

Oracle JDeveloper
11gR2 Cookbook

Over 85 simple but incredibly effective recipes for using
Oracle JDeveloper 11gR2 to build ADF applications

Nick Haralabidis

BIRMINGHAM - MUMBAI

Oracle JDeveloper 11gR2 Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2012

Production Reference: 1170112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-476-7

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

Credits

Author
Nick Haralabidis

Reviewers
Edwin Biemond

Spyros Doulgeridis

Frank Nimphius

Acquisition Editor
Stephanie Moss

Lead Technical Editor
Meeta Rajani

Technical Editors
Sonali Tharwani

Vishal D'souza

Copy Editor
Laxmi Subramanian

Project Coordinator
Leena Purkait

Proofreader
Dan McMahon

Indexers
Hemangini Bari

Monica Ajmera Mehta

Tejal Daruwale

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

Foreword

Oracle has a long and successful history of building enterprise application development
tools, including some that have outlived their competition. As a former Oracle Forms Product
Manager and current Oracle JDeveloper and Oracle Application Development Framework
(ADF) Product Manager, this part of the Oracle history has been mine for the last 15 years,
and I'm very grateful that there's currently no end in sight!

Building enterprise applications based on Java EE standards is a well-accepted and
understood concept for building Rich Internet Applications (RIA) and service-oriented user
interfaces. While Java language skills are standard knowledge for college graduates, broader
topics, such as service-enablement, persistence, application security, customization,
portalization, and so on are not always so well understood. Adding to this, the "framework-of-
the-day" problem—in which framework solutions quickly wax and wane in popularity—makes
it difficult for enterprises to adopt software. What most enterprise businesses require is the
benefit of standards, but with an end-to-end framework that provides a stable and consistent
interface, which can abstract away future technology shifts.

Proven by Oracle Fusion Applications and customer success, Oracle ADF fulfills that need:
a rapid application development environment that reduces the skills required for building
modern rich enterprise applications to a single learning curve.

Technically, Oracle ADF is an end-to-end Java EE framework for building rich enterprise web
and mobile applications based on Java EE services and SOA. Oracle ADF integrates existing
Java frameworks into a single architecture and a fully integrated declarative development
environment that shields developers from low-level API programming.

Besides being used by Oracle Fusion Applications and Oracle customers, Oracle ADF is at the
heart of Oracle Middleware and is the technology of choice for building Fusion Middleware
(FMW) products, such as Enterprise Manager, WebCenter, UCM, BPM, BI, and so on, showing
Oracle's commitment to ADF.

Technology alone, however, is no guarantee for success. Community acceptance and
contribution is also an important backbone and measurement of software frameworks and
products, including Oracle ADF.

Oracle ADF is supported by a very active and growing community of bloggers, forum posters,
and speakers, as well as book and article authors. The Oracle JDeveloper 11gR2 Cookbook
you hold in your hands is another example of the ongoing contribution from the ADF
community by author Nick Haralabidis.

The book is a practical guide to learning Oracle ADF, providing code solutions, and technical
explanations to common Oracle ADF questions and developer challenges. Being one of
the technical reviewers for this book and having written other titles as an author myself, I
appreciate the time, effort, and dedication Nick Haralabidis has put into writing this book, as
well as the Oracle ADF expertise and practices he shares with you, the reader. This book is
not a beginner's guide, but a useful reference for all developers starting enterprise application
development with Oracle ADF.

Frank Nimphius
Senior Principal Product Manager, Oracle Application Development Tools

About the Author

Nick Haralabidis has over 20 years experience in the Information Technology industry
and a multifaceted career in positions such as Senior IT Consultant, Senior Software
Engineer, and Project Manager for a number of U.S. and Greek corporations (Compuware,
Chemical Abstracts Service, NewsBank, CheckFree, Intrasoft International, Unisystems,
MedNet International, and others). His many years of experience have exposed him to a wide
range of technologies, such as Java, J2EE, C++, C, Tuxedo, and a number of other database
technologies.

For the last four years, Nick is actively involved in large implementations of next generation
enterprise applications utilizing Oracle's JDeveloper, Application Development Framework
(ADF), and SOA technologies.

He holds a B.S. in Computer Engineering and a M.S. in Computer Science from the University
of Bridgeport.

When he is not pursuing ADF professionally, he writes on his blogs JDeveloper Frequently
Asked Questions (http://jdeveloperfaq.blogspot.com) and ADF Code Bits
(http://adfcodebits.blogspot.com). He is active at the Oracle Technology Network
(OTN) JDeveloper and ADF forum where he both learns and helps.

To Aphrodite, Konstantina and Margaritta, my true inspirations.

To the Packt team and especially to Stephanie Moss for her trust,
encouragement, and direction.

To the book reviewers, Frank Nimphius, Edwin Biemond, and Spyros
Doulgeridis for their time, expertise, and invaluable insight.

http://jdeveloperfaq.blogspot.com
http://adfcodebits.blogspot.com

About the Reviewers

Edwin Biemond is an Oracle ACE and Solution Architect at Amis, specializing in messaging
with Oracle SOA Suite and Oracle Service Bus. He is an expert in ADF development, WebLogic
Administration, high availability, and security. His Oracle career began in 1997, where he
was developing an ERP, CRM system with Oracle tools. Since 2001, Edwin has changed his
focus to integration, security, and Java development. Edwin was awarded with Java Developer
of the year 2009 by Oracle Magazine, won the EMEA Oracle Partner Community Award in
2010, and contributed some content to the Oracle SOA Handbook of Luces Jellema. He is
an international speaker at Oracle OpenWorld & ODTUG and has a popular blog called Java/
Oracle SOA blog at http://biemond.blogspot.com.

Spyros Doulgeridis holds two M.Sc. degrees, one in Telecommunication from Brunel
University in the U.K. and one in Software Engineering from N.T.U.A. in Greece. With proven
experience using major Java frameworks in JEE applications, he has been working with
Oracle technologies, and especially ADF 11g, since 2008 in a major Form to ADF migration
project—one of Oracle's Success Stories. During this project, he had many roles including
ADF developer, designer of Forms to ADF migration, ADF/Java reviewer, and was responsible
for the application's build process and deployment on Weblogic Server. He likes to share his
experiences by blogging on adfhowto.blogspot.com.

I would like to thank Packt Publishing and especially Mrs. Stephanie Moss
for giving me the opportunity to work on this book. Also, I would like to thank
the author for this interesting journey into Oracle ADF through his helpful
and practical recipes. Finally and above all, I would like to thank all of those
close to me, who missed me while working on this book.

http://biemond.blogspot.com/

Frank Nimphius is a Senior Principal Product Manager in the Oracle Application
Development Tools group at Oracle Corporation, where he specializes in Oracle JDeveloper
and the Oracle Application Development Framework (ADF).

As a speaker, Frank represents the Oracle ADF and Oracle JDeveloper development
team at user conferences world-wide. Frank owns the ADF Code Corner website
(http://www.oracle.com/technetwork/developer-tools/adf/learnmore/
index-101235.html), and the "OTN Forum Harvest" blog (http://blogs.oracle.com/
jdevotnharvest/).

As an author, Frank frequently writes for Oracle Magazine and co-authored the "Oracle Fusion
Developer Guide" book published in 2009 by McGraw Hill.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://blogs.oracle.com/jdevotnharvest/
http://blogs.oracle.com/jdevotnharvest/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Prerequisites to Success: ADF Project Setup and Foundations 7

Introduction 8
Installation of JDeveloper on Linux 8
Breaking up the application in multiple workspaces 12
Setting up BC base classes 18
Setting up logging 22
Using a custom exception class 27
Using ADFUtils/JSFUtils 32
Using page templates 35
Using a generic backing bean actions framework 42

Chapter 2: Dealing with Basics: Entity Objects 47
Introduction 47
Using a custom property to populate a sequence attribute 48
Overriding doDML() to populate an attribute with a gapless sequence 51
Creating and applying property sets 54
Using getPostedAttribute() to determine the posted attribute's value 58
Overriding remove() to delete associated children entities 60
Overriding remove() to delete a parent entity in an association 63
Using a method validator based on a view object accessor 66
Using Groovy expressions to resolve validation error message tokens 70
Using doDML() to enforce a detail record for a new master record 73

Chapter 3: A Different Point of View: View Object Techniques 75
Introduction 75
Iterating a view object using a secondary rowset iterator 76
Setting default values for view row attributes 81
Controlling the updatability of view object attributes programmatically 84

ii

Table of Contents

Setting the Queryable property of a view object attribute programmatically 86
Using a transient attribute to indicate a new view object row 88
Conditionally inserting new rows at the end of the rowset 90
Using findAndSetCurrentRowByKey() to set the view object currency 92
Restoring the current row after a transaction rollback 95
Dynamically changing the WHERE clause of the view object query 99
Removing a row from a rowset without deleting it from the database 101

Chapter 4: Important Contributors: List of Values, Bind Variables,
View Criteria 105

Introduction 106
Setting up multiple LOVs using a switcher attribute 106
Setting up cascading LOVs 110
Creating static LOVs 116
Overriding bindParametersForCollection() to set a view object bind variable 118
Creating view criteria programmatically 122
Clearing the values of bind variables associated with the view criteria 126
Searching case insensitively using view criteria 128

Chapter 5: Putting them all together: Application Modules 131
Introduction 131
Creating and using generic extension interfaces 132
Exposing a custom method as a web service 135
Accessing a service interface method from another application module 139
A passivation/activation framework for custom session-specific data 143
Displaying application module pool statistics 151
Using a shared application module for static lookup data 156
Using a custom database transaction 159

Chapter 6: Go with the Flow: Task Flows 163
Introduction 163
Using an application module function to initialize a page 164
Using a task flow initializer to initialize a task flow 170
Calling a task flow as a URL programmatically 176
Retrieving the task flow definition programmatically using
MetadataService 182
Creating a train 186

Chapter 7: Face Value: ADF Faces, JSF Pages, and User Interface
Components 193

Introduction 194
Using an af:query component to construct a search page 194

iii

Table of Contents

Using an af:pop-up component to edit a table row 198
Using an af:tree component 205
Using an af:selectManyShuttle component 210
Using an af:carousel component 215
Using an af:poll component to periodically refresh a table 219
Using page templates for pop-up reuse 222
Exporting data to a client file 228

Chapter 8: Backing not Baking: Bean Recipes 233
Introduction 234
Determining whether the current transaction has pending changes 234
Using a custom af:table selection listener 236
Using a custom af:query listener to allow execution of a custom
application module operation 239
Using a custom af:query operation listener to clear both the
query criteria and results 243
Using a session scope bean to preserve session-wide information 248
Using an af:popup during long running tasks 252
Using an af:popup to handle pending changes 255
Using an af:iterator to add pagination support to a collection 259

Chapter 9: Handling Security, Session Timeouts, Exceptions,
and Errors 265

Introduction 266
Enabling ADF security 266
Using a custom login page 272
Accessing the application's security information 275
Using OPSS to retrieve the authenticated user's profile from the
identity store 279
Detecting and handling session timeouts 285
Using a custom error handler to customize how exceptions are
reported to the ViewController 288
Customizing the error message details 291
Overriding attribute validation exceptions 295

Chapter 10: Deploying ADF Applications 299
Introduction 299
Configuring and using the Standalone WebLogic Server 300
Deploying on the Standalone WebLogic Server 306
Using ojdeploy to automate the build process 311
Using Hudson as a continuous integration framework 316

iv

Table of Contents

Chapter 11: Refactoring, Debugging, Profiling, and Testing 323
Introduction 323
Synchronizing business components with database changes 324
Refactoring ADF components 327
Configuring and using remote debugging 329
Logging Groovy expressions 333
Dynamically configuring logging in WebLogic Server 335
Performing log analysis 337
Using CPU profiler for an application running on a standalone
WebLogic server 339
Configuring and using JUnit for unit testing 343

Chapter 12: Optimizing, Fine-tuning, and Monitoring 347
Introduction 347
Using Update Batching for entity objects 348
Limiting the rows fetched by a view object 350
Limiting large view object query result sets 352
Limiting large view object query result sets by using required view criteria 356
Using a work manager for processing of long running tasks 358
Monitoring the application using JRockit Mission Control 369

Chapter 13: Miscellaneous Recipes
This chapter is not present in the book but is available as a free download from:
http://www.packtpub.com/sites/default/files/downloads/

4767EN_Chapter 13_Miscellaneous Recipes.pdf

Index 373

Preface
This book contains a wealth of resources covering Oracle's JDeveloper 11g release and the
Application Development Framework (ADF) and how these technologies can be used for the
design, construction, testing, and optimizing of Fusion web applications. Being vast and
complex technologies, an attempt has been made to cover a wide range of topics related
specifically to Fusion web applications development with ADF, utilizing the complete ADF
stack. These topics are presented in the form of recipes, many of them derived from the
author's working experience covering real world use cases. The topics include, but are not
limited to, foundational recipes related to laying out the project groundwork, recipes related to
the ADF business components, recipes related to ViewController, recipes related to security,
optimization and so on.

In the maze of information related to Fusion web applications development with ADF, it is the
author's hope that aspiring ADF developers will find in this book some of the information they
are looking for. So lift up your sleeves, put on your ADF chef's hat, pick up a recipe or two, and
let's start cooking!

What this book covers
Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations, covers a number
of recipes related to foundational concepts of Fusion web application development with ADF.
By applying and expanding these recipes during the early architectural and design phases as
needed, subsequent application development takes on a form, a structure, and the necessary
uniformity. Many if not most of the recipes in the following chapters rely on these recipes.

Chapter 2, Dealing with Basics: Entity Objects, starts our journey into the world of ADF
business components. First stop: entity objects. The recipes in this chapter deal with some
of the most common framework functionality that is overridden in real world applications to
provide customized business functionality.

Preface

2

Chapter 3, A Different Point of View: View Objects Techniques, covers a number of recipes
related to view objects. This chapter explains how to control attribute updatability, how to set
attribute default values, how to iterate view object row sets, and many more.

Chapter 4, Important Contributors: List of Values, Bind Variables, View Criteria, covers
additional topics related to view objects. These topics include recipes related to list of values
(LOVs), bind variables and view criteria. The reader will learn, among other things, how to
setup multiple LOVs using a switcher attribute, cascading and static LOVs, and how to create
view criteria programmatically.

Chapter 5, Putting them all together: Application Modules, includes a number of recipes
related to application modules. You will learn, among others, how to create and use generic
extension interfaces, expose a custom application module method as a web service and
access a service interface from another application module. Additional recipes cover topics
such as a passivation/activation framework, using shared application modules for static
lookup data and custom database transactions.

Chapter 6, Go with the flow: Task Flows, delves into the world of ADF task flows. Among others,
you will learn how to use an application module function as a method call to initialize a page,
how to use a task flow initializer, how to retrieve the task flow definition programmatically and
how to create a train.

Chapter 7, Face Value: ADF Faces, JSPX Pages and Components, includes recipes detailing
the use of a variety of ADF Faces components, such as the query component, the popup
window component, the tree component, the select many shuttle component, the carousel
component, and others.

Chapter 8, Backing not Baking: Bean Recipes, introduces topics related to backing beans. A
number of topics are covered including the use of custom table selection listeners, custom
query and query operation listeners, session beans to preserve session-wide information,
popup windows to handle long running tasks.

Chapter 9, Handling Security, Session Timeouts, Exceptions and Errors, covers topics
related to handling security, session timeouts, exceptions and errors for an ADF Fusion web
application. The recipes in this chapter will show the reader how to enable ADF security, how
to use a custom login page, how to access the application's security information, how to
detect and handle session timeouts, and how to use a custom error handler.

Chapter 10, Deploying ADF Applications, includes recipes related to the deployment of ADF
Fusion web applications. These recipes include the configuration and use of the standalone
WebLogic server, the deployment of applications on the standalone WebLogic server, the use
of the ojdeploy tool and the use of Hudson as a continuous integration framework.

Preface

3

Chapter 11, Refactoring, Debugging, Profiling, Testing, deals with topics related to refactoring,
debugging, profiling, and testing ADF Fusion web applications. The recipes in this chapter
cover topics such as the synchronization of business components to changes in the database,
refactoring of ADF components, configuring and using remote debugging, configuring logging
in the WebLogic server, CPU profiling and the configuration, and usage of JUnit for unit testing.

Chapter 12, Optimizing, Fine-tuning and Monitoring, covers topics related to optimizing, fine-
tuning, and monitoring ADF Fusion web applications. The recipes in this chapter demonstrate
how to limit the rows fetched by view objects, how to limit large view object queries, how to
use work managers for processing long-running tasks and how to monitor your application
using the JRockit Mission Control.

Chapter 13, Miscellaneous Recipes, the additional content recipes cover topics related among
others to using JasperReports, uploading images to the server, and handling and customizing
database-related errors. This chapter is not present in the book but is available as a free
download from the following link: http://www.packtpub.com/sites/default/files/
downloads/4767EN_Chapter 13_Miscellaneous Recipes.pdf.

What you need for this book
The recipes in this book utilize the latest release of JDeveloper at the time of writing, namely
JDeveloper 11g R2 11.1.2.1.0. This release of JDeveloper comes bundled with the necessary
ADF libraries and a standalone installation of the WebLogic server. Ensure that the WebLogic
server is installed as part of the JDeveloper installation.

In addition, you will need a database connection to Oracle's HR schema. This schema is
provided along with the Oracle XE database.

A number of recipes cover topics that will require you to download and install the following
additional software: Hudson continuous integration, JRockit Mission Control, Jasper Reports,
and iReport.

Who this book is for
This book is targeted to intermediate or advanced developers, designers and architects
already utilizing JDeveloper, the ADF framework, and Oracle's Fusion technologies. Developers
utilizing the complete ADF stack for building ADF Fusion web applications will benefit most
from the book. The book uses ADF business components as its model layer technology, ADF
binding, ADF task flows and the ADF model for its controller layer technologies, and ADF Faces
as its view layer technology.

The introductory concepts in the first chapter, along with the chapters related to handling
exceptions, session timeouts, optimizing, and fine tuning may appeal more to application
designers and architects.

Preface

4

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "In addition to the session-timeout configuration
setting in web.xml, you can configure a session timeout warning interval by defining the
context parameter"

A block of code is set as follows:

public class SessionTimeoutFilter implements Filter {
 private FilterConfig filterConfig = null;
 public SessionTimeoutFilter() {
 super();
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

new ExportEmployeesWork(getEmployees().createRowSetIterator(null))

Any command-line input or output is written as follows:

$ chmod u+x ./jdevstudio11121install.bin

$./jdevstudio11121install.bin

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Using the Property Inspector
change the URL Invoke property to url-invoke-allowed."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

Preface

5

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Prerequisites to

Success: ADF
Project Setup and

Foundations

In this chapter, we will cover:

 f Installation of JDeveloper on Linux

 f Breaking up the application in multiple workspaces

 f Setting up BC base classes

 f Setting up logging

 f Using a custom exception class

 f Using ADFUtils/JSFUtils

 f Using page templates

 f Using a generic backing bean actions framework

Prerequisites to Success: ADF Project Setup and Foundations

8

Introduction
JDeveloper and ADF (Application Development Framework) are amazing technologies. What
makes them even more incredible is their sheer complexity and the amount of knowledge and
effort that lies covered underneath the declarative, almost magical frontend. What amazes
me is that once you scratch the surface, you never stop realizing how much you really don't
know. Given this complexity, it becomes obvious that certain development guidelines and
practices must be established and followed early in the architectural and design phases of an
ADF project.

This chapter presents a number of recipes that are geared towards establishing some of
these development practices. In particular, you will see content that serves as a starting
point in making your own application modular when using the underlying technologies. You
will also learn the importance of extending the Business Components framework (ADF-BC)
base classes early in the development cycle. We will talk about the importance of laying out
other application foundational components, such as logging and exceptions, again early in
the development process, and continue with addressing reusability and consistency at the
ViewController layer.

The chapter starts with a recipe about installing and configuring JDeveloper on Linux.
So, let's get started and don't forget, have fun as you go along. If you get in trouble at any
point, take a look at the accompanying source code and feel free to contact me anytime at
nharalabidis@gmail.com.

Installation of JDeveloper on Linux
Installation of JDeveloper is, in general, a straightforward task. So, "why have a recipe for
this?" you might ask. Did you notice the title? It says "on Linux". You will be amazed at the
number of questions asked about this topic on a regular basis on the JDeveloper and ADF
OTN Forum. Besides, in this recipe, we will also talk about configuration options and the usage
of 64-bit JDK along with JDeveloper.

Getting ready
You will need a Linux installation of JDeveloper to use this recipe. For the 64-bit configuration,
you will need a 64-bit Linux distribution and a 64-bit version of the Java SDK. We will install
the latest version of JDeveloper, which is version 11.1.2.1.0 at the time of this writing.

Chapter 1

9

How to do it...
1. Download JDeveloper from the Oracle JDeveloper Software download page:

http://www.oracle.com/technetwork/developer-tools/jdev/
downloads/index.html.

2. Accept the license agreement, select Linux Install, and click on Download File to
begin with the download.

3. Once the file is downloaded, open a console window and start the installation, by
typing the following commands:
$ chmod u+x ./jdevstudio11121install.bin

$./jdevstudio11121install.bin

4. On the Choose Middleware Home Directory page, select Create a new Middleware
Home and enter the Middleware home directory.

5. On the Choose Install Type page, select Complete to ensure that JDeveloper, ADF
and WebLogic Server are installed.

6. Once you confirm your selections, proceed with the installation.

7. Upon a successful installation, you will see the Installation Complete page. Uncheck
the Run Quickstart checkbox and click Done.

Prerequisites to Success: ADF Project Setup and Foundations

10

8. To start JDeveloper, go to the /jdeveloper/jdev/bin directory under the
Middleware home directory you specified during the installation and type
the following:
$./jdev

9. To make things easier, create an application launcher on your Linux desktop for the
specific path indicated in the previous step.

How it works...
As noted earlier, installing JDeveloper on Linux is a straightforward task. You simply have to
download the binary executable archive and run it. Ensure that you give execute permissions
to the installation archive file and run it as noted. If you are having trouble seeing the
Welcome page in graphical mode, ensure that the $DISPLAY environment variable is set
correctly. The important thing to know here is the name of the file to execute in order to start
JDeveloper. As mentioned, it is called jdev and it is located in the /jdeveloper/jdev/bin
directory under the Middleware home directory.

There's more...
Now that you have successfully installed JDeveloper, let's spend some time configuring it for
optimal performance. Configuration parameters are added to any of the jdev.conf or ide.
conf files located in the /jdeveloper/jdev/bin and /jdeveloper/ide/bin directories
respectively, under the Middleware home directory.

The following is a list of the important tuning configuration parameters with some
recommendations for their values:

Parameter Description
AddVMOption -Xmx This parameter is defined in the ide.conf file and indicates

the maximum limit that you will allow the JVM heap size to grow
to. In plain words, it is the maximum memory that JDeveloper will
consume on your system. When setting this parameter, consider
the available memory on your system, the memory needed
by the OS, the memory needed by other applications running
concurrently with JDeveloper, and so on. On a machine used
exclusively for development with JDeveloper, as a general rule of
thumb consider setting it to around 50 percent of the available
memory.

Chapter 1

11

Parameter Description
AddVMOption -Xms This parameter is also defined in the ide.conf and indicates

the initial JVM heap size. This is the amount that will be allocated
initially by JDeveloper and it can grow up to the amount specified
by the previous -Xmx parameter. When setting this parameter,
consider whether you want to give JDeveloper a larger amount
in order to minimize frequent adjustments to the JVM heap.
Setting this parameter to the same value as the one indicated
by the -Xmx parameter will supply a fixed amount of memory to
JDeveloper.

AddVMOption
-XX:MaxPermSize

This parameter indicates the size of the JVM permanent
generation used to store class definitions and associated
metadata. Increase this value if needed in order to avoid java.
lang.OutOfMemoryError: PermGen space errors. A
256MB setting should suffice.

AddVMOption -DVFS_
ENABLE

Set it to true in jdev.conf if your JDeveloper projects consist
of a large number of files, especially if you will be enabling a
version control system from within JDeveloper.

Configuring JDeveloper with a 64-bit JDK
The JDeveloper installation is bundled by default with a 32-bit version of the Java JDK, which
is installed along with JDeveloper. On a 64-bit system, consider running JDeveloper with a 64-
bit version of the JDK. First download and install the 64-bit JDK. Then configure JDeveloper
via the SetJavaHome configuration parameter in the jdev.conf. This parameter should be
changed to point to the location of the 64-bit JDK. Note that the 64-bit JDK is supported by
JDeveloper versions 11.1.1.4.0 and higher.

Configuring the JDeveloper user directory
This is the directory used by JDeveloper to identify a default location where files will be
stored. JDeveloper also uses this location to create the integrated WebLogic domain and to
deploy your web applications when running them or debugging them inside JDeveloper. It is
configured via the SetUserHomeVariable parameter in the jdev.conf file. It can be set
to a specific directory or to an environment variable usually named JDEV_USER_DIR. Note
that when JDeveloper is started with the –singleuser command-line argument, the user
directory is created inside the /jdeveloper directory under the Middleware home directory.

Prerequisites to Success: ADF Project Setup and Foundations

12

Before starting your development in JDeveloper, consider setting the XML file
encoding for the XML files that you will be creating in JDeveloper. These files
among others include, the JSF pages, the business component metadata
files, application configuration files, and so on. You set the encoding via the
Tools | Preferences… menu. Select the Environment node on the left of
the Preferences dialog and the encoding from the Encoding drop-down. The
recommended setting is UTF-8 to support multi-lingual applications.

The minimum recommended open file descriptors limit for JDeveloper on
a Linux system is 4096. Use the command ulimit –n to determine the
open file descriptors limit for your installation and change it if needed in
the limits.conf file located in /etc/security/ directory.

Breaking up the application in multiple
workspaces

When dealing with large enterprise scale applications, the organization and structure of the
overall application in terms of JDeveloper workspaces, projects, and libraries is essential.
Organizing and packaging ADF application artifacts, such as business components, task flows,
templates, Java code, and so on, into libraries will promote and ensure modularity, and the
reuse of these artifacts throughout the application. In this recipe, we will create an application
that comprises reusable components. We will construct reusable libraries for shared
components, business domain specific components, and a main application for consuming
these components.

How to do it…
1. To create the SharedComponents library, start by selecting New Application… in

the Application Navigator. This will start the application creation wizard.

2. In the New Gallery dialog, click on the Applications node (under the General
category) and select Fusion Web Application (ADF) from the list of Items.

Chapter 1

13

3. In the Name your application page, enter the Application Name, Directory and the
Application Package Prefix.

4. In the Name your project page, enter the business component's Project Name and
Directory. For this recipe, we have called it SharedBC.

5. In the Configure Java settings page for the business components project, accept the
defaults for Default Package, Java Source Path, and Output Directory.

6. Similarly, in the Name your project page for the ViewController project, enter
the Project Name and Directory. For this recipe, we have called the project
SharedViewController. Ensuring that you enter a unique package structure for
both projects is the best guarantee for avoiding naming conflicts when these projects
are deployed as ADF Library JARs.

7. Accept the defaults in the Configure Java settings and click Finish to proceed with
the creation of the workspace.

Prerequisites to Success: ADF Project Setup and Foundations

14

8. Now, in the Application Navigator, you should see the two projects comprising the
SharedComponents workspace, one for the business components and another for
the ViewController.

9. You will be using this workspace to add reusable business and ViewController
components. For now, we will package the workspace into an ADF library JAR, without
any components in it yet. In order to do this, you will need to first setup the project
dependencies. Double-click on the SharedViewController project to bring up the
Project Properties dialog and select Dependencies.

10. Click on Edit Dependencies (the small pen icon) to bring up the Edit
Dependencies dialog and then click on the Build Output checkbox under the
business components project.

11. Click OK to close the dialog and return to the Project Properties dialog.

Chapter 1

15

12. The next step is to set up the deployment profile. While at the ViewController Project
Properties dialog, click on the Deployment node.

13. Since we will not be deploying this application as a WAR, select the default WAR
deployment profile generated automatically by JDeveloper and delete it.

14. Then, click New… to create a new deployment profile.

15. On the Create Deployment Profile dialog, select ADF Library JAR File for the Profile
Type and enter the name of the deployment profile. For this recipe, we have called
the deployment profile SharedComponents. Click OK to proceed with its creation.

16. In the Edit ADF Library JAR Deployment Profile Properties dialog that is opened,
select JAR Options and specify a location where you will be placing all the reusable
JAR libraries. For this recipe, we will place all reusable libraries in a directory called
ReUsableJARs.

17. When done, completely exit from the Project Properties dialog, saving your changes
by clicking OK.

18. The last step involves the creation of the ADF Library JAR. You do this by
right-clicking on the ViewController project in the Application Navigator
selecting Deploy and then the name of the deployment profile name
(SharedComponents in this case).

19. Select Deploy to ADF Library JAR file in the Deployment Action page and click
Finish to initiate the deployment process. The deployment progress will begin. Its
status is shown in the Deployment tab of the Log window.

20. To create the HRDepartments components library, similarly create a new Fusion web
application for the HRDepartment components. Follow the previous steps to setup
the project dependencies. No database connection to the HR schema is needed at
this stage.

Prerequisites to Success: ADF Project Setup and Foundations

16

21. Create the deployment profile and deploy the ADF Library JAR. We will not be placing
any components yet in this library.

22. To create the HREmployees components library, repeat the previous steps once
more in order to create another ADF Library JAR for the HR Employee related
reusable components.

23. Now create another Fusion web application, which will be used as the main
application. This application will consume any of the components that reside in the
ADF Library JARs created in the previous steps.

24. This can easily be done via the Resource Palette by creating a file system connection
to the directory where we saved the reusable ADF Library JARs, that is, the directory
called ReUsableJARs. If the Resource Palette is not visible, select View | Resource
Palette to show it. In the Resource Palette, click on the New icon and select New
Connection | File System….

25. In the Create File System Connection dialog that is displayed, enter the name of the
connection and the directory where you have deployed the reusable components in
the previous steps.

26. Click OK to continue. You should be able to see the new File System Connection in
the Resource Palette.

Chapter 1

17

27. To consume reusable components, first select the appropriate project on the
Application Navigator, then right-click on the ADF Library JAR on the Resource
Palette and select Add to Project….

28. On the Confirm Add ADF Library dialog, click on the Add Library button to proceed.

29. Alternatively, expand the ADF Library JAR and drag-and-drop the reusable component
onto its appropriate place in the workspace.

How it works…
When you deploy a project as an ADF Library JAR, all ADF reusable components and
code are packaged in it and they become available to other consuming applications and
libraries. Reusable components include business components, database connections, data
controls, task flows, task flow templates, page templates, declarative components, and of
course Java code. By setting up the dependencies among the business components and
ViewController projects in the way that we have—that is, including the build output of the
business components project during the deployment of the ViewController project—you will
be producing a single ADF Library JAR file with all the components from all the projects in
the workspace. When you add an ADF Library JAR to your project, the library is added to the
project's class path. The consuming project can then use any of the components in library.
The same happens when you drag-and-drop a reusable component into your project.

There's more…
For this recipe, we packaged both of the business components and ViewController projects
in the same ADF Library JAR. If this strategy is not working for you, you have other options,
such as adjusting the dependencies among the two and packaging each project in a separate
ADF Library JAR. In this case, you will need an additional deployment profile and a separate
deployment for the business components project.

Adding the ADF Library JAR manually
You can add an ADF Library JAR into your project manually using the Project Properties
dialog. Select the Libraries and Classpath node and click on the Add Library… button. This
will display the Add Library dialog. On it, click the New… button to display the Create Library
dialog. Enter a name for the library, select Project for the library location, and click on the
Deployed by Default check button. Finally, click on the Add Entry… button to locate the ADF
Library JAR. The Deployed by Default checkbox when checked indicates that the library
will be copied to the application's destination archive during deployment of the consuming
application. If you leave it unchecked, then the library will not be copied and it must be
located in some other way (for example, deployed separately as a shared library on the
application server).

Prerequisites to Success: ADF Project Setup and Foundations

18

Defining the application module granularity
One related topic that also needs to be addressed in the early architectural stages of the
ADF project is the granularity for the application modules, that is, how the data model will be
divided into application modules. As a general rule of thumb, each application module should
satisfy a particular use case. Related use cases and, therefore, application modules can then
be packaged into the same reusable ADF Library JAR. In general, avoid creating monolithic
application modules that satisfy multiple use cases each.

Entity objects, list of values (LOVs), validation queries
Entity objects, list of values (LOVs) and validation queries should be defined only once for
each business components project. To avoid duplication of entity objects, LOVs and validation
queries among multiple business components projects, consider defining them only once in a
separate business components project.

Structuring of the overall ADF application in reusable components should
be well thought and incorporated in the early design and architectural
phases of the project.
As your application grows, it is important to watch out for and eliminate
circular dependencies among the reusable components that you develop.
When they occur, this could indicate a flaw in your design. Use available
dependency analyzer tools, such as Dependency Finder (available from
http://depfind.sourceforge.net) during the development
process, to detect and eliminate any circular dependencies that may occur.

Setting up BC base classes
One of the first things to consider when developing large-scale enterprise applications with
ADF-BC is to allow for the ability to extend the framework's base classes early on in the
development process. It is imperative that you do this before creating any of your business
objects, even though you have no practical use of the extended framework classes at that
moment. This will guarantee that all of your business objects are correctly derived from your
framework classes. In this recipe, you will expand on the previous recipe and add business
components framework extension classes to the SharedComponents workspace.

Getting ready
You will be adding the business components framework extension classes to the
SharedComponents workspace. See the previous recipe for information on how to
create one.

Chapter 1

19

How to do it…
1. To create framework extension classes for the commonly used business components,

start with the creation of an extension class for the entity objects. Open the
SharedComponents workspace in JDeveloper and right-click on the SharedBC
business components project.

2. From the context menu, select New… to bring up the New Gallery dialog. Select Class
from the Java category (under the General category) and click OK.

3. On the Create Java Class dialog that is displayed, enter the name of the custom
entity object class, the package where it will be created, and for Extends enter the
base framework class, which in this case is oracle.jbo.server.EntityImpl.

Prerequisites to Success: ADF Project Setup and Foundations

20

4. Now, repeat the same steps to create framework extension classes for the
following components:

Business Component Framework Class Extended
Entity Definition oracle.jbo.server.EntityDefImpl

View Object oracle.jbo.server.ViewObjectImpl

View Row oracle.jbo.server.ViewRowImpl

Application Module oracle.jbo.server.ApplicationModuleImpl

Database Transaction Factory oracle.jbo.server.
DatabaseTransactionFactory

Database Transaction oracle.jbo.server.DBTransactionImpl2

5. Once you are done, your project should look similar to the following:

Chapter 1

21

6. The next step is to configure JDeveloper so that all new business components that
you create from this point forward will be inherited from the framework extension
classes you've just defined. Open the Preferences dialog from the Tools menu,
expand the ADF Business Components node, and select Base Classes.

7. Then enter the framework extension classes that you created previously, each one in
its corresponding category.

How it works…
Defining and globally configuring business components framework extension classes via the
ADF Business Components Base Classes settings on the Preferences dialog causes all
subsequent business components for all projects to be inherited from these classes. This is
true for both XML-only components and for components with custom Java implementation
classes. For XML-only components observe that the ComponentClass attribute in the
object's XML definition file points to your framework extension class.

Prerequisites to Success: ADF Project Setup and Foundations

22

There's more…
You can configure your business components framework extension classes at two additional
levels: the project level and the individual component level.

 f Configuration at the project level is done via the Project Properties Base Classes
selection under the ADF Business Components node. These configuration changes
will affect only the components created for the specific project.

 f Configuration at the component level is done via the component's Java Options
dialog, in the component's definition Java page, by clicking on the Classes Extend…
button and overriding the default settings. The changes will only affect the
specific component.

Do not attempt to directly change or remove the extends Java keyword
in your component's implementation class. This would only be half
the change, because the component's XML definition will still point to
the original class. Instead, use the Classes Extend… button on the
component's Java Options dialog.

Finally, note that the default package structure for all business components can also be
specified in the ADF Business Components | Packages page of the Preferences dialog.

See also
 f Creating and using generic extension interfaces, Chapter 5, Putting them all together:

Application Modules

 f Breaking up the application in multiple workspaces, in this chapter

Setting up logging
Logging is one of those areas that is often neglected during the initial phases of application
design. There are a number of logging framework choices to use in your application, such
as log4j by Apache. In this recipe, we will demonstrate the usage of the ADFLogger and
Oracle Diagnostics Logging (ODL). The main advantage of using ODL when compared to other
logging frameworks is its tight integration with WebLogic and JDeveloper. In WebLogic, the
logs produced conform to and integrate with the diagnostics logging facility. Diagnostic logs
include, in addition to the message logged, additional information such as the session and
user that produced the log entry at run-time. This is essential when analyzing the application
logs. In JDeveloper, the log configuration and analysis is integrated via the Oracle Diagnostics
Logging Configuration and Oracle Diagnostics Log Analyzer respectively.

Chapter 1

23

Getting ready
We will be adding logging to the application module framework extension class that we
developed in the previous recipe.

How to do it…
1. ODL logs can be generated programmatically from within your code by using the

ADFLogger class. Instantiate an ADFLogger via the static createADFLogger()
method and use its log() method. Go ahead and add logging support to the
application module framework extension class we developed in the previous recipe,
as shown in the following code snippet:
import oracle.adf.share.logging.ADFLogger;
public class ExtApplicationModuleImpl extends
 ApplicationModuleImpl {
 // create an ADFLogger
 private static final ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExtApplicationModuleImpl.class);
 public ExtApplicationModuleImpl() {
 super();
 // log a trace
 LOGGER.log(ADFLogger.TRACE,
 "ExtApplicationModuleImpl was constructed");
 }
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

2. The next step involves the configuration of the logger in the logging.xml file. The
file is located in the config\fmwconfig\servers directory under the WebLogic
domain for the server you are configuring. For the integrated WebLogic server,
this file is located in the %JDEV_USER_DIR%\system11.1.2.1.38.60.81\
DefaultDomain\config\fmwconfig\servers\DefaultServer directory. The
exact location can vary slightly depending on the version of JDeveloper that you use.

http://www.packtpub.com
http://www.packtpub.com/support

Prerequisites to Success: ADF Project Setup and Foundations

24

Open the file in JDeveloper and create a custom logger called com.packt by clicking
on the Add Persistent Logger icon, as shown in the following screenshot:

3. This will display the Add Persistent Logger dialog to add your logger. Enter com.
packt for the Logger Name and choose FINEST for the Logger Level.

Chapter 1

25

4. Repeat this step and add another logger named com if one does not already exist for
it. The final result should look similar to the following screenshot:

5. One more step that is required to complete the configuration is to use the -Djbo.
debugoutput=adflogger and -Djbo.adflogger.level=FINEST options
when starting the JVM. You can do this in JDeveloper by double-clicking on the main
application's ViewController project to bring up the Project Properties dialog and
selecting the Run/Debug/Profile node.

6. Then select the appropriate Run Configuration on the right and click on the
Edit… button.

7. On the Edit Run Configuration dialog that is displayed, enter these Java options in
the Java Options.

How it works…
In this example, we have declared a static ADFLogger and associated it with the class
ExtApplicationModuleImpl by passing ExtApplicationModuleImpl.class as a
parameter during its construction. We have declared the ADFLogger as static so we don't
have to worry about passivating it. We then use its log() method to do our logging. The
log() method accepts a java.util.logging.Level parameter indicating the log level
of the message and it can be any of the following values: ADFLogger.INTERNAL_ERROR,
ADFLogger.ERROR, ADFLogger.WARNING, ADFLogger.NOTIFICATION, or ADFLogger.
TRACE.

ADFLogger leverages the Java Logging API to provide logging functionality. Because standard
Java logging is used, it can be configured through the logging.xml configuration file. This
file is located under the WebLogic domain directory config\fmwconfig\servers for the
specific server that you are configuring. The file is opened and a logger is added.

Prerequisites to Success: ADF Project Setup and Foundations

26

Logging is controlled at the package level; we have added a logger for the com.packt
package but we can fine-tune it for the additional levels: com.packt.jdeveloper, com.
packt.jdeveloper.cookbook, com.packt.jdeveloper.cookbook.shared,
and so on. The class name that we passed as an argument to the ADFLogger during its
instantiation—that is, ExtApplicationModuleImpl.class—represents a logger that is
defined in the logging configuration file. The logger that is added is a persistent logger, which
means that it will remain permanently in the logging.xml configuration file. Transient
loggers are also available; these persist only for the duration of the user session.

Each logger configured in the logging.xml is associated with a log handler. There are a
number of handlers defined in the logging.xml namely a console-handler to handle
logging to the console, an odl_handler to handle logging for ODL and others.

There's more…

You can also use the ADFLogger methods severe(),
warning(), info(), config(), fine(), finer(), and
finest() to do your logging.
When you configure logging, ensure that you make the changes
to the appropriate logging.xml file for the WebLogic server
you are configuring.

See also
 f Breaking up the application in multiple workspaces, in this chapter

 f Configuring diagnostics logging, Chapter 11, Refactoring, Debugging,
Profiling, Testing

 f Dynamically configure ADF trace logs on WebLogic, Chapter 11, Refactoring,
Debugging, Profiling, Testing

Chapter 1

27

Using a custom exception class
In this recipe, we will go over the steps necessary to set up a custom application exception
class derived from the JboException base exception class. Some Reasons why you might
want to do this include:

 f Customize the exception error message

 f Use error codes to locate the error messages in the resource bundle

 f Use a single resource bundle per locale for the error messages and their parameters

Getting ready
We will add the custom application exception class to the SharedComponents workspace we
created in the Breaking up the application in multiple workspaces recipe in this chapter.

How to do it…
1. Start by opening the SharedComponents workspace.

2. Create a new class called ExtJboException by right-clicking on the business
components project and selecting New….

3. Then select Java under the General category and Java Class from list of Items on
the right.

4. Click OK to display the Create Java Class dialog. Enter ExtJboException for the
Name, com.packt.jdeveloper.cookbook.shared.bc.exceptions for the
Package and oracle.jbo.JboException for the Extends.

5. Click OK to proceed with the creation of the custom exception class.

6. The next step is to add two additional constructors, to allow for the instantiation of
the custom application exception using a standard error message code with optional
error message parameters. The additional constructors look similar to the following
code sample:
public ExtJboException(final String errorCode,
 final Object[] errorParameters) {
 super(ResourceBundle.class, errorCode, errorParameters);
}
public ExtJboException(final String errorCode) {
 super(ResourceBundle.class, errorCode, null);
}

Prerequisites to Success: ADF Project Setup and Foundations

28

7. Now, click on the Override Methods… icon on the top of the editor window and
override the getMessage() method, as shown in the following screenshot:

8. Enter the following code for the getMessage() method:
public String getMessage() {
 // default message
 String errorMessage = "";
 try {
 // get access to the error messages bundle
 final ResourceBundle messagesBundle = ResourceBundle.getBundle
 (ERRORS_BUNDLE, Locale.getDefault());
 // construct the error message
 errorMessage =this.getErrorCode() + " - " + messages
 Bundle.getString(MESSAGE_PREFIX + this.getErrorCode());
 // get access to the error message parameters bundle
 final ResourceBundle parametersBundle = ResourceBundle
 .getBundle(PARAMETERS_BUNDLE, Locale.getDefault());
 // loop for all parameters
 for (int i = 0; i < this.getErrorParameters().length; i++) {
 // get parameter value
 final String parameterValue =

Chapter 1

29

 parametersBundle.getString(PARAMETER_PREFIX +
 (String)this.getErrorParameters()[i]);
 // replace parameter placeholder in the error message string
 errorMessage = errorMessage.replaceAll
 ("\\{" + (i + 1) + "}", parameterValue);
 }
 } catch (Exception e) {
 // log the exception
 LOGGER.warning(e);
 }
 return errorMessage;
}

9. Make sure that you also add the following constants:
private static final String ERRORS_BUNDLE = "com.packt.jdeveloper.
 cookbook.shared.bc.exceptions.messages.ErrorMessages";
private static final String PARAMETERS_BUNDLE = "com.packt.
 jdeveloper.cookbook.shared.bc.exceptions.messages.ErrorParams";
private static final String MESSAGE_PREFIX = "message.";
private static final String PARAMETER_PREFIX = "parameter.";
private static final ADFLogger LOGGER =ADFLogger
 .createADFLogger(ExtJboException.class);

10. For testing purposes add the following main() method:
// for testing purposes; remove or comment if not needed
 public static void main(String[] args) {
 // throw a custom exception with error code "00001" and two
 parameters
 throw new ExtJboException("00001",
 new String[] { "FirstParameter", "SecondParameter" });
}

How it works…
We have created a custom exception at the ADF-BC level by overriding the JboException
class. In order to use application-specific error codes, we have introduced two new
constructors. Both of them accept the error code as a parameter. One of them also accepts
the message error parameters.

public ExtJboException(final String errorCode,
 final Object[] errorParameters) {
 super(ResourceBundle.class, errorCode, errorParameters);
}

Prerequisites to Success: ADF Project Setup and Foundations

30

In our constructor, we call the base class' constructor and pass the message error code and
parameters to it.

Then we override the getMessage() method in order to construct the exception message.
In getMessage(), we first get access to the error messages resource bundle by calling
ResourceBundle.getBundle() as shown in the following code snippet:

final ResourceBundle messagesBundle = ResourceBundle.getBundle(ERRORS_
BUNDLE, Locale.getDefault());

This method accepts the name of the resource bundle and the locale. For the name of the
resource bundle, we pass the constant ERRORS_BUNDLE, which we define as com.packt.
jdeveloper.cookbook.shared.bc.exceptions.messages.ErrorMessages. This
is the ErrorMessages.properties file in the com/packt/jdeveloper/cookbook/
shared/bc/exceptions/messages directory where we have added all of our messages.
For the locale, we use the default locale by calling Locale.getDefault().

Then we proceed by loading the error message from the bundle:

errorMessage = this.getErrorCode() + " - " + messagesBundle.
getString(MESSAGE_PREFIX + this.getErrorCode());

An error message definition in the messages resource bundle looks similar to the following:

message.00001=This is an error message that accepts two parameters.
The first parameter is '{1}'. The second parameter is '{2}'.

As you can see, we have added the string prefix message. to the actual error message code.
How you form the error message identifiers in the resource bundle is up to you. You could, for
example, use a module identifier for each message and change the code in getMessage()
appropriately. Also, we have used braces, that is, {1}, {2} as placeholders for the actual
message parameter values. Based on all these, we constructed the message identifier
by adding the message prefix to the message error code as: MESSAGE_PREFIX + this.
getErrorCode() and called getString() on the messagesBundle to load it.

Then we proceed with iterating the message parameters. In a similar fashion, we call
getString() on the parameters bundle to load the parameter values.

The parameter definitions in the parameters resource bundle look similar to the following:

parameter.FirstParameter=Hello
parameter.SecondParameter=World

So we add the prefix parameter to the actual parameter identifier before loading it from
the bundle.

Chapter 1

31

The last step is to replace the parameter placeholders in the error message with the actual
parameter values. We do this by calling replaceAll() on the raw error message, as shown
in the following code snippet:

errorMessage = errorMessage.replaceAll("\\{" + (i + 1) + "}",
parameterValue);

For testing purposes, we have added a main() method to test our custom exception. You will
similarly throw the exception in your business components code, as follows:

throw new ExtJboException("00001", // message code
 new String[] { "FirstParameter", "SecondParameter" }
 // message parameters);

There's more…
You can combine the error message and the error message parameters bundles into a single
resource bundle, if you want, and change the getMessage() method as needed to load both
from the same resource bundle.

Bundled Exceptions
By default, exceptions are bundled at the transaction level for ADF-BC-based web applications.
This means that all exceptions thrown during attribute and entity validations are saved and
reported once the validation process is complete. In other words, the validation will not stop
on the first error, rather it will continue until the validation process completes and then report
all exceptions in a single error message. Bundled validation exceptions are implemented
by wrapping exceptions as details of a new parent exception that contains them. For
instance, if multiple attributes in a single entity object fail attribute validation, these multiple
ValidationException objects are wrapped in a RowValException. This wrapping
exception contains the row key of the row that has failed validation. At transaction commit
time, if multiple rows do not successfully pass the validation performed during commit, then
all of the RowValException objects will get wrapped in an enclosing TxnValException
object. Then you can use the getDetails() method of the JboException base exception
class to recursively process the bundled exceptions contained inside it.

Exception bundling can be configured at the transaction level by calling
setBundledExceptionMode() on the oracle.jbo.Transaction. This method
accepts a Boolean value indicating that bundled transactions will be used or not, respectively.

Prerequisites to Success: ADF Project Setup and Foundations

32

Note that in the Using a generic backing bean actions framework recipe
in this chapter, we refactored the code in getMessage() to a reusable
BundleUtils.loadMessage() method. Consequently, we changed the
ExtJboException getMessage() in that recipe to the following:

public String getMessage() {

 return BundleUtils.loadMessage(this.getErrorCode(),
 this.getErrorParameters());

}

See also
 f Handling security, session timeouts, exceptions and errors, Chapter 9, Handling

Security, Session Timeouts, Exceptions and Errors

 f Breaking up the application in multiple workspaces, in this chapter

Using ADFUtils/JSFUtils
In this recipe, we will talk about how to incorporate and use the ADFUtils and JSFUtils
utility classes in your ADF application. These are utility classes used at the ViewController
level that encapsulate a number of lower level ADF and JSF calls into higher level methods.
Integrating these classes in your ADF application early in the development process, and
subsequently using them, will be of great help to you as a developer and contribute to the
overall project's clarity and consistency. The ADFUtils and JSFUtils utility classes, at the
time of writing, are not part of any official JDeveloper release. You will have to locate them,
configure them, and expand them as needed in your project.

Getting ready
We will be adding the ADFUtils and JSFUtils classes to the SharedComponents
ViewController project that we developed in the Breaking up the application in multiple
workspaces recipe in this chapter.

How to do it…
1. To get the latest version of these classes, download and extract the latest version

of the Fusion Order Demo application in your PC. This sample application can be
found currently in the Fusion Order Demo (FOD) - Sample ADF Application page at
the following address: http://www.oracle.com/technetwork/developer-
tools/jdev/index-095536.html.

http://www.oracle.com/technetwork/developer-tools/jdev/index-095536.html
http://www.oracle.com/technetwork/developer-tools/jdev/index-095536.html

Chapter 1

33

2. The latest version of the Fusion Order Demo application is 11.1.2.1 R2 at the time
of this writing and is bundled in a zipped file. So go ahead download and extract the
Fusion Order Demo application in your PC.

3. You should be able to locate the ADFUtils and JSFUtils classes in the location
where you have extracted the Fusion Order Demo application. If multiple versions of
the same class are found, compare them and use the ones that are most up-to-date.
For this recipe, we have included in the source code the ADFUtils and JSFUtils
found in the SupplierModule\ViewController\src\oracle\fodemo\
supplier\view\utils directory.

4. Copy these classes to a specific location in your shared ViewController components
project. For this recipe, we have copied them into the SharedComponents\
SharedViewController\src\com\packt\jdeveloper\cookbook\shared\
view\util directory.

5. Once copied, open both files with JDeveloper and change their package to reflect
their new location, in this case to com.packt.jdeveloper.cookbook.shared.
view.util.

How it works…
The public interfaces of both ADFUtils and JSFUtils define static methods, so you can
call them directly without any class instantiations. The following are some of the methods that
are commonly used.

Locating an iterator binding
To locate an iterator in the bindings, use the ADFUtils.findIterator() method. The
method accepts the bound iterator's identifier and returns an oracle.adf.model.
binding.DCIteratorBinding. The following is an example:

DCIteratorBinding it = ADFUtils.findIterator("IteratorID");

Locating an operation binding
To locate an operation in the bindings, use the ADFUtils.findOperation() method.
This method accepts the bound operation's identifier and returns an oracle.binding.
OperationBinding.

OperationBinding oper = ADFUtils.findOperation("OperationID");

Prerequisites to Success: ADF Project Setup and Foundations

34

Locating an attribute binding
Use ADFUtils.findControlBinding() to retrieve an attribute from the bindings.
This method accepts the bound attribute's identifier and returns an oracle.binding.
AttributeBinding.

AttributeBinding attrib =
 ADFUtils.findControlBinding("AttributeId");

Getting and setting an attribute binding value
To get or set a bound attribute's value, use the ADFUtils.getBoundAttributeValue()
and ADFUtils.setBoundAttributeValue() methods respectively. Both of
these methods accept the identifier of the attribute binding as an argument. The
getBoundAttributeValue() method returns the bound attribute's data value as a java.
lang.Object. The setBoundAttributeValue() method accepts a java.lang.Object
and uses it to set the bound attribute's value.

// get some bound attribute data
String someData =
 (String)ADFUtils.getBoundAttributeValue("AttributeId");
// set some bound attribute data
ADFUtils.setBoundAttributeValue("AttributeId", someData);

Getting the binding container
You can get the oracle.adf.model.binding.DCBindingContainer binding container
by calling the ADFUtils.getDCBindingContainer() method.

DCBindingContainer bindings = ADFUtils.getDCBindingContainer();

Adding Faces messages
Use the JSFUtils.addFacesInformationMessage() and JSFUtils.
addFacesErrorMessage() methods to display Faces information and error messages
respectively. These methods accept the message to display as a String argument.

JSFUtils.addFacesInformationMessage("Information message");
JSFUtils.addFacesErrorMessage ("Error message");

Finding a component in the root view
To locate a UI component in the root view based on the component's identifier, use the
JSFUtils.findComponentInRoot() method. This method returns a javax.faces.
component.UIComponent matching the specified component identifier.

UIComponent component = JSFUtils.findComponentInRoot("ComponentID");

Chapter 1

35

Getting and setting managed bean values
Use the JSFUtils.getManagedBeanValue() and JSFUtils.setManagedBeanValue()
methods to get and set a managed bean value respectively. These methods both accept
the managed bean name. The JSFUtils.getManagedBeanValue() method returns the
managed bean value as a java.lang.Object. The JSFUtils.setManagedBeanValue()
method accepts a java.lang.Object and uses it to set the managed bean value.

Object filePath = JSFUtils.getManagedBeanValue
 ("bindings.FilePath.inputValue");
JSFUtils.setManagedBeanValue("bindings.FilePath.inputValue", null);

Using page templates
In this recipe, we will go over the steps required to create a JSF page template that you can use
to create JSF pages throughout your application. It is very likely that for a large enterprise-scale
application you will need to construct and use a number of different templates, each serving a
specific purpose. Using templates to construct the actual application JSF pages will ensure that
pages throughout the application are consistent, and provide a familiar look and feel to the end
user. You can follow the steps presented in this recipe to construct your page templates and
adapt them as needed to fit your own requirements.

Getting ready
We will be adding the JSF template to the SharedComponents ViewController project that we
developed in the Breaking up the application in multiple workspaces recipe in this chapter.

How to do it…
1. Start by right-clicking on the ViewController project in the SharedComponents

workspace and selecting New….

2. On the New Gallery dialog select JSF/Facelets from the list of Categories and ADF
Page Template from the Items on the right.

3. Click OK to proceed. This will display the Create ADF Page Template dialog.

4. Enter the name of the template on the Page Template Name. Note that as you
change the template name, the template File Name also changes to reflect the
template name. For this recipe, we will simply call the template TemplateDef1.

5. Now, click on the Browse… button and select the directory where the template will
be stored.

6. On the Choose Directory dialog navigate to the public_html/WEB-INF
directory and click on the Create new subdirectory icon to create a new directory
called templates.

Prerequisites to Success: ADF Project Setup and Foundations

36

7. For the Document Type, select JSP XML.

8. We will not be using any of the pre-defined templates, so uncheck the Use a Quick
Start Layout checkbox.

9. Also, since we will not be associating any data bindings to the template, uncheck the
Create Associated ADFm Page Definition checkbox.

10. Next, you will be adding the template facets. You do this by selecting the Facet
Definitions tab and clicking on the New icon button. Enter the following facets:

Facet Description
mainContent This facet will be used for the page's main content.
menuBar This facet will be used to define a menu at the top of the page.
topBar This facet will be used to define a toolbar under the page's menu.
popupContent This facet will be used to define the page's pop-ups.

11. Now click OK to proceed with the creation of the ADF page template.

Chapter 1

37

12. Once the template is created, it is opened in the JDeveloper editor. If you followed the
previous steps, the template should look similar to the following code snippet:
<af:pageTemplateDef var="attrs">
 <af:xmlContent>
 <component xmlns
 ="http://xmlns.oracle.com/adf/faces/rich/component">
 <display-name>TemplateDef1</display-name>
 <facet>
 <description>The page's main content</description>
 <facet-name>mainContent</facet-name>
 </facet>
 <facet>
 <description>The page's menu</description>
 <facet-name>menuBar</facet-name>
 </facet>
 <facet>
 <description>The page's top toolbar</description>
 <facet-name>topBar</facet-name>
 </facet>
 <facet>
 <description>The page's popups</description>
 <facet-name>popupContent</facet-name>
 </facet>
 </component>
 </af:xmlContent>
</af:pageTemplateDef>

As you can see, at this point, the template contains only its definition in an
af:xmlContent tag with no layout information whatsoever. We will proceed by
adding the template's layout content.

13. From the Layout components in the Component Palette, grab a Form component
and drop it into the template.

14. From the Layout container, grab a Panel Stretch Layout and drop it into the Form
component. Remove the top, bottom, start, and end facets.

15. From the Layout container, grab a Panel Splitter component and drop it on
the center facet of the Panel Stretch Layout. Using the Property Inspector
change the Panel Splitter Orientation to vertical. Also adjust the
SplitterPosition to around 100.

16. Add your application logo by dragging and dropping an Image component from the
General Controls onto the first facet of the Panel Splitter. For this recipe,
we have created a public_html\images directory and we copied a logo.jpg
logo image there. We then specified /images/logo.jpg as image Source for the
Image component.

Prerequisites to Success: ADF Project Setup and Foundations

38

17. Let's proceed by adding the main page's layout content. Drop a Decorative Box
from the Layout components onto the second facet of the Panel Splitter. We will
not be using the top facet of Decorative Box, so remove it.

18. OK, we are almost there! Drag a Panel Stretch Layout from the Layout
components and drop it onto the center facet of the Decorative Box. Remove the
start and end facets, since we will not be using them.

19. Drag a Facet Ref component from the Layout components and drop it onto the
center facet of the Panel Stretch Layout. On the Insert Facet dialog, select the
mainContent facet that you added during the template creation.

20. Finally, add the following code to the Panel Stretch Layout topBar facet:
<f:facet name="top">
 <af:panelGroupLayout id="pt_pgl5" layout="vertical">
 <af:facetRef facetName="popupContent"/>
 <af:menuBar id="pt_mb1">
 <af:facetRef facetName="menuBar"/>
 </af:menuBar>
 <af:panelGroupLayout id="pt_pgl2" layout="horizontal">
 <af:toolbar id="pt_t2">
 <af:facetRef facetName="topBar"/>
 </af:toolbar>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
</f:facet>

How it works…
When the template is created, there is no layout information in it, so we have to add it
ourselves. We do this by using a variety of layout components to arrange the contained UI.
Also, notice the usage of the af:facetRef component. It is being used to reference a
template facet in the specific place within the layout content. The facet is then available to you
when you create a JSF page from the template. This will become obvious when we generate a
JSF page from the template. Note that each Facet can only be added once to the template.

Chapter 1

39

So, how do you use the JSF page template? Since we have created the template in a
SharedComponents project, we will first need to deploy the project to an ADF Library JAR.
Then we will be able to use it from other consuming projects. This was explained in the Breaking
up the application in multiple workspaces recipe, earlier in this chapter. When you do so, the
template will be visible to all consuming projects, as shown in the following screenshot:

Once the ADF Library JAR containing the template is added to the consuming project, you can
see and select the template when you create a new JSF page in the Create JSF Page dialog.
The template introduced in this recipe is shown in the following screenshot:

Prerequisites to Success: ADF Project Setup and Foundations

40

The XML source code that is generated for a JSF page created from this template will look
similar to the following code snippet:

<f:view>
 <af:document id="d1" title="Test">
 <af:pageTemplate viewId="/WEB-INF/templates/TemplateDef1.jspx"
 id="pt1">
 <f:facet name="mainContent"/>
 <f:facet name="menuBar"/>
 <f:facet name="topBar"/>
 <f:facet name="bottomBar"/>
 <f:facet name="popupContent"/>
 </af:pageTemplate>
 </af:document>
</f:view>

You can see in the listing that the page references the template via the af:pageTemplate
tag. The template facets that you have defined are available so you can enter the page-
specific UI content. After adding an af:menuBar to the menuBar facet and some
af:commandToolbarButton components to the topBar facet, the JSF page could look
similar to the following code:

<f:view>
 <af:document id="d1" title="Test">
 <af:pageTemplate viewId="/WEB-INF/templates/TemplateDef1.jspx"
 id="pt1">
 <f:facet name="mainContent"/>
 <f:facet name="menuBar">
 <af:menuBar id="mb1">
 <af:menu text="File" id="m1">
 <af:commandMenuItem text="Save" id="cmi1"
 icon="/images/filesave.png"/>
 <af:commandMenuItem text="Action" id="cmi2"
 icon="/images/action.png"/>
 <af:commandMenuItem text="Mail" id="cmi3"
 icon="/images/envelope.png"/>
 <af:commandMenuItem text="Print" id="cmi4"
 icon="/images/print.png"/>
 </af:menu>
 </af:menuBar>
 </f:facet>
 <f:facet name="topBar">
 <af:group id="g1">
 <af:commandToolbarButton id="ctb1" shortDesc="Save"
 icon="/images/filesave.png"/>

Chapter 1

41

 <af:commandToolbarButton id="ctb2" shortDesc="Action"
 icon="/images/action.png"/>
 <af:commandToolbarButton id="ctb3" shortDesc="Mail"
 icon="/images/envelope.png"/>
 <af:commandToolbarButton id="ctb4" shortDesc="Print"
 icon="/images/print.png"/>
 </af:group>
 </f:facet>
 <f:facet name="popupContent"/>
 </af:pageTemplate>
 </af:document>
</f:view>

Running the page in JDeveloper will produce the following:

Prerequisites to Success: ADF Project Setup and Foundations

42

There's more…
Although adding a Form component to a template is not recommended practice, this is not a
problem for the template created in this recipe, since we will not be using it for the creation of
page fragments. Using a template that contains a Form component to create page fragments
will result in a problem when a consuming page already contains a Form component itself.
The template developed in this recipe will not be used for page fragments. It was developed
specifically to be used along with the generic backing bean actions framework explained in
the Using a generic backing bean actions framework recipe in this chapter.

Using a generic backing bean actions
framework

In this recipe we will create a base backing bean class that we will use to encapsulate
common functionality for common JSF page actions, such as committing and rolling back
data, creating new records, deleting records and so on. Creating and using such a generic
backing bean actions framework will guarantee that you provide consistent functionality
throughout the application and encapsulate common functionality at a base class level.
This class is not intended to be used as a utility class. Any new helper methods that were
developed to demonstrate the recipe were added to the ADFUtils utility class discussed
earlier in this chapter.

Getting ready
We will be adding the generic backing bean actions framework to the SharedComponents
ViewController project that we developed in the Breaking up the application in multiple
workspaces recipe in this chapter.

How to do it…
1. Right-click on the shared ViewController project and select New….

2. On the New Gallery dialog, select Java under the General category and Java Class
from the list of items on the right.

3. On the Create Java Class dialog, enter CommonActions for the class name
 and com.packt.jdeveloper.cookbook.shared.view.actions for the
class package.

4. Let's go ahead and add methods to provide consistent commit functionality:
public void commit(ActionEvent actionEvent) {
 if (ADFUtils.hasChanges()) {
 // allow derived beans to handle before commit actions
 onBeforeCommit(actionEvent);

Chapter 1

43

 // allow derived beans to handle commit actions
 onCommit(actionEvent);
 // allow derived beans to handle after commit actions
 onAfterCommit(actionEvent);
 } else {
 // display "No changes to commit" message
 JSFUtils.addFacesInformationMessage(BundleUtils.
 loadMessage("00002"));
 }
}
protected void onBeforeCommit(ActionEvent actionEvent) {
}
/**
protected void onCommit(ActionEvent actionEvent) {
 // execute commit
 ADFUtils.execOperation(Operations.COMMIT);
}
protected void onAfterCommit(ActionEvent actionEvent) {
 // display "Changes were committed successfully" message
 JSFUtils.addFacesInformationMessage(BundleUtils.
 loadMessage("00003"));
}

5. We have also added similar methods for consistent rollback behaviour. To provide
uniform record creation/insertion functionality, let's add these methods:
public void create(ActionEvent actionEvent) {
 if (hasChanges()) {
 onCreatePendingChanges(actionEvent);
 } else {
 onContinueCreate(actionEvent);
 }
}
protected void onBeforeCreate(ActionEvent actionEvent) {
 // commit before creating a new record
 ADFUtils.execOperation(Operations.COMMIT);
}
public void onCreate(ActionEvent actionEvent) {
 execOperation(Operations.INSERT);
}
protected void onAfterCreate(ActionEvent actionEvent) {
}
public void onCreatePendingChanges(ActionEvent actionEvent) {
 ADFUtils.showPopup("CreatePendingChanges");
}
public void onContinueCreate(ActionEvent actionEvent) {
 onBeforeCreate(actionEvent);
 onCreate(actionEvent);
 onAfterCreate(actionEvent);
}

Prerequisites to Success: ADF Project Setup and Foundations

44

6. Similar methods were added for consistent record deletion behaviour. In this case, we
have added functionality to show a delete confirmation pop-up.

How it works…
To provide consistent functionality at the JSF page actions level, we have implemented the
commit(), rollback(), create(), and remove() methods. Derived backing beans
should handle these actions by simply delegating to this base class via calls to super.
commit(), super.rollback(), and so on. The base class commit() implementation
first calls the helper ADFUtils.hasChanges() to determine whether there are transaction
changes. If there are, then the onBeforeCommit() is called to allow derived backing beans
to perform any pre-commit processing. Commit processing continues by calling onCommit().
Again, derived backing beans can override this method to provide specialized commit
processing. The base class implementation of onCommit() calls the helper ADFUtils.
execOperation() to execute the Operations.COMMIT bound operation. The commit
processing finishes by calling the onAfterCommit(). Derived backing beans can override
this method to perform post-commit processing. The default base class implementation
displays a Changes were committed successfully message on the screen.

The generic functionality for a new record creation is implemented in the create() method.
Derived backing beans should delegate to this method for default record creation processing
by calling super.create(). In create(), we first check to see if we have any changes to
the existing transaction. If we do, we will inform the user by displaying a message dialog. We
do this in the onCreatePendingChanges() method. The default implementation of this
method displays the CreatePendingChanges confirmation pop-up. The derived backing
bean can override this method to handle this event in a different manner. If the user chooses
to go ahead with the record creation, the onContinueCreate() is called. This method calls
onBeforeCreate() to handle precreate functionality. The default implementation commits
the current record by calling ADFUtils.execOperation(Operations.COMMIT). Record
creation continues with calling onCreate(). The default implementation of this method
creates and inserts the new record by calling ADFUtils.execOperation(Operations.
INSERT). Finally, onAfterCreate() is called to handle any creation post processing.

The generic rollback and record deletion functionality is similar. For the default delete
processing, a pop-up is displayed asking the user to confirm whether the record should be
deleted or not. The record is deleted only after the user's confirmation.

There's more…

Note that this framework uses a number of pop-ups in order to confirm certain user choices.
Rather than adding these pop-ups to all JSF pages, these pop-ups are added once to your
JSF page template, providing reusable pop-ups for all of your JSF pages. In order to support
this generic functionality, additional plumbing code will need to be added to the actions
framework. We will talk at length about it in the Using page templates for pop-up reuse recipe
in Chapter 7, Face Value: ADF Faces, JSPX Pages and Components.

Chapter 1

45

See also

 f Using page templates for pop-up reuse, Chapter 7, Face Value: ADF Faces, JSPX
Pages and Components

 f Breaking up the application in multiple workspaces, in this chapter

2
Dealing with Basics:

Entity Objects

In this chapter, we will cover:

 f Using a custom property to populate a sequence attribute

 f Overriding doDML() to populate an attribute with a gapless sequence

 f Creating and applying property sets

 f Using getPostedAttribute() to determine the posted attribute's value

 f Overriding remove() to delete associated child entities

 f Overriding remove() to delete a parent entity in an association

 f Using a method validator based on a view object accessor

 f Using Groovy expressions to resolve validation error message tokens

 f Using doDML() to enforce a detail record for a new master record

Introduction
Entity objects are the basic building blocks in the chain of business components. They
represent a single row of data and they encapsulate the business model, data, rules, and
persistence behavior. Usually, they map to database objects, most commonly to database
tables, and views. Entity object definitions are stored in XML metadata files. These files are
maintained automatically by JDeveloper and the ADF framework, and they should not be
edited by hand. The default entity object implementation is provided by the ADF framework
class oracle.jbo.server.EnityImpl. For large-scale projects you should create your
own custom entity framework class, as demonstrated in the Setting up BC base classes recipe
in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Dealing with Basics: Entity Objects

48

Likewise, it is not uncommon in large-scale projects to provide custom implementations for
the entity object methods doDML(), create(), and remove(). The recipes in this chapter
demonstrate, among other things, some of the custom functionality that can be implemented
in these methods. Furthermore, other topics such as generic programming using custom
properties and property sets, custom validators, entity associations, populating sequence
attributes, and more, are covered throughout the chapter.

Using a custom property to populate a
sequence attribute

In this recipe, we will go over a generic programming technique that you can use to assign
database sequence values to specific entity object attributes. Generic functionality is achieved
by using custom properties. Custom properties allow you to define custom metadata that can
be accessed by the ADF business components at runtime.

Getting ready
We will add this generic functionality to the custom entity framework class. This class was
created back in the Setting up BC base classes recipe in Chapter 1, Pre-requisites to Success:
ADF Project Setup and Foundations. The custom framework classes in this case reside in the
SharedComponets workspace. This workspace was created in the recipe Breaking up the
application in multiple workspaces, Chapter1, Pre-requisites to Success: ADF Project Setup
and Foundations. You will need to create a database connection to the HR schema, if you
are planning to run the recipe's test case. You can do this either by creating the database
connection in the Resource Palette and dragging-and-dropping it to Application Resources |
Connections, or by creating it directly in Application Resources | Connections.

How to do it...
1. Start by opening the SharedComponets workspace in JDeveloper. If needed, follow

the steps in the referenced recipe to create it.

2. Locate the custom entity framework class in the SharedBC project and open it in
the editor.

3. Click on the Override Methods… icon on the toolbar (the green left arrow) to bring up
the Override Methods dialog.

4. From the list of methods that are presented, select the create() method and click OK.
JDeveloper will insert a create() method in to the body of your custom entity class.

Chapter 2

49

5. Add the following code to the create() method immediately after the call to
super.create():

// iterate all entity attributes
for (AttributeDef atrbDef :
 this.getEntityDef().getAttributeDefs()) {
 // check for a custom property called CREATESEQ_PROPERTY
 String sequenceName =
 (String)atrbDef.getProperty(CREATESEQ_PROPERTY);
 if (sequenceName != null) {
 // create the sequence based on the custom property sequence
 name
 SequenceImpl sequence = new SequenceImpl(sequenceName,
 this.getDBTransaction());
 // populate the attribute with the next sequence number
 this.populateAttributeAsChanged(atrbDef.getIndex(),
 sequence.getSequenceNumber());
 }
}

How it works...
In the previous code, we have overridden the create() method for the custom entity
framework class. This method is called by the ADF framework each time a new entity
object is constructed. We call super.create() to allow the framework processing,
and then we retrieve the entity's attribute definitions by calling getEntityDef().
getAttributeDefs(). We then iterate over them, calling getProperty() for each
attribute definition. getProperty() accepts the name of a custom property defined for
the specific attribute. In our case, the custom property is called CreateSequence and it is
indicated by the constant definition CREATESEQ_PROPERTY, representing the name of the
database sequence used to assign values to the particular attribute. Next, we instantiate
a SequenceImpl object using the database sequence name retrieved from the custom
property. Note that this does not create the database sequence, rather an oracle.jbo.
server.SequenceImpl object representing a database sequence.

Finally, the attribute is populated with the value returned from the sequence—via the
getSequenceNumber() call—by calling populateAttributeAsChanged(). This
method will populate the attribute without marking the entity as changed. By calling
populateAttributeAsChanged(), we will avoid any programmatic or declarative
validations on the attribute while marking the attribute as changed, so that its value is posted
during the entity object DML. Since all of the entity objects are derived from the custom entity
framework class, all object creations will go through this create() implementation.

Dealing with Basics: Entity Objects

50

There's more...
So how do you use this technique to populate your sequence attributes? First you must
deploy the SharedComponets workspace into an ADF Library JAR and add the library to
the project where it will be used. Then, you must add the CreateSequence custom property
to the specific attributes of your entity objects that need to be populated by a database
sequence. To add a custom property to an entity object attribute, select the specific attribute
in the entity Attributes tab and click on the arrow next to the Add Custom Property icon
(the green plus sign) in the Custom Properties tab. From the context menu, select
Non-translatable Property.

Click on the Property field and enter CreateSequence. For the Value enter the database
sequence name that will be used to assign values to the specific attribute. For the Employee
entity object example mentioned earlier, we will use the EMPLOYEES_SEQ database
sequence to assign values to the EmployeeId attribute.

Note that for testing purposes, we have created in the HREmployees
workspace an Employee entity object and added the CreateSequence
custom property to its EmployeeId attribute. To test the recipe, you can
run the EmployeeAppModule application module.

Chapter 2

51

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

 f Overriding doDML() to populate an attribute with a gapless sequence, in this chapter

 f Creating and applying property sets, in this chapter

Overriding doDML() to populate an attribute
with a gapless sequence

In this recipe, we will go over a generic programming technique that you can use to assign
gapless database sequence values to entity object attributes. A gapless sequence will
produce values with no gaps in between them. The difference between this technique and
the one presented in the Using a custom property to populate a sequence attribute recipe, is
that the sequence values are assigned during the transaction commit cycle instead of during
component creation.

Getting ready
We will add this generic functionality to the custom entity framework class that we created
in the Setting up BC base classes recipe in Chapter 1, Pre-requisites to Success: ADF
Project Setup and Foundations. The custom framework classes in this case reside in the
SharedComponets workspace. You will need access to the HR database schema to run the
recipe's test case.

How to do it...
1. Start by opening the SharedComponets workspace in JDeveloper. If needed, follow

the steps in the referenced recipe to create it.

2. Locate the custom entity framework class in the SharedBC project and open it in
the editor.

3. Click on the Override Methods… icon on the toolbar (the green left arrow) to bring up
the Override Methods dialog.

4. From the list of methods that are presented, select the doDML() method and click
OK. JDeveloper will go ahead and insert a doDML() method into the body of your
custom entity class.

Dealing with Basics: Entity Objects

52

5. Add the following code to the doDML() before the call to super.doDML():
// check for insert operation
if (DML_INSERT == operation) {
 // iterate all entity attributes
 for (AttributeDef atrbDef :this.getEntityDef().
 getAttributeDefs()) {
 // check for a custom property called COMMITSEQ_PROPERTY
 String sequenceName=(String)atrbDef.getProperty
 (COMMITSEQ_PROPERTY);
 if (sequenceName != null) {
 // create the sequence based on the custom property sequence
 name
 SequenceImpl sequence = new SequenceImpl(sequenceName,
 this.getDBTransaction());
 // populate the attribute with the next sequence number
 this.populateAttributeAsChanged(atrbDef.getIndex(),
 sequence.getSequenceNumber());
 }
 }
}

How it works...
If you examine the code presented in this recipe, you will see that it looks similar to the
code presented in the Using a custom property to populate a sequence attribute recipe in
this chapter. The difference is that this code executes during the transaction commit phase.
During this phase, the ADF framework calls the entity's doDML() method. In our overridden
doDML(), we first check for a DML_INSERT operation flag. This would be the case when
inserting a new record into the database. We then iterate the entity's attribute definitions
looking for a custom property identified by the constant COMMITSEQ_PROPERTY. Based on
the property's value, we create a sequence object and get the next sequence value by calling
getSequenceNumber(). Finally, we assign the sequence value to the specific attribute by
calling populateAttributeAsChanged(). Assigning a sequence value during the commit
phase does not allow the user to intervene. This will produce gapless sequence values. Of
course to guarantee that there are no final gaps in the sequence values, deletion should not
be allowed. That is, if rows are deleted, gaps in the sequence values will appear. Gaps will also
appear in case of validation failures, if you do not subsequently rollback the transaction. Since
all of the entity objects are derived from the custom entity framework class, all object commits
will go through this doDML() implementation.

To use this technique, first you will need to re-deploy the shared components project. Then
add the CommitSequence custom property as needed to the specific attributes of your entity
objects. We explained how to do this in the Using a custom property to populate a sequence
attribute recipe.

Chapter 2

53

There's more...
doDML() is called by the ADF framework during a transaction commit operation. It is called
for every entity object in the transaction's pending changes list. This is true even when entity
Update Batching optimization is used. For an entity-based view object, this means that it will
be called for every row in the row set that is in the pending changes list. The method accepts
an operation flag; DML_INSERT, DML_UPDATE, or DML_DELETE to indicate an insert, update,
or delete operation on the specific entity.

Data is posted to the database once super.doDML() is called, so any exceptions thrown
before calling super.doDML() will result in no posted data. Once the data is posted to the
database, queries or stored procedures that rely upon the posted data should be coded
in the overridden application module's beforeCommit() method. This method is also
available at the entity object level, where it is called by the framework for each entity in the
transaction's pending changes list. Note that the framework calls beforeCommit()for each
entity object in the transaction pending changes list prior to calling the application module
beforeCommit().

For additional information on doDML(), consult the sections Methods You Typically Override
in Your Custom EntityImpl Subclass and Transaction "Post" Processing (Record Cache) in the
Fusion Developer's Guide for Oracle Application Development Framework,which can be found
at http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm.

Note that for testing purposes, we have created a Department
entity object in the HRDepartments workspace and added
the CommitSequence custom property to its DepartmentId
attribute. The value of the CommitSequence property was set
to DEPARTMENTS_SEQ, the database sequence that is used to
assign values to the DepartmentId attribute. To test the recipe,
run the DepartmentAppModule application module on the
ADF Model Tester.

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

 f Using a custom property to populate a sequence attribute, in this chapter

 f Creating and applying property sets, in this chapter

Dealing with Basics: Entity Objects

54

Creating and applying property sets
In the Using a custom property to populate a sequence attribute and Overriding doDML() to
populate an attribute with a gapless sequence recipes of this chapter, we introduced custom
properties for generic ADF business component programming. In this recipe, we will present
a technique to organize your custom properties in reusable property sets. By organizing
application-wide properties in a property set and exporting them as part of an ADF Library
JAR, you can then reference them from any other ADF-BC project. This in turn will allow you to
centralize the custom properties used throughout your ADF application in a single property set.

getting ready
We will create a property set in the SharedComponets workspace. I suggest that you go
over the Using a custom property to populate a sequence attribute and Overriding doDML()
to populate an attribute with a gapless sequence recipes in this chapter before continuing
with this recipe. To run the recipe's test cases, you will need access to the HR schema in
the database.

How to do it...
1. Start by opening the SharedComponets workspace. If needed, follow the steps in

the referenced recipe to create it.

2. Right-click on the SharedBC project and select New….

3. On the New Gallery dialog select ADF Business Components under the Business
Tier node and Property Set from the Items on the right.

4. Click OK to proceed. This will open the Create Property Set dialog.

5. Enter the property set name and package in the appropriate fields. For this recipe, we
will call it SharedProperties and use the com.packt.jdeveloper.cookbook.
shared.bc.properties package. Click OK to continue.

Chapter 2

55

6. JDeveloper will create and open the SharedProperties property set.

7. To add a custom property to the property set, click on the Add Custom Property
button (the green plus sign icon).

8. Go ahead and add two non-translatable properties
called CommitSequenceDepartmentDepartmentId and
CreateSequenceEmployeeEmployeeId. Set their values to DEPARTMENTS_SEQ
and EMPLOYEES_SEQ respectively. Your property set should look similar to the
following screenshot:

9. Next you need to change the create() method in the custom entity framework class
so that the custom property is now similar to the following block of code:
// construct the custom property name from the entity name and
attribute
String propertyName = CREATESEQ_PROPERTY +
 getEntityDef().getName() + atrbDef.getName();
// check for a custom property called CREATESEQ_PROPERTY
String sequenceName =(String)atrbDef.getProperty(propertyName);

Dealing with Basics: Entity Objects

56

10. Similarly change the doDML() method in the custom entity framework class so that
the custom property is also constructed, as shown in the following block of code:
// construct the custom property name from the entity name and
 attribute
String propertyName = COMMITSEQ_PROPERTY +
 getEntityDef().getName() + atrbDef.getName();
// check for a custom property called COMMITSEQ_PROPERTY
String sequenceName =(String)atrbDef.getProperty(propertyName);

11. Redeploy the SharedComponets workspace into an ADF Library JAR.

12. Open the HREmployees workspace and double-click on the HREmployeesBC
business components project to bring up the Project Properties dialog.

13. Select Imports under the ADF Business Components node and click on the Import…
button on the right.

14. On the Import Business Components XML File dialog browse for the shared
components ADF Library JAR file in the ReUsableJARs directory. Select it and
click Open.

15. You should see the imported SharedBC project under the Imported Business
Component Projects along with the imported packages and package contents. Click
OK to continue with importing the business components.

Chapter 2

57

16. Double-click on the Employee entity object and go to the Attributes tab.

17. Click on the Details tab, and from the Property Set choice list select the imported
property set.

18. Repeat steps 12-17 for the HRDepartments workspace and apply the property set
to the DepartmentId attribute of the Department entity object.

How it works...
Property sets are a way to gather all of your custom properties together into logical collections.
Instead of applying each custom property separately to a business components object or to
any of its attributes, custom properties defined in these collections can be applied at once
on them. Property sets can be applied to entity objects and their attributes, view objects and
their attributes, and application modules. You access custom properties programmatically
as indicated earlier, by calling AttributeDef.getProperty() for properties applied
to attributes, EntityDefImpl.getProperty() for properties applied to entity objects,
ViewDefImpl.getProperty() for properties applied to view objects, and so on.

How you organize your custom properties into property sets is up to you. In this recipe, for
example, we use a single property set called SharedProperties, which we define in
the shared components ADF library. In this way, we kept all custom properties used by the
application in a single container. For this to work, we had to devise a way to differentiate
among them. The algorithm that we used was to combine the property name with the
business components object name and the attribute name that the property applies
to. So we have properties called CommitSequenceDepartmentDepartmentId and
CreateSequenceEmployeeEmployeeId.

Finally, we import the property set from the SharedComponets workspace into the
relevant business components projects using the Import Business Components facility of the
business components Project Properties dialog.

There's more...
To test the recipe, you can run the EmployeeAppModule and DepartmentAppModule
application modules in the HREmployees and HRDepartments workspaces respectively.

Dealing with Basics: Entity Objects

58

Note that you can override any of the properties defined in a property set by
explicitly adding the same property to the business component object or to
any of its attributes.
Also note that property sets can be applied onto entity objects, view objects,
and application modules by clicking on the Edit property set selection
button (the pen icon) on the business component object definition General
tab. On the same tab, you can add custom properties to the business
component object by clicking on the Add Custom Property button (the
green plus sign icon).

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

 f Using a custom property to populate a sequence attribute, in this chapter

 f Overriding doDML() to populate an attribute with a gapless sequence, in this chapter

Using getPostedAttribute() to determine the
posted attribute's value

There are times when you need to get the original database value of an entity object
atttribute, such as when you want to compare the attribute's current value to the
original database value. In this recipe, we will illustrate how to do this by utilizing the
getPostedAttribute() method.

Getting ready
We will be working on the SharedComponets workspace. We will add a helper method to the
custom entity framework class.

How to do it...
1. Start by opening the SharedComponets workspace. If needed, follow the steps in

the referenced recipe to create it.

2. Locate the custom entity framework class and open it into the source editor.

Chapter 2

59

3. Add the following code to the custom entity framework class:

/**
* Check if attribute's value differs from its posted value
* @param attrIdx the attribute index
* @return
*/
public boolean isAttrValueChanged(int attrIdx) {
 // get the attribute's posted value
 Object postedValue = getPostedAttribute(attrIdx);
 // get the attribute's current value
 Object newValue = getAttributeInternal(attrIdx);
 // return true if attribute value differs from its posted value
 return isAttributeChanged(attrIdx) &&
 ((postedValue == null && newValue != null) ||
 (postedValue != null && newValue == null) ||
 (postedValue != null && newValue != null &&
 !newValue.equals(postedValue)));
}

How it works...
We added a helper method called isAttrValueChanged() to the our custom entity
framework class. This method accepts the attribute's index. The attribute index is generated
and maintained by JDeveloper itself. The method first calls getPostedAttribute()
specifying the attribute index to retrieve the attribute value that was posted to the database.
This is the attribute's database value. Then it calls getAttributeInternal() using
the same attribute index to determine the current attribute value. The two values are then
compared. The method isAttributeChanged() returns true if the attribute value was
changed in the current transaction.

The following is an example of calling isAttrValueChanged() from an entity
implementation class to determine whether the current value of the employee's last
name differs from the value that was posted to the database:

super.isAttrValueChanged(this.LASTNAME);

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

Dealing with Basics: Entity Objects

60

Overriding remove() to delete associated
children entities

When deleting a parent entity, there are times you will want to delete all of the child entity
rows in an entity assocation relation. In this recipe, we will see how to accomplish this task.

Getting ready
You will need access to the HR database schema.

How to do it...
1. Start by creating a new Fusion Web Application (ADF) workspace called

HRComponents.

2. Create a Database Connection for the HR schema in the Application Resource
section of the Application Navigator.

3. Use the Business Components from Tables selection on the New Gallery dialog to
create business components objects for the DEPARTMENTS and EMPLOYEES tables.
The components in the Application Navigator should look similar to the following:

Chapter 2

61

4. Double-click on the EmpDeptFkAssoc association on the Application Navigator to
open the association definition, then click on the Relationship tab.

5. Click on the Edit accessors button (the pen icon) in the Accessors section to bring
up the Association Properties dialog.

6. Change the Accessor Name in the Destination Accessor section to
DepartmentEmployees and click OK to continue.

7. Double-click on the Department entity object in the Application Navigator to open its
definition and go to the Java tab.

8. Click on the Edit Java Options button (the pen icon on the top right of the tab) to
bring up the Select Java Options dialog.

9. On the Select Java Options dialog, select Generate Entity Object Class.

10. Ensure that both the Accessors and Remove Method checkboxes are selected. Click
OK to continue.

11. Repeat steps 7-10 to create a Java implementation class for the Employee entity
object. You do not have to click on the Remove Method checkbox in this case.

12. Open the DepartmentImpl Java implementation class for the Department entity
object in the JDeveloper Java editor and locate the remove() method.

Dealing with Basics: Entity Objects

62

13. Add the following code before the call to super.remove():

// get the department employeess accessor
RowIterator departmentEmployees = this.getDepartmentEmployees();
// iterate over all department employees
while (departmentEmployees.hasNext()) {
 // get the department employee
 EmployeeImpl departmentEmployee =
 (EmployeeImpl)departmentEmployees.next();
 // remove employee
 departmentEmployee.remove();
}

How it works...
During the creation of the Department and Employee entity objects, JDeveloper
automatically creates the entity associations based on the foreign key constraints that
exist among the DEPARTMENTS and EMPLOYEES database tables. The specific association
that relates a department to its employees was automatically created and it was called
EmpDeptFkAssoc.

Jdeveloper exposes the association to both the source and destination entity objects
via accessors. In step 6, we changed the accessor name to make it more meaningful.
We called the the association accessor that returns the department employees
DepartmentEmployees. Using Java, this accessor is available in the DepartmentImpl
class by calling getDepartmentEmployees(). This method returns an oracle.jbo.
RowIterator object that can be iterated over.

Now, let's take a closer look at the code added to the remove() method. This method is
called by the ADF framework each time we delete a record. In it, first we access the current
department's employees by calling getDepartmentEmployees(). Then we iterate over the
department employees, by calling hasNext() on the employees RowIterator. Then for
each employee, we get the Employee entity object by calling next(), and call remove() on
it to delete it. The call to super.remove() finally deletes the Department entity itself. The
net result is to delete all employees associated with the specific department before deleting
the department itself.

There's more...
A specific type of association called composition association can be enabled in those cases
where an object composition behavior is observed, that is, where the child entity cannot exist
on its own without the associated "parent" entity. In these cases, there are special provisions
by the ADF framework and JDeveloper itself to fine-tune the delete behavior of child entities
when the parent entity is removed. These options are available in the association editor
Relationship tab, under the Behavior section.

Chapter 2

63

Once you indicate a Composition Association for the association, two options are presented
relating to cascading deletion:

 f Optimize for Database Cascade Delete: This option prevents the framework from
issuing a DELETE DML statement for each composed entity object destination row.
You do this if ON DELETE CASCADE is implemented in the database.

 f Implement Cascade Delete: This option implements the cascade delete in the
middle layer, that is if the source composing entity object contains any composed
children, its deletion is prevented.

This recipe shows how to remove children entity objects for which composition association
is not enabled. This may be the case when a requirement exists to allow in some cases
composed children entities to exist without associated composing parent entities. For
example, when a new employee is not yet assigned to a particular department.

Overriding remove() to delete a parent entity
in an association

In this recipe, we will present a technique that you can use in cases that you want to delete
the parent entity in an association when the last child entity is deleted. An example of such a
case would be to delete a department when the last department employee is deleted.

Getting ready
You will need access to the HR schema in your database.

Dealing with Basics: Entity Objects

64

How to do it...
1. Start by creating a new Fusion Web Application (ADF) workspace called

HRComponents.

2. Create a database connection for the HR schema in the Application Resource
section of the Application Navigator.

3. Use the Business Components from Tables selection on the New Gallery
dialog to create Business Components objects for the DEPARTMENTS and
EMPLOYEES tables.

4. Double-click on the EmpDeptFkAssoc association on the Application Navigator to
bring up the Association editor, then click on the Relationship tab.

5. Click on the Edit accessors button (the pen icon) in the Accessors section to bring
up the Association Properties dialog.

6. Change the Accessor Name in the Source Accessor section to
EmployeeDepartment and click OK to continue.

7. Generate custom Java implementation classes for both the Employee and
Department entity objects.

8. Open the EmployeeImpl custom Java implementation class for the Employee
entity object and locate the remove() method.

9. Replace the call to super.remove() with the following code:

// get the associated department
DepartmentImpl department = this.getEmployeeDepartment();
// get number of employees in the department
int numberOfEmployees =
 department.getDepartmentEmployees().getRowCount();
// check whether last employee in the department
if (numberOfEmployees == 1) {
 // delete the last employee
 super.remove();
 // delete the department as well
 department.remove();
}
else {
 // just delete the employee
 super.remove();
}

Chapter 2

65

How it works...
If you followed the Overriding remove() to delete associated children entities recipe in this
chapter, then steps 1 through 8 should look familiar. These are the basic steps to create
the HRComponents workspace, along with the business components associated with the
EMPLOYEES and DEPARTMENTS tables in the HR schema. These steps also create custom
Java implementation classes for the Employee and Department entity objects and setup
the EmpDeptFkAssoc association.

The code in remove() first gets the Department entity row by calling the accessor
getEmployeeDepartment() method. Remember, this was the name of accessor—
EmployeeDepartment—that we setup in step 6. getEmployeeDepartment() returns
the custom DepartmentImpl that we setup in step 7. In order to determine the number
of employees in the associated Department, we first get the Employee RowIterator
by calling getDepartmentEmployees() on it, and then getRowCount() on the
RowIterator. All that is done in the following statement:

int numberOfEmployees =
department.getDepartmentEmployees().getRowCount();

Remember that we setup the name of the DepartmentEmployees accessor in step 6.
Next, we checked for the number of employees in the associated department, and if there
was only one employee—the one we are about to delete—we first deleted it by calling super.
remove(). Then we deleted the department itself by calling department.remove(). If
more than one employee was found for the specific department, we just delete the employee
by calling super.remove(). This was done in the else part of the if statement.

There's more...
Note the implications of using getRowCount() versus getEstimatedRowCount() in
your code when dealing with large result sets: getRowCount() will perform a database
count query each time it is called to return the exact number of rows in the view object. On the
other hand, getEstimatedRowCount() executes a database count query only once to fetch
the view object row count to the middle layer. Then, it fetches the row count from the middle
layer. The row count in the middle layer is adjusted as view object rows are added or deleted.
This may not produce an accurate row count when multiple user sessions are manipulating
the same view object at the same time. For more information on this topic, consult the section
How to Count the Number of Rows in a Row Set in the Fusion Developer's Guide for Oracle
Application Development Framework.

See also
 f Overriding remove() to delete associated children entities, in this chapter

Dealing with Basics: Entity Objects

66

Using a method validator based on a view
object accessor

In this recipe, we will show how to validate an entity object against a view accessor using a
custom entity method validator. The use case that we will cover—based on the HR schema—
will not allow the user to enter more than a specified number of employees per department.

Getting ready
We will be using the HRComponents workspace that we created in the previous recipes in
this chapter so that we don't repeat these steps again. You will need access to the HR
database schema.

How to do it…
1. Right-click on the com.packt.jdeveloper.cookbook.hr.components.

model.view package of the HRComponentsBC business components project of the
HRComponents workspace, and select New View Object….

2. Use the Create View Object wizard to create a SQL query view object called
EmployeeCount based on the following query:
SELECT COUNT(*) AS EMPLOYEE_COUNT FROM EMPLOYEES WHERE DEPARTMENT_
ID = :DepartmentId

3. While on the Create View Object wizard, also do the following:

 � Create a Bind Variable called DepartmentId of type Number

 � On the Attribute Settings page, ensure that you select Key Attribute for the
EmployeeCount attribute

 � On the Java page make sure that both the Generate View Row Class and
Include accessors checkboxes are checked

 � Do not add the view object to an application module

4. Now, double-click on the Employee entity object to open its definition and go to the
View Accessors page.

5. Click on the Create new view accessors button (the green plus sign icon) to bring up
the View Accessors dialog.

6. On the View Accessors dialog locate the EmployeeCount view object and click the
Add instance button—the blue right arrow button. Click OK to dismiss the dialog.

Chapter 2

67

7. On the entity object definition Business Rules tab, select the Employee entity and
click on the Create new validator button (the green plus sign icon).

8. On the Add Validation Rule dialog, select Method for the Rule Type and enter
validateDepartmentEmployeeCount for the Method Name.

9. Click on the Failure Handling tab and in the Message Text enter the message
Department has reached maximum employee limit. Click OK.

10. Open the EmployeeImpl custom implementation Java class, locate the
validateDepartmentEmployeeCount() method and add the following code to it
before the return true statement:

// get the EmployeeCount view accessor
RowSet employeeCount = this.getEmployeeCount();
// setup the DepartmentId bind variable
employeeCount.setNamedWhereClauseParam("DepartmentId",
 this.getDepartmentId());
// run the View Object query
employeeCount.executeQuery();
// check results
if (employeeCount.hasNext()) {
 // get the EmployeeCount row

Dealing with Basics: Entity Objects

68

 EmployeeCountRowImpl employeeCountRow =
 (EmployeeCountRowImpl)employeeCount.next();
 // get the deparment employee count
 Number departmentEmployees =
 employeeCountRow.getEmployeeCount();
 if (departmentEmployees.compareTo(MAX_DEPARTMENT_EMPLOYEES)>0) {
 return false;
 }
}

How it works...
We have created a separate query-based view object called EmployeeCount for validation
purposes. If you look closely at the EmployeeCount query, you will see that it determines the
number of employees in a department. Which department is determined by the bind variable
DepartmentId used in the WHERE clause of the query.

We then add the EmployeeCount view object as a view accessor to the Employee object.
We call the accessor instance EmployeeCount as well. Once you have generated a custom
Java implementation class for the Employee entity object, the EmployeeCount view
accessor is available by calling getEmployeeCount().

We proceed by adding a method validator to the entity object. We call the method to use for
the validator validateDepartmentEmployeeCount. JDeveloper created this method for
us in the entity custom implementation Java class.

The code that we add to the validateDepartmentEmployeeCount() method first gets
the EmployeeCount accessor, and calls setNamedWhereClauseParam() on it to set the
value of the DepartmentId bind variable to the value of the department identifier from the
current Employee. This value is accessible via the getDepartmentId() method. We then
execute the EmployeeCount view object query by calling its executeQuery() method.
We check for the results of the query by calling hasNext() on the view object. If the query
yields results, we get the next result row by calling next(). We have casted the oracle.
job.Row returned by next() to an EmployeeCountRowImpl so we can directly call its
getEmployeeCount() accessor. This returns the number of employees for the specific
department. We then compare it to a predefined maximum number of employees per
department identified by the constant MAX_DEPARTMENT_EMPLOYEES.

The method validator returns a false to indicate that the validation will fail. Otherwise it
returns true.

Observe what happens when you run the application module with the ADF Model Tester. When
you try to add a new employee to a department that has more than a predefined number of
employees (identified by the constant MAX_DEPARTMENT_EMPLOYEES), a validation message
is raised. This is the message that we defined for our method validator.

Chapter 2

69

There's more...
Note that in the previous code we called setNamedWhereClauseParam() on the
EmployeeCount view object to set the value of the DepartmentId bind variable to the
current employee's department ID. This could have been done declaratively as well using the
Edit View Accessor dialog, which is available on the View Accessors page of the Employee
entity definition page by clicking on the Edit selected View Accessor button (the pen icon).
On the Edit View Accessor dialog, locate the DepartmentId bind variable in the Bind
Parameter Values section, and on the Value field enter DepartmentId. This will set the
value of the DepartmentId bind variable to the value of the DepartmentId attribute of the
Employee entity object.

Dealing with Basics: Entity Objects

70

See also
 f Overriding remove() to delete associated children entities, in this chapter

Using Groovy expressions to resolve
validation error message tokens

In this recipe, we will expand on the Using a custom validator based on a View Object
accessor recipe to demonstrate how to use validation message parameter values based
on Groovy expressions. Moreover, we will show how to retrieve the parameter values from a
specific parameter bundle.

Groovy is a dynamic language that runs inside the Java Virtual Machine. In the context of the
ADF Business Components framework, it can be used to provide declarative expressions that
are interpreted at runtime. Groovy expressions can be used in validation rules, validation
messages, and parameters, attribute initializations, bind variable initializations, and more.

Getting ready
This recipe builds on the Using a custom validator based on a View Object accessor recipe.
It also relies on the recipes Breaking up the application in multiple workspaces and Setting
up BC base classes presented in Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations.

How to do it...
1. In the Application Navigator double-click on the Employee entity object definition

and go to its Business Rules tab.

2. Double-click on the validateDepartmentEmpoyeeCount Method Validator to bring
up the Edit Validation Rule dialog and go to the Failure Handling tab.

3. Change the Error Message to Department has reached maximum employee limit
of {1}.

4. For the Message Token 1 Expression in the Token Message Expressions section,
enter the following expression:
source.getBundleParameter('DepartmentEmployeeLimit')

Chapter 2

71

5. Now, open the SharedComponets workspace and locate the entity framework
extension class ExtEntityImpl. Add the following getBundleParameter()
method to it:
public String getBundleParameter(String parameterKey) {
 // use BundleUtils to load the parameter
 return BundleUtils.loadParameter(parameterKey);
}

6. Locate the BundleUtils helper class in the com.packt.jdeveloper.
cookbook.shared.bc.exceptions.messages package and add the following
loadParameter() method:
public static String loadParameter(final String parameterKey) {
 // get access to the error message parameters bundle
 final ResourceBundle parametersBundle =
 ResourceBundle.getBundle(PARAMETERS_BUNDLE,
 Locale.getDefault());
 // get and return the the parameter value
 return parametersBundle.getString(PARAMETER_PREFIX +
 parameterKey);
}

Dealing with Basics: Entity Objects

72

7. Finally, locate the ErrorParams.properties property file and add the following
text to it:
parameter.DepartmentEmployeeLimit=2

How it works...
For this recipe, first we added a parameter to the method validator message. The parameter is
indicated by adding parameter placeholders to the message using braces {}. The parameter
name is indicated by the value within the braces. In our case, we defined a parameter called
1 by entering {1}. We then had to supply the parameter value. Instead of hardcoding the
parameter value, we used the following Groovy expression:

source.getBundleParameter('DepartmentEmployeeLimit').

The source prefix allows us to reference an entity object method from the validator. In this
case, the method is called getBundleParameter(). This method accepts a parameter key
which is used to load the actual parameter value from the parameters bundle. In this case, we
have used the DepartmentEmployeeLimit parameter key.

Then we implemented the getBundleParameter() method. We implemented this method
in the base entity custom framework class so that it is available to all entity objects. If you look
at the code in getBundleParameter(), you will see that it loads and returns the parameter
value using the helper BundleUtils.loadParameter().

We introduced the helper class BundleUtils while we worked on the
Using a generic backing bean actions framework recipe in Chapter 1,
Pre-requisites to Success: ADF Project Setup and Foundations.

The BundleUtils.loadParameter() method pre-pends the parameter with the
prefix parameter.

Finally, we defined the parameter.DepartmentEmployeeLimit parameter in the
ErrorParams.properties parameters bundle. For further information on this bundle,
refer to the Using a custom exception class recipe in Chapter 1, Pre-requisites to Success:
ADF Project Setup and Foundations. When the validation is raised at runtime, the message
parameter placeholder {1}, which was originally defined in the message, will be substituted
with the actual parameter value (in this case, the number 2).

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

Chapter 2

73

 f Using a custom exception class, Chapter 1, Pre-requisites to Success: ADF Project
Setup and Foundations

 f Using a generic backing bean actions framework, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations

Using doDML() to enforce a detail record for
a new master record

In this recipe, we will consider a simple technique that we can use to enforce having detailed
records when inserting a new master record in an entity association relationship. The use
case demonstrates how to enforce creating at least one employee at the time when a new
department is created.

Getting ready
We will use the HR database schema and the HRComponents workspace that we have
created in previous recipes in this chapter.

How to do it...
1. Open the DepartmentImpl custom entity implementation class and override the

doDML() method using the Override Methods dialog.

2. Add the following code to the doDML() method before the call to super.doDML():
// check for insert
if (DML_INSERT == operation) {
 // get the department employees accessor
 RowIterator departmentEmployees = this.getDepartmentEmployees();
 // check for any employees
 if (!departmentEmployees.hasNext()) {
 // avoid inserting the department if there are no employees
 for it
 throw new ExtJboException("00006");
 }
}

Dealing with Basics: Entity Objects

74

How it works...
In the overridden doDML(), we only check for insert operations. This is indicated by
comparing the DML operation flag which is passed as a parameter to doDML() to the
DML_INSERT flag. Then we get the department employees from the DepartmentEmployees
accessor by calling getDepartmentEmployees(). The DepartmentEmployees accessor
was set up during the creation of the HRComponents workspace earlier in this chapter. We
check whether the RowIterator returned has any rows by calling hasNext() on it. If this
is not the case, that is, there are no employees associated with the specific department
that we are about to insert, we alert the user by throwing an ExtJboException exception.
The ExtJboException exception is part of the SharedComponets workspace and it was
developed in the Using a custom exception class recipe back in Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

When testing the application module with the ADF Model Tester, we get the following error
message when we try to insert a new department without any associated employees:

Note that in case that an exception is thrown during DML, which
could result in partial data being posted to the database.

See also
 f Using a custom exception class, Chapter 1, Pre-requisites to Success: ADF Project

Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations

3
A Different Point of
View: View Object

Techniques

In this chapter, we will cover:

 f Iterating a view object using a secondary rowset iterator

 f Setting default values for view row attributes

 f Controlling the updatability of view object attributes programmatically

 f Setting the Queryable property of a view object attribute programmatically

 f Using a transient attribute to indicate a new view object row

 f Conditionally inserting new rows at the end of a rowset

 f Using findAndSetCurrentRowByKey() to set the view object currency

 f Restoring the current row after a transaction rollback

 f Dynamically changing the WHERE clause of the view object query

 f Removing a row from a rowset without deleting it from the database

Introduction
View objects are an essential part of the ADF business components. They work in conjunction
with entity objects, making entity-based view objects, to support querying the database,
retrieving data from the database, and building rowsets of data. The underlying entities
enable an updatable data model that supports the addition, deletion, and modification of
data. They also support the enforcement of business rules and the permanent storage of the
data to the database.

A Different Point of View: View Object Techniques

76

In cases where an updatable data model is not required, the framework supports a
read-only view object, one that is not based on entity objects but on a SQL query supplied by the
developer. Read-only view objects should be used in cases where UNION and GROUP BY clauses
appear in the view object queries. In other cases, even though an updatable data model is not
required, the recommended practice is to base the view objects on entity objects and allow the
JDeveloper framework-supporting wizards to build the SQL query automatically instead.

This chapter presents several techniques covering a wide area of expertise related to
view objects.

Iterating a view object using a secondary
rowset iterator

There are times when you need to iterate through a view object rowset programmatically. In
this recipe, we will see how to do this using a secondary rowset iterator. We will iterate over
the Employees rowset and increase the employee's commission by a certain percentage for
each employee that belongs to the Sales department.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the
Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with
Basics: Entity Objects. The HRComponents workspace requires a database connection to the
HR schema.

How to do it...
1. Open the Employees view object definition and go to the Java page.

2. Click on the Edit java options button (the pen icon) to open the Select Java
Options dialog.

3. Click on the Generate View Object Class and Generate View Row Class checkboxes.
Ensure that the Include accessors checkbox is also selected.

4. Click OK to proceed with the creation of the custom implementation classes.

Chapter 3

77

5. Add the following helper method to EmployeesImpl.java. If the import dialog is
shown for the Number class, make sure that you choose the oracle.jbo.domain.
Number class.
public void adjustCommission(Number commissionPctAdjustment) {
 // check for valid commission adjustment
 if (commissionPctAdjustment != null) {
 // create an employee secondary rowset iterator
 rowsetIterator employees = this.createrowsetIterator(null);
 // reset the iterator
 employees.reset();
 // iterate the employees
 while (employees.hasNext()) {
 // get the employee
 EmployeesRowImpl employee =
 (EmployeesRowImpl)employees.next();
 // check for employee belonging to the sales department
 if (employee.getDepartmentId() != null &&
 SALES_DEPARTMENT_ID ==
 employee.getDepartmentId().intValue()) {
 // calculate adjusted commission
 Number commissionPct = employee.getCommissionPct();
 Number adjustedCommissionPct = commissionPct != null) ?
 commissionPct.add(commissionPctAdjustment) :
 commissionPctAdjustment;
 // set the employee's new commission
 employee.setCommissionPct(adjustedCommissionPct);
 }
 }
 // done with the rowset iterator
 employees.closerowsetIterator();
 }
}

6. On the Employees Java page click on the Edit view object client interface button
(the pen icon).

A Different Point of View: View Object Techniques

78

7. On the Edit Client Interface dialog, shuttle the adjustCommission() method to
the Selected list and click OK.

8. Open the HRComponentsAppModule application module definition and go to the
Java page.

9. Click on the Edit java options button.

10. On the Select Java Options dialog, click on the Generate Application Module Class
checkbox. Then click OK to close the dialog.

11. Open the HrComponentsAppModuleImpl class and add the following method:
public void adjustCommission(Number commissionPctAdjustment) {
 // execute the Employees view object query to create
 a rowset
 this.getEmployees().executeQuery();
 // adjust the employees commission
 this.getEmployees().adjustCommission(commissionPctAdjustment);
}

Chapter 3

79

12. Return to the application module definition Java page, then use the Edit application
module client interface button to add the adjustCommission() method to the
application module's client interface.

How it works...
We created a view object custom Java implementation class for the Employees view object and
add a method called adjustCommission(). The method is then exposed to the view object's
client interface so that it can be accessible and called using the Employees interface.

The adjustCommission() method adjusts the commission for all employees belonging to
the Sales department. The method accepts the commission adjustment percentage as an
argument. We call the createrowsetIterator() method to create a secondary iterator,
which we then use to iterate over the Employees rowset. This is the recommended practice
to perform programmatic iteration over a rowset. The reason is that the view object instance
that is being iterated may be bound to UI components and that iterating it directly will interfere
with the UI. In this case, you will see the current row changing by itself.

We then call the reset() method to initialize the rowset iterator. This places the iterator in
the slot before the first row in the rowset. We iterate the rowset by checking whether a next
row exists. This is done by calling hasNext() on the iterator. If a next row exists, we retrieve it
by calling next(), which returns an oracle.jbo.Row. We cast the default Row object that
is returned to an EmployeesRowImpl, so we can use the custom setter and getter methods
to manipulate the Employee row.

For testing purposes, we create a custom application module implementation class
and add a method called adjustCommission() to it. We expose this method to the
application module client interface so that we can call it from the ADF Model Tester. Note
that methods can also be added to the view object client interface. Then these methods
are shown under the view object collection in the Data Control panel and can be bound to
the JSF page simply by dropping them on the page. Inside the adjustCommission(), we
execute the Employees view object query by calling executeQuery() on it. We get the
Employees view object instance via the getEmployees() getter method. Finally, we call
the adjustCommission() method that we implemented in EmployeesImpl to adjust the
employees' commission.

A Different Point of View: View Object Techniques

80

There's more...
In order to be able to iterate a view object rowset using a secondary iterator, the view object
access mode in the General | Tuning section must set to Scrollable. Any other access
mode setting will result in a JBO-25083: Cannot create a secondary iterator on row set {0}
because the access mode is forward-only or range-paging error when attempting to create a
secondary iterator. To iterate view objects configured with range paging, use the range paging
view object API methods. Specifically, call getEstimatedRangePageCount() to determine
the number of pages and for each page call scrollToRangePage(). Then determine
the range page size by calling getRangeSize() and iterate through the page calling
getRowAtRangeIndex().

Chapter 3

81

Pitfalls when iterating over large rowsets
Before iterating a view object rowset, consider that iterating the rowset may result in
fetching a large number of records from the database to the middle layer. In this case, other
alternatives should be considered, such as running the iteration asynchronously on a separate
Work Manager, for instance (see recipe Using a Work Manager for processing of long running
tasks in Chapter 12, Optimizing, Fine-tuning and Monitoring). In certain cases, such as when
iterating in order to compute a total amount, consider using any of the following techniques.
These methods are far more optimized in determining the total amount for an attribute than
iterating the view object using Java code.

 f Groovy expressions such as object.getRowSet().sum('SomeAttribute')

 f Analytic functions, such as COUNT(args) OVER ([PARTITION BY <…>] …), in the
view object's SQL query

For instance, consider the following view object query that calculates the department's total
salaries using an analytic function. This would have been much more costly if it had to be
done programmatically by iterating the underlying view objects.

SELECT DISTINCT DEPARTMENTS.DEPARTMENT_NAME,
SUM (EMPLOYEES.SALARY) OVER (PARTITION BY EMPLOYEES.DEPARTMENT_ID)
AS DEPARTMT_SALARIES
FROM EMPLOYEES
INNER JOIN DEPARTMENTS
ON DEPARTMENTS.DEPARTMENT_ID = EMPLOYEES.DEPARTMENT_ID
ORDER BY DEPARTMENTS.DEPARTMENT_NAME

See also
 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Setting default values for view row
attributes

In this recipe, we will see how to set default values for view object attributes. There are a
number of places where you can do this, namely:

 f In the overridden create() method of the view object row implementation class

 f Declaratively using a Groovy expression

 f In the attribute getter method

For example, for a newly created employee, we will set the employee's hire date to the
current date.

A Different Point of View: View Object Techniques

82

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the
Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with
Basics: Entity Objects. The HRComponents workspace requires a database connection to the
HR schema.

How to do it...
1. Create a view row Java implementation class for the Employees view object.

2. Open the EmployeesRowImpl.java custom view row Java implementation class
and override the create() method using the Override Methods… button (the green
left arrow on the editor toolbar).

3. To set the default employee's hire date to today's date, add the following code to
create() immediately after the call to super.create():
// set the default hire date to today
this.setHireDate((Date)Date.getCurrentDate());

4. Open the Employees view object definition and go to the Attributes page.

5. Select the attribute that you want to initialize, HireDate in this case.

6. Select the Details tab.

7. In the Default Value section, select Expression and enter the following Groovy
expression: adf.currentDate

Chapter 3

83

8. Locate the view object attribute getter in the view object row implementation class. In
this example, this is the getHireDate() method in EmployeesRowImpl.java.

9. Replace the existing code in getHireDate() with the following:

// get the HireDate attribute value
Date hireDate = (Date)getAttributeInternal(HIREDATE);
// check for null and return today's date if needed
return (hireDate == null) ? (Date)Date.getCurrentDate() :
 hireDate;

How it works...
This recipe presents three different techniques to set default values to view object attributes.
The first technique (steps 1-3) overrides the view row create() method. This method is
called by the ADF Business Components framework when a view object row is being created.
In the previous code sample, we first call the parent ViewRowImpl create() to allow
the framework processing. Then we initialize the attribute by calling its setter method—
setHireDate() in this case—supplying Date.getCurrentDate() for the attribute value.

The second technique (steps 4-7) initializes the view object attribute declaratively using a
Groovy expression. The Groovy expression used to initialize the HireDate attribute is adf.
currentDate. Note that we change the attribute's Value Type field to Expression, so that it
can be interpreted as an expression instead of a literal value. This expression when evaluated
at runtime by the framework retrieves the current date.

Finally, the last technique (steps 8-9) uses the attribute getter—getHireDate() for this
example—to return a default value. Using this technique, we don't actually set the attribute
value; instead we return a default value, which can be subsequently applied to the attribute.
Also notice that this is done only if the attribute does not already have a value (the check
for null).

There's more...
A common use case related to this topic is setting an attribute's value based on the value
of another related attribute. Consider, for instance, the use case where the employee's
commission should be set to a certain default value if the employee is part of the Sales
department. Also, consider the case where the employee's commission should be cleared if
the employee is not part of the sales department. In addition to accomplishing this task with
Groovy as stated earlier, it can also be implemented in the employee's DepartmentId setter,
that is, in the setDepartmentId() method as follows:

public void setDepartmentId(Number value) {
 // set the department identifier
 setAttributeInternal(DEPARTMENTID, value);
 // set employee's commission based on employee's department

A Different Point of View: View Object Techniques

84

 try {
 // check for Sales department
 if (value != null && SALES_DEPARTMENT_ID == value.intValue()) {
 // if the commission has not been set yet
 if (this.getCommissionPct() == null) {
 // set commission to default
 this.setCommissionPct(new Number(DEFAULT_COMMISSION));
 }
 } else {
 // clear commission for non Sales department
 this.setCommissionPct(null);
 }
 } catch (SQLException e) {
 // log the exception
 LOGGER.severe(e);
 }
}

Specifying default values at the entity object level
Note that default values can be supplied at the entity object level as well. In this case, all view
objects based on the particular entity object will inherit the specific behavior. You can provide
variations for this behavior by implementing the techniques outlined in this recipe for specific
view objects. To ensure consistent behavior throughout the application, it is recommended
that you specify attribute defaults at the entity object level.

See also
 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Controlling the updatability of view object
attributes programmatically

In ADF, there are a number of ways to control whether a view object attribute can be updated
or not. It can be done declaratively in the Attributes tab via the Updatable combo, or on the
frontend ViewController layer by setting the disabled or readOnly attributes of the JSF
page component. Programmatically, it can be done either on a backing bean, or if you are
utilizing ADF business components, on a custom view object row implementation class. This
recipe demonstrates the latter case. For our example, we will disable updating any of the
Department attributes specifically for departments that have more than a specified number
of employees.

Chapter 3

85

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the
Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with
Basics: Entity Objects. The HRComponents workspace requires a database connection to the
HR schema.

How to do it...
1. Create view row implementation classes for the Department and Employee view

objects. Ensure that in both cases you have selected Include accessors on the Java
Options dialog.

2. Open the DepartmentsRowImpl class in the Java editor.

3. Use the Override Methods… button to override the isAttributeUpdateable()
method.

4. Replace the call to super.isAttributeUpdateable(i) with the following code:

 // get the number of employees for the specific department
 int departmentEmployeeCount = this.getEmployees() != null
 ? this.getEmployees().getRowCount() : 0;
 // set all attributes to non-updatable if the department
 // has more than a specified number of employees
 return (departmentEmployeeCount > 5)? false :
 super.isAttributeUpdateable(i);

How it works...
The isAttributeUpdateable() method is called by the framework in order to determine
whether a specific attribute is updateable or not. The framework supplies the attribute in
question to the isAttributeUpdateable() method as an attribute index parameter.
Inside the method, we add the necessary code to conditionally enable or disable the specific
attribute. We do this by returning a Boolean indicator: a true return value indicates that the
attribute can be updated.

There's more...
Because the isAttributeUpdateable() method could potentially be called several times
for each of the view object attributes (when bound to page components for instance), avoid
writing code in it that will hinder the performance of the application. For instance, avoid
calling database procedures or executing expensive queries in it.

A Different Point of View: View Object Techniques

86

Controlling attribute updatability at the entity object level
Note that we can conditionally control attribute updatability at the entity object level as well,
by overriding the isAttributeUpdateable() method of EntityImpl. In this case, all
view objects based on the particular entity object will exhibit the same attribute updatability
behavior. You can provide different behavior for specific view objects in this case by overriding
isAttributeUpdateable() for those objects. To ensure consistent behavior throughout
the application, it is recommended that you control attribute updatability defaults at the entity
object level.

See also
 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Setting the Queryable property of a view
object attribute programmatically

The Queryable property, when set for a view object attribute, indicates that the specific
attribute can appear on the view object's WHERE clause. This has the effect of making the
attribute available in all search forms and allows the user to search for it. In an af:query
ADF Faces component, for instance, a queryable attribute will appear in the list of fields
shown when you click on the Add Fields button in the Advanced search mode. Declaratively
you can control whether an attribute is queryable or not by checking or un-checking the
Queryable checkbox in the view object Attributes | Details tab. But how do you accomplish
this task programmatically and for specific conditions?

This recipe will show how to determine the Queryable status of an attribute and change it if
needed based on a particular condition.

Getting ready
You will need to have access to the shared components workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. The functionality will be added to the
ExtViewObjectImpl custom framework class that was developed in the Setting up BC base
classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

How to do it...
1. Open the ExtViewObjectImpl view object custom framework class in the

Java editor.

Chapter 3

87

2. Add the following method to it:

protected void setQueriable(int attribute, boolean condition) {
 // get the attribute definition
 AttributeDef def = getAttributeDef(attribute);
 // set/unset only if needed
 if (def != null && def.isQueriable() != condition) {
 // set/unset queriable
 ViewAttributeDefImpl attributeDef = ViewAttributeDefImpl)def;
 attributeDef.setQueriable(condition);
 }
}

How it works...
We have added the setQueriable() method to the ExtViewObjectImpl view object
custom framework class. This makes the method available to all view objects. The method
accepts the specific attribute index (attribute) and a Boolean indicator whether to set or
unset the Queryable flag (condition) for the specific attribute.

In setQueriable(), we first call getAttributeDef() to retrieve the oracle.jbo.
AttributeDef attribute definition. Then we call isQueriable() on the attribute definition
to retrieve the Queryable condition. If the attribute's current Queryable condition differs
from the one we have passed to setQueriable(), we call setQueriable() on the
attribute definition to set the new value.

Here is an example of calling setQueriable() from an application module method based
on some attribute values:

public void prepare(boolean someCondition) {
 // make the EmployeeId queryable based on some condition
 this.getEmployees().setQueriable(EmployeesRowImpl.EMPLOYEEID,
 someCondition);
}

There's more...
Note that you can control the Queryable attribute at the entity object level as well. In
this case, all view objects based on the specific entity object will inherit this behavior. This
behavior can be overridden declaratively or programmatically for the view object, as long as
the new value is more restrictive than the inherited value.

A Different Point of View: View Object Techniques

88

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

Using a transient attribute to indicate a new
view object row

For entity-based view objects, there is a simple technique you can use to determine whether a
particular row has a new status. The status of a row is new when the row is first created. The
row remains in the new state until it is successfully committed to the database. It then goes to
an unmodified state. Knowledge of the status of the row can be used to set up enable/disable
conditions on the frontend user interface.

In this recipe, we will see how to utilize a transient view object attribute to indicate the new
status of the view object row.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the
Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with
Basics: Entity Objects. The HRComponents workspace requires a database connection to the
HR schema.

How to do it...
1. Open the Departments view object definition.

2. Go to the Attributes tab and click on the Create new attribute button (the green plus
sign icon).

3. Select New Attribute… from the context menu.

Chapter 3

89

4. On the New View Object Attribute dialog, enter IsNewRow and click OK.

5. By default the new attribute is of type String, so change it to a Boolean using the
Type choice list in the Details tab.

6. If you don't already have a custom view row implementation class created, use the
Java tab to create one. In any case, make sure that you have selected the Include
accessors checkbox.

7. Open the DepartmentsRowImpl.java view row implementation class and locate
the getIsNewRow() method.

8. Replace the code inside the getIsNewRow() method with the following:
// return true if the row status is New
return Row.STATUS_NEW == this.getDepartment().getEntityState();

How it works...
First we create a new transient attribute called IsNewRow. This attribute will be used to
indicate whether the status of the view object row is new or not. A transient attribute is
one that does not correspond to a database table column; it can be used as placeholder
for intermediate data. Then we generate a custom view row implementation class. On the
transient attribute getter, getIsNewRow() in this case, we get access to the entity object. For
this recipe, the Department entity is returned by calling the getDepartment() getter. We
get the entity object state by calling getEntityState() on the Department entity object
and compare it to the constant Row.STATUS_NEW.

Once the IsNewRow attribute is bound to a JSF page, it can be used in Expression Language
(EL) expressions. For instance, the following EL expression indicates a certain disabled
condition based on the row status not being New:

disabled="#{bindings.IsNewRow.inputValue ne true}"

There's more...
The following table summarizes all the available entity object states:

Entity Object State Description Transition to this State
New Indicates a new entity object. An

entity object in this state is in the
transaction pending changes list
(see Initialized state).

When a new entity object is first
created.

When setAttribute() is called
on an Initialized entity object.

Initialized Indicates that a new entity object
is initialized and thus it is removed
from the transaction's pending
changes list.

When setNewRowState() is
explicitly called on a New entity
object.

A Different Point of View: View Object Techniques

90

Entity Object State Description Transition to this State
Unmodified Indicates an unmodified entity

object.
When the entity object is retrieved
from the database.

After successfully committing a
New or Modified entity object.

Modified Indicates the state of a modified
entity object.

When setattribute() is called
on an Unmodified entity object.

Deleted Indicates a deleted entity object. When remove() is called on
an Unmodified or Modified entity
object.

Dead Indicates a dead entity object. When remove() is called on a
New or Initialized entity object.

After successfully committing a
Deleted entity object.

See also
 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Conditionally inserting new rows at the end
of the rowset

When you insert a new row into a rowset, by default the new row is inserted at the current slot
within that rowset. There are times, however, that you want to override this default behavior
for the application that you are developing.

In this recipe, we will see how to conditionally insert new rows at the end of the rowset
by implementing generic programming functionality at the base view object framework
implementation class.

Getting ready
You will need to have access to the shared components workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. The functionality will be added to the
ExtViewObjectImpl custom framework class that was developed in the Setting up BC base
classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Chapter 3

91

How to do it...
1. Open the ExtViewObjectImpl.java custom view object framework class in the

Java editor.

2. Override the insertRow() method.

3. Replace the call to super.insertRow() in the generated insertRow() method
with the following code:

// check for overriden behavior based on custom property
if ("true".equalsIgnoreCase((String)this.getProperty(
 NEW_ROW_AT_END))) {
 // get the last row in the rowset
 Row lastRow = this.last();
 if (lastRow != null) {
 // get index of last row
 int lastRowIdx = this.getRangeIndexOf(lastRow);
 // insert row after the last row
 this.insertRowAtRangeIndex(lastRowIdx + 1, row);
 // set inserted row as the current row
 this.setCurrentRow(row);
 } else {
 super.insertRow(row);
 }
} else {
 // default behavior: insert at current rowset slot
 super.insertRow(row);
}

How it works...
We have overridden the ADF Business Components framework insertRow() method in
order to implement custom row insertion behavior. Moreover, we conditionally override the
default framework behavior based on the existence of the custom property NewRowAtEnd
identified by the constant NEW_ROW_AT_END. So, if this custom property is defined for
specific view objects, we determine the index of the last row in the rowset by calling
getRangeIndexOf() and then call insertRowAtRangeIndex() to insert the new row at
the specific last row index. Finally, we set the rowset currency to the row just inserted.

If the NewRowAtEnd custom property is not defined in the view object, then the row is
inserted by default at the current slot in the rowset.

A Different Point of View: View Object Techniques

92

There's more...
To add a custom property to a view object, use the drop-down menu next to the Add Custom
Property button (the green plus sign icon) and select Non-translatable Property. The Add
Custom Property button is located in the Attributes | Custom Properties tab.

In addition, note that if you have configured range paging access mode for the view object,
calling last() will produce a JBO-25084: Cannot call last() on row set {0} because the
access mode uses range-paging error. In this case, call getEstimatedRangePageCount()
to determine the number of pages and setRangeStart() to set the range to the last
page instead.

Inserting new rows at the beginning of the rowset
The use case presented in this recipe can be easily adapted to insert a row at the beginning
of the rowset. In this case, you will need to call this.first() to get the first row. The
functionality of getting the row index and inserting the row at the specified index should work
as is.

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

Using findAndSetCurrentRowByKey() to set
the view object currency

You can set the currency on a view object by calling its findAndSetCurrentRowByKey()
method. The method accepts two arguments: a Key object that is used to locate the row
in the view object, and an integer indicating the range position of the row (for view objects
configured with range paging access mode).

Chapter 3

93

This recipe demonstrates how to set the view object row currency by implementing a helper
method called refreshView(). In it we first save the view object currency, re-query the
view object and finally restore its currency to the original row before the re-query. This has the
effect of refreshing the view object while keeping the current row.

Getting ready
You will need to have access to the shared components workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. The functionality will be added to the
ExtViewObjectImpl custom framework class that was developed in the Setting up BC base
classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

How to do it...
1. Open the ExtViewObjectImpl.java view object framework extension class in the

Java editor.

2. Override the create() method.

3. Add the following code after the call to super.create():
// allow read-only view objects to use findByKey() methods
this.setManageRowsByKey(true);

4. While at the ExtViewObjectImpl.java add the following refreshView() method:

public void refreshView() {
 Key curRowKey = null;
 int rangePosOfCurRow = -1;
 int rangeStart = -1;
 // get and save the current row
 Row currentRow = getCurrentRow();
 // do this only if we have a current row
 if (currentRow != null) {
 // get the row information
 curRowKey = currentRow.getKey();
 rangePosOfCurRow = getRangeIndexOf(currentRow);
 rangeStart = getRangeStart();
 }
 // execute the view object query
 executeQuery();
 // if we have a current row, restore it
 if (currentRow != null) {
 setRangeStart(rangeStart);
 findAndSetCurrentRowByKey(curRowKey, rangePosOfCurRow);
 }
}

A Different Point of View: View Object Techniques

94

How it works...
First we override the create() method in the view object framework extension class. We do
this so we can call the setManageRowsByKey() method. This method will allow us to use
framework find methods utilizing key objects on read-only view objects as well. By default this
is not the case for read-only view objects.

Then we implement the refreshView() method. We made refreshView() public so
that it could be called explicitly for all view objects. Once bound to a page definition as an
operation binding, refreshView() can be called from the UI. You can, for instance, include
a refresh button on your UI page, which when pressed refreshes the data presented in a table.
In it, we first determine the current row in the rowset by calling getCurrentRow(). This
method returns an oracle.jbo.Row object indicating the current row, or null if there is
no current row in the rowset. If there is a current row, we get all the necessary information in
order to be able to restore it after we re-query the view object. This information includes the
current row's key (getKey()), the index of the current row in range (getRangeIndexOf()),
and the row's range (getRangeStart()).

Once the current row information is saved, we re-execute the view object's query by calling
executeQuery().

Finally, we restore the current row by setting the range and the row within the range by calling
setRangeStart() and findAndSetCurrentRowByKey() respectively.

There's more...
The methods getRangeIndexOf(), getRangeStart(), and setRangeStart() used in
this recipe indicate that range paging optimization is utilized.

Range paging optimization
Range paging is an optimization technique that can be utilized by view objects returning
large result sets. The effect of using it is to limit the result set to a specific number of rows,
as determined by the range size option setting. So instead of retrieving hundreds or even
thousands of rows over the network and caching them in the middle layer memory, only the
ranges of rows utilized are retrieved.

The methods used in this recipe to retrieve the row
information will work regardless of whether we use
range paging or not.

For more information on this recipe consult Steve Muench's original post Refreshing a
View Object's Query, Keeping Current Row and Page in the URL address: http://radio-
weblogs.com/0118231/2004/11/22.html.

Chapter 3

95

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

 f Restoring the current row after a transaction rollback, Chapter 2, Dealing with
Basics: Entity Objects

Restoring the current row after a
transaction rollback

On a transaction rollback, the default behavior of the ADF framework is to set the current row
to the first row in the rowset. This is certainly not the behavior you expect to see when you
rollback while editing a record.

This recipe shows how to accomplish the task of restoring the current row after a
transaction rollback.

Getting ready
You will need to have access to the shared components workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. The functionality will be added to the
ExtApplicationModuleImpl and ExtViewObjectImpl custom framework classes
that were developed in the Setting up BC base classes recipe in Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

How to do it…
1. Open the ExtApplicationModuleImpl.java application module framework

extension class into the Java editor.

2. Click on the Override Methods… button (the green left arrow button) and choose to
override the prepareSession(Session) method.

3. Add the following code after the call to super.prepareSession():
// do not clear the cache after a rollback
getDBTransaction().setClearCacheOnRollback(false);

4. Open the ExtViewObjectImpl.java view object framework extension class into
the Java editor.

A Different Point of View: View Object Techniques

96

5. Override the create() method.

6. Add the following code after the call to super.create():
// allow read-only view objects to use findByKey() methods
this.setManageRowsByKey(true);

7. Override the beforeRollback() method.

8. Add the following code before the call to super.beforeRollback():
// check for query execution
if (isExecuted()) {
 // get the current row
 ViewRowImpl currentRow = (ViewRowImpl)getCurrentRow();
 if (currentRow != null) {
 // save the current row's key
 currentRowKeyBeforeRollback = currentRow.getKey();
 // save range start
 rangeStartBeforeRollback = getRangeStart();
 // get index of current row in range
 rangePosOfCurrentRowBeforeRollback =
 getRangeIndexOf(currentRow);
 }
}

9. Override the afterRollback() method and add the following code after the call to
super.afterRollback():

// check for current row key to restore
if (currentRowKeyBeforeRollback != null) {
 // execute view object's query
 executeQuery();
 // set start range
 setRangeStart(rangeStartBeforeRollback);
 // set current row in range
 findAndSetCurrentRowByKey(currentRowKeyBeforeRollback,
 rangePosOfCurrentRowBeforeRollback);
}
// reset
currentRowKeyBeforeRollback = null;

Chapter 3

97

How it works...
We override the application module prepareSesssion() method so we can call
setClearCacheOnRollback() on the Transaction object. prepareSession() is
called by the ADF Business Components framework the first time that an application module
is accessed. The call to setClearCacheOnRollback() in prepareSession() tells the
framework whether the entity cache will be cleared when a rollback operation occurs. Since
the framework by default clears the cache, we call setClearCacheOnRollback() with
a false argument to prevent this from happening. We need to avoid clearing the cache
because we will be getting information about the current row during the rollback operation.

Whether to clear the entity cache on transaction rollback or not is a decision that needs to
be taken at the early design stages, as this would affect the overall behavior of your ADF
application. For the specific technique in this recipe to work, that is, to be able to maintain
the current row after a transaction rollback, the entity cache must not be cleared after a
transaction rollback operation. If this happens, fresh entity rows for the specific entity type will
be retrieved from the database, which prevents this recipe from working properly.

Next, we override the create() method in the view object framework extension class. We
do this so we can call the setManageRowsByKey() method. This method will allow us to
use framework find methods utilizing key objects on read-only view objects, which is not the
default behavior.

Then we override the beforeRollback() and afterRollback() methods in the
view object framework extension class. As their names indicate, they are called by the
framework before and after the actual rollback operation. Let's take a look at the code in
beforeRollback() first. In it, we first get the current row by calling getCurrentRow().
Then, for the current row we determine the row's key, range, and position of the current row
within the range. This will work whether range paging is used for the view object or not. Range
paging should be enabled for optimization purposes for view objects that may return large
rowsets. We save these values into corresponding member variables. We will be using them in
afterRollback() to restore the current row after the rollback operation.

Notice that we do all that after checking whether the view object
query has been executed (isExecuted()). We do this because
beforeRollback() may be called multiple times by the
framework, and we need to ensure that we retrieve the current row
information only if the view object's rowset has been updated, which
is the case after the query has been executed.

A Different Point of View: View Object Techniques

98

In afterRollback() we use the information obtained about the current row in
beforeRollback() to restore the rowset currency to it. We do this by first executing the
view object query, the call to executeQuery(), and then calling setRangeStart() and
findAndSetCurrentRowByKey() to restore the range page and the row within the range to
the values obtained for the current row earlier. We do all that only if we have a current row key
to restore to – the check for currentRowKeyBeforeRollback not being null.

There's more...
Note that for this technique to work properly on the frontend ViewController, you
will need to call setExecuteOnRollback() on the oracle.adf.model.binding.
DCBindingContainer object before executing the Rollback operation binding. By
calling setExecuteOnRollback() on the binding container, we prevent the view objects
associated with the page's bindings being executed after the rollback operation. This means
that in order to call setExecuteOnRollback() you can't just execute the rollback action
binding directly. Rather, you will have to associate the Rollback button with a backing bean
action method, similar to the one shown in the following instance:

public void rollback() {
 // get the binding container
 DCBindingContainer bindings = ADFUtils.getDCBindingContainer();
 // prevent view objects from executing after rollback
 bindings.setExecuteOnRollback(false);
 // execute rollback operation
 ADFUtils.findOperation("Rollback").execute();
}

Such a method could be added to the CommonActions generic backing bean actions
framework class introduced in the recipe Using a generic backing bean actions framework in
Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations. By doing so, we will
make it available to all managed beans derived from the CommonActions base class.

For testing purposes, a ViewController project page called
recipe3_8.jspx has been provided that demonstrates this
technique. To run it, just right-click on the recipe3_8.jspx page and
select Run from the context menu.

For more information on this technique, consult Steve Muench's original post Example of
Restoring Current Row On Rollback (example number 68) on the URL address: http://
radio-weblogs.com/0118231/2006/06/15.html.

Chapter 3

99

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

 f Using findAndSetCurrentRowByKey() to set the view object currency, Chapter 2,
Dealing with Basics: Entity Objects.

 f Overriding prepareSession() to do session-specific initializations, Chapter 5, Putting
them all together: Application Modules

Dynamically changing the WHERE clause of
the view object query

During the execution of the view object's query, the ADF Business Components framework
calls a series of methods to accomplish its task. You can intervene during this process by
overriding any of the methods called by the framework, in order to change the query about to
be executed by the view object. You can also explicitly call methods in the public view object
interface to accomplish this task prior to the view object's query execution. Depending on
what exactly you need to change in the view object's query, the framework allows you to do
the following:

 f Change the query's SELECT clause by overriding buildSelectClause() or calling
setSelectClause()

 f Change the query's FROM clause by overriding buildFromClause() or calling
setFromClause()

 f Change the query's WHERE clause via buildWhereClause() , setWhereClause(),
addWhereClause(), setWhereClauseParams(), and other methods

 f Change the query's ORDER BY clause via the buildOrderByClause(),
setOrderByClause(), and addOrderByClause() methods

Even the complete query can be changed by overriding the buildQuery() method or directly
calling setQuery(). Moreover, adding named view criteria will alter the view object query.

This recipe shows how to override buildWhereClause() to alter the view object's WHERE
clause. The use case implemented in this recipe is to limit the result set of the Employee
view object by a pre-defined number of rows indicated by a custom property.

A Different Point of View: View Object Techniques

100

Getting ready
You will need to have access to the shared components workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. The functionality will be added to the
ExtViewObjectImpl custom framework class that was developed in the Setting up BC base
classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

How to do it...
1. Open the ExtViewObjectImpl.java view object framework extension class in the

Java editor.

2. Override the buildWhereClause() method.

3. Replace the code inside the buildWhereClause() with the following:

// framework processing
boolean appended = super.buildWhereClause(sqlBuffer,noUserParams);
// check for a row count limit
String rowCountLimit = (String)this.getProperty(ROW_COUNT_LIMIT);
// if a row count limit exists, limit the query
if (rowCountLimit != null) {
 // check to see if a WHERE clause was appended;
 // if not, we will append it
 if (!appended) {
 // append WHERE clause
 sqlBuffer.append(" WHERE ");
 // indicate that a where clause was added
 appended = true;
 }
 // a WHERE clause was appended by the framework;
 // just amend it
 else {
 sqlBuffer.append(" AND ");
 }
 // add ROWNUM limit based on the pre-defined
 // custom property
 sqlBuffer.append("(ROWNUM <= " + rowCountLimit + ")");
}
// a true/false indicator whether a WHERE clause was appended
// is returned to the framework
return appended;

Chapter 3

101

How it works...
We override buildWhereClause() in order to alter the the WHERE clause of the view
object's query. Specifically, we limit the result set produced by the view object's query. We
do this only if the custom property called RowCountLimit (indicated by the constant ROW_
COUNT_LIMIT) is defined by a view object. The value of the RowCountLimit indicates the
number of rows that the view object's result set should be limited to.

First we call super.buildWhereClause() to allow the framework processing. This call
will return a Boolean indicator of whether a WHERE clause was appended to the query,
indicated by the Boolean appended local variable. Then we check for the existence of the
RowCountLimit custom property. If it is defined by the specific view object, we alter or we
add to the WHERE clause depending on whether one was added or not by the framework. We
make sure that we set the appended flag to true if we actually have appended the WHERE
clause. Finally, the appended flag is returned back to the framework.

There's more...
The use case implemented in this recipe shows one of the possible ways of limiting the view
object result set. You can explore additional techniques in Chapter 12, Optimizing, Fine-tuning
and Monitoring.

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

Removing a row from a rowset without
deleting it from the database

There are times when you want to remove a row from the view object's query collection
(the query result set) without actually removing it from the database. The query collection,
oracle.jbo.server.QueryCollection, gets populated each time the view object is
executed—when the view object's associated query is run—and represents the query result.
While the Row.remove() method will remove a row from the query collection, it will also
remove the underlying entity object for an entity-based view object, and post a deletion to the
database. If your programming task requires the row to be removed from the query collection
itself, that is, removing a table row in the UI without actually posting a delete to the database,
use the Row method removeFromCollection() instead.

A Different Point of View: View Object Techniques

102

Note, however, that each time the view object query is re-executed the
row will show up, since it is not actually deleted from the database.

This recipe will demonstrate how to use removeFromCollection() by implementing a
helper method in the application module to remove rows from the Employees collection.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the
Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with
Basics: Entity Objects. The HRComponents workspace requires a database connection to the
HR schema.

How to do it...
1. Open the HrComponentsAppModuleImpl.java application module custom

implementation class in the Java editor.

2. Add the following removeEmployeeFromCollection() method to it:
public void removeEmployeeFromCollection() {
 // get the current employee
 EmployeesRowImpl employee =
 (EmployeesRowImpl)(this.getEmployees().getCurrentRow());
 // remove employee from collection
 if (employee != null) {
 employee.removeFromCollection();
 }
}

3. Expose the removeEmployeeFromCollection() method to the application
module's client interface using the Edit application module client interface button
(the pen icon) in the Client Interface section of the application module's Java page.

How it works...
We implemented removeEmployeeFromCollection() and exposed it to the application
module's client interface. By doing so, we will be able to call this method using the Oracle
ADF Model Tester for testing purposes.

Chapter 3

103

First, we get the current employee by calling getCurrentRow() on the Employees
view object instance. We retrieve the Employees view object instance by calling the
getEmployees() getter method. Then we call removeFromCollection() on the current
employee view row to remove it from the Employees view object rowset. This has the effect
of removing the employee from the rowset without removing the employee from the database.
A subsequent re-query of the Employees view object will retrieve those Employee rows that
were removed earlier.

There's more...
Note that there is a quick and easy way to remove all rows from the view object's rowset by
calling the view object executeEmptyrowset() method. This method re-executes the view
object's query ensuring that the query will return no rows; however, it achieves this in an
efficient programmatic way without actually sending the query to the database for execution.
Calling executeEmptyrowset() marks the query's isExecuted flag to true, which means
that it will not be re-executed upon referencing a view object attribute.

See also
 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

4
Important

Contributors: List
of Values, Bind
Variables, View

Criteria

In this chapter, we will cover:

 f Setting up multiple LOVs using a switcher attribute

 f Setting up cascading LOVs

 f Creating static LOVs

 f Overriding bindParametersForCollection() to set a view object bind variable

 f Creating view criteria programmatically

 f Clearing the values of bind variables associated with the view criteria

 f Searching case-insensitively using view criteria

Important Contributors: List of Values, Bind Variables, View Criteria

106

Introduction
List of values (LOV), bind variables and view criteria are essential elements related to view
objects. They allow further refinements to the view object's query (bind variables and view
criteria) and make the development of the frontend user interface easier when dealing with
list controls (LOVs) and query-by-example (view criteria) components.

Many of the user interface aspects that deal with list controls and query-by-example
components can be pre-defined in a set of default values via the UI Hints sections and pages
in JDeveloper, thus providing a standard UI behavior. By using LOVs, for instance, we can pre-
define a number of attributes for UI list components, such as the default UI list component,
the attributes to be displayed, whether "No Selection" items will be included in the list, and
others. These defaults can be overridden as needed for specific LOVs.

Bind variables and view criteria, usable in conjunction or separately, allow you to dynamically
alter the view object query based on certain conditions. Furthermore, using bind variables as
placeholders in the query allows the database to effectively reuse the same parsed query for
multiple executions, without the need to re-parse it.

In this chapter, we will examine how these components are supported, both programmatically
and declaratively, by the ADF-BC framework and by JDeveloper.

Setting up multiple LOVs using a switcher
attribute

Enabling LOVs for view object attributes greatly simplifies the effort involved in utilizing
list controls in the frontend user interface. LOV-enabling a view object attribute is a
straightforward task, done declaratively in JDeveloper. Moreover, the ADF-BC framework
allows you to define multiple LOVs for the same attribute. In this case, in order to differentiate
among the LOVs, a separate attribute called a LOV switcher is used. The differentiation is
usually done based on some data value. The advantage of using this technique is that you can
define a single LOV component in your UI page and then vary its contents based on a certain
condition, such as the value of the switcher attribute.

This recipe shows how to enable multiple LOVs for a view object attribute and how to use an
LOV switcher to switch among the LOVs. For example, depending on the employee's job we will
associate a different LOV to an Employees view object transient attribute.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the
Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with
Basics: Entity Objects. The HRComponents workspace requires a database connection to the
HR schema.

Chapter 4

107

How to do it...
1. Create a new read-only view object called DepartmentsLov by right-clicking on a

package of the HRComponents business components project in the Application
Navigator and selecting New View Object….

2. Base the view object on the following SQL query:
SELECT DEPARTMENT_ID, DEPARTMENT_NAME FROM DEPARTMENTS

In addition, set the DepartmentId attribute as the a Key attribute. Do not add the
DepartmentsLov view object to the application module.

3. Repeat the previous steps to create another read-only view object called JobsLov
based on this SQL query:
SELECT JOB_ID, JOB_TITLE FROM JOBS

4. In this case, set the JobId attribute as the key attribute.

5. Create yet another read-only view object called CountriesLov based on the
following SQL query:
SELECT COUNTRY_ID, COUNTRY_NAME FROM COUNTRIES

Define CountryId as the key attribute.

6. Now, open the Employees view object definition and go to the Attributes tab. Create a
new attribute called LovAttrib by selecting New Attribute… from the context menu.

7. In the Details tab, change the attribute Updatable value to Always.

8. Switch to the List of Values tab and click on the Add list of values button (the green
plus sign icon).

9. On the Create List of Values dialog, enter LOV_Departments for the List of
Values Name.

10. Click on the Create new view accessor button (the green plus sign icon next to
the List Data Source) to create a new List Data Source. This will bring up the View
Accessors dialog.

11. On the View Accessors dialog, locate the DepartmentsLov, shuttle it to the View
Accessors list on the right and click OK.

Important Contributors: List of Values, Bind Variables, View Criteria

108

12. Select the DepartmentName for the List Attribute. In the List Return Values
section, the DepartmentName view accessor attribute should be associated with the
LovAttrib. Click OK when done.

13. Repeat the previous steps to add another LOV, called LOV_Jobs. Add the JobsLov
as a view accessor, as you did in the previous steps, and select it as the List Data
Source. Use the JobTitle attribute as the List Attribute.

14. Add one more LOV called LOV_Countries by repeating the previous steps. Add
CountriesLov as a view accessor and select it as the List Data Source. For the
List Attribute, use the CountryName attribute.

15. While at the List of Values tab, click on the Create new attribute button (the green
plus sign icon) next to the List of Values Switcher field to create a switcher attribute.
Call the attribute LovSwitcher. Now, the List of Values tab should look similar to
the following:

16. Select the LovSwitcher attribute and go to the Details tab. Click on the Expression
radio button in the Default Value section, and then on the Edit value button (the pen
icon). Enter the following expression:
if(JobId == 'SA_REP'){
 return 'LOV_Countries'
} else if(JobId == 'ST_CLERK'){
 return 'LOV_Jobs'
} else if(JobId == 'ST_MAN'){
 return 'LOV_Departments'
} else {
 return null;
}

17. Optionally click on the UI Hints tab and change the Display Hint from Display to Hide.

Chapter 4

109

How it works...
In steps 1 through 4 we created three read-only view objects, one for each LOV. We did not
add any of these read-only view objects to the application module's data model as they are
used internally by the business service. We then created a new transient attribute, called
LovAttrib, for the Employees view object (step 5). This is the attribute that we will use
to add the three LOVs. We added the LOVs by switching to the List of Values tab. In steps
6 through 13, we added the appropriate view objects as accessors to the Employees view
object and associated the accessors with the LOV List Data Source. This indicates the
view accessor that provides the list data at runtime. In each case, we also specified a view
accessor attribute as the list attribute. This is the view accessor attribute that supplies the
data value to the LovAttrib attribute. You can specify additional view accessor attributes
to supply data for other Employees view object attributes in the List Return Values section
of the Create/Edit List of Values dialog. In step 14, we created a new transient attribute,
called LovSwitcher, to act as the LOV switcher. In step 15, we supplied the default value
to the LOV switcher LovSwitcher attribute in the form of a Groovy expression. In the Groovy
expression, we examine the value of the JobId attribute and based on its value we assign
(by returning the LOV name) the appropriate LOV to the LovSwitcher attribute. Since the
LovSwicher attribute is used as an LOV switcher, the result is that the appropriate LOV is
associated with the LovAttrib attribute. Finally, note that in step 16 you can optionally
set the Display Hint to Hide for the LovAttrib attribute. This will ensure that the specific
attribute is not visible in the presentation layer UI.

There's more...
For entity-based view objects, you can LOV-enable an attribute using a list data source that is
based on an entity object view accessor. This way a single entity-based view accessor is used
for all view objects based on the entity object, and is applied to each instance of the LOV.
Note, however, that while this will work fine on create and edit forms, it will not work for search
forms. In this case, the LOV must be based on a view accessor defined at the view object
level. For a use case where two LOVs are defined on an attribute—one based on an entity
object accessor and another on a view object accessor—you can use a switcher attribute that
differentiates among the two LOVs based on the following expression:

adf.isCriteriaRow ? "LOV_ViewObject_accessor" :
"LOV_EntityObject_accessor"

For more information on this consult the section How to Specify Multiple LOVs for an
LOV-Enabled View Object Attribute in the Fusion Developer's Guide for Oracle Application
Development Framework which can be found at http://docs.oracle.com/cd/
E24382_01/web.1112/e16182/toc.htm.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Important Contributors: List of Values, Bind Variables, View Criteria

110

See also
 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Setting up cascading LOVs
Cascading LOVs refer to two or more LOVs where the possible values of one LOV depend on
specific attribute values defined in another LOV. These controlling attributes are used in order
to filter the result set produced by the controlled LOVs. The filtering is usually accomplished
by adding named view criteria, based on bind variables, to the controlled LOV list data
source (the view accessor). This allows you to filter the view object result set by adding query
conditions that augment the view object query WHERE clause. Furthermore, the filtering can
be done by directly modifying the controlled LOV view accessor query, adding the controlling
attributes as bind variable placeholders in its query. This technique comes handy when you
want to set up interrelated LOV components in your UI pages, where the contents of one LOV
are filtered based on the value selected in the other LOV.

For this recipe, we will create two LOVs, one for the DEPARTMENTS table and another for
the EMPLOYEES table, so that when a department is selected only the employees of that
particular department are shown.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the
Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with
Basics: Entity Objects. The HRComponents workspace requires a database connection
to the HR schema. You will also need an additional table added to the HR schema called
CASCADING_LOVS. You can create it by running the following SQL command:

CREATE TABLE CASCADING_LOVS (EMPLOYEE_ID NUMBER(6), DEPARTMENT_ID
NUMBER(4));

How to do it...
1. Create a new entity object based on the CASCADING_LOVS table.

2. Since the CASCADING_LOVS table does not define a primary key, the Create Entity
Object wizard will ask you if you want to create an attribute with a primary key
property based on the ROWID. Select OK.

Chapter 4

111

3. Create a view object based on the CascadingLovs entity object.

4. Create a read-only view object called DepartmentsLov based on the
following query:
SELECT DEPARTMENT_ID, DEPARTMENT_NAME FROM DEPARTMENTS

5. Create another read-only view object called EmployeesLov based on the
following query:
SELECT DEPARTMENT_ID, EMPLOYEE_ID, FIRST_NAME, LAST_NAME
 FROM EMPLOYEES

6. In the Query section, use the Create new bind variable button (the green plus
sign icon) to add a bind variable to EmployeesLov. Call the bind variable
inDepartmentId of Type Number and ensure that the Required checkbox
is unchecked.

Important Contributors: List of Values, Bind Variables, View Criteria

112

7. While in the Query section, click on the Create new view criteria button (the green
plus sign icon) to add view criteria to the EmployeesLov view object. Click the
Add Item button and select DepartmentId for the Attribute. For the Operator
select Equals and for the Operand select Bind Variable. Ensure that you select
the inDepartmentId bind variable that you created in the previous step from the
Parameter combo. Make sure the Ignore Null Values checkbox is unchecked and
that the Validation selection is Optional.

8. Back to the CascadingLovs view object, go to the Attributes section and select the
DepartmentId attribute.

9. Click on the List of Values tab and then on the Add list of values button (the green
plus sign icon).

10. On the Create List of Values dialog, click on the Create new view accessor
button (the green plus sign icon) next to the List Data Source combo and add the
DepartmentsLov view accessor.

11. Select DepartmentId for the List Attribute.

12. While on the Create List of Values dialog, click on the UI Hints tab and in the Display
Attributes section shuttle the DepartmentName attribute from the Available list to
the Selected list. Click OK.

Chapter 4

113

13. Repeat steps 8 through 12 to add an LOV for the EmployeeId attribute. Use the
EmployeesLov as the list data source and EmployeeId as the list attribute. For the
display attributes in the UI Hints tab, use the FirstName and LastName attributes.

14. In the CascadingLovs view object, go to the View Accessors section select the
EmployeesLov view accessor (do not click on the View Definition link). Then click
on the Edit selected View Accessor button (the pen icon).

15. In the Edit View Accessor dialog, select the View Object section and shuttle the
EmployeesLovCriteria from the Available list to the Selected list. Also, for
the inDepartmentId parameter in the Bind Parameter Values section, enter
DepartmentId in the Value field and click OK.

16. Double-click on the HrComponentsAppModule application module in the
Application Navigator to open the application module definition.

17. Go to the Data Model section, select the CascadingLovs view object and shuttle it
from the Available View Objects list to the Data Model.

Important Contributors: List of Values, Bind Variables, View Criteria

114

How it works...
To demonstrate this recipe, we created a new table in the HR schema called CASCADING_
LOVS. This table has two columns an EMPLOYEE_ID and a DEPARTMENT_ID. The table
does not have a primary key constraint, so we will be able to freely add records to it. In a real
world development project, a proper database design would require that all of your database
tables have a primary key defined. Based on this table, we created an entity object called
CascadingLovs (step 1). Since we did not indicate a primary key for the CASCADING_LOVS
table, the framework asked us to indicate a primary key attribute (step 2). We did so by
creating a key attribute called RowID based on the row's ROWID. Then we proceeded to create
a view object called CascadingLovs based on the CascadingLovs entity object (step 3).

In order to setup LOVs for the DepartmentId and EmployeeId attributes, we had to create
the LOV accessor view objects, namely the DepartmentsLov and the EmployeesLov view
objects (steps 4 and 5). We also added named view criteria to the EmployeesLov (steps 6
and 7) based on the inDepartmentId bind variable. This way we will be able to control the
result set produced by the EmployeesLov based on the department ID value. In step 7 when
we created the view criteria, we saw that JDeveloper suggested a default name in the Criteria
Name field. This is the name that is used to programmatically access the view criteria in your
Java code. The name of the view criteria can be changed; however, we have chosen to use the
default EmployeesLovCriteria provided by JDeveloper.

In steps 8 through 13, we proceeded by LOV-enabling the DepartmentId and EmployeeId
attributes.

The important glue work was done in steps 14 and 15. In these steps, we edited the
EmployeesLov view accessor and declaratively applied the EmployeesLovCriteria on
the accessor. We also provided a value for the inDepartmentId bind variable using the
expression DepartmentId, which indicates the value of the DepartmentId attribute at
runtime. This is the CascadingLovs department identifier attribute that is updated by the
controlling DepartmentsLov LOV. By doing so, we have set the controlling variable's value,
the inDepartmentId bind variable, using the value provided by the DepartmentsLov data
source, that is, the DepartmentId.

Finally, in steps 16 and 17, we added the CascadingLovs view object to the application
module's data model, so that we may be able to test it using the ADF Model Tester.
While running the ADF Model Tester, notice how the employees list is controlled by the
selected department.

Chapter 4

115

There's more...
For the cascading LOVs to work properly on the frontend Fusion web application user
interface, you need to make sure that the autoSubmit property is set to true for the
controlling LOV UI component. This will ensure that, upon selection, the controlling attribute's
value is submitted to the server. The UI component's autoSubmit property can also be set
to a default value by setting the attribute's Auto Submit property at the business component
level. This can be done in the view object's Attributes | UI Hints tab.

Also, note the behavior of the controlled LOV based on the view criteria Ignore Null Values
setting. When this checkbox is selected, null values for the criteria item will be ignored
and the result set will not be filtered yielding all possible employee rows. In this case, the
EmployeesLov view object's WHERE clause is amended by adding OR (:inDepartmentId
is null) to the query. If the Ignore Null Values checkbox is not selected, then null values for
the criteria item are not ignored, yielding no employees rows.

See also
 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Important Contributors: List of Values, Bind Variables, View Criteria

116

Creating static LOVs
A static LOV is produced by basing its list data source view accessor on a static view object,
that is, a view object that uses a static list as its data source. A static list is a list of constant
data that you either enter manually or import from a text file using JDeveloper. A static list
could also be produced by basing the view object on a query that generates static data.
The advantage of using a static LOV is that you can display static read-only data in your
application's user interface without having to create a database table for it. In all cases, the
amount of static data presented to the user should be small.

In this recipe, we will create a static view object called ColorLov and use it as an LOV list
data source to LOV-enable a transient attribute of the Employees view object.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the
Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with
Basics: Entity Objects. The HRComponents workspace requires a database connection to the
HR schema.

How to do it...
1. Create a new view object using the Create View Object wizard.

2. In the Name page, enter ColorsLov for the name of the view object and select
Static list for the Data Source.

3. In the Attributes page, click on the New… button. Create an attribute called ColorDesc.

4. In the Attribute Settings page, select Key Attribute for the ColorDesc attribute.

5. In the Static List page, use the Add Row button (the green plus sign icon) to add the
following data: Black, Blue, Green, Red, White, and Yellow.

6. Click Finish to complete the creation of the ColorsLov view object.

7. Add a new transient attribute to the Employees view object called FavoriteColor.

8. In the Attributes | Details tab for the FavoriteColor attribute, ensure that the
Updatable property is set to Always.

9. Click on the List of Values tab and add an LOV called LOV_FavoriteColor. For the
LOV List Data Source, use the Create new view accessor button (the green plus sign
icon) and select the ColorsLov static view object.

10. For the LOV List Attribute, select the ColorDesc attribute.

Chapter 4

117

How it works...
In steps 1 through 6, we went through the process of creating a view object, called
ColorsLov, which uses a static list as its data source. We have indicated that the view object
has one attribute called ColorDesc (step 3) and we have indicated that attribute as a key
attribute (step 4). Notice in step 5 how the Create View Object wizard allows you to manually
enter the static data. In the same Static List page, the wizard allows you to import data from
a file in a comma-separated-values (CSV) format.

In order to test the static LOV, we added a transient variable called FavoriteColor to the
Employees view object (step 7-8) and we LOV-enabled the attribute using the ColorsLov as
the list data source view accessor (steps 9-10).

When we test the application module with the ADF Model Tester, the FavoriteColor attribute
is indeed populated by the static values we have entered for the ColorsLov view object.

There's more...
Notice that the static data that is entered for the static view object is saved on a resource
bundle. This allows you to localize the data as needed.

Also note that in some cases where localization of static data is not needed, a read-only view
object that is based on a query producing static data can simulate a static view object. For
instance, consider the read-only view object that is based on the following query:

SELECT 'Black' AS COLOR_DESC FROM DUAL
UNION
SELECT 'Blue' AS COLOR_DESC FROM DUAL
UNION
SELECT 'Green' AS COLOR_DESC FROM DUAL
UNION
SELECT 'Red' AS COLOR_DESC FROM DUAL
UNION
SELECT 'White' AS COLOR_DESC FROM DUAL
UNION
SELECT 'Yellow' AS COLOR_DESC FROM DUAL;

It can be used as a list data source for the FavoriteColor LOV producing the same results.

Important Contributors: List of Values, Bind Variables, View Criteria

118

See also
 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Overriding bindParametersForCollection() to
set a view object bind variable

There are times when you need to programmatically set the value of a bind variable used in
the view object query. One way to accomplish this task is by overriding the view object method
bindParametersForCollection() and explicitly specifying the value for the particular
bind variable. This technique comes handy when the bind variable values cannot be specified
in a declarative way, or the bind variable value source changes dynamically at runtime.

This recipe will show how to provide a default value for a bind variable used in the view object
query if a value has not already been specified for it.

Getting ready
You will need to have access to the shared components workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. Additional functionality will be added to
the ExtViewObjectImpl and ExtApplicationModuleImpl custom framework classes
that were developed in the Setting up BC base classes recipe in Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

This recipe is also using the HRComponents workspace, which was created in the Overriding
remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics: Entity
Objects. The HRComponents workspace requires a database connection to the HR schema.

Moreover, we will modify the EmployeeCount view object, which was introduced in the
Using a method validator based on a view accessor recipe in Chapter 2, Dealing with Basics:
Entity Objects.

How to do it...
1. Open the shared components workspace.

2. Open the ExtViewObjectImpl view object framework extension class and add the
following method to it:
protected void setBindVariableValue(Object[] bindVariables,
 String name, Object value) {
 // iterate all bind variables

Chapter 4

119

 for (Object bindVariable : bindVariables) {
 // check for the specific bind variable name
 if (((Object[])bindVariable)[0].toString().equals(name)) {
 // set the bind variable's new value
 ((Object[])bindVariable)[1] = value;
 return;
 }
 }
}

2. Open the ExtApplicationModuleImpl application module framework extension
class and add the following method to it:
public Object getCustomData(String key) {
 // base class returns no custom data
 return null;
}

3. Deploy the shared components workspace into an ADF Library JAR.

4. Open the HRComponents workspace.

5. Open the HrComponentsAppModuleImpl custom application module
implementation class and override the getCustomData() method. In it, replace the
return super.getCustomData() with the following:
return DEFAULT_DEPARTMENT_ID_KEY.equals(key)
 ? DEFAULT_DEPARTMENT_ID : null;

6. Open the EmployeeCount view object, go to the Java page and create a custom
view object class.

7. Open the EmployeeCountImpl custom view object implementation class and
override the bindParametersForCollection() method. Add the following code
to it before the call to super.bindParametersForCollection():
// if bind variable value has not been provided,
// provide a default setting
if (this.getDepartmentId() == null) {
 // get default department id
 Number departmentId = ((Number)((ExtApplicationModuleImpl)
 this.getApplicationModule()).getCustomData(
 DEFAULT_DEPARTMENT_ID_KEY));
 // set bind variable right on the query to
 // default variable
 super.setBindVariableValue(object, "DepartmentId",
 departmentId.toString());
 // set bind variable on view object as well,
 //to be available for this time forward
 this.setDepartmentId(departmentId);
}

Important Contributors: List of Values, Bind Variables, View Criteria

120

8. Finally, add the EmployeeCount view object to the HrComponentsAppModule
application module data model.

How it works...
In the recipe Using a method validator based on a view accessor in Chapter 2, Dealing with
Basics: Entity Objects, we created a view object called EmployeeCount, which we used in
order to get the employee count for specific departments. The view object was based on the
following query:

SELECT COUNT(*) AS EMPLOYEE_COUNT
FROM EMPLOYEES
WHERE DEPARTMENT_ID = :DepartmentId

The EmployeeCount view object was added as a view accessor to the employee entity
object and it was used in a method validator. In that method validator, a value was
supplied programmatically for the DepartmentId bind variable prior to executing the
EmployeeCount query.

In this recipe, we have used the same EmployeeCount view object to demonstrate
how to supply a default value for the DepartmentId bind variable. We did this by
creating a custom view object implementation class (step 7) and then by overriding its
bindParametersForCollection() method (step 8). This method is called by the
ADF-BC framework to allow you to set values for the view object query's bind variables.
When the framework calls bindParametersForCollection(), it supplies among
the other parameters an Object[], which contains the query's bind variables (the
bindVariables parameter). We set a default value of the DepartmentId bind variable by
calling super.setBindVariableValue(). This is the helper method that we added to the
view object framework extension class in step 2. In the setBindVariableValue() method
we iterate over the query's bind variables until we find the one we are looking for and once we
find it, we set its new value.

Note that in bindParametersForCollection() we have called
getApplicationModule() to get the application module for this EmployeeCount
view object instance (having added the EmployeeCount view object to the
HrComponentsAppModule data model in step 9). This method returns an oracle.jbo.
ApplicationModule interface, which we cast to an ExtApplicationModuleImpl. As
a recommended practice, you should not be accessing specific application modules from
within your view objects. In this case, we relaxed the rule a bit by casting the oracle.
jbo.ApplicationModule interface returned by the getApplicationModule()
method to our application module framework extension class. We have then called
getCustomData(), which we overrode in step 6, to get the default DepartmentId value. It
is this default value (stored in variable departmentId) that we supply when calling super.
setBindVariableValue().

Chapter 4

121

There's more...
Although the executeQueryForCollection() method of ViewObjectImpl method can
be used to set the view object's query bind variable values, do not use this method because
the framework will never invoke it when getEstimatedRowCount() is called to identify the
result set's row count. If you do, getEstimatedRowCount() will not produce the correct row
count as you are altering the query by supplying values to the query's bind variables.

Also, note that with the 11.1.1.5.0 (PS4) release, a new ViewObjectImpl method
called prepareRowSetForQuery() was introduced that can be used to set the query's
bind parameter values. The following code illustrates how to use it to set a value for the
DepartmentId bind variable in this recipe:

public void prepareRowSetForQuery(ViewRowSetImpl vrsImpl) {
 // get default departmentId value as before
 Number departmentId =
 vrsImpl.ensureVariableManager().setVariableValue(
 "DepartmentId", departmentId);
 super.prepareRowSetForQuery(vrsImpl);
}

Both bindParametersForCollection() and prepareRowSetForQuery() are valid
choices for setting the view object's query bind variable values. If for some reason both of
them are overridden, note that the framework will first call prepareRowSetForQuery() and
then bindParametersForCollection().

See also
 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

 f Using a method validator based on a view accessor, Chapter 2, Dealing with Basics:
Entity Objects

Important Contributors: List of Values, Bind Variables, View Criteria

122

Creating view criteria programmatically
View criteria augment the view object's WHERE clause by appending additional query
conditions to it. They work in conjunction with the af:query ADF Faces UI component to
provide query-by-example support to the frontend user interface. View criteria can be created
declaratively in JDeveloper in the Query section of the view object definition by clicking on
the Create new view criteria button (the green plus sign icon) in the View Criteria section.
Programmatically, the ADF-BC API supports the manipulation of view criteria among others via
the ViewCriteria, ViewCriteriaRow, and ViewCriteriaItem classes, and through
a number of methods implemented in the ViewObjectImpl class. This technique comes
handy when the view criteria cannot be specified during the design stage. One example might
be the creation of a custom query-by-example page for your application, in which case the
view criteria must be created programmatically at runtime.

In this recipe, we will see how to create view criteria programmatically. The use case will be
to dynamically amend the Employees view object query by adding it to the view criteria. The
values that we will use for the view criteria items will be obtained from the result set of yet
another view object.

Getting ready
You will need to have access to the shared components workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. The functionality will be added to the
ExtViewObjectImpl custom framework class that was developed in the Setting up BC base
classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.
For testing purposes, we will be using the HRComponents workspace, which was created in
the Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing
with Basics: Entity Objects. The HRComponents workspace requires a database connection
to the HR schema.

How to do it...
1. Open the shared components workspace.

2. Open the ExtViewObjectImpl.java view object framework extension class in the
Java editor and add the following searchUsingAdditionalCriteria() method:
public void searchUsingAdditionalCriteria(
 ViewObject providerViewObject,
 String[] attribNames) {
 // create the criteria
 ViewCriteria vc = this.createViewCriteria();
 // set the view criteria name
 vc.setName("searchUsingAdditionalCriteria");

Chapter 4

123

 // AND with previous criteria
 vc.setConjunction(ViewCriteriaComponent.VC_CONJ_AND);
 // get criteria item data from the provider
 // view object
 RowSetIterator it =
 providerViewObject.createRowSetIterator(null);
 it.reset();
 while (it.hasNext()) {
 Row providerRow = it.next();
 // add a criteria item for each attribute
 for (String attribName : attribNames) {
 try {
 // create the criteria item
 ViewCriteriaRow vcRow = vc.createViewCriteriaRow();
 // set the criteria item value
 vcRow.setAttribute(attribName,
 providerRow.getAttribute(attribName));
 // add criteria item to the view criteria
 vc.insertRow(vcRow);
 } catch (JboException e) {
 LOGGER.severe(e);
 }
 }
 }
 // done with iterating provider view object
 it.closeRowSetIterator();
 // apply the criteria to this view object
 this.applyViewCriteria(vc);
 // execute the view object's query
 this.executeQuery();
}

3. For logging purposes, add an ADFLogger to the same class as shown in the
following code:
private static ADFLogger LOGGER = ADFLogger.createADFLogger(
 ExtViewObjectImpl.class);

4. Deploy the shared components projects into an ADF Library JAR.

Important Contributors: List of Values, Bind Variables, View Criteria

124

5. For testing purposes, open the HRComponents workspace and add the
following searchEmployeesUsingAdditionalCriteria() method to the
HrComponentsAppModuleImpl custom application module implementation class:

public void searchEmployeesUsingAdditionalCriteria() {
 // invoke searchUsingAdditionalCriteria() to create
 // result set based on View criteria item
 // data obtained from another view object's rowset
 this.getEmployees()
 .searchUsingAdditionalCriteria(this.getCascadingLovs(),
 new String[] { "EmployeeId" });
}

How it works...
In step 1, we created a method called searchUsingAdditionalCriteria() in the shared
components workspace ExtViewObjectImpl view object framework extension class, to
allow view objects to alter their queries by dynamically creating and applying view criteria. The
data for the view criteria items are provided by another view object. The method accepts the
view object that will provide the view criteria item data values (providerViewObject) and
an array of attribute names (attribNames) that is used to create the view criteria items, and
also retrieve the data from the provider view object. The following lines show how this method
is called from the searchEmployeesUsingAdditionalCriteria() method that we
added to the application module implementation class in step 5:

((ExtViewObjectImpl)this.getEmployees())
 .searchUsingAdditionalCriteria(this.getCascadingLovs(),
 new String[] { "EmployeeId" });

As you can see, we have used the view object returned by this.getCascadingLovs() in
order to obtain the view criteria item values. A single criteria item based on the employee ID
was also used.

In the searchUsingAdditionalCriteria(), we first called createViewCriteria()
to create view criteria for the view object. This returns an oracle.jbo.ViewCriteria
object representing the view criteria. This object can be used subsequently to add
criteria items onto it. Then we called setConjunction() on the view criteria to set the
conjunction operator (OR, AND, UNION, NOT). The conjunction operator is used to combine
multiple criteria when nested view criteria are used by the view object. This could be
the case if the view object has defined additional view criteria. We have used an AND
conjunction in this example (the ViewCriteriaComponent.VC_CONJ_AND constant),
although this can easily be changed by passing the conjunction as another parameter to
searchUsingAdditionalCriteria().

Chapter 4

125

In order to retrieve the view criteria item data, we iterated the provider view object, and for
each row of data we called createViewCriteriaRow() on the view criteria to create the
criteria row. This method returns an oracle.jbo.ViewCriteriaRow object representing
a criteria row. We added the view criteria row data by calling setAttribute() on the
newly created criteria row, and we added the criteria row to the view criteria by calling
insertRow() on the view criteria, passing the criteria row as an argument.

Once all criteria items have been setup, we call applyViewCriteria() on the view object,
specifying the newly created view criteria. Then we call executeQuery() to execute the
view object's query based on the applied view criteria. The result set produced matches the
applied criteria.

There's more...
Note what happens when the framework executes the view object query after applying the
view criteria programmatically. Adding two criteria rows, for example, will append the following
to the query's WHERE clause:

(((Employee.EMPLOYEE_ID = :vc_temp_1)) OR ((Employee.EMPLOYEE_ID
= :vc_temp_2)))

As you can see, the framework amends the query using temporary bind variables (vc_
temp_1, vc_temp_2, and so on) for each criteria row.

Also note the following:

 f Calling applyViewCriteria() on the view object erases any previously applied
criteria. In order to preserve these, the framework provides another version of
applyViewCriteria() that accepts an extra bAppend Boolean parameter. Based
on the value of bAppend, the newly applied criteria can be appended to the existing
criteria, if any. Moreover, to apply multiple criteria at once, the framework provides the
setApplyViewCriteriaNames() method. This method accepts a java.lang.
String array of the criteria names to apply, and by default ANDs the criteria applied.

 f The way the setAttribute() method of ViewCriteriaRow was used in
this recipe sets up an equality operation for the criterion, that is, EmployeeId
= someValue. In order to specify a different operation for the criterion item,
you must specify the operation as part of the setAttribute() method call.
For example, vcRow.setAttribute("EmployeeId","< 150"), vcRow.
setAttribute("EmployeeId","IN (100,200,201)") and so on.

Important Contributors: List of Values, Bind Variables, View Criteria

126

 f Finally, note that you can setup the view criteria item via the setOperator() and
setValue() methods supplied by the ViewCriteriaItem class. You will need
to call ensureCriteriaItem() on the criteria row in order to get access to a
ViewCriteriaItem. The following is an example:

// get the criteria item from the criteria row
ViewCriteriaItem criteriaItem =
 vcRow.ensureCriteriaItem("EmployeeId");
// set the criteria item operator
criteriaItem.setOperator("<");
// set the criteria item value
criteriaItem.getValues().get(0).setValue(new Integer(150));

See also
 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Clearing the values of bind variables
associated with the view criteria

This recipe shows you how to clear the values associated with bind variables used as
operands in view criteria items for a specific view object. It implements a method called
clearCriteriaVariableValues() in the view object framework extension class, which
becomes available for all view objects to call. Bind variables are associated as operands for
criteria items during the process of creating the view object's view criteria in the Create View
Criteria dialog. Also, as we have seen in the Creating view criteria programmatically recipe,
bind variables are generated automatically by the framework when programmatically creating
view criteria. You can use this technique when you want to clear the search criteria on a
search form based on some user action. A use case might be, for instance, that you want to
immediately clear the search criteria after the search button is pressed.

Getting ready
You will need to have access to the shared components workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. The functionality will be added to the
ExtViewObjectImpl custom framework class that was developed in the Setting up BC base
classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Chapter 4

127

How to do it...
1. Open the shared components workspace.

2. Open the ExtViewObjectImpl.java view object framework extension class in the
Java editor and add the following clearCriteriaValues() method:

public void clearCriteriaVariableValues(
 String[] criteriaNames) {
 // iterate all view criteria names
 for (String criteriaName : criteriaNames) {
 // get the view criteria
 ViewCriteria vc = this.getViewCriteria(criteriaName);
 if (vc != null) {
 VariableValueManager vvm = vc.ensureVariableManager();
 Variable[] variables = vvm.getVariables();
 for (Variable var: variables) {
 vvm.setVariableValue(var, null);
 }
 }
 }
}

How it works...
The clearCriteriaVariableValues() is added to the ExtViewObjectImpl view
object framework extension class, thus making it available for all view objects to call it. The
method accepts a java.lang.String array of view criteria names (criteriaNames)
and iterates over them, getting the associated view criteria for each of them. It then calls
ensureVariableManager() on the view criteria to retrieve the bind variables manager, an
oracle.jbo.VariableValueManager interface, which is implemented by the framework
to manage named variables.

The bind variables are retrieved by calling getVariables() on the variable manager. This
method returns an array of objects implementing the oracle.jbo.Variable interface,
the actual bind variables. Finally, we iterate over the bind variables used by the view criteria,
setting their values to null by calling setVariableValue() for each one of them.

Important Contributors: List of Values, Bind Variables, View Criteria

128

There's more...
Note that the technique used in the recipe does not remove the view criteria associated with
the view object, it simply resets the values of the bind variables associated with the view
criteria. In order to completely remove the view criteria associated with a particular view
object, call the ViewObjectImpl method removeViewCriteria(). This method first
unapplies the specific view criteria and then completely removes them from the view object.
If you want to unapply the view criteria without removing them from the view object, use
the removeApplyViewCriteriaName() method. Furthermore, you can also clear all the
view object view criteria in effect by calling applyViewCriteria() on the view object and
specifying null for the view criteria name. Finally, to clear any view criteria in effect, you can
also delete all the view criteria rows from it using the remove() method. Any of the above
calls will alter the view criteria for the lifetime of the specific view object instance until the next
time any of these calls are invoked again.

See also
 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

Searching case insensitively using view
criteria

This recipe shows you a technique that you can use to handle case-insensitive (or
case sensitive for that matter) searching for strings, when using view criteria for a view
object. The framework provides various methods, such as setUpperColumns() and
isUpperColumns(), for instance, at various view criteria levels (ViewCriteria,
ViewCriteriaRow and ViewCriteriaItem) that can be used to construct generic helper
methods to handle case searching. This technique can be used to allow case-insensitive
or case-sensitive searches in your application based on some controlling user interface
component or some application configuration option. For instance, a custom search form
can be constructed with a checkbox component indicating whether the search will be case
sensitive or not.

Getting ready
You will need to have access to the shared components workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. The functionality will be added to the
ExtViewObjectImpl custom framework class that was developed in the Setting up BC base
classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Chapter 4

129

How to do it...
1. Open the shared components workspace.

2. Open the ExtViewObjectImpl.java view object framework extension class in the
Java editor and add the following setViewCriteriaCaseInsensitive() method:

public void setViewCriteriaCaseInsensitive(
 boolean bCaseInsensitive) {
 // get all View Criteria managed by this view object
 ViewCriteria[] vcList = getAllViewCriterias();
 if (vcList != null) {
 // iterate over all view criteria
 for (ViewCriteria vc : vcList) {
 // set case-insensitive or case-sensitive as
 // indicated by the bCaseInsensitive parameter
 if (vc.isUpperColumns() != bCaseInsensitive)
 vc.setUpperColumns(bCaseInsensitive);
 }
 }
}

How it works...
We have added the setViewCriteriaCaseInsensitive() method in the
ExtViewObjectImpl view object framework extension class to allow all view objects to call
it in order to enable or disable case-insensitive search based on view criteria managed by the
specific view object. The boolean parameter bCaseInsensitive indicates whether case-
insensitive search is to be enabled for the view criteria.

The method gets access to all view criteria managed by the specific view object by
calling getAllViewCriterias(). This framework method returns an oracle.jbo.
ViewCriteria array containing all view criteria (both applied and unapplied) that are
managed by the view object. It then iterates over them, checking in each iteration whether the
current case-insensitive setting, obtained by calling isUpperColumns(), differs from the
desired setting indicated by bCaseInsensitive. If this is the case, case-insensitivity is set
(or reset) by calling setUpperColumns() for the specific view criteria.

When you enable case-insensitive search for the view criteria, the framework—when it adjusts
the view object a query, based on the view criteria—calls the UPPER() database function in
the WHERE clause for those criteria items where case-insensitive search has been enabled.
This behavior can be seen when you declaratively define view criteria using the Create View
Criteria dialog. Notice how the View Object Where Clause is altered as you check and
uncheck the Ignore Case checkbox. This behavior is achieved programmatically as explained
in this recipe by calling setUpperColumns().

Important Contributors: List of Values, Bind Variables, View Criteria

130

There's more...
As mentioned earlier, the framework allows you to control case-insensitive search at various
levels. In this recipe, we have seen how to affect case searching for the view criteria as a
whole, by utilizing the setUpperColumns() method defined for the ViewCriteria object.
Individual criteria rows and items can be set separately by calling setUpperColumns() for
specific ViewCriteriaRow and ViewCriteriaItem objects respectively.

See also
 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

5
Putting them all

together: Application
Modules

In this chapter, we will cover:

 f Creating and using generic extension interfaces

 f Exposing a custom method as a web service

 f Accessing a service interface method from another application module

 f A passivation/activation framework for custom session-specific data

 f Displaying application module pool statistics

 f Using a shared application module for static lookup data

 f Using a custom database transaction

Introduction
An application module in the ADF Business Components framework represents a basic
transactional unit that implements specific business use cases. It encompasses a data model
comprising a hierarchy of view objects and optionally other application module instances,
along with a number of custom methods that together implement a specific business use
case. It allows the creation of bindings at the ViewController project layer, through the
corresponding application model data control and the ADF model layer (ADFm). Moreover, it
allows for the creation of custom functionality that can be exposed through its client interface
and subsequently bound as method bindings. Method bindings declaratively bind user
interface components to back-end data and services providing data access.

Putting them all together: Application Modules

132

Custom application module methods can easily be exposed as web services through the
application module service interface. Moreover, application modules and their configured view
object instances can be exposed as service data object (SDO) components for consumption in
a SOA infrastructure.

Creating and using generic extension
interfaces

Back in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations in
the Setting up BC base classes recipe, we introduced a number of framework extension
classes for various business components. We did this so that we could provide common
implementation functionality for all derived business components throughout the application.
In this recipe, we will go over how to expose parts of that common functionality as a generic
extension interface. By doing so, this generic interface becomes available to all derived
business components, which in turn can expose it to their own client interface and make it
available to the ViewController layer through the bindings layer.

Getting ready
You will need to have access to the SharedComponents workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. Additional functionality will be added to the
ExtApplicationModuleImpl custom framework class that was developed in the Setting
up BC base classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations.

This recipe also uses the HRComponents workspace, which was created in the Overriding
remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics: Entity
Objects. The HRComponents workspace requires a database connection to the HR schema.

How to do it…
1. Open the shared components workspace in JDeveloper.

2. Create an interface called ExtApplicationModule as follows:
public interface ExtApplicationModule {
 // return some user authority level, based on
 // the user's name
 public int getUserAuthorityLevel();
}

Chapter 5

133

3. Locate and open the custom application module framework extension
class ExtApplicationModuleImpl. Modify it so that it implements the
ExtApplicationModule interface.

4. Then, add the following method to it:
public int getUserAuthorityLevel() {
 // return some user authority level, based on the user's name
 return ("anonymous".equalsIgnoreCase(this.
getUserPrincipalName()))?
 AUTHORITY_LEVEL_MINIMAL : AUTHORITY_LEVEL_NORMAL;
}

5. Rebuild the SharedComponents workspace and deploy it as an ADF Library JAR.

6. Now, open the HRComponents workspace.

7. Locate and open the HrComponentsAppModule application module definition.

8. Go to the Java section and click on the Edit application module client interface
button (the pen icon in the Client Interface section).

9. On the Edit Client Interface dialog, shuttle the getUserAuthorityLevel() interface
from the Available to the Selected list.

Putting them all together: Application Modules

134

How it works…
In steps 1 and 2, we have opened the SharedComponents workspace and created an
interface called HrComponentsAppModule. This interface contains a single method called
getUserAuthorityLevel().

Then, we updated the application module framework extension class
HrComponentsAppModuleImpl so that it implements the HrComponentsAppModule
interface (step 3). We also implemented the method getUserAuthorityLevel() required
by the interface (step 4). For the sake of this recipe, this method returns a user authority level
based on the authenticated user's name. We retrieve the authenticated user's name by calling
getUserPrincipal().getName() on the SecurityContext, which we retrieve from the
current ADF context (ADFContext.getCurrent().getSecurityContext()). If security
is not enabled for the ADF application, the user's name defaults to anonymous. In this
example, we return AUTHORITY_LEVEL_MINIMAL for anonymous users, and for all others
we return AUTHORITY_LEVEL_NORMAL. We rebuilt and redeployed the SharedComponents
workspace in step 5.

In steps 6 through 9, we opened the HRComponents workspace and added the
getUserAuthorityLevel() method to the HrComponentsAppModuleImpl client
interface. By doing this, we exposed the getUserAuthorityLevel() generic extension
interface to a derived application module, while keeping its implementation in the base
framework extension class ExtApplicationModuleImpl.

There's more…
Note that the steps followed in this recipe to expose an application module framework
extension class method to a derived class' client interface can be followed for other business
components framework extension classes as well.

See also
 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Chapter 5

135

Exposing a custom method as a web service
Service-enabling an application module allows you, among others, to expose custom
application module methods as web services. This is one way for service consumers to
consume the service-enabled application module. The other possibilities are accessing
the application module by another application module, and accessing it through a Service
Component Architecture (SCA) composite. Service-enabling an application module allows
access to the same application module both through web service clients and interactive
web user interfaces. In this recipe, we will go over the steps involved in service-enabling an
application module by exposing a custom application module method to its service interface.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the
Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with
Basics: Entity Objects. The HRComponents workspace requires a database connection to the
HR schema.

Furthermore, for this recipe, we will expose the adjustCommission() application module
method that was developed back in Chapter 3, A Different Point of View: View Objects
Techniques for the Iterating a view object using a secondary rowset iterator recipe as a
web service.

How to do it…
1. Open the HRComponents project in JDeveloper.

2. Double-click on the HRComponentsAppModule application module in the
Application Navigator to open its definition.

3. Go to the Service Interface section and click on the Enable support for Service
Interface button (the green plus sign icon in the Service Interface section). This will
start the Create Service Interface wizard.

4. In the Service Interface page, accept the defaults and click Next.

Putting them all together: Application Modules

136

5. In the Service Custom Methods page, locate the adjustCommission() method
and shuttle it from the Available list to the Selected list. Click on Finish.

6. Observe that the adjustCommission() method is shown in the Service Interface
Custom Methods section of the application module's Service Interface. The service
interface files were generated in the serviceinterface package under the
application module and are shown in the Application Navigator.

7. Double-click on the weblogic-ejb-jar.xml file under the META-INF package in
the Application Navigator to open it.

Chapter 5

137

8. In the Beans section, select the com.packt.jdeveloper.
cookbook.hr.components.model.application.common.
HrComponentsAppModuleService Bean bean and click on the Performance
tab. For the Transaction timeout field, enter 120.

How it works…
In steps 1 through 6, we have exposed the adjustCommission() custom application
module method to the application module's service interface. This is a custom method that
adjusts all the Sales department employees' commissions by the percentage specified. As
a result of exposing the adjustCommission() method to the application module service
interface, JDeveloper generates the following files:

 f HrComponentsAppModuleService.java: Defines the service interface

 f HrComponentsAppModuleServiceImpl.java: The service implementation class

 f HrComponentsAppModuleService.xsd: The service schema file describing the
input and output parameters of the service

 f HrComponentsAppModuleService.wsdl: The Web Service Definition Language
(WSDL) file, describing the web service

 f ejb-jar.xml: The EJB deployment descriptor. It is located in the src/META-INF
directory

 f weblogic-ejb-jar.xml: The WebLogic-specific EJB deployment descriptor,
located in the src/META-INF directory

Putting them all together: Application Modules

138

In steps 7 and 8, we adjust the service Java Transaction API (JTA) transaction timeout to 120
seconds (the default is 30 seconds). This will avoid any exceptions related to transaction
timeouts when invoking the service. This is an optional step added specifically for this recipe,
as the process of adjusting the commission for all sales employees might take longer than the
default 30 seconds, causing the transaction to time out.

To test the service using the JDeveloper integrated WebLogic application server, right-click
on the HrComponentsAppModuleServiceImpl.java service implementation file in the
Application Navigator and select Run or Debug from the context menu. This will build and
deploy the HrComponentsAppModuleService web service into the integrated WebLogic
server. Once the deployment process is completed successfully, you can click on the service
URL in the Log window to test the service. This will open a test window in JDeveloper and also
enable the HTTP Analyzer. Otherwise, copy the target service URL from the Log window and
paste it into your browser's address field. This will bring up the service's endpoint page.

On this page, select the adjustCommission method from the Operation drop down, specify
the commissionPctAdjustment parameter amount and click on the Invoke button to execute
the web service. Observe how the employees' commissions are adjusted in the EMPLOYEES
table in the HR schema.

Chapter 5

139

There's more…
For more information on service-enabling application modules consult chapter Integrating
Service-Enabled Application Modules in the Fusion Developer's Guide for Oracle Application
Development Framework which can be found at http://docs.oracle.com/cd/
E24382_01/web.1112/e16182/toc.htm.

See also
 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

 f Iterating a view object using a secondary rowset iterator, Chapter 3, A Different Point
of View: View Objects Techniques

Accessing a service interface method from
another application module

In the recipe Exposing a custom method as a web service in this chapter, we went
through the steps required to service-enable an application module and expose a custom
application module method as a web service. We will continue in this recipe by explaining
how to invoke the custom application module method, exposed as a web service, from
another application module.

Getting ready
This recipe will call the adjustCommission() custom application module method that was
exposed as a web service in the Exposing a custom method as a web service recipe in this
chapter. It requires that the web service is deployed in WebLogic and that it is accessible.

The recipe also requires that both the SharedComponents workspace and the
HRComponents workspace are deployed as ADF Library JARs and that are added to the
workspace used by this specific recipe. Additionally, a database connection to the HR schema
is required.

How to do it…
1. Ensure that you have built and deployed both the SharedComponents and

HRComponents workspaces as ADF Library JARs.

2. Create a File System connection in the Resource Palette to the directory path
where the SharedComponents.jar and HRComponents.jar ADF Library JARs
are located. In the book source code, they are located in the chapter5/recipe3/
ReUsableJARs directory.

Putting them all together: Application Modules

140

3. Create a new Fusion Web Application (ADF) called HRComponentsCaller using
the Create Fusion Web Application (ADF) wizard.

4. Create a new application module called HRComponentsCallerAppModule using
the Create Application Module wizard. In the Java page, check on the Generate
Application Module Class checkbox to generate a custom application module
implementation class. JDeveloper will ask you for a database connection during this
step, so make sure that a new database connection to the HR schema is created.

5. Expand the File System | ReUsableJARs connection in the Resource Palette and
add both the SharedComponents and HRComponents libraries to the project.
You do this by right-clicking on the jar file and selecting Add to Project… from the
context menu.

6. Bring up the business components Project Properties dialog and go to the Libraries
and Classpath section. Click on the Add Library… button and add the BC4J Service
Client and JAX-WS Client extensions.

7. Double-click on the HRComponentsCallerAppModuleImpl.java custom
application module implementation file in the Application Navigator to open it
in the Java editor.

8. Add the following method to it:
public void adjustCommission(
 BigDecimal commissionPctAdjustment) {
 // get the service proxy
 HrComponentsAppModuleService service =
 (HrComponentsAppModuleService)ServiceFactory
 .getServiceProxy(
 HrComponentsAppModuleService.NAME);
 // call the adjustCommission() service
 service.adjustCommission(commissionPctAdjustment);
}

9. Expose adjustCommission() to the HRComponentsCallerAppModule
client interface.

10. Finally, in order to be able to test the HRComponentsCallerAppModule application
module with the ADF Model Tester, locate the connections.xml file in the
Application Resources section of the Application Navigator under the Descriptors |
ADF META-INF node, and add the following configuration to it:

<Reference
 name="{/com/packt/jdeveloper/cookbook/hr/components/model/
 application/common/}HrComponentsAppModuleService"
 className="oracle.jbo.client.svc.Service" xmlns="">
<Factory
 className="oracle.jbo.client.svc.ServiceFactory"/>
<RefAddresses>
<StringRefAddr addrType="serviceInterfaceName">

Chapter 5

141

<Contents>com.packt.jdeveloper.cookbook.hr.components.model.
application.common.serviceinterface.HrComponentsAppModuleService
</Contents>
</StringRefAddr>
<StringRefAddr addrType="serviceEndpointProvider">
<Contents>ADFBC</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiName">
<Contents>HrComponentsAppModuleServiceBean#com.packt.jdeveloper.
 cookbook.hr.components.model.application.common.
 serviceinterface.HrComponentsAppModuleService</Contents>
</StringRefAddr>
<StringRefAddr addrType="serviceSchemaName">
<Contents>HrComponentsAppModuleService.xsd</Contents>
</StringRefAddr>
<StringRefAddr addrType="serviceSchemaLocation">
<Contents>com/packt/jdeveloper/cookbook/hr/components/model/
application/common/serviceinterface/</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiFactoryInitial">
<Contents>weblogic.jndi.WLInitialContextFactory</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiProviderURL">
<Contents>t3://localhost:7101</Contents>
</StringRefAddr>
</RefAddresses>
</Reference>

How it works…
In steps 1 and 2, we have made sure that both the SharedComponents and HRComponents
ADF Library JARs are deployed and that a file system connection was created, in order that
both of these libraries get added to a newly created project (in step 5). Then, in steps 3 and
4, we create a new Fusion web application based on ADF, and an application module called
HRComponentsCallerAppModule. It is from this application module that we intend to call
the adjustCommission() custom application module method, exposed as a web service by
the HrComponentsAppModule service-enabled application module in the HRComponents
library JAR. For this reason, in step 4, we have generated a custom application module
implementation class. We proceed by adding the necessary libraries to the new project in
steps 5 and 6. Specifically, the following libraries were added: SharedComponents.jar,
HRComponents.jar, BC4J Service Client, and JAX-WS Client.

Putting them all together: Application Modules

142

In steps 7 through 9, we create a custom application module method called
adjustCommission(), in which we write the necessary glue code to call our web service. In
it, we first retrieve the web service proxy, as a HrComponentsAppModuleService interface,
by calling ServiceFactory.getServiceProxy() and specifying the name of the web
service, which is indicated by the constant HrComponentsAppModuleService.NAME in the
service interface. Then we call the web service through the retrieved interface.

In the last step, we have provided the necessary configuration in the connections.xml
so that we will be able to call the web service from an RMI client (the ADF Model Tester).
This file is used by the web service client to locate the web service. For the most part, the
<Reference> information that was added to it was generated automatically by JDeveloper
in the Exposing a custom method as a Web service recipe, so it was copied from there. The
extra configuration information that had to be added is the necessary JNDI context properties
jndiFactoryInitial and jndiProviderURL that are needed to resolve the web service
on the deployed server. You should change these appropriately for your deployment. Note that
these parameters are the same as the initial context parameters used to lookup the service
when running in a managed environment.

To test calling the web service, ensure that you have first deployed it and that it is running. You
can then use the ADF Model Tester, select the adjustCommission method and execute it.

There's more…
For additional information related to such topics as securing the ADF web service, enabling
support for binary attachments, deploying to WebLogic, and more, refer to the Integrating
Service-Enabled Application Modules section in the Fusion Developer's Guide for Oracle
Application Development Framework which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16182/toc.htm.

See also
 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

 f Exposing a custom method as a web service, Chapter 5, Putting them all together:
Application Modules

Chapter 5

143

A passivation/activation framework for
custom session-specific data

In order to improve performance and preserve a stateful notion while utilizing a stateless
protocol (that is, HTTP) the ADF Business Components framework implements the concept
of application module pooling. This is a technique of maintaining a limited number of
application modules, the exact number specified by configuration, in a pool, which are
preserved across multiple user requests for the same HTTP session. If an application module
instance for a session already exists in the application module pool, it gets reused. When all
available application modules in the pool have been associated with specific sessions, an
application module already linked with a particular session must be freed. This requires that
the data associated with the application module is saved.

The process of saving the information associated with the specific application module is
called passivation. The information is stored in a passivation store, usually a database, in
XML format. The opposite process of restoring the state of the application module from the
passivation store is called activation. Custom data is associated with specific application
modules, and therefore with specific user sessions, by using a Hashtable obtained from
an oracle.jbo.Session object. The Hashtable is obtained by calling getSession().
getUserData() from the application module implementation class.

If you are using such custom data as part of some algorithm in your application and you expect
the custom data to persist from one user request to another, passivation (and subsequent
activation) support for these custom data must be implemented programmatically. You can
add custom passivation and activation logic to your application module implementation
class by overriding the ApplicationModuleImpl methods passivateState() and
activateState() respectively. The passivateState() method creates the necessary XML
elements for the application module's custom data that must be passivated. Conversely, the
activateState() method detects the specific XML elements that identify the custom data in
the passivated XML document and restores them back into the session custom data.

This recipe will show you how to do this, and at the same time build a mini framework to avoid
duplication of the basic passivation/activation code that you must write for all the application
modules in your project.

Getting ready
You will need to have access to the SharedComponents workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. Additional functionality will be added to the
ExtApplicationModuleImpl custom framework class that was developed in the Setting
up BC base classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations.

Putting them all together: Application Modules

144

This recipe is also using the HRComponents workspace, which was created in the Overriding
remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics: Entity
Objects. The HRComponents workspace requires a database connection to the HR schema.

How to do it…
1. Open the SharedComponents workspace in JDeveloper and load the

ExtApplicationModuleImpl application module framework extension class in
the Java editor.

2. Add the following methods to the ExtApplicationModuleImpl application module
framework extension class:
protected String[] onStartPassivation() {
 // default implementation: no passivation ids
 // are defined
 return new String[] { };
}
protected String onPassivate(String passivationId) {
 // default implementation: passivates nothing
 return null;
}
protected void onEndPassivation() {
 // default implementation: does nothing
}
protected String[] onStartActivation() {
 // default implementation: no activation ids
 // are defined
 return new String[] { };
}
protected void onActivate(String activationId,
 String activationData) {
 // default implementation: activates nothing
}
protected void onEndActivation() {
 // default implementation: does nothing
}

3. Override the void passivateState(Document, Element) method. Add the
following code after the call to super.passivateState():
// begin custom data passivation: returns a
// list of the custom data passivation identifiers
String[] passivationIds = onStartPassivation();
// process all passivation identifiers
for (String passivationId : passivationIds) {
// check for valid identifier

Chapter 5

145

 if (passivationId != null &&
 passivationId.trim().length() > 0) {
 // passivate custom data: returns
 // the passivation data
 String passivationValue =
 onPassivate(passivationId);
 // check for valid passivation data
 if (passivationValue != null &&
 passivationValue.length() > 0) {
 // create a new text node in the
 // passivation XML
 Node node =
 document.createElement(passivationId);
 Node cNode =
 document.createTextNode(passivationValue);
 node.appendChild(cNode);
 // add the passivation node to the
 // parent element
 element.appendChild(node);
 }
 }
}
// inform end of custom data passivation
onEndPassivation();

4. Override the activateState(Element element) method. Add the following code
after the call to super.activateState():
// check for element to activate
if (element != null) {
 // begin custom data activation: returns a
 // list of the custom data activation identifiers
 String[] activationIds = onStartActivation();
 // process all activation identifiers
 for (String activationId : activationIds) {
 // check for valid identifier
 if (activationId != null &&
 activationId.trim().length() > 0) {
 // get nodes from XML for the specific
 // activation identifier
 NodeList nl =
 element.getElementsByTagName(activationId);
 // if it was found in the activation data
 if (nl != null) {
 // activate each node

Putting them all together: Application Modules

146

 for (int n = 0, length =
 nl.getLength(); n < length; n++) {
 Node child =
 nl.item(n).getFirstChild();
 if (child != null) {
 // do the actual custom data
 // activation
 onActivate(activationId,
 child.getNodeValue().toString());
 break;
 }
 }
 }
 }
 }
 // inform end of custom data activation
 onEndActivation();
}

5. Rebuild and redeploy the SharedComponents ADF Library JAR.

6. Open the HRComponents workspace and load the HrComponentsAppModuleImpl
and HrComponentsAppModule application module custom implementation classes
into the Java editor.

7. Add the following getActivationPassivationIds() helper method. Also, ensure
that you define a constant called CUSTOM_DATA_PASSIVATION_ID indicating the
custom data passivation identifier.
private static final String CUSTOM_DATA_PASSIVATION_ID =
 "customDataPassivationId";
private String[] getActivationPassivationIds() {
 // return the passivation/activation identifiers
 return new String[] { CUSTOM_DATA_PASSIVATION_ID };
}

8. Override the onStartPassivation(), onPassivate(),
onStartActivation(), and onActivate() methods. Provide the following
implementation for them:
protected String[] onStartPassivation() {
 // return the passivation identifiers
 return getActivationPassivationIds();
}
protected String onPassivate(String passivationId) {
 String passivationData = null;
 // passivate this application module's
 // custom data only

Chapter 5

147

 if (CUSTOM_DATA_PASSIVATION_ID.equals(
 passivationId)) {
 // return the custom data from the Application
 // Module session user data
 passivationData = (String)getSession()
 .getUserData().get(CUSTOM_DATA_PASSIVATION_ID);
 }
 return passivationData;
}
protected String[] onStartActivation() {
 // return the activation identifiers
 return getActivationPassivationIds();
}
protected void onActivate(String activationId,
 String activationData) {
 // activate this application module's custom data only
 if (CUSTOM_DATA_PASSIVATION_ID.equals(activationId)) {
 // add custom data to the Application
 // Module's session
 getSession().getUserData().put(
 CUSTOM_DATA_PASSIVATION_ID, activationData);
 }
}

9. Finally, for testing purposes, override the prepareSession() method and add the
following code after the call to super.prepareSession():

// add some custom data to the Application
// Module session
getSession().getUserData()
 .put(CUSTOM_DATA_PASSIVATION_ID,
 "Some custom data");

How it works…
In the first two steps, we have laid out a basic passivation/activation framework by adding a
number of methods to the ExtApplicationModuleImpl application module framework
extension class dealing specifically with this process. Specifically, these methods are:

 f onStartPassivation(): The framework calls this method to indicate that a
passivation process is about to start. Derived application modules that need to
passivate custom data will override this method and return a java.lang.String
array of passivation identifiers, indicating custom data that needs to be passivated.

Putting them all together: Application Modules

148

 f onPassivate(): The framework calls this method to indicate that some specific
custom data, identified by the passivationId parameter, needs to be passivated.
Derived application modules will override this method to passivate the specific
custom data. It returns the passivated data as a java.lang.String.

 f onEndPassivation(): This method is called by the framework to indicate that the
passivation process is complete. Derived application modules could override this
method to perform post-passivation actions.

 f onStartActivation(): This method is called by the framework to indicate that
an activation process is about to begin. Derived application modules in need of
activating custom data, should override this method and return a list of activation
identifiers.

 f onActivate(): This method is called by the framework when some custom data—
that is, the parameter activationData—needs to be activated. The custom data is
identified by a unique identifier indicated by the parameter activationId. Derived
application modules should override this method and restore the custom data being
activated into the application module's user data Hashtable.

 f onEndActivation(): This method indicates the end of the activation process. It
can be overriden by derived application modules to do some post-activation actions.

These methods do nothing at the base class level. It is when they
are overridden by derived application modules (see step 8) that
they come to life.

In step 3, we have overridden the ADF Business Components framework method
passivateState() and hooked up our own passivation/activation framework to it. ADF
calls this method to indicate that a passivation is taking place. In it, after calling super.
passivateState() to allow for the ADF processing, we first call onStartPassivation().
If a derived application module has overridden this method, it should return a list of
passivation identifiers. These identifiers should uniquely identify the application module
custom data that needs to be passivated at the application module level. We then iterate
over the passivation identifiers, calling onPassivate() each time to retrieve the passivation
data. We create a new XML node for the passivation identifier, we add the passivation data to
it and append it to the parent XML node that is passed as a parameter by the ADF framework
(the element parameter) to passivateState(). When all passivation identifiers have been
processed, onEndPassivation() is called.

Chapter 5

149

Step 4 is somewhat similar and does the activation. In this case, we have overridden the
ADF activateState() method, which is called by the framework to indicate that the
activation process is taking place. In it, we first call super.activateState() to allow for
framework processing and then call onStartActivation() to get a list of the activation
identifiers. We iterate over the activation identifiers, looking for each identifier in the
activated XML data for the application module element. This is done by calling element.
getElementsByTagName(). This method could possibly return multiple nodes, so for each
we call onActivate() to activate the specific custom data. When we call onActivate(),
we pass the activation identifier and the activation data to it as arguments. It is then the
responsibility of the derived application module to handle the specifics of the activation.
Finally, when all activation identifiers have been processed, we call onEndActivation() to
indicate that the activation process has ended.

After we have added these changes to the ExtApplicationModuleImpl application
module framework extension class, we make sure that the SharedComponents ADF Library
JAR was redeployed (in step 5).

In steps 6 through 8, we have added passivation/activation support for custom
data to the HrComponentsAppModule application module in the HRComponents
workspace. This is done by overriding the onStartPassivation(), onPassivate(),
onStartActivation(), and onActivate() methods (in step 8). The list of passivation
and activation identifiers comes from the getActivationPassivationIds() method
that we added in step 7. For this recipe, only a single custom data, identified by the constant
CUSTOM_DATA_PASSIVATION_ID, is passivated. Custom data is saved at the user
data Hashtable in the oracle.jbo.Session associated with the specific application
module. It is retrieved by calling getSession().getUserData().get(CUSTOM_DATA_
PASSIVATION_ID) in the onPassivate() method. Similarly, it is set in onActivate()
by calling getSession().getUserData().put(CUSTOM_DATA_PASSIVATION_ID and
activationData().

In this case, the activation data is passed as an argument (the
activationData parameter) to the onActivate() by
the activateState() implemented in application module
framework extension class, as in step 4.

Finally, note the code in step 9. In the overridden prepareSession(), we have initialized
the custom data by calling getSession().getUserData().put(CUSTOM_DATA_
PASSIVATION_ID, "Some custom data").

Putting them all together: Application Modules

150

To test the custom data passivation/activation framework, run the application module
with the ADF Model Tester. The ADF Model Tester provides support for passivation and
activation via the Save Transaction State and Restore Transaction State menu items
under the File menu. Observe the generated passivation XML data in the JDeveloper Log
window when File | Save Transaction State is chosen. In particular, observe that the
<customDataPassivationId>Some custom data</customDataPassivationId>
node is added to the <AM> node of the passivated XML document. This is the session data
added in step 9 for testing purposes to demonstrate this passivation/activation framework.

There's more…
Note that the activateState() method is called by the ADF Business Components
framework after the view objects instances associated with the application module have been
activated by the framework. If you need to activate custom data that would be subsequently
accessed by your view objects, then you will need to enhance the custom data passivation/
activation framework by overriding prepareForActivation() and provide the activation
logic there instead.

Also, note that the ADF Business Components framework provides similar
passivateState() and activateState() methods at the view object level for
passivating and activating view object custom data. In this case, custom data is stored in the
user data Hashtable of the oracle.jbo.Session associated with the specific application
module that contains the particular view object in its data model.

Finally, observe the following points:

 f This framework does not cover the passivation/activation of view object custom data.
If needed, you will need to expand this framework to support this extra requirement.

 f It is important that during the development process you test your application modules
for being activation-safe. This is done by disabling the application module pooling in
the application module configuration. For more information on this topic, consult the
Testing to Ensure Your Application Module is Activation-Safe section in the Fusion
Developer's Guide for Oracle Application Development Framework.

Chapter 5

151

See also
 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Displaying application module pool
statistics

In the A passivation/activation framework for custom session-specific data recipe in this
chapter, we touched upon how application module pools are used by the ADF Business
Components framework. In this recipe, we will introduce the oracle.jbo.common.
ampool.PoolMgr application module pool manager and oracle.jbo.common.ampool.
ApplicationPool application module pool classes, and explore how they can be utilized to
collect statistical pool information. This may come in handy when debugging.

The use case that will be implemented by the recipe is to collect application module statistics
and make them available in a generic view object, that can then be used by all application
modules to gather and present statistical information to the frontend user interface.

Getting ready
You will need to have access to the SharedComponents workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. Additional functionality will be added to the
ExtApplicationModuleImpl custom framework class that was developed in the Setting
up BC base classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations.

This recipe also uses the HRComponents workspace, which was created in the Overriding
remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics: Entity
Objects. The HRComponents workspace requires a database connection to the HR schema.

How to do it…
1. Open the SharedComponents workspace in JDeveloper.

2. Create a new view object called ApplicationModulePoolStatistics using the
following SQL query as its data source:
SELECT NULL AS POOL_NAME, NULL AS APPLICATION_MODULE_CLASS, NULL
AS AVAILABLE_INSTANCE_COUNT, NULL AS INIT_POOL_SIZE, NULL AS
INSTANCE_COUNT, NULL AS MAX_POOL_SIZE, NULL AS

Putting them all together: Application Modules

152

NUM_OF_STATE_ACTIVATIONS, NULL AS NUM_OF_STATE_PASSIVATIONS,
NULL AS NUM_OF_INSTANCES_REUSED, NULL AS REF_INSTANCES_RECYCLED,
NULL AS UNREF_INSTANCES_RECYCLED, NULL AS
REFERENCED_APPLICATION_MODULES, NULL AS NUM_OF_SESSIONS, NULL AS
AVG_NUM_OF_SESSIONS_REF_STATE FROM DUAL

3. With the exception of the PoolName and ApplicationModuleClass attributes,
which should be String data types, all other attributes should be Number types.

4. Designate the PoolName and ApplicationModuleClass attributes as
key attributes.

5. In the Java section, create a custom view row class and ensure that the Include
accessors checkbox is also checked.

6. Open the ExtApplicationModuleImpl application module custom framework
class in the Java editor and add the following two methods to it:
public ExtViewObjectImpl
 getApplicationModulePoolStatistics() {
 return (ExtViewObjectImpl)findViewObject(
 "ApplicationModulePoolStatistics");
}
public void getAMPoolStatistics() {
 // get the pool manager
 PoolMgr poolMgr = PoolMgr.getInstance();
 // get the pools managed
 Enumeration keys = poolMgr.getResourcePoolKeys();
 // iterate over pools
 while (keys != null && keys.hasMoreElements()) {
 // get pool name
 String poolname = (String)keys.nextElement();
 // get the pool
 ApplicationPool pool =
 (ApplicationPool)poolMgr.getResourcePool(poolname);
 // get the pool statistics
 Statistics statistics = pool.getStatistics();
 // get and populate pool statistics view object
 ExtViewObjectImpl amPoolStatistics =
 getApplicationModulePoolStatistics();
 if (amPoolStatistics != null) {
 // empty the statistics
 amPoolStatistics.executeEmptyRowSet();
 // create and fill a new statistics row
 ApplicationModulePoolStatisticsRowImpl poolInfo
 (ApplicationModulePoolStatisticsRowImpl)
 amPoolStatistics.createRow();
 poolInfo.setPoolName(pool.getName());

Chapter 5

153

 poolInfo.setApplicationModuleClass(
 pool.getApplicationModuleClass());
 poolInfo.setAvailableInstanceCount(new
 Number(pool.getAvailableInstanceCount()));
 poolInfo.setInitPoolSize(new
 Number(pool.getInitPoolSize()));
 poolInfo.setInstanceCount(new
 Number(pool.getInstanceCount()));
 poolInfo.setMaxPoolSize(new
 Number(pool.getMaxPoolSize()));
 poolInfo.setNumOfStateActivations(new
 Number(statistics.mNumOfStateActivations));
 poolInfo.setNumOfStatePassivations(new
 Number(statistics.mNumOfStatePassivations));
 poolInfo.setNumOfInstancesReused(new
 Number(statistics.mNumOfInstancesReused));
 poolInfo.setRefInstancesRecycled(new
 Number(statistics.mNumOfReferencedInstancesRecycled));
 poolInfo.setUnrefInstancesRecycled(new
 Number(statistics.mNumOfUnreferencedInstancesRecycled));
 poolInfo.setReferencedApplicationModules(new
 Number(statistics.mReferencedApplicationModules));
 poolInfo.setNumOfSessions(new
 Number(statistics.mNumOfSessions));
 poolInfo.setAvgNumOfSessionsRefState(new
 Number(statistics.mAvgNumOfSessionsReferencingState));
 // add the statistics
 amPoolStatistics.insertRow(poolInfo);
 }
 }
}

7. Open the ExtApplicationModule application module custom framework interface
and add the following code to it:
public void getAMPoolStatistics();

8. Redeploy the SharedComponents ADF Library JAR.

9. Now, open the HRComponents workspace and in the Resource Palette
create a file system connection for the ReUsableJARs directory where the
SharedComponents.jar is deployed. Add the SharedComponents.jar to the
HRComponentsBC business components project.

10. Double-click on the HrComponentsAppModule application module in the
Application Navigator to open its definition.

Putting them all together: Application Modules

154

11. Go to the Data Model section and locate the ApplicationModulePoolStatistics view
object in the Available View Objects list. Shuttle it to the Data Model list.

12. Finally, go to the Java section, locate and add the getAMPoolStatistics()
method to the HRComponents application module client interface.

How it works…
In steps 1 through 5, we created ApplicationModulePoolStatistics, a read-only view
object, which we used to collect the application module pool statistics. By adding this view
object to the SharedComponents workspace, it becomes available to all other projects in all
workspaces throughout the ADF application that import the SharedComponents ADF Library
JAR. In step 6, we have added the necessary functionality to collect the application module
statistics and populate the ApplicationModulePoolStatistics view object. This is
done in the getAMPoolStatistics() method. This gets an instance of the oracle.
jbo.common.ampool.PoolMgr application module pool manager, via the call to the static
getInstance(), along with an Enumeration of the application module pools managed by
the pool manager by calling getResourcePoolKeys() on the pool manager. We iterate over
all the pools managed by the manager and retrieve each pool using getResourcePool()
on the pool manager. Then for each pool we call getStatistics() to get the pool statistics.
We create a new ApplicationModulePoolStatistics view object row and populate it
with the statistics information.

In step 7, we have added the getAMPoolStatistics() to the ExtApplicationModule
application module framework extension interface, so that it becomes available to all
application modules throughout the application.

In steps 8 and 9, we redeploy the SharedComponents library and created a file system
connection in the Resource Palette. We use this file system connection to add the shared
components SharedComponents.jar ADF Library JAR to the HRComponents business
components project.

Chapter 5

155

In steps 10 and 11, we add the ApplicationModulePoolStatistics view object
to the HrComponentsAppModule application module data model. Notice how the
ApplicationModulePoolStatistics view object is listed in the available view objects
list, although it is implemented in the SharedComponents workspace.

Finally, in step 12, we add getAMPoolStatistics() to the HrComponentsAppModule
application module client interface. By doing so, we will be able to call it using the ADF
Model Tester.

To test the recipe, run the HrComponentsAppModule application module with the ADF
Model Tester. In the ADF Model Tester double-click on the HrComponentsAppModule
application module to open it, select the getAMPoolStatistics method from the Method
combo, and click on the Execute button. Then open the ApplicationModulePoolStatistics
view object to see the results.

Now you can bind both the getAMPoolStatistics method and the
ApplicationModulePoolStatistics view object to any of your ViewController
projects in your ADF application, and present a visual of this statistical information for
debugging purposes.

There's more…
Note that the oracle.jbo.common.ampool.ApplicationPool interface provides a
method called dumpPoolStatistics() to dump all pool statistics to a PrintWriter
object. You can use this method to quickly print the application module pool statistics to the
JDeveloper Log window, as shown in following code:

PrintWriter out = new PrintWriter(System.out, true);
pool.dumpPoolStatistics(new PrintWriter(out));
out.flush();

See also
 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

 f Creating and using generic extension interfaces, Chapter 5, Putting them all together:
Application Modules

Putting them all together: Application Modules

156

Using a shared application module for static
lookup data

Shared application modules allow you to share static read-only data models across multiple
user sessions. They are the ideal place to collect all the static read-only view accessors used
throughout your ADF application for validation purposes or as data sources for your list of
values (LOVs). This is because a single shared application module is constructed and used
throughout the ADF application for all user sessions, thus minimizing the system resources
used by it. In this case, a single database connection is used. In addition, by collecting all
of your static read-only view objects in a shared application module, you avoid possible
duplication and redefinition of read-only view objects throughout your ADF application.

Internally, the ADF Business Components framework manages a pool of query collections for
each view object as it is accessed by multiple sessions by utilizing a query collection pool,
something comparable to application module pools used for session-specific application
modules. The framework offers a number of configuration options to allow for better
management of this pool. Moreover, as multiple threads will access the data, the framework
partitions the iterator space by supporting multiple iterators for the same rowset, preventing
race conditions among iterators on different sessions.

In this recipe, we will define a shared application module called HrSharedAppModule, and
we will migrate to it all of the static read-only view objects defined for the HrComponents
project. Furthermore, we will update all the view objects that currently reference these static
read-only view objects, so that they are now referencing the view objects in the shared
application module.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the
Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with
Basics: Entity Objects. The HRComponents workspace requires a database connection to the
HR schema.

How to do it…
1. Right-click on the com.packt.jdeveloper.cookbook.hr.components.model.

application package on the Application Navigator and select New Application
Module….

2. Follow the steps in the Create Application Module wizard to create an application
module called HrSharedComponentsAppModule.

Chapter 5

157

3. In the Data Model page, expand the com.packt.jdeveloper.cookbook.
hr.components.model.view.lov package and shuttle all of the view objects
currently under this package from the Available View Objects list to the Data Model
list. Click on Finish when done.

4. Now, double-click on the HRComponentsBC in the Application Navigator to bring up
the Project Properties dialog.

5. Locate the Application Module Instances page by selecting ADF Business
Components | Application Module Instances in the selection tree.

6. Click on the Application tab and shuttle the HrSharedComponentsAppModule
application module from the Available Application Modules list to the Application
Module Instances list. Click OK to dismiss the Project Properties dialog.

Putting them all together: Application Modules

158

7. For each view object that was added to the HrSharedComponentsAppModule
shared application module, locate (through Find Usages) where it is used as
a view accessor, and change its usage so that it is referenced from inside the
HrSharedComponentsAppModule shared application module. The following
screenshot shows the view accessors that were added to the Employees view object.

8. Also for each view accessor used as a data source for an LOV, ensure that you are
now using the view accessor included in HrSharedComponentsAppModule.

How it works...
In steps 1 through 6, we have defined a new application module called
HrSharedComponentsAppModule and added all static read-only view objects developed
so far—throughout the HRComponents business components project—in its data model. We
have indicated that HrSharedComponentsAppModule will be a shared application module
through the Application Module Instances page in the Project Properties, when we indicate
that HrSharedComponentsAppModule will be an instance at application-level rather than
an instance at session-level (in steps 4 through 6). By defining an application module at
application-level, we allow all user sessions to access the same view instances contained in
the application module data model.

In steps 7 and 8, we have identified all read-only view objects used as view accessors
throughout the HRComponents business components project and updated
each one at a time, so that the view object instance residing within the shared
HrSharedComponentsAppModule application module is used. We have also ensured that
for each LOV, we redefined its data source by using the updated view accessor.

Chapter 5

159

There's more...
Ideally, the shared application module should contain a static read-only data model. If you
expect that the data returned by any of the view objects might be updated, ensure that it
will always return the latest data from the database by setting the view object Auto Refresh
property to true in the Tuning section of the Property Inspector. This property is accessible
while in the General section of the view object definition.

The auto-refresh feature relies on the database change notification feature, so ensure that
the data source database user has database notification privileges. This can be achieved by
issuing the following grant command for the database connection user:

grant change notification to <ds_user_name>

For more information on shared application modules, consult the Sharing Application
Module View Instances chapter in the Fusion Developer's Guide for Oracle Application
Development Framework which can be found at http://docs.oracle.com/cd/
E24382_01/web.1112/e16181/toc.htm.

See also
 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Using a custom database transaction
In the Setting up BC base classes recipe in Chapter 1, Pre-requisites to Success: ADF
Project Setup and Foundations, we introduced a number of custom framework extension
classes for most of the ADF business components. Among these are classes that can be
used to extend the global ADF framework transaction implementation, in particular the
ExtDatabaseTransactionFactory and ExtDBTransactionImpl2 classes. In this
recipe, we will cover how to use these classes, so that we can implement our own custom
transaction implementation. The use case for this recipe will be to provide logging support for
all transaction commit and rollback operations.

Putting them all together: Application Modules

160

Getting ready
You will need to have access to the SharedComponents workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. Additional functionality will be added to the
ExtDatabaseTransactionFactory and ExtDBTransactionImpl2 custom framework
classes that were developed in the Setting up BC base classes recipe in Chapter 1, Pre-
requisites to Success: ADF Project Setup and Foundations.

This recipe also uses the HRComponents workspace, which was created in the Overriding
remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics: Entity
Objects. The HRComponents workspace requires a database connection to the HR schema.

How to do it...
1. Open the SharedComponents workspace and open the

ExtDatabaseTransactionFactory.java file in the Java editor.

2. Override the DatabaseTransactionFactory create() method and replace the
return super.create() method with the following code:
// return custom transaction framework
// extension implementation
return new ExtDBTransactionImpl2();

3. Load the ExtDBTransactionImpl2.java file in the Java editor, add
an ADFLogger to it and override the commit() and rollback()
DBTransactionImpl2 methods. The code should look similar to the following:
// create an ADFLogger
private static final ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExtDBTransactionImpl2.class);
public void commit() {
 // log a trace
 LOGGER.info("Commit was called on the transaction");
 super.commit();
}
public void rollback() {
 // log a trace
 LOGGER.info("Rollback was called on the transaction");
 super.rollback();
}

4. Rebuild and redeploy the SharedComponents workspace into an ADF Library JAR.

5. Open the HRComponents workspace and open the HrComponentsAppModule
application module definition by double-clicking on it in the Application Navigator.

Chapter 5

161

6. Go to the Configurations section.

7. Select the HrComponentsAppModuleLocal configuration and click the Edit selected
configuration object button (the pen icon).

8. In the Edit Configuration dialog, click on the Properties tab and locate the
TransactionFactory property. For the property value, enter the custom transaction
framework extension class com.packt.jdeveloper.cookbook.shared.
bc.extensions.ExtDatabaseTransactionFactory.

How it works...
In steps 1 and 2, we have overridden the DatabaseTransactionFactory
create() method for the custom transaction factory framework class
ExtDatabaseTransactionFactory that we created in the recipe Setting up BC base
classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.
Now it will return our custom transaction implementation class ExtDBTransactionImpl2.
This informs the ADF Business Components framework that a custom oracle.jbo.
server.DBTransaction implementation will be used. Then, in step 3, we provide custom
implementations for our ExtDBTransactionImpl2 transaction commit and rollback
operations. In this case, we have provided a global transaction logging facility for all commit
and roll back operations throughout the ADF application for application modules utilizing
our custom DBTransaction implementation. We then rebuild and redeploy the shared
components workspace (step 4).

In steps 5 through 8, we have explicitly indicated in the HrComponentsAppModule
local configuration, the one used to configure session-specific application
modules, that a custom transaction factory will be used. We did this by setting the
TransactionFactory configuration property to our custom transaction factory
implementation class com.packt.jdeveloper.cookbook.shared.bc.extensions.
ExtDatabaseTransactionFactory.

Putting them all together: Application Modules

162

There's more...
In order to change application module configuration parameters for all application modules
throughout your ADF application, adopt the practice of using Java system-defined properties via
the -D switch at JVM startup. In this case, ensure that no specific configuration parameters are
defined for individual application modules, unless needed, as they would override the values
specified globally with the -D Java switch. You can determine the specific parameter names that
you must specify with the D switch, from the Property field in the Edit Configuration dialog. For
example, for this recipe you will specify DTransactionFactory="com.packt.jdeveloper.
cookbook.shared.bc.extensions.ExtDatabaseTransactionFactory" at
JVM startup, to indicate that the custom transaction factory will be used. For WebLogic,
these startup parameters can be specified via the JAVA_OPTIONS environment variable
or in any of the WebLogic startup scripts (setDomainEnv.*, startWebLogic.*,
startManagedWebLogic.*). These scripts can be found in the bin directory under the
WebLogic domain directory. Furthermore, the WebLogic server Java startup parameters can be
specified using the administrator console in the server Configuration | Server Start tab.

See also
 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

6
Go with the Flow:

Task Flows

In this chapter, we will cover:

 f Using an application module function to initialize a page

 f Using a task flow initializer to initialize a task flow

 f Calling a task flow as a URL programmatically

 f Retrieving the task flow definition programmatically using MetadataService

 f Creating a train

Introduction
Task flows are used for designing the ADF Fusion web application's control flow. They were
introduced with the advent of the JDeveloper 11g R1 release as an alternative to standard
JSF navigation flows. As such, they allow for the decomposition of monolithic application
navigation flows (as in the case of JSF navigation flows) into modular, transaction, and memory
scope aware controller flow components. The ADF Fusion web application is now composed of
numerous task flows, called bounded task flows, usually residing in various ADF Library JARs,
calling each other in order to construct the application's overall navigation flow.

In the traditional JSF navigation flow, navigation occurs between pages. Task flows introduce
navigation between activities. A task flow activity is not necessarily a visual page component
(view activity) as in the case of JSF navigation flows. It can be a call to Java code (method call
activity), the invocation of another task flow (task flow call activity), a control flow decision
(router activity), or something else. This approach provides a high degree of flexibility,
modularity, and reusability when designing the application's control flow.

Go with the Flow: Task Flows

164

Using an application module function to
initialize a page

A common use case when developing an ADF Fusion web application is to perform some sort
of initialization before a particular page of the application is shown. Such an initialization
could be: the creation of a new view object row, which will in effect place the view object
in insert mode; the execution of a view object query, which could populate a table on the
page; the execution of a database stored procedure; or something similar. This can easily be
accomplished by utilizing a method call activity.

In this recipe, we will demonstrate the usage of the method call task flow activity by
implementing the familiar use case of placing a web page in insert mode. Before the page is
presented, a custom application module method (implemented in another workspace) will be
called to place the view object in insert mode.

Getting ready
You will need a skeleton Fusion Web Application (ADF) workspace created before you
proceed with this recipe. For this, we have used the MainApplication workspace that was
developed in the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-
requisites to Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in the Overriding
remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics:
Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

How to do it…
1. Open the HRComponents workspace in JDeveloper.

2. Load the HrComponentsAppModuleImpl custom application module
implementation class into the Java editor and add the following prepare()
method to it:
public void prepare() {
 // get the Employees view object instance
 EmployeesImpl employees = this.getEmployees();
 // remove all rows from rowset
 employees.executeEmptyRowSet();
 // create a new employee row

Chapter 6

165

 Row employee = employees.createRow();
 // add the new employee to the rowset
 employees.insertRow(employee);
}

3. Open the HrComponentsAppModule application module definition and go to the
Java section. Click on the Edit application module client interface button (the pen
icon) and shuttle the prepare() method from the Available methods list to the
Selected list.

4. Rebuild and redeploy the HRComponents workspace into an ADF Library JAR.

5. Now, open the MainApplication workspace and using the Resource Palette
create a new File System connection to the ReUsableJARs directory where the
HRComponents.jar ADF Library JAR is placed. Select the ViewController project
in the Application Navigator and then right-click on the HRComponents.jar ADF
Library JAR in the Resource Palette. From the context menu, select Add to Project....

6. Right-click on the ViewController project in the Application Navigator and select
New…. Select ADF Task Flow from the Web Tier | JSF/Facelets category.

7. In the Create Task Flow dialog, enter methodInitializer.xml for the task
flow name and ensure that you have selected the Create as Bounded Task Flow
checkbox. Also, make sure that the Create with Page Fragments checkbox is not
selected. Then click OK.

Go with the Flow: Task Flows

166

8. The methodInitializer task flow should open automatically in Diagram mode.
If not, double-click on it in the Application Navigator to open it. Click anywhere
in the task flow and in the Property Inspector change the URL Invoke property to
url-invoke-allowed.

9. Expand the Data Controls section in the Application Navigator; locate and expand
the HrComponentsAppModuleDataControl data control. Find the prepare()
method and drag-and-drop it onto the methodInitializer task flow. JDeveloper
will create a method call activity called prepare.

10. Drag-and-drop a View activity from the Component Palette onto the
methodInitializer task flow.

11. Using the Component Palette, create a Control Flow Case from the prepare method
call activity to the view activity.

12. Ensure that the prepare method call activity is marked as the default task flow activity
by clicking on the Mark Default Activity button in the toolbar. The task flow should
look similar to the following screenshot:

13. Double-click on the view activity to bring up the Create JSF Page dialog. In it, select
JSP XML for the Document Type. For the Page Layout, you may select any of the
Quick Start Layout options. Click OK. The page should open automatically in Design
mode. If not, double-click on it in the Application Navigator to open it.

Chapter 6

167

14. Expand the Data Controls section in the Application Navigator and locate the
Employees view object under the HrComponentsAppModuleDataControl.
Drag-and-drop the Employees view object onto the page.

15. From the Create context menu, select Form | ADF Form…. This will present the Edit
Form Fields dialog. Click OK to accept the defaults and proceed with the creation of
the ADF form.

How it works…
In steps 1 through 4, we have added a method called prepare() to the
HrComponentsAppModule application module residing in the HRComponents workspace. In
this method, we retrieved the Employees view object instance by calling the getEmployees()
method, and called executeEmptyRowSet() on the view object to empty its rowset. We then
created an employee row by calling createRow() on the Employees view object, and added
the new row to the Employees view object rowset by calling insertRow() and passing the
newly created employee row as an argument to it. This will, in effect, place the Employees view
object in insert mode. We exposed the prepare() method to the application module client
interface (in step 3), so that we will be able to call this method via the bindings layer using a
task flow method call activity. Then (in step 4), we rebuild and redeployed the HRComponents
workspace to an ADF Library JAR. This will allow us to import the ADF components implemented
in the ADF Library JAR to other projects throughout the ADF application.

In order to be able to reuse the components defined and implemented in the HRComponents
ADF Library JAR, we created a file system connection using the Resource Palette in
JDeveloper and added the library to our main project (in step 5).

In steps 6 through 8, we created a bounded task flow called methodInitializer and
ensured (in step 8) that its URL Invoke property was set to url-invoke-allowed.
We needed to do this because the method call activity that is added in step 9 to call the
prepare() method in the HrComponentsAppModule application module is indicated
as the default task flow activity (in step 12). In this case, leaving the default setting of
calculated for the URL Invoke property will produce an HTTP 403 Forbidden error. This is
a security precaution to disallow URL-invoking a task flow that does not have a view activity
as its default activity. In our case, as we have indicated a method call activity as the default
activity, we need to ensure that the URL Invoke property is set to url-invoke-allowed.

Go with the Flow: Task Flows

168

In step 9, we dragged-and-dropped the prepare() method, under the
HrComponentsAppModuleDataControl data control (in the Data Controls section
of the Application Navigator), onto the task flow. This creates the method call activity
and the necessary bindings to bind the method call activity to the prepare() method
in the HrComponentsAppModule application module. By default, the page definition is
placed in the pageDefs package under the default package defined for the ViewController
project (com.packt.jdeveloper.cookbook.hr.main.view in this case). Note that
the HrComponentsAppModuleDataControl data control becomes available once the
HRComponents ADF Library JAR is added to the project.

In steps 10 and 11, we placed a view activity onto the task flow and added a control flow case
(called prepare by default) to allow the transition from the prepare() method call activity
to the view activity.

The definition of the task flow is completed by ensuring that the prepare() method call
activity is marked as the default task flow activity (step 12). This indicates that it will be the
first activity to be executed in the task flow.

Finally, in steps 13 through 15, we create a JSF page for the task flow view activity and add
an ADF form to it for the Employees view object. We did this by dragging-and-dropping the
Employees view object from the HrComponentsAppModuleDataControl data control onto
the JSPX page.

To test the recipe, right-click on the methodInitializer task flow in the Application
Navigator and select Run or Debug from the context menu. This will build, deploy, and run the
workspace into the integrated WebLogic application server. As you can see, the prepare()
method call activity is called prior to transitioning to the view activity. The effect of calling the
prepare() method is to place the Employees view object in insert mode.

Chapter 6

169

There's more…
Using a task flow method call activity is one of the possible ways to perform an initialization
before displaying a page. Another approach, explained in more detail in the Using a task
flow initializer for task flow initialization recipe in this chapter, is to use a task flow initializer.
The difference between the two is that the task flow initializer is called once during the
instantiation of the task flow, while multiple method call activities may be placed anywhere
in the task flow. Also, consider the definition of an invokeAction in the page definition to
perform page-specific initialization. As best practice, consider using either a method call task
flow activity or a task flow initializer as they are highly abstracted and loosely coupled. Using
an invokeAction on the other hand would be more appropriate if you want the initialization
method to be executed for multiple phases of the page's lifecycle.

Go with the Flow: Task Flows

170

Furthermore, note that the prepare() method we use for initializing the page, does
not accept any parameters and it returns nothing. If your initialization method requires
parameters to be specified, they can be specified either in the Parameters section of
the Edit Action Binding dialog (for a data control bound method) or otherwise, using the
Parameters section in the method call Property Inspector. In either case, the parameter
values are usually communicated via the pageFlowScope. Finally, based on the return type
of your initialization method, you could set the value of the toString() outcome in the
Outcome section of the Property Inspector and allow further processing of the return value,
using a router activity for instance. When returning void, the outcome must be fixed and
toString() cannot be used (must be set to false).

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

 f Using a task flow initializer to initialize a task flow, in this chapter

Using a task flow initializer to initialize a
task flow

In the Using an application module function to initialize a page recipe in this chapter, we
demonstrated how to use a method residing in the application module to perform page
initialization, by bounding the method as a method call activity in the task flow. This recipe
shows a different way to accomplish the same task by using a task flow initializer method
instead. Unlike the method call activity, which once bound to the task flow may be called
multiple times in the task flow, the initializer method is called only once during the task
flow initialization.

Getting ready
You will need a skeleton Fusion Web Application (ADF) workspace created before you
proceed with this recipe. For this, we have used the MainApplication workspace that was
developed in the Breaking up the application in multiple workspaces recipe in Chapter 1,
Pre-requisites to Success: ADF Project Setup and Foundations.

Chapter 6

171

The recipe also uses the HRComponents workspace, which was created in the Overriding
remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics:
Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

How to do it…
1. Open the HRComponents workspace in JDeveloper.

2. Load the HrComponentsAppModuleImpl custom application module
implementation class into the Java editor and add the following method to it:
public void prepare() {
 // get the Employees view object instance
 EmployeesImpl employees = this.getEmployees();
 // remove all rows from rowset
 employees.executeEmptyRowSet();
 // create a new employee row
 Row employee = employees.createRow();
 // add the new employee to the rowset
 employees.insertRow(employee);
}

3. Open the HrComponentsAppModule application module definition and go to the
Java section. Click on the Edit application module client interface button (the pen
icon) and shuttle the prepare() method from the Available methods list to the
Selected list.

4. Rebuild and redeploy the HRComponents workspace into an ADF Library JAR.

5. Now, open the MainApplication workspace and using the Resource Palette
create a new File System connection to ReUsableJARs directory where the
HRComponents.jar ADF Library JAR is placed. Select the ViewController project
in the Application Navigator and then right-click on the HRComponents.jar ADF
Library JAR in the Resource Palette. From the context menu, select Add to Project....

6. Right-click on the ViewController project in the Application Navigator and select
New…. Select ADF Task Flow from the Web Tier | JSF/Facelets category.

7. In the Create Task Flow dialog, enter taskflowInitializer.xml for the task
flow File Name and ensure that you have selected the Create as Bounded Task Flow
checkbox. Also make sure that the Create with Page Fragments checkbox is not
selected. Then click OK.

Go with the Flow: Task Flows

172

8. The taskflowInitializer task flow should open automatically in Diagram mode.
If not, double-click on it in the Application Navigator to open it. Click anywhere in
the task flow, then in the Property Inspector change the URL Invoke property to url-
invoke-allowed.

9. Go to the task flow Overview | Managed Beans section and add a managed bean
called InitializerBean. Enter com.packt.jdeveloper.cookbook.hr.main.
view.beans.Initializer for the managed bean Class and select pageFlow for
the bean Scope.

10. While at the Managed Beans section, select Generate Class from the Property
Menu next to the Managed Bean Class in the Property Inspector.

Chapter 6

173

11. Locate the Initializer.java bean in the Application Navigator and open it in
the Java editor. Add the following initialize method to it:
public void initialize() {
 // get the application module
 HrComponentsAppModule hrComponentsAppModule =
 (HrComponentsAppModule)ADFUtils
 .getApplicationModuleForDataControl(
 "HrComponentsAppModuleDataControl");
 if (hrComponentsAppModule != null) {
 // call the initializer method
 hrComponentsAppModule.prepare();
 }
}

12. Return to the task flow, diagram and add a task flow initializer by clicking on the
Property Menu next to the Initializer property in the Property Inspector and
selecting Method Expression Builder….

Go with the Flow: Task Flows

174

In the Expression Builder dialog that opens, locate and select the initialize method
of the InitilizerBean under the ADF Managed Beans node. The click OK to dismiss
the dialog. The initializer expression #{pageFlowScope.InitializerBean.
initialize} should be reflected in the Initializer property of the task flow in the
Property Inspector.

13. Drag-and-drop a View activity from the Component Palette onto the
taskflowInitializer task flow.

14. Double-click on the view activity to bring up the Create JSF Page dialog. In it, select
JSP XML for the Document Type. For the Page Layout, you may select any of the
Quick Start Layout options. Click OK. The page should open automatically in Design
mode. If not, double-click on it in the Application Navigator to open it.

15. Expand the Data Controls section in the Application Navigator and locate the
Employees view object under the HrComponentsAppModuleDataControl.
Drag-and-drop the Employees view object onto the page.

16. From the Create context menu, select Form | ADF Form…. This will present the Edit
Form Fields dialog. Click OK to accept the defaults and proceed with the creation of
the ADF form.

Chapter 6

175

How it works…
Steps 1 through 8 have been thoroughly explained in the Using an application module function
to initialize a page recipe in this chapter, so we won't get into the specific details here.

In steps 9 and 10, we defined a managed bean called InitializerBean and generated
a Java class for it. We used pageFlow for the bean's memory scope. This ensures that the
InitializerBean bean persists throughout the task flow's execution.

In step 11, we added an initialize() method to the InitializerBean bean. This is the
method indicated as the task flow initializer in steps 12 and 13. Inside the initialize()
method, we get hold of the HrComponentsAppModule by utilizing the ADFUtils.
getApplicationModuleForDataControl() helper method. We introduced the
ADFUtils helper class back in Chapter 1, Pre-requisites to Success: ADF Project Setup and
Foundations in the Using ADFUtils/JSFUtils recipe. We have packaged the ADFUtils helper
class inside the SharedComponents ADF Library JAR (SharedComponents.jar), which
is imported into the project in step 5. The getApplicationModuleForDataControl()
method returns an oracle.jbo.ApplicationModule interface, which we then cast to
our specific HrComponentsAppModule custom application module interface. Through the
HrComponentsAppModule interface, we call the prepare() method to do the necessary
initializations. We explained the logic in prepare() in the Using an application module
function to initialize a page recipe in this chapter.

In steps 12 and 13, we declaratively setup the task flow initializer property using the
Expression Language expression #{pageFlowScope.InitializerBean.initialize}.
This expression indicates that the initialize() method of the InitializerBean is
called during the instantiation of the task flow.

Finally, in steps 14 through 17, we defined a view activity and the corresponding JSF page.
Again, we explained these steps in more detail in the Using an application module function to
initialize a page recipe in this chapter.

To test the recipe, right-click on the taskFlowInitializer task flow in the Application
Navigator and select Run from the context menu. This will build, deploy and run the
workspace into the integrated WebLogic application server. The page displayed in the browser
will be presented in insert mode, as the task flow initializer method calls the application
module prepare() method to set the Employees view object in insert mode.

Go with the Flow: Task Flows

176

There's more…
Both this technique and the one presented in the Using an application module function to
initialize a page recipe in this chapter may be used to run task flow initialization code. However,
note one difference pertaining to their handling of the Web browser's back button. While
the task flow initializer approach calls the initializer method upon reentry via the browser's
back button, no task flow initialization code is called when reentering the task flow via the
browser's back button in the method call activity approach. However, this behaviour seems
to be inconsistent among browsers, depending on how they handle page caching. For more
information about this, refer to section About Creating Complex Task Flows in the Fusion
Developer's Guide for Oracle Application Framework which can be found at http://docs.
oracle.com/cd/E24382_01/web.1112/e16182/toc.htm.

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

 f Using an application module function to initialize a page, in this chapter

Calling a task flow as a URL
programmatically

A task flow that is indicated as URL invokable (by setting its visibility attribute url-
invoke-allowed to true) may be accessed directly by constructing and invoking its URL.
This allows you to dynamically invoke task flows from within your Java code depending on
some condition that is satisfied at runtime. Programmatically, this can be done using the
oracle.adf.controller.ControllerContext.getTaskFlowURL() method and
specifying the task flow identifier and parameters.

For this recipe, to demonstrate calling a task flow via its URL, we will create a task flow
that is URL invokable and call it from a JSF page programmatically. The task flow accepts
a parameter and based on the parameter's value, determines whether to call any of the
methodInitializer or taskflowInitializer task flows. These task flows were
developed in the Using an application module function to initialize a page and Using a task
flow initializer to initialize a task flow recipes respectively in this chapter.

Chapter 6

177

Getting ready
You need to have access to the methodInitializer and taskflowInitializer task
flows that were developed in the Using an application module function to initialize a page
and Using a task flow initializer to initialize a task flow recipes in this chapter. Also, note the
additional prerequisites stated for those recipes, that is, the usage of the HRComponents and
MainApplication workspaces and the database connection to the HR schema.

How to do it…
1. Start by creating a new task flow called programmaticallyInvokeTaskFlow.

Ensure that you create it as a bounded task flow, and that it is not created with
page fragments.

2. In the Visibility section in the task flow Property Inspector, make sure that the URL
Invoke attribute is set to url-invoke-allowed.

3. While in the task flow Property Inspector, in the Parameters section add a
parameter called taskFlowToCall of type java.lang.String. For the parameter
Value enter #{pageFlowScope.taskFlowToCall}.

4. From the Component Palette, drop a Router activity on the task flow.

5. Locate the methodInitializer and taskflowInitializer task flows in the
Application Navigator and drop them on the task flow.

6. Using the Component Palette, create control flow cases from the router
activity to methodInitializer and taskflowInitializer task
flow calls. Call these control flow cases callMethodInitializer and
callTaskFlowInitializer respectively.

Go with the Flow: Task Flows

178

7. Next select the router activity, and in the Property Inspector set its Default
Outcome property to callMethodInitializer. Also, add the following expression
#{pageFlowScope.taskFlowToCall eq 'calTaskFlowInitializer'}
in the Cases section and callTaskFlowInitializer as the expression's
Outcome value. The router's properties in the Property Inspector should look similar
to the following screenshot:

8. The complete programmaticallyInvokeTaskFlow task flow should look similar
to the following screenshot:

9. Now, locate the adfc-config.xml unbounded task flow in the Application
Navigator and double-click on it to open it. Go to the Overview | Managed Beans
section and add a TaskFlowURLCallerBean managed bean. Specify com.packt.
jdeveloper.cookbook.hr.main.view.beans.TaskFlowURLCaller for the
bean Class and leave the default request for the bean's Scope.

Chapter 6

179

10. Create the managed bean by selecting Generate Class from the Property Menu in
the Property Inspector, next to the Managed Bean Class attribute.

11. Locate the TaskFlowURLCallerBean bean in the Application Navigator and
double-click on it to open it in the Java editor. Add the following methods to it:
public String getProgrammaticallyInvokeTaskFlow() {
 // setup task flow parameters
 Map<String, Object> parameters =
 new java.util.HashMap<String, Object>();
 parameters.put("taskFlowToCall", "calTaskFlowInitializer");
 // construct and return the task flow's URL
 return getTaskFlowURL("/WEB-
 INF/programmaticallyInvokeTaskFlow.xml
 #programmaticallyInvokeTaskFlow", parameters);
}
private String getTaskFlowURL(String taskFlowSpecs, Map<String,
Object> parameters) {
 // create a TaskFlowId from the task flow specification
 TaskFlowId tfid = TaskFlowId.parse(taskFlowSpecs);
 // construct the task flow URL
 String taskFlowURL =
 ControllerContext.getInstance().getTaskFlowURL(
 false, tfid, parameters);
 // remove the application context path from the URL
 FacesContext fc = FacesContext.getCurrentInstance();
 String taskFlowContextPath =
 fc.getExternalContext().getRequestContextPath();
 return taskFlowURL.replaceFirst(taskFlowContextPath, "");
}

12. Finally, create a JSPX page called taskFlowURLCaller.jspx and drop a Link (Go)
component on it from the Component Palette. Specify the link's text, destination,
and targetFrame properties as follows:
<af:goLink text="Call programmaticallyInvokeTaskFlow as a URL"
 id="gl1"
destination="#{TaskFlowURLCallerBean.
 programmaticallyInvokeTaskFlow}"
targetFrame="_blank"/>

Go with the Flow: Task Flows

180

How it works…
In steps 1 through 3, we created a task flow called programmaticallyInvokeTaskFlow
and set its visibility to url-invoke-allowed. This allows us to call the task flow via
a URL. If we don't do this, a security exception will be thrown when trying to access the
task flow via a URL. This was discussed in greater detail in recipe Using an application
module function to initialize a page in this chapter. We also added (in step 3), a single
task flow parameter called taskFlowToCall to indicate which task flow to call once our
programmaticallyInvokeTaskFlow is executed. We stored the value of this parameter to
a pageFlow scope variable called taskFlowToCall. This parameter is accessible via the EL
expression #{pageFlowScope.taskFlowToCall}. We will see in step 7 how this pageFlow
scope variable is accessed to determine the subsequent task flow to call.

In steps 4 through 8, we completed the task flow definition by adding a router activity
and two task flow call activities, one for each of the callMethodInitializer and
callTaskFlowInitializer task flows. Note, in step 5, how we just dropped the
callMethodInitializer and callTaskFlowInitializer task flows from the
Application Navigator, to create the task flow calls. Also, observe in step 6, how we have
created the control flow cases to connect the router activity with each of the task flow call
activities. Finally, note how in step 7, we configured the router activity outcomes based on
the value of the input task flow parameter taskFlowToCall. Specifically, we checked
the parameter's value using the EL expression #{pageFlowScope.taskFlowToCall
eq 'calTaskFlowInitializer'}. In this case, the router's outcome was set to
callTaskFlowInitializer, which calls the taskflowInitializer task flow. In any
other case, we configured the default router outcome to be callMethodInitializer,
which calls the methodInitializer task flow.

In steps 9 through 11, we configured a globally accessible managed bean called
TaskFlowURLCallerBean, by adding it to the application's unbounded task flow
adfc-config.xml. We generated the bean class in step 10 and 11, where we added the
necessary code to be able to call our programmaticallyInvokeTaskFlow task flow
programmatically. The specific details about this code follow.

We introduced two methods in the TaskFlowURLCallerBean. One called
getProgrammaticallyInvokeTaskFlow(), which will be called from a page component
to return the task flow's URL (see step 12) and another one called getTaskFlowURL(), a
helper method to do the actual work of determining and returning the task flow's URL. We call
getTaskFlowURL() indicating the task flow specification and its parameters.

Chapter 6

181

Observe in getProgrammaticallyInvokeTaskFlow(), how we specify the parameter
value and the task flow specifications. In getTaskFlowURL(), we obtain an oracle.
adf.controller.TaskFlowId from the task flow identifier, and then call the oracle.
adf.controller.ControllerContext.getTaskFlowURL() method to retrieve the
task flow URL. Once the URL is returned, we strip the application's context path from it
before returning it. This is something that we need to do before calling the task flow via a
URL because the application context path should not be part of the task flow URL when
invoking the task flow. The final format of the task flow URL returned by getTaskFlowURL()
looks something similar to /faces/adf.task-flow?adf.tfDoc=/WEB-INF/
programmaticallyInvokeTaskFlow.xml&adf.tfId=programmaticallyInvokeTas
kFlow&taskFlowToCall=calTask FlowInitializer.

The final part of the implementation is done in step 12. In this step, we created a new JSF page,
called taskFlowURLCaller.jspx, and added an af:golink ADF Faces UI component to
it. We use the go link to programmatically call our programmaticallyInvokeTaskFlow
task flow, via the URL returned by the getProgrammaticallyInvokeTaskFlow()
method defined in the TaskFlowURLCallerBean. We do this by setting the
destination attribute of the af:golink component to #{TaskFlowURLCallerBean.
programmaticallyInvokeTaskFlow}. We also indicate _blank for the go link
targetFrame attribute, so that the called task flow opens in a new browser frame.

To test the recipe, right-click on the taskFlowURLCaller.jspx page in the Application
Navigator and select Run or Debug from the context menu.

There's more…
When calling a task flow programmatically via its URL, always use the ADF Controller API
indicated in this recipe to obtain the task flow's URL. Do not hardcode the task flow's URL in
your application or in database tables, as the specifications of the task flow URL in the ADF
framework (the task flow URL format) may change in the future.

See also
 f Using an application module function to initialize a page, in this chapter

 f Using a task flow initializer to initialize a task flow, in this chapter

Go with the Flow: Task Flows

182

Retrieving the task flow definition
programmatically using MetadataService

Task flow definition in JDeveloper is done through the declarative support provided by the
IDE. This includes defining the task flow activities and their relevant control flow cases by
dragging-and-dropping task flow components from the Component Palette to the Diagram
tab and adjusting their properties through the Property Inspector, defining managed beans
in the Overview tab, and so on. JDeveloper saves the task flow definition metadata in an XML
document, which is accessible in JDeveloper anytime you click on the Source tab. The task
flow definition metadata is available programmatically at runtime through the oracle.adf.
controller.metadata.MetadataService object by calling getTaskFlowDefinition().
This API is public since the release of JDeveloper version 11.1.2.

In this recipe, we will show how to get the task flow definition metadata by implementing
the following use case. For each task flow in our ADF application, this will provide a generic
technique for logging the task flow input parameters upon task flow entry and the task flow
return values upon task flow exit.

Getting ready
You will need to have access to the SharedComponents workspace that was developed in
the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations. New functionality will be added to the
ViewController project that is part of the SharedComponents workspace.

Moreover, this recipe enhances the taskflowInitializer task flow developed in the
Using a task flow initializer to initialize a task flow recipe in this chapter. Note the additional
prerequisites stated for those recipes, that is, the usage of the HRComponents and
MainApplication workspaces and the database connection to the HR schema.

How to do it…
1. Open the SharedComponents workspace and create a new Java class called

TaskFlowBaseBean. Add the following methods to it:
public void initialize() {
 // get task flow parameters
 Map<String, TaskFlowInputParameter> taskFlowParameters =
 getTaskFlowParameters();
 // log parameters
 logParameters(taskFlowParameters);
}
public void finalize() {
 // get task flow return values

Chapter 6

183

 Map<String, NamedParameter> taskFlowReturnValues =
 getReturnValues();
 // log return values
 logParameters(taskFlowReturnValues);
}
protected TaskFlowId getTaskFlowId() {
 // get task flow context from the current view port
 TaskFlowContext taskFlowContext =
 ControllerContext.getInstance().getCurrentViewPort()
 .getTaskFlowContext();
 // return the task flow id
 return taskFlowContext.getTaskFlowId();
}
protected TaskFlowDefinition getTaskFlowDefinition() {
 // use MetadataService to return the task flow
 // definition based on the task flow id
 return MetadataService.getInstance()
 .getTaskFlowDefinition(getTaskFlowId());
}
protected Map<String, TaskFlowInputParameter>
 getTaskFlowParameters() {
 // get task flow definition
 TaskFlowDefinition taskFlowDefinition =
 getTaskFlowDefinition();
 // return the task flow input parameters
 return taskFlowDefinition.getInputParameters();
}
protected Map<String, NamedParameter> getReturnValues() {
 // get task flow definition
 TaskFlowDefinition taskFlowDefinition =
 getTaskFlowDefinition();
 // return the task flow return values
 return taskFlowDefinition.getReturnValues();
}
public void logParameters(Map taskFlowParameters) {
 // implement parameter logging here
}

2. Rebuild and redeploy the SharedComponents ADF Library JAR.

3. Open the MainApplication workspace and add the SharedComponents ADF
Library JAR—deployed in the previous step—to its ViewController project.

4. Load the InitializerBean managed bean implementation class com.packt.
jdeveloper.cookbook.hr.main.view.beans.Initializer into the Java
editor, and change it so that it extends the TaskFlowBaseBean class:
public class Initializer extends TaskFlowBaseBean

Go with the Flow: Task Flows

184

5. Also, update its initialize() method by adding a call to super.initialize()
and add the following finalize() method:
public void finalize() {
 // allow base class processing
 super.finalize();
}

6. Finally, add a finalizer to the taskflowInitializer task flow using the following
EL expression:
#{pageFlowScope.InitializerBean.finalize}

How it works…
In step 1, we create a class called TaskFlowBaseBean that we can use throughout our
ADF application as the base class from which beans providing task flow initializer and
finalizer methods can be derived (as we did in step 3 in this recipe). This class consists
of initializer and finalizer methods that retrieve and log the task flow input parameters
and return values respectively. These methods are implemented by initialize() and
finalize() and they are publicly accessible, which means that they can be directly used
from within JDeveloper when defining task flow initializers and/or finalizers. This is useful
if you don't want to provide any specific implementations of the task flow initializer and/or
finalizer method. The initialize() method calls the helper getTaskFlowParameters()
to retrieve the input task flow parameters and then calls logParameters() to log
these parameters. Similarly, finalize() calls getReturnValues() to retrieve the
returned values and logParameters() to log them. The getTaskFlowParameters()
and getReturnValues() helper methods rely on getting the task flow definition
oracle.adf.controller.metadata.model.TaskFlowDefinition object and
calling getInputParameters() and getReturnValues() on it, respectively. The
task flow definition is returned by the helper getTaskFlowDefinition(), which
retrieves it by calling the oracle.adf.controller.metadata.MetadataService
method getTaskFlowDefinition(). This method accepts an oracle.adf.
controller.TaskFlowId, indicating the task flow identifier for which we are inquiring
the task flow definition. We retrieve the current task flow identifier by calling the helper
getTaskFlowId(), which retrieves the current task flow from the task flow context obtained
from the current view port, as shown in the following lines of code:

// get task flow context from the current view port
TaskFlowContext taskFlowContext =
 ControllerContext.getInstance()
 .getCurrentViewPort().getTaskFlowContext();
// return the task flow id
return taskFlowContext.getTaskFlowId();

Chapter 6

185

In step 2, we re-deployed the SharedComponents workspace as an ADF Library JAR. Then,
in step 3, we added it to the MainApplication ViewController project. One way to do this is
through the Resource Palette.

To demonstrate the usage of the TaskFlowBaseBean class, we have updated the
InitializerBean managed bean class Initializer that was developed in an earlier
recipe, so that TaskFlowBaseBean class is derived from it (in step 4). Then (in step 5), we
updated the Initializer class initialize() method to call TaskFlowBaseBean's
initialize() to do the base class processing, that is, to log any input parameters.

In steps 5 and 6, to complete the recipe, we added a task flow finalizer, which simply calls the
base class' super.finalize() to log the returned task flow parameters.

There's more…
The implementation of logParameters(), not included in the book's source, is left
as an exercise. This method should basically iterate over the task flow parameters and
for each one obtain its value expression by calling the oracle.adf.controller.
metadata.model.Parameter.getValueExpression() method. The parameter's value
expression can be evaluated by calling the javax.faces.application.Application.
evaluateExpressionGet() method.

Also, note that task flow metadata is loaded from ADF Controller metadata resources
using the following search rules. Firstly, resources named META-INF/adfc-config.xml
in the classpath are loaded and then the existence of the web application configuration
resource named /WEB-INF/adfc-config.xml is checked and loaded if it exists. Once
these resources are loaded, they may reference other metadata objects that reside in other
resources. These ADF Controller metadata resources are used to construct a model for the
unbounded task flow. Metadata for bounded task flows is loaded on demand.

For a complete reference to all the methods available by the MetaDataService and
TaskFlowDefinition classes, consult the Oracle Fusion Middleware Documentation
Library 11g Release 2 Java API Reference for Oracle ADF Controller. It can be found at the
URL http://download.oracle.com/docs/cd/E16162_01/apirefs.1112/e17480/
toc.htm.

Furthermore, consult the article Programmatically capturing task flow parameters by Chris
Muir where he describes the topic in greater detail. It can be found at the URL http://
one-size-doesnt-fit-all.blogspot.com/2010/10/jdev-programmatically-
capturing-task.html.

Go with the Flow: Task Flows

186

See also
 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Using a task flow initializer to initialize a task flow, in this chapter

Creating a train
Wizard-like user interfaces can be created in ADF using task flows created as trains and ADF
Faces user interface components, such as the af:train (Train) and af:trainButtonBar
(Train Button Bar) components. Using such an interface, you are presented with individual
steps, called train stops, in a multi-step process, each step being a task flow activity or a
combination of activities. Options exist that allow for the configuration of the train stops,
controlling the sequential execution of the train stops, whether a train stop can be skipped,
and others. Furthermore, a train stop can incorporate other task flow activities, such as
method calls. Other task flows themselves can be added as train stops in the train (as task
flow call activities).

In this recipe, we will go over the creation of a train consisting of view, method call, and task
flow call activities.

Getting ready
You will need a skeleton Fusion Web Application (ADF) workspace created before you
proceed with this recipe. For this, we have used the MainApplication workspace that was
developed in the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-
requisites to Success: ADF Project Setup and Foundations.

To demonstrate a method call activity as part of the train stop, the recipe uses the
HRComponents workspace, which was created in the Overriding remove() to delete
associated children entities recipe in Chapter 2, Dealing with Basics: Entity Objects. Moreover,
to demonstrate a task flow call as a train stop, the recipe uses the taskflowInitializer
task flow created in the Using a task flow initializer to initialize task flow recipe in this chapter.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

How to do it…
1. Create a bounded task flow called trainTaskFlow. Ensure that the Create Train

checkbox in the Create Task Flow dialog is selected. We will not be using page
fragments, so ensure that the Create with Page Fragments checkbox is
not selected.

Chapter 6

187

2. From the Component Palette drop four view activities on the task flow. Call the view
activities trainStop1, trainStop2, trainStop3, and trainStop4.

3. Expand the Data Controls node in the Application Navigator and the
HrComponentsAppModuleDataControl. Locate and drop the prepare()
method on the task flow.

4. Create a Control Flow Case from the prepare() method call to the trainStop3
view activity.

5. Drop a Wildcard Control Flow Rule from the Component Palette to the task flow and
create a Control Flow Case called callPrepareBeforeStop3 from the Wildcard
Control to the prepare() method call.

6. Select the trainStop3 view activity and in the Property Inspector enter
callPrepareBeforeStop3 for its Outcome attribute.

7. Locate the taskflowInitializer task flow in the Application Navigator and
double-click on it to open it. From the Component Palette, drop two Task Flow
Return components to it, called previousStop and nextStop.

8. From the Component Palette add two Control Flow Cases and connect them
from the taskFlowInitializerView view activity to the previousStop
and nextStop task flow return activities. Call them previous and next
respectively. The modified taskflowInitializer task flow should look similar
to the following screenshot:

Go with the Flow: Task Flows

188

9. Return to the trainTaskFlow task flow. In the Application Navigator, locate the
taskflowInitializer task flow and drop it in the trainTaskFlow task flow.

10. Right-click on the trainStop4 view activity and select Train | Move Backward from
the context menu.

11. Create two Control Flow Cases called previousStop and nextStop from
the taskflowInitializer task flow call activity to the trainStop3 and
trainStop4 view activities. This complete taskflowInitializer task flow
should look similar to the following screenshot:

12. Now, double-click on each of the trainStop1, trainStop2, trainStop3, and
trainStop4 view activities in the taskflowInitializer task flow to create the
JSF pages. In the Create JSF page dialog, select JSP XML for the Document Type.

13. For each of the pages created, select a Train component from the ADF Faces
Component Palette and drop them on the pages. On the Bind train dialog that is
displayed, accept the default binding and click OK.

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Prerequisites to Success: ADF Project Setup and Foundations
	Introduction
	Installation of JDeveloper on Linux
	Breaking up the application in multiple workspaces
	Setting up BC base classes
	Setting up logging
	Using a custom exception class
	Using ADFUtils/JSFUtils
	Using page templates
	Using a generic backing bean actions framework

	Chapter 2:Dealing with Basics: Entity Objects
	Introduction
	Using a custom property to populate a sequence attribute
	Overriding doDML() to populate an attribute with a gapless sequence
	Creating and applying property sets
	Using getPostedAttribute() to determine the posted attribute's value
	Overriding remove() to delete associated children entities
	Overriding remove() to delete a parent entity in an association
	Using a method validator based on a view object accessor
	Using Groovy expressions to resolve validation error message tokens
	Using doDML() to enforce a detail record for a new master record

	Chapter 3:A Different Point of View: View Object Techniques
	Introduction
	Iterating a view object using a secondary rowset iterator
	Setting default values for view row attributes
	Controlling the updatability of view object attributes programmatically
	Setting the Queryable property of a view object attribute programmatically
	Using a transient attribute to indicate a new view object row
	Conditionally inserting new rows at the end of the rowset
	Using findAndSetCurrentRowByKey() to set the view object currency
	Restoring the current row after a transaction rollback
	Dynamically changing the WHERE clause of the view object query
	Removing a row from a rowset without deleting it from the database

	Chapter 4:Important Contributors: List of Values, Bind Variables, View Criteria
	Introduction
	Setting up multiple LOVs using a switcher attribute
	Setting up cascading LOVs
	Creating static LOVs
	Overriding bindParametersForCollection() to set a view object bind variable
	Creating view criteria programmatically
	Clearing the values of bind variables associated with the view criteria
	Searching case insensitively using view criteria

	Chapter 5:Putting them all together: Application Modules
	Introduction
	Creating and using generic extension interfaces
	Exposing a custom method as a web service
	Accessing a service interface method from another application module
	A passivation/activation framework for custom session-specific data
	Displaying application module pool statistics
	Using a shared application module for static lookup data
	Using a custom database transaction

	Chapter 6:Go with the Flow: Task Flows
	Introduction
	Using an application module function to initialize a page
	Using a task flow initializer to initialize a task flow
	Calling a task flow as a URL programmatically
	Retrieving the task flow definition programmatically using MetadataService
	Creating a train

	Chapter 7:Face Value: ADF Faces, JSF Pages, and User Interface Components
	Introduction
	Using an af:query component to construct a search page
	Using an af:pop-up component to edit a table row
	Using an af:tree component
	Using an af:selectManyShuttle component
	Using an af:carousel component
	Using an af:poll component to periodically refresh a table
	Using page templates for pop-up reuse
	Exporting data to a client file

	Chapter 8:Backing not Baking: Bean Recipes
	Introduction
	Determining whether the current transaction has pending changes
	Using a custom af:table selection listener
	Using a custom af:query listener to allow execution of a custom application module operation
	Using a custom af:query operation listener to clear both the query criteria and results
	Using a session scope bean to preserve session-wide information
	Using an af:popup during long running tasks
	Using an af:popup to handle pending changes
	Using an af:iterator to add pagination support to a collection

	Chapter 9: Handling Security, Session Timeouts, Exceptions,and Errors
	Introduction
	Enabling ADF security
	Using a custom login page
	Accessing the application's security information
	Using OPSS to retrieve the authenticated user's profile from the identity store
	Detecting and handling session timeouts
	Using a custom error handler to customize how exceptions are reported to the ViewController
	Customizing the error message details
	Overriding attribute validation exceptions

	Chapter 10:Deploying ADF Applications
	Introduction
	Configuring and using the Standalone WebLogic Server
	Deploying on the Standalone WebLogic Server
	Using ojdeploy to automate the build process
	Using Hudson as a continuous integration framework

	Chapter 11:Refactoring, Debugging, Profiling, and Testing
	Introduction
	Synchronizing business components with database changes
	Refactoring ADF components
	Configuring and using remote debugging
	Logging Groovy expressions
	Dynamically configuring logging in WebLogic Server
	Performing log analysis
	Using CPU profiler for an application running on a standalone WebLogic server
	Configuring and using JUnit for unit testing

	Chapter 12:Optimizing, Fine-tuning, and Monitoring
	Introduction
	Using Update Batching for entity objects
	Limiting the rows fetched by a view object
	Limiting large view object query result sets
	Limiting large view object query result sets by using required view criteria
	Using a work manager for processing of long running tasks
	Monitoring the application using JRockit Mission Control

	Index

