understanding the intricacies of the Unix
kernel. Intrigued by Babaoglu's approach, Joy joined in helping to integrate the
code into 32/V and then with the ensuing debugging.

Unfortunately, Berkeley had only a single VAX for both system development
and general production use. Thus, for several weeks over the Christmas break,
the tolerant user community alternately found themselves logging into 32/V and
"Virtual VAX/Unix." Often their work on the latter system would come to an
abrupt halt, followed several minutes later by a 32/V login prompt. By January,
1979, most of the bugs had been worked out, and 32/V had been relegated to
history.

Joy saw that the 32-bit VAX would soon make the 16-bit PDP-11 obsolete, and
began to port the 2BSD software to the VAX. While Peter Kessler and I ported
the Pascal system, Joy ported the editors ex and vi, the C shell, and the myriad
other smaller programs from the 2BSD distribution. By the end of 1979, a
complete distribution had been put together. This distribution included the
virtual memory kernel, the standard 32/V utilities, and the additions from 2BSD.
In December, 1979, Joy shipped the first of nearly a hundred copies of 3BSD,
the first VAX distribution from Berkeley.

The final release from Bell Laboratories was 32/V; thereafter all Unix releases
from AT&T, initially System III and later System V, were managed by a
different group that emphasized stable commercial releases. With the
commercialization of Unix, the researchers at Bell Laboratories were no longer
able to act as a clearing-house for the ongoing Unix research. As the research
community continued to modify the Unix system, it found that it needed an
organization that could produce research releases. Because of its early
involvement in Unix and its history of releasing Unix-based tools, Berkeley
quickly stepped into the role previously provided by the Labs.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (5 of 19)

Open Sources: Voices from the Open Source Revolution

DARPA Support
Meanwhile, in the offices of the planners for the Defense Advanced Research
Projects Agency (DARPA), discussions were being held that would have a major
influence on the work at Berkeley. One of DARPA's early successes had been to
set up a nationwide computer network to link together all their major research
centers. At that time, they were finding that many of the computers at these
centers were reaching the end of their useful lifetime and had to be replaced. The
heaviest cost of replacement was the porting of the research software to the new
machines. In addition, many sites were unable to share their software because of
the diversity of hardware and operating systems.

Choosing a single hardware vendor was impractical because of the widely
varying computing needs of the research groups and the undesirability of
depending on a single manufacturer. Thus, the planners at DARPA decided that
the best solution was to unify at the operating systems level. After much
discussion, Unix was chosen as a standard because of its proven portability.

In the fall of 1979, Bob Fabry responded to DARPA's interest in moving
towards Unix by writing a proposal suggesting that Berkeley develop an
enhanced version of 3BSD for the use of the DARPA community. Fabry took a
copy of his proposal to a meeting of DARPA image processing and VLSI
contractors, plus representatives from Bolt, Beranek, and Newman, the
developers of the ARPAnet. There was some reservation whether Berkeley
could produce a working system; however, the release of 3BSD in December
1979 assuaged most of the doubts.

With the increasingly good reputation of the 3BSD release to validate his claims,
Bob Fabry was able to get an 18-month contract with DARPA beginning in
April 1980. This contract was to add features needed by the DARPA contractors.
Under the auspices of this contract, Bob Fabry sets up an organization which
was christened the Computer Systems Research Group, or CSRG for short. He
immediately hired Laura Tong to handle the project administration. Fabry turned
his attention to finding a project leader to manage the software development.
Fabry assumed that since Joy had just passed his Ph.D. qualifying examination,
he would rather concentrate on completing his degree than take the software
development position. But Joy had other plans. One night in early March he
phoned Fabry at home to express interest in taking charge of the further
development of Unix. Though surprised by the offer, Fabry took little time to
agree.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (6 of 19)

Open Sources: Voices from the Open Source Revolution

The project started promptly. Tong set up a distribution system that could handle
a higher volume of orders than Joy's previous distributions. Fabry managed to
coordinate with Bob Guffy at AT&T and lawyers at the University of California
to formally release Unix under terms agreeable to all. Joy incorporated Jim
Kulp's job control, and added auto reboot, a 1K block file system, and support
for the latest VAX machine, the VAX-11/750. By October 1980, a polished
distribution that also included the Pascal compiler, the Franz Lisp system, and an
enhanced mail handling system was released as 4BSD. During its nine-month
lifetime, nearly 150 copies were shipped. The license arrangement was on a per-
institution basis rather than a per machine basis; thus the distribution ran on
about 500 machines.

With the increasingly wide distribution and visibility of Berkeley Unix, several
critics began to emerge. David Kashtan at Stanford Research Institute wrote a
paper describing the results of benchmarks he had run on both VMS and
Berkeley Unix. These benchmarks showed severe performance problems with
the Unix system for the VAX. Setting his future plans aside for several months,
Joy systematically began tuning up the kernel. Within weeks he had a rebuttal
paper written showing that Kashtan's benchmarks could be made to run as well
on Unix as they could on VMS.

Rather than continue shipping 4BSD, the tuned-up system, with the addition of
Robert Elz's auto configuration code, was released as 4.1BSD in June, 1981.
Over its two- year lifetime about 400 distributions were shipped. The original
intent had been to call it the 5BSD release; however, there were objections from
AT&T that there would be customer confusion between their commercial Unix
release, System V, and a Berkeley release named 5BSD. So, to resolve the issue,
Berkeley agreed to change the naming scheme for future releases to stay at
4BSD and just increment the minor number.

4.2BSD
With the release of 4.1BSD, much of the furor over performance died down.
DARPA was sufficiently satisfied with the results of the first contract that a new
two-year contract was granted to Berkeley with funding almost five times that of
the original. Half of the money went to the Unix project, the rest to other
researchers in the Computer Science department. The contract called for major
work to be done on the system so the DARPA research community could better
do their work.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (7 of 19)

Open Sources: Voices from the Open Source Revolution

Based on the needs of the DARPA community, goals were set and work begun
to define the modifications to the system. In particular, the new system was
expected to include a faster file system that would raise throughput to the speed
of available disk technology, support processes with multi-gigabyte address
space requirements, provide flexible interprocess communication facilities that
allow researchers to do work in distributed systems, and would integrate
networking support so that machines running the new system could easily
participate in the ARPAnet.

To assist in defining the new system, Duane Adams, Berkeley's contract monitor
at DARPA, formed a group known as the "steering committee" to help guide the
design work and ensure that the research community's needs were addressed.
This committee met twice a year between April 1981 and June 1983. It included
Bob Fabry, Bill Joy, and Sam Leffler of the University of California at Berkeley;
Alan Nemeth and Rob Gurwitz of Bolt, Beranek, and Newman; Dennis Ritchie
of Bell Laboratories; Keith Lantz of Stanford University; Rick Rashid of
Carnegie-Mellon University; Bert Halstead of the Massachusetts Institute of
Technology; Dan Lynch of The Information Sciences Institute; Duane Adams
and Bob Baker of DARPA; and Jerry Popek of the University of California at
Los Angeles. Beginning in 1984, these meetings were supplanted by workshops
that were expanded to include many more people.

An initial document proposing facilities to be included in the new system was
circulated to the steering committee and other people outside Berkeley in July,
1981, sparking many lengthy debates. In the summer of 1981, I became involved
with the CSRG and took on the implementation of the new file system. During
the summer, Joy concentrated on implementing a prototype version of the
interprocess communication facilities. In the fall of 1981, Sam Leffler joined the
CSRG as a full-time staff member to work with Bill Joy.

When Rob Gurwitz released an early implementation of the TCP/IP protocols to
Berkeley, Joy integrated it into the system and tuned its performance. During
this work, it became clear to Joy and Leffler that the new system would need to
provide support for more than just the DARPA standard network protocols.
Thus, they redesigned the internal structuring of the software, refining the
interfaces so that multiple network protocols could be used simultaneously.

With the internal restructuring completed and the TCP/IP protocols integrated
with the prototype IPC facilities, several simple applications were created to
provide local users access to remote resources. These programs, rcp, rsh, rlogin,

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (8 of 19)

Open Sources: Voices from the Open Source Revolution

and rwho were intended to be temporary tools that would eventually be replaced
by more reasonable facilities (hence the use of the distinguishing "r" prefix).
This system, called 4.1a, was first distributed in April 1982 for local use; it was
never intended that it would have wide circulation, though bootleg copies of the
system proliferated as sites grew impatient waiting for the 4.2 release.

The 4.1a system was obsolete long before it was complete. However, feedback
from its users provided valuable information that was used to create a revised
proposal for the new system called the "4.2BSD System Manual." This
document was circulated in February 1982 and contained a concise description
of the proposed user interfaces to the system facilities that were to be
implemented in 4.2BSD.

Concurrent with the 4.1a development, I completed the implementation of the
new file system, and by June 1982, had fully integrated it into the 4.1a kernel.
The resulting system was called 4.1b and ran on only a few select development
machines at Berkeley. Joy felt that with significant impending changes to the
system, it was best to avoid even a local distribution, particularly since it
required every machine's file systems to be dumped and restored to convert from
4.1a to 4.1b. Once the file system proved to be stable, Leffler proceeded to add
the new file system related system calls, while Joy worked on revising the
interprocess communication facilities.

In the late spring of 1982, Joy announced he was joining Sun Microsystems.
Over the summer, he split his time between Sun and Berkeley, spending most of
his time polishing his revisions to the interprocess communication facilities and
reorganizing the Unix kernel sources to isolate machine dependencies. With
Joy's departure, Leffler took over responsibility for completing the project.
Certain deadlines had already been established and the release had been
promised to the DARPA community for the spring of 1983. Given the time
constraints, the work remaining to complete the release was evaluated and
priorities were set. In particular, the virtual memory enhancements and the most
sophisticated parts of the interprocess communication design were relegated to
low priority (and later shelved completely). Also, with the implementation more
than a year old and the Unix community's expectations heightened, it was
decided an intermediate release should be put together to hold people until the
final system could be completed. This system, called 4.1c, was distributed in
April 1983; many vendors used this release to prepare for ports of 4.2 to their
hardware. Pauline Schwartz was hired to take over the distribution duties starting
with the 4.1c release.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (9 of 19)

Open Sources: Voices from the Open Source Revolution

In June 1983, Bob Fabry turned over administrative control of the CSRG to
Professors Domenico Ferrari and Susan Graham to begin a sabbatical free from
the frantic pace of the previous four years. Leffler continued the completion of
the system, implementing the new signal facilities, adding to the networking
support, redoing the standalone I/O system to simplify the installation process,
integrating the disc quota facilities from Robert Elz, updating all the
documentation, and tracking the bugs from the 4.1c release. In August 1983, the
system was released as 4.2BSD.

When Leffler left Berkeley for Lucasfilm following the completion of 4.2, he
was replaced by Mike Karels. Karels' previous experience with the 2.9BSD PDP-
11 software distribution provided an ideal background for his new job. After
completing my Ph.D. in December 1984, I joined Mike Karels full-time at the
CSRG.

The popularity of 4.2BSD was impressive; within eighteen months more than
1,000 site licenses had been issued. Thus, more copies of 4.2BSD had been
shipped than of all the previous Berkeley software distributions combined. Most
of the Unix vendors shipped a 4.2BSD system rather than the commercial
System V from AT&T. The reason was that System V had neither networking
nor the Berkley Fast filesystem. The BSD release of Unix only held its dominant
commercial position for a few years before returning to its roots. As networking
and other 4.2BSD improvements were integrated into the system V release, the
vendors usually switched back to it. However, later BSD developments
continued to be incorporated into System V.

4.3BSD
As with the 4.1BSD release, criticism was quick in coming. Most of the
complaints were that the system ran too slowly. The problem, not surprisingly,
was that the new facilities had not been tuned and that many of the kernel data
structures were not well-suited to their new uses. Karels' and my first year on the
project was spent tuning and polishing the system.

After two years of work spent tuning the system and refining the networking
code, we made an announcement at the June 1985 Usenix conference that we
anticipated releasing 4.3BSD later that summer. However, our release plans
were brought to an abrupt halt by the folks at BBN. They correctly pointed out
that we had never updated 4.2BSD with the final version of their networking
code. Rather, we were still using the much-hacked initial prototype that they had

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (10 of 19)

Open Sources: Voices from the Open Source Revolution

given us many years earlier. They complained to DARPA that Berkeley was to
implement the interface while BBN was supposed to implement the protocol, so
Berkeley should replace the TCP/IP code in 4.3BSD with the BBN
implementation.

Mike Karels got the BBN code and did an evaluation of the work that had been
done since the prototype that was handed off to Berkeley. He decided that the
best plan was to incorporate the good ideas from the BBN code into the Berkeley
code base, but not to replace the Berkeley code base. The reason to retain the
Berkeley code base was that it had gotten considerable testing and improvements
from the widespread distribution in 4.2BSD. However, as a compromise, he
offered to include both implementations on the 4.3BSD distribution and let users
select which one to use in their kernel.

After reviewing Mike Karels' decision, DARPA decided that releasing two code
bases would lead to unnecessary interoperability problems, and that just one
implementation should be released. To decide which code base to use, they gave
both to Mike Muuse of the Ballistics Research Laboratory, who was viewed by
both Berkeley and BBN as an independent third party. After a month of
evaluation, the report came back that the Berkeley code was more efficient but
that the BBN code handled congestion better. The tie breaker was that the
Berkeley code flawlessly ran all the tests while the BBN code panicked under
some stress conditions. The final decision by DARPA was that 4.3BSD would
stick with the Berkeley code base.

The polished 4.3BSD system was finally released in June 1986. As expected, it
quelled many of the performance complaints, much as the 4.1BSD release
quelled many of the complaints about 4BSD. Although most of the vendors had
started the switch back to System V, large parts of 4.3BSD were carried over
into their systems, particularly the networking subsystem.

In October 1986, Keith Bostic joined the CSRG. One condition of his
employment was that he be allowed to finish up a project that he had been
working on at his previous job, which was to port 4.3BSD to the PDP-11. While
both Karels and I believed that it would be impossible to get a system that
compiled to 250 Kbytes on the VAX to fit in the 64-Kbyte address space of the
PDP-11, we agreed that Bostic could finish up his attempts to do so. Much to our
amazement, the port was done successfully, using an intricate set of overlays and
auxiliary processor states found on the PDP-11. The result was the 2.11BSD
release, done by Casey Leedom and Bostic, which is still in use on some of the

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (11 of 19)

Open Sources: Voices from the Open Source Revolution

last remaining PDP-11's still in production in 1998.

Meanwhile, it was becoming increasingly obvious that the VAX architecture
was reaching the end of its life and that it was time to begin considering other
machines for running BSD. A promising new architecture of the time was made
by Computer Consoles, Incorporated, and was called the Power 6/32.
Unfortunately, the architecture died when the company decided to change its
strategic direction. However, they did provide the CSRG with several machines
that enabled us to finish the work, started by Bill Joy, of splitting the BSD kernel
into machine-dependent and machine-independent parts. The result of this work
was released as 4.3BSD-Tahoe in June 1988. The name Tahoe came from the
development name used by Computer Consoles, Incorporated, for the machine
that they eventually released as the Power 6/32. Although the useful lifetime of
the Power 6/32 machine support was short, the work done to split the kernel into
machine-independent and machine-dependent parts proved to be extremely
valuable as BSD was ported to numerous other architectures.

Networking, Release 1
Up through the release of 4.3BSD-Tahoe, all recipients of BSD had to first get
an AT&T source license. That was because the BSD systems were never
released by Berkeley in a binary-only format; the distributions always contained
the complete source to every part of the system. The history of the Unix system
and the BSD system in particular had shown the power of making the source
available to the users. Instead of passively using the system, they actively
worked to fix bugs, improve performance and functionality, and even add
completely new features.

With the increasing cost of the AT&T source licenses, vendors that wanted to
build standalone TCP/IP-based networking products for the PC market using the
BSD code found the per-binary costs prohibitive. So, they requested that
Berkeley break out the networking code and utilities and provide them under
licensing terms that did not require an AT&T source license. The TCP/IP
networking code clearly did not exist in 32/V and thus had been developed
entirely by Berkeley and its contributors. The BSD originated networking code
and supporting utilities were released in June 1989 as Networking Release 1, the
first freely-redistributable code from Berkeley.

The licensing terms were liberal. A licensee could release the code modified or
unmodified in source or binary form with no accounting or royalties to Berkeley.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (12 of 19)

Open Sources: Voices from the Open Source Revolution

The only requirements were that the copyright notices in the source file be left
intact and that products that incorporated the code indicate in their
documentation that the product contained code from the University of California
and its contributors. Although Berkeley charged a $1,000 fee to get a tape,
anyone was free to get a copy from anyone who already had received it. Indeed,
several large sites put it up for anonymous ftp shortly after it was released.
Given that it was so easily available, the CSRG was pleased that several hundred
organizations purchased copies, since their fees helped fund further
development.

4.3BSD-Reno
Meanwhile, development continued on the base system. The virtual memory
system whose interface was first described in the 4.2BSD architecture document
finally came to fruition. As was often the case with the CSRG, we always tried
to find existing code to integrate rather than write something from scratch. So,
rather than design a new virtual memory system, we looked around for existing
alternatives. Our first choice was the virtual memory system that appeared in
Sun Microsystem's SunOS. Although there was some discussion about Sun
contributing the code to Berkeley, nothing came of those talks. So we went with
our second choice, which was to incorporate the virtual memory system from the
MACH operating system done at Carnegie-Mellon University. Mike Hibler at
the University of Utah merged the core technology from MACH with the user
interface described by the 4.2BSD architecture manual (which was also the
interface used by SunOS).

The other major addition to the system at the time was a Sun-compatible version
of the Network Filesystem (NFS). Again the CSRG was able to avoid writing the
actual NFS code, instead getting an implementation done by Rick Macklem at
the University of Geulph in Canada.

Although we did not yet have the complete feature set of 4.4BSD ready to ship,
the CSRG decided to do an interim release to get additional feedback and
experiences on the two major new additions to the system. This licensed interim
release was called 4.3BSD-Reno and occurred in early 1990. The release was
named after a big gambling city in Nevada as an oblique reminder to its
recipients that running the interim release was a bit of a gamble.

Networking, Release 2

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (13 of 19)

Open Sources: Voices from the Open Source Revolution

During one of our weekly group meetings at the CSRG, Keith Bostic brought up
the subject of the popularity of the freely-redistributable networking release and
inquired about the possibility of doing an expanded release that included more of
the BSD code. Mike Karels and I pointed out to Bostic that releasing large parts
of the system was a huge task, but we agreed that if he could sort out how to deal
with reimplementing the hundreds of utilities and the massive C library then we
would tackle the kernel. Privately, Karels and I felt that would be the end of the
discussion.

Undeterred, Bostic pioneered the technique of doing a mass net-based
development effort. He solicited folks to rewrite the Unix utilities from scratch
based solely on their published descriptions. Their only compensation would be
to have their name listed among the Berkeley contributors next to the name of
the utility that they rewrote. The contributions started slowly and were mostly
for the trivial utilities. But as the list of completed utilities grew and Bostic
continued to hold forth for contributions at public events such as Usenix, the rate
of contributions continued to grow. Soon the list crossed one hundred utilities
and within 18 months nearly all the important utilities and libraries had been
rewritten.

Proudly, Bostic marched into Mike Karels' and my office, list in hand, wanting
to know how we were doing on the kernel. Resigned to our task, Karels, Bostic,
and I spent the next several months going over the entire distribution, file by file,
removing code that had originated in the 32/V release. When the dust settled, we
discovered that there were only six remaining kernel files that were still
contaminated and which could not be trivially rewritten. While we considered
rewriting those six files so that we could release a complete system, we decided
instead to release just what we had. We did, however, seek permission for our
expanded release from folks higher up in the University administration. After
much internal debate and verification of our method for determining proprietary
code, we were given the go-ahead to do the release.

Our initial thought was to come up with a whole new name for our second freely-
redistributable release. However, we viewed getting a whole new license written
and approved by the University lawyers as an unnecessary waste of resources
and time delay. So, we decided to call the new release Networking Release 2
since we could just do a revision of the approved Networking Release 1 license
agreement. Thus, our second greatly expanded freely-redistributable release
began shipping in June 1991. The redistribution terms and cost were the same as
the terms and cost of the first networking release. As before, several hundred

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (14 of 19)

Open Sources: Voices from the Open Source Revolution

individuals and organizations paid the $1,000 fee to get the distribution from
Berkeley.

Closing the gap from the Networking Release 2 distribution to a fully
functioning system did not take long. Within six months of the release, Bill
Jolitz had written replacements for the six missing files. He promptly released a
fully compiled and bootable system for the 386-based PC architecture which he
called 386/BSD. Jolitz's 386/BSD distribution was done almost entirely on the
Net. He simply put it up for anonymous FTP and let anyone who wanted it
download it for free. Within weeks he had a huge following.

Unfortunately, the demands of keeping a full-time job meant that Jolitz could not
devote the time needed to keep up with the flood of incoming bug fixes and
enhancements to 386/BSD. So, within a few months of the release of 386/BSD, a
group of avid 386/BSD users formed the NetBSD group to pool their collective
resources to help maintain and later enhance the system. Their releases became
known as the NetBSD distribution. The NetBSD group chose to emphasize the
support of as many platforms as possible and continued the research style
development done by the CSRG. Until 1998, their distribution was done solely
over the Net; no distribution media was available. Their group continues to
target primarily the hardcore technical users. More information about the
NetBSD project can be found at http://www.netbsd.org.

The FreeBSD group was formed a few months after the NetBSD group with a
charter to support just the PC architecture and to go after a larger and less
technically advanced group of users, much as Linux had done. They built
elaborate installation scripts and began shipping their system on a low cost CD-
ROM. The combination of ease of installation and heavy promotion on the Net
and at major trade shows such as Comdex led to a fast, large growth curve.
Certainly FreeBSD currently has the largest installed base of all the Release 2-
derived systems.

FreeBSD has also ridden the wave of Linux popularity by adding a Linux
emulation mode that allows Linux binaries to run on the FreeBSD platform. This
feature allows FreeBSD users to use the ever-growing set of applications
available for Linux while getting the robustness, reliability, and performance of
the FreeBSD system. The group recently opened a FreeBSD Mall
(http://www.freebsdmall.com), which brings together many parts of the FreeBSD
community, including consulting services, derived products, books, and a
newsletter.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (15 of 19)

Open Sources: Voices from the Open Source Revolution

In the mid-1990s, OpenBSD spun off from the NetBSD group. Their technical
focus was aimed at improving the security of the system. Their marketing focus
was to make the system easier to use and more widely available. Thus, they
began producing and selling CD-ROMs with many of the ease-of-installation
ideas from the FreeBSD distribution. More information about the OpenBSD
project can be found at http://www.openbsd.org.

The Lawsuit
In addition to the groups organized to freely redistribute systems built around the
Networking Release 2 tape, a company, Berkeley Software Design, Incorporated
(BSDI), was formed to develop and distribute a commercially supported version
of the code. (More information about BSDI can be found at
http://www.bsdi.com.) Like the other groups, they started by adding the six
missing files that Bill Jolitz had written for his 386/BSD release. BSDI began
selling their system including both source and binaries in January 1992 for $995.
They began running advertisements touting their 99% discount over the price
charged for System V source plus binary systems. Interested readers were told to
call 1-800-ITS-Unix.

Shortly after BSDI began their sales campaign, they received a letter from Unix
System Laboratories (USL) (a mostly-owned subsidiary of AT&T spun off to
develop and sell Unix). The letter demanded that they stop promoting their
product as Unix and in particular that they stop using the deceptive phone
number. Although the phone number was promptly dropped and the
advertisements changed to explain that the product was not Unix, USL was still
unhappy and filed suit to enjoin BSDI from selling their product. The suit
alleged that the BSDI product contained proprietary USL code and trade secrets.
USL sought to get an injunction to halt BSDI's sales until the lawsuit was
resolved, claiming that they would suffer irreparable harm from the loss of their
trade secrets if the BSDI distributions continued.

At the preliminary hearing for the injunction, BSDI contended that they were
simply using the sources being freely distributed by the University of California
plus six additional files. They were willing to discuss the content of any of the
six added files, but did not believe that they should be held responsible for the
files being distributed by the University of California. The judge agreed with
BSDI's argument and told USL that they would have to restate their complaint
based solely on the six files or he would dismiss it. Recognizing that they would

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (16 of 19)

Open Sources: Voices from the Open Source Revolution

have a hard time making a case from just the six files, USL decided to refile the
suit against both BSDI and the University of California. As before, USL
requested an injunction on the shipping of Networking Release 2 from the
University and on the BSDI products.

With the impending injunction hearing just a few short weeks away, preparation
began in earnest. All the members of the CSRG were deposed as were nearly
everyone employed at BSDI. Briefs, counter-briefs, and counter-counter-briefs
flew back and forth between the lawyers. Keith Bostic and I personally had to
write several hundred pages of material that found its way into various briefs.

In December 1992, Dickinson R. Debevoise, a United States District Judge in
New Jersey, heard the arguments for the injunction. Although judges usually
rule on injunction requests immediately, he decided to take it under advisement.
On a Friday about six weeks later, he issued a forty-page opinion in which he
denied the injunction and threw out all but two of the complaints. The remaining
two complaints were narrowed to recent copyrights and the possibility of the loss
of trade secrets. He also suggested that the matter should be heard in a state court
system before being heard in the federal court system.

The University of California took the hint and rushed into California state court
the following Monday morning with a counter-suit against USL. By filing first
in California, the University had established the locale of any further state court
action. Constitutional law requires all state filing to be done in a single state to
prevent a litigant with deep pockets from bleeding an opponent dry by filing
fifty cases against them in every state. The result was that if USL wanted to take
any action against the University in state courts, they would be forced to do so in
California rather than in their home state of New Jersey.

The University's suit claimed that USL had failed in their obligation to provide
due credit to the University for the use of BSD code in System V as required by
the license that they had signed with the University. If the claim were found to
be valid, the University asked that USL be forced to reprint all their
documentation with the appropriate due credit added, to notify all their licensees
of their oversight, and to run full-page advertisements in major publications such
as The Wall Street Journal and Fortune magazine notifying the business world
of their inadvertent oversight.

Soon after the filing in state court, USL was bought from AT&T by Novell. The
CEO of Novell, Ray Noorda, stated publicly that he would rather compete in the
marketplace than in court. By the summer of 1993, settlement talks had started.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (17 of 19)

Open Sources: Voices from the Open Source Revolution

Unfortunately, the two sides had dug in so deep that the talks proceed slowly.
With some further prodding by Ray Noorda on the USL side, many of the
sticking points were removed and a settlement was finally reached in January
1994. The result was that three files were removed from the 18,000 that made up
Networking Release 2, and a number of minor changes were made to other files.
In addition, the University agreed to add USL copyrights to about 70 files,
although those files continued to be freely redistributed.

4.4BSD
The newly blessed release was called 4.4BSD-Lite and was released in June
1994 under terms identical to those used for the Networking releases.
Specifically, the terms allow free redistribution in source and binary form
subject only to the constraint that the University copyrights remain intact and
that the University receive credit when others use the code. Simultaneously, the
complete system was released as 4.4BSD-Encumbered, which still required
recipients to have a USL source license.

The lawsuit settlement also stipulated that USL would not sue any organization
using 4.4BSD-Lite as the base for their system. So, all the BSD groups that were
doing releases at that time, BSDI, NetBSD, and FreeBSD, had to restart their
code base with the 4.4BSD-Lite sources into which they then merged their
enhancements and improvements. While this reintegration caused a short-term
delay in the development of the various BSD systems, it was a blessing in
disguise since it forced all the divergent groups to resynchronize with the three
years of development that had occurred at the CSRG since the release of
Networking Release 2.

4.4BSD-Lite, Release 2
The money received from the 4.4BSD-Encumbered and 4.4BSD-Lite releases
was used to fund a part-time effort to integrate bug fixes and enhancements.
These changes continued for two years until the rate of bug reports and feature
enhancements had died down to a trickle. The final set of changes was released
as 4.4BSD-Lite, Release 2 in June 1995. Most of these changes eventually made
it into the other systems source bases.

Following the release of 4.4BSD-Lite Release 2, the CSRG was disbanded. After
nearly twenty years of piloting the BSD ship, we felt that it was time to let others

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (18 of 19)

Open Sources: Voices from the Open Source Revolution

with fresh ideas and boundless enthusiasm take over. While it might seem best to
have a single centralized authority overseeing the system development, the idea
of having several groups with different charters ensures that many different
approaches will be tried. Because the system is released in source form, the best
ideas can easily be picked up by other groups. If one group becomes particularly
effective, they may eventually become the dominant system.

Today, the open source software movement is gaining increased attention and
respect. Although the Linux system is perhaps the most well-known, about half
of the utilities that it comes packaged with are drawn from the BSD distribution.
The Linux distributions are also heavily dependent on the complier, debuggers,
and other development tools written by the Free Software Foundation.
Collectively, the CSRG, the Free Software Foundation, and the Linux kernel
developers have created the platform from which the Open Source software
movement has been launched. I am proud to have had the opportunity to help
pioneer the Open Source software movement. I look forward to the day when it
becomes the preferred way to develop and buy software for users and companies
everywhere.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (19 of 19)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

The Internet Engineering Task Force

Scott Bradner

For something that does not exist, the Internet Engineering Task Force (IETF)
has had quite an impact. Apart from TCP/IP itself, all of the basic technology of
the Internet was developed or has been refined in the IETF. IETF working
groups created the routing, management, and transport standards without which
the Internet would not exist. IETF working groups have defined the security
standards that will help secure the Internet, the quality of service standards that
will make the Internet a more predictable environment, and the standard for the
next generation of the Internet protocol itself.

These standards have been phenomenally successful. The Internet is growing
faster than any single technology in history, far faster than the railroad, electric
light, telephone, or television, and it is only getting started. All of this has been
accomplished with voluntary standards. No government requires the use of IETF
standards. Competing standards, some mandated by governments around the
world, have come and gone and the IETF standards flourish. But not all IETF
standards succeed. It is only the standards that meet specific real-world
requirements and do well that become true standards in fact as well as in name.

http://www.oreilly.com/catalog/opensources/book/ietf.html (1 of 8)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

The IETF and its standards have succeeded for the same sorts of reasons that the
Open Source community is taking off. IETF standards are developed in an open,
all-inclusive process in which any interested individual can participate. All IETF
documents are freely available over the Internet and can be reproduced at will. In
fact the IETF's open document process is a case study in the potential of the
Open Source movement.

This essay will give a short history of the IETF, a review of the IETF
organization and processes and, at the end, some additional thoughts on the
importance of open standards, open documents, and Open Source.

The History of the IETF
The IETF started in January of 1986 as a quarterly meeting of U.S. government
funded researchers. Representatives from non-government vendors were invited,
starting with the fourth IETF meeting in October of that year. Since that time all
IETF meetings are open to anyone who would like to attend. The initial meetings
were very small, with less than 35 people in attendance at each of the first five
meetings and with the peak attendance in the first 13 meetings only 120
attendees, at the 12th meeting in January of 1989. The IETF has grown quite a
bit since then, with more than 500 attendees at the 23rd meeting in March 1992,
more than 750 attendees at the 29th meeting in March 1994, more than 1,000
attendees at the 31st meeting in December 1994, and almost 2,000 attendees at
the 37th meeting in December 1996. The rate of growth in attendance has
slowed to the point that there were 2,100 attendees at the 43rd meeting in
December 1998. Along the way, in 1991, the IETF reduced the number of
meetings from four to three per year.

The IETF makes use of a small Secretariat, currently operating out of Reston,
VA, and an RFC Editor, currently operated by the University of Southern
California's Information Sciences Institute.

The IETF itself has never been incorporated as a legal entity. It has merely been
an activity without legal substance. Up until the end of 1997, the IETF's
expenses were covered by a combination of U.S. government grants and meeting
fees. Since the beginning of 1998 the expenses have been covered by meeting
fees and the Internet Society.

The Internet Society was formed in 1992, partially to provide a legal umbrella
over the IETF standards process and to provide some funding for IETF-related

http://www.oreilly.com/catalog/opensources/book/ietf.html (2 of 8)

Open Sources: Voices from the Open Source Revolution

activities. The Internet Society, an international membership-based non-profit
organization, also evangelizes for the Internet in parts of the world that the
Internet has not yet reached. At this time the IETF can be best described as a
standards development function operating under the auspices of the Internet
Society.

The concept of working groups was introduced at the 5th IETF meeting in
February 1987 and there are now over 110 working groups operating within the
IETF.

IETF Structure and Features
The IETF can be described as a membership organization without a defined
membership. There are no specific criteria for membership other than to note
that people and not organizations or companies are members of the IETF. Any
individual who participates in an IETF mailing list or attends an IETF meeting
can be said to be an IETF member.

At this writing there are 115 officially chartered working groups in the IETF.
These working groups are organized into eight areas: Applications, General,
Internet, Operations and Management, Routing, Security, Transport, and User
Services. Each of the areas is managed by one or two volunteer Area Directors.
The Area Directors sitting as a group, along with the chair of the IETF, form the
Internet Engineering Steering Group (IESG). The IESG is the standards approval
board for the IETF. In addition there is a 12-member Internet Architecture Board
(IAB), which provides advice to the IESG on working group formation and the
architectural implications of IETF working group efforts.

The members of the IAB and the Area Directors are selected for their two year
terms by a nominations committee randomly selected each year from among
volunteers who have attended at least two out of the previous three IETF
meetings.

IETF Working Groups
One of the principal differences between the IETF and many other standards
organizations is that the IETF is very much a bottom-up organization. It is quite
rare for the IESG or the IAB to create a working group on their own to work on
some problem that is felt to be an important one. Almost all working groups are
formed when a small group of interested individuals get together on their own

http://www.oreilly.com/catalog/opensources/book/ietf.html (3 of 8)

Open Sources: Voices from the Open Source Revolution

and then propose a working group to an Area Director. This does mean that the
IETF cannot create task plans for future work, but at the same time it helps
ensure that there is enough enthusiasm and expertise to make the working group
a success.

The Area Director works with the people proposing the working group to
develop a charter. Working group charters are used to list the specific
deliverables of the working group, any liaison activities that might be needed
with other groups, and, often most important, the limits on what the working
group will explore. The proposed charter is then circulated to the IESG and IAB
mailing lists for their comments. If significant issues do not arise within a week
the charter is posted to the public IETF list and to a list of liaisons from other
standards organizations to see if there is work going on in other forums which
the IETF should be aware of. After another week for any additional comments,
the IESG can then approve the charter and thereby create the working group.

IETF Documents
All IETF documents are public documents freely available over the Internet. The
IETF does get a limited copyright from the authors when the documents are
published to ensure the document remains freely available (the author can not
decide to withdraw the document at some future time), republishable in its
entirety by anyone, and, for most documents, that the IETF can make derivative
works within the IETF standards process. The author retains all other rights.

The basic publication series for the IETF is the RFC series. RFC once stood for
"Request for Comments," but since documents published as RFCs have
generally gone through an extensive review process before publication, RFC is
now best understood to mean "RFC." RFCs fall into two basic categories:
standards track and non-standards track. Standards track RFCs can have
Proposed Standard, Draft Standard, or Internet Standard status. Non-standards
track RFCs can be classified as Informational, Experimental, or Historic.

In addition to RFCs, the IETF makes use of Internet-Drafts. These are temporary
documents whose purpose is close to the original "request for comment" concept
of RFCs and which are automatically removed after six months. Internet-Drafts
are not to be cited or otherwise referenced other than as works in progress.

The IETF Process

http://www.oreilly.com/catalog/opensources/book/ietf.html (4 of 8)

Open Sources: Voices from the Open Source Revolution

The IETF motto is "rough consensus and running code." Working group
unanimity is not required for a proposal to be adopted, but a proposal that cannot
demonstrate that most of the working group members think that it is the right
thing to do will not be approved. There is no fixed percentage support that a
proposal must achieve, but most proposals that have more than 90% support can
be approved and those with less than 80% can often be rejected. IETF working
groups do not actually vote, but can resort to a show of hands to see if the
consensus is clear.

Non standards track documents can originate in IETF working group activity or
from individuals who would like to make their thoughts or technical proposals
available to the Internet community. Almost all proposals for RFC publication
are reviewed by the IESG, after which the IESG will provide advice to the RFC
Editor on the advisability of publishing the document. The RFC Editor then
decides whether to publish the document and, if the IESG offers one, weather to
include a note from the IESG in the document. IESG notes in this case are used
to indicate discomfort with the proposal if the IESG feels that some sort of
warning label would be helpful.

In the normal case of a standards track document an IETF working group will
produce an Internet-Draft to be published as the RFC. The final step in the
working group evaluation of the proposal is a "last call," normally two weeks
long, where the working group chair asks the working group mailing list if there
are any outstanding issues with the proposal. If the result of the working group
last call indicates that the consensus of the group is that the proposal should be
accepted, the proposal is then forwarded to the IESG for their evaluation. The
first step in the IESG evaluation is an IETF-wide last call sent to the main IETF
announcement mailing list. This is so that people who have not been following
the working group work can comment on the proposal. The normal IETF last
call is two weeks for proposals that come from IETF working groups and four
weeks for proposals not originating from IETF working groups.

The IESG uses the results of the IETF last-call as input to its deliberations about
the proposal. The IESG can approve the document and request its publication, or
it can send the proposal back to the author(s) for revision based on the IESG's
evaluation of the proposal. This same process is used for each stage of the
standards track.

Proposals normally enter the standards track as Proposed Standards, but
occasionally if there is uncertainty about the technology or if additional testing is

http://www.oreilly.com/catalog/opensources/book/ietf.html (5 of 8)

Open Sources: Voices from the Open Source Revolution

felt to be useful a document is initially published as an Experimental RFC.
Proposed Standards are meant to be good ideas with no known technical flaws.
After a minimum of six months as a Proposed Standard, a proposal can be
considered for Draft Standard status. Draft Standards must have demonstrated
that the documentation is clear and that any intellectual property rights issues
with the proposal are understood and resolvable. This is done by requiring that
there be at least two genetically independent, interoperable implementations of
the proposal with separate exercises of licensing procedures if there are any.
Note that it also requires that all of the separate features of the protocol be
multiply-implemented. Any feature not meeting these requirements must be
removed before the proposal can advance. Thus IETF standards can get simpler
as they progress. This is the "running code" part of the IETF motto.

The final step in the IETF standards process is Internet Standard. After being at
Draft Standard status for at least four months and demonstrating significant
marketplace success, a proposal can be considered for Internet Standard status.

Two major differences stand out if one compares the IETF standards track with
the process in other standards organizations. First, the final result of most
standards bodies is approximately equivalent to the IETF Proposed Standard
status. A good idea but with no requirement for actual running code. The second
is that rough consensus instead of unanimity can produce proposals with fewer
features added to quiet a noisy individual.

In brief, the IETF operates in a bottom-up task creation mode and believes in
"fly before you buy."

Open Standards, Open Documents,
and Open Source
It is quite clear that one of the major reasons that the IETF standards have been
as successful as they have been is the IETF's open documentation and standards
development policies. The IETF is one of the very few major standards
organizations that make all of their documents openly available, as well as all of
its mailing lists and meetings. In many of the traditional standards organizations,
and even in some of the newer Internet-related groups, access to documents and
meetings is restricted to members or only available by paying a fee. Sometimes
this is because the organizations raise some of the funds to support themselves
through the sale of their standards. In other cases it is because the organization

http://www.oreilly.com/catalog/opensources/book/ietf.html (6 of 8)

Open Sources: Voices from the Open Source Revolution

has fee-based memberships, and one of the reasons for becoming a member is to
be able participate in the standards development process and to get access to the
standards as they are being developed.

Restricting participation in the standards development process often results in
standards that do not do as good a job of meeting the needs of the user or vendor
communities as they might or are more complex than the operator community
can reasonably support. Restricting access to work-in-progress documents makes
it harder for implementors to understand what the genesis and rational is for
specific features in the standard, and this can lead to flawed implementations.
Restricting access to the final standards inhibits the ability for students or
developers from small startups to understand, and thus make use of, the
standards.

The IETF supported the concept of open sources long before the Open Source
movement was formed. Up until recently, it was the normal case that "reference
implementations" of IETF technologies were done as part of the multiple
implementations requirement for advancement on the standards track. This has
never been a formal part of the IETF process, but it was generally a very useful
by-product. Unfortunately this has slowed down somewhat in this age of more
complex standards and higher economic implications for standards. The practice
has never stopped, but it would be very good if the Open Source movement were
to reinvigorate this unofficial part of the IETF standards process.

It may not be immediately apparent, but the availability of open standards
processes and documentation is vital to the Open Source movement. Without a
clear agreement on what is being worked on, normally articulated in standards
documents, it is quite easy for distributed development projects, such as the
Open Sources movement, to become fragmented and to flounder. There is an
intrinsic partnership between open standards processes, open documentation, and
open sources. This partnership produced the Internet and will produce additional
wonders in the future.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/ietf.html (7 of 8)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

http://www.oreilly.com/catalog/opensources/book/ietf.html (8 of 8)

Open Sources: Voices from the Open Source Revolution

Open Sources : Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

The GNU Operating System and the Free
Software Movement

Richard Stallman

The First Software-Sharing Community
When I started working at the MIT Artificial Intelligence Lab in 1971, I became
part of a software-sharing community that had existed for many years. Sharing
of software was not limited to our particular community; it is as old as
computers, just as sharing of recipes is as old as cooking. But we did it more
than most.

The AI Lab used a time-sharing operating system called ITS (the Incompatible
Timesharing System) that the Lab's staff hackers[1] had designed and written in
assembler language for the Digital PDP-10, one of the large computers of the
era. As a member of this community, an AI Lab staff system hacker, my job was
to improve this system.

We did not call our software "free software," because that term did not yet exist,
but that is what it was. Whenever people from another university or a company
wanted to port and use a program, we gladly let them. If you saw someone using

http://www.oreilly.com/catalog/opensources/book/stallman.html (1 of 21)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

an unfamiliar and interesting program, you could always ask to see the source
code, so that you could read it, change it, or cannibalize parts of it to make a new
program.

The Collapse of the Community
The situation changed drastically in the early 1980s when Digital discontinued
the PDP-10 series. Its architecture, elegant and powerful in the 60s, could not
extend naturally to the larger address spaces that were becoming feasible in the
80s. This meant that nearly all of the programs composing ITS were obsolete.

The AI Lab hacker community had already collapsed, not long before. In 1981,
the spin-off company Symbolics had hired away nearly all of the hackers from
the AI Lab, and the depopulated community was unable to maintain itself. (The
book Hackers, by Steve Levy, describes these events, and gives a clear picture of
this community in its prime.) When the AI Lab bought a new PDP-10 in 1982,
its administrators decided to use Digital's non-free timesharing system instead of
ITS.

The modern computers of the era, such as the VAX or the 68020, had their own
operating systems, but none of them were free software: you had to sign a
nondisclosure agreement even to get an executable copy.

This meant that the first step in using a computer was to promise not to help your
neighbor. A cooperating community was forbidden. The rule made by the
owners of proprietary software was, "If you share with your neighbor, you are a
pirate. If you want any changes, beg us to make them."

The idea that the proprietary software social system--the system that says you
are not allowed to share or change software--is antisocial, that it is unethical, that
it is simply wrong, may come as a surprise to some readers. But what else could
we say about a system based on dividing the public and keeping users helpless?
Readers who find the idea surprising may have taken the proprietary social
system as given, or judged it on the terms suggested by proprietary software
businesses. Software publishers have worked long and hard to convince people
that there is only one way to look at the issue.

When software publishers talk about "enforcing" their "rights" or "stopping
piracy," what they actually say is secondary. The real message of these
statements is in the unstated assumptions they take for granted; the public is
supposed to accept them uncritically. So let's examine them.

http://www.oreilly.com/catalog/opensources/book/stallman.html (2 of 21)

Open Sources: Voices from the Open Source Revolution

One assumption is that software companies have an unquestionable natural right
to own software and thus have power over all its users. (If this were a natural
right, then no matter how much harm it does to the public, we could not object.)
Interestingly, the U.S. Constitution and legal tradition reject this view; copyright
is not a natural right, but an artificial government-imposed monopoly that limits
the users' natural right to copy.

Another unstated assumption is that the only important thing about software is
what jobs it allows you to do--that we computer users should not care what kind
of society we are allowed to have.

A third assumption is that we would have no usable software (or would never
have a program to do this or that particular job) if we did not offer a company
power over the users of the program. This assumption may have seemed
plausible, before the free software movement demonstrated that we can make
plenty of useful software without putting chains on it.

If we decline to accept these assumptions, and judge these issues based on
ordinary common-sense morality while placing the users first, we arrive at very
different conclusions. Computer users should be free to modify programs to fit
their needs, and free to share software, because helping other people is the basis
of society.

There is no room here for an extensive statement of the reasoning behind this
conclusion, so I refer you to the web page, http://www.gnu.org/philosophy/why-
free.html.

A Stark Moral Choice
With my community gone, not continuing as before was impossible. Instead, I
faced a moral choice.

The easy choice was to join the proprietary software world, signing
nondisclosure agreements and promising not to help my fellow hacker. Most
likely I would also be developing software that was released under nondisclosure
agreements, thus adding to the pressure on other people to betray their fellows
too.

I could have made money this way, and perhaps amused myself writing code.
But I knew that at the end of my career, I would look back on years of building
walls to divide people, and feel I had spent my life making the world a worse

http://www.oreilly.com/catalog/opensources/book/stallman.html (3 of 21)

Open Sources: Voices from the Open Source Revolution

place.

I had already experienced being on the receiving end of a nondisclosure
agreement, when someone refused to give me and the MIT AI Lab the source
code for the control program for our printer. (The lack of certain features in this
program made use of the printer extremely frustrating.) So I could not tell myself
that nondisclosure agreements were innocent. I was very angry when he refused
to share with us; I could not turn around and do the same thing to everyone else.

Another choice, straightforward but unpleasant, was to leave the computer field.
That way my skills would not be misused, but they would still be wasted. I
would not be culpable for dividing and restricting computer users, but it would
happen nonetheless.

So I looked for a way that a programmer could do something for the good. I
asked myself, was there a program or programs that I could write, so as to make
a community possible once again?

The answer was clear: what was needed first was an operating system. That is
the crucial software for starting to use a computer. With an operating system,
you can do many things; without one, you cannot run the computer at all. With a
free operating system, we could again have a community of cooperating hackers--
and invite anyone to join. And anyone would be able to use a computer without
starting out by conspiring to deprive his or her friends.

As an operating system developer, I had the right skills for this job. So even
though I could not take success for granted, I realized that I was elected to do the
job. I chose to make the system compatible with Unix so that it would be
portable, and so that Unix users could easily switch to it. The name GNU was
chosen following a hacker tradition, as a recursive acronym for "GNU's Not
Unix."

An operating system does not mean just a kernel, barely enough to run other
programs. In the 1970s, every operating system worthy of the name included
command processors, assemblers, compilers, interpreters, debuggers, text
editors, mailers, and much more. ITS had them, Multics had them, VMS had
them, and Unix had them. The GNU operating system would include them too.
Later I heard these words, attributed to Hillel:[2]

If I am not for myself, who will be for me?

If I am only for myself, what am I?

http://www.oreilly.com/catalog/opensources/book/stallman.html (4 of 21)

Open Sources: Voices from the Open Source Revolution

If not now, when?

The decision to start the GNU project was based on the same spirit.

Free as in Freedom
The term "free software" is sometimes misunderstood--it has nothing to do with
price. It is about freedom. Here, therefore, is the definition of free software. A
program is free software, for you, a particular user, if:

● You have the freedom to run the program, for any purpose.

● You have the freedom to modify the program to suit your needs. (To make
this freedom effective in practice, you must have access to the source
code, since making changes in a program without having the source code
is exceedingly difficult.)

● You have the freedom to redistribute copies, either gratis or for a fee.

● You have the freedom to distribute modified versions of the program, so
that the community can benefit from your improvements.

Since "free" refers to freedom, not to price, there is no contradiction between
selling copies and free software. In fact, the freedom to sell copies is crucial:
collections of free software sold on CD-ROMs are important for the community,
and selling them is an important way to raise funds for free software
development. Therefore, a program that people are not free to include on these
collections is not free software.

Because of the ambiguity of "free," people have long looked for alternatives, but
no one has found a suitable alternative. The English language has more words
and nuances than any other, but it lacks a simple, unambiguous word that means
"free," as in freedom--"unfettered" being the word that comes closest in
meaning. Such alternatives as "liberated," "freedom," and "open" have either the
wrong meaning or some other disadvantage.

GNU Software and the GNU System
Developing a whole system is a very large project. To bring it into reach, I
decided to adapt and use existing pieces of free software wherever that was
possible. For example, I decided at the very beginning to use TeX as the
principal text formatter; a few years later, I decided to use the X Window

http://www.oreilly.com/catalog/opensources/book/stallman.html (5 of 21)

Open Sources: Voices from the Open Source Revolution

System rather than writing another window system for GNU.

Because of this decision, the GNU system is not the same as the collection of all
GNU software. The GNU system includes programs that are not GNU software,
programs that were developed by other people and projects for their own
purposes, but which we can use because they are free software.

Commencing the Project
In January 1984 I quit my job at MIT and began writing GNU software. Leaving
MIT was necessary so that MIT would not be able to interfere with distributing
GNU as free software. If I had remained on the staff, MIT could have claimed to
own the work, and could have imposed their own distribution terms, or even
turned the work into a proprietary software package. I had no intention of doing
a large amount of work only to see it become useless for its intended purpose:
creating a new software-sharing community.

However, Professor Winston, then the head of the MIT AI Lab, kindly invited
me to keep using the Lab's facilities.

The First Steps
Shortly before beginning the GNU project, I heard about the Free University
Compiler Kit, also known as VUCK. (The Dutch word for "free" is written with
a V.) This was a compiler designed to handle multiple languages, including C
and Pascal, and to support multiple target machines. I wrote to its author asking
if GNU could use it.

He responded derisively, stating that the university was free but the compiler
was not. I therefore decided that my first program for the GNU project would be
a multi-language, multi-platform compiler.

Hoping to avoid the need to write the whole compiler myself, I obtained the
source code for the Pastel compiler, which was a multi-platform compiler
developed at Lawrence Livermore Lab. It supported, and was written in, an
extended version of Pascal, designed to be a system-programming language. I
added a C frontend, and began porting it to the Motorola 68000 computer. But I
had to give that up when I discovered that the compiler needed many megabytes
of stack space, and the available 68000 Unix system would only allow 64K.

I then determined that the Pastel compiler was designed to parse the entire input

http://www.oreilly.com/catalog/opensources/book/stallman.html (6 of 21)

Open Sources: Voices from the Open Source Revolution

file into a syntax tree, convert the whole syntax tree into a chain of
"instructions," and then generate the whole output file, without ever freeing any
storage. At this point, I concluded I would have to write a new compiler from
scratch. That new compiler is now known as GCC; none of the Pastel compiler
is used in it, but I managed to adapt and use the C frontend that I had written.
But that was some years later; first, I worked on GNU Emacs.

GNU Emacs
I began work on GNU Emacs in September 1984, and in early 1985 it was
beginning to be usable. This enabled me to begin using Unix systems to do
editing; having no interest in learning to use vi or ed, I had done my editing on
other kinds of machines until then.

At this point, people began wanting to use GNU Emacs, which raised the
question of how to distribute it. Of course, I put it on the anonymous ftp server
on the MIT computer that I used. (This computer, prep.ai.mit.edu, thus became
the principal GNU ftp distribution site; when it was decommissioned a few years
later, we transferred the name to our new ftp server.) But at that time, many of
the interested people were not on the Internet and could not get a copy by ftp. So
the question was, what would I say to them?

I could have said, "Find a friend who is on the Net and who will make a copy for
you." Or I could have done what I did with the original PDP-10 Emacs: tell
them, "Mail me a tape and a SASE, and I will mail it back with Emacs on it."
But I had no job, and I was looking for ways to make money from free software.
So I announced that I would mail a tape to whoever wanted one, for a fee of
$150. In this way, I started a free software distribution business, the precursor of
the companies that today distribute entire Linux-based GNU systems.

Is a Program Free for Every User?
If a program is free software when it leaves the hands of its author, this does not
necessarily mean it will be free software for everyone who has a copy of it. For
example, public domain software (software that is not copyrighted) is free
software; but anyone can make a proprietary modified version of it. Likewise,
many free programs are copyrighted but distributed under simple permissive
licenses that allow proprietary modified versions.

The paradigmatic example of this problem is the X Window System. Developed

http://www.oreilly.com/catalog/opensources/book/stallman.html (7 of 21)

Open Sources: Voices from the Open Source Revolution

at MIT, and released as free software with a permissive license, it was soon
adopted by various computer companies. They added X to their proprietary Unix
systems, in binary form only, and covered by the same nondisclosure agreement.
These copies of X were no more free software than Unix was.

The developers of the X Window System did not consider this a problem--they
expected and intended this to happen. Their goal was not freedom, just
"success," defined as "having many users." They did not care whether these
users had freedom, only that they should be numerous.

This lead to a paradoxical situation where two different ways of counting the
amount of freedom gave different answers to the question, "Is this program
free?" If you judged based on the freedom provided by the distribution terms of
the MIT release, you would say that X was free software. But if you measured
the freedom of the average user of X, you would have to say it was proprietary
software. Most X users were running the proprietary versions that came with
Unix systems, not the free version.

Copyleft and the GNU GPL
The goal of GNU was to give users freedom, not just to be popular. So we
needed to use distribution terms that would prevent GNU software from being
turned into proprietary software. The method we use is called "copyleft."[3]

Copyleft uses copyright law, but flips it over to serve the opposite of its usual
purpose: instead of a means of privatizing software, it becomes a means of
keeping software free.

The central idea of copyleft is that we give everyone permission to run the
program, copy the program, modify the program, and distribute modified
versions--but not permission to add restrictions of their own. Thus, the crucial
freedoms that define "free software" are guaranteed to everyone who has a copy;
they become inalienable rights.

For an effective copyleft, modified versions must also be free. This ensures that
work based on ours becomes available to our community if it is published. When
programmers who have jobs as programmers volunteer to improve GNU
software, it is copyleft that prevents their employers from saying, "You can't
share those changes, because we are going to use them to make our proprietary
version of the program."

http://www.oreilly.com/catalog/opensources/book/stallman.html (8 of 21)

Open Sources: Voices from the Open Source Revolution

The requirement that changes must be free is essential if we want to ensure
freedom for every user of the program. The companies that privatized the X
Window System usually made some changes to port it to their systems and
hardware. These changes were small compared with the great extent of X, but
they were not trivial. If making changes was an excuse to deny the users
freedom, it would be easy for anyone to take advantage of the excuse.

A related issue concerns combining a free program with non-free code. Such a
combination would inevitably be non-free; whichever freedoms are lacking for
the non-free part would be lacking for the whole as well. To permit such
combinations would open a hole big enough to sink a ship. Therefore, a crucial
requirement for copyleft is to plug this hole: anything added to or combined with
a copylefted program must be such that the larger combined version is also free
and copylefted.

The specific implementation of copyleft that we use for most GNU software is
the GNU General Public License, or GNU GPL for short. We have other kinds
of copyleft that are used in specific circumstances. GNU manuals are copylefted
also, but use a much simpler kind of copyleft, because the complexity of the
GNU GPL is not necessary for manuals.

The Free Software Foundation
As interest in using Emacs was growing, other people became involved in the
GNU project, and we decided that it was time to seek funding once again. So in
1985 we created the Free Software Foundation, a tax-exempt charity for free
software development. The FSF also took over the Emacs tape distribution
business; later it extended this by adding other free software (both GNU and non-
GNU) to the tape, and by selling free manuals as well.

The FSF accepts donations, but most of its income has always come from sales--
of copies of free software, and of other related services. Today it sells CD-
ROMs of source code, CD-ROMs with binaries, nicely printed manuals (all with
freedom to redistribute and modify), and Deluxe Distributions (where we build
the whole collection of software for your choice of platform).

Free Software Foundation employees have written and maintained a number of
GNU software packages. Two notable ones are the C library and the shell. The
GNU C library is what every program running on a GNU/Linux system uses to
communicate with Linux. It was developed by a member of the Free Software

http://www.oreilly.com/catalog/opensources/book/stallman.html (9 of 21)

Open Sources: Voices from the Open Source Revolution

Foundation staff, Roland McGrath. The shell used on most GNU/Linux systems
is BASH, the Bourne Again Shell,[4] which was developed by FSF employee
Brian Fox.

We funded development of these programs because the GNU project was not
just about tools or a development environment. Our goal was a complete
operating system, and these programs were needed for that goal.

Free Software Support
The free software philosophy rejects a specific widespread business practice, but
it is not against business. When businesses respect the users' freedom, we wish
them success.

Selling copies of Emacs demonstrates one kind of free software business. When
the FSF took over that business, I needed another way to make a living. I found
it in selling services relating to the free software I had developed. This included
teaching, for subjects such as how to program GNU Emacs and how to
customize GCC, and software development, mostly porting GCC to new
platforms.

Today each of these kinds of free software business is practiced by a number of
corporations. Some distribute free software collections on CD-ROM; others sell
support at levels ranging from answering user questions to fixing bugs to adding
major new features. We are even beginning to see free software companies
based on launching new free software products.

Watch out, though--a number of companies that associate themselves with the
term "Open Source" actually base their business on non-free software that works
with free software. These are not free software companies, they are proprietary
software companies whose products tempt users away from freedom. They call
these "value added," which reflects the values they would like us to adopt:
convenience above freedom. If we value freedom more, we should call them
"freedom subtracted" products.

Technical Goals
The principal goal of GNU was to be free software. Even if GNU had no
technical advantage over Unix, it would have a social advantage, allowing users
to cooperate, and an ethical advantage, respecting the user's freedom.

http://www.oreilly.com/catalog/opensources/book/stallman.html (10 of 21)

Open Sources: Voices from the Open Source Revolution

But it was natural to apply the known standards of good practice to the work--for
example, dynamically allocating data structures to avoid arbitrary fixed size
limits, and handling all the possible 8-bit codes wherever that made sense.

In addition, we rejected the Unix focus on small memory size, by deciding not to
support 16-bit machines (it was clear that 32-bit machines would be the norm by
the time the GNU system was finished), and to make no effort to reduce memory
usage unless it exceeded a megabyte. In programs for which handling very large
files was not crucial, we encouraged programmers to read an entire input file
into core, then scan its contents without having to worry about I/O.

These decisions enabled many GNU programs to surpass their Unix counterparts
in reliability and speed.

Donated Computers
As the GNU project's reputation grew, people began offering to donate machines
running Unix to the project. These were very useful, because the easiest way to
develop components of GNU was to do it on a Unix system, and replace the
components of that system one by one. But they raised an ethical issue: whether
it was right for us to have a copy of Unix at all.

Unix was (and is) proprietary software, and the GNU project's philosophy said
that we should not use proprietary software. But, applying the same reasoning
that leads to the conclusion that violence in self-defense is justified, I concluded
that it was legitimate to use a proprietary package when that was crucial for
developing free replacement that would help others stop using the proprietary
package.

But, even if this was a justifiable evil, it was still an evil. Today we no longer
have any copies of Unix, because we have replaced them with free operating
systems. If we could not replace a machine's operating system with a free one,
we replaced the machine instead.

The GNU Task List
As the GNU project proceeded, and increasing numbers of system components
were found or developed, eventually it became useful to make a list of the
remaining gaps. We used it to recruit developers to write the missing pieces.
This list became known as the GNU task list. In addition to missing Unix

http://www.oreilly.com/catalog/opensources/book/stallman.html (11 of 21)

Open Sources: Voices from the Open Source Revolution

components, we listed various other useful software and documentation projects
that, we thought, a truly complete system ought to have.

Today, hardly any Unix components are left in the GNU task list--those jobs
have been done, aside from a few inessential ones. But the list is full of projects
that some might call "applications." Any program that appeals to more than a
narrow class of users would be a useful thing to add to an operating system.

Even games are included in the task list--and have been since the beginning.
Unix included games, so naturally GNU should too. But compatibility was not
an issue for games, so we did not follow the list of games that Unix had. Instead,
we listed a spectrum of different kinds of games that users might like.

The GNU Library GPL
The GNU C library uses a special kind of copyleft called the GNU Library
General Public License (LPGL), which gives permission to link proprietary
software with the library. Why make this exception?

It is not a matter of principle; there is no principle that says proprietary software
products are entitled to include our code. (Why contribute to a project predicated
on refusing to share with us?) Using the LGPL for the C library, or for any
library, is a matter of strategy.

The C library does a generic job; every proprietary system or compiler comes
with a C library. Therefore, to make our C library available only to free software
would not have given free software any advantage--it would only have
discouraged use of our library.

One system is an exception to this: on the GNU system (and this includes
GNU/Linux), the GNU C library is the only C library. So the distribution terms
of the GNU C library determine whether it is possible to compile a proprietary
program for the GNU system. There is no ethical reason to allow proprietary
applications on the GNU system, but strategically it seems that disallowing them
would do more to discourage use of the GNU system than to encourage
development of free applications.

That is why using the Library GPL is a good strategy for the C library. For other
libraries, the strategic decision needs to be considered on a case-by-case basis.
When a library does a special job that can help write certain kinds of programs,
then releasing it under the GPL, limiting it to free programs only, is a way of

http://www.oreilly.com/catalog/opensources/book/stallman.html (12 of 21)

Open Sources: Voices from the Open Source Revolution

helping other free software developers, giving them an advantage against
proprietary software.

Consider GNU Readline, a library that was developed to provide command-line
editing for BASH. Readline is released under the ordinary GNU GPL, not the
Library GPL. This probably does reduce the amount Readline is used, but that is
no loss for us. Meanwhile, at least one useful application has been made free
software specifically so it could use Readline, and that is a real gain for the
community.

Proprietary software developers have the advantages money provides; free
software developers need to make advantages for each other. I hope some day
we will have a large collection of GPL-covered libraries that have no parallel
available to proprietary software, providing useful modules to serve as building
blocks in new free software, and adding up to a major advantage for further free
software development.

Scratching an Itch?
Eric Raymond says that "Every good work of software starts by scratching a
developer's personal itch." Maybe that happens sometimes, but many essential
pieces of GNU software were developed in order to have a complete free
operating system. They come from a vision and a plan, not from impulse.

For example, we developed the GNU C library because a Unix-like system
needs a C library, the Bourne-Again Shell (BASH) because a Unix-like system
needs a shell, and the GNU tar because a Unix-like system needs a tar program.
The same is true for my programs, the GNU C compiler, GNU Emacs, GDB,
and GNU Make.

Some GNU programs were developed to cope with specific threats to our
freedom. Thus, we developed gzip to replace the Compress program, which had
been lost to the community because of the LZW patents. We found people to
develop LessTif, and more recently started GNOME and Harmony, to address
the problems caused by certain proprietary libraries (see below). We are
developing the GNU Privacy Guard to replace popular non-free encryption
software, because users should not have to choose between privacy and freedom.

Of course, the people writing these programs became interested in the work, and
many features were added to them by various people for the sake of their own
needs or interests. But that is not why the programs exist.

http://www.oreilly.com/catalog/opensources/book/stallman.html (13 of 21)

Open Sources: Voices from the Open Source Revolution

Unexpected Developments
At the beginning of the GNU project, I imagined that we would develop the
whole GNU system, then release it as a whole. That is not how it happened.

Since each component of the GNU system was implemented on a Unix system,
each component could run on Unix systems, long before a complete GNU
system existed. Some of these programs became popular, and users began
extending them and porting them--to the various incompatible versions of Unix,
and sometimes to other systems as well.

The process made these programs much more powerful, and attracted both funds
and contributors to the GNU project. But it probably also delayed completion of
a minimal working system by several years, as GNU developers' time was put
into maintaining these ports and adding features to the existing components,
rather than moving on to write one missing component after another.

The GNU HURD
By 1990, the GNU system was almost complete; the only major missing
component was the kernel. We had decided to implement our kernel as a
collection of server processes running on top of Mach. Mach is a microkernel
developed at Carnegie Mellon University and then at the University of Utah; the
GNU HURD is a collection of servers (or "herd of gnus") that run on top of
Mach, and do the various jobs of the Unix kernel. The start of development was
delayed as we waited for Mach to be released as free software, as had been
promised.

One reason for choosing this design was to avoid what seemed to be the hardest
part of the job: debugging a kernel program without a source-level debugger to
do it with. This part of the job had been done already, in Mach, and we expected
to debug the HURD servers as user programs, with the GNU debugger (GDB).
But it took a long time to make that possible, and the multi-threaded servers that
send messages to each other have turned out to be very hard to debug. Making
the HURD work solidly has stretched on for many years.

Alix
The GNU kernel was not originally supposed to be called the HURD. Its original

http://www.oreilly.com/catalog/opensources/book/stallman.html (14 of 21)

Open Sources: Voices from the Open Source Revolution

name was Alix--named after the woman who was my sweetheart at the time.
She, a Unix system administrator, had pointed out how her name would fit a
common naming pattern for Unix system versions; as a joke, she told her
friends, "Someone should name a kernel after me." I said nothing, but decided to
surprise her with a kernel named Alix.

It did not stay that way. Michael Bushnell (now Thomas), the main developer of
the kernel, preferred the name HURD, and redefined Alix to refer to a certain
part of the kernel--the part that would trap system calls and handle them by
sending messages to HURD servers.

Ultimately, Alix and I broke up, and she changed her name; independently, the
HURD design was changed so that the C library would send messages directly to
servers, and this made the Alix component disappear from the design.

But before these things happened, a friend of hers came across the name Alix in
the HURD source code, and mentioned the name to her. So the name did its job.

Linux and GNU/Linux
The GNU HURD is not ready for production use. Fortunately, another kernel is
available. In 1991, Linus Torvalds developed a Unix-compatible kernel and
called it Linux. Around 1992, combining Linux with the not-quite-complete
GNU system resulted in a complete free operating system. (Combining them was
a substantial job in itself, of course.) It is due to Linux that we can actually run a
version of the GNU system today.

We call this system version GNU/Linux, to express its composition as a
combination of the GNU system with Linux as the kernel.

Challenges in Our Future
We have proved our ability to develop a broad spectrum of free software. This
does not mean we are invincible and unstoppable. Several challenges make the
future of free software uncertain; meeting them will require steadfast effort and
endurance, sometimes lasting for years. It will require the kind of determination
that people display when they value their freedom and will not let anyone take it
away.

The following four sections discuss these challenges.

http://www.oreilly.com/catalog/opensources/book/stallman.html (15 of 21)

Open Sources: Voices from the Open Source Revolution

Secret Hardware

Hardware manufactures increasingly tend to keep hardware specifications secret.
This makes it difficult to write free drivers so that Linux and XFree86 can
support new hardware. We have complete free systems today, but we will not
have them tomorrow if we cannot support tomorrow's computers.

There are two ways to cope with this problem. Programmers can do reverse
engineering to figure out how to support the hardware. The rest of us can choose
the hardware that is supported by free software; as our numbers increase, secrecy
of specifications will become a self-defeating policy.

Reverse engineering is a big job; will we have programmers with sufficient
determination to undertake it? Yes--if we have built up a strong feeling that free
software is a matter of principle, and non-free drivers are intolerable. And will
large numbers of us spend extra money, or even a little extra time, so we can use
free drivers? Yes, if the determination to have freedom is widespread.

Non-Free Libraries

A non-free library that runs on free operating systems acts as a trap for free
software developers. The library's attractive features are the bait; if you use the
library, you fall into the trap, because your program cannot usefully be part of a
free operating system. (Strictly speaking, we could include your program, but it
won't *run* with the library missing.) Even worse, if a program that uses the
proprietary library becomes popular, it can lure other unsuspecting programmers
into the trap.

The first instance of this problem was the Motif toolkit, back in the 80s.
Although there were as yet no free operating systems, it was clear what problem
Motif would cause for them later on. The GNU Project responded in two ways:
by asking individual free software projects to support the free X toolkit widgets
as well as Motif, and by asking for someone to write a free replacement for
Motif. The job took many years; LessTif, developed by the Hungry
Programmers, became powerful enough to support most Motif applications only
in 1997.

Around the same time, another non-free GUI toolkit library began to gain in
popularity. This was Qt, from Troll Technologies. Ultimately Qt was used in a
substantial collection of free software, the desktop KDE.

Free GNU/Linux systems were unable to use KDE, because we could not use the

http://www.oreilly.com/catalog/opensources/book/stallman.html (16 of 21)

Open Sources: Voices from the Open Source Revolution

library. However, some commercial distributors of GNU/Linux systems who
were not strict about sticking with free software added KDE to their systems--
producing a system with more capabilities, but less freedom. The KDE group
was actively encouraging more programmers to use Qt, and millions of new
"Linux users" had never been exposed to the idea that there was a problem in
this. The situation appeared grim.

The free software community responded to the problem in two ways: GNOME
and Harmony.

GNOME, the GNU Network Object Model Environment, is GNU's desktop
project. Started in 1997 by Miguel de Icaza, and developed with the support of
Red Hat Software, GNOME set out to provide similar desktop facilities, but
using free software exclusively. It has technical advantages as well, such as
supporting a variety of languages, not just C++. But its main purpose was
freedom: not to require the use of any non-free software.

Harmony is a compatible replacement library, designed to make it possible to
run KDE software without using Qt.

In November 1998, the developers of Qt announced a change of license which,
when carried out, should make Qt free software. There is no way to be sure, but I
think that this was partly due to the community's firm response to the problem
that Qt posed when it was non-free. (The new license is inconvenient and
inequitable, so it remains desirable to avoid using Qt.)

How will we respond to the next tempting non-free library? Will the whole
community understand the need to stay out of the trap? Or will many of us give
up freedom for convenience, and produce a major problem? Our future depends
on our philosophy.

Software Patents

The worst threat we face comes from software patents, which can put algorithms
and features off-limits to free software for up to twenty years. The LZW
compression algorithm patents were applied for in 1983, and we still cannot
release free software to produce proper compressed GIFs. In 1998, a free
program to produce MP3 compressed audio was removed from distribution
under threat of a patent suit.

There are ways to cope with patents: we can search for evidence that a patent is
invalid, and we can look for alternative ways to do a job. But each of these

http://www.oreilly.com/catalog/opensources/book/stallman.html (17 of 21)

Open Sources: Voices from the Open Source Revolution

methods works only sometimes; when both fail, a patent may force all free
software to lack some feature that users want. What will we do what this
happens?

Those of us who value free software for freedom's sake will stay with free
software anyway. We will manage to get work done without the patented
features. But those who value free software because they expect it to be
technically superior are likely to call it a failure when a patent holds it back.
Thus, while it is useful to talk about the practical effectiveness of the "cathedral"
model of development, and the reliability and power of some free software, we
must not stop there. We must talk about freedom and principle.

Free Documentation

The biggest deficiency in our free operating systems is not in the software--it is
the lack of good free manuals that we can include in our systems.
Documentation is an essential part of any software package; when an important
free software package does not come with a good free manual, that is a major
gap. We have many such gaps today.

Free documentation, like free software, is a matter of freedom, not price. The
criterion for a free manual is pretty much the same as for free software: it is a
matter of giving all users certain freedoms. Redistribution (including commercial
sale) must be permitted, online and on paper, so that the manual can accompany
every copy of the program.

Permission for modification is crucial too. As a general rule, I don't believe that
it is essential for people to have permission to modify all sorts of articles and
books. For example, I don't think you or I are obliged to give permission to
modify articles like this one, which describe our actions and our views.

But there is a particular reason why the freedom to modify is crucial for
documentation for free software. When people exercise their right to modify the
software, and add or change its features, if they are conscientious they will
change the manual too--so they can provide accurate and usable documentation
with the modified program. A manual which does not allow programmers to be
conscientious and finish the job does not fill our community's needs.

Some kinds of limits on how modifications are done pose no problem. For
example, requirements to preserve the original author's copyright notice, the
distribution terms, or the list of authors, are OK. It is also no problem to require

http://www.oreilly.com/catalog/opensources/book/stallman.html (18 of 21)

Open Sources: Voices from the Open Source Revolution

modified versions to include notice that they were modified, even to have entire
sections that may not be deleted or changed, as long as these sections deal with
non-technical topics. These kinds of restrictions are not a problem because they
don't stop the conscientious programmer from adapting the manual to fit the
modified program. In other words, they don't block the free software community
from making full use of the manual.

However, it must be possible to modify all the technical content of the manual,
and then distribute the result in all the usual media, through all the usual
channels; otherwise, the restrictions do obstruct the community, the manual is
not free, and we need another manual.

Will free software developers have the awareness and determination to produce
a full spectrum of free manuals? Once again, our future depends on philosophy.

We Must Talk About Freedom

Estimates today are that there are ten million users of GNU/Linux systems such
as Debian GNU/Linux and Red Hat Linux. Free software has developed such
practical advantages that users are flocking to it for purely practical reasons.

The good consequences of this are evident: more interest in developing free
software, more customers for free software businesses, and more ability to
encourage companies to develop commercial free software instead of proprietary
software products.

But interest in the software is growing faster than awareness of the philosophy it
is based on, and this leads to trouble. Our ability to meet the challenges and
threats described above depends on the will to stand firm for freedom. To make
sure our community has this will, we need to spread the idea to the new users as
they come into the community.

But we are failing to do so: the efforts to attract new users into our community
are far outstripping the efforts to teach them the civics of our community. We
need to do both, and we need to keep the two efforts in balance.

"Open Source"
Teaching new users about freedom became more difficult in 1998, when a part
of the community decided to stop using the term "free software" and say "open-
source software" instead.

http://www.oreilly.com/catalog/opensources/book/stallman.html (19 of 21)

Open Sources: Voices from the Open Source Revolution

Some who favored this term aimed to avoid the confusion of "free" with "gratis"-
-a valid goal. Others, however, aimed to set aside the spirit of principle that had
motivated the free software movement and the GNU project, and to appeal
instead to executives and business users, many of whom hold an ideology that
places profit above freedom, above community, above principle. Thus, the
rhetoric of "Open Source" focuses on the potential to make high quality,
powerful software, but shuns the ideas of freedom, community, and principle.

The "Linux" magazines are a clear example of this--they are filled with
advertisements for proprietary software that works with GNU/Linux. When the
next Motif or Qt appears, will these magazines warn programmers to stay away
from it, or will they run ads for it?

The support of business can contribute to the community in many ways; all else
being equal, it is useful. But winning their support by speaking even less about
freedom and principle can be disastrous; it makes the previous imbalance
between outreach and civics education even worse.

"Free software" and "Open Source" describe the same category of software,
more or less, but say different things about the software, and about values. The
GNU Project continues to use the term "free software," to express the idea that
freedom, not just technology, is important.

Try!
Yoda's philosophy (There is no "try") sounds neat, but it doesn't work for me. I
have done most of my work while anxious about whether I could do the job, and
unsure that it would be enough to achieve the goal if I did. But I tried anyway,
because there was no one but me between the enemy and my city. Surprising
myself, I have sometimes succeeded.

Sometimes I failed; some of my cities have fallen. Then I found another
threatened city, and got ready for another battle. Over time, I've learned to look
for threats and put myself between them and my city, calling on other hackers to
come and join me.

Nowadays, I'm often not the only one. It is a relief and a joy when I see a
regiment of hackers digging in to hold the line, and I realize this city may
survive--for now. But the dangers are greater each year, and now Microsoft has
explicitly targeted our community. We can't take the future of freedom for
granted. Don't take it for granted! If you want to keep your freedom, you must be

http://www.oreilly.com/catalog/opensources/book/stallman.html (20 of 21)

Open Sources: Voices from the Open Source Revolution

prepared to defend it.

1. The use of "hacker" to mean "security breaker" is a confusion on the part of the mass
media. We hackers refuse to recognize that meaning, and continue using the word to mean,
"Someone who loves to program and enjoys being clever about it."
2. As an atheist, I don't follow any religious leaders, but I sometimes find I admire something
one of them has said.
3. In 1984 or 1985, Don Hopkins (a very imaginative fellow) mailed me a letter. On the
envelope he had written several amusing sayings, including this one: "Copyleft--all rights
reversed." I used the word "copyleft" to name the distribution concept I was developing at the
time.
4. "Bourne Again Shell" is a joke on the name "Bourne Shell," which was the usual shell on
Unix.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/stallman.html (21 of 21)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

Why Software Should Not Have Owners

by Richard Stallman

 [Catalan | Croatian | Czech | Danish | English | French | German |
Hungarian | Indonesian | Italian | Japanese | Korean | Polish | Portuguese | Russian | Spanish | Turkish]

Digital information technology contributes to the world by making it easier to copy and modify
information. Computers promise to make this easier for all of us.

Not everyone wants it to be easier. The system of copyright gives software programs ``owners'', most of
whom aim to withhold software's potential benefit from the rest of the public. They would like to be the
only ones who can copy and modify the software that we use.

The copyright system grew up with printing---a technology for mass production copying. Copyright fit in
well with this technology because it restricted only the mass producers of copies. It did not take freedom
away from readers of books. An ordinary reader, who did not own a printing press, could copy books
only with pen and ink, and few readers were sued for that.

Digital technology is more flexible than the printing press: when information has digital form, you can
easily copy it to share it with others. This very flexibility makes a bad fit with a system like copyright.
That's the reason for the increasingly nasty and draconian measures now used to enforce software
copyright. Consider these four practices of the Software Publishers Association (SPA):

● Massive propaganda saying it is wrong to disobey the owners to help your friend.

● Solicitation for stool pigeons to inform on their coworkers and colleagues.

● Raids (with police help) on offices and schools, in which people are told they must prove they are
innocent of illegal copying.

http://www.gnu.org/philosophy/why-free.html (1 of 6)

http://www.stallman.org/
http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/philosophy/why-free.ca.html
http://www.gnu.org/philosophy/why-free.hr.html
http://www.gnu.org/philosophy/why-free.cs.html
http://www.gnu.org/philosophy/why-free.da.html
http://www.gnu.org/philosophy/why-free.fr.html
http://www.gnu.org/philosophy/why-free.de.html
http://www.gnu.org/philosophy/why-free.hu.html
http://www.gnu.org/philosophy/why-free.id.html
http://www.gnu.org/philosophy/why-free.it.html
http://www.gnu.org/philosophy/why-free.ja.html
http://www.gnu.org/philosophy/why-free.ko.html
http://www.gnu.org/philosophy/why-free.pl.html
http://www.gnu.org/philosophy/why-free.pt.html
http://www.gnu.org/philosophy/why-free.ru.html
http://www.gnu.org/philosophy/why-free.es.html
http://www.gnu.org/philosophy/why-free.tr.html

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

● Prosecution (by the US government, at the SPA's request) of people such as MIT's David
LaMacchia, not for copying software (he is not accused of copying any), but merely for leaving
copying facilities unguarded and failing to censor their use.

All four practices resemble those used in the former Soviet Union, where every copying machine had a
guard to prevent forbidden copying, and where individuals had to copy information secretly and pass it
from hand to hand as ``samizdat''. There is of course a difference: the motive for information control in
the Soviet Union was political; in the US the motive is profit. But it is the actions that affect us, not the
motive. Any attempt to block the sharing of information, no matter why, leads to the same methods and
the same harshness.

Owners make several kinds of arguments for giving them the power to control how we use information:

● Name calling.

Owners use smear words such as ``piracy'' and ``theft'', as well as expert terminology such as
``intellectual property'' and ``damage'', to suggest a certain line of thinking to the public---a
simplistic analogy between programs and physical objects.

Our ideas and intuitions about property for material objects are about whether it is right to take an
object away from someone else. They don't directly apply to making a copy of something. But the
owners ask us to apply them anyway.

● Exaggeration.

Owners say that they suffer ``harm'' or ``economic loss'' when users copy programs themselves.
But the copying has no direct effect on the owner, and it harms no one. The owner can lose only if
the person who made the copy would otherwise have paid for one from the owner.

A little thought shows that most such people would not have bought copies. Yet the owners
compute their ``losses'' as if each and every one would have bought a copy. That is exaggeration---
to put it kindly.

● The law.

Owners often describe the current state of the law, and the harsh penalties they can threaten us
with. Implicit in this approach is the suggestion that today's law reflects an unquestionable view of
morality---yet at the same time, we are urged to regard these penalties as facts of nature that can't
be blamed on anyone.

This line of persuasion isn't designed to stand up to critical thinking; it's intended to reinforce a

http://www.gnu.org/philosophy/why-free.html (2 of 6)

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

habitual mental pathway.

It's elementary that laws don't decide right and wrong. Every American should know that, forty
years ago, it was against the law in many states for a black person to sit in the front of a bus; but
only racists would say sitting there was wrong.

● Natural rights.

Authors often claim a special connection with programs they have written, and go on to assert
that, as a result, their desires and interests concerning the program simply outweigh those of
anyone else---or even those of the whole rest of the world. (Typically companies, not authors,
hold the copyrights on software, but we are expected to ignore this discrepancy.)

To those who propose this as an ethical axiom---the author is more important than you---I can
only say that I, a notable software author myself, call it bunk.

But people in general are only likely to feel any sympathy with the natural rights claims for two
reasons.

One reason is an overstretched analogy with material objects. When I cook spaghetti, I do object if
someone else eats it, because then I cannot eat it. His action hurts me exactly as much as it
benefits him; only one of us can eat the spaghetti, so the question is, which? The smallest
distinction between us is enough to tip the ethical balance.

But whether you run or change a program I wrote affects you directly and me only indirectly.
Whether you give a copy to your friend affects you and your friend much more than it affects me.
I shouldn't have the power to tell you not to do these things. No one should.

The second reason is that people have been told that natural rights for authors is the accepted and
unquestioned tradition of our society.

As a matter of history, the opposite is true. The idea of natural rights of authors was proposed and
decisively rejected when the US Constitution was drawn up. That's why the Constitution only
permits a system of copyright and does not require one; that's why it says that copyright must be
temporary. It also states that the purpose of copyright is to promote progress---not to reward
authors. Copyright does reward authors somewhat, and publishers more, but that is intended as a
means of modifying their behavior.

The real established tradition of our society is that copyright cuts into the natural rights of the
public---and that this can only be justified for the public's sake.

● Economics.

http://www.gnu.org/philosophy/why-free.html (3 of 6)

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

The final argument made for having owners of software is that this leads to production of more
software.

Unlike the others, this argument at least takes a legitimate approach to the subject. It is based on a
valid goal---satisfying the users of software. And it is empirically clear that people will produce
more of something if they are well paid for doing so.

But the economic argument has a flaw: it is based on the assumption that the difference is only a
matter of how much money we have to pay. It assumes that ``production of software'' is what we
want, whether the software has owners or not.

People readily accept this assumption because it accords with our experiences with material
objects. Consider a sandwich, for instance. You might well be able to get an equivalent sandwich
either free or for a price. If so, the amount you pay is the only difference. Whether or not you have
to buy it, the sandwich has the same taste, the same nutritional value, and in either case you can
only eat it once. Whether you get the sandwich from an owner or not cannot directly affect
anything but the amount of money you have afterwards.

This is true for any kind of material object---whether or not it has an owner does not directly
affect what it is, or what you can do with it if you acquire it.

But if a program has an owner, this very much affects what it is, and what you can do with a copy
if you buy one. The difference is not just a matter of money. The system of owners of software
encourages software owners to produce something---but not what society really needs. And it
causes intangible ethical pollution that affects us all.

What does society need? It needs information that is truly available to its citizens---for example,
programs that people can read, fix, adapt, and improve, not just operate. But what software owners
typically deliver is a black box that we can't study or change.

Society also needs freedom. When a program has an owner, the users lose freedom to control part of their
own lives.

And above all society needs to encourage the spirit of voluntary cooperation in its citizens. When
software owners tell us that helping our neighbors in a natural way is ``piracy'', they pollute our society's
civic spirit.

This is why we say that free software is a matter of freedom, not price.

The economic argument for owners is erroneous, but the economic issue is real. Some people write useful
software for the pleasure of writing it or for admiration and love; but if we want more software than those

http://www.gnu.org/philosophy/why-free.html (4 of 6)

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

people write, we need to raise funds.

For ten years now, free software developers have tried various methods of finding funds, with some
success. There's no need to make anyone rich; the median US family income, around $35k, proves to be
enough incentive for many jobs that are less satisfying than programming.

For years, until a fellowship made it unnecessary, I made a living from custom enhancements of the free
software I had written. Each enhancement was added to the standard released version and thus eventually
became available to the general public. Clients paid me so that I would work on the enhancements they
wanted, rather than on the features I would otherwise have considered highest priority.

The Free Software Foundation (FSF), a tax-exempt charity for free software development, raises funds by
selling GNU CD-ROMs, T-shirts, manuals, and deluxe distributions, (all of which users are free to copy
and change), as well as from donations. It now has a staff of five programmers, plus three employees who
handle mail orders.

Some free software developers make money by selling support services. Cygnus Support, with around 50
employees [when this article was written], estimates that about 15 per cent of its staff activity is free
software development---a respectable percentage for a software company.

Companies including Intel, Motorola, Texas Instruments and Analog Devices have combined to fund the
continued development of the free GNU compiler for the language C. Meanwhile, the GNU compiler for
the Ada language is being funded by the US Air Force, which believes this is the most cost-effective way
to get a high quality compiler. [Air Force funding ended some time ago; the GNU Ada Compiler is now
in service, and its maintenance is funded commercially.]

All these examples are small; the free software movement is still small, and still young. But the example
of listener-supported radio in this country [the US] shows it's possible to support a large activity without
forcing each user to pay.

As a computer user today, you may find yourself using a proprietary (18k characters) program. If your
friend asks to make a copy, it would be wrong to refuse. Cooperation is more important than copyright.
But underground, closet cooperation does not make for a good society. A person should aspire to live an
upright life openly with pride, and this means saying ``No'' to proprietary software.

You deserve to be able to cooperate openly and freely with other people who use software. You deserve
to be able to learn how the software works, and to teach your students with it. You deserve to be able to
hire your favorite programmer to fix it when it breaks.

You deserve free software.

http://www.gnu.org/philosophy/why-free.html (5 of 6)

http://www.gnu.org/fsf/fsf.html
http://order.fsf.org/
http://www.gnu.org/software/software.html
http://order.fsf.org/
http://www.gnu.org/doc/doc.html
http://order.fsf.org/
http://donate.fsf.org/

Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)

This essay is published in Free Software, Free Society: The Selected Essays of Richard
M. Stallman.

Other Texts to Read

[Catalan | Croatian | Czech | Danish | English | French | German | Hungarian | Indonesian | Italian |
Japanese | Korean | Polish | Portuguese | Russian | Spanish | Turkish]

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other questions to gnu@gnu.org.

Copyright 1994 Richard Stallman

Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice
is preserved.

Updated: $Date: 2003/06/17 03:30:59 $ $Author: gurhanozen $

http://www.gnu.org/philosophy/why-free.html (6 of 6)

http://www.gnu.org/doc/book13.html
http://www.gnu.org/doc/book13.html
http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/philosophy/why-free.ca.html
http://www.gnu.org/philosophy/why-free.hr.html
http://www.gnu.org/philosophy/why-free.cs.html
http://www.gnu.org/philosophy/why-free.da.html
http://www.gnu.org/philosophy/why-free.fr.html
http://www.gnu.org/philosophy/why-free.de.html
http://www.gnu.org/philosophy/why-free.hu.html
http://www.gnu.org/philosophy/why-free.id.html
http://www.gnu.org/philosophy/why-free.it.html
http://www.gnu.org/philosophy/why-free.ja.html
http://www.gnu.org/philosophy/why-free.ko.html
http://www.gnu.org/philosophy/why-free.pl.html
http://www.gnu.org/philosophy/why-free.pt.html
http://www.gnu.org/philosophy/why-free.ru.html
http://www.gnu.org/philosophy/why-free.es.html
http://www.gnu.org/philosophy/why-free.tr.html
http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

The Free Software Definition - GNU Project - Free Software Foundation (FSF)

The Free Software Definition

 [Croatian | Czech | Danish | Dutch | English | French | Galician | German |
Hungarian | Indonesian | Italian | Japanese | Korean | Norwegian | Polish | Portuguese | Romanian |
Russian | Slovenian | Spanish | Swedish | Turkish]

We maintain this free software definition to show clearly what must be true about a particular software
program for it to be considered free software.

``Free software'' is a matter of liberty, not price. To understand the concept, you should think of ``free'' as
in ``free speech,'' not as in ``free beer.''

Free software is a matter of the users' freedom to run, copy, distribute, study, change and improve the
software. More precisely, it refers to four kinds of freedom, for the users of the software:

● The freedom to run the program, for any purpose (freedom 0).
● The freedom to study how the program works, and adapt it to your needs (freedom 1). Access to

the source code is a precondition for this.
● The freedom to redistribute copies so you can help your neighbor (freedom 2).
● The freedom to improve the program, and release your improvements to the public, so that the

whole community benefits (freedom 3). Access to the source code is a precondition for this.

A program is free software if users have all of these freedoms. Thus, you should be free to redistribute
copies, either with or without modifications, either gratis or charging a fee for distribution, to anyone
anywhere. Being free to do these things means (among other things) that you do not have to ask or pay
for permission.

You should also have the freedom to make modifications and use them privately in your own work or
play, without even mentioning that they exist. If you do publish your changes, you should not be required
to notify anyone in particular, or in any particular way.

http://www.gnu.org/philosophy/free-sw.html (1 of 4)

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/philosophy/free-sw.hr.html
http://www.gnu.org/philosophy/free-sw.cs.html
http://www.gnu.org/philosophy/free-sw.da.html
http://www.gnu.org/philosophy/free-sw.nl.html
http://www.gnu.org/philosophy/free-sw.fr.html
http://www.gnu.org/philosophy/free-sw.gl.html
http://www.gnu.org/philosophy/free-sw.de.html
http://www.gnu.org/philosophy/free-sw.hu.html
http://www.gnu.org/philosophy/free-sw.id.html
http://www.gnu.org/philosophy/free-sw.it.html
http://www.gnu.org/philosophy/free-sw.ja.html
http://www.gnu.org/philosophy/free-sw.ko.html
http://www.gnu.org/philosophy/free-sw.no.html
http://www.gnu.org/philosophy/free-sw.pl.html
http://www.gnu.org/philosophy/free-sw.pt.html
http://www.gnu.org/philosophy/free-sw.ro.html
http://www.gnu.org/philosophy/free-sw.ru.html
http://www.gnu.org/philosophy/free-sw.sl.html
http://www.gnu.org/philosophy/free-sw.es.html
http://www.gnu.org/philosophy/free-sw.sv.html
http://www.gnu.org/philosophy/free-sw.tr.html

The Free Software Definition - GNU Project - Free Software Foundation (FSF)

The freedom to use a program means the freedom for any kind of person or organization to use it on any
kind of computer system, for any kind of overall job, and without being required to communicate
subsequently with the developer or any other specific entity.

The freedom to redistribute copies must include binary or executable forms of the program, as well as
source code, for both modified and unmodified versions. (Distributing programs in runnable form is
necessary for conveniently installable free operating systems.) It is ok if there is no way to produce a
binary or executable form for a certain program (since some languages don't support that feature), but
you must have the freedom to redistribute such forms should you find or develop a way to make them.

In order for the freedoms to make changes, and to publish improved versions, to be meaningful, you must
have access to the source code of the program. Therefore, accessibility of source code is a necessary
condition for free software.

In order for these freedoms to be real, they must be irrevocable as long as you do nothing wrong; if the
developer of the software has the power to revoke the license, without your doing anything to give cause,
the software is not free.

However, certain kinds of rules about the manner of distributing free software are acceptable, when they
don't conflict with the central freedoms. For example, copyleft (very simply stated) is the rule that when
redistributing the program, you cannot add restrictions to deny other people the central freedoms. This
rule does not conflict with the central freedoms; rather it protects them.

Thus, you may have paid money to get copies of free software, or you may have obtained copies at no
charge. But regardless of how you got your copies, you always have the freedom to copy and change the
software, even to sell copies.

``Free software'' does not mean ``non-commercial''. A free program must be available for commercial
use, commercial development, and commercial distribution. Commercial development of free software is
no longer unusual; such free commercial software is very important.

Rules about how to package a modified version are acceptable, if they don't effectively block your
freedom to release modified versions. Rules that ``if you make the program available in this way, you
must make it available in that way also'' can be acceptable too, on the same condition. (Note that such a
rule still leaves you the choice of whether to publish the program or not.) It is also acceptable for the
license to require that, if you have distributed a modified version and a previous developer asks for a
copy of it, you must send one.

In the GNU project, we use ``copyleft'' to protect these freedoms legally for everyone. But non-
copylefted free software also exists. We believe there are important reasons why it is better to use
copyleft, but if your program is non-copylefted free software, we can still use it.

http://www.gnu.org/philosophy/free-sw.html (2 of 4)

http://www.gnu.org/copyleft/copyleft.html
http://www.gnu.org/philosophy/pragmatic.html
http://www.gnu.org/philosophy/pragmatic.html

The Free Software Definition - GNU Project - Free Software Foundation (FSF)

See Categories of Free Software (18k characters) for a description of how ``free software,'' ``copylefted
software'' and other categories of software relate to each other.

Sometimes government export control regulations and trade sanctions can constrain your freedom to
distribute copies of programs internationally. Software developers do not have the power to eliminate or
override these restrictions, but what they can and must do is refuse to impose them as conditions of use
of the program. In this way, the restrictions will not affect activities and people outside the jurisdictions
of these governments.

When talking about free software, it is best to avoid using terms like ``give away'' or ``for free'', because
those terms imply that the issue is about price, not freedom. Some common terms such as ``piracy''
embody opinions we hope you won't endorse. See Confusing Words and Phrases that are Worth
Avoiding for a discussion of these terms. We also have a list of translations of "free software" into
various languages.

Finally, note that criteria such as those stated in this free software definition require careful thought for
their interpretation. To decide whether a specific software license qualifies as a free software license, we
judge it based on these criteria to determine whether it fits their spirit as well as the precise words. If a
license includes unconscionable restrictions, we reject it, even if we did not anticipate the issue in these
criteria. Sometimes a license requirement raises an issue that calls for extensive thought, including
discussions with a lawyer, before we can decide if the requirement is acceptable. When we reach a
conclusion about a new issue, we often update these criteria to make it easier to see why certain licenses
do or don't qualify.

If you are interested in whether a specific license qualifies as a free software license, see our list of
licenses. If the license you are concerned with is not listed there, you can ask us about it by sending us
email at <licensing@gnu.org>.

Other Texts to Read

Another group has started using the term "open source" to mean something close (but not identical) to
"free software". We prefer the term "free software" because, once you have heard it refers to freedom
rather than price, it calls to mind freedom.

[Croatian | Czech | Danish | Dutch | English | French | Galician | German | Hungarian | Indonesian |
Italian | Japanese | Korean | Norwegian | Polish | Portuguese | Romanian | Russian | Slovenian | Spanish |
Turkish]

http://www.gnu.org/philosophy/free-sw.html (3 of 4)

http://www.gnu.org/philosophy/words-to-avoid.html
http://www.gnu.org/philosophy/words-to-avoid.html
http://www.gnu.org/philosophy/fs-translations.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
mailto:licensing@gnu.org
http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://www.gnu.org/philosophy/free-sw.hr.html
http://www.gnu.org/philosophy/free-sw.cs.html
http://www.gnu.org/philosophy/free-sw.da.html
http://www.gnu.org/philosophy/free-sw.nl.html
http://www.gnu.org/philosophy/free-sw.fr.html
http://www.gnu.org/philosophy/free-sw.gl.html
http://www.gnu.org/philosophy/free-sw.de.html
http://www.gnu.org/philosophy/free-sw.hu.html
http://www.gnu.org/philosophy/free-sw.id.html
http://www.gnu.org/philosophy/free-sw.it.html
http://www.gnu.org/philosophy/free-sw.ja.html
http://www.gnu.org/philosophy/free-sw.ko.html
http://www.gnu.org/philosophy/free-sw.no.html
http://www.gnu.org/philosophy/free-sw.pl.html
http://www.gnu.org/philosophy/free-sw.pt.html
http://www.gnu.org/philosophy/free-sw.ro.html
http://www.gnu.org/philosophy/free-sw.ru.html
http://www.gnu.org/philosophy/free-sw.sl.html
http://www.gnu.org/philosophy/free-sw.es.html
http://www.gnu.org/philosophy/free-sw.tr.html

The Free Software Definition - GNU Project - Free Software Foundation (FSF)

Return to GNU's home page.

Please send FSF & GNU inquiries & questions to gnu@gnu.org. There are also other ways to contact the
FSF.

Please send comments on these web pages to webmasters@gnu.org, send other questions to
gnu@gnu.org.

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111, USA

Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice
is preserved.

Updated: $Date: 2003/02/07 16:52:55 $ $Author: rps $

http://www.gnu.org/philosophy/free-sw.html (4 of 4)

http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@gnu.org
mailto:gnu@gnu.org

Selling Free Software - GNU Project - Free Software Foundation (FSF)

Selling Free Software

 [Catalan | Czech | English | French | Indonesian | Italian | Japanese | Polish |
Romanian | Russian | Spanish]

Table of Contents

● Will a higher distribution price hurt some users?
● Will a higher distribution price discourage use of free software?
● The term ``selling software'' can be confusing too
● High or low fees, and the GNU GPL
● Other Texts to Read

Many people believe that the spirit of the GNU project is that you should not charge money for
distributing copies of software, or that you should charge as little as possible -- just enough to cover the
cost.

Actually we encourage people who redistribute free software to charge as much as they wish or can. If
this seems surprising to you, please read on.

The word ``free'' has two legitimate general meanings; it can refer either to freedom or to price. When we
speak of ``free software'', we're talking about freedom, not price. (Think of ``free speech'', not ``free
beer''.) Specifically, it means that a user is free to run the program, change the program, and redistribute
the program with or without changes.

http://www.gnu.org/philosophy/selling.html (1 of 4)

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/philosophy/selling.ca.html
http://www.gnu.org/philosophy/selling.cs.html
http://www.gnu.org/philosophy/selling.fr.html
http://www.gnu.org/philosophy/selling.id.html
http://www.gnu.org/philosophy/selling.it.html
http://www.gnu.org/philosophy/selling.ja.html
http://www.gnu.org/philosophy/selling.pl.html
http://www.gnu.org/philosophy/selling.ro.html
http://www.gnu.org/philosophy/selling.ru.html
http://www.gnu.org/philosophy/selling.es.html
http://www.gnu.org/philosophy/philosophy.html

Selling Free Software - GNU Project - Free Software Foundation (FSF)

Free programs are sometimes distributed gratis, and sometimes for a substantial price. Often the same
program is available in both ways from different places. The program is free regardless of the price,
because users have freedom in using it.

Non-free programs are usually sold for a high price, but sometimes a store will give you a copy at no
charge. That doesn't make it free software, though. Price or no price, the program is non-free because
users don't have freedom.

Since free software is not a matter of price, a low price isn't more free, or closer to free. So if you are
redistributing copies of free software, you might as well charge a substantial fee and make some money.
Redistributing free software is a good and legitimate activity; if you do it, you might as well make a
profit from it.

Free software is a community project, and everyone who depends on it ought to look for ways to
contribute to building the community. For a distributor, the way to do this is to give a part of the profit to
the Free Software Foundation or some other free software development project. By funding
development, you can advance the world of free software.

Distributing free software is an opportunity to raise funds for development. Don't waste it!

In order to contribute funds, you need to have some extra. If you charge too low a fee, you won't have
anything to spare to support development.

Will a higher distribution price hurt some users?

People sometimes worry that a high distribution fee will put free software out of range for users who
don't have a lot of money. With proprietary software (18k characters), a high price does exactly that --
but free software is different.

The difference is that free software naturally tends to spread around, and there are many ways to get it.

Software hoarders try their damnedest to stop you from running a proprietary program without paying
the standard price. If this price is high, that does make it hard for some users to use the program.

With free software, users don't have to pay the distribution fee in order to use the software. They can
copy the program from a friend who has a copy, or with the help of a friend who has network access. Or
several users can join together, split the price of one CD-ROM, then each in turn can install the software.
A high CD-ROM price is not a major obstacle when the software is free.

Will a higher distribution price discourage use of free software?

http://www.gnu.org/philosophy/selling.html (2 of 4)

http://www.gnu.org/fsf/fsf.html

Selling Free Software - GNU Project - Free Software Foundation (FSF)

Another common concern is for the popularity of free software. People think that a high price for
distribution would reduce the number of users, or that a low price is likely to encourage users.

This is true for proprietary software -- but free software is different. With so many ways to get copies,
the price of distribution service has less effect on popularity.

In the long run, how many people use free software is determined mainly by how much free software can
do, and how easy it is to use. Many users will continue to use proprietary software if free software can't
do all the jobs they want to do. Thus, if we want to increase the number of users in the long run, we
should above all develop more free software.

The most direct way to do this is by writing needed free software or manuals yourself. But if you do
distribution rather than writing, the best way you can help is by raising funds for others to write them.

The term ``selling software'' can be confusing too

Strictly speaking, ``selling'' means trading goods for money. Selling a copy of a free program is
legitimate, and we encourage it.

However, when people think of ``selling software'', they usually imagine doing it the way most
companies do it: making the software proprietary rather than free.

So unless you're going to draw distinctions carefully, the way this article does, we suggest it is better to
avoid using the term ``selling software'' and choose some other wording instead. For example, you could
say ``distributing free software for a fee''--that is unambiguous.

High or low fees, and the GNU GPL

Except for one special situation, the GNU General Public License (20k characters) (GNU GPL) has no
requirements about how much you can charge for distributing a copy of free software. You can charge
nothing, a penny, a dollar, or a billion dollars. It's up to you, and the marketplace, so don't complain to us
if nobody wants to pay a billion dollars for a copy.

The one exception is in the case where binaries are distributed without the corresponding complete
source code. Those who do this are required by the GNU GPL to provide source code on subsequent
request. Without a limit on the fee for the source code, they would be able set a fee too large for anyone
to pay--such as a billion dollars--and thus pretend to release source code while in truth concealing it. So
in this case we have to limit the fee for source, to ensure the user's freedom. In ordinary situations,
however, there is no such justification for limiting distribution fees, so we do not limit them.

Sometimes companies whose activities cross the line of what the GNU GPL permits plead for

http://www.gnu.org/philosophy/selling.html (3 of 4)

http://www.gnu.org/projects/help-wanted.html
http://www.gnu.org/doc/doc.html#PleaseHelpWriteDocumentation
http://www.gnu.org/philosophy/words-to-avoid.html#SellSoftware
http://www.gnu.org/copyleft/gpl.html

Selling Free Software - GNU Project - Free Software Foundation (FSF)

permission, saying that they ``won't charge money for the GNU software'' or such like. They don't get
anywhere this way. Free software is about freedom, and enforcing the GPL is defending freedom. When
we defend users' freedom, we are not distracted by side issues such as how much of a distribution fee is
charged. Freedom is the issue, the whole issue, and the only issue.

Other Texts to Read

[Catalan | Czech | English | French | Indonesian | Italian | Japanese | Polish | Russian | Spanish]

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other questions to gnu@gnu.org.

Copyright (C) 1996, 1997, 1998, 2001 Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111, USA

Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice
is preserved.

Updated: $Date: 2002/08/26 22:03:49 $ $Author: rms $

http://www.gnu.org/philosophy/selling.html (4 of 4)

http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/philosophy/selling.ca.html
http://www.gnu.org/philosophy/selling.cs.html
http://www.gnu.org/philosophy/selling.fr.html
http://www.gnu.org/philosophy/selling.id.html
http://www.gnu.org/philosophy/selling.it.html
http://www.gnu.org/philosophy/selling.ja.html
http://www.gnu.org/philosophy/selling.pl.html
http://www.gnu.org/philosophy/selling.ru.html
http://www.gnu.org/philosophy/selling.es.html
http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Categories of Free and Non-Free Software

 [Catalan | Czech | English | French | German | Indonesian | Italian |
Japanese | Polish | Portuguese | Russian | Spanish]

Here is a glossary of various categories of software that are often mentioned in discussions of free
software. It explains which categories overlap or are part of other categories.

Other Texts to Read | ``Free software'' | ``Open source'' | ``Public domain software'' | ``Copylefted
software'' | ``Non-copylefted free software'' | ``GPL-covered software'' | ``The GNU system'' | ``GNU
programs'' | ``GNU software'' | ``Semi-free software'' | ``Proprietary software'' | ``Shareware'' |
``Freeware'' | ``Commercial software'' | Other Texts to Read

Also note Confusing Words which You Might Want to Avoid.

http://www.gnu.org/philosophy/categories.html (1 of 8)

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/philosophy/categories.ca.html
http://www.gnu.org/philosophy/categories.cs.html
http://www.gnu.org/philosophy/categories.fr.html
http://www.gnu.org/philosophy/categories.de.html
http://www.gnu.org/philosophy/categories.id.html
http://www.gnu.org/philosophy/categories.it.html
http://www.gnu.org/philosophy/categories.ja.html
http://www.gnu.org/philosophy/categories.pl.html
http://www.gnu.org/philosophy/categories.pt.html
http://www.gnu.org/philosophy/categories.ru.html
http://www.gnu.org/philosophy/categories.es.html
http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/philosophy/words-to-avoid.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

 This diagram by Chao-
Kuei explains the different categories of software. It's available as an XFig file, as a JPEG picture (23k)
and as a 1.5 magnified PNG image (7k).

Free software
Free software is software that comes with permission for anyone to use, copy, and distribute,
either verbatim or with modifications, either gratis or for a fee. In particular, this means that
source code must be available. ``If it's not source, it's not software.'' This is a simplified definition;
see also the full definition.

We also have a list of translations of the term "free software" into various other languages.

If a program is free, then it can potentially be included in a free operating system such as GNU, or
free versions of the GNU/Linux system.

There are many different ways to make a program free---many questions of detail, which could be
decided in more than one way and still make the program free. Some of the possible variations are
described below.

Free software is a matter of freedom, not price. But proprietary software companies sometimes
use the term ``free software'' to refer to price. Sometimes they mean that you can obtain a binary
copy at no charge; sometimes they mean that a copy is included on a computer that you are
buying. This has nothing to do with what we mean by free software in the GNU project.

http://www.gnu.org/philosophy/categories.html (2 of 8)

http://www.gnu.org/philosophy/category.fig
http://www.gnu.org/philosophy/category.jpg
http://www.gnu.org/philosophy/category.png
http://www.gnu.org/philosophy/fs-translations.html
http://www.gnu.org/gnu/linux-and-gnu.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Because of this potential confusion, when a software company says its product is free software,
always check the actual distribution terms to see whether users really have all the freedoms that
free software implies. Sometimes it really is free software; sometimes it isn't.

Many languages have two separate words for ``free'' as in freedom and ``free'' as in zero price. For
example, French has ``libre'' and ``gratuit''. English has a word ``gratis'' that refers unambiguously
to price, but no common adjective that refers unambiguously to freedom. This is unfortunate,
because such a word would be useful here.

Free software is often more reliable than non-free software.

Open Source software
The term ``open source'' software is used by some people to mean more or less the same thing as
free software. However, their criteria are somewhat less strict; they have accepted some kinds of
license restrictions that we have rejected as unacceptable. We prefer the term ``free software'';
follow that link to see the reasons.

Public domain software
Public domain software is software that is not copyrighted. If the source code is in the public
domain, that is a special case of non-copylefted free software, which means that some copies or
modified versions may not be free at all.

In some cases, an executable program can be in the public domain but the source code is not
available. This is not free software, because free software requires accesibility of source code.
Meanwhile, most free software is not in the public domain; it is copyrighted, and the copyright
holders have legally given permission for everyone to use it in freedom, using a free software
license.

Sometimes people use the term ``public domain'' in a loose fashion to mean ``free'' or ``available
gratis.'' However, ``public domain'' is a legal term and means, precisely, ``not copyrighted''. For
clarity, we recommend using ``public domain'' for that meaning only, and using other terms to
convey the other meanings.

Copylefted software
Copylefted software is free software whose distribution terms do not let redistributors add any
additional restrictions when they redistribute or modify the software. This means that every copy
of the software, even if it has been modified, must be free software.

In the GNU Project, we copyleft almost all the software we write, because our goal is to give
every user the freedoms implied by the term ``free software.'' See Copylefted for more
explanation of how copyleft works and why we use it.

http://www.gnu.org/philosophy/categories.html (3 of 8)

http://www.gnu.org/software/reliability.html
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://www.gnu.org/copyleft/copyleft.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Copyleft is a general concept; to actually copyleft a program, you need to use a specific set of
distribution terms. There are many possible ways to write copyleft distribution terms, so in
principle there can be many copyleft free software licenses. However, in actual practice nearly all
copylefted software uses the GNU General Public License. Two different copyleft licenses are
usually ``incompatible'', which means it is illegal to merge the code using one license with the
code using the other license; therefore, it is good for the community if people use a single copyleft
license.

Non-copylefted free software
Non-copylefted free software comes from the author with permission to redistribute and modify,
and also to add additional restrictions to it.

If a program is free but not copylefted, then some copies or modified versions may not be free at
all. A software company can compile the program, with or without modifications, and distribute
the executable file as a proprietary software product.

The X Window System illustrates this. The X Consortium releases X11 with distribution terms
that make it non-copylefted free software. If you wish, you can get a copy which has those
distribution terms and is free. However, there are non-free versions as well, and there are popular
workstations and PC graphics boards for which non-free versions are the only ones that work. If
you are using this hardware, X11 is not free software for you. The developers of X11 even made
X11 non-free for a while.

GPL-covered software
The GNU GPL (General Public License) (20k characters) is one specific set of distribution terms
for copylefting a program. The GNU Project uses it as the distribution terms for most GNU
software.

The GNU system
The GNU system is a complete free Unix-like operating system.

A Unix-like operating system consists of many programs. The GNU system includes all the GNU
software, as well as many other packages such as the X Window System and TeX which are not
GNU software.

We have been developing and accumulating components for the GNU system since 1984; the first
test release of a ``complete GNU system'' was in 1996. In 2001 the GNU system with the Hurd
began working reliably. In the mean time, the GNU/Linux system, an offshoot of the GNU system
which uses Linux as the kernel, became a great success in the 90s.

http://www.gnu.org/philosophy/categories.html (4 of 8)

http://www.gnu.org/copyleft/gpl.html
http://www.x.org/
http://www.gnu.org/philosophy/x.html
http://www.gnu.org/philosophy/x.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/gnu/gnu-history.html
http://www.gnu.org/gnu/linux-and-gnu.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Since the purpose of GNU is to be free, every single component in the GNU system has to be free
software. They don't all have to be copylefted, however; any kind of free software is legally
suitable to include if it helps meet technical goals. We can and do use non-copylefted free
software such as the X Window System.

GNU programs
``GNU programs'' is equivalent to GNU software. A program Foo is a GNU program if it is GNU
software. We also sometimes say it is a ``GNU package''.

GNU software
GNU software is software that is released under the auspices of the GNU Project. Most GNU
software is copylefted, but not all; however, all GNU software must be free software.

If a program is GNU software, we also say that it is a GNU program.

Some GNU software is written by staff of the Free Software Foundation, but most GNU software
is contributed by volunteers. Some contributed software is copyrighted by the Free Software
Foundation; some is copyrighted by the contributors who wrote it.

Semi-free software
Semi-free software is software that is not free, but comes with permission for individuals to use,
copy, distribute, and modify (including distribution of modified versions) for non-profit purposes.
PGP is an example of a semi-free program.

Semi-free software is much better ethically than proprietary software, but it still poses problems,
and we cannot use it in a free operating system.

The restrictions of copyleft are designed to protect the essential freedoms for all users. For us, the
only justification for any substantive restriction on using a program is to prevent other people
from adding other restrictions. Semi-free programs have additional restrictions, motivated by
purely selfish goals.

It is impossible to include semi-free software in a free operating system. This is because the
distribution terms for the operating system as a whole are the conjunction of the distribution terms
for all the programs in it. Adding one semi-free program to the system would make the system as
a whole just semi-free. There are two reasons we do not want that to happen:

❍ We believe that free software should be for everyone--including businesses, not just
schools and hobbyists. We want to invite business to use the whole GNU system, and
therefore we must not include a semi-free program in it.

http://www.gnu.org/philosophy/categories.html (5 of 8)

http://www.gnu.org/software/software.html
http://www.gnu.org/gnu/gnu-history.html
http://www.gnu.org/copyleft/copyleft.html
http://www.gnu.org/people/people.html
http://www.gnu.org/fsf/fsf.html
http://www.gnu.org/people/people.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

❍ Commercial distribution of free operating systems, including the GNU/Linux system, is
very important, and users appreciate the convenience of commercial CD-ROM
distributions. Including one semi-free program in an operating system would cut off
commercial CD-ROM distribution for it.

The Free Software Foundation itself is non-commercial, and therefore we would be legally
permitted to use a semi-free program ``internally''. But we don't do that, because that would
undermine our efforts to obtain a program which we could also include in GNU.

If there is a job that needs doing with software, then until we have a free program to do the job,
the GNU system has a gap. We have to tell volunteers, ``We don't have a program yet to do this
job in GNU, so we hope you will write one.'' If we ourselves used a semi-free program to do the
job, that would undermine what we say; it would take away the impetus (on us, and on others who
might listen to our views) to write a free replacement. So we don't do that.

Proprietary software
Proprietary software is software that is not free or semi-free. Its use, redistribution or modification
is prohibited, or requires you to ask for permission, or is restricted so much that you effectively
can't do it freely.

The Free Software Foundation follows the rule that we cannot install any proprietary program on
our computers except temporarily for the specific purpose of writing a free replacement for that
very program. Aside from that, we feel there is no possible excuse for installing a proprietary
program.

For example, we felt justified in installing Unix on our computer in the 1980s, because we were
using it to write a free replacement for Unix. Nowadays, since free operating systems are
available, the excuse is no longer applicable; we have eliminated all our non-free operating
systems, and any new computer we install must run a completely free operating system.

We don't insist that users of GNU, or contributors to GNU, have to live by this rule. It is a rule we
made for ourselves. But we hope you will decide to follow it too.

Freeware
The term ``freeware'' has no clear accepted definition, but it is commonly used for packages
which permit redistribution but not modification (and their source code is not available). These
packages are not free software, so please don't use ``freeware'' to refer to free software.

Shareware
Shareware is software which comes with permission for people to redistribute copies, but says
that anyone who continues to use a copy is required to pay a license fee.

http://www.gnu.org/philosophy/categories.html (6 of 8)

http://www.gnu.org/gnu/linux-and-gnu.html

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Shareware is not free software, or even semi-free. There are two reasons it is not:

❍ For most shareware, source code is not available; thus, you cannot modify the program at
all.

❍ Shareware does not come with permission to make a copy and install it without paying a
license fee, not even for individuals engaging in nonprofit activity. (In practice, people
often disregard the distribution terms and do this anyway, but the terms don't permit it.)

Commercial Software
Commercial software is software being developed by a business which aims to make money from
the use of the software. ``Commercial'' and ``proprietary'' are not the same thing! Most
commercial software is proprietary, but there is commercial free software, and there is non-
commercial non-free software.

For example, GNU Ada is always distributed under the terms of the GNU GPL, and every copy is
free software; but its developers sell support contracts. When their salesmen speak to prospective
customers, sometimes the customers say, ``We would feel safer with a commercial compiler.'' The
salesmen reply, ``GNU Ada is a commercial compiler; it happens to be free software.''

For the GNU Project, the emphasis is in the other order: the important thing is that GNU Ada is
free software; whether it is commercial is not a crucial question. However, the additional
development of GNU Ada that results from its being commercial it is definitely beneficial.

Please help spread the awareness that commercial free software is possible. You can do this by
making an effort not to say ``commercial'' when you mean ``proprietary.''

Other Texts to Read

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other questions to gnu@gnu.org.

Copyright (C) 1996, 1997, 1998, 2001 Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111, USA

http://www.gnu.org/philosophy/categories.html (7 of 8)

http://www.gnu.org/philosophy/philosophy.html
http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice
is preserved.

Updated: Last modified: Sun Dec 29 23:54:00 BRST 2002

http://www.gnu.org/philosophy/categories.html (8 of 8)

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Future of Cygnus Solutions

An Entrepreneur's Account

Michael Tiemann

Founded in 1989, Cygnus Solutions was the first, and according to a survey by
Forbes magazine in August 1998, is by far the largest Open Source business
today. Cygnus has established its primary product, the GNUPro Developers Kit,
as both the leading compiler product and the leading debugger product in the
embedded software tools market. Cygnus customers include the world's top
microprocessor companies as well as leading consumer-electronics, Internet,
telecommunications, office automation, networking, aerospace, and automotive
companies. With headquarters in Sunnyvale, CA, and offices in Atlanta (GA),
Boston (MA), Cambridge (UK), Tokyo (JP), Toronto (CN), and remote
employees working from various locations ranging from Australia to Oregon,
Cygnus is the largest privately held company in the embedded software industry,
larger than two publicly-held companies and about to overtake the third largest.
With a CAGR greater than 65% since 1992, Cygnus has been on the San Jose
Business Journal's Top 100 Fastest Growing Private Companies three years in a
row, and now ranks on the Software 500 list (based on revenue of all software

http://www.oreilly.com/catalog/opensources/book/tiemans.html (1 of 22)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

businesses in the world).

In this essay, I will describe the Open Source model that provided the blueprint
for our success, and how we are revising and enhancing it for our future
endeavors.

It wasn't until November 13th, 1989 that we finally received the letter from the
California Department of Corporations informing us that our application had
been approved, and that we could deposit our $6,000 startup capital and begin
transacting business as "Cygnus Support." That day was the culmination of a
vision that began more than two years earlier, and the beginning of a journey
which continues today, almost 10 years later.

The vision began innocently enough. My dad once told me, "If you're going to
read a book, make sure you read it cover to cover." Like most fatherly advice, I
applied it only when it suited me, and in 1987, when I had become bored with
my job and interested in GNU software, I decided to read Richard Stallman's self-
published book GNU Emacs Manual cover to cover. (This book was self-
published because at that time, no self-respecting publisher would print a book
that encouraged people to freely make legal copies of the text. In fact today, it's
still a difficult concept for some publishers to grasp.)

Emacs is a fascinating program. More than a text editor, it has been customized
to let you read and respond to email, read and post to newsgroups, start a shell,
run compilations and debug the resulting programs, and it even gives you
interactive access to the LISP interpreter that drives it. Creative users (or
similarly bored hackers) have extended emacs with whimsical features, such as
"doctor" mode (a Rogerian psychoanalytic program inspired by John McCarthy's
ELIZA program), "dissociated-press," which scrambles text in a way that makes
for difficult and sometimes hilarious reading, and even a program that will
animate the solution of the Towers of Hanoi on a text screen. It was this depth
and richness that drove me to want to learn more, to read the GNU Emacs
Manual and the GNU Emacs source code.

The last chapter of the book, "The GNU Manifesto," was a personal answer from
the author to the overarching question that nagged throughout my entire reading:
why is such a cool program available as freely redistributable software (a.k.a.
Open Source)? Stallman answers in the general question:

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must share it

http://www.oreilly.com/catalog/opensources/book/tiemans.html (2 of 22)

Open Sources: Voices from the Open Source Revolution

with other people who like it. Software sellers want to divide the users and
conquer them, make each user agree not to share with others. I refuse to break
solidarity with other users in this way.

There is much more to Stallman's manifesto--too much to quote here. (A
reference is http://www.fsf.org/gnu/manifesto.html.) Suffice it to say that on the
surface, it read like a socialist polemic, but I saw something different. I saw a
business plan in disguise. The basic idea was simple: Open Source would unify
the efforts of programmers around the world, and companies that provided
commercial services (customizations, enhancements, bug fixes, support) based
on that software could capitalize on the economies of scale and broad appeal of
this new kind of software.

Emacs was not the only mind-blowing program to come from the Free Software
Foundation. There was the GNU Debugger (GDB), which Stallman had to write
because the debuggers from Digital Equipment Corporation (now part of
Compaq) and Sun Microsystems were simply not up to the task of debugging
something as complex as Emacs. Not only could it handle big tasks, but it
handled them elegantly, with commands and extensions that were geared
towards programmers. And because GDB was open-source software,
programmers began adding more extensions that made GDB even more
powerful. This was a kind of scalability that did not exist in proprietary software.

The real bombshell came in June of 1987, when Stallman released the GNU C
Compiler (GCC) Version 1.0. I downloaded it immediately, and I used all the
tricks I'd read about in the Emacs and GDB manuals to quickly learn its 110,000
lines of code. Stallman's compiler supported two platforms in its first release: the
venerable VAX and the new Sun3 workstation. It handily generated better code
on these platforms than the respective vendors' compilers could muster. In two
weeks, I had ported GCC to a new microprocessor (the 32032 from National
Semiconductor), and the resulting port was 20% faster than the proprietary
compiler supplied by National. With another two weeks of hacking, I had raised
the delta to 40%. (It was often said that the reason the National chip faded from
existence was because it was supposed to be a 1 MIPS chip, to compete with
Motorola's 68020, but when it was released, it only clocked .75 MIPS on
application benchmarks. Note that 140% * 0.75 MIPS = 1.05 MIPS. How much
did poor compiler technology cost National?) Compilers, Debuggers, and
Editors are the Big 3 tools that programmers use on a day-to-day basis. GCC,
GDB, and Emacs were so profoundly better than the proprietary alternatives, I
could not help but think about how much money (not to mention economic

http://www.oreilly.com/catalog/opensources/book/tiemans.html (3 of 22)

Open Sources: Voices from the Open Source Revolution

benefit) there would be in replacing proprietary technology with technology that
was not only better, but also getting better faster.

Again, a quote from the GNU Manifesto:

There is nothing wrong with wanting pay for work, or seeking to maximize
one's income, as long as one does not use means that are destructive. But the
means customary in the field of software today are based on destruction.

Extracting money from users of a program by restricting their use of it is
destructive because the restrictions reduce the amount and the ways that the
program can be used. This reduces the amount of wealth that humanity derives
from the program. When there is a deliberate choice to restrict, the harmful
consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become
wealthier is that, if everyone did so, we would all become poorer from the
mutual destructiveness.

Heavy stuff, but the GNU Manifesto is ultimately a rational document. It
dissects the nature of software, the nature of programming, the great tradition of
academic learning, and concludes that regardless of the monetary consequences,
there are ethical and moral imperatives to freely share information that was
freely shared with you. I reached a different conclusion, one which Stallman and
I have often argued, which was that the freedom to use, distribute, and modify
software will prevail against any model that attempts to limit that freedom. It
will prevail not for ethical reasons, but for competitive, market-driven reasons.

At first I tried to make my argument the way that Stallman made his: on the
merits. I would explain how freedom to share would lead to greater innovation at
lower cost, greater economies of scale through more open standards, etc., and
people would universally respond "It's a great idea, but it will never work,
because nobody is going to pay money for free software." After two years of
polishing my rhetoric, refining my arguments, and delivering my messages to
people who paid for me to fly all over the world, I never got farther than "It's a
great idea, but . . .," when I had my second insight: if everybody thinks it's a
great idea, it probably is, and if nobody thinks it will work, I'll have no
competition!

-F = -ma

Isaac Newton

http://www.oreilly.com/catalog/opensources/book/tiemans.html (4 of 22)

Open Sources: Voices from the Open Source Revolution

You'll never see a physics textbook introduce Newton's law in this way, but
mathematically speaking, it is just as valid as "F = ma". The point of this
observation is that if you are careful about what assumptions you turn upside
down, you can maintain the validity of your equations, though your result may
look surprising. I believed that the model of providing commercial support for
open-source software was something that looked impossible because people
were so excited about the minus signs that they forgot to count and cancel them.

An invasion of armies can be resisted, but not an idea whose time has come.

Victor Hugo

There was one final (and deeply hypothetical) question I had to answer before I
was ready to drop out of the Ph.D. program at Stanford and start a company.
Suppose that instead of being nearly broke, I had enough money to buy out any
proprietary technology for the purposes of creating a business around that
technology. I thought about Sun's technology. I thought about Digital's
technology. I thought about other technology that I knew about. How long did I
think I could make that business successful before somebody else who built their
business around GNU would wipe me out? Would I even be able to recover my
initial investment? When I realized how unattractive the position to compete
with open-source software was, I knew it was an idea whose time had come.

The difference between theory and practice tends to be very small in theory, but
in practice it is very large indeed.

Anonymous

In this section, I will detail the theory behind the Open Source business model,
and ways in which we attempted to make this theory practical.

We begin with a few famous observations:

Free markets are self-organizing, permitting the most efficient use of resources
for the greatest creation of value.

Adam Smith

Information, no matter how expensive to create, can be replicated

and shared at little or no cost.

http://www.oreilly.com/catalog/opensources/book/tiemans.html (5 of 22)

Open Sources: Voices from the Open Source Revolution

Thomas Jefferson

The concept of free market economics is so vast that I often like to joke that each
year when it comes time to award the Nobel prize in economics, it goes to the
economist who most eloquently paraphrases Adam Smith. But behind that joke
lies a kernel of truth: there is untapped and unlimited economic potential waiting
to be harnessed by using a more true free market system for software.

In the days of Adam Smith, free market economics went as far as one could
travel or trade in person, but larger trades, especially trades between nations,
were heavily controlled. When a sufficient number of business people became
disenchanted with the prevailing royalty-based system, they revolted and created
a new government that was designed to take less interest in their affairs than
almost any government that had come before it. Indeed, it was freedom that
provided the underlying architecture and vision of the Constitution of the
American government, and freedom again that seems to be at the root of every
important cause or action in today's global economic and political arena. What
makes freedom so compelling? And what has made freedom so responsible for
economic prosperity? We will address these questions shortly.

The more you understand what is wrong with a figure,
the more valuable that figure becomes.

Lord Kelvin

Clearly, when it came to tools for programmers in 1989, proprietary software
was in a dismal state. First, the tools were primitive in the features they offered.
Second, the features, when available, often had built-in limitations that tended to
break when projects started to get complicated. Third, support from proprietary
vendors was terrible; unless you were in the process of buying lots of hardware
or renewing a large software site license, and could use the power of the purse to
your advantage, you were out of luck when you ran into one of these built-in
limitations. And finally, every vendor implemented their own proprietary
extensions, so that when you did use the meager features of one platform, you
became, imperceptibly at first, then more obviously later, inextricably tied to that
platform. All in all, it was quite clear that whatever the merits of free market
economics, they were not at work in the software marketplace. The extent to
which the proprietary software model was a broken model made the study of that
model extremely valuable indeed.

http://www.oreilly.com/catalog/opensources/book/tiemans.html (6 of 22)

Open Sources: Voices from the Open Source Revolution

Today, as then, free market economics lives within the walls of proprietary
software companies (where competing engineers and product groups vie for
funding and favor). Outside their proprietary walls, the use and distribution of
that software is heavily controlled by license agreements, patents, and trade
secrets. One can only wonder what power, what efficiency is lost by practicing
freedom at the micro level, and not at the macro level. By starting a company
prepared to support users at the level of source code, we were going to find out.

>Invention is 1% inspiration and 99% perspiration.

Thomas Edison

The simplistic view of a software company is that once you've created some
software that people want to buy, the act of printing copies of that software and
distributing it is not unlike printing money: the cost of goods is negligible, and
the margin nearly perfect. I believe that one reason software reached such a poor
state of affairs in the 1980s was that people focused on perfecting the abstract
model of printing money, without concern for what happened once people
actually started using the currency. The concept of software support was seen as
a degenerate by-product of some flaw in the software product process, and that
by minimizing software support investment, one could maximize profits.

This not only frustrated users, but it was bad for the software as well. Features
that were easy to implement were often dismissed as "non-strategic." Without
access to source code, features that customers would otherwise be able to
implement themselves remained points of speculation and contention. And
ultimately vendors (and their marketing departments), not customers, defined the
arena of competition with a myriad of useless but easy-to-express features. Free
market economics had been turned upside down.

>Nobody has a monopoly on the truth.

Anonymous

Common Law is legal code that is free to all people equally.

Michael Tiemann

It is all very well and good to have wonderful theories about how to make the
world a better place. It is another thing entirely to get those theories funded to
the point that they are self-sustaining. Although service-based companies were

http://www.oreilly.com/catalog/opensources/book/tiemans.html (7 of 22)

Open Sources: Voices from the Open Source Revolution

rare in the world of software products, there were many cases to study in other
areas.

Consider the practice of law in America (or Great Britain). Common law is
freely available to all who wish to use it. One need not license a decision such as
Roe v. Wade in order to use it for arguments. Indeed, the decisions, once made,
and at whatever cost, are free to all. Yet for all this freedom, lawyers are among
the most expensive professionals to be found. How can a practice of law, which
has no primary proprietary code, command such value?

It is not just the act of prosecuting law that people value so highly. It is also the
cumulative value of that prosecution. If you hire a good lawyer, and in the
course of the prosecution, a decision is made in your favor, that precedent
becomes a new part of the law. Justice is not blind; it is full of history.

This is somewhat analogous to the concept of creating and maintaining standards
with open-source software. It is very expensive to create a standard and get it
right. But it is far more expensive to work without standards or to try to maintain
a standard if the standard is bogus. There is great value in having good people
working on software whose precedents will set the standards of tomorrow. We
believed at the beginning that people would understand this value proposition,
and would value the opportunity to pay us to create high-quality, open-source
programs that would become the de facto standard of the software world.

Cygnus in the Early Years
Having mapped out the theory, it was time to put the theory into practice.
Creating a service-based business is easy enough, if you know anything about
business. Unfortunately, between the three founders of Cygnus, not one had any
experience in running a business.

Always make new mistakes.

Esther Dyson

We used books from the Nolo Press to incorporate our business, establish our by-
laws, and complete various other formalities. For every penny we saved in the
first year, we paid out dollars by the thousands later on down the road. (It's not
clear that we could have done any better hiring professional advice since the first
such advice we received cost us hundreds per hour, and still cost us tens of
thousands later to fix. For the most part, that still says more about our inability at

http://www.oreilly.com/catalog/opensources/book/tiemans.html (8 of 22)

Open Sources: Voices from the Open Source Revolution

the time to properly judge the scope of legal/corporate problems and to request
the proper advice than it does about the particular incompetence of the many
lawyers we tried talking to.)

Having created a completely new business model, we also created our own
concepts of finance, accounting, marketing, sales, customer information, and
support. Each of these creations served us adequately in the first year of
business, where everything was chaotic, and everybody was focused on doing
whatever job was necessary to get the business off the ground, but each needed
to be completely retooled as the business grew.

Cygnus--We Make Free Software Affordable

John Gilmore

To combat the chaos, we worked hard to make the basic business premise as
simple as possible: we were going to provide proven technical support for
proven technical software, and we were going to use economies of scale to make
it profitable. In our estimation, we were going to provide two to four times the
quality of support and development capabilities that in-house people could
deliver, and we were going to provide these services for a half to a quarter of the
cost. We downplayed all the other stuff about open-source software because it
was far too nebulous to sell. We just focused on giving people better tools for
less money, and contract by contract, we learned how to do that.

We wrote our first contract in February of 1990, and by the end of April, we had
already written over $150,000 worth of contracts. In May, we sent letters to 50
prospects we had identified as possibly interested in our support, and in June, to
another 100. Suddenly, the business was real. By the end of the first year, we
had written $725,000 worth of support and development contracts, and
everywhere we looked, there was more opportunity.

For all this success, we were brewing some serious problems. If we were selling
our services for half to a quarter what an internal resource would cost, then were
writing contracts that would cost in total between $1.5M to $3M to deliver, yet
we only had five people in the whole company: one sales person, one part-time
graduate student, and three founders doing everything from Ethernet wiring to
letterhead proofing. How big would the business have to be before economies of
scale really kicked in? At its current rate of growth, how many more all-nighters
would we have to pull to get to that point? Nobody knew, because we didn't
have any financial or operational models.

http://www.oreilly.com/catalog/opensources/book/tiemans.html (9 of 22)

Open Sources: Voices from the Open Source Revolution

GNUPro
We decided that we needed to achieve economies of scale before burnout
became a real problem. And, thinking like engineers, we decided that the fastest
way to achieve these economies of scale was to ruthlessly focus on the smallest
set of open-source technology that we could reasonably sell as a useful solution.
The smaller the focus, we reasoned, the easier it would be to achieve some
concept of scale.

First, establish a firm base.

Sun Tzu

Throwing away plans to support shell tools, file utilities, source code control
software, and even plans to write a free kernel for the Intel 386, we settled on
selling the GNU compiler and debugger as a shrink-wrapped product. There
were a dozen or so companies that sold third-party 32-bit compilers, and there
were another dozen internal compiler groups at companies like Sun, HP, IBM,
etc. Adding up the numbers, we felt that if we could take over the 32-bit
compiler market, we'd be big enough to do all the other cool things we had
envisioned from the outset (a full-on Open Source play, analogous to the EDS
outsourcing model for IBM systems).

The GNU compiler already supported dozens of host environments and over a
dozen target architectures (I had written six of the ports myself), making it one
of the most widely ported compilers of its time. The GNU debugger ran on about
five native platforms, and several people had adapted it to support embedded
systems as well. We naively assumed that making a shrink-wrapped product was
a mere matter of collecting bits onto a single distribution, writing a README,
adding an install script, getting some product collateral, testing it, and shipping
it. The reality was far more challenging.

First, GCC was in the process of transitioning from Version 1.42 to Version 2.0.
While GCC Version 1 was good enough to beat most compilers on CISC
machines like the m68k and the VAX, lots of new optimizations were needed to
make it competitive on RISC platforms. When I did the first GCC port to the
SPARC in 1988, GCC was 20% slower than Sun's compiler. I wrote an
instruction scheduler in 1989 that narrowed the gap to 10%, and I worked on a
branch scheduler that same year that, with the instruction scheduler, got GCC to

http://www.oreilly.com/catalog/opensources/book/tiemans.html (10 of 22)

Open Sources: Voices from the Open Source Revolution

within 5% of Sun's compiler. With the world transitioning from CISC to RISC,
we went from having hands-down the best compiler in almost every regard to a
more complex set of tradeoffs the customer would have to evaluate. It was no
longer a simple, straightforward sell.

Second, GNU C++ was falling behind. I wrote GNU C++ in the fall of 1987,
making it the first native-code C++ compiler in the world. C++ was a much
more complex language than C, and it was still evolving when we started
Cygnus. In 1990, several new, even more complex features became "standard,"
and with all the distractions of Cygnus, I had no time to keep GNU C++ current.

Third, GDB was all over the map. While GCC and G++ had remained
reasonably coherent, with regular releases being made from a central location,
GDB suffered fragmentation. Open-source opponents will argue that a benefit of
proprietary software is that there's only one "true" version, whereas open-source
software can fragment into a million out-of-sync releases, not one of them a
legitimate "standard." Because there was no strong maintainer of GDB, it
fragmented, with hundreds of people around the world making their own
versions to meet their own needs.

Fourth, we did not in fact have a complete toolchain: we had an assembler,
linker, and other binary utilities (a.k.a. binutils) that worked on some, but not
most, of the platforms supported by GCC and GDB. By the time you took the
platforms that GCC supported, intersected that with GDB's supported platforms,
intersected with GAS, GLD, and so forth, there were exactly zero platforms that
worked from a common source base.

Fifth, we had no C library, which was not a problem for native platforms like the
Sun or HP, but a Big Deal for embedded systems developers who needed its
functionality for their standalone applications.

Sixth, while our competitors had nothing that could match our just-in-time
engineering feats, each of them had already-complete products that they sold
very effectively in their respective niches. By building and selling a shrink-
wrapped product, we were changing our attack plan from an elaborate flanking
maneuver to a frontal assault against companies that had 10 to 100 times our
revenues.

And finally, there was the matter of our own confidence. The nice thing about
being the integrators of many quickly evolving tools is that the need for your
services is so obvious. Skeptics challenged the very notion of a shrink-wrapped

http://www.oreilly.com/catalog/opensources/book/tiemans.html (11 of 22)

Open Sources: Voices from the Open Source Revolution

Open Source product by claiming that as soon as we produced anything of
passing quality, there would be no need for our support business, and we'd be
out of business in six months. It was a challenge to our business I would hear for
the next four years.

The world is full of insurmountable opportunities.

Yogi Berra

There was nothing to do but to go for it, and with an initial estimate of 6 months
to do the work, we all agreed to "double up" and make it happen. I was tasked
with growing the top line by day, and helping complete the work for GCC 2.0
and G++ by night. David Henkel-Wallace (a.k.a. Gumby), the second Cygnus
founder, took on the so-called binutils and the library in addition to his duties as
CFO and Director of Support. And John Gilmore, the third Cygnus founder, took
on GDB. We hired some new people to help us (1) put the whole works into
CVS (an open-source source code control system), (2) write configuration and
installation scripts that could handle the hundreds of possible platforms our
shrink-wrapped product might work on, (3) automate our testing procedures, and
(4) help us with the heavy lifting on the new development contracts that we were
closing at an accelerating rate.

Six months later, the job had inexplicably grown, and some people had grown
bored with our strict (some would say restrictive) product focus. While the GNU
product was the bulk of our sales and engineering efforts, we sold contracts for
other technology, such as Kerberos (network security software), Emacs, and
even our bug tracking and test framework software (which was still under
development at that time).

John had sent a message to the Net saying essentially "I'm going to be the new
GDB maintainer. If you want the features you've implemented in GDB to be
maintained in the next version, send me your complete GDB sources and I'll
figure out how to integrate them." In six weeks, he collected 137 versions of
GDB (mostly hacks to Version 3.5), all of which had one or more features that
needed to be integrated. John began designing the architecture for GDB 4.0 to
support all of these features. Who was I to argue that it couldn't be done?

Gumby had decided that all the binary file utilities should use a common library
that described all known object file and debugging formats. The reason behind
this decision was clear when one looked at the functionality of the various tools
that sit behind the compiler:

http://www.oreilly.com/catalog/opensources/book/tiemans.html (12 of 22)

Open Sources: Voices from the Open Source Revolution

Tool Reads Writes

Compiler ASCII ASCII

Assembler ASCII Binary

Archiver Binary Binary

Linker Binary Binary

Size Binary Binary

Strip Binary Binary

Binary Binary Binary

Nm Binary Binary

Debugger Binary none

Each tool had its own implementation for reading and/or writing binary file
formats, and each of these implementations had varying levels of support for
each binary format: a.out, b.out, coff, ecoff, xcoff, elf, ieee695, and others.
Moreover, when each tool was configured it supported only a single kind of
binary file format. A fix to the m68k-a.out assembler might also need to be made
in all the other a.out-specific tools, or it might need to propagate as a object file-
independent change. Depending on how a utility was written, it might be an
a.out-specific change for one tool, and a generic change for another!

By building a single library that supported all functionality from a single source
base, it would be possible to achieve economies of scale sooner because
everything could be factored and maintained in a consistent fashion. Besides, it
would be neat to demonstrate the ability to link a.out object code to a coff library
and generate an ieee695 executable! Gumby began designing the library and
discussing the design with Stallman. Stallman said that the job was too difficult--
it would require a complete rewrite of all the tools, and it would be too difficult
to maintain. Gumby told him it wasn't such a "Big F*cking Deal" and hence
named this new creation the BFD library. (We explained to our customers that
BFD stood for the binary file descriptor library.)

But while John and Gumby hacked, I still had to sell contracts to keep cash
coming in. Every quarter I would have new top-line goals that required more
resources to fulfill more contracts, and all the best engineers were tied up on this
release into which I had no visibility. Tensions rose between sales and
engineering while the Open Source model seemed be working in reverse: the
more development we did on GNU software, the less we got back from the Net,

http://www.oreilly.com/catalog/opensources/book/tiemans.html (13 of 22)

Open Sources: Voices from the Open Source Revolution

until we were doing over 50% of all GNU toolchain development.

Neither was this a temporary state of affairs. It would take a year and a half (!)
before the first "Progressive Release" was finally completed. On that momentous
day, I was assured that for the first time, a complete C and C++ development
toolkit could be built from a single source base, and that we could support two
platforms: the Sun3 and the Sun4. I was dumbfounded. I had written 6 GCC
ports, 3 GDB ports, and a native-code C++ compiler and debugger in less time
than it took a team of hackers to get two toolchains to work from a single source
base!?

There were two mitigating facts: (1) the tools worked better than they ever
worked before, with many new and useful features, and (2) because of all the
infrastructure work we'd put into the job (not just rewriting the tools, but
implementing a configuration script and an automated testing framework), we
could expect to support many more host/target combinations in the future,
including a virtually unlimited range of embedded system platforms.

We put this framework to the test, and it passed with flying colors:

Date Release Name Native Embedded Total Platforms

Mar 1992 p1 2 0 2

June1992 p2 5 0 5

Sep 1992 p3 5 10 15

Dec 1992 p4 5 20 25

Mar 1993 q1 5 30 35

Jun 1993 q2 5 45 50

Sep 1993 q3 7 53 60

Dec 1993 q4 8 67 75

Mar 1994 r1 10 75 85

Jun 1994 r2 10 80 90

Sep 1994 r3 10 85 95

Dec1004 r4 10 90 100

While the engineers were doing great things to create the GNUPro product, our
sales team was working out how to sell it. In 1991, we hired a young business
student, recently laid off from Applied Materials, who wanted to learn how to
sell software. Though her native language was not English, she picked things up

http://www.oreilly.com/catalog/opensources/book/tiemans.html (14 of 22)

Open Sources: Voices from the Open Source Revolution

very quickly. By no means a hacker (though she spent some weekends at Cygnus
teaching herself to program in C), she nevertheless became a really strong
advocate of the Open Source approach. After six months of very successful
selling, she invited me to see her make a customer presentation. I was floored. I
had always sold Open Source the way a hacker would sell it: focusing mainly on
the technical merits. She explained the intrinsic complexity of the job we were
doing and the business value of the software we delivered, and this helped us
finally explain to customers why they should buy from us instead of trying to do
the work with their own people. I was selling the fact that our engineers were
somehow better than theirs (not a message most managers want to hear),
whereas she could explain how their engineers would benefit from having us do
the baseline porting, support, and maintenance work. In the end, the mix of our
technical prowess and business benefits led to equally powerful sales
accomplishments:

Bookings ($K) Profitability (%) Cumulative CAGR

1990: 725 epsilon N/A

1991: 1500 1 106%

1992: 2800 2 96%

1993: 4800 3 87%

1994: 5700 4 67%

Watson! Come here!

Alexander Graham Bell

Out of this effort has come significant new technologies that have been returned
to the Net and become standards in their own right: GNU configure (a generic
configuration script that can configure software based on three independent
variables: a build platform, a host platform, and a target platform), autoconf (a
higher-level script for creating configure scripts), automake (a makefile
generator for autoconf-driven environments), DejaGNU (a regression testing
framework), GNATS (a problem report management system), and others.

Today, the GNUPro toolkit supports over 175 host/target combinations, a
number that is now limited by the actual diversity of the market, not a limitation
in our release or configuration technology.

In fact, GNUPro has become so dominant that several of our competitors have

http://www.oreilly.com/catalog/opensources/book/tiemans.html (15 of 22)

Open Sources: Voices from the Open Source Revolution

announced their intention to sell commercial support for GNU software to
compete with us! Fortunately, the Open Source model comes to the rescue again.
Unless and until a competitor can match the 100+ engineers we have on staff
today, most of whom are primary authors or maintainers of the software we
support, they cannot displace us from our position as the "true GNU" source (we
supply over 80% of all changes made to GCC, GDB, and related utilities). The
best they can hope to do is add incremental features that their customers might
pay them to add. But because the software is Open Source, whatever value they
add comes back to Cygnus as open-source software, for us to integrate if it's
good, or ignore if it's not. Unlike proprietary software in which competitors fight
in a two-sided win/lose contest, with Open Source it's more like fighting on a
Moebius strip, and everything flows to the side of the primary maintainer. So,
while our competitors may get some tactical advantage in the "me-too" GNU
space, Cygnus benefits in the long run. Founded in 1989, our first-mover
advantage is ten years ahead of the competition.

Challenges
As can be seen from the chart above, while our growth rate remained impressive,
it slowed as we grew. While we tried to sell the merits and value of Open Source
software, skeptics and potential customers challenged our model with respect to:

Sanity
Why would a customer pay for a competitor's advantage?

Scalability
How can a service-based business scale?

Sustainability
Will Cygnus be around when customers need it?

Profitability
How can open-source software be profitable?

Manageability
How can open-source software be managed to deliver quality consistently?

Investibility
How can a company with no software IP ever attract investors?

Can you imagine trying to sell a $10,000 support contract to a manager of five
embedded systems programmers, and getting hung up on whether or not Cygnus

http://www.oreilly.com/catalog/opensources/book/tiemans.html (16 of 22)

Open Sources: Voices from the Open Source Revolution

can go public based on its business model? For all that Open Source was a great
way to open doors into the best and most innovative software development
groups, it proved to be a major roadblock when selling to the mainstream
market. We were about to learn first-hand what Geoffrey Moore meant in his
book Crossing the Chasm.

This challenge became absolutely clear when I visited a group of developers
who were building wireless communications systems at a Fortune 100 company.
As part of their quality process, they not only evaluated their own quality, but
the quality of their vendors according to a number of metrics. Of all the different
vendors with whom they did business, most ranked "Very Good to Excellent" in
most or all of the metrics. Their supplier of embedded tools, however, placed
dead last with "Poor or Unacceptable" in all categories for each of the three
years this quality monitoring process had been in place. Yet they would not buy
our tools because despite our testimonials (from their customers, no less!),
superior technical features, and lower price, management did not want to go with
an unknown solution. I left wondering why they even bothered to collect data if
they'd never use it to act, but that was the wrong question. I should have instead
realized that this was typical mainstream behavior, and that the way to fix the
problem was not to fault the customer, but to improve our marketing and
messaging.

Our problems were not solely external, however. Many customers did not
believe that we could hire enough people to scale our support business much
beyond whatever we told them was our current state. They were both quite
wrong and quite right. When it came to hiring engineers, they were quite wrong.
Cygnus was founded by engineers, and our culture, Open Source business
model, and the opportunity to join the preeminent Open Source engineering team
in the world has always made Cygnus attractive to the developers we've wanted
to hire. Turnover, compared to the national average (and especially compared to
the average in Silicon Valley) is something like a quarter to a tenth what other
companies experience.

But when it came to hiring managers, it was another story altogether. Sharing
many of the same concerns and prejudices that our mainstream customers
expressed, most managers we contacted had no interest in working for Cygnus.
Those that did were not attracted to it. Those who were attracted to it were often
attracted to it for the wrong reasons. By the time we had two managers in our
engineering department, we had over 50 engineers. Communication, process,
management controls, and employee satisfaction all declined as managers

http://www.oreilly.com/catalog/opensources/book/tiemans.html (17 of 22)

Open Sources: Voices from the Open Source Revolution

struggled, often unsuccessfully, to come to grips with what it meant to be and
manage an Open Source company.

Ironically enough, we also disqualified managers who could not accept creating
a closed-source component to our business. Open Source was a business
strategy, not a philosophy, and we did not want to hire managers who were not
flexible enough to manage either open or closed source products to meet overall
company objectives.

We have come to accept the fact that you cannot expect to hire managers who
understand all the implications of open-source software right away. You have to
expect them to make mistakes (which means you have to budget for the costs of
those mistakes), and they have to be able to learn from those mistakes. Most
managers who bring experience with them try to change things to fit that
experience--a recipe for failure at Cygnus. It was very hard to find managers
who could both manage from, and quickly learn from, experience. And we
needed them by the dozens.

The Open Source model, for all its challenges, proved to be remarkably resilient.
Though we did occasionally lose customers through poorly set expectations or
poor execution, our annual renewal rate has remained roughly 90% by dollar
value since 1993, and the number one reason we lose customers is "retirement":
the conclusion of the customer's project. Two factors helped us survive where
other companies would have failed: (1) every person, regardless of title or
seniority, recognized the importance of meeting customer commitments (nobody
was "above" doing customer support), and (2) when all else failed, the customer
was empowered to help themselves (because all customers had source code).
Thus, despite amazing amounts of turmoil inside Cygnus in those days, very few
customers were ever left holding the bag because the software failed to deliver, a
stunning contrast to stories we heard about our proprietary competition as well
as people who used unsupported open-source software.

Getting Funded Beyond Open Source--eCos
The reality of the embedded systems world is that there are a relatively small
number of companies that make the silicon and there are a relatively small
number of Outside Equipment Manufacturers (OEMs) who buy the majority of
the silicon for use in their embedded systems products. The rest of the market
consists of a large number of small-volume players who build interesting stuff,
but they do not drive the volumes necessary to mandate new chip designs or

http://www.oreilly.com/catalog/opensources/book/tiemans.html (18 of 22)

Open Sources: Voices from the Open Source Revolution

software solutions.

Between the semiconductor vendors and the OEMs there are hundreds of little
software companies, all of whom are selling their wares. For example, there are
over 120 commercially supported Real Time Operating Systems (RTOSes) in
the market today. Not one of these RTOSes has more than a 6% market share,
according to IDC. It's like the Unix world ten years ago, only twenty times more
fragmented! This fragmentation leads to all the classic degenerative cases of free
market economics: redundancy, incompatibility, price gouging, etc. What the
semiconductor vendors and the OEMs wanted were standards that would
accelerate TTM (time to money), and the commercial RTOS vendors were either
taking too much time, costing too much money, or both.

In the embedded systems market we were the rising star: we were growing twice
as fast as the leader in our market, and we were keeping our top four competitors
to single-digit growth. Yet we were not treated like, nor did we act like, true
market leaders. In 1995, after many conversations with our key customers about
what did and did not work in their embedded systems world, we began to
understand that our GNUPro compilers and debuggers could only go so far in
addressing their problems. What customers needed was a silicon abstraction
layer--a layer of software that sat underneath the standard C library or a real-
time POSIX API. There was a new opportunity to expand our product offering in
a non-trivial way.

We sharpened our pencils and took note of the obvious: 120+ commercial
RTOSes and 1000+ in-house RTOSes meant that at the technical level nobody
had yet built a sufficiently configurable RTOS to achieve "one size fits all," and
from a business perspective we noted that run-time royalties were killing
margins, so the RTOS had to be royalty-free. In other words, to consolidate the
market around our solution, we needed to create a completely new, world-class
technology, and we needed to give it away. Management kicked the idea around
for a year before finally acting on it.

Once we did decide to go forward with this strategy, our management team
continued to wrestle with the question "How is it going to make money?" Even
as we continued to consolidate the market around GNUPro, it was not obvious to
the team how we could repeat that model for an embedded operating system.

We did the smart thing that any business does when faced with a completely
inconsistent problem: we made assumptions. Assuming we would figure out
how to make money, we asked ourselves what were the N other things we

http://www.oreilly.com/catalog/opensources/book/tiemans.html (19 of 22)

Open Sources: Voices from the Open Source Revolution

needed to do in order to solve our customers' problems and become #1 in the
market? (1) We needed to develop this whizzy new configuration technology,
(2) we needed to build the rest of the system so that people would have
something to configure, and (3) we needed to do all of this before the market
opportunity evaporated. Software development costs money, and product-
oriented software development on a timetable costs lots of money.

When we started Cygnus, we had all assumed that the VCs would never
understand what we did, and if they did, it would not be until five or more years
down the road, when there was nothing useful they could do for us. Happily, we
were wrong on both counts.

Our first outside board member, Philippe Courtot, wasted no time in introducing
me to leading VCs in early 1992. I was very open with each of them about our
model, technology, and goals for the future, and I was equally open about the
fact that we had designed Cygnus to be self-funding and hence did not need their
money. Indeed, the fact that we could increase profitability a percentage point
per year while growing the company at 80% per year was a pretty good
indication (as far as I was concerned) that we were maturing the business nicely.
Roger McNamee, a leading software industry analyst for the VC community,
said it best when he said "I am both amazed and surprised by your business
model. I am amazed at how well it is working, but the more I think about it, the
more surprised I am that I didn't think of it first!"

While it was gratifying to think that we had aced the problem and didn't need
outside funding, the reality was that by 1996, we had created so much
opportunity beyond our self-funding GNUPro business that we needed a new
plan and new partners.

We found two investors, Greylock Management and August Capital, who
understood what we did and how we did it, understood what we could do with
the right guidance and discipline, and had access to enough capital to execute
our plan. They invested $6.25M, the largest private placement for a software
company in the first half of 1997, and the execution began in earnest.

I do not like them, Sam-I-am. I do not like green eggs and ham.

Dr. Seuss

While the technical team ramped up, the business people continued to thrash on
how the money was going to work, because at first we did not see the connection

http://www.oreilly.com/catalog/opensources/book/tiemans.html (20 of 22)

Open Sources: Voices from the Open Source Revolution

between the architecture of eCos and the business model we could use to
commercialize it. On the technical front, we knew that the configurability of the
system was key to delivering a "one size fits all" architecture. On the business
front, we knew that a "one size fits all" was key to creating a unifying and
beneficial standard for embedded systems development. But we still could not
figure out who was going to pay for this benefit. The two sides worked on their
problem independently for a year and a half. R&D costs mounted. Unable to
reconcile the Open Source paradox, many managers didn't make it.

When the technical people were finally able to demonstrate what they first
envisioned, it became clear to the business people what we were actually
creating: the world's first Open Source architecture. To me, it was as exciting as
the first time I looked at GCC.

Open Source is all well and good for the hacker, and the way that Open Source
can create standards is great for the end user, but there's a gap between what
hackers can do with open-source software and what regular users can do. We
wanted eCos to be a product that could be embraced by the mainstream
embedded developer, not just the hacker community. Our idea was to empower
users with high-level tools that could configure, customize, and perform basic
validation of eCos in an automated fashion, replacing the manual steps that in-
house RTOS developers perform today. By making the high-level tools control
eCos at the source-code level, and by architecting the source code so that it
could be managed via these tools, we made it possible for end users to work
virtually at the source-code level, without ever needing to read or write a line of
C or C++ code. The proof of our success is that eCos can be scaled from 700
bytes (bare minimum silicon abstraction layer) to over 50 Kbytes (full-featured
RTOS with Internet stack and filesystem)!

Once we realized that Open Source was not just a feature, but the technical
enabler of eCos, and once we proved to ourselves that with this feature, we had a
10x performance advantage over our competition (10x space savings over object-
level configurability and 10x-100x programmer efficiency over source-available,
but not source-architected RTOSes), we packaged solutions to deliver that
performance advantage to the market, and the preliminary response from the
market has been extremely positive.

When one considers the past impossibilities of our GNU-based business, one can
only imagine the possibilities that eCos will create for Cygnus Solutions and the
world.

http://www.oreilly.com/catalog/opensources/book/tiemans.html (21 of 22)

Open Sources: Voices from the Open Source Revolution

Reflections and Vision of the Future
Open-source software taps the intrinsic efficiency of the technical free market,
but it does so in an organic and unpredictable way. Open Source businesses take
on the role of Adam Smith's "invisible hand," guiding it to both help the overall
market and to achieve their own microeconomic goals. The most successful
Open Source businesses will be the ones who can successfully guide
technologies that engender the greatest cooperation from the Net community and
solve the greatest technical and business challenges of the user community.

Created from open-source software, the Internet has been a fantastic enabler for
the development of new open-source software. As people continue to connect on
the Internet and through Open Source, we will witness changes in the
development and use of software in much the same way that the Renaissance
changed how we developed and used academic knowledge. With the freedoms
provided by open-source software, I expect nothing less!

He set his mind to work on unknown arts,
thereby changing the laws of nature.

James Joyce

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/tiemans.html (22 of 22)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

Other Texts to Read

Copyright (C) 1985, 1993 Free Software Foundation, Inc.

Permission is granted to anyone to make or distribute verbatim copies of this document, in any medium,
provided that the copyright notice and permission notice are preserved, and that the distributor grants the
recipient permission for further redistribution as permitted by this notice.

Modified versions may not be made.

The GNU Manifesto

[Czech | Dutch | English | French | German | Italian | Korean | Portuguese | Spanish]

 The GNU Manifesto (which appears below) was written by
 Richard Stallman at the beginning of the GNU Project, to ask for

 participation and support. For the first few years, it was
 updated in minor ways to account for developments, but now it
 seems best to leave it unchanged as most people have seen it.

 Since that time, we have learned about certain common
 misunderstandings that different wording could help avoid.
 Footnotes added in 1993 help clarify these points.

 For up-to-date information about the available GNU software,
 please see the information available on our web server,

 in particular our list of software.

What's GNU? Gnu's Not Unix!

http://www.fsf.org/gnu/manifesto.html (1 of 11)

http://www.fsf.org/philosophy/philosophy.html
http://www.fsf.org/gnu/manifesto.cs.html
http://www.fsf.org/gnu/manifesto.nl.html
http://www.fsf.org/gnu/manifesto.fr.html
http://www.fsf.org/gnu/manifesto.de.html
http://www.fsf.org/gnu/manifesto.it.html
http://www.fsf.org/gnu/manifesto.ko.html
http://www.fsf.org/gnu/manifesto.pt.html
http://www.fsf.org/gnu/manifesto.es.html
http://www.stallman.org/
http://www.fsf.org/home.html
http://www.fsf.org/software/software.html
http://www.fsf.org/graphics/whatsgnu.html

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

Translations of the GNU Manifesto are available in French, German, Japanese, Korean, Russian,
Swedish and Spanish.

GNU, which stands for Gnu's Not Unix, is the name for the complete Unix-compatible software system
which I am writing so that I can give it away free to everyone who can use it. (1) Several other volunteers
are helping me. Contributions of time, money, programs and equipment are greatly needed.

So far we have an Emacs text editor with Lisp for writing editor commands, a source level debugger, a
yacc-compatible parser generator, a linker, and around 35 utilities. A shell (command interpreter) is
nearly completed. A new portable optimizing C compiler has compiled itself and may be released this
year. An initial kernel exists but many more features are needed to emulate Unix. When the kernel and
compiler are finished, it will be possible to distribute a GNU system suitable for program development.
We will use TeX as our text formatter, but an nroff is being worked on. We will use the free, portable X
window system as well. After this we will add a portable Common Lisp, an Empire game, a spreadsheet,
and hundreds of other things, plus on-line documentation. We hope to supply, eventually, everything
useful that normally comes with a Unix system, and more.

GNU will be able to run Unix programs, but will not be identical to Unix. We will make all
improvements that are convenient, based on our experience with other operating systems. In particular,
we plan to have longer file names, file version numbers, a crashproof file system, file name completion
perhaps, terminal-independent display support, and perhaps eventually a Lisp-based window system
through which several Lisp programs and ordinary Unix programs can share a screen. Both C and Lisp
will be available as system programming languages. We will try to support UUCP, MIT Chaosnet, and
Internet protocols for communication.

GNU is aimed initially at machines in the 68000/16000 class with virtual memory, because they are the
easiest machines to make it run on. The extra effort to make it run on smaller machines will be left to
someone who wants to use it on them.

To avoid horrible confusion, please pronounce the `G' in the word `GNU' when it is the name of this
project.

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must share it with other people who like
it. Software sellers want to divide the users and conquer them, making each user agree not to share with
others. I refuse to break solidarity with other users in this way. I cannot in good conscience sign a
nondisclosure agreement or a software license agreement. For years I worked within the Artificial
Intelligence Lab to resist such tendencies and other inhospitalities, but eventually they had gone too far: I

http://www.fsf.org/gnu/manifesto.html (2 of 11)

http://www.dtext.com/hache/manifeste-GNU.html
http://www.gnu.de/mani-ger.html
http://www.fsf.org/japan/manifesto-1993j-plain.html
http://www.fsf.org/gnu/manifesto.ko.html
http://www.gnu.org.ru/manifesto.html
http://www.df.lth.se/~triad/artiklar/GNU_Manifesto-swe.html
http://www.fsf.org/gnu/manifesto.es.html

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

could not remain in an institution where such things are done for me against my will.

So that I can continue to use computers without dishonor, I have decided to put together a sufficient body
of free software so that I will be able to get along without any software that is not free. I have resigned
from the AI lab to deny MIT any legal excuse to prevent me from giving GNU away.

Why GNU Will Be Compatible with Unix

Unix is not my ideal system, but it is not too bad. The essential features of Unix seem to be good ones,
and I think I can fill in what Unix lacks without spoiling them. And a system compatible with Unix
would be convenient for many other people to adopt.

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and redistribute GNU, but no
distributor will be allowed to restrict its further redistribution. That is to say, proprietary (18k characters)
modifications will not be allowed. I want to make sure that all versions of GNU remain free.

Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and want to help.

Many programmers are unhappy about the commercialization of system software. It may enable them to
make more money, but it requires them to feel in conflict with other programmers in general rather than
feel as comrades. The fundamental act of friendship among programmers is the sharing of programs;
marketing arrangements now typically used essentially forbid programmers to treat others as friends. The
purchaser of software must choose between friendship and obeying the law. Naturally, many decide that
friendship is more important. But those who believe in law often do not feel at ease with either choice.
They become cynical and think that programming is just a way of making money.

By working on and using GNU rather than proprietary programs, we can be hospitable to everyone and
obey the law. In addition, GNU serves as an example to inspire and a banner to rally others to join us in
sharing. This can give us a feeling of harmony which is impossible if we use software that is not free. For
about half the programmers I talk to, this is an important happiness that money cannot replace.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I'm asking individuals for
donations of programs and work.

http://www.fsf.org/gnu/manifesto.html (3 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

One consequence you can expect if you donate machines is that GNU will run on them at an early date.
The machines should be complete, ready to use systems, approved for use in a residential area, and not in
need of sophisticated cooling or power.

I have found very many programmers eager to contribute part-time work for GNU. For most projects,
such part-time distributed work would be very hard to coordinate; the independently-written parts would
not work together. But for the particular task of replacing Unix, this problem is absent. A complete Unix
system contains hundreds of utility programs, each of which is documented separately. Most interface
specifications are fixed by Unix compatibility. If each contributor can write a compatible replacement for
a single Unix utility, and make it work properly in place of the original on a Unix system, then these
utilities will work right when put together. Even allowing for Murphy to create a few unexpected
problems, assembling these components will be a feasible task. (The kernel will require closer
communication and will be worked on by a small, tight group.)

If I get donations of money, I may be able to hire a few people full or part time. The salary won't be high
by programmers' standards, but I'm looking for people for whom building community spirit is as
important as making money. I view this as a way of enabling dedicated people to devote their full
energies to working on GNU by sparing them the need to make a living in another way.

Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system software free, just like air.(2)

This means much more than just saving everyone the price of a Unix license. It means that much
wasteful duplication of system programming effort will be avoided. This effort can go instead into
advancing the state of the art.

Complete system sources will be available to everyone. As a result, a user who needs changes in the
system will always be free to make them himself, or hire any available programmer or company to make
them for him. Users will no longer be at the mercy of one programmer or company which owns the
sources and is in sole position to make changes.

Schools will be able to provide a much more educational environment by encouraging all students to
study and improve the system code. Harvard's computer lab used to have the policy that no program
could be installed on the system if its sources were not on public display, and upheld it by actually
refusing to install certain programs. I was very much inspired by this.

Finally, the overhead of considering who owns the system software and what one is or is not entitled to
do with it will be lifted.

Arrangements to make people pay for using a program, including licensing of copies, always incur a
tremendous cost to society through the cumbersome mechanisms necessary to figure out how much (that

http://www.fsf.org/gnu/manifesto.html (4 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

is, which programs) a person must pay for. And only a police state can force everyone to obey them.
Consider a space station where air must be manufactured at great cost: charging each breather per liter of
air may be fair, but wearing the metered gas mask all day and all night is intolerable even if everyone can
afford to pay the air bill. And the TV cameras everywhere to see if you ever take the mask off are
outrageous. It's better to support the air plant with a head tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as breathing, and as productive. It ought
to be as free.

Some Easily Rebutted Objections to GNU's Goals

"Nobody will use it if it is free, because that means they can't rely on any support."

"You have to charge for the program to pay for providing the support."

If people would rather pay for GNU plus service than get GNU free without service, a company to
provide just service to people who have obtained GNU free ought to be profitable.(3)

We must distinguish between support in the form of real programming work and mere handholding. The
former is something one cannot rely on from a software vendor. If your problem is not shared by enough
people, the vendor will tell you to get lost.

If your business needs to be able to rely on support, the only way is to have all the necessary sources and
tools. Then you can hire any available person to fix your problem; you are not at the mercy of any
individual. With Unix, the price of sources puts this out of consideration for most businesses. With GNU
this will be easy. It is still possible for there to be no available competent person, but this problem cannot
be blamed on distribution arrangements. GNU does not eliminate all the world's problems, only some of
them.

Meanwhile, the users who know nothing about computers need handholding: doing things for them
which they could easily do themselves but don't know how.

Such services could be provided by companies that sell just hand-holding and repair service. If it is true
that users would rather spend money and get a product with service, they will also be willing to buy the
service having got the product free. The service companies will compete in quality and price; users will
not be tied to any particular one. Meanwhile, those of us who don't need the service should be able to use
the program without paying for the service.

"You cannot reach many people without advertising, and you must charge for the program to
support that."

http://www.fsf.org/gnu/manifesto.html (5 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

"It's no use advertising a program people can get free."

There are various forms of free or very cheap publicity that can be used to inform numbers of computer
users about something like GNU. But it may be true that one can reach more microcomputer users with
advertising. If this is really so, a business which advertises the service of copying and mailing GNU for a
fee ought to be successful enough to pay for its advertising and more. This way, only the users who
benefit from the advertising pay for it.

On the other hand, if many people get GNU from their friends, and such companies don't succeed, this
will show that advertising was not really necessary to spread GNU. Why is it that free market advocates
don't want to let the free market decide this?(4)

"My company needs a proprietary operating system to get a competitive edge."

GNU will remove operating system software from the realm of competition. You will not be able to get
an edge in this area, but neither will your competitors be able to get an edge over you. You and they will
compete in other areas, while benefiting mutually in this one. If your business is selling an operating
system, you will not like GNU, but that's tough on you. If your business is something else, GNU can save
you from being pushed into the expensive business of selling operating systems.

I would like to see GNU development supported by gifts from many manufacturers and users, reducing
the cost to each.(5)

"Don't programmers deserve a reward for their creativity?"

If anything deserves a reward, it is social contribution. Creativity can be a social contribution, but only in
so far as society is free to use the results. If programmers deserve to be rewarded for creating innovative
programs, by the same token they deserve to be punished if they restrict the use of these programs.

"Shouldn't a programmer be able to ask for a reward for his creativity?"

There is nothing wrong with wanting pay for work, or seeking to maximize one's income, as long as one
does not use means that are destructive. But the means customary in the field of software today are based
on destruction.

Extracting money from users of a program by restricting their use of it is destructive because the
restrictions reduce the amount and the ways that the program can be used. This reduces the amount of
wealth that humanity derives from the program. When there is a deliberate choice to restrict, the harmful
consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become wealthier is that, if everyone

http://www.fsf.org/gnu/manifesto.html (6 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

did so, we would all become poorer from the mutual destructiveness. This is Kantian ethics; or, the
Golden Rule. Since I do not like the consequences that result if everyone hoards information, I am
required to consider it wrong for one to do so. Specifically, the desire to be rewarded for one's creativity
does not justify depriving the world in general of all or part of that creativity.

"Won't programmers starve?"

I could answer that nobody is forced to be a programmer. Most of us cannot manage to get any money
for standing on the street and making faces. But we are not, as a result, condemned to spend our lives
standing on the street making faces, and starving. We do something else.

But that is the wrong answer because it accepts the questioner's implicit assumption: that without
ownership of software, programmers cannot possibly be paid a cent. Supposedly it is all or nothing.

The real reason programmers will not starve is that it will still be possible for them to get paid for
programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is the most common basis because it
brings in the most money. If it were prohibited, or rejected by the customer, software business would
move to other bases of organization which are now used less often. There are always numerous ways to
organize any kind of business.

Probably programming will not be as lucrative on the new basis as it is now. But that is not an argument
against the change. It is not considered an injustice that sales clerks make the salaries that they now do. If
programmers made the same, that would not be an injustice either. (In practice they would still make
considerably more than that.)

"Don't people have a right to control how their creativity is used?"

"Control over the use of one's ideas" really constitutes control over other people's lives; and it is usually
used to make their lives more difficult.

People who have studied the issue of intellectual property rights carefully (such as lawyers) say that there
is no intrinsic right to intellectual property. The kinds of supposed intellectual property rights that the
government recognizes were created by specific acts of legislation for specific purposes.

For example, the patent system was established to encourage inventors to disclose the details of their
inventions. Its purpose was to help society rather than to help inventors. At the time, the life span of 17
years for a patent was short compared with the rate of advance of the state of the art. Since patents are an
issue only among manufacturers, for whom the cost and effort of a license agreement are small compared
with setting up production, the patents often do not do much harm. They do not obstruct most individuals
who use patented products.

http://www.fsf.org/gnu/manifesto.html (7 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

The idea of copyright did not exist in ancient times, when authors frequently copied other authors at
length in works of non-fiction. This practice was useful, and is the only way many authors' works have
survived even in part. The copyright system was created expressly for the purpose of encouraging
authorship. In the domain for which it was invented--books, which could be copied economically only on
a printing press--it did little harm, and did not obstruct most of the individuals who read the books.

All intellectual property rights are just licenses granted by society because it was thought, rightly or
wrongly, that society as a whole would benefit by granting them. But in any particular situation, we have
to ask: are we really better off granting such license? What kind of act are we licensing a person to do?

The case of programs today is very different from that of books a hundred years ago. The fact that the
easiest way to copy a program is from one neighbor to another, the fact that a program has both source
code and object code which are distinct, and the fact that a program is used rather than read and enjoyed,
combine to create a situation in which a person who enforces a copyright is harming society as a whole
both materially and spiritually; in which a person should not do so regardless of whether the law enables
him to.

"Competition makes things get done better."

The paradigm of competition is a race: by rewarding the winner, we encourage everyone to run faster.
When capitalism really works this way, it does a good job; but its defenders are wrong in assuming it
always works this way. If the runners forget why the reward is offered and become intent on winning, no
matter how, they may find other strategies--such as, attacking other runners. If the runners get into a fist
fight, they will all finish late.

Proprietary and secret software is the moral equivalent of runners in a fist fight. Sad to say, the only
referee we've got does not seem to object to fights; he just regulates them ("For every ten yards you run,
you can fire one shot"). He really ought to break them up, and penalize runners for even trying to fight.

"Won't everyone stop programming without a monetary incentive?"

Actually, many people will program with absolutely no monetary incentive. Programming has an
irresistible fascination for some people, usually the people who are best at it. There is no shortage of
professional musicians who keep at it even though they have no hope of making a living that way.

But really this question, though commonly asked, is not appropriate to the situation. Pay for
programmers will not disappear, only become less. So the right question is, will anyone program with a
reduced monetary incentive? My experience shows that they will.

For more than ten years, many of the world's best programmers worked at the Artificial Intelligence Lab
for far less money than they could have had anywhere else. They got many kinds of non-monetary

http://www.fsf.org/gnu/manifesto.html (8 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

rewards: fame and appreciation, for example. And creativity is also fun, a reward in itself.

Then most of them left when offered a chance to do the same interesting work for a lot of money.

What the facts show is that people will program for reasons other than riches; but if given a chance to
make a lot of money as well, they will come to expect and demand it. Low-paying organizations do
poorly in competition with high-paying ones, but they do not have to do badly if the high-paying ones are
banned.

"We need the programmers desperately. If they demand that we stop helping our neighbors, we
have to obey."

You're never so desperate that you have to obey this sort of demand. Remember: millions for defense,
but not a cent for tribute!

"Programmers need to make a living somehow."

In the short run, this is true. However, there are plenty of ways that programmers could make a living
without selling the right to use a program. This way is customary now because it brings programmers and
businessmen the most money, not because it is the only way to make a living. It is easy to find other
ways if you want to find them. Here are a number of examples.

A manufacturer introducing a new computer will pay for the porting of operating systems onto the new
hardware.

The sale of teaching, hand-holding and maintenance services could also employ programmers.

People with new ideas could distribute programs as freeware, asking for donations from satisfied users,
or selling hand-holding services. I have met people who are already working this way successfully.

Users with related needs can form users' groups, and pay dues. A group would contract with
programming companies to write programs that the group's members would like to use.

All sorts of development can be funded with a Software Tax:

Suppose everyone who buys a computer has to pay x percent of the price as a software tax. The
government gives this to an agency like the NSF to spend on software development.

But if the computer buyer makes a donation to software development himself, he can take a credit against
the tax. He can donate to the project of his own choosing--often, chosen because he hopes to use the
results when it is done. He can take a credit for any amount of donation up to the total tax he had to pay.

http://www.fsf.org/gnu/manifesto.html (9 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

The total tax rate could be decided by a vote of the payers of the tax, weighted according to the amount
they will be taxed on.

The consequences:

● The computer-using community supports software development.
● This community decides what level of support is needed.
● Users who care which projects their share is spent on can choose this for themselves.

In the long run, making programs free is a step toward the post-scarcity world, where nobody will have
to work very hard just to make a living. People will be free to devote themselves to activities that are fun,
such as programming, after spending the necessary ten hours a week on required tasks such as
legislation, family counseling, robot repair and asteroid prospecting. There will be no need to be able to
make a living from programming.

We have already greatly reduced the amount of work that the whole society must do for its actual
productivity, but only a little of this has translated itself into leisure for workers because much
nonproductive activity is required to accompany productive activity. The main causes of this are
bureaucracy and isometric struggles against competition. Free software will greatly reduce these drains in
the area of software production. We must do this, in order for technical gains in productivity to translate
into less work for us.

Footnotes

(1) The wording here was careless. The intention was that nobody would have to pay for *permission* to
use the GNU system. But the words don't make this clear, and people often interpret them as saying that
copies of GNU should always be distributed at little or no charge. That was never the intent; later on, the
manifesto mentions the possibility of companies providing the service of distribution for a profit.
Subsequently I have learned to distinguish carefully between "free" in the sense of freedom and "free" in
the sense of price. Free software is software that users have the freedom to distribute and change. Some
users may obtain copies at no charge, while others pay to obtain copies--and if the funds help support
improving the software, so much the better. The important thing is that everyone who has a copy has the
freedom to cooperate with others in using it.

(2) This is another place I failed to distinguish carefully between the two different meanings of "free".
The statement as it stands is not false--you can get copies of GNU software at no charge, from your
friends or over the net. But it does suggest the wrong idea.

(3) Several such companies now exist.

http://www.fsf.org/gnu/manifesto.html (10 of 11)

The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

(4) The Free Software Foundation raises most of its funds from a distribution service, although it is a
charity rather than a company. If *no one* chooses to obtain copies by ordering them from the FSF, it
will be unable to do its work. But this does not mean that proprietary restrictions are justified to force
every user to pay. If a small fraction of all the users order copies from the FSF, that is sufficient to keep
the FSF afloat. So we ask users to choose to support us in this way. Have you done your part?

(5) A group of computer companies recently pooled funds to support maintenance of the GNU C
Compiler.

Other Texts to Read

Return to GNU's home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other questions to gnu@gnu.org.

Copyright notice above.
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA

Updated: $Date: 2003/06/05 16:07:35 $ $Author: luferbu $

http://www.fsf.org/gnu/manifesto.html (11 of 11)

http://www.fsf.org/order/order.html
http://www.fsf.org/philosophy/philosophy.html
http://www.fsf.org/home.html
mailto:gnu@gnu.org
http://www.fsf.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Software Engineering

Paul Vixie

Software engineering is a wider field than "writing programs." Yet, in many
Open Source projects, programs are simply written and given away. It's clear
from historical examples that software need not be engineered in order to be
widely used and enjoyed. In this essay we'll look at some general elements of
software engineering, then at the Open Source community's usual equivalents to
these elements, and then finally at the implications of the differences between
the two approaches.

The Software Engineering Process
The elements of a software engineering process are generally enumerated as:

● Marketing Requirements

● System-Level Design

● Detailed Design

● Implementation

● Integration

http://www.oreilly.com/catalog/opensources/book/vixie.html (1 of 12)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

● Field Testing

● Support

No element of this process ought to commence before the earlier ones are
substantially complete, and whenever a change is made to some element, all
dependent elements ought to be reviewed or redone in light of that change. It's
possible that a given module will be both specified and implemented before its
dependent modules are fully specified--this is called advanced development or
research.

It is absolutely essential that every element of the software engineering process
include several kinds of review: peer review, mentor/management review, and
cross-disciplinary review.

Software engineering elements (whether documents or source code) must have
version numbers and auditable histories. "Checking in" a change to an element
should require some form of review, and the depth of the review should
correspond directly to the scope of the change.

Marketing Requirements

The first step of a software engineering process is to create a document which
describes the target customers and their reason for needing this product, and then
goes on to list the features of the product which address these customer needs.
The Marketing Requirements Document (MRD) is the battleground where the
answer to the question "What should we build, and who will use it?" is decided.

In many failed projects, the MRD was handed down like an inscribed stone
tablet from marketing to engineering, who would then gripe endlessly about the
laws of physics and about how they couldn't actually build that product since
they had no ready supply of Kryptonite or whatever. The MRD is a joint effort,
with engineering not only reviewing but also writing a lot of the text.

System-Level Design

This is a high-level description of the product, in terms of "modules" (or
sometimes "programs") and of the interaction between these modules. The goals
of this document are first, to gain more confidence that the product could work
and could be built, and second, to form a basis for estimating the total amount of
work it will take to build it.

http://www.oreilly.com/catalog/opensources/book/vixie.html (2 of 12)

Open Sources: Voices from the Open Source Revolution

The system-level design document should also outline the system-level testing
plan, in terms of customer needs and whether they would be met by the system
design being proposed.

Detailed Design

The detailed design is where every module called out in the system-level design
document is described in detail. The interface (command line formats, calling
API, externally visible data structures) of each module has to be completely
determined at this point, as well as dependencies between modules. Two things
that will evolve out of the detailed design is a PERT or GANT chart showing
what work has to be done and in what order, and more accurate estimates of the
time it will take to complete each module.

Every module needs a unit test plan, which tells the implementor what test cases
or what kind of test cases they need to generate in their unit testing in order to
verify functionality. Note that there are additional, nonfunctional unit tests which
will be discussed later.

Implementation

Every module described in the detailed design document has to be implemented.
This includes the small act of coding or programming that is the heart and soul
of the software engineering process. It's unfortunate that this small act is
sometimes the only part of software engineering that is taught (or learned), since
it is also the only part of software engineering which can be effectively self-
taught.

A module can be considered implemented when it has been created, tested, and
successfully used by some other module (or by the system-level testing process).
Creating a module is the old edit-compile-repeat cycle. Module testing includes
the unit level functional and regression tests called out by the detailed design,
and also performance/stress testing, and code coverage analysis.

Integration

When all modules are nominally complete, system-level integration can be done.
This is where all of the modules move into a single source pool and are compiled
and linked and packaged as a system. Integration can be done incrementally, in
parallel with the implementation of the various modules, but it cannot
authoritatively approach "doneness" until all modules are substantially complete.

http://www.oreilly.com/catalog/opensources/book/vixie.html (3 of 12)

Open Sources: Voices from the Open Source Revolution

Integration includes the development of a system-level test. If the built package
has to be able to install itself (which could mean just unpacking a tarball or
copying files from a CD-ROM) then there should be an automated way of doing
this, either on dedicated crash and burn systems or in containerized/simulated
environments.

Sometimes, in the middleware arena, the package is just a built source pool, in
which case no installation tools will exist and system testing will be done on the
as-built pool.

Once the system has been installed (if it is installable), the automated system-
level testing process should be able to invoke every public command and call
every public entry point, with every possible reasonable combination of
arguments. If the system is capable of creating some kind of database, then the
automated system-level testing should create one and then use external
(separately written) tools to verify the database's integrity. It's possible that the
unit tests will serve some of these needs, and all unit tests should be run in
sequence during the integration, build, and packaging process.

Field Testing

Field testing usually begins internally. That means employees of the
organization that produced the software package will run it on their own
computers. This should ultimately include all "production level" systems--
desktops, laptops, and servers. The statement you want to be able to make at the
time you ask customers to run a new software system (or a new version of an
existing software system) is "we run it ourselves." The software developers
should be available for direct technical support during internal field testing.

Ultimately it will be necessary to run the software externally, meaning on
customers' (or prospective customers') computers. It's best to pick "friendly"
customers for this exercise since it's likely that they will find a lot of defects--
even some trivial and obvious ones--simply because their usage patterns and
habits are likely to be different from those of your internal users. The software
developers should be close to the front of the escalation path during external
field testing.

Defects encountered during field testing need to be triaged by senior developers
and technical marketers, to determine which ones can be fixed in the
documentation, which ones need to be fixed before the current version is
released, and which ones can be fixed in the next release (or never).

http://www.oreilly.com/catalog/opensources/book/vixie.html (4 of 12)

Open Sources: Voices from the Open Source Revolution

Support

Software defects encountered either during field testing or after the software has
been distributed should be recorded in a tracking system. These defects should
ultimately be assigned to a software engineer who will propose a change to
either the definition and documentation of the system, or the definition of a
module, or to the implementation of a module. These changes should include
additions to the unit and/or system-level tests, in the form of a regression test to
show the defect and therefore show that it has been fixed (and to keep it from
recurring later).

Just as the MRD was a joint venture between engineering and marketing, so it is
that support is a joint venture between engineering and customer service. The
battlegrounds in this venture are the bug list, the categorization of particular
bugs, the maximum number of critical defects in a shippable software release,
and so on.

Testing Details

Code Coverage Analysis

Code coverage testing begins with the instrumentation of the program code,
sometimes by a preprocessor, sometimes by an object code modifier, sometimes
using a special mode of the compiler or linker, to keep track of all possible code
paths in a block of source code and to record, during its execution, which ones
were taken.

Consider the following somewhat typical C snippet:

1. if (read(s, buf, sizeof buf) == -1)
2. error++;
3. else
4. error = 0;

If the error variable has not been initialized, then the code is buggy, and if line 2
is ever executed then the results of the rest of the program will be undefined. The
likelihood of an error in read (and a return value of -1 from it) occurring during
normal testing is somewhat low. The way to avoid costly support events from
this kind of bug is to make sure that your unit tests exercise every possible code

http://www.oreilly.com/catalog/opensources/book/vixie.html (5 of 12)

Open Sources: Voices from the Open Source Revolution

path and that the results are correct in every case.

But wait, it gets better. Code paths are combinatorial. In our example above, the
error variable may have been initialized earlier--let's say by a similar code
snippet whose predicate ("system call failure") was false (meaning no error
occurred). The following example, which is patently bad code that would not
pass any kind of code review anyway, shows how easy it is for simple things to
become complicated:

1. if (connect(s, &sa, &sa_len) == -1)
2. error++;
3. else
4. error = 0;
5. if (read(s, buf, sizeof buf) == -1)
6. error++;
7. else
8. error = 0;

There are now four code paths to test:

1. lines 1-2-5-6.

2. lines 1-2-5-8.

3. lines 1-4-5-6.

4. lines 1-4-5-8.

It's usually impossible to test every possible code path--there can be hundreds of
paths through even a small function of a few dozen lines. And on the other hand,
merely ensuring that your unit tests are capable (on successive runs, perhaps) of
exercising every line of code is not sufficient. This kind of coverage analysis is
not in the tool bag of every software engineer in the field--and that's why QA is
its own specialty.

Regression Tests

Fixing a bug is just not enough. "Obvious by inspection" is often a cop-out used
to cover the more insidious "writing the smoking gun test would be difficult."
OK, so there are many bugs which are obvious by inspection, like division by
the constant zero. But to figure out what to fix, one must look at the surrounding

http://www.oreilly.com/catalog/opensources/book/vixie.html (6 of 12)

Open Sources: Voices from the Open Source Revolution

code to find out what the author (who was hopefully somebody else) intended.
This kind of analysis should be documented as part of the fix, or as part of the
comments in the source code, or both.

In the more common case, the bug isn't obvious by inspection and the fix will be
in a different part of the source code than the place where the program dumped
core or otherwise behaved badly. In these cases, a new test should be written
which exercises the bad code path (or the bad program state or whatever) and
then the fix should be tested against this new unit test. After review and check-
in, the new unit test should also be checked in, so that if the same bug is
reintroduced later as a side effect of some other change, QA will have some
hope of catching it before the customers do.

Open Source Software Engineering
An Open Source project can include every single one of the above elements, and
to be fair, some have. The commercial versions of BSD, BIND, and Sendmail
are all examples of the standard software engineering process--but they didn't
start out that way. A full-blown software engineering process is very resource-
hungry, and instantiating one usually requires investment, which usually requires
some kind of revenue plan.

The far more common case of an open-source project is one where the people
involved are having fun and want their work to be as widely used as possible so
they give it away without fee and sometimes without restrictions on
redistribution. These folks might not have access to so-called "commercial
grade" software tools (like code coverage analyzers, bounds-checking
interpreters, and memory integrity verifiers). And the primary things they seem
to find fun are coding, packaging, and evangelizing--not QA, not MRDs, and
usually not hard and fast ship dates.

Let's revisit each of the elements of the software engineering process and see
what typically takes its place in an unfunded Open Source project--a labor of
love.

Marketing Requirements

Open Source folks tend to build the tools they need or wish they had. Sometimes
this happens in conjunction with one's day job, and often it's someone whose
primary job is something like system administration rather than software

http://www.oreilly.com/catalog/opensources/book/vixie.html (7 of 12)

Open Sources: Voices from the Open Source Revolution

engineering. If, after several iterations, a software system reaches critical mass
and takes on a life of its own, it will be distributed via Internet tarballs and other
users will start to either ask for features or just sit down and implement them and
send them in.

The battleground for an open-source MRD is usually a mailing list or
newsgroup, with the users and developers bantering back and forth directly.
Consensus is whatever the developers remember or agree with. Failure to
consense often enough results in "code splits," where other developers start
releasing their own versions. The MRD equivalent for Open Source can be very
nurturing but it has sharp edges--conflict resolution is sometimes not possible (or
not attempted).

System-Level Design

There usually just is no system-level design for an unfunded Open Source effort.
Either the system design is implicit, springing forth whole and complete straight
from Zeus's forehead, or it evolves over time (like the software itself). Usually
by Version 2 or 3 of an open-source system, there actually is a system design
even if it doesn't get written down anywhere.

It is here, rather than in any other departure from the normal rules of the
software engineering road, that Open Source earns its reputation for being a little
bit flakey. You can compensate for a lack of a formal MRD or even formal QA
by just having really good programmers (or really friendly users), but if there's
no system design (even if it's only in someone's head), the project's quality will
be self-limited.

Detailed Design

Another casualty of being unfunded and wanting to have fun is a detailed design.
Some people do find DDDs fun to work on, but these people generally get all the
fun they can stand by writing DDDs during their day jobs. Detailed design ends
up being a side effect of the implementation. "I know I need a parser, so I'll write
one." Documenting the API in the form of external symbols in header files or
manpages is optional and may not occur if the API isn't intended to be published
or used outside of the project.

This is a shame, since a lot of good and otherwise reusable code gets hidden this
way. Even modules that are not reusable or tightly bound to the project where
they are created, and whose APIs are not part of the feature deliverables, really

http://www.oreilly.com/catalog/opensources/book/vixie.html (8 of 12)

Open Sources: Voices from the Open Source Revolution

ought to have manpages explaining what they do and how to call them. It's
hugely helpful to the other people who want to enhance the code, since they
have to start by reading and understanding it.

Implementation

This is the fun part. Implementation is what programmers love most; it's what
keeps them up late hacking when they could be sleeping. The opportunity to
write code is the primary motivation for almost all open-source software
development effort ever expended. If one focuses on this one aspect of software
engineering to the exclusion of the others, there's a huge freedom of expression.

Open-source projects are how most programmers experiment with new styles,
either styles of indentation or variable naming or "try to save memory" or "try to
save CPU cycles" or what have you. And there are some artifacts of great beauty
waiting in tarballs everywhere, where some programmer tried out a style for the
first time and it worked.

An unfunded Open Source effort can have as much rigor and consistency as it
wants--users will run the code if it's functional; most people don't care if the
developer switched styles three times during the implementation process. The
developers generally care, or they learn to care after a while. In this situation,
Larry Wall's past comments about programming being an artistic expression
very much hit home.

The main difference in an unfunded Open Source implementation is that review
is informal. There's usually no mentor or peer looking at the code before it goes
out. There are usually no unit tests, regression or otherwise.

Integration

Integration of an open-source project usually involves writing some manpages,
making sure that it builds on every kind of system the developer has access to,
cleaning up the Makefile to remove the random hair that creeps in during the
implementation phase, writing a README, making a tarball, putting it up for
anonymous FTP somewhere, and posting a note to some mailing list or
newsgroup where interested users can find it.

Note that the comp.sources.unix newsgroup was rekindled in 1998 by Rob
Braun, and it's a fine place to send announcements of new or updated open-
source software packages. It also functions as a repository/archive.

http://www.oreilly.com/catalog/opensources/book/vixie.html (9 of 12)

Open Sources: Voices from the Open Source Revolution

That's right, no system-level testing. But then there's usually no system-level test
plan and no unit tests. In fact, Open Source efforts are pretty light on testing
overall. (Exceptions exist, such as Perl and PostgreSQL.) This lack of pre-
release testing is not a weakness, though, as explained below.

Field Testing

Unfunded open-source software enjoys the best system-level testing in the
industry, unless we include NASA's testing on space-bound robots in our
comparison. The reason is simply that users tend to be much friendlier when
they aren't being charged any money, and power users (often developers
themselves) are much more helpful when they can read, and fix, the source code
to something they're running.

The essence of field testing is its lack of rigor. What software engineering is
looking for from its field testers is patterns of use which are inherently
unpredictable at the time the system is being designed and built--in other words,
real world experiences of real users. Unfunded open-source projects are simply
unbeatable in this area.

An additional advantage enjoyed by open-source projects is the "peer review" of
dozens or hundreds of other programmers looking for bugs by reading the source
code rather than just by executing packaged executables. Some of the readers
will be looking for security flaws and some of those found will not be reported
(other than among other crackers), but this danger does not take away from the
overall advantage of having uncounted strangers reading the source code. These
strangers can really keep an Open Source developer on his or her toes in a way
that no manager or mentor ever could.

Support

"Oops, sorry!" is what's usually said when a user finds a bug, or "Oops, sorry,
and thanks!" if they also send a patch. "Hey, it works for me" is how Open
Source developers do bug triage. If this sounds chaotic, it is. The lack of support
can keep some users from being willing (or able) to run unfunded Open Source
programs, but it also creates opportunities for consultants or software
distributors to sell support contracts and/or enhanced and/or commercial
versions.

When the Unix vendor community first encountered a strong desire from their
users to ship prepackaged open-source software with their base systems, their

http://www.oreilly.com/catalog/opensources/book/vixie.html (10 of 12)

Open Sources: Voices from the Open Source Revolution

first reaction was pretty much "Well, OK, but we're not going to support it." The
success of companies like Cygnus has prompted reexamination of that position,
but the culture clash runs pretty deep. Traditional software houses, including
Unix vendors, just cannot plan or budget for the cost of sales of a support
business if there are unreviewed changes being contributed by uncounted
strangers.

Sometimes the answer is to internalize the software, running it through the
normal QA process including unit and system testing, code coverage analysis,
and so on. This can involve a reverse-engineered MRD and DDD to give QA
some kind of context (i.e., what functionality to test for). Other times the answer
is to rewrite the terms of the support agreement to "best efforts" rather than
"guaranteed results." Ultimately the software support market will be filled by
who can get leverage from all those uncounted strangers, since a lot of them are
good people writing good software, and the Open Source culture is more
effective in most cases at generating the level of functionality that users actually
want (witness Linux versus Windows).

Conclusions
Engineering is an old field, and no matter whether one is building software,
hardware, or railroad bridges, the elements of the engineering process are
essentially the same:

● Identify a requirement, and its requirers.

● Design a solution that meets the requirement.

● Modularize the design; plan the implementation.

● Build it; test it; deliver it; support it.

Some fields put greater emphasis on some phases. For example, railroad bridge
builders don't usually have to put a lot of thought into an MRD, the
implementation process, or support--but they have to pay very close attention to
the SDD and DDD and of course QA.

The seminal moment in the conversion of a "programmer" into a "software
engineer" is that instant when they realize that engineering is a field and that
they are able to enter that field but that it will require a fundamentally different
mindset--and a lot more work. Open Source developers often succeed for years

http://www.oreilly.com/catalog/opensources/book/vixie.html (11 of 12)

Open Sources: Voices from the Open Source Revolution

before the difference between programming and software engineering finally
catches up to them, simply because Open Source projects take longer to suffer
from the lack of engineering rigor.

This chapter has given a very shallow overview of software engineering, and
hopefully provided some motivation and context for Open Source programmers
to consider entering that field. Remember that the future is always a hybrid of all
the best of what has gone into the past and present. Software engineering isn't
just for the slide rule and pocket protector set--it's a rich field with a lot of
proven techniques for building high-quality systems, especially high-quality
systems that aren't amenable to the "one smart programmer" approach common
to Open Source projects.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/vixie.html (12 of 12)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

The Linux Edge

Linus Torvalds

Linux today has millions of users, thousands of developers, and a growing
market. It is used in embedded systems; it is used to control robotic devices; it
has flown on the space shuttle. I'd like to say that I knew this would happen, that
it's all part of the plan for world domination. But honestly this has all taken me a
bit by surprise. I was much more aware of the transition from one Linux user to
one hundred Linux users than the transition from one hundred to one million
users.

Linux has succeeded not because the original goal was to make it widely
portable and widely available, but because it was based on good design
principles and a good development model. This strong foundation made
portability and availability easier to achieve.

Contrast Linux for a moment with ventures that have had strong commercial
backing, like Java or Windows NT. The excitement about Java has convinced
many people that "write once, run anywhere" is a worthy goal. We're moving
into a time when a wider and wider range of hardware is being used for
computing, so indeed this is an important value. Sun didn't invent the idea of
"write once, run anywhere," however. Portability has long been a holy grail of

http://www.oreilly.com/catalog/opensources/book/linus.html (1 of 13)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

the computer industry. Microsoft, for example, originally hoped that Windows
NT would be a portable operating system, one that could run on Intel machines,
but also on RISC machines common in the workstation environment. Linux
never had such an ambitious original goal. It's ironic, then, that Linux has
become such a successful medium for cross-platform code.

Originally Linux was targeted at only one architecture: the Intel 386. Today
Linux runs on everything from PalmPilots to Alpha workstations; it is the most
widely ported operating system available for PCs. If you write a program to run
on Linux, then, for a wide range of machines, that program can be "write once,
run anywhere." It's interesting to look at the decisions that went into the design
of Linux, and how the Linux development effort evolved, to see how Linux
managed to become something that was not at all part of the original vision.

Amiga and the Motorola Port
Linux is a Unix-like operating system, but not a version of Unix. This gives
Linux a different heritage than, for example, Free BSD. What I mean is this: the
creators of Free BSD started with the source code to Berkeley Unix, and their
kernel is directly descended from that source code. So Free BSD is a version of
Unix; it's in the Unix family tree. Linux, on the other hand, aims to provide an
interface that is compatible with Unix, but the kernel was written from scratch,
without reference to Unix source code. So Linux itself is not a port of Unix. It's a
new operating system.

Porting this new operating systems to other platforms was really not on my mind
at the beginning. At first I just wanted something that would run on my 386.

A serious effort to make the Linux kernel code portable began with the effort to
port Linux to DEC's Alpha machine. The Alpha port was not the first port,
however.

The first port came from a team who ported the Linux kernel to the Motorola
68K series, which was the chip in the early Sun, Apple, and Amiga computers.
The programmers behind the Motorola port really wanted to do something low-
level and in Europe you had a number of people who were in the Amiga
community who were especially disenchanted with the idea of using DOS or
Windows.

While the Amiga people did get a system running on the 68K, I don't really think
of this as a successful port of Linux. They took the same kind of approach I had

http://www.oreilly.com/catalog/opensources/book/linus.html (2 of 13)

Open Sources: Voices from the Open Source Revolution

taken when writing Linux in the first place: writing code from scratch targeted to
support a certain kind of interface. So that first 68K port could be considered a
Linux-like operating system, and a fork off the original codebase.

In one sense this first 68K Linux was not helpful in creating a portable Linux,
but in another sense it was. When I started thinking about the Alpha port I had to
think about the 68K experience. If we took the same approach with Alpha, then I
would have three different code bases to support in order to maintain Linux.
Even if this had been feasible in terms of coding, it wasn't feasible in terms of
management. I couldn't manage the development of Linux if it meant keeping
track of an entirely new code base every time someone wanted Linux on a new
architecture. Instead, I wanted to do a system where I have an Alpha specific
tree, a 68K specific tree, and an x86 specific tree, but all in a common code base.

So the kernel underwent a major rewrite at this time. But that rewrite was
motivated by how to work with a growing community of developers.

Microkernels
When I began to write the Linux kernel, there was an accepted school of thought
about how to write a portable system. The conventional wisdom was that you
had to use a microkernel-style architecture.

With a monolithic kernel such as the Linux kernel, memory is divided into user
space and kernel space. Kernel space is where the actual kernel code is loaded,
and where memory is allocated for kernel-level operations. Kernel operations
include scheduling, process management, signaling, device I/O, paging, and
swapping: the core operations that other programs rely on to be taken care of.
Because the kernel code includes low-level interaction with the hardware,
monolithic kernels appear to be specific to a particular architecture.

A microkernel performs a much smaller set of operations, and in more limited
form: interprocess communication, limited process management and scheduling,
and some low-level I/O. Microkernels appear to be less hardware-specific
because many of the system specifics are pushed into user space. A microkernel
architecture is basically a way of abstracting the details of process control,
memory allocation, and resource allocation so that a port to another chipset
would require minimal changes.

So at the time I started work on Linux in 1991, people assumed portability
would come from a microkernel approach. You see, this was sort of the research

http://www.oreilly.com/catalog/opensources/book/linus.html (3 of 13)

Open Sources: Voices from the Open Source Revolution

darling at the time for computer scientists. However, I am a pragmatic person,
and at the time I felt that microkernels (a) were experimental, (b) were obviously
more complex than monolithic Kernels, and (c) executed notably slower than
monolithic kernels. Speed matters a lot in a real-world operating system, and so
a lot of the research dollars at the time were spent on examining optimization for
microkernels to make it so they could run as fast as a normal kernel. The funny
thing is if you actually read those papers, you find that, while the researchers
were applying their optimizational tricks on a microkernel, in fact those same
tricks could just as easily be applied to traditional kernels to accelerate their
execution.

In fact, this made me think that the microkernel approach was essentially a
dishonest approach aimed at receiving more dollars for research. I don't
necessarily think these researchers were knowingly dishonest. Perhaps they were
simply stupid. Or deluded. I mean this in a very real sense. The dishonesty
comes from the intense pressure in the research community at that time to pursue
the microkernel topic. In a computer science research lab, you were studying
microkernels or you weren't studying kernels at all. So everyone was pressured
into this dishonesty, even the people designing Windows NT. While the NT
team knew the final result wouldn't approach a microkernel, they knew they had
to pay lip service to the idea.

Fortunately I never felt much pressure to pursue microkernels. The University of
Helsinki had been doing operating system research from the late 60s on, and
people there didn't see the operating system kernel as much of a research topic
anymore. In a way they were right: the basics of operating systems, and by
extension the Linux kernel, were well understood by the early 70s; anything
after that has been to some degree an exercise in self-gratification.

If you want code to be portable, you shouldn't necessarily create an abstraction
layer to achieve portability. Instead you should just program intelligently.
Essentially, trying to make microkernels portable is a waste of time. It's like
building an exceptionally fast car and putting square tires on it. The idea of
abstracting away the one thing that must be blindingly fast--the kernel--is
inherently counter-productive.

Of course there's a bit more to microkernel research than that. But a big part of
the problem is a difference in goals. The aim of much of the microkernel
research was to design for a theoretical ideal, to come up with a design that
would be as portable as possible across any conceivable architecture. With Linux

http://www.oreilly.com/catalog/opensources/book/linus.html (4 of 13)

Open Sources: Voices from the Open Source Revolution

I didn't have to aim for such a lofty goal. I was interested in portability between
real world systems, not theoretical systems.

From Alpha to Portability
The Alpha port started in 1993, and took about a year to complete. The port
wasn't entirely done after a year, but the basics were there. While this first port
was difficult, it established some design principles that Linux has followed
since, and that have made other ports easier.

The Linux kernel isn't written to be portable to any architecture. I decided that if
a target architecture is fundamentally sane enough, and follows some basic rules
then Linux would fundamentally support that kind of model. For example,
memory management can be very different from one machine to another. I read
up on the 68K, the Sparc, the Alpha, and the PowerPC memory management
documents, and found that while there are differences in the details, there was a
lot in common in the use of paging, caching, and so on. The Linux kernel
memory management could be written to a common denominator among these
architectures, and then it would not be so hard to modify the memory
management code for the details of a specific architecture.

A few assumptions simplify the porting problem a lot. For example, if you say
that a CPU must have paging, then it must by extension have some kind of
translation lookup buffer (TLB), which tells the CPU how to map the virtual
memory for use by the CPU. Of course, what form the TLB takes you aren't
sure. But really, the only thing you need to know is how to fill it and how to
flush it when you decide it has to go away. So in this sane architecture you know
you need to have a few machine-specific parts in the kernel, but most of the code
is based on the general mechanisms by which something like the TLB works.

Another rule of thumb that I follow is that it is always better to use a compile
time constant rather than using a variable, and often by following this rule, the
compiler will do a lot better job at code optimization. This is obviously wise,
because you can set up your code so as to be flexibly defined, but easily
optimized.

What's interesting about this approach--the approach of trying to define a sane
common architecture--is that by doing this you can present a better architecture
to the OS than is really available on the actual hardware platform. This sounds
counter-intuitive, but it's important. The generalizations you're looking for when

http://www.oreilly.com/catalog/opensources/book/linus.html (5 of 13)

Open Sources: Voices from the Open Source Revolution

surveying systems are frequently the same as the optimizations you'd like to
make to improve the kernel's performance.

You see, when you do a large enough survey of things like page table
implementation and you make a decision based on your observations--say, that
the page tree should be only three deep--you find later that you could only have
done it that way if you were truly interested in having high performance. In other
words, if you had not been thinking about portability as a design goal, but had
just been thinking about optimization of the kernel on a particular architecture,
you would frequently reach the same conclusion--say, that the optimal depth for
the kernel to represent the page tree is three deep.

This isn't just luck. Often when an architecture deviates from a sane general
design in some of its details that's because it's a bad design. So the same
principles that make you write around the design specifics to achieve portability
also make you write around the bad design features and stick to a more
optimized general design. Basically I have tried to reach middle ground by
mixing the best of theory into the realistic facts of life on today's computer
architectures.

Kernel Space and User Space
With a monolithic kernel such as the Linux kernel, it's important to be very
cautious about allowing new code and new features into the kernel. These
decisions can affect a number of things later on in the development cycle beyond
the core kernel work.

The first very basic rule is to avoid interfaces. If someone wants to add
something that involves a new system interface you need to be exceptionally
careful. Once you give an interface to users they will start coding to it and once
somebody starts coding to it you are stuck with it. Do you want to support the
exact same interface for the rest of your system's life?

Other code is not so problematic. If it doesn't have an interface, say a disk driver,
there isn't much to think about; you can just add a new disk driver with little risk.
If Linux didn't have that driver before, adding it doesn't hurt anyone already
using Linux, and opens Linux to some new users.

When it comes to other things, you have to balance. Is this a good
implementation? Is this really adding a feature that is good? Sometimes even
when the feature is good, it turns out that either the interface is bad or the

http://www.oreilly.com/catalog/opensources/book/linus.html (6 of 13)

Open Sources: Voices from the Open Source Revolution

implementation of that feature kind of implies that you can never do something
else, now or in the future.

For example--though this is sort of an interface issue--suppose somebody has
some stupid implementation of a filesystem where names can be no longer than
14 characters. The thing you really want to avoid having these limitations in an
interface that is set in stone. Otherwise when you look to extend the filesystem,
you are screwed because you have to find a way to fit within this lesser interface
that was locked in before. Worse than that, every program that requests a
filename may only have space in a variable for, say, 13 characters, so if you
were to pass them a longer filename it would crash them.

Right now the only vendor that does such a stupid thing is Microsoft.
Essentially, in order to read DOS/Windows files you have this ridiculous
interface where all files had eleven characters, eight plus three. With NT, which
allowed long filenames, they had to add a complete set of new routines to do the
same things the other routines did, except that this set can also handle larger
filenames. So this is an example of a bad interface polluting future works.

Another example of this happened in the Plan 9 operating system. They had this
really cool system call to do a better process fork--a simple way for a program to
split itself into two and continue processing along both forks. This new fork,
which Plan 9 called R-Fork (and SGI later called S-Proc) essentially creates two
separate process spaces that share an address space. This is helpful for threading
especially.

Linux does this too with its clone system call, but it was implemented properly.
However, with the SGI and Plan9 routines they decided that programs with two
branches can share the same address space but use separate stacks. Normally
when you use the same address in both threads, you get the same memory
location. But you have a stack segment that is specific, so if you use a stack-
based memory address you actually get two different memory locations that can
share a stack pointer without overriding the other stack.

While this is a clever feat, the downside is that the overhead in maintaining the
stacks makes this in practice really stupid to do. They found out too late that the
performance went to hell. Since they had programs which used the interface they
could not fix it. Instead they had to introduce an additional properly-written
interface so that they could do what was wise with the stack space.

While a proprietary vendor can sometimes try to push the design flaw onto the

http://www.oreilly.com/catalog/opensources/book/linus.html (7 of 13)

Open Sources: Voices from the Open Source Revolution

architecture, in the case of Linux we do not have the latitude to do this.

This is another case where managing the development of Linux and making
design decisions about Linux dictate the same approach. From a practical point
of view, I couldn't manage lots of developers contributing interfaces to the
kernel. I would not have been able to keep control over the kernel. But from a
design point of view this is also the right thing to do: keep the kernel relatively
small, and keep the number of interfaces and other constraints on future
development to a minimum.

Of course Linux is not completely clean in this respect. Linux has inherited a
number of terrible interfaces from previous implementations of Unix. So in some
cases I would have been happier if I did not have to maintain the same interface
as Unix. But Linux is about as clean as a system can be without starting
completely from scratch. And if you want the benefit of being able to run Unix
applications, then you get some of the Unix baggage as a consequence. Being
able to run those applications has been vital to Linux's popularity, so the tradeoff
is worth it.

GCC
Unix itself is a great success story in terms of portability. The Unix kernel, like
many kernels, counts on the existence of C to give it the majority of the
portability it needs. Likewise for Linux. For Unix the wide availability of C
compilers on many architectures made it possible to port Unix to those
architectures.

So Unix underscores how important compilers are. The importance of compilers
was one reason I chose to license Linux under the GNU Public License (GPL).
The GPL was the license for the GCC compiler. I think that all the other projects
from the GNU group are for Linux insignificant in comparison. GCC is the only
one that I really care about. A number of them I hate with a passion; the Emacs
editor is horrible, for example. While Linux is larger than Emacs, at least Linux
has the excuse that it needs to be.

But basically compilers are really a fundamental need.

Now that the Linux kernel follows a generally portable design, at least for
reasonably sane architectures, portability should be possible as long as a
reasonably good compiler is available. For the upcoming chips I don't worry
much about architectural portability when it comes to the kernel anymore; I

http://www.oreilly.com/catalog/opensources/book/linus.html (8 of 13)

Open Sources: Voices from the Open Source Revolution

worry about the compilers. Intel's 64-bit chip, the Merced, is an obvious
example, because Merced is very different for a compiler.

So the portability of Linux is very much tied to the fact that GCC is ported to
major chip architectures.

Kernel Modules
With the Linux kernel it became clear very quickly that we want to have a
system which is as modular as possible. The open-source development model
really requires this, because otherwise you can't easily have people working in
parallel. It's too painful when you have people working on the same part of the
kernel and they clash.

Without modularity I would have to check every file that changed, which would
be a lot, to make sure nothing was changed that would effect anything else. With
modularity, when someone sends me patches to do a new filesystem and I don't
necessarily trust the patches per se, I can still trust the fact that if nobody's using
this filesystem, it's not going to impact anything else.

For example, Hans Reiser is working on a new filesystem, and he just got it
working. I don't think it's worth trying to get into the 2.2 kernel at this point. But
because of the modularity of the kernel I could if I really wanted to, and it
wouldn't be too difficult. The key is to keep people from stepping on each other's
toes.

With the 2.0 kernel Linux really grew up a lot. This was the point that we added
loadable kernel modules. This obviously improved modularity by making an
explicit structure for writing modules. Programmers could work on different
modules without risk of interference. I could keep control over what was written
into the kernel proper. So once again managing people and managing code led to
the same design decision. To keep the number of people working on Linux
coordinated, we needed something like kernel modules. But from a design point
of view, it was also the right thing to do.

The other part of modularity is less obvious, and more problematic. This is the
run-time loading part, which everyone agrees is a good thing, but leads to new
problems. The first problem is technical, but technical problems are (almost)
always the easiest to solve. The more important problem is the non-technical
issues. For example, at which point is a module a derived work of Linux, and
therefore under the GPL?

http://www.oreilly.com/catalog/opensources/book/linus.html (9 of 13)

Open Sources: Voices from the Open Source Revolution

When the first module interface was done, there were people that had written
drivers for SCO, and they weren't willing to release the source, as required by
the GPL, but they were willing to recompile to provide binaries for Linux. At
that point, for moral reasons, I decided I couldn't apply the GPL in this kind of
situation.

The GPL requires that works "derived from" a work licensed under the GPL also
be licensed under the GPL. Unfortunately what counts as a derived work can be
a bit vague. As soon as you try to draw the line at derived works, the problem
immediately becomes one of where do you draw the line?

We ended up deciding (or maybe I ended up decreeing) that system calls would
not be considered to be linking against the kernel. That is, any program running
on top of Linux would not be considered covered by the GPL. This decision was
made very early on and I even added a special read-me file (see Appendix B) to
make sure everyone knew about it. Because of this commercial vendors can
write programs for Linux without having to worry about the GPL.

The result for module makers was that you could write a proprietary module if
you only used the normal interface for loading. This is still a gray area of the
kernel though. These gray areas leave holes for people to take advantage of
things, perhaps, and it's partly because the GPL really isn't clear about things like
module interface. If anyone were to abuse the guidelines by using the exported
symbols in such a way that they are doing it just to circumvent the GPL, then I
feel there would be a case for suing that person. But I don't think anyone wants
to misuse the kernel; those who have shown commercial interest in the kernel
have done so because they are interested in the benefits of the development
model.

The power of Linux is as much about the community of cooperation behind it as
the code itself. If Linux were hijacked--if someone attempted to make and
distribute a proprietary version--the appeal of Linux, which is essentially the
open-source development model, would be lost for that proprietary version.

Portability Today
Linux today has achieved many of the design goals that people originally
assumed only a microkernel architecture could achieve.

By constructing a general kernel model drawn from elements common across
typical architecture, the Linux kernel gets many of the portability benefits that

http://www.oreilly.com/catalog/opensources/book/linus.html (10 of 13)

Open Sources: Voices from the Open Source Revolution

otherwise require an abstraction layer, without paying the performance penalty
paid by microkernels.

By allowing for kernel modules, hardware-specific code can often be confined to
a module, keeping the core kernel highly portable. Device drivers are a good
example of effective use of kernel modules to keep hardware specifics in the
modules. This is a good middle ground between putting all the hardware
specifics in the core kernel, which makes for a fast but unportable kernel, and
putting all the hardware specifics in user space, which results in a system that is
either slow, unstable, or both.

But Linux's approach to portability has been good for the development
community surrounding Linux as well. The decisions that motivate portability
also enable a large group to work simultaneously on parts of Linux without the
kernel getting beyond my control. The architecture generalizations on which
Linux is based give me a frame of reference to check kernel changes against, and
provide enough abstraction that I don't have to keep completely separate forks of
the code for separate architectures. So even though a large number of people
work on Linux, the core kernel remains something I can keep track of. And the
kernel modules provide an obvious way for programmers to work independently
on parts of the system that really should be independent.

The Future of Linux
I'm sure we made the right decision with Linux to do as little as possible in the
kernel space. At this point the honest truth is I don't envision major updates to
the kernel. A successful software project should mature at some point, and then
the pace of changes slows down. There aren't a lot of major new innovations in
store for the kernel. It's more a question of supporting a wider range of systems
than anything else: taking advantage of Linux's portability to bring it to new
systems.

There will be new interfaces, but I think those will come partly from supporting
the wider range of systems. For example, when you start doing clustering,
suddenly you want to tell the scheduler to schedule certain groups of processes
as gang scheduling and things like that. But at the same time, I don't want
everybody just focusing on clustering and super-computing, because a lot of the
future may be with laptops, or cards that you plug in wherever you go, or
something similar, so I'd like Linux to go in that direction too.

http://www.oreilly.com/catalog/opensources/book/linus.html (11 of 13)

Open Sources: Voices from the Open Source Revolution

And then there are the embedded systems were there is no user interface at all,
really. You only access the system to upgrade the kernel perhaps, but otherwise
they just sit there. So that's another direction for Linux. I don't think Java or
Inferno (Lucent's embedded operating system) are going to succeed for
embedded devices. They have missed the significance of Moore's Law. At first it
sounds good to design an optimized system specific for a particular embedded
device, but by the time you have a workable design, Moore's Law will have
brought the price of more powerful hardware within range, undermining the
value of designing for a specific device. Everything is getting so cheap that you
might as well have the same system on your desktop as in your embedded
device. It will make everyone's life easier.

Symmetric Multi-Processing (SMP) is one area that will be developed. The 2.2
Linux kernel will handle four processors pretty well, and we'll develop it up to
eight or sixteen processors. The support for more than four processors is already
there, but not really. If you have more than four processors now, it's like
throwing money at a dead horse. So that will certainly be improved.

But, if people want sixty-four processors they'll have to use a special version of
the kernel, because to put that support in the regular kernel would cause
performance decreases for the normal users.

Some particular application areas will continue to drive kernel development.
Web serving has always been an interesting problem, because it's the one real
application that is really kernel-intensive. In a way, web serving has been
dangerous for me, because I get so much feedback from the community using
Linux as a web-serving platform that I could easily end up optimizing only for
web serving. I have to keep in mind that web serving is an important application
but not everything.

Of course Linux isn't being used to its full potential even by today's web servers.
Apache itself doesn't do the right thing with threads, for example.

This kind of optimization has been slowed down by the limits in network
bandwidth. At present, you saturate ten-megabit networks so easily that there's
no reason to optimize more. The only way to not saturate ten-megabit networks
is to have lots and lots of heavy duty CGIs. But that's not what the kernel can
help with. What the kernel could potentially do is directly answer requests for
static pages, and pass the more complicate requests to Apache. Once faster
networking is more commonplace, this will be more intriguing. But right now
we don't have the critical mass of hardware to test and develop it.

http://www.oreilly.com/catalog/opensources/book/linus.html (12 of 13)

Open Sources: Voices from the Open Source Revolution

The lesson from all these possible future directions is that I want Linux to be on
the cutting edge, and even a bit past the edge, because what's past the edge today
is what's on your desktop tomorrow.

But the most exciting developments for Linux will happen in user space, not
kernel space. The changes in the kernel will seem small compared to what's
happening further out in the system. From this perspective, where the Linux
kernel will be isn't as interesting a question as what features will be in Red Hat
17.5 or where Wine (the Windows emulator) is going to be in a few years.

In fifteen years, I expect somebody else to come along and say, hey, I can do
everything that Linux can do but I can be lean and mean about it because my
system won't have twenty years of baggage holding it back. They'll say Linux
was designed for the 386 and the new CPUs are doing the really interesting
things differently. Let's drop this old Linux stuff. This is essentially what I did
when creating Linux. And in the future, they'll be able to look at our code, and
use our interfaces, and provide binary compatibility, and if all that happens I'll
be happy.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/linus.html (13 of 13)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Giving It Away

How Red Hat Software Stumbled Across a
New Economic Model and Helped Improve
an Industry

Robert Young

As a founder of one of the leading commercial companies offering open-source
software, anything I say is tainted for the purpose of objective academic research
or analysis. The skeptical reader will not view this is a definitive paper on this
topic, but simply a collection of interesting, enlightening, or just plain curious
stories of the moments and events that have influenced the progress of Red Hat
Software, Inc.

Where Did Red Hat Come From?
In the early days of the Linux OS (1993), we were a small software distribution
company. We offered Unix applications, books, and low-cost CD-ROMs from
vendors like Walnut Creek and Infomagic. In addition to conventional Unix

http://www.oreilly.com/catalog/opensources/book/young.html (1 of 15)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

offerings, these vendors were beginning to offer a new line: Linux CD-ROMs.
The Linux CDs were becoming bestsellers for us. When we'd ask where this
Linux stuff was coming from, we'd get answers like, "It's from the programmers
according to their skill to the users according to their needs."

If the collapse of the Berlin Wall had taught us anything, it was that socialism
alone was not a sustainable economic model. Hopeful slogans aside, human
activities did not replicate themselves without a good economic model driving
the effort. Linux seemed to lack such a model. We reasoned, therefore, that the
whole Linux thing was a big fluke. A fluke that was generating enough cash to
keep our little business and a number of other small businesses in the black, but
a fluke nonetheless.

However, we found that instead of this bizarre Linux OS effort collapsing, it
continued to improve. The number of users continued to grow and the
applications they were putting it to were growing in sophistication.

So we began to study the OS development more carefully. We spoke to the key
developers and the largest users. The more we studied, the more of a solid, albeit
unusual, economic model we saw.

This economic model was effective. More importantly, our sales of Linux
compared to our sales of other Unixes were sufficient to convince us that this
was a real technology with a real future. At this point (fall of 94) we were
looking for Linux products that we could sell into CompUSA and other leading
retail distribution outlets. So Marc Ewing and I hooked up to create Red Hat
Software, Inc. in January of 1995, and the rest of this chapter is devoted to the
trials and errors of developing a business plan that was compatible with the
bizarre economic model. Bizarre as it was, this model was producing a
remarkable OS, providing value to our customers, and providing profit for our
shareholders.

At Red Hat, our role is to work with all the development teams across the
Internet to take some four hundred software packages and assemble them into a
useful operating system. We operate much like a car assembly plant--we test the
finished product and offer support and services for the users of the Red Hat
Linux OS.

The "unique value proposition" of our business plan was, and continues to be, to
cater to our customers' need to gain control over the operating system they were
using by delivering the technical benefits of freely-redistributable software

http://www.oreilly.com/catalog/opensources/book/young.html (2 of 15)

Open Sources: Voices from the Open Source Revolution

(source code and a free license) to technically-oriented OS consumers.

How Do You Make Money in Free Software?
That question assumes that it is easy, or at least easier, to make money selling
proprietary binary-only software.

This is a mistake. Most software ventures, whether based on free or proprietary
software, fail. Given that until very recently all software ventures were of the
proprietary binary-only kind, it is therefore safe to say that the IP (Intellectual
Property) model of software development and marketing is a very difficult way
to make a living. Of course so was panning for gold during the gold rushes of the
19th century. But when software companies strike it rich they generate a lot of
money, just like past gold rushes, so lots of people are willing to assume the
risks in order to have an opportunity to "strike gold."

No one expects it to be easy to make money in free software. While making
money with free software is a challenge, the challenge is not necessarily greater
than with proprietary software. In fact you make money in free software exactly
the same way you do it in proprietary software: by building a great product,
marketing it with skill and imagination, looking after your customers, and
thereby building a brand that stands for quality and customer service.

Marketing with skill and imagination, particularly in highly competitive markets,
requires that you offer solutions to your customers that others cannot or will not
match. To that end Open Source is not a liability but a competitive advantage.
The Open Source development model produces software that is stable, flexible,
and highly customizable. So the vendor of open-source software starts with a
quality product. The trick is to devise an effective way to make money
delivering the benefits of open-source software to you clients.

Inventing new economic models is not a trivial task, and the innovations that
Red Hat has stumbled upon certainly do not apply to everyone or every product.
But there are some principles that should apply to many software ventures, and
to many Open Source ventures.

Many companies attempt a partially open-source approach to the market. Most
commonly they will adopt a license that allows for free distribution of their
software if the user is not using the software for a commercial purpose, but if he
is he must pay the publisher a license fee or royalty. Open Source is defined as
software that includes source code and a free license--these partially open-source

http://www.oreilly.com/catalog/opensources/book/young.html (3 of 15)

Open Sources: Voices from the Open Source Revolution

companies provide source code but without a free license.

And remember, we're in the very early days of the deployment and growth of
market share for free software. If you aren't making money today it may be
simply because the market for your product is still small. While we are pleased
with the growth of the Linux OS, estimates being as high as 10 million users
today (1998), you need to remember that there are some 230 million
DOS/Windows users.

We Are in the Commodity Product Business
If we do not own intellectual property the way almost all of today's software
companies do, and if those companies insist that their most valuable asset is the
intellectual property represented by the source code to the software they own,
then it is safe to say that Red Hat is not in the Software Business. Red Hat is not
licensing intellectual property over which it has ownership. That's not the
economic model that will support our customers, staff, and shareholders. So the
question became: What business are we in?

The answer was to look around at other industries and try and find one that
matched. We wanted an industry where the basic ingredients were free, or at
least freely available. We looked at the legal industry; you cannot trademark or
patent legal arguments. If a lawyer wins a case in front of the Supreme Court,
other lawyers are allowed to use those arguments without requesting permission.
In effect, the arguments have become public domain.

We looked at the car industry; you can get parts from a large number of
suppliers. No one drives a car--we all drive Hondas or Fords or any of several
hundred alternative models of cars assembled from the collective parts available
in that industry. Few people have the technical ability to assemble their own car.
Those who do seldom have the time or inclination. Assembly and service form
the core of the automotive business model.

We looked at the commodity industries and began to recognize some ideas. All
leading companies selling commodity products, including bottled water (Perrier
or Evian), the soap business (Tide), or the tomato paste business (Heinz), base
their marketing strategies on building strong brands. These brands must stand for
quality, consistency, and reliability. We saw something in the brand
management of these commodity products that we thought we could emulate.

Ketchup is nothing more than flavored tomato paste. Something that looks and

http://www.oreilly.com/catalog/opensources/book/young.html (4 of 15)

Open Sources: Voices from the Open Source Revolution

tastes a lot like Heinz Ketchup can be made in your kitchen sink without so
much as bending a copyright rule. It is effectively all freely-redistributable
objects: tomatoes, vinegar, salt, and spices. So why don't we, as consumers,
make ketchup in our kitchen sink, and how does Heinz have 80% of the ketchup
market?

We don't make ketchup because it is cheaper and much more convenient to buy
ketchup from Heinz, Hunts, or Del Monte than it is to make it. But convenience
is only part of the story. Convenience alone would suggest that Heinz, Hunts,
and Del Monte share the market equally because they offer roughly equivalent
convenience. In fact, Heinz owns 80% of the market.

Heinz owns 80% of the market not because Heinz tastes better. If you go to the
Third World and find 100 people who have never tasted ketchup before, you find
out two things: one is that people don't actually like tomato ketchup, the other is
that they dislike all ketchups equally.

Heinz has 80% of the ketchup market because they have been able to define the
taste of ketchup in the mind of ketchup consumers. Now the Heinz Ketchup
brand is so effective that as consumers we think that ketchup that will not come
out of the bottle is somehow better than ketchup that pours easily!

This was Red Hat's opportunity: to offer convenience, to offer quality, and most
importantly to help define, in the minds of our customers, what an operating
system can be. At Red Hat, if we do a good job of supplying and supporting a
consistently high-quality product, we have a great opportunity to establish a
brand that Linux OS customers simply prefer.

But how do we reconcile our need to create more Linux users with our need to
ensure that those Linux users use Red Hat? We looked at industries where the
participants benefit because of, not despite, the activities of the other
participants.

Drinking water can be had in most industrial countries simply by turning on the
nearest tap, so why does Evian sell millions of dollars of French tap water into
those markets? It boils down to a largely irrational fear that the water coming
from your tap is not to be trusted.

This is the same reason that many people prefer to purchase "Official" Red Hat
Linux in a box for $50 when they could download it for free or buy unofficial
CD-ROM copies of Red Hat for as little as $2. Evian does have the advantage
that most of humanity drinks water--we still have to create a lot of Linux

http://www.oreilly.com/catalog/opensources/book/young.html (5 of 15)

Open Sources: Voices from the Open Source Revolution

consumers in order to have a market to sell our brand into.

The challenge is to focus on market size, not just market share. When consumer
demand for bottled water grows, Evian benefits, even though many of those
consumers start with a bottle other than Evian. Red Hat, like Evian, benefits
when other Linux suppliers do a great job building a taste for the product. The
more Linux users there are overall, the more potential customers Red Hat has for
our flavor.

The power of brands translate very effectively into the technology business. We
have evidence of this in the Venture Capital investors who have recently
invested in several Open Source software companies. The one common
denominator between all of the investments to date have been that the companies
or their products have great name recognition, and are recognized as being
quality products. In other words, they have successfully established a brand.

The Strategic Appeal of This Model to the
Corporate Computing Industry
Much of brand management comes down to market positioning. Consider the
challenges that a new OS faces in trying to gain significant marketshare. The
current OS market is crowded, and dominated by a definite market favorite from
a brilliant marketing organization. Positioning a competing product correctly is
crucial to competitive success.

Linux fills this role naturally and extremely well. The primary complaint about
the market leader is the control that vendor has over the industry. A new OS
must deliver control over the OS platform to its user and not become just another
proprietary binary-only OS whose owner would then gain the same dominant
market position that consumers are currently complaining about.

Consider that Linux is not really an OS. It has come to describe a whole
collection of open-source components much like the term "car" describes an
industry better than the thing we drive on the highway. We don't drive cars--we
drive Ford Tauruses or Honda Accords. Red Hat is the equivalent of an OS
assembly plant of the Free Software operating system industry. Red Hat
succeeds when customers perceive themselves not as purchasing an operating
system, or even purchasing Linux, but purchasing Red Hat first and foremost.

Honda buys tires from Michelin, airbags from TRW, and paint from Dupont and

http://www.oreilly.com/catalog/opensources/book/young.html (6 of 15)

Open Sources: Voices from the Open Source Revolution

assembles these diverse pieces into an Accord that comes with certification,
warranties, and a network of Honda and independent repair shops.

Red Hat takes compilers from Cygnus, web servers from Apache, an X Window
System from the X Consortium (who built it with support from Digital, HP,
IBM, Sun, and others), and assembles these into a certifiable, warranted, and
award-winning Red Hat Linux OS.

Much like the car industry, it is Red Hat's job to take what it considers the best
of the available open-source components to build the best OS we can. But
control over the OS is not held by Red Hat or anyone else. If a Red Hat customer
disagrees with our choice of Sendmail and want to use Qmail or some other
solution, they continue to have the control that enables them to do this. In much
the same way, someone buying a Ford Taurus may want a higher performance
manifold installed on the engine in place of the one that was shipped from the
factory. Because the Taurus owner can open the hood of the car they have
control over the car. Similarly, Red Hat users have control over the Linux OS
they use, because they have license to open and modify the source code.

You can't compete with a monopoly by playing the game by the monopolist's
rules. The monopoly has the resources, the distribution channels, the R&D
resources; in short, they just have too many strengths. You compete with a
monopoly by changing the rules of the game into a set that favors your strengths.

At the end of the 19th century, the big American monopoly concern was not
operating systems, but railroads. The major railroads held effective monopolies
on transportation between major cities. Indeed, major American cities, like
Chicago, had grown up around the central railway terminals owned by the
railroad companies.

These monopolies were not overcome by building new railroads and charging
several fewer dollars. They were overcome with the building of the interstate
highway system and the benefit of door-to-door delivery that the trucking
companies could offer over the more limited point-to-point delivery that the
railroad model previously offered.

Today the owners of the existing proprietary OSes own a technology that is
much like owning the railway system. The APIs of a proprietary OS are much
like the routes and timetables of a railroad. The OS vendors can charge whatever
toll they like. They can also control and change the "route" the APIs take
through the OS to suit the needs of the applications they sell, without regard to

http://www.oreilly.com/catalog/opensources/book/young.html (7 of 15)

Open Sources: Voices from the Open Source Revolution

the needs of the applications that their competitors sell. These OS vendors'
biggest competitive advantage is that they control access to the source code that
both their applications and the Independent Software Vendors (ISVs)
applications must run on.

To escape the confines of this model, ISVs need an OS model where the vendor
of that OS (Linux) does not control the OS; where the supplier of the OS is
responsible for the maintenance of the OS only; and where the ISV can sell his
application secure in the knowledge that the OS vendor is not his biggest
competitive threat. The appeal of this OS model has begun to take hold in the
software world. This is a big part of the reasoning behind Corel's port of
WordPerfect to Linux, behind Oracle's port of their database software to Linux,
and behind IBM's support for Apache.

The benefit an open-source OS offers over the proprietary binary-only OSes is
the control the users gain over the technology they are using. The proprietary OS
vendors, with their huge investment in the proprietary software that their
products consist of, would be crazy to try and match the benefit we are offering
their customers, as we generate a fraction of the revenue per user that the current
proprietary OS vendors rely on.

Of course if our technology model becomes accepted by a large enough group of
computer users, the existing OS vendors are going to have to react somehow.
But that's still several years in the future. If they do react by "freeing" their code
the way Netscape "freed" the code to the Navigator browser, it would result in
better products at dramatically lower cost. The industry at large will be well
served if that were the only result of our efforts. Of course it is not Red Hat's
goal to stop there.

As an illustration of the importance of the "control" benefit of the Linux OS, it is
interesting to note Fermilab's experience. Fermilab is the big particle accelerator
research laboratory outside Chicago. They employ over a thousand high-level
physics engineers who need state-of-the-art technology that they can customize
to the needs of the projects they are working on. An example of the benefit of
Linux is its ability to be used in cluster farms to build massively parallel super-
computers. Fermilab needs this feature, as they are proposing to increase the
performance of their accelerator. As a result of this performance increase, they
expect to need to analyze almost 10 times more data per second than they have
been. Their budgets simply will not enable them to acquire the computing power
they need from the existing super-computer suppliers.

http://www.oreilly.com/catalog/opensources/book/young.html (8 of 15)

Open Sources: Voices from the Open Source Revolution

For this and other reasons Fermilab wanted something Open Source. They
recognized that Red Hat Linux was one of the more popular Open Source
choices, so they called us. In fact they called us six times in the four months
during the system selection phase of the project, and we did not respond even
once to their inquiries. Nonetheless the result of their study was to select Red
Hat Linux as an officially supported OS at Fermilab. The moral here is that (a)
we need to learn how to answer our phones better (we have), and (b) that
Fermilab was able to recognize that our business model was delivering them the
control over the Red Hat Linux OS they were intending to use--whether or not
Red Hat Software, Inc. was in position to support them.

So whether it is the large computer consuming organizations, or the large
computer technology suppliers (ISVs), the Linux OS provides benefits and is
free from the major limitations of all the proprietary binary-only OSes available
today. Careful brand management of Red Hat Linux among Linux distributions,
and careful market position of Linux among OS alternatives, enables Red Hat to
enjoy the growth and success we have today.

Licensing, Open Source, or Free Software
The benefit to using Linux is not the high reliability, ease of use, robustness, or
the tools included with the Linux OS. It is the benefit of control that results from
the two distinctive features of this OS; namely, that it ships with complete source
code, and that you can use this source code for whatever you chose--without so
much as asking our permission.

NASA, the outfit that rockets people off into outer space for a living, has an
expression: "Software is not software without source code."

To the engineers at NASA, high reliability is not good enough. Extremely high
reliability it not good enough. NASA need perfect reliability. They cannot afford
to suffer the "blue screen of death" with twelve trusting souls rocketing at a
thousand miles an hour around the earth, depending on their systems to keep
them alive.

NASA needs access to the source code of the software they are using to build
these systems. And they need that software to come with a license that allows
them to modify it to meet their needs. Now I'll admit that the average dental
office billing system does not need the standards of reliability that NASA
astronauts depend on to bill patients for their annual teeth cleaning, but the

http://www.oreilly.com/catalog/opensources/book/young.html (9 of 15)

Open Sources: Voices from the Open Source Revolution

principle remains the same.

And unlike proprietary binary-only OSes, with Linux our users can modify the
product to meet the needs of the application they are building. This is the unique
value proposition that Red Hat offers our customers. This is the proposition that
none of our much bigger competitors are willing or able to offer.

This is a value proposition that overturns usual notions of intellectual property.
Rather than using a license to lock customers in and wall them off from the
source code, Red Hat needs a license that embodies the very idea of access to
and control over source code. So what is an acceptable license for the purpose of
delivering this unique value proposition? Reasonable people in the Open Source
community can and do differ in how they answer this question. But at Red Hat
we do have our current opinions on the subject and here they are:

The General Public License from the Free Software Foundation is in the spirit of
Open Source and, because it ensures that the modifications and improvements
made to the OS remain public, most effective for managing a cooperative
development project.

Our definition of "effective" goes back to the old days of Unix development.
Prior to 1984, AT&T used to share the source code to the Unix OS with any
team who could help them improve it. When AT&T was broken up, the resulting
AT&T was no longer restricted to being a telephone company. It decided to try
and make money selling licenses to the Unix OS. All the universities and
research groups who had helped build Unix suddenly found themselves having
to pay for licenses for an OS that they had helped build. They were not happy,
but could not do much about it--after all, AT&T owned the copyright to Unix.
The other development teams had been helping AT&T at AT&T's discretion.

Our concern is the same. If Red Hat builds an innovation that our competitors
are able to use, the least we can demand is that the innovations our competitors
build are available to our engineering teams as well. And the GPL is the most
effective license for ensuring that this forced cooperation among the various
team members continues to occur regardless of the competitive environment at
the time.

Keep in mind that one of the great strengths of the Linux OS is that it is a highly
modular technology. When we ship a version of Red Hat Linux we are shipping
over 435 separate packages. So licensing also has a practical dimension to it. A
license that enables Red Hat to ship the software but not make modifications to it

http://www.oreilly.com/catalog/opensources/book/young.html (10 of 15)

Open Sources: Voices from the Open Source Revolution

creates problems because users cannot correct or modify the software to their
needs. A less restrictive license that requires that the user ask the permission of
the original author before making changes still burdens Red Hat and our users
with too many restrictions. Having to ask possibly 435 different authors or
development teams for permission to make modifications is simply not practical.

But we are not ideological about licenses. We are comfortable with any license
that provides us with control over the software we are using, because that in turn
enables us to deliver the benefit of control to our customers and users, whether
they are NASA engineers or application programmers working on a dental office
billing system.

The Economic Engine Behind Development
of
Open Source Software
The interesting stories of where Linux comes from helps illustrate the strong
economic model that is driving the development of this OS.

The Open Source community has had to overcome the stereotype of the hobbyist
hacker. According to this stereotype, Linux, for example, is built by fourteen-
year-old hackers in their bedrooms. We see here an example of the Fear,
Uncertainty, and Doubt (FUD) foisted on the software industry by vendors of
proprietary systems. After all, who wants to trust their mission-critical enterprise
applications to software written by a fourteen-year-old in his spare time?

The reality, of course, is very different from this stereotype. While the "lone
hacker" is a valuable and important part of the development process, such
programmers account for a minority of the code that make up the Linux OS.
Linux's creator, Linus Torvalds, began work on Linux while he was a student,
and much of the code in the Linux OS is built by professional software
developers at major software, engineering, and research organizations.

A few examples include the GNU C and C++ compilers that come from Cygnus
Solutions Inc. of Sunnyvale, California. The X Window System originally came
from the X Consortium (made up of support from IBM, HP, Digital, and Sun). A
number of ethernet drivers are now largely the responsibility of engineers at
NASA. Device drivers are now coming frequently from the device
manufacturers themselves. In short, building open-source software is often not

http://www.oreilly.com/catalog/opensources/book/young.html (11 of 15)

Open Sources: Voices from the Open Source Revolution

so different from building conventional software, and the talent behind Open
Source is by and large the same talent that is behind conventional software.

Grant Guenther, at the time a member of Empress Software's database
development team, wanted to enable his co-workers to work on projects from
home. They needed a secure method of moving large files from their office to
home and back. They were using Linux on PCs and using Zip drives. The only
problem was that at the time (1996), good Zip drive support was not available in
Linux.

So Grant had a choice: throw out the Linux solution and purchase a much more
expensive proprietary solution, or stop what he was doing and spend a couple of
days writing a decent Zip drive driver. He wrote one, and worked with other Zip
drive users across the Internet to test and refine the driver.

Consider the cost to Red Hat, or any other software company, of having to pay
Empress and Grant to develop that driver. Safe to say the cost would have been
in the tens of thousands of dollars, and yet Grant chose to "give away" his work.
In return, instead of money he received the use of a great solution for his
problem of enabling Empress programmers to work from home, at a fraction of
the cost of the alternatives. This is the kind of win-win proposition offered by
cooperative models like the Open Source development model.

Unique Benefits
It's easy to confuse features with benefits. The Open Source model in general
and Linux in particular certainly have some unique features, and it's tempting to
say that those features are the reason that the world is adopting Linux with such
enthusiasm. As hundreds of MIS managers have commented to me, "Why would
anyone want source code to their OS?" The point is no one wants source code.
No one needs a Free Software license. Those are simply features of the OS. But
a feature is not necessarily a benefit. So what's the benefit associated with that
feature?

To the ongoing disappointment of the technical computing community, the best
technology seldom wins in even the most technical markets. Building a better
mousetrap does not assure you of success. Linux is not going to be successful
because it can be installed on a machine with less memory than alternative OSes,
or because it costs less than other OSes, or because it is more reliable. Those are
all just features that make Linux arguably a better mousetrap than NT or OS/2.

http://www.oreilly.com/catalog/opensources/book/young.html (12 of 15)

Open Sources: Voices from the Open Source Revolution

The forces that will ultimately drive the success or failure of the Linux OS work
at a different level. In effect those factors are lumped generally under the topic
of "market positioning." As a senior executive at Lotus asked us recently, "Why
does the world need another OS?" Linux will succeed only if it is not "just
another OS." In other words, does Linux represent a new model for the
development and deployment of OSes or is it "just another OS"?

That is the question. And the answer is: Linux and the whole Open Source
movement represent a revolution in software development that will profoundly
improve the computing systems we are building now and in the future.

Open-source code is a feature. Control is the benefit. Every company wants
control over their software, and the feature of Open Source is the best way the
industry has found so far to achieve that benefit.

The Great Unix Flaw
The best example I know of to illustrate that the Linux model is a profoundly
different approach to building OSes is to look at what many people are
convinced is the ultimate outcome of this OS effort, namely that Linux will
balkanize the same way all the Unixes have. There are apparently thirty
different, largely incompatible, versions of the Unix OS available today.

But the forces that drive the various Unixes apart are working to unify the
various Linuxes.

The primary difference between Unix and Linux is not the kernel, or the Apache
server, or any other set of features. The primary difference between the two is
that Unix is just another proprietary binary-only or IP-based OS. The problem
with a proprietary binary-only OS that is available from multiple suppliers is that
those suppliers have short-term marketing pressures to keep whatever
innovations they make to the OS to themselves for the benefit of their customers
exclusively. Over time these "proprietary innovations" to each version of the
Unix OS cause the various Unixes to differ substantially from each other. This
occurs when the other vendors do not have access to the source code of the
innovation and the license the Unix vendors use prohibit the use of that
innovation even if everyone else involved in Unix wanted to use the same
innovation.

In Linux the pressures are the reverse. If one Linux supplier adopts an
innovation that becomes popular in the market, the other Linux vendors will

http://www.oreilly.com/catalog/opensources/book/young.html (13 of 15)

Open Sources: Voices from the Open Source Revolution

immediately adopt that innovation. This is because they have access to the
source code of that innovation and it comes under a license that allows them to
use it.

An example of how this works is the very example that all the Linux skeptics
have been using to predict the downfall of the OS, namely the debate in 1997
between the older libc C libraries and the new glibc libraries. Red Hat adopted
the newer glibc libraries for strong technical reasons. There were popular
versions of Linux that stuck with the older libc libraries. The debate raged for all
of six months. Yet as 1998 drew to a close all the popular Linux distributions
had either switched or announced plans to switch to the newer, more stable,
more secure, and higher performance glibc libraries.

That is part of the power of Open Source: it creates this kind of unifying
pressure to conform to a common reference point--in effect, an open standard--
and it removes the intellectual property barriers that would otherwise inhibit this
convergence.

It's Your Choice
Whenever a revolutionary new practice comes along there are always skeptics
who predict its inevitable downfall, pointing out all the obstacles the new model
must overcome before it can be called a success. There are also the ideologues
who insist that it is only the purest implementation of the new model that can
possibly succeed. And then there are the rest of us who are just plugging away,
testing, innovating, and using the new technology model for those applications
where the new model works better than the old one.

The primary benefit of this new technology model can be seen in the birth of the
PC. When IBM published the specs to its PC in 1981, why did the world adopt
the PC computing model with such enthusiasm? It was not that the IBM PC was
a better mousetrap. The original 8086-based PCs shipped with 64K (yes, K)
bytes of main memory. They had an upper memory limit of 640K. No one could
imagine that a single user would need more that 640K on their individual
machine. A tape cassette recorder was available for data back-up.

What drove the PC revolution was that it provided its users with control over
their computing platform. They could buy their first PC from IBM, their second
from Compaq, and their third from HP. They could buy memory or hard drives
from one of a hundred suppliers, and they could get an almost infinite range of

http://www.oreilly.com/catalog/opensources/book/young.html (14 of 15)

Open Sources: Voices from the Open Source Revolution

peripheral equipment for almost any purpose or application.

This new model introduced a huge number of inconsistencies, incompatibilities,
and confusion, between technologies, products, and suppliers. But as the world
now knows, consumers love choice. Consumers will put up with a measure of
confusion and inconsistency in order to have choice--choice and control.

Notice also that the PC hardware business did not fragment. Specifications have
generally remained open, and there is strong pressure to conform to standards to
preserve interoperability. No one has a sufficiently better mousetrap with which
to entice users and then hold them hostage by going proprietary. Instead
innovations--better mousetraps--accrue to the community at large.

The Linux OS gives consumers choice over the technology that comes with their
computers at the operating system level. Does it require a whole new level of
responsibility and an expertise on the part of the user? Certainly.

Will that user prefer to go back to the old model of being forced to trust his
proprietary binary-only OS supplier once he has experienced the choice and
freedom of the new model? Not likely.

Critics will continue to look for, and occasionally find, serious problems with
Linux technology. But consumers love choice, and the huge Internet-based open-
source software development marketplace is going to figure out ways to solve all
of them.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/young.html (15 of 15)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Diligence, Patience, and Humility

Larry Wall

We have a fondness for sayings in the Perl community. One of them is "There's
more than one way to do it." This is true in Perl. It's also true of Perl. And it's
true of the Open Source community, as the essays in this volume illustrate. I
won't tell you everything about how Open Source works; that would be like
trying to explain why English works. But I can say something about the state of
Perl, and where it's going.

Here's another saying: Three great virtues of programming are laziness,
impatience, and hubris. Great Perl programmers embrace those virtues. So do
Open Source developers. But here I'm going to talk about some other virtues:
diligence, patience, and humility. If you think these sound like the opposite,
you're right. If you think a single community can't embrace opposing values,
then you should spend more time with Perl. After all, there's more than one way
to do it.

Written languages probably began with impatience. Or laziness. Without written
language, you had to meet another person face to face to communicate with
them, or you had to persuade another person to convey your message for you.
And there was no way to know what had previously been said except to

http://www.oreilly.com/catalog/opensources/book/larry.html (1 of 24)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

remember it. But written language gave people symbols, symbols that could
stand for things--if the community could agree on what the symbols stood for.
So language requires consensus. It's something a group can agree on. It is, in
short, a symbol that ties a community together. Most symbols work that way.

So let's look at some symbols:

Study it carefully. It's called a circle. It's a very nice circle, as circles go. Very
pretty. Very symmetrical. Very simple.

Now if you're a reductionist, you'll say it's only a circle, and nothing more. Well,
actually, if you're really a reductionist, you'll say it's a just bunch of photons, but
we won't go there, because it wouldn't shed any light on the subject.

If you're not a reductionist, then the circle you see here does not exist in
isolation. It exists in relationship to many other things, and in fact takes its
meaning from them. In order to understand this simple circle, you have to
understand its context, which means you have to understand something about
reality.

So here's a picture of reality:

As we all know, reality is a mess.

This is a picture of many things. It's a picture of air molecules bouncing around.
It's a picture of the economy. It's a picture of all the relationships of the people in
this room. It's a picture of what the typical human language looks like. It's a
picture of your company's information systems. It's a picture of the World Wide

http://www.oreilly.com/catalog/opensources/book/larry.html (2 of 24)

Open Sources: Voices from the Open Source Revolution

Web. It's a picture of chaos, and of complexity.

It's certainly a picture of how Perl is organized, since Perl is modeled on human
languages. And the reason human languages are complex is because they have to
deal with reality.

We all have to deal with reality one way or another. So we simplify. Often we
oversimplify.

Our ancestors oversimplified. They fooled themselves into thinking that God
only created circles and spheres. They thought God would always prefer
simplicity over complexity. When they discovered that reality was more
complicated than they thought, they just swept the complexity under a carpet of
epicycles. That is, they created unnecessary complexity. This is an important
point. The universe is complex, but it's usefully complex.

Evidence abounds that people continue to oversimplify today. Some people
prefer to oversimplify their cosmology. Others prefer to oversimplify their
theology. Many computer language designers oversimplify their languages, and
end up sweeping the universe's complexity under the carpet of the programmer.

It's a natural human trait to look for patterns in the noise, but when we look for
those patterns, sometimes we see patterns that aren't really there. But that doesn't
mean there aren't real patterns. If we can find a magic wand to suppress the
noise, then the signal pops right out. Abracadabra . . . Here is the shape of the
big bang, and of stars, and of soap bubbles:

Here is the shape of dimensionality, of salt crystals, and the spaces between tree
trunks:

http://www.oreilly.com/catalog/opensources/book/larry.html (3 of 24)

Open Sources: Voices from the Open Source Revolution

Here is the shape of an anthill, or a Christmas tree. Or the shape of a trinity:

And, of course, once you know the patterns are there, you can pick out the
simple figures without the extra chromatic help:

Our brains are built to do that.

Now, you may be wondering what all this has to do with Perl. The fact is, your
brain is built to do Perl programming. You have a deep desire to turn the
complex into the simple, and Perl is just another tool to help you do that--just as
I am using English right now to try to simplify reality. I can use English for that
because English is a mess.

This is important, and a little hard to understand. English is useful because it's a
mess. Since English is a mess, it maps well onto the problem space, which is
also a mess, which we call reality. Similarly, Perl was designed to be a mess
(though in the nicest of possible ways).

This is counterintuitive, so let me explain. If you've been educated as any kind of
an engineer, it has been pounded into your skull that great engineering is simple

http://www.oreilly.com/catalog/opensources/book/larry.html (4 of 24)

Open Sources: Voices from the Open Source Revolution

engineering. We are taught to admire suspension bridges more than railroad
trestles. We are taught to value simplicity and beauty. That's nice. I like circles
too.

However, complexity is not always the enemy. What's important is not
simplicity or complexity, but how you bridge the two.

You need a certain amount of complexity to do any particular job. A Saturn V
rocket is said to have had seven million parts, all of which had to work. But
that's not entirely true. Many of those parts were redundant. But that redundancy
was absolutely necessary to achieve the goal of putting someone on the moon in
1969. So if some of those rocket parts had the job of being redundant, then each
of those parts still had to do their part. So to speak. They also serve who only
stand and wait.

We betray ourselves when we say "That's redundant," meaning "That's useless."
Redundancy is not always "redundant," whether you're talking about rockets or
human languages or computer languages. In short, simplicity is often the enemy
of success.

Suppose I want to take over the world. Simplicity says I should just take over the
world by myself. But the reality of the situation is that I need your help to take
over the world, and you're all very complex. I actually consider that a feature.
Your relationships are even more complex. I usually think of those as features.
But sometimes they're bugs. We can debug relationships, but it's always good
policy to consider the people themselves to be features. People get annoyed
when you try to debug them.

We mentioned that some complexity is useless, and some is useful. Here's
another example of useful complexity:

http://www.oreilly.com/catalog/opensources/book/larry.html (5 of 24)

Open Sources: Voices from the Open Source Revolution

Now, most of you sitting here are probably prejudiced in favor of western
writing systems, and so you think an ideographic writing system is needlessly
complex. You may even be thinking that this picture is as complicated as the
previous one. But again, it's a kind of engineering tradeoff. In this case, the
Chinese have traded learnability for portability. Does that sound familiar?

Chinese is not, in fact, a single language. It's about five major languages, any of
which are mutually unintelligible. And yet, you can write Chinese in one
language and read it in another. That's what I call a portable language. By
choosing a higher level of abstraction, the Chinese writing system optimizes for
communication rather than for simplicity. There are a billion people in China
who can't all talk to each other, but at least they can pass notes to each other.

Computers also like to pass notes to each other. Only we call it networking.

A lot of my thinking this year has been influenced by working with Unicode and
with XML. Ten years ago, Perl was good at text processing. It's even better at it
now, for the old definition of text. But the definition of "text" has been changing
out from under Perl over those ten years.

You can blame it all on the Internet.

It seems that when you click buttons on your browser, it makes computers want
to pass notes to each other. And they want to pass these notes over cultural
boundaries. Just as you want to understand what pops up on your screen, your
computer wants to understand what it's about to pop up on your screen, because,
believe it or not, the computer would actually like to do it right. Computers may
be stupid, but they're always obedient. Well, almost always.

http://www.oreilly.com/catalog/opensources/book/larry.html (6 of 24)

Open Sources: Voices from the Open Source Revolution

That's where Unicode and XML come in. Unicode is just a set of universal
ideographs so that the world's computers can pass notes around to each other,
and have some chance of doing the right thing with them. Some of the
ideographs in Unicode happen to match up with various national character sets
such as ASCII, but nobody in the world will ever learn all of those languages.
Nobody is expecting you to learn all those languages. That's not the point.

Here's the point. Last month I was working on my church's web page. Our
church has just started a Chinese congregation, so it now has two names, one of
which can be represented in ASCII, and one of which cannot. Here's what the
page looks like:

If your browser is fairly recent, and if you have a Unicode font loaded, then this
is what you see. There's something important I want you to notice here.

If I'd done this a year ago, this block of Chinese characters would probably have
been a GIF image. But there's a problem with images. You can't cut and paste
characters from a GIF image. I've tried it often enough to know, and I'm sure you
have too. If I'd done this a year ago, I'd also have had to add another layer of
complexity to the page. I'd need something like a CGI script to detect whether
the browser supports Unicode, because if it doesn't, these characters splatter
garbage all over the page. Garbage is usually construed as useless complexity.

Anyway, back to simplicity:

http://www.oreilly.com/catalog/opensources/book/larry.html (7 of 24)

Open Sources: Voices from the Open Source Revolution

We use circles to represent many things. Our circle of friends. A hug, when
written on the back of an envelope. The circle of a wedding ring, which stands
for unending love.

Proceeding from the sublime to the ridiculous, we also have the round file,
which is a kind of hell for dead paperwork.

Spheres of light. Black holes. Or at least their event horizons.

One ring to rule them all, and in the darkness bind them.

Crystal balls. Pearls.

Onions. Pearl onions.

Circles figure heavily in our symbology. And in particular, by adding various

http://www.oreilly.com/catalog/opensources/book/larry.html (8 of 24)

Open Sources: Voices from the Open Source Revolution

appurtenances to circles, we sometimes represent some rather complicated
notions with simple symbols. These symbols are the bridges between simplicity
and complexity.

Here's a real Zen diagram:

Well, actually, it's not. In fact, the yinyang comes from the Tao, or Dao if you
can't pronounce an unaspirated "t". The Tao is an ancient oriental philosophy,
and predates Zen by more than a millennium.

Anyway, back to yins and yangs.

The yinyang represents a dualistic philosophy, much like The Force in Star
Wars. You know, how is The Force like duct tape? Answer: it has a light side, a
dark side, and it holds the universe together. I'm not a dualist myself, because I
believe the light is stronger than the darkness. Nevertheless, the concept of
balanced forces is useful at times, especially to engineers. When an engineer
wants to balance forces, and wants them to stay balanced, he reaches for the duct
tape.

When I made this yinyang, I wondered whether I was doing it right. It'd be a
shame to get it backwards, or sideways, or something.

Well, you know, sometimes that sort of thing matters. It matters a lot to organic
chemists, who call it chirality--if you take a molecule of spearmint flavor and
flip it left for right, you end up with a molecule of caraway flavor. Yuck. I used
to think I hated rye bread, till I discovered it was the caraway seeds they put in
that I didn't like.

http://www.oreilly.com/catalog/opensources/book/larry.html (9 of 24)

Open Sources: Voices from the Open Source Revolution

Now, which of those flavors you prefer is just a matter of taste, but doctors and
organic chemists will tell you that there are times when chirality is a matter of
life and death. Or of deformed limbs, in the case of Thalidomide. It was the
"wrong" kind of Thalidomide that actually caused the problems. Dyslexics will
tell you that chirality matters a lot in visual symbols. This talk is brought to you
by the letters "b" and "d". And "p" and "q". And the number 6. Not to mention
the number 9. You can see a 6 and a 9 in the yinyang, in this orientation.

In short, I wondered whether the yinyang is like a swastika, where which way
you make it determines who gets mad at you.

So I did some research, on the Web, of course. The fact is, the Web is the perfect
example of TMTOWTDI--there's more than one way to do it. In this case, there's
every way to do it. You can find the yinyang in every possible orientation. I still
don't know whether any of them is more right than the others.

A TYEDYE WORLD is some folks on the Web who sell tie-dyed tee shirts. I
guess they'd be Tao-dyed in this case. They think it looks like this:

I suppose if you want it the other way you just put the shirt on inside-out. Putting
it on upside-down is going to get you stared at.

The folks at the Unicode consortium think it looks like this. I don't know if
they're right, but if they're not, it doesn't matter. They published it this way, and
now it's right by definition.

http://www.oreilly.com/catalog/opensources/book/larry.html (10 of 24)

Open Sources: Voices from the Open Source Revolution

Of course, my dictionary has it upside from that:

Well, back to Unicode. Unicode is full of circles. Many national scripts within
Unicode make use of the circle, and in most of those, it represents the digit 0.
Here is Unicode number 3007 (hex). It's the ideographic symbol for 0:

Surprise, surprise. It looks like our 0. Chalk one up for cultural imperialism. In
English, of course, we tend to squish our 0 sideways to distinguish it from the
letter O.

In Bengali, they squish it the other way, but for similar reasons:

http://www.oreilly.com/catalog/opensources/book/larry.html (11 of 24)

Open Sources: Voices from the Open Source Revolution

I find it interesting that the world has so many different representations for
nothing. One could make endless jokes on it: Much ado about nothing, or
Nothing can stop an idea whose time has come. Here's something related to
nothing:

This is the universal "prohibited" symbol. In Unicode, it's classified as a
combining character.

Of course, in Perl culture, almost nothing is prohibited. My feeling is that the
rest of the world already has plenty of perfectly good prohibitions, so why invent
more? That applies not just to programming, but also to interpersonal
relationships, by the way. I have upon more than one occasion been requested to
eject someone from the Perl community, generally for being offensive in some
fashion or other. So far I have consistently refused. I believe this is the right
policy. At least, it's worked so far, on a practical level. Either the offensive
person has left eventually of their own accord, or they've settled down and
learned to deal with others more constructively. It's odd. People understand
instinctively that the best way for computer programs to communicate with each
other is for each of the them to be strict in what they emit, and liberal in what
they accept. The odd thing is that people themselves are not willing to be strict in
how they speak and liberal in how they listen. You'd think that would also be
obvious. Instead, we're taught to express ourselves.

On the other hand, we try to encourage certain virtues in the Perl community. As
the apostle Paul points out, nobody makes laws against love, joy, peace,
patience, kindness, goodness, gentleness, meekness, or self-control. So rather
than concentrating on forbidding evil, let's concentrate on promoting good.
Here's the Unicode for that:

http://www.oreilly.com/catalog/opensources/book/larry.html (12 of 24)

Open Sources: Voices from the Open Source Revolution

Of course, if you're a flower child, you might prefer this one:

Some of the positive Unicodes aren't so obvious.

Here's the symbol for a bilabial click, one of the symbols in the International
Phonetic Alphabet. You may not know it, but many of you make this noise
regularly. If you want to try doing one, here's how. You just kind of put your lips
together, then make an affricated sort of noise with ingressive mouth air.

Of course, in English we write that with an X, to go with those O's on the back
of the envelope. But you're witnessing the passing of an era. What with email
taking over, sending hugs and kisses on the backs of envelopes is becoming a
lost art. It just doesn't have quite the same effect as a header line in email.
Content-type: text/hugs&kisses.

You know, it's also rather difficult to perfume an email message. Content-type:
text/scented. The mind boggles.

Here are more simple circles that represent complicated things. Here's the
symbol for earth:

http://www.oreilly.com/catalog/opensources/book/larry.html (13 of 24)

Open Sources: Voices from the Open Source Revolution

Here's the symbol for Mars:

And here's the symbol for Venus:

Now, I used to work at Jet Propulsion Laboratory, and I helped just a little to
discover that Mars and Venus are pretty complicated. But as if things weren't
complicated enough, the ancients complicated things further by overloading
those symbols to represent male and female. Men are from Mars, women are
from Venus, we are told, but that is not a new idea.

Here's some more history.

If you cut an onion, it looks like this. If we take this to be a picture of the world
of Perl, then I must be that little bit of onion inside.

http://www.oreilly.com/catalog/opensources/book/larry.html (14 of 24)

Open Sources: Voices from the Open Source Revolution

Around me are some of the early adopters of Perl, who are now revered as
heroes of the revolution. As more people have joined the movement, new layers
have been added. You can also picture this as an atom, with layers of electron
shells. Of course, no atom we know of has quite that many electron shells. So
stick with the onion.

Now the thing about the onion is that it teaches me something about my own
importance, or lack thereof. Namely, that while I may have started all this, I'm
still a little bit of the onion. Most of the mass is in the outer layers. (That's why I
like to see grassroots movements like the Perl Mongers springing up.) But here I
sit in the middle. I get a bit of honor for my historical significance, but in actual
fact, most people see the outside of the onion, not the inside. Unless they make
onion rings. But even then, the bigger rings have more to them than the smaller
rings. Let that be a lesson to those of you who wish to be "inner ringers." That's
not where the real power is. Not in this movement, anyway. I've tried to model
the Perl movement on another movement I'm a member of, and the founder of
that movement said, "He who wishes to be greatest among you must become the
servant of all." Of his twelve inner ringers, one betrayed him, and ten of the
other eleven went on to suffer a martyr's death. Not that I'm asking any of my
friends to throw themselves to the lions just yet.

But back to growth patterns. Natural pearls grow in layers too, around a grain of
sand that irritates the oyster in question, which forms layers of pretty stuff. This
could be the cross-section of a pearl. People cut up onions frequently, but they
almost never cut up pearls. So it's even truer of pearls than of onions. The outer
layer is the most important. It's what people see. Or if the pearl is still growing,
it's the layer that will support the layer after it. I realize that that classifies me as
a mere irritant. I am content to be so classified.

Other things grow over time too. Perhaps if we change the picture to a set of tree
rings, it'll be clearer:

http://www.oreilly.com/catalog/opensources/book/larry.html (15 of 24)

Open Sources: Voices from the Open Source Revolution

If you're familiar with a bit of physics, you know that a pipe is almost as strong
as a solid bar of the same diameter, because most of the force is transmitted in
the outer layers. The fact is, the center of the tree can rot, but the tree remains
perfectly healthy. In a similar fashion, most of the health of Perl culture is in
what is happening in the periphery, not in the center. People are saving
themselves billions of dollars every year by programming in Perl, but most of
those savings are happening out in the trenches. Even closer into the center, a lot
more work is going into hooking Perl up to other things than into changing Perl
itself. And I think this is as it should be. Core Perl is stabilizing somewhat. Even
with core changes such as multithreading and Unicode support, we pretend that
we're adding extension modules, because that's cleaner, and people don't have to
invoke the new functionality if they don't want to.

All this stuff about growth rings is fine for talking about the past, but what about
the future? I don't have a crystal ball. I do own two pairs of binoculars. Here's
the typical symbol for that:

This is, of course, the usual cinematic device for indicating that someone is
looking through binoculars. I don't know offhand what I should put for the field
of view here, so let's see what's at the other end of the binoculars:

http://www.oreilly.com/catalog/opensources/book/larry.html (16 of 24)

Open Sources: Voices from the Open Source Revolution

Of course, this can also be a picture of two tidally locked bodies rotating around
each other:

Each of these planets is raising tides on the other one. People usually understand
why there is a tidal bulge on the side facing the other planet. What they don't
understand so easily is why there's a bulge on the other side of the planet. But it
makes sense when you consider that the other planet is not only pulling the near
bulge away from the center of the planet, but it's also pulling the center of the
planet away from the far bulge.

This is a really good picture of the relationship of the free software community
with the commercial software community. We might even label some of the
extremes. Let's just make up some names. We could call the left extreme, um,
"Richard." And we could call the right extreme something like, oh, "Bill."

The middle bulges are a little harder to name, but just for today we can call this
one on the middle left "Larry," and that one on the middle right "Tim."

This is, of course, another oversimplification, because various people and
organizations aren't at a single spot in the diagram, but tend to rattle around.
Some people manage to oscillate back and forth from one bulge to the other.
One moment they're in favor of more cooperation between the freeware and
commercial communities, and the next moment they're vilifying anything
commercial. At least our hypothetical Richard and Bill are consistent.

But the action is in the middle.

That's where everybody's been looking, to see what's going to happen. In fact,
this is really last year's picture. This year it looks more like this:

http://www.oreilly.com/catalog/opensources/book/larry.html (17 of 24)

Open Sources: Voices from the Open Source Revolution

Robert L. Forward has written a book, actually a series of books, about a place
called Rocheworld. It's named after a fellow named Roche, surprise, surprise.
He's the fellow who defined Roche's limit, which predicted that planets would
break up if they got too close to each other. It turns out he oversimplified
because his math wasn't powerful enough. If you allow your planets to deform
into shapes like these, you can get them very much closer together, and keep
them stable. Mind you, the net gravitational pull on these points is very low, but
it's enough to keep the planets together.

In similar fashion, the freeware and commercial communities are much closer
together this year than many people thought possible by the old calculations. In
Rocheworld, the planets did not touch, but they shared atmospheres. If we fuzz
things out a little with the magic of xpaint, then we kind of get the picture:

You see how you can fly from one planet to the other, but not walk. It's
reminiscent of quantum mechanical tunneling, where you can't get from here to
there but you do it anyway with a flying leap.

What we have flowing between the freeware and commercial communities is a
lot of ideas. Together, these two inner lobes define what we're now calling the
Open Source movement. What we have here is something brand new: former
enemies agreeing on a common good that transcends any particular business
model. And that common good is better software sooner. Here's what made it all
possible. People realized the power of a simple idea. We don't need software
patents or trade secrets. All we need another simple circle:

http://www.oreilly.com/catalog/opensources/book/larry.html (18 of 24)

Open Sources: Voices from the Open Source Revolution

A circle with a "c" in it. Open Source lives or dies on copyright law. Our fond
hope is that it lives. Please, let's all do our part to keep it that way. If you have a
chance to plug copyrights over patents, please do so. I know many of you are
already plugging copyrights over trade secrets. Let's also uphold copyright law
by respecting the wishes of copyright holders, whether or not they are spelled
out to the satisfaction of everyone's lawyer. The "c" in the circle should stand for
civility.

When we think of civility, we think of cities, and of doing things fair and square.
So here's the requisite square:

And indeed, cities are built on squares, and rectangles. We call them blocks. And
if the city planners leave the buildings off of a block, we call it a square. Even if
it isn't square. Go figure.

Sometimes the buildings themselves are square:

But often they're not. Similarly, if you look through the Unicode book, there are
not nearly so many squares as there are circles. I think there's a fundamental
underlying reason for that. When we build buildings, and when we write
characters, we install them into a rectilinear framework. In terms of writing, we
write left-to-right, or right-to-left, or top-to-bottom. The abstract cells into which
we install the characters or buildings are squarish. But both buildings and
characters tend to disappear visually if they follow the same lines as the overall
text. So most characters tend to contain lines at odd angles, just as many modern
skyscrapers are designed to avoid looking like boxes. Nobody really likes the

http://www.oreilly.com/catalog/opensources/book/larry.html (19 of 24)

Open Sources: Voices from the Open Source Revolution

skyscrapers of the 1960s, because they're too boxy. People like things to be
visually distinct from their surroundings.

That is also why the various classes of operators and variables in Perl are
visually distinct from each other. It's just sound human engineering, as far as I'm
concerned. I don't like the fact that all the operators look the same in Lisp. I don't
like the fact that most the street signs look alike in Europe. And I applaud the
decision of Germany to make their stop signs look different from all the other
signs. Of course, it's also helpful to us ignorant Americans that they made them
look like American stop signs. Chalk up another one for cultural imperialism.

However, in repentance for American cultural imperialism, let me point out
another advantage of the ideographic system of writing. Because ideographs are
written into square cells, they can just as easily be written horizontally as
vertically. Or vice versa. Our variable-width characters do not have that nice
property. Especially in a font like Helvetica, where you have trouble telling i's
and l's apart even when they're next to each other. Put one above the other and
it'd just look like a dotted line. Chalk one up for the Chinese, the Japanese, and
the Koreans.

To wrap up, I'd like to talk about triangles. Here's a sample:

Triangles are related to circles in the same way that arrowheads are related to
targets. Here's a target:

I know I got this one right. I looked it up on the Web. More importantly, I
stopped as soon as I found the first one.

http://www.oreilly.com/catalog/opensources/book/larry.html (20 of 24)

Open Sources: Voices from the Open Source Revolution

Actually, this is the Unicode character named "bulls-eye."

I'm not quite sure what it's supposed to mean. But that's never stopped me
before. I'll make it mean something.

I've shot a lot of arrows in this essay, and I don't know whether I've hit any bulls-
eyes yet. We put triangles on the front of arrows because they're sharp. Triangles
are associated with pain, especially if you step on one. The angles of the triangle
tend to suggest the hard work of climbing a mountain:

On the other hand, looks can be deceiving. A triangle also represents a flat road
stretching to the horizon:

It's all a matter of perspective. You can choose your view by choosing where to
stand. I can't predict whether Perl's road ahead will be bumpy or smooth, but I
can predict that the more perspectives we can see things from, the easier it will
be to choose the perspectives we like. And this is, after all, the job of a language
designer, to survey the problem from many perspectives, to be just a little bit
omniscient, so that other people can benefit. I do a little triangulation, and I map

http://www.oreilly.com/catalog/opensources/book/larry.html (21 of 24)

Open Sources: Voices from the Open Source Revolution

the territory. That's my job. If my map gets you where you're going, I'm happy.

If you take a section out of the Perl onion, it looks kind of like a triangle. Put in
on its side and you have a growth chart for Perl over the last ten years:

All fine and dandy. This chart is notional, of course. I have no way of measuring
Perl's actual growth. But obviously it is still growing. We're doing a lot of things
right, and by and large we should keep doing just what we're doing.

Now suppose we shrink this triangle and extend the chart to show the whole
lifetime of Perl. We really don't know how long it might last.

It's hard to say what will make the difference here. But I have to tell you that I
don't evaluate the success of Perl in terms of how many people like me. When I
integrate these curves, I count the number of people I've helped get their job
done.

I can tell you that I think the difference between curve 1 and curve 2 might
depend on adding in all the potential Windows users, and all the problems they
need to solve. Which are many. It's no accident that we've just put out a Win32
Perl Resource Kit.

And I can tell you that the difference between curve 2 and curve 3 may depend
on adding in all the international users that could benefit from Perl. It's no
accident that the latest development version of Perl lets you name your variables
with any characters that are considered to be alphanumeric in Unicode. That
includes ideographs. There are a billion people in China. And I want them to be
able to pass notes to each other written in Perl. I want them to be able to write

http://www.oreilly.com/catalog/opensources/book/larry.html (22 of 24)

Open Sources: Voices from the Open Source Revolution

poetry in Perl.

That is my vision of the future. My chosen perspective.

I began by talking about the virtues of a programmer: laziness, impatience, and
hubris.

These are virtues of passion. They are also virtues of an individual. They are not,
however, virtues of community. The virtues of community sound like their
opposites: diligence, patience, and humility.

They're not really opposites, because you can do them all at the same time. It's
another matter of perspective. These are the virtues that have brought us this far.
These are the virtues that will carry our community into the future, if we do not
abandon them.

Basically, we just have to stay the course. Friedrich Nietzsche called it a "long
obedience in the same direction," which is a good snappy slogan. But I like the
full quote too:

The essential thing "in heaven and earth" is . . . that there should be long
obedience in the same direction; there thereby results, and has always resulted
in the long run, something which has made life worth living.

And now we've come full circle, back to the circle. Here is the front door of
Bilbo Baggins' house. There's a road that goes from that door, and Bilbo wrote a

http://www.oreilly.com/catalog/opensources/book/larry.html (23 of 24)

Open Sources: Voices from the Open Source Revolution

poem about it.

The Road goes ever on and on,
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? I cannot say.

J.R.R. Tolkien,

The Hobbit

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/larry.html (24 of 24)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Open Source as a Business Strategy

Brian Behlendorf

Over 1997 and 1998, open-source software such as Linux, FreeBSD, Apache,
and Perl started to attract widespread attention from a new audience: engineering
managers, executives, industry analysts, and investors.

Most of the developers of such software welcomed this attention: not only does
it boost the pride of developers, it also allows them to justify their efforts (now
increasingly related to their salaried positions) to upper management and their
peers.

But this new audience has hard questions:

● Is this really a new way of building software?

● Are each of the successes in open-source software a fluke of circumstance,
or is there a repeatable methodology to all this?

● Why on earth would I allocate scarce financial resources to a project
where my competitor would get to use the same code, for free?

● How reliant is this whole development model upon the hobbyist hacker or
computer science student who just happens to put the right bits together to

http://www.oreilly.com/catalog/opensources/book/brian.html (1 of 26)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

make something work well?

● Does this threaten or obsolesce my company's current methods for
building software and doing business?

I suggest that the open-source model is indeed a reliable model for conducting
software development for commercial purposes. I will attempt to lay out the
preconditions for such a project, what types of projects make sense to pursue in
this model, and the steps a company should go through to launch such a project.
This essay is intended for companies who either release, sell, and support
software commercially, or for technology companies that use a given piece of
software as a core component to their business processes.

It's All About Platforms
While I'm indeed a big fan of the open-source approach to software
development, there are definitely situations where an open-source approach
would not benefit the parties involved. There are strong tradeoffs to this model,
and returns are never guaranteed. A proper analysis requires asking yourself
what your goals as a company are in the long term, as well as what your
competitive advantages are today.

Let's start first with a discussion about Application Programming Interfaces
(APIs), platforms, and standards. For the purposes of this essay, I'll wrap APIs
(such as the Apache server API for building custom modules), on-the-wire
protocols like HTTP, and operating system conventions (such as the way Linux
organizes system files, or NT servers are administered) into the generic term
"platform."

Win32, the collection of routines and facilities provided and defined by
Microsoft for all Windows 95 and NT application developers, is a platform. If
you intend to write an application for people to use on Windows, you must use
this API. If you intend, as IBM once did with OS/2, to write an operating system
which can run programs intended for MSWindows, you must implement the
Win32 API in its entirety, as that's what Windows applications expect to be able
to use.

Likewise, the Common Gateway Interface, or "CGI," is a platform. The CGI
specification allows web server developers to write scripts and programs that run
behind a web server. CGI is a much much simpler platform than Win32, and of
course does much less, but its existence was important to the web server market

http://www.oreilly.com/catalog/opensources/book/brian.html (2 of 26)

Open Sources: Voices from the Open Source Revolution

because it allowed application developers to write portable code, programs that
would run behind any web server. Besides a few orders of magnitude in
complexity, a key difference between CGI and Win32 was that no one really
owned the CGI specification; it was simply something the major web servers
implemented so that they could run each others' CGI scripts. Only after several
years of use was it deemed worthwhile to define the CGI specification as an
informational Request for Comments (RFCs) at the Internet Engineering Task
Force (IETF).

A platform is what essentially defines a piece of software, any software, be it a
web browser like Netscape, or be it Apache. Platforms enable people to build or
use one piece of software on top of another, and are thus essential not just for the
Internet space, where common platforms like HTTP and TCP/IP are what really
facilitated the Internet's explosive growth, but are becoming more and more
essential to consider within a computer environment, both in a server context
and in an end-user client context.

In the Apache project, we were fortunate in that early on we developed an
internal API to allow us to distinguish between the core server functionality (that
of handling the TCP connections, child process management, and basic HTTP
request handling) and almost all other higher-level functionality like logging, a
module for CGI, server-side includes, security configuration, etc. Having a really
powerful API has also allowed us to hand off other big pieces of functionality,
such as mod_perl (an Apache module that bundles a Perl interpreter into
Apache) and mod_jserv (which implements the Java Servlet API), to separate
groups of committed developers. This freed the core development group from
having to worry about building a "monster" to support these large efforts in
addition to maintaining and improving the core of the server.

There are businesses built upon the model of owning software platforms. Such a
business can charge for all use of this platform, whether on a standard software
installation basis, or a pay-per-use basis, or perhaps some other model.
Sometimes platforms are enforced by copyright; other times platforms are
obfuscated by the lack of a written description for public consumption; other
times they are evolved so quickly, sometimes other than for technical reasons,
that others who attempt to provide such a platform fail to keep up and are
perceived by the market as "behind" technologically speaking, even though it's
not a matter of programming.

Such a business model, while potentially beneficial in the short term for the

http://www.oreilly.com/catalog/opensources/book/brian.html (3 of 26)

Open Sources: Voices from the Open Source Revolution

company who owns such a platform, works against the interests of every other
company in the industry, and against the overall rate of technological evolution.
Competitors might have better technology, better services, or lower costs, but are
unable to use those benefits because they don't have access to the platform. On
the flip side, customers can become reliant upon a platform and, when prices
rise, be forced to decide between paying a little more in the short run to stick
with the platform, or spending a large quantity of money to change to a different
platform, which may save them money in the long run.

Computers and automation have become so ingrained and essential to day-to-day
business that a sensible business should not rely on a single vendor to provide
essential services. Having a choice of service means not just having the freedom
to choose; a choice must also be affordable. The switching cost is an important
aspect to this freedom to choose. Switching costs can be minimized if switching
software does not necessitate switching platforms. Thus it is always in a
customers' interests to demand that the software they deploy be based on non-
proprietary platforms.

This is difficult to visualize for many people because classic economics, the
supply and demand curves we were all taught in high school, are based on the
notion that products for sale have a relatively scalable cost--that to sell ten times
as much product, the cost of raw goods to a vendor typically rises somewhere on
the order of ten times as well. No one could have foreseen the dramatic economy
of scale that software exhibits, the almost complete lack of any direct correlation
between the amount of effort it takes to produce a software product and the
number of people who can thus purchase and use it.

A reference body of open-source software that implements a wire protocol or
API is more important to the long-term health of that platform than even two or
three independent non-open-source implementations. Why is this? Because a
commercial implementation can always be bought by a competitor, removing it
from the market as an alternative, and thus destroying the notion that the
standard was independent. It can also serve as an academic frame of reference
for comparing implementations and behaviors.

There are organizations like the IETF and the W3C who do a more-or-less
excellent job of providing a forum for multiparty standards development. They
are, overall, effective in producing high-quality architectures for the way things
should work over the Internet. However, the long-term success of a given
standard, and the widespread use of such a standard, are outside of their

http://www.oreilly.com/catalog/opensources/book/brian.html (4 of 26)

Open Sources: Voices from the Open Source Revolution

jurisdiction. They have no power to force member organizations to create
software that implements the protocols they define faithfully. Sometimes, the
only recourse is a body of work that shows why a specific implementation is
correct.

For example, in December of 1996, AOL made a slight change to their custom
HTTP proxy servers their customers use to access web sites. This "upgrade" had
a cute little political twist to it: when AOL users accessed a web site using the
Apache 1.2 server, at that time only a few months old and implementing the new
HTTP/1.1 specification, they were welcomed with this rather informative
message:

UNSUPPORTED WEB VERSION

The Web address you requested is not available in a version supported by AOL.
This is an issue with the Web site, and not with AOL. The owner of this site is
using an unsupported HTTP language. If you receive this message frequently,
you may want to set your web graphics preferences to COMPRESSED at
Keyword: PREFERENCES

Alarmed at this "upgrade," Apache core developers circled the wagons and
analyzed the situation. A query to AOL's technical team came back with the
following explanation:

New HTTP/1.1 web servers are starting to generate HTTP/1.1 responses to
HTTP/1.0 requests when they should be generating only HTTP/1.0 responses.
We wanted to stem the tide of those faults proliferating and becoming a de facto
standard by blocking them now. Hopefully the authors of those web servers will
change their software to only generate HTTP/1.1 responses when an HTTP/1.1
request is submitted.

Unfortunately AOL engineers were under the mistaken assumption that
HTTP/1.1 responses were not backward-compatible with HTTP/1.0 clients or
proxies. They are; HTTP was designed to be backward-compatible within minor-
number revisions. But the specification for HTTP/1.1 is so complex that a less
than thorough reading may lead one to have concluded this was not the case,
especially with the HTTP/1.1 document that existed at the end of 1996.

So we Apache developers had a choice--we could back down and give HTTP/1.0
responses to HTTP/1.0 requests, or we could follow the specification. Roy
Fielding, the "HTTP cop" in the group, was able to clearly show us how the
software's behavior at the time was correct and beneficial; there would be cases
where HTTP/1.0 clients may wish to upgrade to an HTTP/1.1 conversation upon

http://www.oreilly.com/catalog/opensources/book/brian.html (5 of 26)

Open Sources: Voices from the Open Source Revolution

discovering that a server supported 1.1. It was also important to tell proxy
servers that even if the first request they proxied to an origin server they saw was
1.0, the origin server could also support 1.1.

It was decided that we'd stick to our guns and ask AOL to fix their software. We
suspected that the HTTP/1.1 response was actually causing a problem with their
software that was due more to sloppy programming practices on their part than
to bad protocol design. We had the science behind our decision. What mattered
most was that Apache was at that point on 40% of the web servers on the Net,
and Apache 1.2 was on a very healthy portion of those, so they had to decide
whether it was easier to fix their programming mistakes or to tell their users that
some 20% or more of the web sites on the Internet were inaccessible through
their proxies. On December 26th, we published a web page detailing the dispute,
and publicized its existence not just to our own user base, but to several major
news outlets as well, such as C|Net and Wired, to justify our actions.

AOL decided to fix their software. Around the same time, we announced the
availability of a "patch" for sites that wanted to work around the AOL problem
until it was rectified, a patch that degraded responses to HTTP/1.0 for AOL. We
were resolute that this was to remain an "unofficial" patch, with no support, and
that it would not be made a default setting in the official distribution.

There have been several other instances where vendors of other HTTP products
(including both Netscape and Microsoft) had interoperability issues with
Apache; in many of those cases, there was a choice the vendor had to make
between expending the effort to fix their bug, or writing off any sites which
would become inoperable because of it. In many cases a vendor would
implement the protocol improperly but consistently on their clients and servers.
The result was an implementation that worked fine for them, but imperfectly at
best with either a client or server from another vendor. This is much more subtle
than even the AOL situation, as the bug may not be apparent or even significant
to the majority of people using this software--and thus the long-term
ramifications of such a bug (or additional bugs compounding the problem) may
not be seen until it's too late.

Were there not an open-source and widely used reference web server like
Apache, it's entirely conceivable that these subtle incompatibilities could have
grown and built upon each other, covered up by mutual blame or Jedi mind
tricks ("We can't repeat that in the lab. . . ."), where the response to "I'm having
problem when I connect vendor X browser to vendor Y server" is, "Well, use

http://www.oreilly.com/catalog/opensources/book/brian.html (6 of 26)

Open Sources: Voices from the Open Source Revolution

vendor Y client and it'll be all better." At the end of this process we would have
ended up with two (or more) World Wide Webs--one that was built on vendor X
web servers, the other on vendor Y servers, and each would only work with their
respective vendors' clients. There is ample historic precedence for this type of
anti-standard activity, a policy ("locking in") which is encoded as a basic
business practice of many software companies.

Of course this would have been a disaster for everyone else out there--the
content providers, service providers, software developers, and everyone who
needed to use HTTP to communicate would have had to maintain two separate
servers for their offerings. While there may have been technical customer
pressure to "get along together," the contrary marketing pressure to "innovate,
differentiate, lead the industry, define the platform" would have kept either party
from attempting to commodify their protocols.

We did, in fact, see such a disaster with client-side JavaScript. There was such a
big difference in behavior between different browsers, even within different beta
versions of the same browser, that developers had to create code that would
detect different revisions and give different behavior--something that added
significantly more development time to interactive pages using JavaScript. It
wasn't until the W3C stepped in and laid the groundwork for a Document Object
Model (DOM) that we actually saw a serious attempt at creating a multiparty
standard around JavaScript.

There are natural forces in today's business world that drive for deviation when a
specification is implemented by closed software. Even an accidental misreading
of a common specification can cause a deviation if not corrected quickly.

Thus, I argue that building your services or products on top of a standards-based
platform is good for the stability of your business processes. The success of the
Internet has not only shown how common platforms help facilitate
communication, it has also forced companies to think more about how to create
value in what gets communicated, rather than trying to take value out of the
network itself.

Analyzing Your Goals for an Open-Source
Project
What you need to ask yourself, as a company, is to what degree your products
implement a new platform, and to what extent is it in your business interests to

http://www.oreilly.com/catalog/opensources/book/brian.html (7 of 26)

Open Sources: Voices from the Open Source Revolution

maintain ownership of that platform. How much of your overall product and
service set, and thus how much of your revenue, is above that platform, or below
it? This is probably something you can even apply numbers to.

Let's say you're a database company. You sell a database that runs on multiple
OSes; you separately sell packages for graphical administration, rapid
development tools, a library of common stored procedures people can use, etc.
You sell support on a yearly basis. Upgrades require a new purchase. You also
offer classes. And finally, you've got a growing but healthy consulting group
who implement your database for customers.

Let's say your revenue balance looks something like this:

● 40%--Sales of the database software

● 15%--Support

● 10%--Consulting work

● 10%--Rapid development tools

● 10%--Graphical administration tools

● 10%--Library of stored procedures/applications on top of this DB

● 5%--Manuals/classes

At first glance, the suggestion that you give away your database software for free
would be ludicrous. That's 40% of your revenue gone. If you're lucky as a
company you're profitable, and if you're even luckier you've got maybe a 20%
profit margin. 40% wipes that out completely.

This of course assumes nothing else changes in the equation. But the chances
are, if you pull this off right, things will change. Databases are the type of
application that companies don't just pull off the shelf at CompUSA, throw the
CD into their machine, and then forget about. All of the other categories of
revenue are still valid and necessary no matter how much was charged for the
OS. In fact, there is now more freedom to charge more for these other services
than before, when the cost of the software ate up the bulk of what a customer
typically paid for when they bought database software.

So very superficially speaking, if the free or low-cost nature of the database were
to cause it to be used on twice as many systems, and users were as equally
motivated as before to purchase consulting and support and development tools

http://www.oreilly.com/catalog/opensources/book/brian.html (8 of 26)

Open Sources: Voices from the Open Source Revolution

and libraries and such from your company, you'd see a 20% gain in the overall
amount of revenue. What's more likely is that three to four times as many new
users are introduced to your software, and while the take-up rate of your other
services is lower (either because people are happy just using the free version, or
you have competitors now offering these services for your product), so long as
that take-up rate doesn't go too low, you've probably increased overall revenue
into the company.

Furthermore, depending on the license applied, you may see lower costs
involved in development of your software. You're likely to see bugs fixed by
motivated customers, for example. You're also likely to see new innovations in
your software by customers who contribute their code to the project because they
want to see it maintained as a standard part of the overall distribution. So overall,
your development costs could go down.

It's also likely that, given a product/services mix like the above example,
releasing this product for free does little to help your competitors compete
against you in your other revenue spaces. There are probably already consultants
who do integration work with your tools; already independent authors of books;
already libraries of code you've encouraged other companies to build. The
availability of source code will marginally help competitors be able to provide
support for your code, but as the original developers, you'll have a cache to your
brand that the others will have to compete against.

Not all is wine and roses, of course. There are costs involved in this process that
are going to be difficult to tie to revenue directly. For example, the cost of
infrastructure to support such an endeavor, while not significant, can consume
systems administration and support staff. There's also the cost of having
developers communicating with others outside the company, and the extra
overhead of developing the code in a public way. There may be significant cost
involved in preparing the source code for public inspection. And after all this
work, there may simply not be the "market need" for your product as freeware.
I'll address all these points in the rest of this essay.

Evaluating the Market Need for Your Project
It may be very tempting for a company to look to Open Source as a way to save
a particular project, to gain notoriety, or to simply have a good story to end a
product category. These are not good reasons to launch an open-source project.
If a company is serious about pursuing this model, it needs to do its research in

http://www.oreilly.com/catalog/opensources/book/brian.html (9 of 26)

Open Sources: Voices from the Open Source Revolution

determining exactly what the product needs to be for an open-source strategy to
be successful.

The first step is to conduct a competitive analysis of the space, both for the
commercial competitors and the freeware competitors, no matter how small. Be
very careful to determine exactly what your product offers by componentizing
your offering into separable "chunks" that could be potentially bundled or sold
or open-sourced separately. Similarly, don't exclude combinations of freeware
and commercialware that offer the same functionality.

Let's continue with the database vendor example above. Let's say there are
actually three components to the vendor's database product: a core SQL server, a
backup/transaction logging manager, and a developer library. Such a vendor
should not only compare their product's offering to the big guys like Oracle and
Sybase, not only to the smaller but growing commercial competitors like Solid
and Velocis, but also to the free databases like MySQL and Postgres. Such an
analysis may conclude that the company's core SQL server provides only a little
more functionality than MySQL, and in an area that was never considered a
competitive advantage but merely a necessary feature to keep up with the other
DB vendors. The backup/transaction logging manager has no freeware
competition, and the developer library is surpassed by the Perl DBI utilities but
has little Java or C competition.

This company could then consider the following strategies:

1. Replace the core SQL server with MySQL, and then package up the
core SQL server functionality and backup/transaction logging
manager, and sell Java/C libraries while providing and supporting the
free Perl library. This would ride upon the momentum generated by
the MySQL package, and the incredible library of add-on code and
plug-in modules out there for it; it would also allow you to keep
private any pieces of code you may believe have patents or patent-
able code, or code you simply think is cool enough that it's a
competitive advantage. Market yourself as a company that can scale
MySQL up to larger deployments.

2. Contribute the "extra core SQL server functionality" to MySQL, then
design the backup/transaction logger to be sold as a separate product
that works with a wider variety of databases, with a clear preference
for MySQL. This has smaller revenue potential, but allows you as a
company to be more focused and potentially reach a broader base of

http://www.oreilly.com/catalog/opensources/book/brian.html (10 of 26)

Open Sources: Voices from the Open Source Revolution

customers. Such a product may be easier to support as well.

3. Go in the other direction: stick with a commercial product strategy for
the core SQL server and libraries, but open-source the
backup/transaction logger as a general utility for a wide array of
databases. This would cut down on your development costs for this
component, and be a marketing lead generator for your commercial
database. It would also remove a competitive advantage some of your
commercial competitors would have over open source, even though it
would also remove some of yours too.

All of these are valid approaches to take. Another approach:

1. Open-source the entire core server as its own product, separate from
MySQL or Postgres or any of the other existing packages, and provide
commercial support for it. Sell as standard non-open-source the
backup/logging tool, but open-source the development libraries to
encourage new users. Such a strategy carries more risk, as a popular
package like MySQL or Postgres tends to have been around for quite
some time, and there's inherently much developer aversion to
swapping out a database if their current one is working fine. To do
this, you'd have to prove significant benefit over what people are
currently using. Either it has to be dramatically faster, more flexible,
easier to administer or program with, or contain sufficiently new
features that users are motivated to try it out. You also have to spend
much more time soliciting interest in the project, and you probably
will have to find a way to pull developers away from competing
products.

I wouldn't advocate the fourth approach in this exact circumstance, as MySQL
actually has a very healthy head start here, lots and lots of add-on programs, and
a rather large existing user base.

However, from time to time an open source project loses momentum, either
because the core development team is not actively doing development, or the
software runs into core architectural challenges that keep it from meeting new
demands, or the environment that created this demand simply dries up or
changes focus. When that happens, and it becomes clear people are looking for
alternatives, there is the possibility of introducing a replacement that will attract

http://www.oreilly.com/catalog/opensources/book/brian.html (11 of 26)

Open Sources: Voices from the Open Source Revolution

attention, even if it does not immediately present a significant advance over the
status quo.

Analyzing demand is essential. In fact, it's demand that usually creates new open-
source projects. Apache started with a group of webmasters sharing patches to
the NCSA web server, deciding that swapping patches like so many baseball
cards was inefficient and error-prone, and electing to do a separate distribution
of the NCSA server with their patches built in. None of the principals involved
in the early days got involved because they wanted to sell a commercial server
with Apache as its base, though that's certainly a valid reason for being involved.

So an analysis of the market demand for a particular open-source project also
involves joining relevant mailing lists and discussion forums, cruising discussion
archives, and interviewing your customers and their peers; only then can you
realistically determine if there are people out there willing to help make the
project bear fruit.

Going back to Apache's early days: those of us who were sharing patches around
were also sending them back to NCSA, hoping they'd be incorporated, or at the
very least acknowledged, so that we could be somewhat assured that we could
upgrade easily when the next release came out. NCSA had been hit when the
previous server programmers had been snatched away by Netscape, and the
flood of email was too much for the remaining developers. So building our own
server was more an act of self-preservation than an attempt to build the next
great web server. It's important to start out with limited goals that can be
accomplished quite easily, and not have to rely upon your project dominating a
market before you realize benefits from the approach.

Open Source's Position in the Spectrum of
Software
To determine which parts of your product line or components of a given product
to open-source, it may be helpful to conduct a simple exercise. First, draw a line
representing a spectrum. On the left hand side, put "Infrastructural," representing
software that implements frameworks and platforms, all the way down to
TCP/IP and the kernel and even hardware. On the right hand side, put "End-user
applications," representing the tools and applications that the average, non-
technical user will use. Along this line, place dots representing, in relative terms,
where you think each of the components of your product offering lie. From the

http://www.oreilly.com/catalog/opensources/book/brian.html (12 of 26)

Open Sources: Voices from the Open Source Revolution

above example, the GUI front-ends and administrative tools lie on the far right-
hand side, while code that manages backups is off to the far left. Development
libraries are somewhat to the right of center, while the core SQL facilities are
somewhat to the left. Then, you may want to throw in your competitors' products
as well, also separating them out by component, and if you're really creative,
using a different color pen to distinguish the free offerings from the commercial
offerings. What you are likely to find is that the free offerings tend to clump
towards the left-hand side, and the commercial offerings towards the right.

Open-source software has tended to be slanted towards the infrastructural/back-
end side of the software spectrum represented here. There are several reasons for
this:

● End-user applications are hard to write, not only because a programmer
has to deal with a graphical, windowed environment which is constantly
changing, nonstandard, and buggy simply because of its complexity, but
also because most programmers are not good graphical interface
designers, with notable exceptions.

● Culturally, open-source software has been conducted in the networking
code and operating system space for years.

● Open-source tends to thrive where incremental change is rewarded, and
historically that has meant back-end systems more than front-ends.

● Much open-source software was written by engineers to solve a task they
had to do while developing commercial software or services; so the
primary audience was, early on, other engineers.

This is why we see solid open-source offerings in the operating system and
network services space, but very few offerings in the desktop application space.

There are certainly counterexamples to this. A great example is the GIMP, or
GNU Image Manipulation Program, an X11 program comparable in feature set
to Adobe Photoshop. Yet in some ways, this product is also an "infrastructure"
tool, a platform, since it owes its success to its wonderful plug-in architecture,
and the dozens and dozens of plug-ins that have been developed that allow it to
import and export many different file formats and which implement hundreds of
filter effects.

Look again at the spectrum you've drawn out. At some point, you can look at
your offering in the context of these competitors, and draw a vertical line. This

http://www.oreilly.com/catalog/opensources/book/brian.html (13 of 26)

Open Sources: Voices from the Open Source Revolution

line denotes the separation between what you open-source and what you may
choose to keep proprietary. That line itself represents your true platform, your
interface between the public code you're trying to establish as a standard on the
left, and your private code you want to drive demand for on the right.

Nature Abhors a Vacuum
Any commercial-software gaps in an otherwise open-source infrastructural
framework are a strong motivating force for redevelopment in the public space.
Like some force of nature, when a commercial wall exists between two strong
pieces of open-source software, there's pressure to bridge that gap with a public
solution. This is because every gap can be crossed given enough resources, and
if that gap is small enough for your company to cross with your own
development team, it's likely to be small enough for a set of motivated
developers to also cross.

Let's return to the database example: say you decide to open-source your core
SQL server (or your advanced code on top of MySQL), but decide to make
money by building a commercial, non-source-available driver for plugging that
database into a web server to create dynamic content. You decide the database
will be a loss leader for this product, and therefore you'll charge far higher than
normal margins on this component.

Since hooking up databases to web servers is a very common and desirable
thing, developers will either have to go through you, or find another way to
access the database from the web site. Each developer will be motivated by the
idea of saving the money they'd otherwise have to pay you. If enough developers
pool their resources to make it worth their while, or a single talented individual
simply can't pay for the plug-in but still wants to use that database, it's possible
you could wake up one morning to find an open-source competitor to your
commercial offering, completely eliminating the advantage of having the only
solution for that task.

This is a piece of a larger picture: relying upon proprietary source code in
strategic places as your way of making money has become a risky business
venture. If you can make money by supporting the web server + plug-in +
database combination, or by providing an interface to managing that system as a
whole, you can protect yourself against these types of surprises.

Not all commercial software has this vulnerability--it is specifically a

http://www.oreilly.com/catalog/opensources/book/brian.html (14 of 26)

Open Sources: Voices from the Open Source Revolution

characteristic of commercial software that tries to slot itself into a niche directly
between two well-established open-source offerings. Putting your commercial
offering as an addition to the current set of open-source offerings is a more solid
strategy.

Donate, or Go It Alone?
Open-source software exists in many of the standard software categories,
particularly those focused on the server side. Obviously we have operating
systems; web servers; mail (SMTP, POP, IMAP), news (NNTP), and DNS
servers; programming languages (the "glue" for dynamic content on the Web);
databases; networking code of all kinds. On the desktop you have text editors
like Emacs, Nedit, and Jove; windowing systems like Gnome and KDE; web
browsers like Mozilla; and screen savers, calculators, checkbook programs,
PIMs, mail clients, image tools--the list goes on. While not every category has
category-killers like Apache or Bind, there are probably very few commercial
niches that don't have at least the beginnings of a decent open source alternative
available. This is much less true for the Win32 platform than for the Unix or
Mac platforms, primarily because the open-source culture has not adopted the
Win32 platform as "open" enough to really build upon.

There is a compelling argument for taking advantage of whatever momentum an
existing open-source package has in a category that overlaps with your potential
offering, by contributing your additional code or enhancements to the existing
project and then aiming for a return in the form of higher-quality code overall,
marketing lead generation, or common platform establishment. In evaluating
whether this is an acceptable strategy, one needs to look at licensing terms:

● Are the terms on the existing package copacetic to your long-term goals?

● Can you legally contribute your code under that license?

● Does it incent future developers sufficiently? If not, would the developers
be willing to accommodate you by changing the license?

● Are your contributions general enough that they would be of value to the
developers and users of the existing project? If all they do is implement an
API to your proprietary code, they probably won't be accepted.

● If your contributions are hefty, can you have "peer" status with the other
developers, so that you can directly apply bug fixes and enhancements you
make later?

http://www.oreilly.com/catalog/opensources/book/brian.html (15 of 26)

Open Sources: Voices from the Open Source Revolution

● Are the other developers people you can actually work with?

● Are your developers people who can work with others in a collaborative
setting?

Satisfying developers is probably the biggest challenge to the open-source
development model, one which no amount of technology or even money can
really address. Each developer has to feel like they are making a positive
contribution to the project, that their concerns are being addressed, their
comments on architecture and design questions acknowledged and respected,
and their code efforts rewarded with integration into the distribution or a really
good reason why not.

People mistakenly say "open-source software works because the whole Internet
becomes your R&D and QA departments!" In fact, the amount of talented
programmer effort available for a given set of tasks is usually limited. Thus, it is
usually to everyone's interests if parallel development efforts are not undertaken
simply because of semantic disputes between developers. On the other hand,
evolution works best when alternatives compete for resources, so it's not a bad
thing to have two competing solutions in the same niche if there's enough talent
pool for critical mass--some real innovation may be tried in one that wasn't
considered in the other.

There is strong evidence for competition as a healthy trait in the SMTP server
space. For a long time, Eric Allman's "Sendmail" program was the standard
SMTP daemon every OS shipped with. There were other open-source
competitors that came up, like Smail or Zmailer, but the first to really crack the
usage base was Dan Bernstein's Qmail package. When Qmail came on the scene,
Sendmail was 20 years old, and had started to show its age; it was also not
designed for the Internet of the late 90s, where buffer overflows and denial of
service attacks are as common as rainfall in Seattle. Qmail was a radical break in
many ways--program design, administration, even in its definition of what good
"network behavior" for an SMTP server is. It was an evolution that would have
been exceedingly unlikely to have been made within Allman's Sendmail
package. Not because Allman and his team weren't good programmers or
because there weren't motivated third-party contributors; it's just that sometimes
a radical departure is needed to really try something new and see if it works. For
similar reasons, IBM funded the development of Weiste Venema's
"SecureMailer" SMTP daemon, which as of this writing also appears to be likely
to become rather popular. The SMTP daemon space is well-defined enough and

http://www.oreilly.com/catalog/opensources/book/brian.html (16 of 26)

Open Sources: Voices from the Open Source Revolution

important enough that it can support multiple open-source projects; time will tell
which will survive.

Bootstrapping
Essential to the health of an open-source project is that the project have
sufficient momentum to be able to evolve and respond to new challenges.
Nothing is static in the software world, and each major component requires
maintenance and new enhancements continually. One of the big selling points of
this model is that it cuts down on the amount of development any single party
must do, so for that theory to become fact, you need other active developers.

In the process of determining demand for your project, you probably ran into a
set of other companies and individuals with enough interest here to form a core
set of developers. Once you've decided on a strategy, shop it to this core set even
more heavily; perhaps start a simple discussion mailing list for this purpose, with
nothing set in stone. Chances are this group will have some significant ideas for
how to make this a successful project, and list their own set of resources they
could apply to make it happen.

For the simplest of projects, a commitment from this group that they'll give your
product a try and if they're happy stay on the development mailing list is
probably enough. However, for something more significant, you should try and
size up just how big the total resource base is.

Here is what I would consider a minimum resource set for a project of moderate
complexity, say a project to build a common shopping cart plug-in for a web
server, or a new type of network daemon implementing a simple protocol. In the
process I'll describe the various roles needed and the types of skills necessary to
fill them.

● Role 1: Infrastructure support: Someone to set up and maintain the
mailing list aliases, the web server, the CVS (Concurrent Versioning
System) code server, the bug database, etc.

Startup: 100 hours
Maintenance: 20 hrs/week.

● Role 2: Code "captain": Someone who watches all commits and has
overall responsibility for the quality of the implemented code. Integrates

http://www.oreilly.com/catalog/opensources/book/brian.html (17 of 26)

Open Sources: Voices from the Open Source Revolution

patches contributed by third parties, fixing any bugs or incompatibilities in
these contributions. This is outside of whatever new development work
they are also responsible for.

Startup: 40-200 hours (depends on how long it takes to clean up the code for
public consumption!)
Maintenance: 20 hrs/week

● Role 3: Bug database maintenance: While this is not free "support," it is
important that the public have an organized way of communicating bug
reports and issues to the server developers. In a free setting, the developers
are of course not even obliged to answer all mail they get, but they should
make reasonable efforts to respond to valid issues. The bug database
maintainer would be the first line of support, someone who goes through
the submissions on a regular basis and weeds out the simple questions,
tosses the clueless ones, and forwards the real issues on to the developers.

Startup: just enough to learn their way around the code
Maintenance: 10-15 hrs/week

● Role 4: Documentation/web site content maintenance: This position is
often left unattended in open-source projects and left to the engineers or to
people who really want to contribute but aren't star programmers; all too
often it's simply left undone. So long as we're going about this process
deliberately, locating dedicated resources to make sure that non-technical
people can understand and appreciate the tools they are deploying is
essential to widespread usage. It helps cut down on having to answer bug
reports which are really just misunderstandings, and it also helps
encourage new people to learn their way around the code and become
future contributors. A document that describes at a high level the internal
architecture of the software is essential; documentation that explains major
procedures or classes within the code is almost as important.

Startup: 60 hours (presuming little code has been documented)
Maintenance: 10 hrs/week

● Role 5: Cheerleader/zealot/evangelist/strategist: Someone who can work
to build momentum for the project by finding other developers, push

http://www.oreilly.com/catalog/opensources/book/brian.html (18 of 26)

Open Sources: Voices from the Open Source Revolution

specific potential customers to give it a try, find other companies who
could be candidates for adopting this new platform, etc. Not quite a
marketer or salesperson, as they need to stay close to the technology; but
the ability to clearly see the role of the project in a larger perspective is
essential.

Startup: enough to learn the project
Maintenance: 20 hrs/week

So here we have five roles representing almost three full-time people. In reality,
some of these roles get handled by groups of people sharing responsibility, and
some projects can survive with the average core participant spending less than 5
hrs/week after the first set of release humps are passed. But for the early days of
the project it is essential that developers have the time and focus they would if
the project were a regular development effort at the company.

These five roles also do not cover any resources that could be put towards new
development; this is purely maintenance. In the end, if you can not find enough
resources from peers and partners to cover these bases and enough extra
developers to do some basic new development (until new recruits are attracted),
you may want to reconsider open-sourcing your project.

What License to Use?
Determining which license to use for your project can be a fairly complex task;
it's the kind of task you probably don't enjoy but your legal team will. There are
other papers and web sites that cover copyright issues in finer detail; I'll provide
an overview, though, of what I see as the business considerations of each style of
license.

The BSD-Style Copyright

This is the copyright used by Apache and by the BSD-based operating systems
projects (FreeBSD, OpenBSD, NetBSD), and by and large it can be summed up
as, "Here's this code, do what you like with it, we don't care, just give us credit if
you try and sell it." Usually that credit is demanded in different forms--on
advertising, or in a README file, or in the printed documentation, etc. It has
been brought up that such a copyright may be inscalable--that is, if someone ever
released a bundle of software that included 40 different open-source modules, all
BSD-based, one might argue that there'd be 40 different copyright notices that

http://www.oreilly.com/catalog/opensources/book/brian.html (19 of 26)

Open Sources: Voices from the Open Source Revolution

would be necessary to display. In practice this has not been a problem, and in
fact it's been seen as a positive force in spreading awareness of the use of open-
source software.

From a business perspective, this is the best type of license for jumping into an
existing project, as there are no worries about licenses or restrictions on future
use or redistribution. You can mix and match this software with your own
proprietary code, and only release what you feel might help the project and thus
help you in return. This is one reason why we chose it for the Apache group--
unlike many free software projects, Apache was started largely by commercial
webmasters in search of a better web server for their own commercial needs.
While probably none of the original team had a goal of creating a commercial
server on top of Apache, none of us knew what our futures would hold, and felt
that limiting our options at the beginning wasn't very smart.

This type of license is ideal for promoting the use of a reference body of code
that implements a protocol or common service. This is another reason why we
chose it for the Apache group--many of us wanted to see HTTP survive and
become a true multiparty standard, and would not have minded in the slightest if
Microsoft or Netscape chose to incorporate our HTTP engine or any other
component of our code into their products, if it helped further the goal of
keeping HTTP common.

This degree of openness has risks. No incentive is built into the license to
encourage companies to contribute their code enhancements back to the project.
There have certainly been cases in Apache's history where companies have
developed technology around it that we would have like to have seen offered
back to the project. But had we had a license which mandated that code
enhancements be made available back to the project, such enhancements would
perhaps never have been made in the first place.

All this means that, strategically speaking, the project needs to maintain
sufficient momentum, and that participants realize greater value by contributing
their code to the project, even code that would have had value if kept
proprietary. This is a tricky ratio to maintain, particularly if one company
decides to dramatically increase the amount of coding they do on a derivative
project; and begins to doubt the potential return in proportion to their
contribution to the project, e.g., "We're doing all this work, more than anyone
else combined, why should we share it?" The author has no magic bullet for that
scenario, other than to say that such a company probably has not figured out the

http://www.oreilly.com/catalog/opensources/book/brian.html (20 of 26)

Open Sources: Voices from the Open Source Revolution

best way to inspire contributions from third parties to help meet their
engineering goals most efficiently.

The Mozilla Public License

The Mozilla Public License (MPL) was developed by the Netscape Mozilla team
for use on their project. It was the first new license in several years when it was
released, and really addressed some key issues not addressed by the BSD or
GNU licenses. It is adjacent to the BSD-style license in the spectrum of open-
source software licenses. It has two key differences:

It mandates that changes to the "distribution" also be released under the same
copyright as the MPL, which thus makes it available back to the project. The
"distribution" is defined as the files as distributed in the source code. This is
important, because it allows a company to add an interface to a proprietary
library of code without mandating that the other library of code also be made
MPL--only the interface. Thus, this software can more or less be combined into
a commercial software environment.

It has several provisions protecting both the project as a whole and its developers
against patent issues in contributed code. It mandates that the company or
individual contributing code back to the project release any and all claims to
patent rights that may be exposed by the code.

This second provision is really important; it also, at the time of this writing,
contains a big flaw.

Taking care of the patent issue is a Very Good Thing. There is always the risk
that a company could innocently offer code to a project, and then once that code
has been implemented thoroughly, try and demand some sort of patent fee for its
use. Such a business strategy would be laughably bad PR and very ugly, but
unfortunately not all companies see this yet. So, this second provision prevents
the case of anyone surreptitiously providing code they know is patented and
liable to cause headaches for everyone down the road.

Of course it doesn't block the possibility that someone else owns a patent that
would apply; there is no legal instrument that does provide that type of
protection. I would actually advocate that this is an appropriate service for the
U.S. Patent and Trade Office to perform; they seem to have the authority to
declare certain ideas or algorithms as property someone owns, so shouldn't they
also be required to do the opposite and certify my submitted code as patent-free,

http://www.oreilly.com/catalog/opensources/book/brian.html (21 of 26)

Open Sources: Voices from the Open Source Revolution

granting me some protection from patent lawsuits?

As I said earlier, though, there is a flaw in the current MPL, as of December
1998. In essence, Section 2.2 mandates (through its definition of "Contributor
Version") that the contributor waive patent claims on any part of Mozilla, not
just on the code they contribute. Maybe that doesn't seem like a bug. It would be
nice to get the whole package waived by a number of large companies.

Unfortunately, a certain large company with one of the world's largest patent
portfolios has a rather specific, large issue with this quirk. Not because they
intend to go after Mozilla some day and demand royalties--that would be
foolhardy. They are concerned because there are parts of Mozilla that implement
processes they have patents on and receive rather large numbers of dollars for
every year--and were they to waive patent claims over the Mozilla code, those
companies who pay them dollars for those patents could simply take the code
from Mozilla that implements those same patents and shove them into their own
products, removing the need to license the patent from said large company. Were
Section 2.2 to simply refer to the contributed patches rather than the whole
browser when it comes to waiving patents, this would not be a problem.

Aside from this quirk, the MPL is a remarkably solid license. Mandating back
the changes to the "core" means that essential bug fixes and portability
enhancements will flow back to the project, while value-added features can still
be developed by commercial entities. It is perhaps the best license to use to
develop an end-user application, where patents are more likely to be an issue,
and the drive to branch the project may be greater. In contrast, the BSD license
is perhaps more ideal for projects intended to be "invisible" or essentially library
functions, like an operating system or a web server.

The GNU Public License

While not obviously a business-friendly license, there are certain aspects of the
GNU license which are attractive, believe it or not, for commercial purposes.

Fundamentally, the GPL mandates that enhancements, derivatives, and even
code that incorporates GPL'd code are also themselves released as source code
under the GPL. This "viral" behavior has been trumpeted widely by open-source
advocates as a way to ensure that code that begins free remains free--that there is
no chance of a commercial interest forking their own development version from
the available code and committing resources that are not made public. In the
eyes of those who put a GPL on their software, they would much rather have no

http://www.oreilly.com/catalog/opensources/book/brian.html (22 of 26)

Open Sources: Voices from the Open Source Revolution

contribution than have a contribution they couldn't use as freely as the original.
There is an academic appeal to this, of course, and there are advocates who
claim that Linux would have never gotten as large as it has unless it was GPL'd,
as the lure of forking for commercial purposes would have been too great,
keeping the critical mass of unified development effort from being reached.

So at first glance, it may appear that the GPL would not have a happy co-
existence with a commercial intent related to open-source software. The
traditional models of making money through software value-add are not really
possible here. However, the GPL could be an extraordinarily effective means to
establish a platform that discourages competitive platforms from being created,
and which protects your claim to fame as the "premier" provider of products and
services that sit upon this platform.

An example of this is Cygnus and GCC. Cygnus makes a very healthy chunk of
change every year by porting GCC to various different types of hardware, and
maintaining those ports. The vast majority of that work, in compliance with the
GPL, gets contributed to the GCC distribution, and made available for free.
Cygnus charges for the effort involved in the port and maintenance, not for the
code itself. Cygnus's history and leadership in this space make it the reference
company to approach for this type of service.

If a competitor were to start up and compete against Cygnus, it too would be
forced to redistribute their changes under the GPL. This means that there is no
chance for a competitor to find a commercial technical niche on top of the GCC
framework that could be exploited, without giving Cygnus the same opportunity
to also take advantage of that technology. Cygnus has created a situation where
competitors can't compete on technology differentiation, unless a competitor
were to spend a very large amount of time and money and use a platform other
than GCC altogether.

Another way in which the GPL could be used for business purposes is as a
technology "sentinel," with a non-GPL'd version of the same code available for a
price. For example, you may have a great program for encrypting TCP/IP
connections over the Internet. You don't care if people use it non-commercially,
or even commercially--your interest is in getting the people who want to embed
it in a product or redistribute it for profit to pay you for the right to do that. If
you put a GPL license on the code, this second group of users can't do what they
want, without making their entire product GPL as well, something many of them
may be unwilling to do. However, if you maintain a separate branch of your

http://www.oreilly.com/catalog/opensources/book/brian.html (23 of 26)

Open Sources: Voices from the Open Source Revolution

project, one which is not under the GPL, you can commercially license the
separate branch of code any way you like. You have to be very careful, though,
to make sure that any code volunteered to you by third parties is explicitly
available for this non-free branch; you ensure this by either declaring that only
you (or people employed by you) will write code for this project, or that (in
addition) you'll get explicit clearance from each contributor to take whatever
they contribute into a non-free version.

There are companies for whom this is a viable business model--an example is
Transvirtual in Berkeley, who are applying this model to a commercial
lightweight Java virtual machine and class library project. Some may claim that
the number of contributors who would be turned off by such a model would be
high, and that the GPL and non-GPL versions may branch; I would claim that if
you treat your contributors right, perhaps even offer them money or other
compensation for their contributions (it is, after all, helping your commercial
bottom line), this model could work.

The open-source license space is sure to evolve over the next few years as
people discover what does and does not work. The simple fact is that you are
free to invent a new license that exactly describes where on the spectrum
(represented by BSD on the right and GPL on the left) you wish to place it. Just
remember, the more freedoms you grant those who use and extend your code,
the more incented they will be to contribute.

Tools for Launching Open Source Projects
We have a nice set of available, well-maintained tools used in the Apache
Project for allowing our distributed development process to work.

Most important among these is CVS, or Concurrent Versioning System. It is a
collection of programs that implement a shared code repository, maintaining a
database of changes with names and dates attached to each change. It is
extremely effective for being able to allow multiple people to simultaneously be
the "authors" of a program without stepping over each others' toes. It also helps
in the debugging process, as it is possible to roll back changes one by one to find
out exactly where a certain bug may have been introduced. There are clients for
every major platform, and it works just fine over dial-up lines or across long-
distance connections. It can also be secured by tunneling it over an encrypted
connection using SSH.

http://www.oreilly.com/catalog/opensources/book/brian.html (24 of 26)

Open Sources: Voices from the Open Source Revolution

The Apache project uses CVS not just for maintaining the actual software, but
also for maintaining our "STATUS" file, in which we place all major
outstanding issues, with comments, opinions, and even votes attached to each
issue. We also use it to register votes for decisions we make as a group, maintain
our web site documents with it, manage development documents, etc. In short it
is the asset and knowledge management software for the project. Its simplicity
may seem like a drawback--most software in this space is expensive and full-
featured--but in reality simplicity is a very strong virtue of CVS. Every
component of CVS is free--the server and the clients.

Another essential element to an open-source project is a solid set of discussion
forums for developers and for users. The software to use here is largely
inconsequential--we use Majordomo, but ezmlm or Smartlist or any of the others
would probably be fine. The important thing is to give each development effort
their own list, so that developers can self-select their interests and reasonably
keep up with development. It's also smart to create a separate list for each project
to which the CVS server emails changes that get made to the CVS repository, to
allow for a type of passive peer review of changes. Such a model is actually very
effective in maintaining code standards and discovering bugs. It may also make
sense to have different lists for users and developers, and perhaps even
distinguish between all developers and core developers if your project is large
enough. Finally, it is important to have archives of the lists publicly available so
that new users can search to see if a particular issue has been brought up in the
past, or how something was addressed in the past.

Bug and issue tracking is also essential to a well-run project. On the Apache
Project we use a GNU tool called GNATS, which has served us very well
through 3,000+ bug reports. You want to find a tool that allows multiple people
to answer bug reports, allows people to specialize on bugs in one particular
component of the project, and allows people to read bug reports by email and
reply to them by email rather than exclusively by a web form. The overriding
goal for the bug database is that it should be as easy and automated as possible
both for developers to answer bugs (because this is really a chore to most
developers), and to search to see if a particular bug has already been reported. In
essence, your bug database will become your repository for anecdotal
knowledge about the project and its capabilities. Why is a particular behavior a
feature and not a bug? Is anyone addressing a known problem? These are the
types of questions a good bug database should seek to answer.

The open-source approach is not a magic bullet for every type of software

http://www.oreilly.com/catalog/opensources/book/brian.html (25 of 26)

Open Sources: Voices from the Open Source Revolution

development project. Not only do the conditions have to be right for conducting
such a project, but there is a tremendous amount of real work that has to go into
launching a successful project that has a life of its own. In many ways you, as
the advocate for a new project, have to act a little like Dr. Frankenstein, mixing
chemicals here, applying voltage there, to bring your monster to life. Good luck.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/brian.html (26 of 26)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

The Open Source Definition

Bruce Perens

The typical computer user owns lots of software that he bought years ago and no
longer uses today. He may have upgraded his computer or changed brands, and
then the program wouldn't work any longer. The software might have become
obsolete. The program may simply not do what he needs. He may have bought
two or more computers, and doesn't want to pay for a second copy of the
software. Whatever the reason, the software that he paid for years ago isn't up to
the task today. Does that really need to happen?

What if you had the right to get a free upgrade whenever your software needed
it? What if, when you switched from a Mac to a PC, you could switch software
versions for free? What if, when the software doesn't work or isn't powerful
enough, you can have it improved or even fix it yourself? What if the software
was still maintained even if the company that produced it went out of business?
What if you could use your software on your office workstation, and your home
desktop computer, and your portable laptop, instead of just one computer? You'd
probably still be using the software you paid for years ago. These are some of
the rights that Open Source gives you.

The Open Source Definition is a bill of rights for the computer user. It defines

http://www.oreilly.com/catalog/opensources/book/perens.html (1 of 21)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

certain rights that a software license must grant you to be certified as Open
Source. Those who don't make their programs Open Source are finding it
difficult to compete with those who do, as users gain a new appreciation of
rights they always should have had. Programs like the Linux operating system
and Netscape's web browser have become extremely popular, displacing other
software that has more restrictive licenses. Companies that use open-source
software have the advantage of its very rapid development, often by several
collaborating companies, and much of it contributed by individuals who simply
need an improvement to serve their own needs.

The volunteers who made products like Linux possible are only there, and the
companies are only able to cooperate, because of the rights that come with Open
Source. The average computer programmer would feel stupid if he put lots of
work into a program, only to have the owner of the program sell his
improvement without giving anything back. Those same programmers feel
comfortable contributing to Open Source because they are assured of these
rights:

● The right to make copies of the program, and distribute those copies.

● The right to have access to the software's source code, a necessary
preliminary before you can change it.

● The right to make improvements to the program.

These rights are important to the software contributor because they keep all
contributors at the same level relative to each other. Everyone who wants to is
allowed to sell an Open Source program, so prices will be low and development
to reach new markets will be rapid. Anyone who invests the time to build
knowledge in an Open Source program can support it, and this provides users
with the option of providing their own support, or the economy of a number of
competing support providers. Any programmer can tailor an Open Source
program to specific markets in order to reach new customers. People who do
these things aren't compelled to pay royalties or license fees.

The reason for the success of this somewhat communist-sounding strategy, while
the failure of communism itself is visible around the world, is that the economics
of information are fundamentally different from those of other products. There is
very little cost associated with copying a piece of information like a computer
program. The electricity involved costs less than a penny, and the use of the
equipment not much more. In comparison, you can't copy a loaf of bread without

http://www.oreilly.com/catalog/opensources/book/perens.html (2 of 21)

Open Sources: Voices from the Open Source Revolution

a pound of flour.

History
The concept of free software is an old one. When computers first reached
universities, they were research tools. Software was freely passed around, and
programmers were paid for the act of programming, not for the programs
themselves. Only later on, when computers reached the business world, did
programmers begin to support themselves by restricting the rights to their
software and charging fees for each copy. Free Software as a political idea has
been popularized by Richard Stallman since 1984, when he formed the Free
Software Foundation and its GNU Project. Stallman's premise is that people
should have more freedom, and should appreciate their freedom. He designed a
set of rights that he felt all users should have, and codified them in the GNU
General Public License or GPL. Stallman punningly christened his license the
copyleft because it leaves the right to copy in place. Stallman himself developed
seminal works of free software such as the GNU C Compiler, and GNU Emacs,
an editor so alluring to some that it is spoken of as it were a religion. His work
inspired many others to contribute free software under the GPL. Although it is
not promoted with the same libertarian fervor, the Open Source Definition
includes many of Stallman's ideas, and can be considered a derivative of his
work.

The Open Source Definition started life as a policy document of the Debian
GNU/Linux Distribution. Debian, an early Linux system and one still popular
today, was built entirely of free software. However, since there were other
licenses than the copyleft that purported to be free, Debian had some problem
defining what was free, and they had never made their free software policy clear
to the rest of the world. I was the leader of the Debian project, at that time, and I
addressed these problems by proposing a Debian Social Contract and the
Debian Free Software Guidelines in July 1997. Many Debian developers had
criticisms and improvements that I incorporated into the documents. The Social
Contract documented Debian's intent to compose their system entirely of free
software, and the Free Software Guidelines made it possible to classify software
into free and non-free easily, by comparing the software license to the
guidelines.

Debian's guidelines were lauded in the free software community, especially
among Linux developers, who were working their own free software revolution

http://www.oreilly.com/catalog/opensources/book/perens.html (3 of 21)

Open Sources: Voices from the Open Source Revolution

at the time in developing the first practical free operating system. When
Netscape decided to make their web browser free software, they contacted Eric
Raymond. Raymond is the Margaret Meade of free software: he has written
several anthropological articles explaining the free software phenomenon and
the culture that has grown around it, works that are the first of their kind and
have shone a spotlight on this formerly little-known phenomenon. Netscape
management was impressed with Raymond's essay "The Cathedral and the
Bazaar," a chronicle of a successful free software development using unpaid
volunteer contributors, and asked him to consult, under a non-disclosure
agreement, while they developed a license for their free software. Raymond
insisted that Netscape's license comply with Debian's guidelines for it to be
taken seriously as free software.

Raymond and I had met occasionally at the Hacker's Conference, an invitation-
only gathering of creative and unconventional programmers. We had
corresponded on various subjects via email. He contacted me in February of
1997 with the idea for Open Source. Raymond was concerned that conservative
business people were put off by Stallman's freedom pitch, which was, in
contrast, very popular among the more liberal programmers. He felt this was
stifling the development of Linux in the business world while it flourished in
research. He met with business people in the fledgling Linux industry, and
together they conceived of a program to market the free software concept to
people who wore ties. Larry Augustin of VA Research and Sam Ockman (who
later left VA to form Penguin Computing) were involved, as well as others who
aren't known to me.

Some months before Open Source, I had conceived of the idea of Open
Hardware, a similar concept but for hardware devices and their interfaces rather
than software programs. Open Hardware has not been as successful as Open
Source to date, but it is still operating and you can find information on it at
http://www.openhardware.org/.

Raymond felt that the Debian Free Software Guidelines were the right document
to define Open Source, but that they needed a more general name and the
removal of Debian-specific references. I edited the Guidelines to form the Open
Source Definition. I had formed a corporation for Debian called Software in the
Public Interest, and I offered to register a trademark for Open Source so that we
could couple its use to the definition. Raymond agreed, and I registered a
certification mark, a special form of trademark meant to be applied to other
people's products, on the term. About a month after I registered the mark, it

http://www.oreilly.com/catalog/opensources/book/perens.html (4 of 21)

Open Sources: Voices from the Open Source Revolution

became clear that Software in the Public Interest might not be the best home of
the Open Source mark, and I transferred ownership of the mark to Raymond.
Raymond and I have since formed the Open Source Initiative, an organization
exclusively for managing the Open Source campaign and its certification mark.
At this writing, the Open Source Initiative is governed by a six-person board
chosen from well-known free software contributors, and seeks to expand its
board to about ten people.

At the time of its conception there was much criticism for the Open Source
campaign, even among the Linux contingent who had already bought-in to the
free software concept. Many pointed to the existing use of the term "Open
Source" in the political intelligence industry. Others felt the term "Open" was
already overused. Many simply preferred the established name Free Software. I
contended that the overuse of "Open" could never be as bad as the dual meaning
of "Free" in the English language--either liberty or price, with price being the
most oft-used meaning in the commercial world of computers and software.
Richard Stallman later took exception to the campaign's lack of an emphasis on
freedom, and the fact that as Open Source became more popular, his role in the
genesis of free software, and that of his Free Software Foundation, were being
ignored--he complained of being "written out of history." This situation was
made worse by a tendency for people in the industry to compare Raymond and
Stallman as if they were proponents of competing philosophies rather than
people who were using different methods to market the same concept. I probably
exacerbated the situation by pitting Stallman and Raymond against each other in
debates at Linux Expo and Open Source Expo. It became so popular to type-cast
the two as adversaries that an email debate, never intended for publication,
appeared the online journal Salon. At that point, I asked Raymond to tone down
a dialogue that it had never been his intent to enter.

When the Open Source Definition was written, there were already a large
number of products that fit the definition. The problem was with programs that
did not meet the definition, yet were seductive to users.

KDE, Qt, and Troll Tech
The case of KDE, Qt, and Troll Tech is relevant to this essay because the KDE
group and Troll Tech tried to place a non-Open-Source product in the
infrastructure of Linux, and met with unexpected resistance. Public outcry and
the threat of a fully open-source replacement for their product eventually

http://www.oreilly.com/catalog/opensources/book/perens.html (5 of 21)

Open Sources: Voices from the Open Source Revolution

convinced Troll to switch to a fully Open Source license. It's an interesting
example of the community's enthusiastic acceptance of the Open Source
Definition that Troll Tech had to make its license comply, if their product was to
succeed.

KDE was the first attempt at a free graphical desktop for Linux. The KDE
applications were themselves under the GPL, but they depended on a proprietary
graphical library called Qt, from Troll Tech. Qt's license terms prohibited
modification or use with any display software other than the senescent X
Window System. Other use required a $1,500 developer's license. Troll Tech
provided versions of Qt for Microsoft Windows and the Macintosh, and this was
its main revenue source. The pseudo-free license for X systems was meant to
leverage the contributions of Linux developers into demos, examples, and
accessories for their pricey Windows and Mac products.

Although the problems with the Qt license were clear, the prospect of a graphical
desktop for Linux was so attractive that many users were willing to overlook its
non-Open-Source nature. Open Source proponents found KDE objectionable
because they perceived that the KDE developers were trying to blur the
definition of what free software was to include partially-free items like Qt. The
KDE developers contended that their programs were Open Source, even though
there were no runnable versions of the programs that did not require a non-Open-
Source library. I, and others, asserted that KDE applications were only Open
Source fragments of non-Open-Source programs, and that an Open Source
version of Qt would be necessary before KDE could be referred to as Open
Source.

The KDE developers attempted to partially address the problem of Qt's license
by negotiating a KDE Free Qt Foundation agreement with Troll Tech, in which
Troll and KDE would jointly control releases of the free version of Qt, and Troll
Tech would release Qt under an Open-Source-complaint license if the company
was ever purchased or went out of business.

Another group initiated the GNOME project, a fully Open Source competitor of
KDE that aimed to provide more features and sophistication, and a separate
group initiated a Harmony project to produce a fully Open Source clone of Qt
that would support KDE. As GNOME was being demonstrated to accolades and
Harmony was about to become useful, Troll Tech realized Qt would not be
successful in the Linux market without a change in license. Troll Tech released a
fully Open Source license for Qt, defusing the conflict and removing the

http://www.oreilly.com/catalog/opensources/book/perens.html (6 of 21)

Open Sources: Voices from the Open Source Revolution

motivation for the Harmony project. The GNOME project continues, and now
aims to best KDE in terms of functionality and sophistication rather than in
terms of its license.

Before they released their new Open Source license, Troll Tech provided me
with a copy for auditing, with the request that it be kept confidential until they
could announce it. In my enthusiasm to make peace with the KDE group and in
an embarrassing feat of self-deception, I pre-announced their license eight hours
early on a KDE mailing list. That email was almost immediately picked up by
Slashdot and other online news magazines, to my chagrin.

Troll Tech's new license is notable in that it takes advantage of a loophole in the
Open Source Definition that allows patch files to be treated differently from
other software. I would like to address this loophole in a future revision of the
Open Source Definition, but the new text should not place Qt outside of Open
Source.

At this writing, proponents of Open Source are increasing exponentially. The
recent Open Source contributions of IBM and Ericsson have been in the
headlines. Two Linux distributions, Yggdrasil and Debian, are distributing
complete Linux system distributions, including many applications, that are
entirely Open Source, and several others, including Red Hat, are very close.
With the completion of the GNOME system, an Open Source GUI desktop OS
capable of competing with Microsoft NT will have been realized.

Analysis of the Open Source Definition
In this section, I'll present the entire text of the Open Source Definition, with
commentary (in italic). You can find the canonical version of the Open Source
Definition at http://www.opensource.org/osd.html.

Pedants have pointed out minor ambiguities in the Open Source Definition. I've
held off revising it as it's little more than a year old and I'd like people to
consider it stable. The future will bring slight language changes, but only the
most minor of changes in the intent of the document.

The Open Source Definition (Version 1.0)

Open source doesn't just mean access to the source code. The distribution terms
of an open-source program must comply with the following criteria:

http://www.oreilly.com/catalog/opensources/book/perens.html (7 of 21)

Open Sources: Voices from the Open Source Revolution

Note that the Open Source Definition is not itself a software license. It is a specification of
what is permissible in a software license for that software to be referred to as Open
Source. The Open Source Definition was not intended to be a legal document. The
inclusion of the Open Source Definition in software licenses, such as a proposed license of
the Linux Documentation Project, has tempted me to write a more rigorous version that
would be appropriate for that use.

To be Open Source, all of the terms below must be applied together, and in all cases. For
example, they must be applied to derived versions of a program as well as the original
program. It's not sufficient to apply some and not others, and it's not sufficient for the
terms to only apply some of the time. After working through some particularly naive
interpretations of the Open Source Definition, I feel tempted to add: this means you!

1. Free Redistribution

The license may not restrict any party from selling or giving away the
software as a component of an aggregate software distribution containing
programs from several different sources. The license may not require a
royalty or other fee for such sale.

This means that you can make any number of copies of the software, and
sell or give them away, and you don't have to pay anyone for that
privilege.

The "aggregate software distribution containing programs from several
different sources" was intended to fit a loophole in the Artistic License, a
rather sloppy license in my opinion, originally designed for Perl. Today,
almost all programs that use the Artistic License are also available under
the GPL. That provision is thus no longer necessary, and may be removed
from a future version of the Open Source Definition.

2. Source Code

The program must include source code, and must allow distribution in
source code as well as compiled form. Where some form of a product is
not distributed with source code, there must be a well-publicized means of
downloading the source code, without charge, via the Internet. The source
code must be the preferred form in which a programmer would modify the
program. Deliberately obfuscated source code is not allowed. Intermediate
forms such as the output of a preprocessor or translator are not allowed.

Source code is a necessary preliminary for the repair or modification of a
program. The intent here is for source code to be distributed with the
initial work, and all derived works.

http://www.oreilly.com/catalog/opensources/book/perens.html (8 of 21)

Open Sources: Voices from the Open Source Revolution

3. Derived Works

The license must allow modifications and derived works, and must allow
them to be distributed under the same terms as the license of the original
software.

Software has little use if you can't maintain it (fix bugs, port to new
systems, make improvements), and modification is necessary for
maintenance. The intent here is for modification of any sort to be allowed.
It must be allowed for a modified work to be distributed under the same
license terms as the original work. However, it is not required that any
producer of a derived work must use the same license terms, only that the
option to do so be open to them. Various licenses speak differently on this
subject--the BSD license allows you to take modifications private, while
the GPL does not.

A concern among some software authors is that this provision could allow
unscrupulous people to modify their software in ways that would
embarrass the original author. They fear someone deliberately making the
software perform incorrectly in a way that would make it look as if the
author was a poor programmer. Others are concerned that software could
be modified for criminal use, by the addition of Trojan horse functions or
locally-banned technologies such as cryptography. All of these actions,
however, are covered by criminal law. A common misunderstanding about
software licenses is that they must specify everything, including things like
"don't use this software to commit a crime." However, no license has any
valid existence outside of the body of civil and criminal law. Considering
a license as something apart from the body of applicable law is as silly as
considering an English-language document as being apart from the
dictionary, in which case none of the words would have any defined
meaning.

4. Integrity of the Author's Source Code

The license may restrict source code from being distributed in modified
form only if the license allows the distribution of "patch files" with the
source code for the purpose of modifying the program at build time.

Some authors were afraid that others would distribute source code with
modifications that would be perceived as the work of the original author,
and would reflect poorly on that author. This gives them a way to enforce
a separation between modifications and their own work without

http://www.oreilly.com/catalog/opensources/book/perens.html (9 of 21)

Open Sources: Voices from the Open Source Revolution

prohibiting modifications. Some consider it un-aesthetic that
modifications might have to be distributed in a separate "patch" file from
the source code, even though Linux distributions like Debian and Red Hat
use this procedure for all of the modifications they make to the programs
they distribute. There are programs that automatically merge patches into
the main source, and one can have these programs run automatically
when extracting a source package. Thus, this provision should cause little
or no hardship.

Note also that this provision says that in the case of patch files, the
modification takes place at build-time. This loophole is employed in the Qt
Public License to mandate a different, though less restrictive, license for
the patch files, in contradiction of Section 3 of the Open Source
Definition. There is a proposal to clean up this loophole in the definition
while keeping Qt within Open Source.

The license must explicitly permit distribution of software built from
modified source code. The license may require derived works to carry a
different name or version number from the original software.

This means that Netscape, for example, can insist that only they can name
a version of the program Netscape Navigator(tm) while all free versions
of the program must be called Mozilla or something else.

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

A license provided by the Regents of the University of California,
Berkeley, prohibited an electronic design program from being used by the
police of South Africa. While this was a laudable sentiment in the time of
apartheid, it makes little sense today. Some people are still stuck with
software that they acquired under that license, and their derived versions
must carry the same restriction. Open Source licenses may not contain
such provisions, no matter how laudable their intent.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a
specific field of endeavor. For example, it may not restrict the program
from being used in a business, or from being used for genetic research.

Your software must be equally usable in an abortion clinic, or by an anti-
abortion organization. These political arguments belong on the floor of

http://www.oreilly.com/catalog/opensources/book/perens.html (10 of 21)

Open Sources: Voices from the Open Source Revolution

Congress, not in software licenses. Some people find this lack of
discrimination extremely offensive!

7. Distribution of License

The rights attached to the program must apply to all to whom the program
is redistributed without the need for execution of an additional license by
those parties.

The license must be automatic, no signature required. Unfortunately,
there has not been a good court test in the U.S. of the power of a no-
signature-required license when it is passed from a second party to a
third. However, this argument considers the license in the body of
contract law, while some argue that it should be considered as copyright
law, where there is more precedent for no-signature licenses. A good
court test will no doubt happen in the next few years, given the popularity
of this sort of license and the booming nature of Open Source.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's
being part of a particular software distribution. If the program is extracted
from that distribution and used or distributed within the terms of the
program's license, all parties to whom the program is redistributed should
have the same rights as those that are granted in conjunction with the
original software distribution.

This means you can't restrict a product that is identified as Open Source
to be free only if you use it with a particular brand of Linux distribution,
etc. It must remain free if you separate it from the software distribution it
came with.

9. License Must Not Contaminate Other Software

The license must not place restrictions on other software that is distributed
along with the licensed software. For example, the license must not insist
that all other programs distributed on the same medium must be open-
source software.

A version of GhostScript (a PostScript-rendering program) requires that
the media on which it is distributed contain only free software programs.
This isn't permissible for Open Source licenses. Fortunately, the
GhostScript author distributes another (somewhat older) version of the
program with a true Open Source license.

http://www.oreilly.com/catalog/opensources/book/perens.html (11 of 21)

Open Sources: Voices from the Open Source Revolution

Note that there is a difference between derivation and aggregation.
Derivation is when a program actually incorporates part of another
program into itself. Aggregation is when you include two programs on the
same CD-ROM. This section of the Open Source Definition is concerned
with aggregation , not derivation. Section 4 is concerned with derivation.

10. Example Licenses

The GNU GPL, BSD, X Consortium, and Artistic licenses are examples of
licenses that we consider conformant to the Open Source Definition. So is
the MPL.

This would get us in trouble if any of these licenses are ever changed to be
non-Open-Source--we'd have to issue a revision of the Open Source
Definition immediately. It really belongs in explanatory text, not in the
Open Source Definition itself.

Analysis of Licenses and Their Open Source
Compliance
To understand the Open Source Definition, we need to look at some common
licensing practices as they relate to Open Source.

Public Domain

A common misconception is that much free software is public-domain. This
happens simply because the idea of free software or Open Source is confusing to
many people, and they mistakenly describe these programs as public-domain
because that's the closest concept that they understand. The programs, however,
are clearly copyrighted and covered by a license, just a license that gives people
more rights than they are used to.

A public-domain program is one upon which the author has deliberately
surrendered his copyright rights. It can't really be said to come with a license; it's
your personal property to use as you see fit. Because you can treat it as your
personal property, you can do what you want with a public-domain program.
You can even re-license a public-domain program, removing that version from
the public domain, or you can remove the author's name and treat it as your own
work.

If you are doing a lot of work on a public-domain program, consider applying

http://www.oreilly.com/catalog/opensources/book/perens.html (12 of 21)

Open Sources: Voices from the Open Source Revolution

your own copyright to the program and re-licensing it. For example, if you don't
want a third party to make their own modifications that they then keep private,
apply the GPL or a similar license to your version of the program. The version
that you started with will still be in the public domain, but your version will be
under a license that others must heed if they use it or derive from it.

You can easily take a public-domain program private, by declaring a copyright
and applying your own license to it or simply declaring "All Rights Reserved."

Free Software Licenses in General

If you have a free software collection like a Linux disk, you may believe the
programs on that disk are your property. That's not entirely true. Copyrighted
programs are the property of the copyright holder, even when they have an Open
Source license like the GPL. The program's license grants you some rights, and
you have other rights under the definition of fair use in copyright law.

It's important to note that an author does not have to issue a program with just
one license. You can GPL a program, and also sell a version of the same
program with a commercial, non-Open-Source license. This exact strategy is
used by many people who want to make a program Open Source and still make
some money from it. Those who do not want an Open Source license may pay
for the privilege, providing a revenue stream for the author.

All of the licenses we will examine have a common feature: they each disclaim
all warranties. The intent is to protect the software owner from any liability
connected with the program. Since the program is often being given away at no
cost, this is a reasonable requirement--the author doesn't have a sufficient
revenue stream from the program to fund liability insurance and legal fees.

If free-software authors lose the right to disclaim all warranties and find
themselves getting sued over the performance of the programs that they've
written, they'll stop contributing free software to the world. It's to our advantage
as users to help the author protect this right.

The GNU General Public License

Please see Appendix B for the full text of the GPL. The GPL is a political
manifesto as well as a software license, and much of its text is concerned with
explaining the rationale behind the license. This political dialogue has put some
people off, and thus provided some of the reason that people have written other
free software licenses. However, the GPL was assembled with the assistance of

http://www.oreilly.com/catalog/opensources/book/perens.html (13 of 21)

Open Sources: Voices from the Open Source Revolution

law professors, and is much better written than most of its ilk. I'd strongly urge
that you use the GPL, or its library variant the LGPL, if you can. If you choose
another license, or write your own, be sure about your reasons. People who write
their own licenses should consider that this is not a step to be taken lightly. The
unexpected complications of an ill-considered license can create a decades-long
burden for software users.

The text of the GPL is not itself under the GPL. Its license is simple: Everyone is
permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed. An important point here is that the text of the licenses
of Open Source software are generally not themselves Open Source. Obviously,
a license would offer no protection if anyone could change it.

The provisions of the GPL satisfy the Open Source Definition. The GPL does
not require any of the provisions permitted by paragraph 4 of the Open Source
Definition, Integrity of the Author's Source Code.

The GPL does not allow you to take modifications private. Your modifications
must be distributed under the GPL. Thus, the author of a GPL-ed program is
likely to receive improvements from others, including commercial companies
who modify his software for their own purposes.

The GPL doesn't allow the incorporation of a GPL-ed program into a proprietary
program. The GPL's definition of a proprietary program is any program with a
license that doesn't give you as many rights as the GPL.

There are a few loopholes in the GPL that allow it to be used in programs that
are not entirely Open Source. Software libraries that are normally distributed
with the compiler or operating system you are using may be linked with GPL-ed
software; the result is a partially-free program. The copyright holder (generally
the author of the program) is the person who places the GPL on the program and
has the right to violate his own license. This was used by the KDE authors to
distribute their programs with Qt before Troll Tech placed an Open Source
license on Qt. However, this right does not extend to any third parties who
redistribute the program--they must follow all of the terms of the license, even
the ones that the copyright holder violates, and thus it's problematical to
redistribute a GPL-ed program containing Qt. The KDE developers appear to be
addressing this problem by applying the LGPL, rather than the GPL, to their
software.

The political rhetoric in the GPL puts some people off. Some of them have

http://www.oreilly.com/catalog/opensources/book/perens.html (14 of 21)

Open Sources: Voices from the Open Source Revolution

chosen a less appropriate license for their software simply because they eschew
Richard Stallman's ideas and don't want to see them repeated in their own
software packages.

The GNU Library General Public License

The LGPL is a derivative of the GPL that was designed for software libraries.
Unlike the GPL, a LGPL-ed program can be incorporated into a proprietary
program. The C-language library provided with Linux systems is an example of
LGPL-ed software--it can be used to build proprietary programs, otherwise
Linux would only be useful for free software authors.

An instance of an LGPL-ed program can be converted into a GPL-ed one at any
time. Once that happens, you can't convert that instance, or anything derived
from it, back into an LGPL-ed program.

The rest of the provisions of the LGPL are similar to those in the GPL--in fact, it
includes the GPL by reference.

The X, BSD, and Apache Licenses

The X license and its relatives the BSD and Apache licenses are very different
from the GPL and LGPL. These licenses let you do nearly anything with the
software licensed under them. This is because the software that the X and BSD
licenses originally covered was funded by monetary grants of the U.S.
Government. Since the U.S. citizens had already paid for the software with their
taxes, they were granted permission to make use of that software as they pleased.

The most important permission, and one missing from the GPL, is that you can
take X-licensed modifications private. In other words, you can get the source
code for a X-licensed program, modify it, and then sell binary versions of the
program without distributing the source code of your modifications, and without
applying the X license to those modifications. This is still Open Source,
however, as the Open Source Definition does not require that modifications
always carry the original license.

Many other developers have adopted the X license and its variants, including the
BSD (Berkeley System Distribution) and the Apache web server project. An
annoying feature of the BSD license is a provision that requires you to mention
(generally in a footnote) that the software was developed at the University of
California any time you mention a feature of a BSD-licensed program in
advertising. Keeping track of which software is BSD-licensed in something huge

http://www.oreilly.com/catalog/opensources/book/perens.html (15 of 21)

Open Sources: Voices from the Open Source Revolution

like a Linux distribution, and then remembering to mention the University
whenever any of those programs are mentioned in advertising, is somewhat of a
headache for business people. At this writing, the Debian GNU/Linux
distribution contains over 2,500 software packages, and if even a fraction of
them were BSD-licensed, advertising for a Linux system like Debian might
contain many pages of footnotes! However, the X Consortium license does not
have that advertising provision. If you are considering using a BSD-style license,
use the X license instead.

The Artistic License

Although this license was originally developed for Perl, it's since been used for
other software. It is, in my opinion, a sloppily-worded license, in that it makes
requirements and then gives you loopholes that make it easy to bypass the
requirements. Perhaps that's why almost all Artistic-license software is now dual-
licensed, offering the choice of the Artistic License or the GPL.

Section 5 of the Artistic License prohibits sale of the software, yet allows an
aggregate software distribution of more than one program to be sold. So, if you
bundle an Artistic-licensed program with a five-line hello-world.c, you can sell
the bundle. This feature of the Artistic License was the sole cause of the
"aggregate" loophole in paragraph 1 of the Open Source Definition. As use of
the Artistic License wanes, we are considering removing the loophole. That
would make the Artistic a non-Open-Source license. This isn't a step we would
take lightly, and there will probably be more than a year of consideration and
debate before it happens.

The Artistic License requires you to make modifications free, but then gives you
a loophole (in Section 7) that allows you to take modifications private or even
place parts of the Artistic-licensed program in the public domain!

The Netscape Public License and the Mozilla Public
License

NPL was developed by Netscape when they made their product Netscape
Navigator Open Source. Actually, the Open-Source version is called Mozilla;
Netscape reserves the trademark Navigator for their own product. Eric Raymond
and I acted as unpaid consultants during the development of this license. I tried,
unsuccessfully, to persuade Netscape to use the GPL, and when they declined, I
helped them compose a license that would comply with the Open Source

http://www.oreilly.com/catalog/opensources/book/perens.html (16 of 21)

Open Sources: Voices from the Open Source Revolution

Definition.

An important feature of the NPL is that it contains special privileges that apply
to Netscape and nobody else. It gives Netscape the privilege of re-licensing
modifications that you've made to their software. They can take those
modifications private, improve them, and refuse to give you the result. This
provision was necessary because when Netscape decided to go Open Source, it
had contracts with other companies that committed it to provide Navigator to
them under a non-Open-Source license.

Netscape created the MPL, or Mozilla Public License, to address this concern.
The MPL is much like the NPL, but does not contain the clause that allows
Netscape to re-license your modifications.

The NPL and MPL allow you to take modifications private.

Many companies have adopted a variation of the MPL for their own programs.
This is unfortunate, because the NPL was designed for the specific business
situation that Netscape was in at the time it was written, and is not necessarily
appropriate for others to use. It should remain the license of Netscape and
Mozilla, and others should use the GPL or the or X licenses.

Choosing a License
Do not write a new license if it is possible to use one of the ones listed here. The
propagation of many different and incompatible licenses works to the detriment
of Open Source software because fragments of one program cannot be used in
another program with an incompatible license.

Steer clear of the Artistic License unless you are willing to study it carefully and
edit out its loopholes. Then, make a few decisions:

1. Do you want people to be able to take modifications private or not? If
you want to get the source code for modifications back from the
people who make them, apply a license that mandates this. The GPL
and LGPL would be good choices. If you don't mind people taking
modifications private, use the X or Apache license.

2. Do you want to allow someone to merge your program with their own
proprietary software? If so, use the LGPL, which explicitly allows this
without allowing people to make modifications to your own code
private, or use the X or Apache licenses, which do allow

http://www.oreilly.com/catalog/opensources/book/perens.html (17 of 21)

Open Sources: Voices from the Open Source Revolution

modifications to be kept private.

3. Do you want some people to be able to buy commercial-licensed
versions of your program that are not Open Source? If so, dual-license
your software. I recommend the GPL as the Open Source license; you
can find a commercial license appropriate for you to use in books like
Copyright Your Software from Nolo Press.

4. Do you want everyone who uses your program to pay for the
privilege? If so, perhaps Open Source isn't for you. If you're satisfied
with having only some people pay you, you can work that and keep
your program Open Source. Most of the Open Source authors
consider their programs to be contributions to the public good, and
don't care if they are paid at all.

The table below gives a comparison of licensing practices:

License
Can be mixed
with non-free
software

Modifications can be
taken private and not
returned to you

Can be
re-licensed
by anyone

Contains special
privileges for the
original copyright
holder over your
modifications

GPL

LGPL
X

BSD
X X

NPL
X X X

MPL
X X

Public
Domain

X X X

The Future
As this essay went to press, IBM joined the Open Source world, and the venture
capital community is discovering Open Source. Intel and Netscape have invested
in Red Hat, a Linux distributor. VA Research, an integrator of Linux server and

http://www.oreilly.com/catalog/opensources/book/perens.html (18 of 21)

Open Sources: Voices from the Open Source Revolution

workstation hardware, has announced an outside investor. Sendmail Inc., created
to commercialize the ubiquitous Sendmail e mail delivery program, has
announced six million dollars in funding. IBM's Postfix secure mailer has an
Open Source license, and another IBM product, the Jikes Java compiler, has a
license that, at this writing, tries but doesn't quite meet the intent of the Open
Source Definition. IBM appears to be willing to modify the Jikes license to be
fully Open Source, and is collecting comments from the community as I write
this.

Two internal Microsoft memos, referred to as the Halloween Documents, were
leaked to the online public. These memos clearly document that Microsoft is
threatened by Open Source and Linux, and that MS will launch an offensive
against them to protect its markets. Obviously, we are in for some interesting
times. I think we'll see Microsoft use two main strategies: copyrighted interfaces
and patents. Microsoft will extend networking protocols, including Microsoft-
specific features in them that will not be made available to free software. They,
and other companies, will aggressively research new directions in computer
science and will patent whatever they can before we can first use those
techniques in free software, and then they'll lock us out with patent royalty fees.
I've written an essay for the webzine Linux World on how to fight Open Source's
enemies on the patent front.

The good news is that Microsoft is scared! In the second Halloween document, a
Microsoft staffer writes about the exhilarating feeling that he could easily
change part of the Linux system to do exactly what he wanted, and that it was so
much easier to do this on Linux than it was for a Microsoft employee to change
NT!

Efforts to hurt us from inside are the most dangerous. I think we'll also see more
attempts to dilute the definition of Open Source to include partially-free
products, as we saw with the Qt library in KDE before Troll Tech saw the light
and released an Open Source license. Microsoft and others could hurt us by
releasing a lot of software that's just free enough to attract users without having
the full freedoms of Open Source. It's conceivable that they could kill off
development of some categories of Open Source software by releasing a "good
enough," "almost-free-enough" solution. However, the strong reaction against
the KDE project before the Qt library went fully Open Source bodes poorly for
similar efforts by MS and its ilk.

We've escaped Trojan horses so far. Suppose that someone who doesn't like us

http://www.oreilly.com/catalog/opensources/book/perens.html (19 of 21)

Open Sources: Voices from the Open Source Revolution

contributes software that contains Trojan horse, a hidden way to defeat the
security of a Linux system. Suppose, then, that this person waits for the Trojan-
horse software to be widely distributed, and then publicizes its vulnerability to
security exploits. The public will then have seen that our Open Source system
may leave us more vulnerable to this sort of exploit than the closed system of
Microsoft, and this may reduce the public's trust in Open Source software. We
can argue that Microsoft has its share of security bugs even if they don't allow
outsiders to insert them, and that the disclosed source-code model of Open
Source makes these bugs easier to find. Any bug like this that comes up on
Linux will be fixed the day after it's announced, while a similar bug in Windows
might go undetected or unrepaired for years. But we still need to beef up our
defense against Trojan horses. Having good identification of the people who
submit software and modifications is our best defense, as it allows us to use
criminal law against the perpetrators of Trojan horses. While I was manager of
the Debian GNU/Linux distribution, we instituted a system for all of our
software maintainers to be reliably identified, and for them to participate in a
public-key cryptography network that would allow us to verify whom our
software came from. This sort of system has to be expanded to include all Open
Source developers.

We have tremendous improvements to make before Linux is ready for the
average person to use. The graphical user interface is an obvious deficit, and the
KDE and GNOME projects are addressing this. System administration is the
next frontier: while linuxconf partially addresses this issue, if falls far short of
being a comprehensive system-administration tool for the naive user. If Caldera's
COAS system is successful, it could become the basis of a full solution to the
system administration problem. However, Caldera has had trouble keeping
sufficient resources allocated to COAS to finish its development, and other
participants have dropped off the bandwagon due to the lack of progress.

The plethora of Linux distributions appear to be going through a shake-out, with
Red Hat as the perceived winner and Caldera coming in second. Red Hat has
shown a solid commitment to the concept of Open Source so far, but a new
president and rumors of an Initial Public Offering (IPO) could mean a
weakening of this commitment, especially if competitors like Caldera, who are
not nearly as concerned about Open Source, make inroads into Red Hat's
markets. If the commitment of commercial Linux distributions to Open Source
became a problem, that would probably spawn an effort to replace them with
pure Open Source efforts similar to Debian GNU/Linux, but ones more directed

http://www.oreilly.com/catalog/opensources/book/perens.html (20 of 21)

Open Sources: Voices from the Open Source Revolution

to the commercial market than Debian has been.

Despite these challenges, I predict that Open Source will win. Linux has become
the testbed of computer science students, and they will carry those systems with
them into the workplace as they graduate. Research laboratories have adopted
the Open Source model because the sharing of information is essential to the
scientific method, and Open Source allows software to be shared easily.
Businesses are adopting the Open Source model because it allows groups of
companies to collaborate in solving a problem without the threat of an anti-trust
lawsuit, and because of the leverage they gain when the computer-programming
public contributes free improvements to their software. Some large corporations
have adopted Open Source as a strategy to combat Microsoft and to assure that
another Microsoft does not come to dominate the computer industry. But the
most reliable indication of the future of Open Source is its past: in just a few
years, we have gone from nothing to a robust body of software that solves many
different problems and is reaching the million-user count. There's no reason for
us to slow down now.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/perens.html (21 of 21)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Hardware, Software, and Infoware

Tim O'Reilly

I was talking with some friends recently, friends who don't own a computer.
They were thinking of getting one so they could use Amazon.com to buy books
and CDs. Not to use "the Internet," not to use "the Web," but to use
Amazon.com.

Now, that's the classic definition of a "killer application": one that makes
someone go out and buy a computer.

What's interesting is that the killer application is no longer a desktop
productivity application or even a back-office enterprise software system, but an
individual web site. And once you start thinking of web sites as applications, you
soon come to realize that they represent an entirely new breed, something you
might call an "information application," or perhaps even "infoware."

Information applications are used to computerize tasks that just couldn't be
handled in the old computing model. A few years ago, if you wanted to search a
database of a million books, you talked to a librarian, who knew the arcane
search syntax of the available computerized search tools and might be able to
find what you wanted. If you wanted to buy a book, you went to a bookstore,

http://www.oreilly.com/catalog/opensources/book/tim.html (1 of 9)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

and looked through its relatively small selection. Now, tens of thousands of
people with no specialized training find and buy books online from that million-
record database every day.

The secret is that computers have come one step closer to the way that people
communicate with each other. Web-based applications use plain English to build
their interface--words and pictures, not specialized little controls that acquire
meaning only as you learn the software.

Traditional software embeds small amounts of information in a lot of software;
infoware embeds small amounts of software in a lot of information. The
"actions" in an infoware product are generally fairly simple: make a choice, buy
or sell, enter a small amount of data, and get back a customized result.

These actions are often accomplished by scripts attached to a hypertext link
using an interface specification called CGI (the Common Gateway Interface).
CGI defines a way for a web server to call any external program and return the
output of that program as a web page. CGI programs may simply be small
scripts that perform a simple calculation, or they may connect to a full-fledged
back-end database server. But even when there's a heavy-duty software engine
behind a site, the user interface itself is not composed of traditional software.
The interface consists of web pages (which may well have been created by a
writer, editor, or designer rather than by a programmer).

Information interfaces are typically dynamic. For example, Amazon.com's
presentation of books is driven by sales rankings that are updated every hour.
Customers can add comments and ratings on the fly, which then become a key
part of the information-rich decision-support interface for purchasers. A site
designed to help someone buy or sell stocks online needs to not only present
updated share prices, but also the latest relevant news stories, insider trading
information, analyst recommendations, and perhaps even user discussion groups.
The information interface thus typically consists of a rich mix of hand-crafted
documents, program-generated data, and links to specialized application servers
(such as email, chat, or conferencing).

Information interfaces are not as efficient for tasks that you do over and over as
pure software interfaces, but they are far better for tasks you do only rarely, or
differently each time. In particular, they are good for interfaces in which you
make choices based on information presented to you. Whether you're buying a
book or CD at Amazon.com, or a stock at E*Trade, the actual purchase is a
fairly trivial part of the interaction. It's the quality of the information provided to

http://www.oreilly.com/catalog/opensources/book/tim.html (2 of 9)

Open Sources: Voices from the Open Source Revolution

help you make a decision that forms the heart of the application you interact
with.

The way the Web is transforming the whole computing paradigm was never
clearer to me than back in 1994, before Microsoft had gotten the Web religion,
and I shared the stage (via satellite) with Microsoft VP Craig Mundie at an NTT
event in Japan. Mundie was demonstrating the planned interface for Microsoft's
"Tiger" server, which was supposed to enable video on demand. The interface
emulated Windows, with cascading menus responding to a kind of virtual remote
control channel clicker.

It was pretty obvious to those of us who were involved in the Web that the right
interface for video on demand, when and if it comes, will be a Web-like
information interface. It's ironic that even then, Microsoft had the perfect
interface for video-on-demand: its own CD-ROM-based movie encyclopedia,
Cinemania. What better way to choose what movie to watch than to search by
category, read a few reviews, watch a few film clips, and then, homework done,
click on a hypertext link to start the movie? Cinemania has it all but the last step.
It's not until hypertext-based information products are connected to network
servers that their real power becomes apparent. Suddenly, information is not an
end in itself, but an interface that allows a user to control an application space far
too complex for a traditional software application. (Amazon.com clearly knows
this: their purchase of the Internet Movie Database, a collection of user reviews
and other information about movies, will put them in pole position not only for
selling videotapes online, but as a future gateway for video-on-demand services.)

Information interfaces are particularly appropriate for decision-support
applications, but they also make sense for one-time tasks. In a sense, the use of
"wizards" for software installation is an example of the same trend.

There are also information applications that use a simpler, more software-like
interface for user interaction, but provide dynamic information output. My
favorite example is something that would have been virtually unthinkable as an
application only a few years ago: getting maps and directions. A mapping site
like maps.yahoo.com lets you type in two addresses, and get back a map and a
set of directions showing how to get to one from the other.

So what does all this have to do with Open Source software?

There's an obvious answer: most of the technologies that make the Web possible
are Open Source.

http://www.oreilly.com/catalog/opensources/book/tim.html (3 of 9)

http://www.oreilly.com/catalog/opensources/book/maps.yahoo.com

Open Sources: Voices from the Open Source Revolution

The Internet itself--features like the TCP/IP network protocol and key
infrastructure elements such as the Domain Name System (DNS) were
developed through the open-source process. It's easy to argue that the open-
source BIND (Berkeley Internet Name Daemon) program that runs the DNS is
the single most mission-critical Internet application. Even though most web
browsing is done with proprietary products (Netscape's Navigator and
Microsoft's Internet Explorer), both are outgrowths of Tim Berners-Lee's
original open-source web implementation and open protocol specification.
According to the automated Netcraft web server survey (
http;//www.netcraft.co.uk/survey), more than 50% of all visible web sites are
served by the open-source Apache web server. The majority of web-based
dynamic content is generated by open-source scripting languages such as Perl,
Python, and Tcl.

But this obvious answer is only part of the story. After all, why is it the Web and
not some proprietary technology that is the basis for the networked information
applications of the future?

Microsoft actually was ahead of the curve in realizing the power of online
multimedia. In 1994, when the Web started to take off, Microsoft's CD-ROM
products like Encarta, their online encyclopedia, and Cinemania, their online
movie reference, were ahead of the Web in providing online hyperlinked
documents with rich multimedia capabilities. Microsoft even realized that it was
important to provide information resources via online networks.

There was only one problem with Microsoft's vision of the Microsoft Network:
barriers to entry were high. Publishers were expected to use proprietary
Microsoft tools, to apply and be approved by Microsoft, and to pay to play. By
contrast, anyone could start a web site. The software you needed was free. The
specifications for creating documents and dynamic content were simple, open,
and clearly documented.

Perhaps even more important, both the technology and the Internet ethic made it
legitimate to copy features from other people's web sites. The HTML
(HyperText Markup Language) pages that were used to implement various
features on a web site could be easily saved and imitated. Even the CGI scripts
used to create dynamic content were available for copying. Although traditional
computer languages like C run faster, Perl became the dominant language for
CGI because it was more accessible. While Perl is powerful enough to write
major applications, it is possible for amateurs to write small scripts to

http://www.oreilly.com/catalog/opensources/book/tim.html (4 of 9)

http://www.oreilly.com/catalog/opensources/book/http;//www.netcraft.co.uk/survey

Open Sources: Voices from the Open Source Revolution

accomplish specialized tasks. Even more important, because Perl is not a
compiled language, the scripts that are used on web pages can be viewed,
copied, and modified by users. In addition, archives of useful Perl scripts were
set up and freely shared among web developers. The easy cloning of web sites
built with the HTML+CGI+Perl combination meant that for the first time,
powerful applications could be created by non-programmers.

In this regard, it's interesting to point out that the software industry's first
attempts to improve on the web interface for active content--technologies like
browser-side Java applets and Microsoft ActiveX controls--failed because they
were aimed at professional programmers and could not easily be copied and
implemented by the amateurs who were building the Web. Vendors viewed the
Web in software terms, and didn't understand that the Web was changing not
only what applications were being built but what tools their builders needed.

Industry analysts have been predicting for years that Perl and CGI will be
eclipsed by newer software technologies. But even now, when major web sites
employ large staffs of professional programmers, and newer technologies like
Microsoft's Active Server Pages (ASP) and Sun's Java servlets are supplanting
CGI for performance reasons, Perl continues to grow in popularity. Perl and
other open-source scripting languages such as Python and Tcl remain central to
web sites large and small because infoware applications are fundamentally
different than software applications and require different tools.

If you look at a large web site like Yahoo!, you'll see that behind the scenes, an
army of administrators and programmers are continually rebuilding the product.
Dynamic content isn't just automatically generated, it is also often hand-tailored,
typically using an array of quick and dirty scripting tools.

"We don't create content at Yahoo! We aggregate it," says Jeffrey Friedl, author
of the book Mastering Regular Expressions and a full-time Perl programmer at
Yahoo. "We have feeds from thousands of sources, each with its own format.
We do massive amounts of `feed processing' to clean this stuff up or to find out
where to put it on Yahoo!." For example, to link appropriate news stories to
tickers at quotes.yahoo.com, Friedl needed to write a "name recognition"
program able to search for more than 15,000 company names. Perl's ability to
analyze free-form text with powerful regular expressions was what made that
possible.

Perl is also a central component in the system administration infrastructure used
to keep the site live and current. Vast numbers of Perl scripts are continually

http://www.oreilly.com/catalog/opensources/book/tim.html (5 of 9)

http://www.oreilly.com/catalog/opensources/book/quotes.yahoo.com

Open Sources: Voices from the Open Source Revolution

crawling the Yahoo! servers and their links to external sites, and paging the staff
whenever a URL doesn't return the expected result. The best-known of these
crawlers is referred to as "the Grim Reaper." If an automated connection to a
URL fails more than the specified number of times, the page is removed from
the Yahoo! directory.

Amazon.com is also a heavy user of Perl. The Amazon.com authoring
environment demonstrates Perl's power to tie together disparate computing tools;
it's a "glue language" par excellence. A user creates a new document with a form
that calls up a Perl program, which generates a partially-completed SGML
document, then launches either Microsoft Word or GNU Emacs (at the user's
choice), but also integrates CVS (Concurrent Versioning System) and
Amazon.com's homegrown SGML tools. The Amazon.com SGML classes are
used to render different sections of the web site--for example, HTML with or
without graphics--from the same source base. A Perl-based parser renders the
SGML into HTML for approval before the author commits the changes.

Perl has been called "the duct tape of the Internet," and like duct tape, it is used
in all kinds of unexpected ways. Like a movie set held together with duct tape, a
web site is often put up and torn down in a day, and needs lightweight tools and
quick but effective solutions.

Microsoft's failed attempt to turn infoware back into software with ActiveX is
rooted in the way paradigms typically shift in the computer industry. As a
particular market segment matures, the existing players have an enormous vested
interest in things continuing the way they are. This makes it difficult for them to
embrace anything really new, and allows--almost requires--that new players
("the barbarians," to use Philippe Kahn's phrase) come in to create the new
markets.

Microsoft's ascendancy over IBM as the ruling power of the computer industry
is a classic example of how this happened the last time around. IBM gave away
the market to Microsoft because it didn't see that the shift of power was not only
from the glass house to the desktop, but also from proprietary to commodity
hardware and from hardware to software.

In the same way, despite its attempts to get into various information businesses,
Microsoft still doesn't realize--perhaps can't realize and still be Microsoft--that
software, as Microsoft has known it, is no longer the central driver of value
creation in the computer business.

http://www.oreilly.com/catalog/opensources/book/tim.html (6 of 9)

Open Sources: Voices from the Open Source Revolution

In the days of IBM's dominance, hardware was king, and the barriers to entry
into the computer business were high. Most software was created by the
hardware vendors, or by software vendors who were satellite to them.

The availability of the PC as a commodity platform (as well as the development
of open systems platforms such as Unix) changed the rules in a fundamental
way. Suddenly, the barriers to entry were low, and entrepreneurs such as Mitch
Kapor of Lotus and Bill Gates took off.

If you look at the early history of the Web, you see a similar pattern. Microsoft's
monopoly on desktop software had made the barriers to entry in the software
business punishingly high. What's more, software applications had become
increasingly complex, with Microsoft putting up deliberate barriers to entry
against competitors. It was no longer possible for a single programmer in a
garage (or a garret) to make an impact.

This is perhaps the most important point to make about open-source software: it
lowers the barriers to entry into the software market. You can try a new product
for free--and even more than that, you can build your own custom version of it,
also for free. Source code is available for massive independent peer review. If
someone doesn't like a feature, they can add to it, subtract from it, or
reimplement it. If they give their fix back to the community, it can be adopted
widely very quickly.

What's more, because developers (at least initially) aren't trying to compete on
the business end, but instead focus simply on solving real problems, there is
room for experimentation in a less punishing environment. As has often been
said, open-source software "lets you scratch your own itch." Because of the
distributed development paradigm, with new features being added by users, open-
source programs "evolve" as much as they are designed.

Indeed, the evolutionary forces of the market are freer to operate as nature
"intended" when unencumbered by marketing barriers or bundling deals, the
equivalent of prosthetic devices that help the less-than-fit survive.

Evolution breeds not a single winner, but diversity.

It is precisely the idiosyncratic nature of many of the open-source programs that
is their greatest strength. Again, it's instructive to look at the reasons for Perl's
success.

Larry Wall originally created Perl to automate some repetitive system

http://www.oreilly.com/catalog/opensources/book/tim.html (7 of 9)

Open Sources: Voices from the Open Source Revolution

administration tasks he was faced with. After releasing the software to the Net,
he found more and more applications, and the language grew, often in
unexpected directions.

Perl has been described as a "kitchen sink language" because its features seem
chaotic to the designers of more "orthogonal" computer languages. But chaos
can often reveal rich structure. Chaos may also be required to model what is
inherently complex. Human languages are complex because they model reality.
As Wall says in his essay in this volume, "English is useful because it's a mess.
Since English is a mess, it maps well onto the problem space, which is also a
mess. . . . Similarly, Perl was designed to be a mess (though in the nicest of
possible ways)."

The Open Source development paradigm is an incredibly efficient way of getting
developers to work on features that matter. New software is developed in a tight
feedback loop with customer demand, without distortions caused by marketing
clout or top-down purchasing decisions. Bottom-up software development is
ideal for solving bottom-up problems.

Using the open-source software at the heart of the Web, and its simpler
development paradigm, entrepreneurs like Jerry Yang and David Filo were able
to do just that. It's no accident that Yahoo!, the world's largest and most
successful web site, is built around freely available open-source software: the
FreeBSD operating system, Apache, and Perl.

Just as it was last time around, the key to the next stage of the computer industry
is in fact the commoditization of the previous stage. As Bob Young of Red Hat,
the leading Linux distributor, has noted, his goal is not to dethrone Microsoft at
the top of the operating systems heap, but rather, to shrink the dollar value of the
operating systems market.

The point is that open-source software doesn't need to beat Microsoft at its own
game. Instead it is changing the nature of the game.

To be sure, for all their astronomical market capitalization, information-
application providers such as Amazon.com and Yahoo! are still tiny compared to
Microsoft. But the writing on the wall is clear. The edges of human-computer
interaction, the opportunities for computerizing tasks that haven't been
computerized before, are in infoware, not in software.

As the new "killer applications" emerge, the role of software will increasingly be
as an enabler for infoware. There are enormous commercial opportunities to

http://www.oreilly.com/catalog/opensources/book/tim.html (8 of 9)

Open Sources: Voices from the Open Source Revolution

provide web servers, database backends and application servers, and network
programming languages like Java, as long as these products fit themselves into
the new model rather than trying to supplant it. Note that in the shift from a
hardware-centric to a software-centric computer industry, hardware didn't go
away. IBM still flourishes as a company (though most of its peers have down-
sized or capsized). But other hardware players emerged who were suited to the
new rules: Dell, Compaq, and especially Intel.

Intel realized that the real opportunity for them was not in winning the computer
systems wars, but in being an arms supplier to the combatants.

The real challenge for open-source software is not whether it will replace
Microsoft in dominating the desktop, but rather whether it can craft a business
model that will help it to become the "Intel Inside" of the next generation of
computer applications.

Otherwise, the Open Source pioneers will be shouldered aside just as Digital
Research was in the PC operating system business by someone who understands
precisely where the current opportunity lies.

But however that turns out, open-source software has already created a fork in
the road. Just as the early microcomputer pioneers (in both hardware and
software) set the stage for today's industry, open-source software has set the
stage for the drama that is just now unfolding, and that will lead to a radical
reshaping of the computer industry landscape over the next five to ten years.

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/tim.html (9 of 9)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Freeing the Source

The Story of Mozilla

Jim Hamerly and Tom Paquin with Susan Walton

On January 23, 1998, Netscape made two announcements. The first, as reported
by C|Net: "In an unprecedented move, Netscape Communications will give away
its Navigator browser, confirming rumors over the last several weeks."

The second: "It also will give away the source code for the next generation of its
Communicator suite."

The decision to give away the browser came as no surprise, but the release of the
source code stunned the industry. It hit the pages of newspapers around the
world, and even the Open Source community was surprised at the move. Never
before had a major software company opened up its proprietary code. What was
Netscape up to now?

We had decided to change the playing field, and not for the first time. Always
known for thinking outside the box, this time Netscape was taking the
commitment to building a better Internet to a new level. When Netscape initiated
unrestricted distribution of early versions of its browser over the Internet in

http://www.oreilly.com/catalog/opensources/book/netrev.html (1 of 11)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

1994, people said "That's crazy!" When Netscape said "Free Source Code" they
said the same thing.

The discussion period leading up to the Open Source announcement moved like
a runaway train. After months of deliberation about whether or not to release the
binary for free, critical mass was reached in the decision to free the source in an
unbelievable twenty-four hours.

As fast and surprising as the announcement seemed to both insiders and
outsiders, it reflected several converging tracks of thought. Netscape executives
were discussing a whitepaper by Frank Hecker that expressed a view coming to
the forefront. In it he advocated that Netscape free its source. Frank had done his
homework, citing Eric Raymond's paper, "The Cathedral and the Bazaar," and
talking to people in departments throughout the organization--from engineering
to marketing to management. In a twenty-page opus that was widely circulated,
he pled the case that was gaining momentum:

When Netscape first made Navigator available for unrestricted download over
the Internet, many saw this as flying in the face of conventional wisdom for the
commercial software business, and questioned how we could possibly make
money "giving our software away." Now of course this strategy is seen in
retrospect as a successful innovation that was a key factor in Netscape's rapid
growth, and rare is the software company today that does not emulate our
strategy in one way or another. Among other things, this provokes the following
question: What if we were to repeat this scenario, only this time with source
code?

In the engineering pit there was a similar view. Many Netscape employees had
experience working with Open Source. And since Communicator's code was so
tightly integrated with Java and HTML, most recognized an emerging truth: It
wasn't such a huge jump to make. The nature of Java invites a more open view
of source distribution. Because it is cross-platform and can be compiled down to
class files that are machine-independent executables, each binary is like a virtual
machine. One effect of this is that programmers can decompile the executable
and turn it back into source code. And the browser "view source" command
made HTML a common vernacular. Rather than trying to block this, many
believed Netscape should facilitate it, encourage it, and if possible, benefit from
it.

The various grassroots schools of thoughts merged with unexpected suddenness.
In meetings, reaction to the suggestion went from stunned shock to nods in
minutes. Most of the discussions passed quickly from "should we?" to "when?"

http://www.oreilly.com/catalog/opensources/book/netrev.html (2 of 11)

Open Sources: Voices from the Open Source Revolution

Most of the key people believed that we had to move fast, set a firm date, and
make it happen. In January, Netscape made a promise to the Net: Communicator
source will be released in the first calendar quarter of 1998. Netscape took this
promise with deadly seriousness, and Project Source 331 came into being. This
was the name for Netscape's all-out effort to have the source code out by March
31, 1998.

Then the reality set in.

Making It Happen
The body of Communicator source code at Netscape was called "Mozilla."
Mozilla was a term initially created by Jamie Zawinsky and company during the
development of Navigator. The team was working at a similarly frantic pace to
create a beast vastly more powerful than Mosaic, and the word became the
official code name for Navigator. Later the big green dinosaur became an inside
joke, then a company mascot, and finally a public symbol. Now the name came
into use as the generic term referring to the open-source web browsers derived
from the source code of Netscape Navigator. The move was on to "Free the
Lizard."

There was an amazing amount to be done to make the code ready for prime time.
As issues surfaced, they separated themselves into categories and were claimed.
The next three months were devoted to resolving issues at the fanatical pace that
Netscapers knew well.

One of the largest issues was the disposition of the third-party modules included
in the browser. Communicator contained over seventy-five third-party modules
in its source, and all of the code owners needed to be approached. Teams of
engineers and evangelists were organized to visit and sell each company on the
concept of joining Netscape on the road to Open Source. All of them had heard
Netscape's Open Source announcement, and now each company had a choice to
make: their code could be removed or replaced, shipped as binary (kept in its
compiled state), or shipped as source code along with Communicator. To
complicate matters, many of the third-party contracts were unique and ran for
different lengths of time. No one scenario would be appropriate as a solution for
all situations.

Making the deadline for Project Source 331 was considered essential. And that
required tough choices. This was surely the case when it came to the

http://www.oreilly.com/catalog/opensources/book/netrev.html (3 of 11)

Open Sources: Voices from the Open Source Revolution

participation of the third-party developers. The rule was either you're in by
February 24th, or your element will have to be scrubbed from the source. Those
kinds of deadlines are not hard to set early on, but they became brutal when we
hit the wall. When the time came, some code had to be removed.

Java was a proprietary language, so it had to be removed. Three engineers were
assigned to perform a "Java-ectomy." The browser had to build, compile, and
run--without Java. Since the overall code was so tightly integrated with Java, this
was no small feat. The goal was to have the source code ready by March 15th so
that the final two weeks could be devoted to testing. Engineers had to
disentangle all Java code from the browser in an inconceivably short time.

Cleansing the code was a huge project. Early on, many felt it just couldn't be
done in time for the deadline. But as steam gathered at meetings, strategies
formed. The wheels began to turn. The Product Team dropped their entire
workload (most were developing the next generation of the browser) and
everyone got down to the business of surgery. Not only did the inclusion (or
excision) of each third-party participant have to be resolved, all comments had to
be edited from the code. Responsibility for each module was assigned to a team
and they went in to scrub.

One of the great innovations that happened early on was the decision to use the
Intranet bug-reporting system as a task manager. "Bugsplat" was the name for
Scopus, a bug-reporting program fronted with an HTML interface. It was ideal
as a workflow management system. New jobs were reported to the system as
they came up, input in a simple HTML form. Just as with a bug that has been
reported to the system, priorities were set, relevant participants were determined,
and mailing lists grew up around each task. When the task (or bug) was resolved,
all of the mailing lists and prioritization collapsed and disappeared from view.
Engineers were able to track the progress of their modules and watch the project
unfold by logging on to the Intranet.

The removal of the cryptographic modules was another tremendous task for the
engineering team. Not only did the government insist that all cryptographic
support had to be removed, but every hook that called it had to be redacted. One
team's sole job was to keep in constant contact with the NSA and manage
compliance issues.

Creating the License

http://www.oreilly.com/catalog/opensources/book/netrev.html (4 of 11)

Open Sources: Voices from the Open Source Revolution

Parallel to the Great Code Cleanup was the license effort. The first step was to
resolve the big question: Would any of the existing licenses work with the open
code? No one wanted to have to draft new licenses, but everyone realized it
might be necessary to accommodate all of the third-party code and to make the
project work on a corporate level. No existing proprietary software had ever
been released under a free source license.

A group of Open Source community leaders, including Linus Torvalds, Eric
Raymond, and Tim O'Reilly, were invited to visit the Mountain View campus.
They spoke with audiences of executives, attorneys, and programmers about
what they were in for, and met with small groups to talk about some of the issues
they were likely to face. They spent a great deal of time with the Netscape legal
team discussing the existing licenses--both their strengths and the problems they
created. These advisors also acted as a sounding board for ideas.

One team dove into researching existing licensing agreements with the advice
and guidance of the Netscape legal team, trying to determine whether one of
them would work for Mozilla. Beginning with the GNU General Public License,
the GNU Library General Public License (LGPL), and the BSD license, we took
long looks to outline exactly what problems they solved and created. Unlike the
code to which these agreements had been applied in the past, Netscape's existing
code base presented unique circumstances. One of the thorniest issues was the
private licensing agreements that governed many of the third-party components
used in the code. The license needed to create an environment where these and
other new commercial developers could contribute their code to Mozilla while
protecting their business interests.

The more permissive BSD license, which only requires that the copyright holder
be referenced in unlimited changes to code, was deemed insufficient for Mozilla
development. It would leave developers open to the risk that modifications to
their work would not be returned to them or to the rest of the community. This
point alone was a big issue, since it was crucial to the long-term viability of open
source development efforts.

On the other hand, the requirements of the GPL made it undesirable in this
project. The GPL is "viral"; when applied to an original piece of code, any other
code with which the original is compiled must also be covered under the GPL.
This aspect made it untenable for commercial software developers. For instance,
the GPL would require that third-party components compiled into branded
versions of Communicator also be released under the GPL, something outside of

http://www.oreilly.com/catalog/opensources/book/netrev.html (5 of 11)

Open Sources: Voices from the Open Source Revolution

Netscape's reach, as Netscape does not control these third parties. And Netscape
itself uses a portion of the Communicator code in its other products (such as
servers). Since Netscape has no immediate plans to release that source code, the
GPL viral effect on these products would present the same problem for Netscape
as for other companies. The more open and less restrictive LGPL, a modification
of the GPL, came closest to meeting Netscape's needs for use with commercial
development, but it still contained too many of the same commercial pitfalls as
the GPL.

After a frenzied month of research, discussion, meetings with experts and
advocates from the free software community, and amidst public speculation, the
team decided that a new license had to be crafted for this unique situation. The
Netscape Public License (NPL) broke new ground in attempting to strike a
compromise between promoting free source development by commercial
enterprises and protecting free source developers. The process of fashioning a
next-generation Open Source license took over a month.

In another extraordinary move, when the first draft of the Netscape Public
License (NPL) was complete it was beta-tested publicly. On March 5, a draft
was posted in a new newsgroup called netscape.public.mozilla.license, and a
request was made for public comment. It was met with cheers and jeers. One
section of the license acted as a lightening rod, catching most of the flames: the
portion of the NPL that granted Netscape special rights to use code covered by
the NPL in other Netscape products without those products falling under the
NPL. It also allowed Netscape to issue revised versions of the NPL, and most
controversially, to re-license code covered by the NPL to third parties under
terms different from the NPL. Some of the people providing feedback went so
far as to suggest that this fact alone would make the NPL unacceptable to the
Open Source development community.

On March 11th, a status report appeared on netscape.public.mozilla.license from
jwz (Jamie Zawinsky). It read, in part:

First of all, THANK YOU for the incredible amount of cogent feedback you've
been giving! It has been incredibly helpful, and rest assured, the opinions
expressed here are being taken very seriously.

Next week, you can expect to see a dramatically reworked section 5. I probably
shouldn't comment on it too much (wouldn't want to set expectations
incorrectly) but the message that most of you hate it as it stands now has been
received loud and clear.

http://www.oreilly.com/catalog/opensources/book/netrev.html (6 of 11)

Open Sources: Voices from the Open Source Revolution

On March 21st, the revision was posted. This was unprecedented. The reaction
was incredulous: "I told them it was awful and they listened! I can't believe it!"
People realized that this was a true open-source project, in spite of its unlikely
birthplace. The discussions going on in the newsgroups were helping to guide
the process, rather than providing commentary on its results. The continuing
discussions took on a new tone and spirits were high.

The community criticism of the beta of the NPL had sent the license team back
to the drawing board. They sought a solution that would allow Netscape to
balance the goals of engaging free source developers while continuing to meet
business objectives. The result was the release of a second license to work with
the NPL, the Mozilla Public License (MozPL). The two licenses are identical,
except that the NPL includes amendments granting Netscape additional rights.

All of the code initially issued on March 31, 1998 was released under the NPL,
and all modifications to that code must be released under the NPL. New code
developed can be released under the MozPL or any other compatible license.
Changes to files contained in the source code are considered modifications and
are covered by the NPL. And to resolve much of the concern expressed on the
Net: new files that do not contain any of the original code or subsequent
modified code are not considered modifications and are not covered by the NPL.
This resulting code can be covered by any compatible license. The GPL is not
compatible with the Netscape Public License or the Mozilla Public License. The
GPL is by design incompatible with all other licenses, since it prohibits the
addition of any restrictions or further permissions to its boundaries. All code
developed to work with GPL software must in turn be covered by the GPL.
Another minor point is that the GPL insists that when you distribute code
covered under its terms, it must be complete and entire. The NPL does not have
this condition.

The discussions on the newsgroups had brought an important issue into sharp
relief: developers needed Netscape to allow a distinction between bug fixes and
new code. Clearly, it's one thing to say, "I'm making a bug fix, a small
modification to your program," and quite another to realize "I'm adding a new
feature to your program." They provoke different feelings. Most people feel all
right about giving away a bug fix, and the value of making a contribution is its
own reward. But new code is a different story. A developer who has done a lot
of new work doesn't want to see somebody else use it to make money for
themselves.

http://www.oreilly.com/catalog/opensources/book/netrev.html (7 of 11)

Open Sources: Voices from the Open Source Revolution

The NPL and the MozPL were designed to encourage open development on the
Mozilla code base, but from the beginning there was also another goal in mind.
Netscape was willing to be the first large corporation to open up its proprietary
source, because it wanted to foster wider corporate interest in development in
open source environments. Creating an atmosphere that made it possible for
large, profit-making organizations to adopt this model and participate in the
movement was paramount. The legal infrastructure in most Open Source
licensing is a big hurdle to corporate cooperation. With Mozilla, the license was
a project unto itself.

By giving away the source code for future versions, we hoped to engage the
entire Net community in creating new innovation in the browser market. The
idea that there would be talented programmers worldwide hacking on our code,
infusing the browser with their creative energy, motivated everyone to keep
going even when the going got tough.

Mozilla.org
People who had been involved in open-source projects before realized that the
code had to have a place to live. The night after Netscape announced that it
would free the source, Jamie registered a new domain name with Internic and
drew up a chart on how distributed development projects work. Mozilla.org was
born.

There's a pattern that all successful open-source projects follow, not necessarily
by design. There tends to be one person or group that does coordination. People
work on whatever aspect of the code they care about, scratching their own
itches. At the end of the day, they have something that works a little better for
them. But what happens a month later when a new version of the software comes
out? Their fix is gone, and they're back to square one--or worse, because the
software may have changed.

The result is that developers want to get their patch included in the main
distribution. And if there's just a pile of source code floating around and a bunch
of people working on it, eventually someone will stand up and say, "I might as
well collect a bunch of patches and do a release." When the next person comes
along wondering how to get his patch into the next release, he'll say, "I don't
know who else to give my patch to, so I'll give it to that guy. He seems to be
doing a good job of it." And as time goes by, that person becomes the
maintainer.

http://www.oreilly.com/catalog/opensources/book/netrev.html (8 of 11)

Open Sources: Voices from the Open Source Revolution

For this open-source project, the horse was put in front of the cart. Mozilla.org
was conceived and designed to fill the role of maintainer from the outset. Since
the role would be filled one way or another, we decided to create the
infrastructure to become the clearinghouse.

In the next months, mozilla.org began to set up an organization, getting funding
and machines, posting mailing lists, and developing the underpinnings necessary
to make it work. The mission was simply to get the organization off the ground
and functioning. It was crucial that there be a central depot in operation as soon
as the source code was released. And if we weren't prepared, in six months time,
we'd be watching someone else do it. Netscape is not known for sitting around
and watching the other guy.

Giving away the source code meant Netscape was collaborating with the Net.
And there was a crucial concept that had to be accepted: the Netscape Client
Product Development Group and mozilla.org were not the same organization.
Mozilla.org's goal is to act as the coordinator for all of the people worldwide
working on the software. Product Development's purpose is to ship products--
Netscape products based on the Mozilla code. Since both groups are working on
the same product, interests can overlap. But the group behind mozilla.org knew
that it would be disastrous for the Net to look at the organization and say, "These
people only have Netscape's interests in mind and they're only about shipping
Netscape products." This would mean that mozilla.org had failed in its goal to be
a good maintainer. The separation had to be real and the Net had to know it.

Behind the Curtain
What happens when a developer makes a change and pipes up, "Hey,
mozilla.org, please take this code?" One of mozilla.org's most important roles is
to draw lines as to what code is accepted and what is not. We must factor in a
number of issues. First and foremost is merit. Is it good? Second, is it under a
license that is compatible with NPL? We decided not to accept contributions that
were not under a license compatible with NPL. Otherwise there would have to
be separate directories, Chinese walls, and lots and lots of legalese for everyone
involved. The potential for error goes into the stratosphere.

Since Mozilla is a highly modular code base, each major module, such as the
Image Library or the XML Parser, have a designated "owner." That person
knows the code best and is the arbiter of what should go in to that module and
what shouldn't.

http://www.oreilly.com/catalog/opensources/book/netrev.html (9 of 11)

Open Sources: Voices from the Open Source Revolution

Many module owners are Netscape engineers, but some are coming on board
from the Net-at-large. When a module owner makes changes (for example,
adding an API to the Image Library) the modifications are sent to mozilla.org for
inclusion in distributions. If differences arise between a contributor and the
module owner, mozilla.org performs as the arbitrator, making the final call--
always aware that if it stops playing fair, it will be ignored and someone else will
usurp the duties.

Mozilla.org had to contend with the fact that there would be both internal
Netscape developers and people on the Net working on their code. The methods
used to work on code internally had to accommodate the Web and be accessible
on all platforms, in all time zones. This was done with "tree control" performed
by the tools Bonsai and Tinderbox.

"Bonsai" is a tool that lets you perform queries on the contents of an archive.
Like the front desk of a library, you can "check in" code you've worked on, or
see what "checkins" have been made by others. In the background, it constantly
runs the code, checking the code tree. If the tree breaks, it sends up a red flag,
stopping further checkins until the problem can be identified. Logs can be pulled
and problems traced to a particular time period. Previously used by Netscape
developers in-house, it was erected on mozilla.org for use by developers around
the world and could be used directly through the browser on any platform.

If you get more than ten developers together without tools, there is going to be
an explosion. That's the theory behind "Tinderbox," a program that keeps this
potentially explosive situation under control. Tinderbox is a detective tool. It
allows you to see what is happening in the source tree. It shows who checked in
what (by asking Bonsai), what platforms have built successfully, what platforms
are broken, exactly how they are broken, and the state of the files that made up
the build so you can track down who may have done the damage.

April Fool's Day, 1998
It was a week and a half before the end of March 1998, and the deadline was
closing in fast. There was a general sense that there needed to be a party to
celebrate the code release, but nothing had been done about it. In keeping with
the rest of this project, the bash would become a groundbreaking event that
invited the public into Netscape's world, shields down.

In a meeting Jamie laid out his plan to rent out a nightclub in San Francisco,

http://www.oreilly.com/catalog/opensources/book/netrev.html (10 of 11)

Open Sources: Voices from the Open Source Revolution

invite the world, and broadcast it over the Net. "You mean invite non-employees
to the party? But we've never done that before!" In character with the rest of the
project, after a pause the reaction was . . . "Why not?"

The party will not soon be forgotten. Jamie rented out one of the biggest
nightclubs in San Francisco, The Sound Factory, on the night of April 1st. DJs
(including Apache founder Brian Behlendorf) gave away thousands of
mozilla.org T-shirts, software, and items from NetObjects, Macromedia, Digital,
Be, Wired, and unAmerican Activities.

When the doors opened for the "Mozilla Dot Party" at eight, there was already a
line. An hour and a half later, the place was filled to its fire-code maximum of
two thousand, and the line wrapped around the block. People were being waved
in twenty at a time as others departed, and by the end of the night, over 3,500
had passed through the doors, including free software gurus like Brewster Kahle
(founder of WAIS) and Eric Raymond. Hundreds more synched their watches
and toasted Mozilla around the world. The virtual partygoers included a group of
over a hundred at The Waag castle in Amsterdam, The Netherlands, and various
individual groups in Norway, Montreal, Canada, Pennsylvania, North Carolina,
Wisconsin, Colorado, and Alabama.

Inside, three projection screens scrolled the code at roughly sixty lines per
second. (At that rate, the party would have had to linger more than seven hours
to see the full million and a half lines of Mozilla code.) During the second of two
sets played by the Kofy Brown Band (featuring a Netscape engineer), Eric
Raymond, who had flown in from Philadelphia for the party, jumped on stage
and surprised everyone with a flute solo. Toward the end of the night, a dozen
CDs of the Mozilla Source Code, Signature Edition (CDs signed and numbered
the night before by the Netscape Build Team and members of mozilla.org) were
thrown to a lucky few in the crowd. The lizard was free!

Next Chapter --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/netrev.html (11 of 11)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources : Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

The Revenge of the Hackers

Eric S. Raymond

I wrote the first version of "A Brief History of Hackerdom" in 1996 as a web
resource. I had been fascinated by hacker culture as a culture for many years,
since long before I edited the first edition of The New Hacker's Dictionary in
1990. By late 1993, many people (including myself) had come to think of me as
the hacker culture's tribal historian and resident ethnographer. I was comfortable
in that role.

At that time, I hadn't the faintest idea that my amateur anthropologizing could
itself become a significant catalyst for change. I think nobody was more
surprised than I when that happened. But the consequences of that surprise are
still reverberating through the hacker culture and the technology and business
worlds today.

In this essay, I'll recapitulate from my personal point of view the events that
immediately led up to the January 1998 "shot heard `round the world" of the
open-source revolution. I'll reflect on the remarkable distance we've come since.
Then I will tentatively offer some projections into the future.

http://www.oreilly.com/catalog/opensources/book/raymond2.html (1 of 15)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

Beyond Brooks's Law
My first encounter with Linux came in late 1993, via the pioneering Yggdrasil
CD-ROM distribution. By that time, I had already been involved in the hacker
culture for fifteen years. My earliest experiences had been with the primitive
ARPAnet of the late 1970s; I was even briefly a tourist on the ITS machines. I
had already been writing free software and posting it to Usenet before the Free
Software Foundation was launched in 1984, and was one of the FSF's first
contributors. I had just published the second edition of The New Hacker's
Dictionary. I thought I understood the hacker culture--and its limitations--pretty
well.

Encountering Linux was a shock. Even though I had been active in the hacker
culture for many years, I still carried in my head the unexamined assumption that
hacker amateurs, gifted though they might be, could not possibly muster the
resources or skill necessary to produce a usable multitasking operating system.
The HURD developers, after all, had been evidently failing at this for a decade.

But where they had failed, Linus Torvalds and his community had succeeded.
And they did not merely fulfill the minimum requirements of stability and
functioning Unix interfaces. No. They blew right past that criterion with
exuberance and flair, providing hundreds of megabytes of programs, documents,
and other resources. Full suites of Internet tools, desktop-publishing software,
graphics support, editors, games--you name it.

Seeing this feast of wonderful code spread in front of me as a working system
was a much more powerful experience than merely knowing, intellectually, that
all the bits were probably out there. It was as though for years I'd been sorting
through piles of disconnected car parts--only to be suddenly confronted with
those same parts assembled into a gleaming red Ferrari, door open, keys
swinging from the lock, and engine gently purring with a promise of power. . . .

The hacker tradition I had been observing for two decades seemed suddenly
alive in a vibrant new way. In a sense, I had already been made part of this
community, for several of my personal free-software projects had been added to
the mix. But I wanted to get in deeper, because every delight I saw also
deepened my puzzlement. It was too good!

The lore of software engineering is dominated by Brooks's Law, which predicts
that as your N number of programmers rises, work performed scales as N but
complexity and vulnerability to bugs rises as N-squared. N-squared is the

http://www.oreilly.com/catalog/opensources/book/raymond2.html (2 of 15)

Open Sources: Voices from the Open Source Revolution

number of communications paths (and potential code interfaces) between
developers' code bases.

Brooks's Law predicts that a project with thousands of contributors ought to be a
flaky, unstable mess. Somehow the Linux community had beaten the N-squared
effect and produced an OS of astonishingly high quality. I was determined to
understand how they did it.

It took me three years of participation and close observation to develop a theory,
and another year to test it experimentally. And then I sat down and wrote "The
Cathedral and the Bazaar" (CatB)[1] to explain what I had seen.

Memes and Mythmaking
What I saw around me was a community which had evolved the most effective
software-development method ever and didn't know it! That is, an effective
practice had evolved as a set of customs, transmitted by imitation and example,
without the theory or language to explain why the practice worked.

In retrospect, lacking that theory and that language hampered us in two ways.
First, we couldn't think systematically about how to improve our own methods.
Second, we couldn't explain or sell the method to anyone else.

At the time, I was only thinking about the first effect. My only intention in
writing the paper was to give the hacker culture an appropriate language to use
internally, to explain itself to itself. So I wrote down what I had seen, framed as
a narrative and with appropriately vivid metaphors to describe the logic that
could be deduced behind the customs.

There was no really fundamental discovery in CatB. I did not invent any of the
methods it describes. What is novel in that paper is not the facts but those
metaphors and the narrative--a simple, powerful story that encouraged the reader
to see the facts in a new way. I was attempting a bit of memetic engineering on
the hacker culture's generative myths.

I first gave the full paper at Linux Kongress, in May 1997 in Bavaria. The fact
that it was received with rapt attention and thunderous applause by an audience
in which there were very few native speakers of English seemed to confirm that I
was onto something. But, as it turned out, the sheer chance that I was seated next
to Tim O'Reilly at the Thursday night banquet set in motion a more important
train of consequences.

http://www.oreilly.com/catalog/opensources/book/raymond2.html (3 of 15)

Open Sources: Voices from the Open Source Revolution

As a long-time admirer of O'Reilly's institutional style, I had been looking
forward to meeting Tim for some years. We had a wide-ranging conversation
(much of it exploring our common interest in classic science fiction) which led
to an invitation for me to give CatB at Tim's Perl Conference later in the year.

Once again, the paper was well-received--with cheers and a standing ovation, in
fact. I knew from my email that since Bavaria, word about CatB had spread over
the Internet like a fire in dry grass. Many in the audience had already read it, and
my speech was less a revelation of novelty for them than an opportunity to
celebrate the new language and the consciousness that went with it. That
standing ovation was not so much for my work as for the hacker culture itself--
and rightly so.

Though I didn't know it, my experiment in memetic engineering was about to
light a bigger fire. Some of the people for whom my speech was genuinely novel
were from Netscape Communications, Inc. And Netscape was in trouble.

Netscape, a pioneering Internet-technology company and Wall Street highflier,
had been targeted for destruction by Microsoft. Microsoft rightly feared that the
open Web standards embodied by Netscape's browser might lead to an erosion of
the Redmond giant's lucrative monopoly on the PC desktop. All the weight of
Microsoft's billions, and shady tactics that would later trigger an antitrust
lawsuit, were deployed to crush the Netscape browser.

For Netscape, the issue was less browser-related income (never more than a
small fraction of their revenues) than maintaining a safe space for their much
more valuable server business. If Microsoft's Internet Explorer achieved market
dominance, Microsoft would be able to bend the Web's protocols away from
open standards and into proprietary channels that only Microsoft's servers would
be able to service.

Within Netscape there was intense debate about how to counter the threat. One
of the options proposed early on was to throw the Netscape browser source open-
-but it was a hard case to argue without strong reasons to believe that doing so
would prevent Internet Explorer dominance.

I didn't know it at the time, but CatB became a major factor in making that case.
Through the winter of 1997, as I was working on the material for my next paper,
the stage was being set for Netscape to break the rules of the commercial game
and offer my tribe an unprecedented opportunity.

http://www.oreilly.com/catalog/opensources/book/raymond2.html (4 of 15)

Open Sources: Voices from the Open Source Revolution

The Road to Mountain View
On January 22nd, 1998, Netscape announced that it would release the sources of
the Netscape client line to the Internet. Shortly after the news reached me the
following day, I learned that CEO Jim Barksdale described my work to national-
media reporters as "fundamental inspiration" for the decision.

This was the event that commentators in the computer trade press would later
call "the shot heard `round the world"--and Barksdale had cast me as its Thomas
Paine, whether I wanted the role or not. For the first time in the history of the
hacker culture, a Fortune 500 darling of Wall Street had bet its future on the
belief that our way was right. And, more specifically, that my analysis of "our
way" was right.

This is a pretty sobering kind of shock to deal with. I had not been very surprised
when CatB altered the hacker culture's image of itself; that was the result I had
been trying for, after all. But I was astonished (to say the least) by the news of its
success on the outside. So I did some very hard thinking in the first few hours
after word reached me. About the state of Linux and the hacker community.
About Netscape. And about whether I, personally, had what it would take to
make the next step.

It was not difficult to conclude that helping Netscape's gamble succeed had just
become a very high priority for the hacker culture, and thus for me personally. If
Netscape's gamble failed, we hackers would probably find all the opprobrium of
that failure piled on our heads. We'd be discredited for another decade. And that
would be just too much to take.

By this time I had been in the hacker culture, living through its various phases,
for twenty years. Twenty years of repeatedly watching brilliant ideas, promising
starts, and superior technologies crushed by slick marketing. Twenty years of
watching hackers dream and sweat and build, too often only to watch the likes of
the bad old IBM or the bad new Microsoft walk away with the real-world prizes.
Twenty years of living in a ghetto--a fairly comfortable ghetto full of interesting
friends, but still one walled in by a vast and intangible barrier of prejudice
inscribed "ONLY FLAKES LIVE HERE."

The Netscape announcement cracked that barrier, if only for a moment; the
business world had been jolted out of its complacency about what "hackers" are
capable of. But lazy mental habits have huge inertia. If Netscape failed, or
perhaps even if they succeeded, the experiment might come to be seen as a

http://www.oreilly.com/catalog/opensources/book/raymond2.html (5 of 15)

Open Sources: Voices from the Open Source Revolution

unique one-off not worth trying to repeat. And then we'd be back in the same
ghetto, walls higher than before.

To prevent that, we needed Netscape to succeed. So I considered what I had
learned about bazaar-mode development, and called up Netscape, and offered to
help with developing their license and in working out the details of the strategy.
In early February I flew to Mountain View at their request for seven hours of
meetings with various groups at Netscape HQ, and helped them develop the
outline of what would become the Mozilla Public License and the Mozilla
organization.

While there, I met with several key people in the Silicon Valley and national
Linux community (this part of the history is told in more detail on the Open
Source web site's history page[2]). While helping Netscape was clearly a short-
term priority, everybody I spoke with had already understood the need for some
longer-term strategy to follow up on the Netscape release. It was time to develop
one.

The Origins of "Open Source"
It was easy to see the outlines of the strategy. We needed to take the pragmatic
arguments I had pioneered in CatB, develop them further, and push them hard, in
public. Because Netscape itself had an interest in convincing investors that its
strategy was not crazy, we could count on them to help the promotion. We also
recruited Tim O'Reilly (and through him, O'Reilly & Associates) very early on.

The real conceptual breakthrough, though, was admitting to ourselves that what
we needed to mount was in effect a marketing campaign--and that it would
require marketing techniques (spin, image-building, and re-branding) to make it
work.

Hence the term "open source," which the first participants in what would later
become the Open Source campaign (and, eventually, the Open Source Initiative
organization) invented at a meeting held in Mountain View in the offices of VA
Research on February 3.

It seemed clear to us in retrospect that the term "free software" had done our
movement tremendous damage over the years. Part of this stemmed from the
well-known "free-speech/free-beer" ambiguity. Most of it came from something
worse--the strong association of the term "free software" with hostility to
intellectual property rights, communism, and other ideas hardly likely to endear

http://www.oreilly.com/catalog/opensources/book/raymond2.html (6 of 15)

Open Sources: Voices from the Open Source Revolution

themselves to an MIS manager.

It was, and still is, beside the point to argue that the Free Software Foundation is
not hostile to all intellectual property and that its position is not exactly
communistic. We knew that. What we realized, under the pressure of the
Netscape release, was that FSF's actual position didn't matter. Only the fact that
its evangelism had backfired (associating "free software" with these negative
stereotypes in the minds of the trade press and the corporate world) actually
mattered.

Our success after Netscape would depend on replacing the negative FSF
stereotypes with positive stereotypes of our own--pragmatic tales, sweet to
managers' and investors' ears, of higher reliability and lower cost and better
features.

In conventional marketing terms, our job was to re-brand the product, and build
its reputation into one the corporate world would hasten to buy.

Linus Torvalds endorsed the idea the day after that first meeting. We began
acting on it within a few days after. Bruce Perens had the opensource.org
domain registered and the first version of the Open Source web site[3] up within
a week. He also suggested that the Debian Free Software Guidelines become the
"Open Source Definition,"[4] and began the process of registering "Open
Source" as a certification mark so that we could legally require people to use
"Open Source" for products conforming to the OSD.

Even the particular tactics needed to push the strategy seemed pretty clear to me
even at this early stage (and were explicitly discussed at the initial meeting). Key
themes:

Forget bottom-up; work on top-down
One of the things that seemed clearest was that the historical Unix strategy
of bottom-up evangelism (relying on engineers to persuade their bosses by
rational argument) had been a failure. This was naive and easily trumped by
Microsoft. Further, the Netscape breakthrough didn't happen that way. It
happened because a strategic decision-maker (Jim Barksdale) got the clue
and then imposed that vision on the people below him.

The conclusion was inescapable. Instead of working bottom-up, we should
be evangelizing top-down--making a direct effort to capture the
CEO/CTO/CIO types.

http://www.oreilly.com/catalog/opensources/book/raymond2.html (7 of 15)

Open Sources: Voices from the Open Source Revolution

Linux is our best demonstration case
Promoting Linux must be our main thrust. Yes, there are other things going
on in the open-source world, and the campaign will bow respectfully in their
direction--but Linux started with the best name recognition, the broadest
software base, and the largest developer community. If Linux can't
consolidate the breakthrough, nothing else will, pragmatically speaking,
have a prayer.

Capture the Fortune 500
There are other market segments that spend more dollars (small-business
and home-office being the most obvious examples) but those markets are
diffuse and hard to address. The Fortune 500 doesn't merely have lots of
money, it concentrates lots of money where it's relatively easy to get at.
Therefore, the software industry largely does what the Fortune 500 business
market tells it to do. And therefore, it is primarily the Fortune 500 we need
to convince.

Co-opt the prestige media that serve the Fortune 500
The choice to target the Fortune 500 implies that we need to capture the
media that shape the climate of opinion among top-level decision-makers
and investors: very specifically, the New York Times, the Wall Street
Journal, the Economist, Forbes, and Barron's Magazine.

On this view, co-opting the technical trade press is necessary but not
sufficient; it's important essentially as a pre-condition for storming Wall
Street itself through the elite mainstream media.

Educate hackers in guerilla marketing tactics
It was also clear that educating the hacker community itself would be just as
important as mainstream outreach. It would be insufficient to have one or a
handful of ambassadors speaking effective language if, at the grassroots
level, most hackers were making arguments that didn't work.

Use the Open Source certification mark to keep things pure
One of the threats we faced was the possibility that the term "open source"
would be "embraced and extended" by Microsoft or other large vendors,
corrupting it and losing our message. It is for this reason that Bruce Perens
and I decided early on to register the term as a certification mark and tie it to
the Open Source Definition (a copy of the Debian Free Software
Guidelines). This would allow us to scare off potential abusers with the
threat of legal action.

http://www.oreilly.com/catalog/opensources/book/raymond2.html (8 of 15)

Open Sources: Voices from the Open Source Revolution

The Accidental Revolutionary
Planning this kind of strategy was relatively easy. The hard part (for me,
anyway) was accepting what my own role had to be.

One thing I understood from the beginning is that the press almost completely
tunes out abstractions. They won't write about ideas without larger-than-life
personalities fronting them. Everything has to be story, drama, conflict, sound
bites. Otherwise most reporters will simply go to sleep--and if they don't, their
editors will.

Accordingly, I knew somebody with very particular characteristics would be
needed to front the community's response to the Netscape opportunity. We
needed a firebrand, a spin doctor, a propagandist, an ambassador, an evangelist--
somebody who could dance and sing and shout from the housetops and seduce
reporters and huggermug with CEOs and bang the media machine until its
contrary gears ground out the message: The revolution is here!

Unlike most hackers, I have the brain chemistry of an extrovert and had already
had extensive experience at dealing with the press. Looking around me, I
couldn't see anyone better qualified to play evangelist. But I didn't want the job,
because I knew it would cost me my life for many months, maybe for years. My
privacy would be destroyed. I'd probably end up caricatured as a geek by the
mainstream press and (worse) despised as a sell-out or glory-hog by a significant
fraction of my own tribe. Worse than all the other bad consequences put
together, I probably wouldn't have time to hack any more!

I had to ask myself: are you fed up enough with watching your tribe lose to do
whatever it takes to win? I decided the answer was yes--and having so decided,
threw myself into the dirty but necessary job of becoming a public figure and
media personality.

I'd learned some basic media chops while editing The New Hacker's Dictionary.
This time I took it much more seriously and developed an entire theory of media
manipulation which I then proceeded to apply. This is not the place to describe
the theory in detail, but it centers around the use of what I call "attractive
dissonance'' to fan an itchy curiosity about the evangelist, and then exploiting
that itch for all it's worth in promoting the ideas.

The combination of the "open source" label and deliberate promotion of myself
as an evangelist turned out to have both the good and bad consequences that I

http://www.oreilly.com/catalog/opensources/book/raymond2.html (9 of 15)

Open Sources: Voices from the Open Source Revolution

expected. The ten months after the Netscape announcement featured a steady
exponential increase in media coverage of Linux and the open-source world in
general. Throughout this period, approximately a third of these articles quoted
me directly; most of the other two-thirds used me as a background source. At the
same time, a vociferous minority of hackers declared me an evil egotist. I
managed to preserve a sense of humor about both outcomes (though
occasionally with some difficulty).

My plan from the beginning was that, eventually, I would hand off the evangelist
role to some successor, either an individual or organization. There would come a
time when charisma became less effective than broad-based institutional
respectability (and, from my own point of view, the sooner the better!). At the
time of this writing I am attempting to transfer my personal connections and
carefully built-up reputation with the press to the Open Source Initiative, an
incorporated nonprofit formed specifically to manage the Open Source
trademark. I am currently the president of this organization, but hope and expect
not to remain so indefinitely.

Phases of the Campaign
The open-source campaign began with the Mountain View meeting, and rapidly
collected an informal network of allies over the Internet (including key people at
Netscape and O'Reilly & Associates). Where I write "we" below I'm referring to
that network.

From February 3 to around the time of the actual Netscape release on March 31,
our primary concern was convincing the hacker community "open source" label
and the arguments that went with it represented our best shot at persuading the
mainstream. As it turned out, the change was rather easier than we expected. We
discovered a lot of pent-up demand for a message less doctrinaire than the Free
Software Foundation's.

When the twenty-odd community leaders at the Free Software Summit on March
7 voted to adopt the term "open source," they formally ratified a trend that was
already clear at the grass roots among developers. By six weeks after the
Mountain View meeting, a healthy majority of the community was speaking our
language.

In April after the Summit and the actual Netscape release, our main concern
shifted to recruiting as many open-source early adopters as possible. The goal

http://www.oreilly.com/catalog/opensources/book/raymond2.html (10 of 15)

Open Sources: Voices from the Open Source Revolution

was to make Netscape's move look less singular--and to buy us insurance in case
Netscape executed poorly and failed its goals.

This was the most worrying time. On the surface, everything seemed to be
coming up roses; Linux was moving technically from strength to strength, the
wider open-source phenomenon was enjoying a spectacular explosion in trade
press coverage, and we were even beginning to get positive coverage in the
mainstream press. Nevertheless, I was uneasily aware that our success was still
fragile. After an initial flurry of contributions, community participation in
Mozilla was badly slowed down by its requirement of Motif. None of the big
independent software vendors had yet committed to Linux ports. Netscape was
still looking lonely, and its browser still losing market share to Internet Explorer.
Any serious reverse could lead to a nasty backlash in the press and public
opinion.

Our first serious post-Netscape breakthrough came on May 7 when Corel
Computer announced its Linux-based Netwinder network computer. But that
wasn't enough in itself; to sustain the momentum, we needed commitments not
from hungry second-stringers but from industry leaders. Thus, it was the mid-
July announcements by Oracle and Informix that really closed out this
vulnerable phase.

The database outfits joined the Linux party three months earlier than I expected,
but none too soon. We had been wondering how long the positive buzz could
last without major Independent Software Vendor (ISV) support and feeling
increasingly nervous about where we'd actually find that. After Oracle and
Informix announced Linux ports other ISVs began announcing Linux support
almost as a matter of routine, and even a failure of Mozilla became survivable.

Mid-July through the beginning of November was a consolidation phase. It was
during this time that we started to see fairly steady coverage from the elite media
I had originally targeted, led off by articles in The Economist and a cover story
in Forbes. Various hardware and software vendors sent out feelers to the open-
source community and began to work out strategies for getting an advantage
from the new model. And internally, the biggest closed-source vendor of them
all was beginning to get seriously worried.

Just how worried became apparent when the now-infamous "Halloween
Documents"[5] leaked out of Microsoft.

The Halloween Documents were dynamite. They were a ringing testimonial to

http://www.oreilly.com/catalog/opensources/book/raymond2.html (11 of 15)

Open Sources: Voices from the Open Source Revolution

the strengths of open-source development from the company with the most to
lose from Linux's success. And they confirmed a lot of peoples' darkest
suspicions about the tactics Microsoft would consider in order to stop it.

The Halloween Documents attracted massive press coverage in the first few
weeks of November. They created a new surge of interest in the open-source
phenomenon, serendipitously confirming all the points we had been making for
months. And they led directly to a request for me to conference with a select
group of Merrill Lynch's major investors on the state of the software industry
and the prospects for open source.

Wall Street, finally, came to us.

The Facts on the Ground
While the Open Source campaign's "air war" in the media was going on, key
technical and market facts on the ground were also changing. I'll review some of
them briefly here because they combine interestingly with the trends in press and
public perception.

In the ten months following the Netscape release, Linux rapidly continued to
grow more capable. The development of solid SMP support and the effective
completion of the 64-bit cleanup laid important groundwork for the future.

The roomful of Linux boxes used to render scenes for Titanic threw a healthy
scare into builders of expensive graphics engines. Then the Beowulf
supercomputer-on-the-cheap project showed that Linux's Chinese-army
sociology could be successfully applied even to bleeding-edge scientific
computing.

Nothing dramatic happened to vault Linux's open-source competitors into the
limelight. And proprietary Unixes continued to lose market share; in fact, by mid-
year only NT and Linux were actually gaining market share in the Fortune 500,
and by late fall Linux was gaining faster.

Apache continued to increase its lead in the web server market. In November,
Netscape's browser reversed its market-share slide and began to make gains
against Internet Explorer.

Into the Future
I have rehearsed recent history here only partly to get it into the record. More

http://www.oreilly.com/catalog/opensources/book/raymond2.html (12 of 15)

Open Sources: Voices from the Open Source Revolution

importantly, it sets a background against which we can understand near-term
trends and project some things about the future (I write in mid-December of
1998).

First, safe predictions for the next year:

● The open-source developer population will continue to explode, a growth
fueled by ever-cheaper PC hardware and Internet connections.

● Linux will continue to lead the way, the relative size of its developer
community overpowering the higher average skill of the open-source BSD
people and the tiny HURD crew.

● ISV commitments to support the Linux platform will increase
dramatically; the database-vendor commitments were a turning point.
Corel's commitment to ship their entire office suite on Linux points the
way.

● The Open Source campaign will continue to build on its victories and
successfully raise awareness at the CEO/CTO/CIO and investor level.
MIS directors will feel increasing pressure to go with open-source
products not from below but from above.

● Stealth deployments of Samba-over-Linux will replace increasing
numbers of NT machines even at shops that have all-Microsoft policies.

● The market share of proprietary Unixes will continue to gradually erode.
At least one of the weaker competitors (likely DG-UX or HP-UX) will
actually fold. But by the time it happens, analysts will attribute it to
Linux's gains rather than Microsoft's.

● Microsoft will not have an enterprise-ready operating system, because
Windows 2000 will not ship in a usable form. (At 60 million lines of code
and still bloating, its development is out of control.)

Extrapolating these trends certainly suggests some slightly riskier predictions for
the medium term (eighteen to thirty-two months out):

● Support operations for commercial customers of open-source operating
systems will become big business, both feeding off of and fueling the
boom in business use.

● Open-source operating systems (with Linux leading the way) will capture

http://www.oreilly.com/catalog/opensources/book/raymond2.html (13 of 15)

Open Sources: Voices from the Open Source Revolution

the ISP and business data-center markets. NT will be unable to resist this
change effectively; the combination of low cost, open sources, and 24/7
reliability will prove irresistible.

● The proprietary-Unix sector will almost completely collapse. Solaris looks
like a safe bet to survive on high-end Sun hardware, but most other
players' proprietary will quickly become legacy systems.

● Windows 2000 will be either canceled or dead on arrival. Either way it
will turn into a horrendous train wreck, the worst strategic disaster in
Microsoft's history. However, this will barely affect their hold on the
desktop market within the next two years.

At first glance, these trends look like a recipe for leaving Linux as the last one
standing. But life is not that simple (and Microsoft derives such immense
amounts of money and market clout from the desktop market that it can't safely
be counted out even after the Windows 2000 train wreck).

So at two years out the crystal ball gets a bit cloudy. Which of several futures we
get depends on questions like: Will the Department of Justice break up
Microsoft? Might BeOS or OS/2 or Mac OS/X or some other niche closed-
source OS, or some completely new design, find a way to go open and compete
effectively with Linux's 30-year-old base design? Will Y2K-related problems
have thrown the world economy into a deep enough depression to throw off
everybody's timetables?

These are all fairly imponderable. But there is one such question that is worth
pondering: Will the Linux community actually deliver a good end-user-friendly
GUI interface for the whole system?

I think the most likely scenario for two years out has Linux in effective control
of servers, data centers, ISPs, and the Internet, while Microsoft maintains its grip
on the desktop. Where things go from there depend on whether GNOME, KDE,
or some other Linux-based GUI (and the applications built or rebuilt to use it)
ever get good enough to challenge Microsoft on its home ground.

If this were primarily a technical problem, the outcome would hardly be in
doubt. But it isn't; it's a problem in ergonomic design and interface psychology,
and hackers have historically been poor at it. That is, while hackers can be very
good at designing interfaces for other hackers, they tend to be poor at modeling
the thought processes of the other 95% of the population well enough to write
interfaces that J. Random End-User and his Aunt Tillie will pay to buy.

http://www.oreilly.com/catalog/opensources/book/raymond2.html (14 of 15)

Open Sources: Voices from the Open Source Revolution

Applications were this year's problem; it's now clear we'll swing enough ISVs to
get the ones we don't write ourselves. I believe the problem for the next two
years is whether we can grow enough to meet (and exceed!) the interface-design
quality standard set by the Macintosh, combining that with the virtues of the
traditional Unix way.

We half-joke about "world domination," but the only way we will get there is by
serving the world. That means J. Random End-User and his Aunt Tillie; and that
means learning how to think about what we do in a fundamentally new way, and
ruthlessly reducing the user-visible complexity of the default environment to an
absolute minimum.

Computers are tools for human beings. Ultimately, therefore, the challenges of
designing hardware and software must come back to designing for human beings-
-all human beings.

This path will be long, and it won't be easy. But we owe it to ourselves and each
other to do it right. May the Open Source be with you!

1. http://www.tuxedo.org/~esr/writings/cathedral-bazaar
2. http://www.opensource.org/history.html
3. http://www.opensource.edu/
4. http://www.opensource.org/osd.html
5. http://www.opensource.org/halloween.html

Appendix A --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/raymond2.html (15 of 15)

http://www.tuxedo.org/~esr/writings/cathedral-bazaar
http://www.opensource.org/history.html
http://www.opensource.edu/
http://www.opensource.org/osd.html
http://www.opensource.org/halloween.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Appendix A - The Tanenbaum-Torvalds Debate

Open Sources: Voices from the Open
Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Appendix A

The Tanenbaum-Torvalds Debate

What follows in this appendix are what are known in the community as the Tanenbaum/Linus "Linux is obsolete"
debates. Andrew Tanenbaum is a well-respected researcher who has made a very good living thinking about
operating systems and OS design. In early 1992, noticing the way that the Linux discussion had taken over the
discussion in comp.os.minix, he decided it was time to comment on Linux.

Although Andrew Tanenbaum has been derided for his heavy hand and misjudgements of the Linux kernel, such a
reaction to Tanenbaum is unfair. When Linus himself heard that we were including this, he wanted to make sure
that the world understood that he holds no animus towards Tanenbaum and in fact would not have sanctioned its
inclusion if we had not been able to convince him that it would show the way the world was thinking about OS
design at the time.

We felt the inclusion of this appendix would give a good perspective on how things were when Linus was under
pressure because he abandoned the idea of microkernels in academia. The first third of Linus' essay discusses this
further.

Electronic copies of this debate are available on the Web and are easily found through any search service. It's fun to
read this and note who joined into the discussion; you see user-hacker Ken Thompson (one of the founders of
Unix) and David Miller (who is a major Linux kernel hacker now), as well as many others.

To put this discussion into perspective, when it occurred in 1992, the 386 was the dominating chip and the 486 had
not come out on the market. Microsoft was still a small company selling DOS and Word for DOS. Lotus 123 ruled
the spreadsheet space and WordPerfect the word processing market. DBASE was the dominant database vendor
and many companies that are household names today--Netscape, Yahoo, Excite--simply did not exist.

From: ast@cs.vu.nl (Andy Tanenbaum)
Newsgroups: comp.os.minix
Subject: LINUX is obsolete

http://www.oreilly.com/catalog/opensources/book/appa.html (1 of 34)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Appendix A - The Tanenbaum-Torvalds Debate

Date: 29 Jan 92 12:12:50 GMT

I was in the U.S. for a couple of weeks, so I haven't commented much on
LINUX (not that I would have said much had I been around), but for what
it is worth, I have a couple of comments now.

As most of you know, for me MINIX is a hobby, something that I do in the
evening when I get bored writing books and there are no major wars,
revolutions, or senate hearings being televised live on CNN. My real
job is a professor and researcher in the area of operating systems.

As a result of my occupation, I think I know a bit about where operating
are going in the next decade or so. Two aspects stand out:

1. MICROKERNEL VS MONOLITHIC SYSTEM
 Most older operating systems are monolithic, that is, the whole operating
 system is a single a.out file that runs in 'kernel mode.' This binary
 contains the process management, memory management, file system and the
 rest. Examples of such systems are UNIX, MS-DOS, VMS, MVS, OS/360,
 MULTICS, and many more.

 The alternative is a microkernel-based system, in which most of the OS
 runs as separate processes, mostly outside the kernel. They communicate
 by message passing. The kernel's job is to handle the message passing,
 interrupt handling, low-level process management, and possibly the I/O.
 Examples of this design are the RC4000, Amoeba, Chorus, Mach, and the
 not-yet-released Windows/NT.

 While I could go into a long story here about the relative merits of the
 two designs, suffice it to say that among the people who actually design
 operating systems, the debate is essentially over. Microkernels have won.
 The only real argument for monolithic systems was performance, and there
 is now enough evidence showing that microkernel systems can be just as
 fast as monolithic systems (e.g., Rick Rashid has published papers comparing
 Mach 3.0 to monolithic systems) that it is now all over but the shoutin'.

 MINIX is a microkernel-based system. The file system and memory management
 are separate processes, running outside the kernel. The I/O drivers are
 also separate processes (in the kernel, but only because the brain-dead
 nature of the Intel CPUs makes that difficult to do otherwise). LINUX is
 a monolithic style system. This is a giant step back into the 1970s.
 That is like taking an existing, working C program and rewriting it in
 BASIC. To me, writing a monolithic system in 1991 is a truly poor idea.

2. PORTABILITY
 Once upon a time there was the 4004 CPU. When it grew up it became an
 8008. Then it underwent plastic surgery and became the 8080. It begat
 the 8086, which begat the 8088, which begat the 80286, which begat the
 80386, which begat the 80486, and so on unto the N-th generation. In
 the meantime, RISC chips happened, and some of them are running at over
 100 MIPS. Speeds of 200 MIPS and more are likely in the coming years.
 These things are not going to suddenly vanish. What is going to happen
 is that they will gradually take over from the 80x86 line. They will

http://www.oreilly.com/catalog/opensources/book/appa.html (2 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

 run old MS-DOS programs by interpreting the 80386 in software. (I even
 wrote my own IBM PC simulator in C, which you can get by FTP from
 ftp.cs.vu.nl = 192.31.231.42 in dir minix/simulator.) I think it is a
 gross error to design an OS for any specific architecture, since that is
 not going to be around all that long.

 MINIX was designed to be reasonably portable, and has been ported from the
 Intel line to the 680x0 (Atari, Amiga, Macintosh), SPARC, and NS32016.
 LINUX is tied fairly closely to the 80x86. Not the way to go.

Don't get me wrong, I am not unhappy with LINUX. It will get all the people
who want to turn MINIX in BSD UNIX off my back. But in all honesty, I would
suggest that people who want a **MODERN** "free" OS look around for a
microkernel-based, portable OS, like maybe GNU or something like that.

Andy Tanenbaum (ast@cs.vu.nl)

P.S. Just as a random aside, Amoeba has a UNIX emulator (running in user
space), but it is far from complete. If there are any people who would
like to work on that, please let me know. To run Amoeba you need a few 386s,
one of which needs 16M, and all of which need the WD Ethernet card.

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Subject: Re: LINUX is obsolete
Date: 29 Jan 92 23:14:26 GMT
Organization: University of Helsinki

Well, with a subject like this, I'm afraid I'll have to reply.
Apologies to minix-users who have heard enough about linux anyway. I'd
like to be able to just "ignore the bait", but ... Time for some
serious flamefesting!

In article <12595@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:
>
>I was in the U.S. for a couple of weeks, so I haven't commented much on
>LINUX (not that I would have said much had I been around), but for what
>it is worth, I have a couple of comments now.
>
>As most of you know, for me MINIX is a hobby, something that I do in the
>evening when I get bored writing books and there are no major wars,
>revolutions, or senate hearings being televised live on CNN. My real
>job is a professor and researcher in the area of operating systems.

You use this as an excuse for the limitations of minix? Sorry, but you
loose: I've got more excuses than you have, and linux still beats the
pants of minix in almost all areas. Not to mention the fact that most
of the good code for PC minix seems to have been written by Bruce Evans.

Re 1: you doing minix as a hobby - look at who makes money off minix,
and who gives linux out for free. Then talk about hobbies. Make minix
freely available, and one of my biggest gripes with it will disappear.

http://www.oreilly.com/catalog/opensources/book/appa.html (3 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

Linux has very much been a hobby (but a serious one: the best type) for
me: I get no money for it, and it's not even part of any of my studies
in the university. I've done it all on my own time, and on my own
machine.

Re 2: your job is being a professor and researcher: That's one hell of a
good excuse for some of the brain-damages of minix. I can only hope (and
assume) that Amoeba doesn't suck like minix does.

>1. MICROKERNEL VS MONOLITHIC SYSTEM

True, linux is monolithic, and I agree that microkernels are nicer. With
a less argumentative subject, I'd probably have agreed with most of what
you said. From a theoretical (and aesthetical) standpoint linux looses.
If the GNU kernel had been ready last spring, I'd not have bothered to
even start my project: the fact is that it wasn't and still isn't. Linux
wins heavily on points of being available now.

> MINIX is a microkernel-based system. [deleted, but not so that you
> miss the point] LINUX is a monolithic style system.

If this was the only criterion for the "goodness" of a kernel, you'd be
right. What you don't mention is that minix doesn't do the micro-kernel
thing very well, and has problems with real multitasking (in the
kernel). If I had made an OS that had problems with a multithreading
filesystem, I wouldn't be so fast to condemn others: in fact, I'd do my
damndest to make others forget about the fiasco.

[yes, I know there are multithreading hacks for minix, but they are
hacks, and bruce evans tells me there are lots of race conditions]

>2. PORTABILITY

"Portability is for people who cannot write new programs"
 -me, right now (with tongue in cheek)

The fact is that linux is more portable than minix. What? I hear you
say. It's true - but not in the sense that ast means: I made linux as
conformant to standards as I knew how (without having any POSIX standard
in front of me). Porting things to linux is generally /much/ easier
than porting them to minix.

I agree that portability is a good thing: but only where it actually has
some meaning. There is no idea in trying to make an operating system
overly portable: adhering to a portable API is good enough. The very
/idea/ of an operating system is to use the hardware features, and hide
them behind a layer of high-level calls. That is exactly what linux
does: it just uses a bigger subset of the 386 features than other
kernels seem to do. Of course this makes the kernel proper unportable,
but it also makes for a /much/ simpler design. An acceptable trade-off,
and one that made linux possible in the first place.

I also agree that linux takes the non-portability to an extreme: I got

http://www.oreilly.com/catalog/opensources/book/appa.html (4 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

my 386 last January, and linux was partly a project to teach me about
it. Many things should have been done more portably if it would have
been a real project. I'm not making overly many excuses about it
though: it was a design decision, and last april when I started the
thing, I didn't think anybody would actually want to use it. I'm happy
to report I was wrong, and as my source is freely available, anybody is
free to try to port it, even though it won't be easy.

 Linus

PS. I apologise for sometimes sounding too harsh: minix is nice enough
if you have nothing else. Amoeba might be nice if you have 5-10 spare
386's lying around, but I certainly don't. I don't usually get into
flames, but I'm touchy when it comes to linux :)

From: ast@cs.vu.nl (Andy Tanenbaum)
Subject: Re: LINUX is obsolete
Date: 30 Jan 92 13:44:34 GMT

In article <1992Jan29.231426.20469@klaava.Helsinki.FI> torvalds@klaava.Helsinki.
FI (Linus Benedict Torvalds) writes:
>You use this [being a professor] as an excuse for the limitations of minix?
The limitations of MINIX relate at least partly to my being a professor:
An explicit design goal was to make it run on cheap hardware so students
could afford it. In particular, for years it ran on a regular 4.77 MHZ PC
with no hard disk. You could do everything here including modify and recompile
the system. Just for the record, as of about 1 year ago, there were two
versions, one for the PC (360K diskettes) and one for the 286/386 (1.2M).
The PC version was outselling the 286/386 version by 2 to 1. I don't have
figures, but my guess is that the fraction of the 60 million existing PCs that
are 386/486 machines as opposed to 8088/286/680x0 etc is small. Among students
it is even smaller. Making software free, but only for folks with enough money
to buy first class hardware is an interesting concept.
Of course 5 years from now that will be different, but 5 years from now
everyone will be running free GNU on their 200 MIPS, 64M SPARCstation-5.

>Re 2: your job is being a professor and researcher: That's one hell of a
>good excuse for some of the brain-damages of minix. I can only hope (and
>assume) that Amoeba doesn't suck like minix does.
Amoeba was not designed to run on an 8088 with no hard disk.

>If this was the only criterion for the "goodness" of a kernel, you'd be
>right. What you don't mention is that minix doesn't do the micro-kernel
>thing very well, and has problems with real multitasking (in the
>kernel). If I had made an OS that had problems with a multithreading
>filesystem, I wouldn't be so fast to condemn others: in fact, I'd do my
>damndest to make others forget about the fiasco.
A multithreaded file system is only a performance hack. When there is only
one job active, the normal case on a small PC, it buys you nothing and adds
complexity to the code. On machines fast enough to support multiple users,
you probably have enough buffer cache to insure a hit cache hit rate, in

http://www.oreilly.com/catalog/opensources/book/appa.html (5 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

which case multithreading also buys you nothing. It is only a win when there
are multiple processes actually doing real disk I/O. Whether it is worth
making the system more complicated for this case is at least debatable.

I still maintain the point that designing a monolithic kernel in 1991 is
a fundamental error. Be thankful you are not my student. You would not
get a high grade for such a design :-)

>The fact is that linux is more portable than minix. What? I hear you
>say. It's true - but not in the sense that ast means: I made linux as
>conformant to standards as I knew how (without having any POSIX standard
>in front of me). Porting things to linux is generally /much/ easier
>than porting them to minix.
MINIX was designed before POSIX, and is now being (slowly) POSIXized as
everyone who follows this newsgroup knows. Everyone agrees that user-level
standards are a good idea. As an aside, I congratulate you for being able
to write a POSIX-conformant system without having the POSIX standard in front
of you. I find it difficult enough after studying the standard at great length.

My point is that writing a new operating system that is closely tied to any
particular piece of hardware, especially a weird one like the Intel line,
is basically wrong. An OS itself should be easily portable to new hardware
platforms. When OS/360 was written in assembler for the IBM 360
25 years ago, they probably could be excused. When MS-DOS was written
specifically for the 8088 ten years ago, this was less than brilliant, as
IBM and Microsoft now only too painfully realize. Writing a new OS only for the
386 in 1991 gets you your second 'F' for this term. But if you do real well
on the final exam, you can still pass the course.

Prof. Andrew S. Tanenbaum (ast@cs.vu.nl)

From: feustel@netcom.COM (David Feustel)
Subject: Re: LINUX is obsolete
Date: 30 Jan 92 18:57:28 GMT
Organization: DAFCO - An OS/2 Oasis

ast@cs.vu.nl (Andy Tanenbaum) writes:

>I still maintain the point that designing a monolithic kernel in 1991 is
>a fundamental error. Be thankful you are not my student. You would not
>get a high grade for such a design :-)

That's ok. Einstein got lousy grades in math and physics.

From: pete@ohm.york.ac.uk (-Pete French.)
Subject: Re: LINUX is obsolete
Date: 31 Jan 92 09:49:37 GMT
Organization: Electronics Department, University of York, UK

http://www.oreilly.com/catalog/opensources/book/appa.html (6 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

in article <1992Jan30.195850.7023@epas.toronto.edu>, meggin@epas.utoronto.ca
(David Megginson) says:
>
> In article <1992Jan30.185728.26477feustel@netcom.COM> feustel@netcom.COM
(David > Feustel) writes:
>>
>>That's ok. Einstein got lousy grades in math and physics.
>
> And Dan Quayle got low grades in political science. I think that there
> are more Dan Quayles than Einsteins out there... ;-)

What a horrible thought !

But on the points about microkernel v monolithic, isnt this partly an
artifact of the language being used ? MINIX may well be designed as a
microkernel system, but in the end you still end up with a large
monolithic chunk of binary data that gets loaded in as "the OS". Isnt it
written as separate programs simply because C does not support the idea
of multiple processes within a single piece of monolithic code. Is there
any real difference between a microkernel written as several pieces of C
and a monolithic kernel written in something like OCCAM ? I would have
thought that in this case the monolithic design would be a better one
than the micorkernel style since with the advantage of inbuilt
language concurrency the kernel could be made even more modular than the
MINIX one is.

Anyone for MINOX :-)

-bat.

From: kt4@prism.gatech.EDU (Ken Thompson)
Subject: Re: LINUX is obsolete
Date: 3 Feb 92 23:07:54 GMT
Organization: Georgia Institute of Technology

viewpoint may be largely unrelated to its usefulness. Many if not
most of the software we use is probably obsolete according to the
latest design criteria. Most users could probably care less if the
internals of the operating system they use is obsolete. They are
rightly more interested in its performance and capabilities at the
user level.

I would generally agree that microkernels are probably the wave of
the future. However, it is in my opinion easier to implement a
monolithic kernel. It is also easier for it to turn into a mess in
a hurry as it is modified.

 Regards,
 Ken

http://www.oreilly.com/catalog/opensources/book/appa.html (7 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

From: kevin@taronga.taronga.com (Kevin Brown)
Subject: Re: LINUX is obsolete
Date: 4 Feb 92 08:08:42 GMT
Organization: University of Houston

In article <47607@hydra.gatech.EDU> kt4@prism.gatech.EDU (Ken Thompson) writes:
>viewpoint may be largely unrelated to its usefulness. Many if not
>most of the software we use is probably obsolete according to the
>latest design criteria. Most users could probably care less if the
>internals of the operating system they use is obsolete. They are
>rightly more interested in its performance and capabilities at the
>user level.
>
>I would generally agree that microkernels are probably the wave of
>the future. However, it is in my opinion easier to implement a
>monolithic kernel. It is also easier for it to turn into a mess in
>a hurry as it is modified.

How difficult is it to structure the source tree of a monolithic kernel
such that most modifications don't have a large negative impact on the
source? What sorts of pitfalls do you run into in this sort of endeavor,
and what suggestions do you have for dealing with them?

I guess what I'm asking is: how difficult is it to organize the source
such that most changes to the kernel remain localized in scope, even
though the kernel itself is monolithic?

I figure you've got years of experience with monolithic kernels :-),
so I'd think you'd have the best shot at answering questions like
these.

 Kevin Brown

From: rburns@finess.Corp.Sun.COM (Randy Burns)
Subject: Re: LINUX is obsolete
Date: 30 Jan 92 20:33:07 GMT
Organization: Sun Microsystems, Mt. View, Ca.

In article <12615@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:
>In article <1992Jan29.231426.20469@klaava.Helsinki.FI> torvalds@klaava.Helsinki.
>FI (Linus Benedict Torvalds) writes:

>Of course 5 years from now that will be different, but 5 years from now
>everyone will be running free GNU on their 200 MIPS, 64M SPARCstation-5.
Well, I for one would _love_ to see this happen.

>>The fact is that linux is more portable than minix. What? I hear you
>>say. It's true - but not in the sense that ast means: I made linux as
>>conformant to standards as I knew how (without having any POSIX standard
>>in front of me). Porting things to linux is generally /much/ easier

http://www.oreilly.com/catalog/opensources/book/appa.html (8 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

>>than porting them to minix.
.........
>My point is that writing a new operating system that is closely tied to any
>particular piece of hardware, especially a weird one like the Intel line,
>is basically wrong.
First off, the parts of Linux tuned most finely to the 80x86 are the Kernel
and the devices. My own sense is that even if Linux is simply a stopgap
measure to let us all run GNU software, it is still worthwhile to have a
a finely tuned kernel for the most numerous architecture presently in
existance.

> An OS itself should be easily portable to new hardware
>platforms.
Well, the only part of Linux that isn't portable is the kernel and drivers.
Compare to the compilers, utilities, windowing system etc. this is really
a small part of the effort. Since Linux has a large degree of call
compatibility with portable OS's I wouldn't complain. I'm personally
very grateful to have an OS that makes it more likely that some of us will
be able to take advantage of the software that has come out of Berkeley,
FSF, CMU etc. It may well be that in 2-3 years when ultra cheap BSD
variants and Hurd proliferate, that Linux will be obsolete. Still, right
now Linux greatly reduces the cost of using tools like gcc, bison, bash
which are useful in the development of such an OS.

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Subject: Re: LINUX is obsolete
Date: 31 Jan 92 10:33:23 GMT
Organization: University of Helsinki

In article <12615@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:
>The limitations of MINIX relate at least partly to my being a professor:
>An explicit design goal was to make it run on cheap hardware so students
>could afford it.

All right: a real technical point, and one that made some of my comments
inexcusable. But at the same time you shoot yourself in the foot a bit:
now you admit that some of the errors of minix were that it was too
portable: including machines that weren't really designed to run unix.
That assumption lead to the fact that minix now cannot easily be
extended to have things like paging, even for machines that would
support it. Yes, minix is portable, but you can rewrite that as
"doesn't use any features", and still be right.

>A multithreaded file system is only a performance hack.

Not true. It's a performance hack /on a microkernel/, but it's an
automatic feature when you write a monolithic kernel - one area where
microkernels don't work too well (as I pointed out in my personal mail
to ast). When writing a unix the "obsolete" way, you automatically get
a multithreaded kernel: every process does it's own job, and you don't
have to make ugly things like message queues to make it work

http://www.oreilly.com/catalog/opensources/book/appa.html (9 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

efficiently.

Besides, there are people who would consider "only a performance hack"
vital: unless you have a cray-3, I'd guess everybody gets tired of
waiting on the computer all the time. I know I did with minix (and yes,
I do with linux too, but it's /much/ better).

>I still maintain the point that designing a monolithic kernel in 1991 is
>a fundamental error. Be thankful you are not my student. You would not
>get a high grade for such a design :-)

Well, I probably won't get too good grades even without you: I had an
argument (completely unrelated - not even pertaining to OS's) with the
person here at the university that teaches OS design. I wonder when
I'll learn :)

>My point is that writing a new operating system that is closely tied to any
>particular piece of hardware, especially a weird one like the Intel line,
>is basically wrong.

But /my/ point is that the operating system /isn't/ tied to any
processor line: UNIX runs on most real processors in existence. Yes,
the /implementation/ is hardware-specific, but there's a HUGE
difference. You mention OS/360 and MS-DOG as examples of bad designs
as they were hardware-dependent, and I agree. But there's a big
difference between these and linux: linux API is portable (not due to my
clever design, but due to the fact that I decided to go for a fairly-
well-thought-out and tested OS: unix.)

If you write programs for linux today, you shouldn't have too many
surprises when you just recompile them for Hurd in the 21st century. As
has been noted (not only by me), the linux kernel is a miniscule part of
a complete system: Full sources for linux currently runs to about 200kB
compressed - full sources to a somewhat complete developement system is
at least 10MB compressed (and easily much, much more). And all of that
source is portable, except for this tiny kernel that you can (provably:
I did it) re-write totally from scratch in less than a year without
having /any/ prior knowledge.

In fact the /whole/ linux kernel is much smaller than the 386-dependent
things in mach: i386.tar.Z for the current version of mach is well over
800kB compressed (823391 bytes according to nic.funet.fi). Admittedly,
mach is "somewhat" bigger and has more features, but that should still
tell you something.

 Linus

From: kaufman@eecs.nwu.edu (Michael L. Kaufman)
Subject: Re: LINUX is obsolete
Date: 3 Feb 92 22:27:48 GMT
Organization: EECS Department, Northwestern University

http://www.oreilly.com/catalog/opensources/book/appa.html (10 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

I tried to send these two posts from work, but I think they got eaten. If you
have seen them already, sorry.

Andy Tanenbaum writes an interesting article (also interesting was finding out
that he actually reads this group) but I think he is missing an important
point.

He Wrote:
>As most of you know, for me MINIX is a hobby, ...

Which is also probably true of most, if not all, of the people who are involved
in Linux. We are not developing a system to take over the OS market, we are
just having a good time.

> What is going to happen
> is that they will gradually take over from the 80x86 line. They will
> run old MS-DOS programs by interpreting the 80386 in software.

Well when this happens, if I still want to play with Linux, I can just run it
on my 386 simulator.

> MINIX was designed to be reasonably portable, and has been ported from the
> Intel line to the 680x0 (Atari, Amiga, Macintosh), SPARC, and NS32016.
> LINUX is tied fairly closely to the 80x86. Not the way to go.

That's fine for the people who have those machines, but it wasn't a free
lunch. That portibility was gained at the cost of some performance and some
features on the 386. Before you decide that LINUX is not the way to go, you
should think about what it is going to be used for. I am going to use it for
running memory and computation intensive graphics programs on my 486. For me,
speed and memory were more important then future state-of-the-artness and
portability.

>But in all honesty, I would
>suggest that people who want a **MODERN** "free" OS look around for a
>microkernel-based, portable OS, like maybe GNU or something like that.

I don't know of any free microkernel-based, portable OSes. GNU is still
vaporware, and likely to remain that way for the forseeable future. Do
you actually have one to recomend, or are you just toying with me? ;-)

--

In article <12615@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:
>My point is that writing a new operating system that is closely tied to any
>particular piece of hardware, especially a weird one like the Intel line,
>is basically wrong. An OS itself should be easily portable to new hardware
>platforms.

I think I see where I disagree with you now. You are looking at OS design

http://www.oreilly.com/catalog/opensources/book/appa.html (11 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

as an end in itself. Minix is good because it is portable/Micro-Kernal/etc.
Linux is not good because it is monolithic/tightly tied to Intel/etc. That
is not a strange attitude for someone in the acedemic world, but it is not
something you should expect to be universally shared. Linux is not being written
as a teaching tool, or as an abstract exercise. It is being written to allow
people to run GNU-type software _today_. The fact that it may not be in use
in five years is less important then the fact that today (well, by April
probably) I can run all sorts of software on it that I want to run. You keep
saying that Minix is better, but if it will not run the software that I want
to run, it really isn't that good (for me) at all.

> When OS/360 was written in assembler for the IBM 360
>25 years ago, they probably could be excused. When MS-DOS was written
>specifically for the 8088 ten years ago, this was less than brilliant, as
>IBM and Microsoft now only too painfully realize.

Same point. MSoft did not come out with Dos to "explore the frontiers of os
research". They did it to make a buck. And considering the fact that MS-DOS
probably still outsells everyone else put together, I don't think that you
say that they have failed _in their goals_. Not that MS-Dos is the best OS
in terms of anything else, only that it has served their needs.

Michael

From: julien@incal.inria.fr (Julien Maisonneuve)
Subject: Re: LINUX is obsolete
Date: 3 Feb 92 17:10:14 GMT

I would like to second Kevin brown in most of his remarks.
I'll add a few user points :
- When ast states that FS multithreading is useless, it reminds me of the many
times I tried to let a job run in the background (like when reading an archive on
a floppy), it is just unusable, the & shell operator could even have been left
out.
- Most interesting utilities are not even compilable under Minix because of the
ATK compiler's incredible limits. Those were hardly understandable on a basic PC,
but become absurd on a 386. Every stupid DOS compiler has a large model (more
expensive, OK). I hate the 13 bit compress !
- The lack of Virtual Memory support prevents people studying this area to
experiment, and prevents users to use large programs. The strange design of the
MM also makes it hard to modify.

The problem is that even doing exploratory work under minix is painful.
If you want to get any work done (or even fun), even DOS is becoming a better
alternative (with things like DJ GPP).
In its basic form, it is really no more than OS course example, a good
toy, but a toy. Obtaining and applying patches is a pain, and precludes further
upgrades.

Too bad when not so much is missing to make it really good.
Thanks for the work andy, but Linux didn't deserve your answer.

http://www.oreilly.com/catalog/opensources/book/appa.html (12 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

For the common people, it does many things better than Minix.

 Julien Maisonneuve.

This is not a flame, just my experience.

From: richard@aiai.ed.ac.uk (Richard Tobin)
Subject: Re: LINUX is obsolete
Date: 4 Feb 92 14:46:49 GMT
Reply-To: richard@aiai.UUCP (Richard Tobin)
Organization: AIAI, University of Edinburgh, Scotland

In article <12615@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:
>A multithreaded file system is only a performance hack. When there is only
>one job active, the normal case on a small PC, it buys you nothing

I find the single-threaded file system a serious pain when using
Minix. I often want to do something else while reading files from the
(excruciatingly slow) floppy disk. I rather like to play rogue while
waiting for large C or Lisp compilations. I look to look at files in
one editor buffer while compiling in another.

(The problem would be somewhat less if the file system stuck to
serving files and didn't interact with terminal i/o.)

Of course, in basic Minix with no virtual consoles and no chance of
running emacs, this isn't much of a problem. But to most people
that's a failure, not an advantage. It just isn't the case that on
single-user machines there's no use for more than one active process;
the idea only has any plausibility because so many people are used to
poor machines with poor operating systems.

As to portability, Minix only wins because of its limited ambitions.
If you wanted a full-featured Unix with paging, job-control, a window
system and so on, would it be quicker to start from basic Minix and
add the features, or to start from Linux and fix the 386-specific
bits? I don't think it's fair to criticise Linux when its aims are so
different from Minix's. If you want a system for pedagogical use,
Minix is the answer. But if what you want is an environment as much
like (say) a Sun as possible on your home computer, it has some
deficiencies.

-- Richard

From: ast@cs.vu.nl (Andy Tanenbaum)
Subject: Re: LINUX is obsolete
Date: 5 Feb 92 14:48:48 GMT
Organization: Fac. Wiskunde & Informatica, Vrije Universiteit, Amsterdam

http://www.oreilly.com/catalog/opensources/book/appa.html (13 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

In article <6121@skye.ed.ac.uk> richard@aiai.UUCP (Richard Tobin) writes:
>If you wanted a full-featured Unix with paging, job-control, a window
>system and so on, would it be quicker to start from basic Minix and
>add the features, or to start from Linux and fix the 386-specific
>bits?

Another option that seems to be totally forgotten here is buy UNIX or a
clone. If you just want to USE the system, instead of hacking on its
internals, you don't need source code. Coherent is only $99, and there
are various true UNIX systems with more features for more money. For the
true hacker, not having source code is fatal, but for people who just
want a UNIX system, there are many alternatives (albeit not free).

Andy Tanenbaum (ast@cs.vul.nl)

From: ajt@doc.ic.ac.uk (Tony Travis)
Subject: Re: LINUX is obsolete
Date: 6 Feb 92 02:17:13 GMT
Organization: Department of Computing, Imperial College, University of London, UK.

ast@cs.vu.nl (Andy Tanenbaum) writes:
> Another option that seems to be totally forgotten here is buy UNIX or a
> clone. If you just want to USE the system, instead of hacking on its
> internals, you don't need source code. Coherent is only $99, and there
> are various true UNIX systems with more features for more money. For the
> true hacker, not having source code is fatal, but for people who just
> want a UNIX system, there are many alternatives (albeit not free).

Andy, I have followed the development of Minix since the first messages
were posted to this group and I am now running 1.5.10 with Bruce
Evans's patches for the 386.

I 'just' want a Unix on my PC and I am not interested in hacking on its
internals, but I *do* want the source code!

An important principle underlying the success and popularity of Unix is
the philosophy of building on the work of others.

This philosophy relies upon the availability of the source code in
order that it can be examined, modified and re-used in new software.

Many years ago, I was in the happy position of being an AT&T Seventh
Edition Unix source licencee but, even then, I saw your decision to
make the source of Minix available as liberation from the shackles of
AT&T copyright!!

I think you may sometimes forget that your 'hobby' has had a profound
effect on the availability of 'personal' Unix (ie. affordable Unix) and
that the 8086 PC I ran Minix 1.2 on actually cost me considerably more
than my present 386/SX clone.

http://www.oreilly.com/catalog/opensources/book/appa.html (14 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

Clearly, Minix _cannot_ be all things to all men, but I see the
progress to 386 versions in much the same way that I see 68000 or other
linear address space architectures: it is a good thing for people like
me who use Minix and feel constrained by the segmented architecture of
the PC version for applications.

NOTHING you can say would convince me that I should use Coherent ...

 Tony

From: richard@aiai.ed.ac.uk (Richard Tobin)
Subject: Re: LINUX is obsolete
Date: 7 Feb 92 14:58:22 GMT
Organization: AIAI, University of Edinburgh, Scotland

In article <12696@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:
>If you just want to USE the system, instead of hacking on its
>internals, you don't need source code.

Unfortunately hacking on the internals is just what many of us want
the system for... You'll be rid of most of us when BSD-detox or GNU
comes out, which should happen in the next few months (yeah, right).

-- Richard

From: comm121@unixg.ubc.ca (Louie)
Subject: Re: LINUX is obsolete
Date: 30 Jan 92 02:55:22 GMT
Organization: University of British Columbia, Vancouver, B.C., Canada

In <12595@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:

>But in all honesty, I would
>suggest that people who want a **MODERN** "free" OS look around for a
>microkernel-based, portable OS, like maybe GNU or something like that.

There are really no other alternatives other than Linux for people like
me who want a "free" OS. Considering that the majority of people who
would use a "free" OS use the 386, portability is really not all that
big of a concern. If I had a Sparc I would use Solaris.

As it stands, I installed Linux with gcc, emacs 18.57, kermit and all of the
GNU utilities without any trouble at all. No need to apply patches. I
just followed the installation instructions. I can't get an OS like
this *anywhere* for the price to do my Computer Science homework. And
it seems like network support and then X-Windows will be ported to Linux
well before Minix. This is something that would be really useful. In my
opinion, portability of standard Unix software is important also.

http://www.oreilly.com/catalog/opensources/book/appa.html (15 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

I know that the design using a monolithic system is not as good as the
microkernel. But for the short term future (And I know I won't/can't
be uprading from my 386), Linux suits me perfectly.

Philip Wu
pwu@unixg.ubc.ca

From: dgraham@bmers30.bnr.ca (Douglas Graham)
Subject: Re: LINUX is obsolete
Date: 1 Feb 92 00:26:30 GMT
Organization: Bell-Northern Research, Ottawa, Canada

In article <12595@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:

> While I could go into a long story here about the relative merits of the
> two designs, suffice it to say that among the people who actually design
> operating systems, the debate is essentially over. Microkernels have won.

Can you recommend any (unbiased) literature that points out the strengths
and weaknesses of the two approaches? I'm sure that there is something
to be said for the microkernel approach, but I wonder how closely
Minix resembles the other systems that use it. Sure, Minix uses lots
of tasks and messages, but there must be more to a microkernel architecture
than that. I suspect that the Minix code is not split optimally into tasks.

> The only real argument for monolithic systems was performance, and there
> is now enough evidence showing that microkernel systems can be just as
> fast as monolithic systems (e.g., Rick Rashid has published papers comparing
> Mach 3.0 to monolithic systems) that it is now all over but the shoutin`.

My main complaint with Minix is not it's performance. It is that adding
features is a royal pain -- something that I presume a microkernel
architecure is supposed to alleviate.

> MINIX is a microkernel-based system.

Is there a consensus on this?

> LINUX is
> a monolithic style system. This is a giant step back into the 1970s.
> That is like taking an existing, working C program and rewriting it in
> BASIC. To me, writing a monolithic system in 1991 is a truly poor idea.

This is a fine assertion, but I've yet to see any rationale for it.
Linux is only about 12000 lines of code I think. I don't see how
splitting that into tasks and blasting messages around would improve it.

>Don't get me wrong, I am not unhappy with LINUX. It will get all the people
>who want to turn MINIX in BSD UNIX off my back. But in all honesty, I would
>suggest that people who want a **MODERN** "free" OS look around for a
>microkernel-based, portable OS, like maybe GNU or something like that.

http://www.oreilly.com/catalog/opensources/book/appa.html (16 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

Well, there are no other choices that I'm aware of at the moment. But
when GNU OS comes out, I'll very likely jump ship again. I sense that
you *are* somewhat unhappy about Linux (and that surprises me somewhat).
I would guess that the reason so many people embraced it, is because it
offers more features. Your approach to people requesting features in
Minix, has generally been to tell them that they didn't really want that
feature anyway. I submit that the exodus in the direction of Linux
proves you wrong.

Disclaimer: I had nothing to do with Linux development. I just find
 it an easier system to understand than Minix.
--
Doug Graham dgraham@bnr.ca My opinions are my own.

From: hedrick@klinzhai.rutgers.edu (Charles Hedrick)
Subject: Re: LINUX is obsolete
Date: 1 Feb 92 00:27:04 GMT
Organization: Rutgers Univ., New Brunswick, N.J.

The history of software shows that availability wins out over
technical quality every time. That's Linux' major advantage. It's a
small 386-based system that's fairly compatible with generic Unix, and
is freely available. I dropped out of the Minix community a couple of
years ago when it became clear that (1) Minix was not going to take
advantage of anything beyond the 8086 anytime in the near future, and
(2) the licensing -- while amazingly friendly -- still made it hard
for people who were interested in producing a 386 version. Several
people apparently did nice work for the 386. But all they could
distribute were diffs. This made bringing up a 386 system a job that
isn't practical for a new user, and in fact I wasn't sure I wanted to
do it.

I apologize if things have changed in the last couple of years. If
it's now possible to get a 386 version in a form that's ready to run,
the community has developed a way to share Minix source, and bringing
up normal Unix programs has become easier in the interim, then I'm
willing to reconsider Minix. I do like its design.

It's possible that Linux will be overtaken by Gnu or a free BSD.
However, if the Gnu OS follows the example of all other Gnu software,
it will require a system with 128MB of memory and a 1GB disk to use.
There will still be room for a small system. My ideal OS would be 4.4
BSD. But 4.4's release date has a history of extreme slippage. With
most of their staff moving to BSDI, it's hard to believe that this
situation is going to be improved. For my own personal use, the BSDI
system will probably be great. But even their very attractive pricing
is likely to be too much for most of our students, and even though
users can get source from them, the fact that some of it is
proprietary will again mean that you can't just put altered code out
for public FTP. At any rate, Linux exists, and the rest of these

http://www.oreilly.com/catalog/opensources/book/appa.html (17 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

alternatives are vapor.

From: tytso@athena.mit.edu (Theodore Y. Ts'o)
Subject: Re: LINUX is obsolete
Date: 31 Jan 92 21:40:23 GMT
Organization: Massachusetts Institute of Technology
In-Reply-To: ast@cs.vu.nl's message of 29 Jan 92 12: 12:50 GMT

>From: ast@cs.vu.nl (Andy Tanenbaum)

>ftp.cs.vu.nl = 192.31.231.42 in dir minix/simulator.) I think it is a
>gross error to design an OS for any specific architecture, since that is
>not going to be around all that long.

It's not your fault for believing that Linux is tied to the 80386
architecture, since many Linux supporters (including Linus himself) have
made the this statement. However, the amount of 80386-specific code is
probably not much more than what is in a Minix implementation, and there
is certainly a lot less 80386 specific code in Linux than here is
Vax-specific code in BSD 4.3.

Granted, the port to other architectures hasn't been done yet. But if I
were going to bring up a Unix-like system on a new architecture, I'd
probably start with Linux rather than Minix, simply because I want to
have some control over what I can do with the resulting system when I'm
done with it. Yes, I'd have to rewrite large portions of the VM and
device driver layers --- but I'd have to do that with any other OS.
Maybe it would be a little bit harder than it would to port Minix to the
new architecture; but this would probably be only true for the first
architecture that we ported Linux to.

>While I could go into a long story here about the relative merits of the
>two designs, suffice it to say that among the people who actually design
>operating systems, the debate is essentially over. Microkernels have won.
>The only real argument for monolithic systems was performance, and there
>is now enough evidence showing that microkernel systems can be just as
>fast as monolithic systems (e.g., Rick Rashid has published papers comparing
>Mach 3.0 to monolithic systems) that it is now all over but the shoutin'.

This is not necessarily the case; I think you're painting a much more
black and white view of the universe than necessarily exists. I refer
you to such papers as Brent Welsh's (welch@parc.xerox.com) "The
Filsystem Belongs in the Kernel" paper, where in he argues that the
filesystem is a mature enough abstraction that it should live in the
kernel, not outside of it as it would in a strict microkernel design.

There also several people who have been concerned about the speed of
OSF/1 Mach when compared with monolithic systems; in particular, the
nubmer of context switches required to handle network traffic, and
networked filesystems in particular.

http://www.oreilly.com/catalog/opensources/book/appa.html (18 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

I am aware of the benefits of a micro kernel approach. However, the
fact remains that Linux is here, and GNU isn't --- and people have been
working on Hurd for a lot longer than Linus has been working on Linux.
Minix doesn't count because it's not free. :-)

I suspect that the balance of micro kernels versus monolithic kernels
depend on what you're doing. If you're interested in doing research, it
is obviously much easier to rip out and replace modules in a micro
kernel, and since only researchers write papers about operating systems,
ipso facto micro kernels must be the right approach. However, I do know
a lot of people who are not researchers, but who are rather practical
kernel programmers, who have a lot of concerns over the cost of copying
and the cost of context switches which are incurred in a micro kernel.

By the way, I don't buy your arguments that you don't need a
multi-threaded filesystem on a single user system. Once you bring up a
windowing system, and have a compile going in one window, a news reader
in another window, and UUCP/C News going in the background, you want
good filesystem performance, even on a single-user system. Maybe to a
theorist it's an unnecessary optimization and a (to use your words)
"performance hack", but I'm interested in a Real operating system ---
not a research toy.
=-=
Theodore Ts'o bloom-beacon!mit-athena!tytso
308 High St., Medford, MA 02155 tytso@athena.mit.edu
 Everybody's playing the game, but nobody's rules are the same!

From: joe@jshark.rn.com
Subject: Re: LINUX is obsolete
Date: 31 Jan 92 13:21:44 GMT
Organization: a blip of entropy

In article <12595@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:
>
> MINIX was designed to be reasonably portable, and has been ported from the
> Intel line to the 680x0 (Atari, Amiga, Macintosh), SPARC, and NS32016.
> LINUX is tied fairly closely to the 80x86. Not the way to go.

If you looked at the source instead of believing the author, you'd realise
this is not true!

He's replaced 'fubyte' by a routine which explicitly uses a segment register
- but that could be easily changed. Similarly, apart from a couple of places
which assume the '386 MMU, a couple of macros to hide the exact page sizes
etc would make porting trivial. Using '386 TSS's makes the code simpler,
but the VAX and WE32000 have similar structures.

As he's already admitted, a bit of planning would have the the system
neater, but merely putting '386 assembler around isn't a crime!

And with all due respect:

http://www.oreilly.com/catalog/opensources/book/appa.html (19 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

 - the Book didn't make an issue of portability (apart from a few
 "#ifdef M8088"s)
 - by the time it was released, Minix had come to depend on several
 8086 "features" that caused uproar from the 68000 users.

>Andy Tanenbaum (ast@cs.vu.nl)

joe.

From: entropy@wintermute.WPI.EDU (Lawrence C. Foard)
Subject: Re: LINUX is obsolete
Date: 5 Feb 92 14:56:30 GMT
Organization: Worcester Polytechnic Institute

In article <12595@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:
>Don`t get me wrong, I am not unhappy with LINUX. It will get all the people
>who want to turn MINIX in BSD UNIX off my back. But in all honesty, I would
>suggest that people who want a **MODERN** "free" OS look around for a
>microkernel-based, portable OS, like maybe GNU or something like that.

I believe you have some valid points, although I am not sure that a
microkernel is necessarily better. It might make more sense to allow some
combination of the two. As part of the IPC code I'm writting for Linux I am
going to include code that will allow device drivers and file systems to run
as user processes. These will be significantly slower though, and I believe it
would be a mistake to move everything outside the kernel (TCP/IP will be
internal).

Actually my main problem with OS theorists is that they have never tested
there ideas! None of these ideas (with a partial exception for MACH) has ever
seen the light of day. 32 bit home computers have been available for almost a
decade and Linus was the first person to ever write a working OS for them
that can be used without paying AT&T $100,000. A piece of software in hand is
worth ten pieces of vaporware, OS theorists are quick to jump all over an OS
but they are unwilling to ever provide an alternative.

The general consensus that Micro kernels is the way to go means nothing when
a real application has never even run on one.

The release of Linux is allowing me to try some ideas I've been wanting to
experment with for years, but I have never had the opportunity to work with
source code for a functioning OS.

From: ast@cs.vu.nl (Andy Tanenbaum)
Subject: Re: LINUX is obsolete
Date: 5 Feb 92 23:33:23 GMT
Organization: Fac. Wiskunde & Informatica, Vrije Universiteit, Amsterdam

In article <1992Feb5.145630.759@wpi.WPI.EDU> entropy@wintermute.WPI.EDU (Lawrence

http://www.oreilly.com/catalog/opensources/book/appa.html (20 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

C. Foard) writes:
>Actually my main problem with OS theorists is that they have never tested
>there ideas!
I'm mortally insulted. I AM NOT A THEORIST. Ask anybody who was at our
department meeting yesterday (in joke).

Actually, these ideas have been very well tested in practice. OSF is betting
its whole business on a microkernel (Mach 3.0). USL is betting its business
on another one (Chorus). Both of these run lots of software, and both have
been extensively compared to monolithic systems. Amoeba has been fully
implemented and tested for a number of applications. QNX is a microkernel
based system, and someone just told me the installed base is 200,000 systems.
Microkernels are not a pipe dream. They represent proven technology.

The Mach guys wrote a paper called "UNIX as an application program."
It was by Golub et al., in the Summer 1990 USENIX conference. The Chorus
people also have a technical report on microkernel performance, and I
coauthored another paper on the subject, which I mentioned yesterday
(Dec. 1991 Computing Systems). Check them out.

Andy Tanenbaum (ast@cs.vu.nl)

From: peter@ferranti.com (peter da silva)
Subject: Re: LINUX is obsolete
Organization: Xenix Support, FICC
Date: Thu, 6 Feb 1992 16:02:47 GMT

In article <12747@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:
> QNX is a microkernel
> based system, and someone just told me the installed base is 200,000 systems.

Oh yes, while I'm on the subject... there are over 3 million Amigas out there,
which means that there are more of them than any UNIX vendor has shipped, and
probably more than all UNIX systems combined.

From: peter@ferranti.com (peter da silva)
Subject: Re: LINUX is obsolete
Organization: Xenix Support, FICC
Date: Thu, 6 Feb 1992 16:00:22 GMT

In article <1992Feb5.145630.759@wpi.WPI.EDU> entropy@wintermute.WPI.EDU (Lawrence
C. Foard) writes:
> Actually my main problem with OS theorists is that they have never tested
> there ideas!

I beg to differ... there are many microkernel operating systems out there
for everything from an 8088 (QNX) up to large research systems.

> None of these ideas (with a partial exception for MACH) has ever

http://www.oreilly.com/catalog/opensources/book/appa.html (21 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

> seen the light of day. 32 bit home computers have been available for almost a
> decade and Linus was the first person to ever write a working OS for them
> that can be used without paying AT&T $100,000.

I must have been imagining AmigaOS, then. I've been using a figment of my
imagination for the past 6 years.

AmigaOS is a microkernel message-passing design, with better response time
and performance than any other readily available PC operating system: including
MINIX, OS/2, Windows, MacOS, Linux, UNIX, and *certainly* MS-DOS.

The microkernel design has proven invaluable. Things like new file systems
that are normally available only from the vendor are hobbyist products on
the Amiga. Device drivers are simply shared libraries and tasks with specific
entry points and message ports. So are file systems, the window system, and
so on. It's a WONDERFUL design, and validates everything that people have
been saying about microkernels. Yes, it takes more work to get them off the
ground than a coroutine based macrokernel like UNIX, but the versatility
pays you back many times over.

I really wish Andy would do a new MINIX based on what has been learned since
the first release. The factoring of responsibilities in MINIX is fairly poor,
but the basic concept is good.

> The general consensus that Micro kernels is the way to go means nothing when
> a real application has never even run on one.

I'm dreaming again. I sure throught Deluxe Paint, Sculpt 3d, Photon Paint,
Manx C, Manx SDB, Perfect Sound, Videoscape 3d, and the other programs I
bought for my Amiga were "real". I'll have to send the damn things back now,
I guess.

The availability of Linux is great. I'm delighted it exists. I'm sure that
the macrokernel design is one reason it has been implemented so fast, and this
is a valid reason to use macrokernels. BUT... this doesn't mean that
microkernels are inherently slow, or simply research toys.

From: dsmythe@netcom.COM (Dave Smythe)
Subject: Re: LINUX is obsolete
Date: 10 Feb 92 07:08:22 GMT
Organization: Netcom - Online Communication Services (408 241-9760 guest)

In article <1992Feb5.145630.759@wpi.WPI.EDU> entropy@wintermute.WPI.EDU (Lawrence
C. Foard) writes:
>Actually my main problem with OS theorists is that they have never tested
>there ideas! None of these ideas (with a partial exception for MACH) has ever
>seen the light of day.

David Cheriton (Prof. at Stanford, and author of the V system) said something
similar to this in a class in distributed systems. Paraphrased:

http://www.oreilly.com/catalog/opensources/book/appa.html (22 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

 "There are two kinds of researchers: those that have implemented
 something and those that have not. The latter will tell you that
 there are 142 ways of doing things and that there isn't consensus
 on which is best. The former will simply tell you that 141 of
 them don't work."

He really rips on the OSI-philes as well, for a similar reason. The Internet
protocols are adapted only after having been in use for a period of time,
preventing things from getting standardized that will never be implementable
in a reasonable fashion. OSI adherents, on the other hand, seem intent on
standardizing everything possible, including "escapes" from the standard,
before a reasonable reference implementation exists. Consequently, you see
obsolete ideas immortalized, such as sub-byte-level data field packing,
which makes good performance difficult when your computer is drinking from
a 10+ Gbs fire-hose :-).

Just my $.02

D

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Subject: Apologies (was Re: LINUX is obsolete)
Date: 30 Jan 92 15:38:16 GMT
Organization: University of Helsinki

In article <1992Jan29.231426.20469@klaava.Helsinki.FI> I wrote:
>Well, with a subject like this, I'm afraid I'll have to reply.

And reply I did, with complete abandon, and no thought for good taste
and netiquette. Apologies to ast, and thanks to John Nall for a friendy
"that's not how it's done"-letter. I over-reacted, and am now composing
a (much less acerbic) personal letter to ast. Hope nobody was turned
away from linux due to it being (a) possibly obsolete (I still think
that's not the case, although some of the criticisms are valid) and (b)
written by a hothead :-)

 Linus "my first, and hopefully last flamefest" Torvalds

From: pmacdona@sanjuan (Peter MacDonald)
Subject: re: Linux is obsolete
Date: 1 Feb 92 02:10:06 GMT
Organization: University of Victoria, Victoria, BC, CANADA

Since I think I posted one of the earliest messages in all this discussion
of Minix vs Linux, I feel compelled to comment on my reasons for
switching from Minix to Linux. In order of importance they are:

 1) Linux is free
 2) Linux is evolving at a satisfactory clip (because new features

http://www.oreilly.com/catalog/opensources/book/appa.html (23 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

 are accepted into the distribution by Linus).

The first requires some explanation, because if I have already purchased
Minix, what posssible concern could price have for me? Simple.
If the OS is free, many more people will use/support/enhance it.
This is also the same reasoning I used when I bought my 386 instead
of a sparc (which I could have got for just 30% more). Since
PCs are cheap and generally available, more people will buy/use
them and thus good, cheap/free software will be abundant.

The second should be pretty obvious to anyone who has been using Minix
for for any period of time. AST generally does not accept enhancements
to Minix. This is not meant as a challenge, but merely a statement of
fact. AST has good and legitimate reasons for this, and I do not dispute
them. But Minix has some limitations which I just could no longer
live with, and due to this policy, the prospect of seeing them resolved
in reasonable time was unsatisfactory. These limitations include:

 no 386 support
 no virtual consoles
 no soft links
 no select call
 no ptys
 no demand paging/swapping/shared-text/shared-libs... (efficient mm)
 chmem (inflexible mm)
 no X-Windows (advocated for the same reasons as Linux and the 386).
 no TCP/IP
 no GNU/SysV integration (portability)

Some of these could be fixed by patches (and if you have done this
yourself, I don't have to tell you how satisfactory that is), but at
least the last 5 items were/are beyond any reasonable expectation.

Finally, my comment (crack?) about Minix's segmented kernel, or
micro-kernel architecture was more an expression of my frustration/
bewilderment at attempting to use the Minix PTY patches as a guide
of how to do it under Linux. That particular instance was one where
message passing greatly complicated the implementation of a feature.

I do have an opinion about Monlithic vs Message Passing, but won't
express it now, and did not mean to expresss it then. My goals are
totally short term (maximum functionality in the minimum amount of
time/cost/hassle), and so my views on this are irrelevant, and should
not be misconstrued. If you are non-plussed by the lack of the above
features, then you should consider Minix, as long as you don't mind
paying of course :)

From: olaf@oski.toppoint.de (Olaf Schlueter)
Subject: Re: Linux is obsolete
Date: 7 Feb 92 11:41:44 GMT
Organization: Toppoint Mailbox e.V.

http://www.oreilly.com/catalog/opensources/book/appa.html (24 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

Just a few comments to the discussion of Linux vs Minix, which evolved
partly to a discussion of monolithic vs micro-kernel.

I think there will be no aggreement between the two parties advocating
either concept, if they forget, that Linux and Minix have been designed
for different applications. If you want a cheap, powerful and
enhancable Unix system running on a single machine, with the possibility
to adapt standard Unix software without pain, then Linux is for you. If
you are interested in modern operating system concepts, and want to
learn how a microkernel based system works, then Minix is the better
choice.

It is not an argument against microkernel system, that for the time
being monolithic implemenations of Unix on PCs have a better
performance. This means only, that Unix is maybe better implemented as
a monolithic OS, at least as long as it runs on a single machine. From
the users point of view, the internal design of the OS doesn't matter at
all. Until it comes to networks. On the monolithic approach, a file
server will become a user process based on some hardware facility like
ethernet. Programs which want to use this facility will have to use
special libraries which offer the calls for communication with this
server. In a microkernel system it is possible to incorporate the
server into the OS without the need for new "system" calls. From the
users point of view this has the advantage, that nothing changes, he
just gets better performance (in terms of more disk space for example).
From the implementors point of view, the microkernel system is faster
adaptable to changes in hardware design.

It has been critized, that AST rejects any improvements to Minix. As he
is interested in the educational value of Minix, I understand his
argument, that he wants to keep the code simple, and don't want to
overload it with features. As an educational tool, Minix is written as
a microkernel system, although it is running on hardware platforms, who
will probably better perform with a monolithic OS. But the area of
network applications is growing and modern OS like Amoeba or Plan 9
cannot be written as monolithic systems. So Minix has been written with
the intention to give students a practical example of a microkernel OS,
to let them play with tasks and messages. It was not the idea to give a
lot of people a cheap, powerful OS for a tenth of the price of SYSV or
BSD implementations.

Resumee: Linux is not better than Minix, or the other way round. They
are different for good reasons.

From: meggin@epas.utoronto.ca (David Megginson)
Subject: Mach/Minix/Linux/Gnu etc.
Date: 1 Feb 92 17:11:03 GMT
Organization: University of Toronto - EPAS

Well, this has been a fun discussion. I am absolutely convinced by

http://www.oreilly.com/catalog/opensources/book/appa.html (25 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

Prof. Tanenbaum that a micro-kernel _is_ the way to go, but the more
I look at the Minix source, the less I believe that it is a
micro-kernel. I would probably not bother porting Linux to the
M68000, but I want more services than Minix can offer.

What about a micro-kernel which is message/syscall compatible with
MACH? It doesn't actually have to do everything that MACH does, like
virtual memory paging -- it just has to _look_ like MACH from the
outside, to fool programs like the future Gnu Unix-emulator, BSD, etc.
This would extend the useful lives of our M68000- or 80286-based
machines for a little longer. In the meantime, I will probably stay
with Minix for my ST rather than switching back to MiNT -- after all,
Minix at least looks like Unix, while MiNT looks like TOS trying to
look like Unix (it has to, to be TOS compatible).

David

From: peter@ferranti.com (peter da silva)
Newsgroups: comp.os.minix
Subject: What good does this war do? (Re: LINUX is obsolete)
Date: 3 Feb 92 16:37:24 GMT
Organization: Xenix Support, FICC

Will you quit flaming each other?

I mean, linux is designed to provide a reasonably high performance environment
on a hardware platform crippled by years of backwards-compatible kludges. Minix
is designed as a teaching tool. Neither is that good at doing the other's job,
and why should they? The fact that Minix runs out of steam quickly (and it
does) isn't a problem in its chosen mileau. It's sure better than the TOY
operating system. The fact that Linux isn't transportable beyond the 386/AT
platform isn't a problem when there are millions of them out there (and quite
cheap: you can get a 386/SX for well under $1000).

A monolithic kernel is easy enough to build that it's worth doing it if it gets
a system out the door early. Think of it as a performance hack for programmer
time. The API is portable. You can replace the kernel with a microkernel
design (and MINIX isn't the be-all and end-all of microkernel designs either:
even for low end PCs... look at AmigaOS) without disturbing the applications.
That's the whole point of a portable API in the first place.

Microkernels are definitely a better design for many tasks. I takes more
work to make them efficient, so a simpler design that doesn't take advantage
of the microkernel in any real way is worth doing for pedagogical reasons.
Think of it as a performance hack for student time. The design is still good
and when you can get an API to the microkernel interface you can get VERY
impressive performance (thousands of context switches per second on an 8
MHz 68000).

http://www.oreilly.com/catalog/opensources/book/appa.html (26 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

From: ast@cs.vu.nl (Andy Tanenbaum)
Subject: Unhappy campers
Date: 3 Feb 92 22:46:40 GMT
Organization: Fac. Wiskunde & Informatica, Vrije Universiteit, Amsterdam

I've been getting a bit of mail lately from unhappy campers. (Actually 10
messages from the 43,000 readers may seem like a lot, but it is not really.)
There seem to be three sticking points:

 1. Monolithic kernels are just as good as microkernels
 2. Portability isn't so important
 3. Software ought to be free

If people want to have a serious discussion of microkernels vs. monolithic
kernels, fine. We can do that in comp.os.research. But please don't sound off
if you have no idea of what you are talking about. I have helped design
and implement 3 operating systems, one monolithic and two micro, and have
studied many others in detail. Many of the arguments offered are nonstarters
(e.g., microkernels are no good because you can't do paging in user space--
except that Mach DOES do paging in user space).

If you don't know much about microkernels vs. monolithic kernels, there is
some useful information in a paper I coauthored with Fred Douglis, Frans
Kaashoek and John Ousterhout in the Dec. 1991 issue of COMPUTING SYSTEMS, the
USENIX journal). If you don't have that journal, you can FTP the paper from
ftp.cs.vu.nl (192.31.231.42) in directory amoeba/papers as comp_sys.tex.Z
(compressed TeX source) or comp_sys.ps.Z (compressed PostScript). The paper
gives actual performance measurements and supports Rick Rashid's conclusion that
microkernel based systems are just as efficient as monolithic kernels.

As to portability, there is hardly any serious discussion possible any more.
UNIX has been ported to everything from PCs to Crays. Writing a portable
OS is not much harder than a nonportable one, and all systems should be
written with portability in mind these days. Surely Linus' OS professor
pointed this out. Making OS code portable is not something I invented in 1987.

While most people can talk rationally about kernel design and portability,
the issue of free-ness is 100% emotional. You wouldn't believe how much
[expletive deleted] I have gotten lately about MINIX not being free. MINIX
costs $169, but the license allows making two backup copies, so the effective
price can be under $60. Furthermore, professors may make UNLIMITED copies
for their students. Coherent is $99. FSF charges >$100 for the tape its "free"
software comes on if you don't have Internet access, and I have never heard
anyone complain. 4.4 BSD is $800. I don't really believe money is the issue.
Besides, probably most of the people reading this group already have it.

A point which I don't think everyone appreciates is that making something
available by FTP is not necessarily the way to provide the widest distribution.
The Internet is still a highly elite group. Most computer users are NOT on it.
It is my understanding from PH that the country where MINIX is most widely used
is Germany, not the U.S., mostly because one of the (commercial) German
computer magazines has been actively pushing it. MINIX is also widely used in
Eastern Europe, Japan, Israel, South America, etc. Most of these people would

http://www.oreilly.com/catalog/opensources/book/appa.html (27 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

never have gotten it if there hadn't been a company selling it.

Getting back to what "free" means, what about free source code? Coherent
is binary only, but MINIX has source code, just as LINUX does. You can change
it any way you want, and post the changes here. People have been doing that
for 5 years without problems. I have been giving free updates for years, too.

I think the real issue is something else. I've been repeatedly offered virtual
memory, paging, symbolic links, window systems, and all manner of features. I
have usually declined because I am still trying to keep the system simple
enough for students to understand. You can put all this stuff in your version,
but I won't put it in mine. I think it is this point which irks the people who
say "MINIX is not free," not the $60.

An interesting question is whether Linus is willing to let LINUX become "free"
of his control. May people modify it (ruin it?) and sell it? Remember the
hundreds of messages with subject "Re: Your software sold for money" when it
was discovered the MINIX Centre in England was selling diskettes with news
postings, more or less at cost?

Suppose Fred van Kempen returns from the dead and wants to take over, creating
Fred's LINUX and Linus' LINUX, both useful but different. Is that ok? The
test comes when a sizable group of people want to evolve LINUX in a way Linus
does not want. Until that actually happens the point is moot, however.

If you like Linus' philosophy rather than mine, by all means, follow him, but
please don't claim that you're doing this because LINUX is "free." Just
say that you want a system with lots of bells and whistles. Fine. Your choice.
I have no argument with that. Just tell the truth.

As an aside, for those folks who don't read news headers, Linus is in Finland
and I am in The Netherlands. Are we reaching a situation where another
critical industry, free software, that had been totally dominated by the U.S.
is being taken over by the foreign competition? Will we soon see
President Bush coming to Europe with Richard Stallman and Rick Rashid
in tow, demanding that Europe import more American free software?

Andy Tanenbaum (ast@cs.vu.nl)

From: ast@cs.vu.nl (Andy Tanenbaum)
Subject: Re: Unhappy campers
Date: 5 Feb 92 23:23:26 GMT
Organization: Fac. Wiskunde & Informatica, Vrije Universiteit, Amsterdam

In article <205@fishpond.uucp> fnf@fishpond.uucp (Fred Fish) writes:
>If PH was not granted a monopoly on distribution, it would have been possible
>for all of the interested minix hackers to organize and set up a group that
>was dedicated to producing enhanced-minix. This aim of this group could have
>been to produce a single, supported version of minix with all of the commonly
>requested enhancements. This would have allowed minix to evolve in much the
>same way that gcc has evolved over the last few years.

http://www.oreilly.com/catalog/opensources/book/appa.html (28 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

This IS possible. If a group of people wants to do this, that is fine.
I think co-ordinating 1000 prima donnas living all over the world will be
as easy as herding cats, but there is no legal problem. When a new release
is ready, just make a diff listing against 1.5 and post it or make it FTPable.
While this will require some work on the part of the users to install it,
it isn't that much work. Besides, I have shell scripts to make the diffs
and install them. This is what Fred van Kempen was doing. What he did wrong
was insist on the right to publish the new version, rather than diffs against
the PH baseline. That cuts PH out of the loop, which, not surprisingly, they
weren't wild about. If people still want to do this, go ahead.

Of course, I am not necessarily going to put any of these changes in my version,
so there is some work keeping the official and enhanced ones in sync, but I
am willing to co-operate to minimize work. I did this for a long time with
Bruce Evans and Frans Meulenbroeks.

If Linus wants to keep control of the official version, and a group of eager
beavers want to go off in a different direction, the same problem arises.
I don't think the copyright issue is really the problem. The problem is
co-ordinating things. Projects like GNU, MINIX, or LINUX only hold together
if one person is in charge. During the 1970s, when structured programming
was introduced, Harlan Mills pointed out that the programming team should
be organized like a surgical team--one surgeon and his or her assistants,
not like a hog butchering team--give everybody an axe and let them chop away.

Anyone who says you can have a lot of widely dispersed people hack away on
a complicated piece of code and avoid total anarchy has never managed a
software project.

>Where is the sizeable group of people that want to evolve gcc in a way that
>rms/FSF does not approve of?
A compiler is not something people have much emotional attachment to. If
the language to be compiled is a given (e.g., an ANSI standard), there isn't
much room for people to invent new features. An operating system has unlimited
opportunity for people to implement their own favorite features.

Andy Tanenbaum (ast@cs.vu.nl)

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Subject: Re: Unhappy campers
Date: 6 Feb 92 10:33:31 GMT
Organization: University of Helsinki

In article <12746@star.cs.vu.nl> ast@cs.vu.nl (Andy Tanenbaum) writes:
>
>If Linus wants to keep control of the official version, and a group of eager
>beavers want to go off in a different direction, the same problem arises.

This is the second time I've seen this "accusation" from ast, who feels
pretty good about commenting on a kernel he probably haven't even seen.
Or at least he hasn't asked me, or even read alt.os.linux about this.

http://www.oreilly.com/catalog/opensources/book/appa.html (29 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

Just so that nobody takes his guess for the full thruth, here's my
standing on "keeping control", in 2 words (three?):

I won't.

The only control I've effectively been keeping on linux is that I know
it better than anybody else, and I've made my changes available to
ftp-sites etc. Those have become effectively official releases, and I
don't expect this to change for some time: not because I feel I have
some moral right to it, but because I haven't heard too many complaints,
and it will be a couple of months before I expect to find people who
have the same "feel" for what happens in the kernel. (Well, maybe
people are getting there: tytso certainly made some heavy changes even
to 0.10, and others have hacked it as well)

In fact I have sent out feelers about some "linux-kernel" mailing list
which would make the decisions about releases, as I expect I cannot
fully support all the features that will /have/ to be added: SCSI etc,
that I don't have the hardware for. The response has been non-existant:
people don't seem to be that eager to change yet. (well, one person
felt I should ask around for donations so that I could support it - and
if anybody has interesting hardware lying around, I'd be happy to accept
it :)

The only thing the copyright forbids (and I feel this is eminently
reasonable) is that other people start making money off it, and don't
make source available etc... This may not be a question of logic, but
I'd feel very bad if someone could just sell my work for money, when I
made it available expressly so that people could play around with a
personal project. I think most people see my point.

That aside, if Fred van Kempen wanted to make a super-linux, he's quite
wellcome. He won't be able to make much money on it (distribution fee
only), and I don't think it's that good an idea to split linux up, but I
wouldn't want to stop him even if the copyright let me.

>I don't think the copyright issue is really the problem. The problem is
>co-ordinating things. Projects like GNU, MINIX, or LINUX only hold together
>if one person is in charge.

Yes, coordination is a big problem, and I don't think linux will move
away from me as "head surgeon" for some time, partly because most people
understand about these problems. But copyright /is/ an issue: if people
feel I do a bad job, they can do it themselves. Likewise with gcc. The
minix copyright, however, means that if someone feels he could make a
better minix, he either has to make patches (which aren't that great
whatever you say about them) or start off from scratch (and be attacked
because you have other ideals).

Patches aren't much fun to distribute: I haven't made cdiffs for a
single version of linux yet (I expect this to change: soon the patches
will be so much smaller than the kernel that making both patches and a
complete version available is a good idea - note that I'd still make the

http://www.oreilly.com/catalog/opensources/book/appa.html (30 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

whole version available too). Patches upon patches are simply
impractical, especially for people that may do changes themselves.

>>Where is the sizeable group of people that want to evolve gcc in a way that
>>rms/FSF does not approve of?
>A compiler is not something people have much emotional attachment to. If
>the language to be compiled is a given (e.g., an ANSI standard), there isn't
>much room for people to invent new features. An operating system has unlimited
>opportunity for people to implement their own favorite features.

Well, there's GNU emacs... Don't tell us people haven't got emotional
attachment to editors :)

 Linus

From: dmiller@acg.uucp (David Miller)
Subject: Linux is Obsolete and follow up postings
Date: 3 Feb 92 01:03:46 GMT
Organization: AppliedComputerGroup

As an observer interested in operating system design, I couldn't resist this
thread. Please realize that I am not really experienced with minux
or linux: I have been into unix for many years. First, a few observations:

Minix was written to be an educational tool for ASTs' classes, not a commercial
operating system. It was never a design parameter to have it run freely
available source code for unix systems. I think it was also a statement of
how operating systems should be designed, with a micro kernel and seperate
processes covering as much of the required functionality as possible.

Linux was written mostly as a learning exercise on Linus part - how to
program the 386 family. Designing the ultimate operating system was not
an objective. Providing a usable, free platform that would run all sorts
of widely available free software was a consideration, and one that appears
to have been well met.

Criticism from anyone that either of these systems isn't what *they* would
like it to be is misplaced. After all, anybody that has a computer that will
run either system is free to do what Linus and Andrew did: write your own!

I, for one, applaud Linus for his considerable effort in developing Linux
and his decision to make it free to everybody. I applaud AST for his
effort to make minix affordable - I have real trouble relating to complaints
that minix isn't free. If you can afford the time to explore minix, and a
basic computer system, $150 is not much more - and you do get a book to go
with it.

Next, a few questions for the professor:

Is minix supposed to be a "real operating system" or an educational tool ?
As an educational tool it is an excellent work. As a real operating system

http://www.oreilly.com/catalog/opensources/book/appa.html (31 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

it presents some terribly rough edges (why no malloc() ?, just for starters)
My feeling from reading The Book and listening to postings here is that you
wanted a tool to teach your classes, and a lot of others wanted to play with
an affordable operating system. These others have been trying to bolt on
enough features to make it a "real operating system", with less than
outstanding success.

Why split fundemental os functions, such as memory management, into user
processes? As all good *nix gurus know, the means to success is to
divide and conquer, with the goal being to *simplify* the problem into
managable, well defined components. If splitting basic parts of the
operating system into user space processes complicates the function by
introducing additional mechanisms (message passing, complicated signals),
have we met the objective of simplifying the design and implementation?

I agree that *nix has suffered a bad case of feature-itis - especially
sysVr4. Perhaps the features that people want for either functionality
or compatibility could be offered by run-time loadable modules/libraries
that offer these features. The micro-kernel would still be a base-level
resource manager that also routes function requests to the appropriate
module/library. The modules could be threads or user processes. (I think
- os hackers please correct me :-))

Just my $.04 worth - please feel free to post or email responses.
I have no formal progressive training in computer science, so I am really
asking these questions in ignorance. I suspect a lot of others on the
net have similar questions in their own minds, but I've been wrong before.

-- David

From: michael@gandalf.informatik.rwth-aachen.de (Michael Haardt)
Subject: 1.6.17 summary and why I think AST is right.
Date: 6 Feb 92 20:07:25 GMT
Reply-To: u31b3hs@messua.informatik.rwth-aachen.de (Michael Haardt)
Organization: Gandalf - a 386-20 machine

I will first give a summary of what you can expect from MINIX in *near*
future, and then explain why I think AST is right.

Some time ago, I asked for details about the next MINIX release (1.6.17).
I got some response, but only from people running 1.6.16. The following
informations are not official and may be wrong, but they are all I know
at the moment. Correct me if something is wrong:

- The 1.6.17 patches will be relative to 1.5 as shipped by PH.

- The header files are clean.

- The two types of filesystems can be used together.

- The signal handling is rewritten for POSIX. The old bug is removed.

http://www.oreilly.com/catalog/opensources/book/appa.html (32 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

- The ANSI compiler (available from Transmediar, I guess) comes with
 compiler binaries and new libraries.

- There don't seem to be support for the Amoeba network protocol.

- times(2) returns a correct value. termios(2) is implemented, but it's
 more a hack. I don't know if "implemented" means in the kernel, or the
 current emulation.

- There is no documentation about the new filesystem. There is a new fsck
 and a new mkfs, don't know about de.

- With the ANSI compiler, there is better floating point support.

- The scheduler is improved, but not as good as written by Kai-Uwe Bloem.

I asked these things to get facts for the decision if I should upgrade to
MINIX 1.6.17 or to Linux after the examens are over. Well, the decision
is made: I will upgrade to Linux at the end of the month and remove MINIX
from my winchester, when Linux runs all the software I need and which currently
runs under MINIX 1.5 with heavy patches. I guess this may take up to two
months. These are the main reasons for my decision:

- There is no "current" MINIX release, which can be used as basis for
 patches and nobody knows, when 1.6.17 will appear.

- The library contains several bugs and from what I have heard, there is
 no work done at them. There will not be a new compiler, and the 16 bit
 users still have to use buggy ACK.

- 1.6.17 should offer more POSIX, but a complete termios is still missing.

- I doubt that there is still much development for 16 bit users.

I think I will stop maintaining the MINIX software list in a few months.
Anyone out there, who would like to continue it? Until Linux runs
perfect on my machine, each update of Origami will still run on 16-bit
MINIX. I will announce when the last of these versions appears.

In my opinion, AST is right in his decision about MINIX. I read the flame
war and can't resist to say that I like MINIX the way it is, now where
there is Linux. MINIX has some advantages:

- You can start playing with it without a winchester, you can even
 compile programs. I did this a few years ago.

- It is so small, you don't need to know much to get a small system which
 runs ok.

- There is the book. Ok, only for version 1.3, but most of it is still valid.

- MINIX is an example of a non-monolithic kernel. Call it a microkernel

http://www.oreilly.com/catalog/opensources/book/appa.html (33 of 34)

Appendix A - The Tanenbaum-Torvalds Debate

 or a hack to overcome braindamaged hardware: It demonstrates a concept,
 with its pros and cons -- a documented concept.

In my eyes, it is a nice system for first steps in UNIX and systems
programming. I learned most of what I know about UNIX with MINIX, in
all areas, from programming in C under UNIX to system administration
(and security holes:) MINIX grew with me: 1.5.xx upgrades, virtual
consoles, mail & news, text processing, crosscompiling etc. Now it is
too small for me. I don't need a teaching system anymore, I would like
to get a more complicated and featureful UNIX, and there is one: Linux.

Back in the old days, v7 was state of the art. There was MINIX which
offered most of it. In one or two years, POSIX is what you are used to
see. Hopefully, there will be MINIX, offering most of it, with a new
book, for people who want to run a small system to play and experiment with.

Stop flaming, MINIX and Linux are two different systems with different
purposes. One is a teaching tool (and a good one I think), the other is
real UNIX for real hackers.

Michael

From: dingbat@diku.dk (Niels Skov Olsen)
Subject: Re: 1.6.17 summary and why I think AST is right.
Date: 10 Feb 92 17:33:39 GMT
Organization: Department of Computer Science, U of Copenhagen

michael@gandalf.informatik.rwth-aachen.de (Michael Haardt) writes:

>Stop flaming, MINIX and Linux are two different systems with different
>purposes. One is a teaching tool (and a good one I think), the other is
>real UNIX for real hackers.

Hear, hear! And now Linux articles in alt.os.linux (or comp.os.misc
if your site don't receive alt.*) and Minix articles here.

eoff (end of flame fest :-)

Niels

Appendix B --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/appa.html (34 of 34)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Appendix B

The Open Source Definition, Version 1.0

Open source doesn't just mean access to the source code. The distribution terms
of an open-source program must comply with the following criteria:

1. Free Redistribution

The license may not restrict any party from selling or giving away the
software as a component of an aggregate software distribution containing
programs from several different sources. The license may not require a
royalty or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in
source code as well as compiled form. Where some form of a product is
not distributed with source code, there must be a well-publicized means of
downloading the source code, without charge, via the Internet. The source
code must be the preferred form in which a programmer would modify the
program. Deliberately obfuscated source code is not allowed. Intermediate
forms such as the output of a preprocessor or translator are not allowed.

http://www.oreilly.com/catalog/opensources/book/appb.html (1 of 12)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

3. Derived Works

The license must allow modifications and derived works, and must allow
them to be distributed under the same terms as the license of the original
software. (rationale)

4. Integrity of the Author's Source Code

The license may restrict source code from being distributed in modified
form only if the license allows the distribution of "patch files" with the
source code for the purpose of modifying the program at build time. The
license must explicitly permit distribution of software built from modified
source code. The license may require derived works to carry a different
name or version number from the original software. (rationale)

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.
(rationale)

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a
specific field of endeavor. For example, it may not restrict the program
from being used in a business, or from being used for genetic research.
(rationale)

7. Distribution of License

The rights attached to the program must apply to all to whom the program
is redistributed without the need for execution of an additional license by
those parties. (rationale)

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's
being part of a particular software distribution. If the program is extracted
from that distribution and used or distributed within the terms of the
program's license, all parties to whom the program is redistributed should
have the same rights as those that are granted in conjunction with the
original software distribution. (rationale)

9. License Must Not Contaminate Other Software

The license must not place restrictions on other software that is distributed
along with the licensed software. For example, the license must not insist
that all other programs distributed on the same medium must be open-

http://www.oreilly.com/catalog/opensources/book/appb.html (2 of 12)

Open Sources: Voices from the Open Source Revolution

source software. (rationale)

10. Example Licenses

The GNU GPL, BSD, X Consortium, and Artistic licenses are examples of
licenses that we consider conformant to the Open Source Definition. So is
the MPL.

Bruce Perens wrote the first draft of this document as "The Debian Free
Software Guidelines," and refined it using the comments of the Debian
developers in a month-long email conference in June, 1997. He removed
the Debian-specific references from the document to create the "Open
Source Definition."

GNU General Public License

Table of Contents
* GNU GENERAL PUBLIC LICENSE
+Preamble
+TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION
+ How to Apply These Terms to Your New Programs

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place--
Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public License applies to most of
the Free Software Foundation's software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

http://www.oreilly.com/catalog/opensources/book/appb.html (3 of 12)

Open Sources: Voices from the Open Source Revolution

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do
these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if
you modify it.

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we
have made it clear that any patent must be licensed for everyone's free use or not
licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

1. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed

http://www.oreilly.com/catalog/opensources/book/appb.html (4 of 12)

Open Sources: Voices from the Open Source Revolution

under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on the
Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without
limitation in the term "modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running the
Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends
on what the Program does.

2. You may copy and distribute verbatim copies of the Program's source
code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with
the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute
such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

1. You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

2. You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

3. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an

http://www.oreilly.com/catalog/opensources/book/appb.html (5 of 12)

Open Sources: Voices from the Open Source Revolution

announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on
the Program is not required to print an announcement.) These
requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a
whole which is a work based on the Program, the distribution of
the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of a
storage or distribution medium does not bring the other work under the
scope of this License.

4. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the
following:

1. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for
software interchange; or,

2. Accompany it with a written offer, valid for at least three years,
to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed

http://www.oreilly.com/catalog/opensources/book/appb.html (6 of 12)

Open Sources: Voices from the Open Source Revolution

under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

3. Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.) The source code for a work
means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

5. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

6. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

http://www.oreilly.com/catalog/opensources/book/appb.html (7 of 12)

Open Sources: Voices from the Open Source Revolution

7. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

8. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those

http://www.oreilly.com/catalog/opensources/book/appb.html (8 of 12)

Open Sources: Voices from the Open Source Revolution

countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free
Software Foundation.

11. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

http://www.oreilly.com/catalog/opensources/book/appb.html (9 of 12)

Open Sources: Voices from the Open Source Revolution

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

One line to give the program's name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License

http://www.oreilly.com/catalog/opensources/book/appb.html (10 of 12)

Open Sources: Voices from the Open Source Revolution

along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place--Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type "show w". This is free software, and you are welcome to redistribute
it under certain conditions; type "show c" for details.

The hypothetical commands "show w" and "show c" should show the
appropriate parts of the General Public License. Of course, the commands
you use may be called something other than "show w" and "show c"; they
could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James
Hacker.

Signature of Ty Coon, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to
contact the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other
questions to gnu@gnu.org.

Copyright notice above. Free Software Foundation, Inc., 59 Temple Place--
Suite 330, Boston, MA 02111, USA

Updated: 16 Feb 1998 tower

http://www.oreilly.com/catalog/opensources/book/appb.html (11 of 12)

Open Sources: Voices from the Open Source Revolution

With the Linux kernel, Linus Torvalds includes the following preamble to
the GPL:

NOTE! This copyright does *not* cover user programs that use kernel
services by normal system calls--this is merely considered normal use of
the kernel, and does *not* fall under the heading of "derived work." Also
note that the GPL below is copyrighted by the Free Software Foundation,
but the instance of code that it refers to (the Linux kernel) is copyrighted
by me and others who actually wrote it.

Linus Torvalds

Contributors --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/appb.html (12 of 12)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Contributors

Brian Behlendorf is not the normal person's idea of a hacker. He is a co-
founder and a core member of the Apache Group. Apache is the open-source
web server that runs a 53% of the web servers on the publicly accessible
Internet. This means that this free program enjoys greater market share than
offerings from Microsoft, Netscape, and all other vendors combined.

Brian has worked on Apache for four years, helping to guide the growth of the
project along with other members of the Apache team. What began as an
interesting experiment is now a finely crafted, full-featured web server.

He is not alone in this book in his dedication to music, but he is probably the
only one who has organized raves or DJ'd for parties. His web site,
http://hypereal.org, is a marvelous music, rave, and club resource site. He likes
to read, lately reading outside of the computing field and enjoying the Capra's
Tao of Physics and Chomsky's Secrets, Lies and Democracy.

In late 1998, IBM announced support for Apache on its high-end AS/400 line, a
true watershed event for the Apache Project. Brian commented on IBM's move
by saying he was "Happy that I wasn't the only one who thought there might be a
business case for this. Not just fun to work on, but a model for business. People

http://www.oreilly.com/catalog/opensources/book/authors.html (1 of 10)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/
http://hypereal.org/

Open Sources: Voices from the Open Source Revolution

are coming around do see that Open Source is in fact a better way to do things
on the computer, that it is healthy and can be profitable."

Scott Bradner has been involved in the design, operation, and use of data
networks at Harvard University since the early days of the ARPAnet. He
was involved in the design of the Harvard High-Speed Data Network
(HSDN), the Longwood Medical Area network (LMAnet), and NEARNET.
He was founding chair of the technical committees of LMAnet, NEARNET,

and CoREN.

Scott is the codirector of the Transport Area in the IETF, a member of the IESG,
and an elected trustee of the Internet Society where he serves as the Vice
President for Standards. He was also codirector of the IETF IP next generation
effort and is coeditor of IPng: Internet Protocol Next Generation from Addison-
Wesley.

Scott is a senior technical consultant at the Harvard Office of the Provost, where
he provides technical advice and guidance on issues relating to the Harvard data
networks and new technologies. He also manages the Harvard Network Device
Test Lab, is a frequent speaker at technical conferences, a weekly columnist for
Network World, an instructor for Interop, and does a bit of independent
consulting on the side.

Jim Hamerly is a Vice President in the Client Products Division of
Netscape Communications Corporation. In June of 1997 Netscape acquired
DigitalStyle Corporation, where Jim was a co-founder, president, and CEO.

Prior to founding DigitalStyle, he was Vice President, Engineering,
of Pages Software, Inc. where he managed the development of Pages, a desktop
publishing tool, and WebPages, the first WYSIWYG web authoring tool.

Jim spent 15 years with Xerox in various R&D and product development
activities, most recently as Deputy Chief Engineer of XSoft, a software division
of Xerox Corporation, where he was responsible for four software product lines.

Jim holds B.S., M.S., and Ph.D. degrees in Electrical Engineering and Computer
Science from MIT, UC Berkeley, and Carnegie Mellon University.

http://www.oreilly.com/catalog/opensources/book/authors.html (2 of 10)

Open Sources: Voices from the Open Source Revolution

Kirk McKusick writes books and articles, consults, and teaches classes
on Unix- and BSD-related subjects. While at the University of California at
Berkeley, he implemented the 4.2BSD fast file system, and was the
Research Computer Scientist at the Berkeley Computer Systems Research
Group (CSRG) overseeing the development and release of 4.3BSD and

4.4BSD. His particular areas of interest are the virtual-memory system and the filesystem.
One day, he hopes to see them merged seamlessly. He earned his undergraduate degree in
Electrical Engineering from Cornell University, and did his graduate work at the
University of California at Berkeley, where he received Masters degrees in Computer
Science and Business Administration, and a doctoral degree in Computer Science. He is a
past president of the Usenix Association, and is a member of ACM and IEEE.

In his spare time, he enjoys swimming, scuba diving, and wine collecting. The
wine is stored in a specially constructed wine cellar (accessible from the Web at
http://www.mckusick.com/~mckusick/index.html) in the basement of the house
that he shares with Eric Allman, his domestic partner of 19-and-some-odd years.

Tim O'Reilly is the founder and CEO of O'Reilly & Associates, Inc., the
publisher whose books are considered the definitive works on Open Source
technologies such as Perl, Linux, Apache, and the Internet infrastructure.
Tim convened the first "Open Source Summit" to bring together the leaders
of major Open Source communities, and has been active in promoting the

Open Source movement through writing, speaking, and conferences. He is also a trustee of
the Internet Society.

Tom Paquin first joined IBM Research to work on a project involving
parallel processors, but ended up doing a bitmapped graphics accelerator
(AMD 29116-based) for the then-new PC. After tinkering on X6 and X9 at
MIT and Brown University, he was part of the effort to ship the first-ever
commercial X11 with Carnegie Mellon University.

Tom joined Silicon Graphics, Inc. (SGI) in May 1989, where he had the unlucky
task of integrating the GL and X. He joined Jim Clark and Marc Andreesson at
Netscape in April 1994. He was the very first engineering manager, guiding his
team through the 1.0 and 2.0 releases of Mozilla. Now a Netscape fellow, he
works on mozilla.org as the manager, problem arbitrator, and mysterious

http://www.oreilly.com/catalog/opensources/book/authors.html (3 of 10)

http://www.mckusick.com/~mckusick/index.html

Open Sources: Voices from the Open Source Revolution

political leader.

Bruce Perens has been a long-time advocate for Linux and open-source
software. Until 1997 Bruce headed the Debian Project, an all- volunteer
effort to create a distribution of Linux based entirely on open-source
software.

While working on the Debian Project, Bruce helped craft the
Debian Social Contract, a statement of conditions under which software could be
considered sufficiently freely licensed to be included in the Debian distribution.
The Debian Social Contract is a direct ancestor of today's Open Source
Definition.

After stepping down from the stewardship of Debian, Bruce continued his efforts
at Open Source evangelism by creating and leading Software in the Public
Interest, and by creating, with Eric Raymond, the Open Source Initiative.

When not actively evangelizing Open Source software, Bruce works at Pixar
Animation Studios.

Eric Steven Raymond is a long-time hacker who has been observing
and taking part in the Internet and hacker culture with wonder and
fascination since the ARPAnet days in the late 1970s. He had lived on three
continents and forgotten two languages before he turned fourteen, and he
likes to think that this fostered his anthropological way of viewing the

world.

He studied mathematics and philosophy before being seduced by computers, and
has also enjoyed some success as a musician (playing flute on two albums).
Several of his open-source projects are carried by all major Linux distributions.
The best known of these is probably fetchmail, but he also contributed
extensively to GNU Emacs and ncurses and is currently the termcap maintainer,
one of those truly thankless jobs that is important to do well. Eric also holds a
black belt in Tae Kwon Do and shoots pistols for relaxation. His favorite gun is
the classic 1911-pattern .45 semiautomatic.

Among his writing credits, he has written/compiled The New Hackers
Dictionary and co-authored the O'Reilly book Learning GNU Emacs. In 1997,
he posted an essay on the Web titled "The Cathedral and the Bazaar," which is

http://www.oreilly.com/catalog/opensources/book/authors.html (4 of 10)

Open Sources: Voices from the Open Source Revolution

considered a key catalyst in leading Netscape to open the source code up for
their browser.

Since then Eric has been deftly surfing the Open Source software wave.
Recently, he broke the story on a series of internal Microsoft memos regarding
Linux and the threat Microsoft perceives in open-source software. These so-
called Halloween Documents (dubbed so because of their date of initial
discovery, October 31st) were both a source of humor and the first confirmed
reaction that the large software conglomerate has shown to the Open Source
phenomenon.

Every person in this in book one way or another owes a debt to Richard
Stallman (RMS) . 15 years ago, he started the GNU project, to protect
and foster the development of free software. A stated goal of the project was
to develop an entire operating system and complete sets of utilities under a
free and open license so that no one would ever have to pay for software

again.

In 1991, Stallman received the prestigious Grace Hopper Award from the
Association for Computing Machinery for his development of the Emacs editor.
In 1990 he was awarded a MacArthur Foundation fellowship. He was awarded
an honorary doctorate from the Royal Institute of Technology in Sweden in
1996. In 1998 he shared with Linus Torvalds the Electronic Frontier
Foundation's Pioneer award.

He is now more widely known for his evangelism of free software than the code
he helped create.

Like anyone utterly devoted to a cause, Stallman has stirred controversy in the
community he is a part of. His insistence that the term "Open Source software" is
specifically designed to quash the freedom-related aspects of free software is
only one of the many stances that he has taken of late that has caused some to
label him an extremist. He takes it all in stride, as anyone can testify who as seen
him don the garb of his alter ego, Saint GNUtias of the Church of Emacs.

Many have said, "If Richard did not exist, it would have been necessary to
invent him." This praise is an honest acknowledgment of the fact that the Open
Source movement could not have happened without the Free Software
movement that Richard popularizes and evangelizes even today.

http://www.oreilly.com/catalog/opensources/book/authors.html (5 of 10)

Open Sources: Voices from the Open Source Revolution

In addition to his political stance, Richard is known for a number of software
projects. The two most prominent projects are the GNU C compiler (GCC) and
the Emacs editor. GCC is by far the most ported, most popular compiler in the
world. But far and wide, RMS is known for the Emacs editor. Calling Emacs
editor an editor is like calling the Earth a nice hunk of dirt. Emacs is an editor, a
web browser, a news reader, a mail reader, a personal information manager, a
typesetting program, a programming editor, a hex editor, a word processor, and a
number of video games. Many programmers use a kitchen sink as an icon for
their copy of Emacs. There are many programmers who enter Emacs and don't
leave to do anything else on the computer. Emacs, you'll find, isn't just a
program, but a religion, and RMS is its saint.

Michael Tiemann is a founder of Cygnus Solutions. Michael began
making contributions to the software development community through his
work on the GNU C compiler (which he ported to the SPARC and several
other RISC architectures), the GNU C++ compiler (which he authored), and
the GDB debugger (which he enhanced to support the C++ programming

language and ported to run on the SPARC). Unable to convince any existing companies to
offer commercial support for this new "Open Source" software, he co-founded Cygnus
Solutions in 1989. Today, Michael is a frequent speaker and panelist on open-source
software and open-source business models, and he continues to look for technical and
business solutions that will make the next ten years as exciting and rewarding as the last
ten years.

Michael earned a B.S. degree in CSE in 1986 from the Moore School of
Engineering, University of Pennsylvania. From 1986 to 1988, he worked at
MCC in Austin Texas. In 1988, he entered the Stanford Graduate School (EE)
and became a candidate for a Ph.D. in the spring of 1989. Michael withdrew
from the Ph.D. program in the fall of 1989 to start Cygnus.

Who is Linus Torvalds ?

He created Linux, of course. This is like saying "Engelbart invented
the mouse." I'm sure the long-term implications of the following
email:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix

http://www.oreilly.com/catalog/opensources/book/authors.html (6 of 10)

Open Sources: Voices from the Open Source Revolution

Subject: Gcc-1.40 and a posix-question
Message-ID: <1991Jul3.100050.9886@klaava.Helsinki.FI>
Date: 3 Jul 91 10:00:50 GMT
Hello netlanders,
Due to a project I'm working on (in minix), I'm interested in the posix standard definition. Could
somebody please point me to a (preferably) machine-readable format of the latest posix rules? Ftp-
sites would be nice.

Never occurred to him.

Linus could not have foreseen that his project would go from being a small
hobby to a major OS with from 7 million to 10 million adherents and a major
competitor to the enterprise aspirations of the world's largest software company.

Since the mass adoption of Linux and its wildfire growth through the Internet--
26% of the Internet's servers run Linux (the closest competitor is Microsoft with
23%)--Linus Torvalds' life has changed. He has moved from his native Finland
to Silicon Valley, where he works for Transmeta Corporation. About his work at
Transmeta, he will say only that it does not involve Linux, and that it is "very
cool."

He has had two children and one patent (Memory Controller for a
Microprocessor for Detecting a Failure of Speculation on the Physical Nature of
a Component being Addressed), and has been a guest at the most prestigious
event in Finland, the President's Independence Day Ball.

His personality won't let him take credit for something as his own when in fact it
is not, and Linus is quick to point out that without the help of others, Linux
would not be what it is today. Talented programmers like David Miller, Alan
Cox, and others have all had instrumental roles in the success of Linux. Without
their help and the help of countless others, the Linux OS would not have vaulted
to the lofty heights it now occupies.

Paul Vixie is the head of Vixie Enterprises. He is also the President and
Founder of the Internet Software Consortium, the home of bind, inn, and the
dhcp server. Paul is the head architect of bind, which is the most popular
implementation of DNS. Inn is the Internet news server package, and dhcp
allows dynamic configuration of networking information.

He is the author of Vixie cron, which is the default cron daemon for Linux, and
much of the rest of the world. This means he is probably responsible for the
strange noises your computer makes at 1 a.m. every night.

http://www.oreilly.com/catalog/opensources/book/authors.html (7 of 10)

Open Sources: Voices from the Open Source Revolution

Paul is the author of the book Sendmail: Theory and Practice. Paul's company
also manages a network for the Commercial Internet Exchange, and leads the
fight against spam with MAPS, the Mail Abuse Protection System, which is
made up of a real-time blackhole list (where spammers have their email
jettisoned into the almighty bit bucket), and a transport security initiative.

Larry Wall has authored some of the most popular open-source programs
available for Unix, including the rn news reader, the ubiquitous patch
program, and the Perl programming language. He's also known for
metaconfig, a program that writes Configure scripts, and for the warp space-
war game, the first version of which was written in BASIC/PLUS at Seattle

Pacific University. By training Larry is actually a linguist, having wandered about both
U.C. Berkeley and UCLA as a grad student. (Oddly enough, while at Berkeley, he had
nothing to do with the Unix development going on there.)

Larry has been a programmer at JPL. He has also spent time at Unisys, playing
with everything from discrete event simulators to software development
methodologies. It was there, while trying to glue together a bicoastal
configuration management system over a 1200-baud encrypted link using a
hacked over version of Netnews, that Perl was born.

Presently Larry's services are retained by O'Reilly, where he consults on matters
relating to Perl.

Bob Young has always been a something of an enigma and a legend in
the Open Source community. He's a businessman, not a hacker, and has long
been talked about in Linux circles as the mythical adult who kept those
North Carolina kids at Red Hat in line.

Bob spent the first twenty years of his professional life in the
computer leasing business, heading up two different firms before getting into the
Linux world. He was the original publisher of Linux Journal before Phil Hughes
and SSC took it over. Bob joined Red Hat with the promise that the then-
members, led by Marc Ewing, wouldn't have to worry about managing the
money side of the company. He applied the rules of branding more commonly
associated with the Gap or Harley-Davidson to the world of free software, which
is exactly what was needed for a company that packaged what is essentially a

http://www.oreilly.com/catalog/opensources/book/authors.html (8 of 10)

Open Sources: Voices from the Open Source Revolution

commodity: Open Source software.

Red Hat was originally going to build OEM Linux versions that they would
supply to commercial OS companies, rather than directly marketing or retailing
its own products. Only after these commercial partners failed to get their
products to market on time did Red Hat retail its own distribution, so that the
employees of Red Hat (so the story goes) would be assured enough money to
eat.

Red Hat recently received funding from the venture capital world, and from
Netscape and Intel. There's a nice irony to this confirmation of Red Hat's
success, since it was never supposed to have its own retail products.

Chris DiBona has been using Linux since early 1995. He is very active in the Linux
community. He volunteers as the Linux International webmaster and is also the Linux
International grant development fund coordinator. He is proud to work as the Director of
Linux Marketing for VA Research Linux systems (http://www.varesearch.com) and is the
Vice President of the Silicon Valley Linux Users Group (the world's largest at
http://www.svlug.org).

In addition to his Linux activities, his writings and book reviews have been
featured in The Vienna Times, Linux Journal, Tech Week, Boot Magazine (now
Maximum PC), and a number of online publications. Additionally, he was the
editor for two years of the Terrorist Profile Weekly, a geopolitcal weekly with a
subscriber base numbered at 20,000.

His personal web site can be found at http://www.dibona.com and he can be
reached via email at chris@dibona.com.

Sam Ockman is the President of Penguin Computing, a company specializing in
custom-built Linux systems. He's the chairman of LINC, the International Linux
Conference and Exposition, which has merged with LinuxWorld. Sam is an expert on
Linux system installation and configuration, and on Perl, which he has taught at the
University of California, Berkeley Extension School. He also coordinates speakers for the
Silicon Valley and Bay Area Linux User Groups. Sam has edited books on Unix and Perl,
and writes a monthly column on Linux. He graduated from Stanford with degrees in
Computer Systems Engineering and Political Science. Sam is very proud that while at
Stanford he won the Ram's Head Dorthea Award for Best Actor in a Drama.

http://www.oreilly.com/catalog/opensources/book/authors.html (9 of 10)

http://www.varesearch.com/
http://www.svlug.org/
http://www.dibona.com/

Open Sources: Voices from the Open Source Revolution

Mark Stone has been using Linux as his mainstay operating system since the 1.0.8
version of the kernel. He wrote his first large-scale program in the late 70s: an Algol
compiler for the PDP-1170. These day he prefers scripting to compiling; his favorite
language is Tcl.

Currently Mark is the Open Source editor for O'Reilly. Prior to joining the world
of publishing he was a professor of philosophy, and holds a Ph.D. from the
University of Rochester. During his tenure in academia, he studied chaos theory
and philosophy of science. So in many ways, his work hasn't changed all that
much.

Copyright --->

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/authors.html (10 of 10)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

Open Sources: Voices from the Open Source Revolution

Open Sources: Voices from the
Open Source Revolution

1st Edition January 1999
1-56592-582-3, Order Number: 5823
280 pages, $24.95

Copyright

"Free Software" is Copyright © 1998 Richard M. Stallman

Verbatim copying and duplication is permitted in any medium provided this
notice is preserved.

"A Brief History of Hackerdom" and "Revenge of the Hackers" are Copyright ©
1998 Eric S. Raymond.

These essays is free; you can redistribute them and/or modify them under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

These essays are distributed in the hope that they will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

See Appendix B for a copy of the GNU General Public License, or write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Eric Raymond
esr@thyrsus.com

http://www.oreilly.com/catalog/opensources/book/copyright.html (1 of 2)

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/search.html
http://www.oreilly.com/catalog/opensources/

Open Sources: Voices from the Open Source Revolution

6 Karen Drive
Malvern, PA 19355

"Open Source Software" is free; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This essay is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

See Appendix B for a copy of the GNU General Public License, or write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Bruce Perens
bruce@pixar.com
c/o Pixar Animation Studios
1001 West Cutting #200
Richmond, CA 94804

All essays not mentioned above are freely redistributable without modification
provided this notice is preserved. All other material is copyright © 2000 O'Reilly
& Associates. All rights reserved.

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2000, O'Reilly & Associates, Inc.

http://www.oreilly.com/catalog/opensources/book/copyright.html (2 of 2)

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html

	oreilly.com
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Appendix A - The Tanenbaum-Torvalds Debate
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution
	Open Sources: Voices from the Open Source Revolution

	gnu.org
	Why Software Should Not Have Owners - GNU Project - Free Software Foundation (FSF)
	The Free Software Definition - GNU Project - Free Software Foundation (FSF)
	Selling Free Software - GNU Project - Free Software Foundation (FSF)
	Categories of Free and Non-Free Software - GNU Project - Free Software Foundation (FSF)

	fsf.org
	The GNU Manifesto - GNU Project - Free Software Foundation (FSF)

