
Chapter 6

189

Each page should look similar to the following one:

14.	 Finally, modify the taskFlowInitializerView.jspx JSF page by adding two
extra buttons called Previous and Next. Using the Property Inspector, set their
Action attributes to previous and next respectively. To ensure that validation will not
be raised on the page, ensure that for both buttons the Immediate attribute is set
to true. The taskFlowInitializerView.jspx page should look similar to the
following screenshot:

Go with the Flow: Task Flows

190

How it works…
In step 1, we created a bounded task flow called trainTaskFlow. We indicated that the
task flow will implement a train by ensuring that the Create Train checkbox in the Create
Task Flow dialog was selected. Then, in step 2, we droped four view activities to the task flow,
called train stops in train terminology, each one being part of the train. Notice how JDeveloper
connects these train stops with a dotted line indicating that they are part of the train.

In steps 3 through 6, we combined a method call activity, called prepare, with the
trainStop3 view activity in a single train stop. The way we did this was by wiring the
prepare() method call activity via a control flow rule to the trainStop3 view activity
(step 4). The prepare() method call activity is wired to a wildcard control flow rule called
callPrepareBeforeStop3 (in step 5). In order to ensure that the prepare() method
call activity and the trainStop3 view activity are combined in a single train step, we have
set the outcome of the trainStop3 train stop to callPrepareBeforeStop3 (step 6).
This ensures that at runtime the prepare() method call activity is executed before the
trainStop3 view activity together in a single train stop.

In steps 7 and 8, we have modified the taskflowInitializer task flow, which was
originally developed in the Using a task flow initializer to initialize task flow recipe in this
chapter, so that it can be used as part of the train. In particular, we added two task flow
return activities, one for navigating backwards on the train and another one for navigating
forward. We wired the task flow return activities to the existing taskFlowInitializerView
view activity. Based on the specific outcomes (previous or next) originating from the
taskFlowInitializerView view activity (see step 14), navigation on the train can be
accomplished.

Once these changes were made to the taskflowInitializer task flow, we are able to
complete the trainTaskFlow train, by first adding it to the train as a task flow call activity
(in step 9) and then wiring it to the train by adding the relevant control flow cases (step 11). In
step 10, we just adjusted the task flow call train stop position in the train.

The rest of the recipe steps (12 through 14) deal with the creation and modification of the JSF
pages related to the view activities participating in the train task flow. In steps 12 and 13, we
created the JSF pages corresponding to the four view activity train stops. In each page, we
added an af:train ADF Faces component to allow for the navigation over the train. Finally,
in step 14, we made the necessary changes to the existing taskFlowInitializerView.
jspx page to be able to hook it to the train. Specifically, we added two buttons, called
Previous and Next, and we set their actions appropriately (to previous and next
respectively), to allow for the taskflowInitializer task flow to return to the calling
trainTaskFlow task flow (see step 8).

To run the train, right-click on the trainTaskFlow task flow in the Application Navigator
and select Run or Debug.

Chapter 6

191

There's more…
Each train stop can be dynamically configured at runtime using EL expressions to allow for a
number of options. These options are available in the Property Inspector for each train stop
selected in the train task flow during development. They are briefly explained as follows:

ff Outcome: Used in order to combine multiple activities preceding the view or task
flow call activity in a single train stop. This was demonstrated in step 6 where we
combined a method call activity with a view activity in a single train stop.

ff Sequential: When set to false, the train stop can be selected even though a
previous train stop has not been visited yet.

ff Skip: When set to true, the train stop will be skipped. At runtime a skipped train
stop will be shown as disabled and you will not be able to select it.

ff Ignore: When set to true, the train stop will not be shown.

By dynamically setting these attributes at runtime, you can effectively create multiple trains
out of a single train definition.

For more information about train task flows, check out the section Using Train Components in
Bounded Task Flows in the Fusion Developer's Guide for Oracle Application Framework which can
be found at http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

ff Using a task flow initializer to initialize task flow, in this chapter

7
Face Value: ADF

Faces, JSF Pages,
and User Interface

Components

In this chapter, we will cover:

ff Using an af:query component to construct a search page

ff Using an af:pop-up component to edit a table row

ff Using an af:tree component

ff Using an af:selectManyShuttle component

ff Using an af:carousel component

ff Using an af:poll component to periodically refresh a table

ff Using page templates for pop-up reuse

ff Exporting data to a client file

Face Value: ADF Faces, JSF Pages, and User Interface Components

194

Introduction
ADF Faces Rich Client Framework (ADF RC) contains a plethora (more than 150) of
AJAX-enabled JSF components that can be used in your JSF pages to realize Rich Internet
Applications (RIA). ADF RC hides the complexities of using JavaScript, and declarative partial
page rendering allows you to develop complex pages using a declarative process. Moreover,
these components integrate with the ADF Model layer (ADFm) to support data bindings and
model-driven capabilities, provide support for page templates, and reusable page regions. In
JDeveloper, ADF Faces components are made available through the Component Palette. For
each component, the available attributes can be manipulated via the Property Inspector.

Using an af:query component to construct a
search page

The af:query (or query search form) ADF Faces user interface component allows for the
creation of search forms in your ADF Fusion web application. It is a model-driven component,
which means that it relies on the model definition of named view criteria. This implies that
changes made to the view criteria are automatically reflected by the af:query component
without any additional work. This fact, along with the JDeveloper's declarative support for
displaying query results in a table (or tree table) component, makes constructing a search
form a straightforward task.

In this recipe, we will cover the creation of a query search form and the display of search
results in a table component.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. We will be using the MainApplication workspace that was
developed in the Breaking up the application in multiple workspace, Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in the Overriding
remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

Chapter 7

195

How to do it…
1.	 Open the HRComponents workspace and locate the Employees view object in the

Application Navigator. Double-click on it to open its definition.

2.	 Go to the Query section and add two bind variables of type String, named
varFirstName and varLastName. Ensure that the Required checkbox in the Bind
Variable dialog is unchecked for both these variables. Also, in the Control Hints tab
of the Bind Variable dialog, ensure that the Display Hint is set to Hide.

3.	 While in the Query section, add named view criteria for the FirstName and
LastName attributes using the bind variables varFirstName and varLastName
respectively. For both criteria items, ensure that the Ignore Case and Ignore Null
Values checkboxes are checked and that the Validation is set to Optional.

4.	 Rebuild and redeploy the HRComponents workspace as an ADF Library JAR.

5.	 Open the MainApplication workspace and ensure that the HRComponents and
SharedComponents ADF Library JARs are added to the ViewController project.

6.	 Create a bounded task flow called queryTaskFlow and add a view activity called
queryView. Ensure that the task flow is not created with page fragments.

7.	 Double-click on the queryView activity in the task flow to bring up the Create JSF
Page dialog. Proceed with creating a JSP XML page called queryView.jspx using
any one of the pre-defined layouts.

8.	 In the Application Navigator, expand the Data Controls section and locate the
EmployeesCriteria view criteria under the HrComponentsAppModuleDataControl
| Employees | Named Criteria node. Drag-and-drop the EmployeesCriteria view
criteria onto the page.

Face Value: ADF Faces, JSF Pages, and User Interface Components

196

9.	 From the Create context menu, select Query | ADF Query Panel with Table….

10.	 JDeveloper will bring up the Edit Table Columns dialog. Click OK to accept the default
settings for now. When previewing the page in the browser, you should see something
similar to the following screenshot:

11.	 In the Structure window, locate and select the af:table component. Then, in
the Table Property Inspector, click on the Edit Component Definition button
(the pen icon). In the Edit Table Components dialog, adjust the table definition by
removing any columns indicating row selection and enabling sorting or filtering.
Adjust the table's width by specifying the width in pixels in the Style section of the
Table Property Inspector.

Chapter 7

197

How it works…
In steps 1 through 3, we have updated the Employees view object, which is part of the
HRComponents workspace, by adding named view criteria to it. Based on the earlier
mentioned criteria, we subsequently (in steps 8 and 9) associate an af:query component to
create the search page. The view criteria comprises two criteria items, one for the employee's
first name and another for their last name. We have based the criteria items on corresponding
bind variables created in step 2. Note the view criteria item settings that are used in step 3.
For both name criteria the search is case-insensitive; null values are ignored, which means
that the search will yield results when no data is specified; and that both are optional. Also
note that we have based both of the criteria items on the Starts with operation and that the
AND conjunction is used for the criteria items.

In steps 4 and 5, we redeployed the HRComponents workspace to an ADF Library JAR,
which we then add to the MainApplication ViewController project. The HRComponents
library has dependencies to the SharedComponents workspace, so we make sure that the
SharedComponents ADF Library JAR is also added to the project.

In step 6, we created a bounded task flow called queryTaskFlow and added a single view
activity. Then (in step 7), we created a JSF page for the view activity.

To add search capability to the page, we have located the view criteria added earlier to
the Employees view object. We have done this by expanding the Named Criteria node
under the Employees view object node of the HrComponentsAppModuleDataControl
data control. This data control is added to the list of available data controls once we add
the HRComponents ADF Library JAR to our workspace in step 5. JDeveloper supports the
creation of databound search pages declaratively by presenting a context menu of choices
when dropping view criteria onto the page, as in step 9. From the context menu that is
presented, we had chosen ADF Query Panel with Table…, which created a query panel with
an associated results table. If you take a look at the page's source, you will see a code snippet
similar to the following:

<af:panelGroupLayout layout="vertical" ...
 <af:panelHeader ...
 <af:query value="#{bindings.EmployeesCriteriaQuery.
 queryDescriptor}"
 queryListener="#{bindings.EmployeesCriteriaQuery.processQuery}"
 queryOperationListener="#{bindings.EmployeesCriteriaQuery
 .processQueryOperation}"
 resultComponentId="::resId1" ...
 </af:panelHeader>
 <af:table id="resId1" value="#{bindings.Employees.collectionModel}"
 var="row"
 <af:column ...
 </af:table>
</af:panelGroupLayout>

Face Value: ADF Faces, JSF Pages, and User Interface Components

198

As you can see, JDeveloper wraps the af:query and af:table components in an
af:panelGroupLayout, arranged vertically. Also, note that this simple drag-and-drop of
the view criteria onto the page in the background creates the corresponding search region
and iterator executables, along with the tree binding used by the af:table component and
the necessary glue code to associate the search region executable and tree binding to the
iterator. It also associates the af:query component with the table component that will be
used to display the search results. This is done by specifying the table component's identifier
(resId1 in the previous sample code) in the af:query resultComponentId attribute.

Finally, notice in steps 10 and 11 some of the possibilities that are available in JDeveloper
to declaratively manipulate the table, either through the Edit Table Columns dialog or the
Property Inspector.

There's more…
In addition to the af:query component, ADF Faces supports the creation of model-driven
search pages using the af:quickQuery (Quick Query) component. You can create a search
page using an af:quickQuery by dragging the All Queriable Attributes item under the
view object Named Criteria node in the Data Controls window and dropping it on the page
and selecting any of the Quick Query options in the Create context menu. The All Queriable
Attributes node represents the implicit view object criteria that are created for each
Queryable view object attribute.

For information about creating databound search pages, refer to the Creating ADF Databound
Search Forms chapter in the Fusion Developer's Guide for Oracle Application Framework,
which can be found at http://docs.oracle.com/cd/E24382_01/web.1112/e16182/
toc.htm.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Using an af:pop-up component to edit a
table row

An af:popup component can be used in conjunction with an af:dialog to display and edit
data within a page on a separate pop-up dialog. The pop-up is added to the corresponding
JSF page, and can be raised either declaratively using an af:showPopupBehavior or
programmatically by adding dynamic JavaScript code to the page.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Chapter 7

199

In this recipe, we will expand the functionality introduced in the previous recipe, to allow for
the editing of a table row. The use case that we will demonstrate is to raise an edit form inside
a pop-up dialog by double-clicking on the table row. The changes made to the data inside the
dialog are carried over to the table.

Getting ready
This recipe relies on having completed the Using an af:query component to construct a search
page recipe in this chapter.

How to do it…
1.	 Open the MainApplication workspace. Locate the queryTaskFlow in the

Application Navigator and double-click on it to open it.

2.	 Go to the task flow Overview | Managed Beans section and add a managed bean
called QueryBean. Specify a class for the managed bean, then use the Generate
Class selection in the Property Menu—located next to the Managed Bean Class
property in the Property Inspector to create the managed bean class.

3.	 Double-click on the managed bean Java class in the Application Navigator to open it
in the Java editor. Add the following method to it:
public void onEmployeeEdit(ClientEvent clientEvent) {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 ExtendedRenderKitService service =
 Service.getRenderKitService(facesContext,
 ExtendedRenderKitService.class);
 service.addScript(facesContext,
 "AdfPage.PAGE. findComponentByAbsoluteId(
 'editEmployee').show();");
}

4.	 Locate the queryView.jspx JSF page in the Application Navigator and double-
click on it to open it.

5.	 Locate and select the af:table component in the Structure window. Right-click on it
and select Insert Inside af:table | ADF Faces | Client Listener.

Face Value: ADF Faces, JSF Pages, and User Interface Components

200

6.	 In the Insert Client Listener dialog, enter onEmployeeEdit for the Method and
select dblClick for the Type.

7.	 Right-click on the af:table component in the Structure window and this time select
Insert Inside af:table | ADF Faces | Server Listener. For the Type field in the Insert
Server Listener dialog type onEmployeeEdit.

8.	 Use the Property Inspector to set the af:serverListener Method property to the
onEmployeeEdit method of the QueryBean.

Chapter 7

201

9.	 Right-click on the af:document in the Structure window and select Insert
Inside af:document | ADF Faces…. Then select Resource from the Insert ADF
Faces Item dialog.

10.	 In the Insert Resource dialog, specify javascript for the Type and click OK.

11.	 Locate the af:resource in the queryView page and add the following JavaScript
code to it:
function onEmployeeEdit(event){
 var table = event.getSource();
 AdfCustomEvent.queue(table, "onEmployeeEdit",{}, true);
 event.cancel();
}

12.	 Locate a Popup component in the Component Palette and drop it on the page,
inside the af:form tag.

13.	 Right-click on the af:popup component in the Structure window and select Insert
Inside af:popup | Dialog from the context menu.

14.	 Locate the Employees collection under HrComponentsAppModuleDataControl
in the Data Controls window and drop it on the af:dialog component in the page.
From the Create menu, select Form | ADF Form…. Adjust the fields you want to
display in the Edit Form Fields dialog and click OK.

15.	 Using the Property Inspector for the af:popup component, change the Id property
to editEmployee and the ContentDelivery to lazyUncached.

16.	 Finally, adjust the results table PartialTriggers by adding the af:dialog identifier
to it.

Face Value: ADF Faces, JSF Pages, and User Interface Components

202

How it works…
In steps 1 and 2, we have updated the queryTaskFlow task flow definition, which was
introduced in the Using an af:query component to construct a search page recipe in this
chapter, by adding a managed bean definition and generating the bean class. In step 3,
we have added a method to the managed bean called onEmployeeEdit(). This method
is used as an event listener for the af:serverListener that is added to the af:table
component in step 8. It is used to programmatically show the editEmployee af:popup.
The editEmployee pop-up is added to the page in step 13. The pop-up is shown
programmatically by infusing the page with dynamic JavaScript code using the addScript()
method implemented by the ExtendedRenderKitService interface. The JavaScript code
that is added is specified as an argument to the addScript() method. In this case the code
is as follows:

AdfPage.PAGE.findComponentByAbsoluteId('editEmployee').show();

This piece of JavaScript code locates the editEmployee component in the page and
displays it.

The pop-up is invoked by double-clicking on a table row. In order to accomplish this behavior, a
combination of an af:clientListener and an af:serverListener tag is used. We add
these components in steps 6 and 7 respectively.

When we added the af:clientListener tag in step 6, we indicated that a JavaScript
method called onEmployeeEdit() will be executed when we double-click on a table row.
This JavaScript method is added directly to the page in steps 9 through 12. The JavaScript
onEmployeeEdit() method is shown as follows:.

function onEmployeeEdit(event){
 var table = event.getSource();
 AdfCustomEvent.queue(table, "onEmployeeEdit",{}, true);
 event.cancel();
}

The method retrieves the table component from the event and queues a custom event to the
table component called onEmployeeEdit. This indicates the af:serverListener that
was added in step 7.

Chapter 7

203

Back in step 7, when we added the af:serverListener to the af:table, we identified
the serverListener of type onEmployeeEdit and indicated that the backing bean
QueryBeanonEmployeeEdit method will be executed upon its activation. This is the
method implemented in step 3 that programmatically raises the pop-up.

We mentioned earlier that the JavaScript code for the af:clientListener
onEmployeeEdit method was added in steps 9 through 11. JavaScript is added directly on
the page by adding an af:resource component of type javascript to the af:document.
The actual page code looks similar to the following:

<af:document ...
 <af:resource type="javascript">
 function onEmployeeEdit(event){
 var table = event.getSource();
 AdfCustomEvent.queue(table, "onEmployeeEdit",{}, true);
 event.cancel();
 }
 </af:resource>
</af:document>

The pop-up is added to the page in steps 12 through 14 using a combination of the
af:popup and af:dialog components. In step 14, we dropped the Employees collection
from the Data Controls right on the af:dialog as an editable form. Since the collection is
bound to the page's table, we will be editing the same data.

Finally, note the adjustments that we have made to the pop-up and table components in
steps 15 and 16. First we changed the pop-up identifier to editEmployee. This is necessary
since we specify pop-up in step 3 by name: AdfPage.PAGE. findComponentByAbsolut
eId('editEmployee').show(). Then we set the pop-up's contentDelivery attribute
to lazyUncached. This attribute indicates how the pop-up content is delivered to the client.
The lazyUncached content delivery setting is used because the data delivered to the pop-up
component from the server will change as we double-click in different rows on the table. The
PartialTriggers settings indicate how the related page components are refreshed. In this
case, we want changes made to the data in the pop-up, to be mirrored in the table. We can
accomplish this by adding the dialog's identifier to the table's list of partial triggers.

Face Value: ADF Faces, JSF Pages, and User Interface Components

204

To run the recipe, right-click on the queryTaskFLow in the Application Navigator and select
Run or Debug. When the page is displayed, click Search to perform a search. Double-click on
a row in the results table to show the Edit Employee dialog. Any changes you make are saved
by clicking OK on the Edit Employee dialog. If you click Cancel, the changes are dismissed.
The table is updated to match the adjusted data.

There's more…
Note that the page does not implement a commit or rollback functionality, so changes done to
the table's data are not committed to the database. To rollback the changes for now, just refresh
the browser; this will re-fetch the data from the database and re-populate the results table.
Also, note the functionality of the Search and Reset buttons. The Search button populates the
results table by searching the database, while at the same time preserving any changed records
in the entity cache. This means that your changes still show in the table after a new search. The
behavior of the Reset button does not refresh by default in the results table. We will cover how
to accomplish this in the recipe Using a custom af:query operation listener to clear both the
query criteria and results in Chapter 8, Backing not Baking: Bean Recipes.

Chapter 7

205

Moreover, note that this recipe shows how to launch a pop-up component programmatically
using the ExtendedRenderKitService class by infusing dynamic JavaScript code into
the page. It is this infused JavaScript code that actually shows the pop-up. Another approach
to programmatically launching a pop-up is to bind the af:popup component to a backing
bean as an oracle.adf.view.rich.component.rich.RichPopup object, then use
its show() method to display the pop-up. For more information about this technique, take a
look at the section Programmatically invoking a Pop-up in the Web User Interface Developer's
Guide for Oracle Application Development Framework which can be found at http://docs.
oracle.com/cd/E24382_01/web.1112/e16181/toc.htm.

See also
ff Using an af:query component to construct a search page, in this chapter

Using an af:tree component
The ADF Faces Tree component (af:tree) can be used to display model-driven master-detail
data relationships in a hierarchical manner. In this case, the parent node of the tree indicates
the master object, while the child nodes of the tree are the detail objects.

In this recipe, we will demonstrate the usage of the af:tree component to implement
the following use case: Using the HR schema, we will create a JSF page that presents a
hierarchical list of the departments and their employees in a tree. As you navigate the tree,
the detailed department or employee information will be displayed in an editable form. The
recipe makes use of a custom selection listener to determine the type of the tree node
(department or employee) being clicked. Based on the type of node, it then displays the
department or the employee information.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this, we will use the MainApplication workspace that
was developed in Breaking up the application in multiple workspaces recipe, Chapter 1,
Pre-requisites to Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding
remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm

Face Value: ADF Faces, JSF Pages, and User Interface Components

206

How to do it…
1.	 Ensure that the HRComponents and the SharedComponents ADF Library JARs are

added to the ViewController project of your workspace.

2.	 Using the Create JSF Page wizard, create a JSP XML page called treeView.jspx.
Use any of the predefined quick start layouts.

3.	 Expand the Data Controls section in the Application Navigator and locate the
Departments collection under the HrComponentsAppModuleDataControl data
control. Drag-and-drop it on the treeView.jspx page.

4.	 From the Create menu, select Tree | ADF Tree….

5.	 In the Tree Level Rules section of the Edit Tree Binding dialog, click on the Add Rule
button (the green plus sign icon) and add the Employees collection. Also adjust
the attributes in the Display Attributes list so that the DepartmentName is listed
for the Departments rule and the LastName and FirstName are listed for the
Employees rule. Click OK to proceed.

6.	 Right-click on the af:tree component in the Structure window and select Surround
With…. From the Surround With dialog, select the Panel Group Layout and click
OK. Using the Properties Inspector, set the Valign and Layout attributes to top and
horizontal respectively.

7.	 In the Data Controls section, locate the Departments and Employees collections
under the HrComponentsAppModuleDataControl data control and drop them
inside the panelGroupLayout. In both cases, select Form | ADF Form… from the
Create menu.

8.	 For each of the af:panelFormLayout components created previously for the
Departments and Employees collections, set their Visible property to false and
bind them to a backing bean called TreeBean. If needed, create the TreeBean
backing bean as well.

9.	 Surround both of the af:panelFormLayout components created
previously for the Departments and Employees collections with the same
af:panelGroupLayout. Using the Property Inspector, set the Layout attribute
of the new af:panelGroupLayout to vertical. Also, ensure that you specify the
tree's identifier in the PartialTriggers attribute of the af:panelGroupLayout. Your
components in the Structure window should look similar to the following screenshot:

Chapter 7

207

10.	 With af:tree selected in the Structure window, click on the Edit Component
Definition button (the pen icon) in the Property Inspector to open the Edit Tree
Binding dialog. With the Employees rule selected in the Tree Level Rules, expand
the Target Data Source section at the bottom of the dialog. Use the EL Picker button
and select the EmployeesIterator under the ADF Bindings | bindings node. The
EL Expression ${bindings.EmployeesIterator} should be added, as shown in
the following screenshot:

11.	 While at the af:tree Property Inspector, change the SelectionListener to a newly
created selection listener in the TreeBean backing bean.

Face Value: ADF Faces, JSF Pages, and User Interface Components

208

12.	 Locate the TreeBean.java in the Application Navigator and double-click on it to
open it in the Java editor. Add the following code to the onTreeNodeSelection()
selection listener:
// invoke default selection listener via bindings
invokeMethodExpression(
 "#{bindings.Departments.treeModel.makeCurrent}",
 Object.class, new Class[] { SelectionEvent.class},
 new Object[] { selectionEvent});
// get the tree component from the event
RichTree richTree = (RichTree)selectionEvent.getSource();
// make the selected row current
RowKeySet rowKeySet = richTree.getSelectedRowKeys();
Object key = rowKeySet.iterator().next();
richTree.setRowKey(key);
// get the tree node selected
JUCtrlHierNodeBinding currentNode =
 (JUCtrlHierNodeBinding)richTree.getRowData();
// show or hide the department and employee information
// panels depending the type of node selected
this.departmentInfoPanel.setVisible(
 currentNode.getCurrentRow() instanceof DepartmentsRowImpl);
this.employeeInfoPanel.setVisible(
 currentNode.getCurrentRow() instanceof EmployeesRowImpl);

13.	 Add the following invokeMethodExpression() helper method to the
TreeBean.java:

private Object invokeMethodExpression(String expression,
 Class returnType, Class[] argTypes, Object[] args) {
 FacesContext fc = FacesContext.getCurrentInstance();
 ELContext elContext = fc.getELContext();
 ExpressionFactory elFactory =
 fc.getApplication().getExpressionFactory();
 MethodExpression methodExpression =
 elFactory.createMethodExpression(elContext,
 expression, returnType, argTypes);
 return methodExpression.invoke(elContext, args);
}

Chapter 7

209

How it works…
Since we will be using business components from the HRComponents workspace, in
step 1 we have ensured that the HRComponents ADF Library JAR is added to the
workspace's ViewController project. This can be done either through the Resource Palette
or using the Project Properties | Libraries and Classpath dialog. The HRComponents
library has dependencies to the SharedComponents workspace, so we make sure that the
SharedComponents ADF Library JAR is also added to the project. Then, we proceed with the
creation of the JSF page (step 2).

In steps 3 through 5, we added the Tree component to the page. The tree is comprised of two
nodes or level rules: the parent node represents the departments, and is set up by dragging
and dropping the Departments collection of the HrComponentsAppModuleDataControl
data control onto the page as an ADF Tree component. The child nodes represent the
department employees and are set up in step 5 by adding a rule for the Employees collection.
The rules control the display order of the tree. The tree binding populates the component
starting at the top of the tree level rules list and continues until it reaches the last rule.

In steps 6 through 9, we dropped the Departments and Employees collections on the page
as editable forms (af:panelFormLayout components) and rearranged the page in such a
way that the tree will be displayed on the left-hand side of the page, while the department or
employee information will be displayed on the right-hand side. We also bound the department
and employee af:panelFormLayout components in a backing (in step 8), so that we will be
able to dynamically show and hide them depending on the currently selected node (see step
12). For this to work, we also need to do a couple more things:

ff Set the af:panelGroupLayout component's (used to vertically group
the department and employee af:panelFormLayout components)
partialTriggers attribute to the tree's identifier (in step 9)

ff Setup the tree's target data source for the Employees rule, so that the Employees
iterator is updated based on the selected node in the tree hierarchy (in step 10)

Finally, in steps 11 through 13, we created a custom selection listener for the tree component,
so that we are able to dynamically show and hide the department and employee forms
depending on the tree node type that is selected. The custom selection listener is implemented
by the backing bean method called onTreeNodeSelection(). If we look closer at this
method, we will see that first we invoke the default tree selection listener with the expression
#{bindings.Departments.treeModel.makeCurrent}. In order to do this, we use
a helper method called invokeMethodExpression(). Then, we obtain the currently
selected node from the tree by calling getRowData() on the oracle.adf.view.rich.
component.rich.data.RichTree component (obtained earlier from the selection
event). Finally, we dynamically change the visible property of the department and employee
af:panelFormLayout components, depending on the type of the selected node. We do this
by calling setVisible() on the bound department and employee af:panelFormLayout
components.

Face Value: ADF Faces, JSF Pages, and User Interface Components

210

There's more…
Note that when adding an af:tree component to the page, a single iterator binding is added
to the page definition for populating the root nodes of the tree. The accessors specified in
the tree level rules, which return the detailed data for each child node, are indicated by the
nodeDefinition XML nodes of the tree binding in the page definition.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Using an af:selectManyShuttle component
The af:selectManyShuttle ADF Faces component is a databound model-driven component
that can be used to select multiple items from a given list. Using a set of pre-defined buttons,
you move the selected items from an available items list to a selected items list. Upon
completion of the selection process, you can programmatically retrieve and process the
selected items.

In this recipe, we will go over the steps to declaratively create an af:selectManyShuttle
component in a pop-up dialog and programmatically retrieve the selected items.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this, we will use the MainApplication workspace that
was developed in the Breaking up the application in multiple workspaces, Chapter 1,
Pre-requisites to Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in the Overriding
remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

Chapter 7

211

How to do it…
1.	 Ensure that the HRComponents and the SharedComponents ADF Library JARs are

added to the ViewController project of your workspace.

2.	 Using the Create JSF Page wizard, create a JSP XML page called
selectManyShuttleView.jspx. Use any of the predefined quick start layouts.

3.	 Using the Component Palette, add a Popup component (af:popup) to the page.
Also add a Dialog component (af:dialog) inside the pop-up.

4.	 Expand the Data Controls section in the Application Navigator and locate the
Employees collection under the HrComponentsAppModuleDataControl
data control. Drag-and-drop it on the selectManyShuttleView.jspx page
inside the dialog.

5.	 From the Create menu, select Multiple Selection | ADF Select Many Shuttle….

6.	 In the Edit List Binding dialog, use the Select Multiple… selection from the
Multi Select Display Attribute dropdown and select the LastName and
FirstName attributes.

Face Value: ADF Faces, JSF Pages, and User Interface Components

212

7.	 Select af:popup in the Structure window. Using the Property Menu next to the
PopupFetchListener attribute in the Property Inspector, select Edit… to add a
pop-up fetch listener. When presented with the Edit Property: PopupFetchListener
dialog, create a new managed bean called SelectManyShuttleBean and a
method called onEmployeesShuttleInit. While in the Property Inspector, also
change the ContentDelivery attribute to lazyUncached.

8.	 Open the SelectManyShuttleBean bean in the Java editor and add the following
code to the onEmployeesShuttleInit() method:
JUCtrlListBinding employeesList =
 (JUCtrlListBinding)ADFUtils.findCtrlBinding("Employees");
employeesList.clearSelectedIndices();

9.	 Select af:dialog in the Structure window. Using the Property Menu
next to the DialogListener attribute in the Property Inspector, select
Edit… and add a dialog listener. In the Edit Property: DialogListener
dialog, use the SelectManyShuttleBean and add a new method called
onSelectManyShuttleDialogListener.

10.	 Add the following code to the onSelectManyShuttleDialogListener() method
of the SelectManyShuttleBean managed bean:
if (DialogEvent.Outcome.ok.equals(dialogEvent.getOutcome())) {
 JUCtrlListBinding employeesList =
 (JUCtrlListBinding)ADFUtils.findCtrlBinding("Employees");
 Object[] employeeIds = employeesList.getSelectedValues();
 for (Object employeeId : employeeIds) {
 // handle selection
 }
}

11.	 Finally, add a Button component (af:commandButton) to the page and a
Show Popup Behavior component (af:showPopupBehavior) in it. For the
Show Pop-up Behavior component setup its PopupId attribute to point to the
pop-up created previously.

Chapter 7

213

How it works…
Since we will be importing business components from the HRComponents workspace, in
step 1 we ensured that the corresponding ADF Library JAR was added to our ViewController
project. This can be done either through the Project Properties | Libraries and Classpath
dialog or via the Resource Palette. The HRComponents library has dependencies to the
SharedComponents workspace, so we make sure that the SharedComponents ADF Library
JAR is also added to the project.

In steps 2 and 3, we have created a new JSF page called selectManyShuttleView.jspx
and added a pop-up to it with a dialog component in it. We will display this pop-up via the
command button added in step 11.

In steps 4 through 6, we declaratively added a model-driven af:selectManyShuttle
component. We did this by dragging and dropping the Employees collection available under
the HrComponentsAppModuleDataControl data control in the Data Controls section of
the Application Navigator. This was added to the list of the available data controls in step 1
when the HRComponents ADF Library JAR was added to our project. Note in step 6 how we
have modified the Employees collection attributes that will be displayed by the ADF Select
Many Shuttle. In this case, we have indicated that the employee's last name and first name
will be displayed. In the same step, we have left the Multi Select Base Attribute to the default
EmployeeId, indicating the attribute that will receive the updates. The effect of adding the
Select Many Shuttle is to also add a list binding called Employees to the page bindings, as
shown in the following code snippet:

<bindings>
 <list IterBinding="EmployeesIterator"
 ListOperMode="multiSelect"ListIter="EmployeesIterator"
 id="Employees" SelectItemValueMode="ListObject">
 <AttrNames>
 <Item Value="EmployeeId"/>
 </AttrNames>
 <ListDisplayAttrNames>
 <Item Value="LastName"/>
 <Item Value="FirstName"/>
 </ListDisplayAttrNames>
 </list>
</bindings>

Face Value: ADF Faces, JSF Pages, and User Interface Components

214

In steps 7 and 8, we have devised a way to initialize the shuttle's selections before the
pop-up is shown. We have done this by adding a PopupFetchListener to the pop-up. A
PopupFetchListener indicates a method that is executed when a pop-up fetch event
is invoked during content delivery. For the listener method to be executed, the pop-up
content delivery must be set to lazyUnchached or lazy. We set the pop-up content
delivery to lazyUnchached in step 7. The PopupFetchListener method was called
onEmployeesShuttleInit(). In it, we retrieve the Employees list binding by utilizing the
ADFUtils.findCtrlBinding() helper method. We introduced the ADFUtils helper class
in the Using ADFUtils/JSFUtils recipe in Chapter 1, Pre-requisites to Success: ADF Project
Setup and Foundations. Once the list binding is retrieved as a JUCtrlListBinding object,
we call clearSelectedIndices() on it to clear the selections. This will ensure that the
selected list is empty once the pop-up is displayed.

To handle the list selections, we added a DialogListener to the dialog in steps 9 and
10. A DialogListener is a method that can be used to handle the outcome of a dialog
event. In it, we first checked to see whether the OK button was clicked by checking for a
DialogEvent.Outcome.ok outcome. If this is the case, we retrieve the list binding and call
getSelectedValues() on it to retrieve a java.lang.Object array of the selections. In
our case, since we have indicated in step 6 that the EmployeeId attribute will be used as the
base attribute, this is an array of the selected employee identifiers. Once we have the list of
selected employees (as employee identifiers), we can process it as needed.

Note in step 11 that we have added a command button with an embedded
af:showPopupBehavior in order to show the pop-up.

To test the page, right-click on it in the Application Navigator and select Run or Debug
from the context menu. Clicking on the command button will display the pop-up with a
shuttle component displaying a list of available employees to select from, as shown in the
following screenshot:

Chapter 7

215

There's more…
Note that ADF Faces provides an additional shuttle component named
af:selectOrderShuttle that includes additional buttons to allow for the reordering
of the selected items.

For more information about the ADF Faces Select Many Shuttle component, take a look at the
section Using Shuttle Components in the Web User Interface Developer's Guide for Oracle
Application Development Framework which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16181/toc.htm.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Using an af:carousel component
The ADF Faces Carousel component (af:carousel) is a model-driven databound user
interface control that you can use on your pages as an alternate way to display collections of
data. As the name suggests, the data is displayed in a revolving "carousel". The component
comes with predefined controls that allow you to scroll through the carousel items. Moreover,
images and textual descriptions can be associated and displayed for each carousel item.

In this recipe, we will demonstrate the usage of the af:carousel component by
declaratively setting up a carousel to browse through the employees associated with
each department.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this, we will use the MainApplication workspace that was
developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding
remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm

Face Value: ADF Faces, JSF Pages, and User Interface Components

216

How to do it…
1.	 Ensure that the HRComponents and the SharedComponents ADF Library JARs are

added to the ViewController project of your workspace.

2.	 Using the Create JSF Page wizard, create a JSP XML page called carouselView.
jspx. Use any of the predefined quick start layouts.

3.	 Expand the Data Controls section in the Application Navigator and locate the
Departments collection under the HrComponentsAppModuleDataControl data
control. Drag-and-drop it on the carouselView.jspx page. From the Create menu,
select Table | ADF Read-only Table….

4.	 In the Edit Table Columns dialog, select the table columns and indicate Single Row
for the Row Selection.

5.	 Drag-and-drop the DepartmentEmployees collection under the Departments
collection on the carouselView.jspx page under the departments table. From the
Create menu, select Carousel.

6.	 With the af:carousel selected in the Structure window, add a partial trigger to the
departments table using the Property Menu next to the PartialTriggers attribute.
Select Edit… from the property menu and in the Edit Property: PartialTriggers dialog
add the table item to the selected items. Click OK to save your changes.

7.	 Expand the af:carousel component in the Structure window and locate the
af:carouselItem underneath it. With the af:carouselItem selected in the
Structure window, add the following to the Text attribute:
#{item.LastName} #{item.FirstName}, #{item.JobId}

8.	 Using the Component Palette, locate an Image component and drag-and-drop it on
the af:carouselItem. In the Insert Image dialog, specify /images/#{item.
JobId}.png for the image Source and #{item.LastName} #{item.
FirstName}, #{item.JobId} for the image ShortDesc.

Chapter 7

217

9.	 Under the ViewController/public_html directory create an images directory
and add images for each employee job description. Ensure that the image filename
conforms to the following naming standard: #{item.JobId}.png, where #{item.
JobId} is the employee's job description. The employee's job descriptions are
defined in HR JOBS and are identified by the JOB_ID column.

How it works…
Since we will be importing business components from the HRComponents workspace, in
step 1, we ensured that the corresponding ADF Library JAR is added to our ViewController
project. This can be done either through the Project Properties | Libraries and Classpath
dialog or via the Resource Palette. The HRComponents library has dependencies to the
SharedComponents workspace, so we make sure that the SharedComponents ADF Library
JAR is also added to the project.

In step 2, we have created a JSF page that we will use to demonstrate the af:carousel
component. In the top part of the page, we added a table bound to the Departments
collection. In the bottom part of the page, we added the af:carousel component bound
to the DepartmentEmployees collection. As you select a department in the table, the
corresponding department employees can be browsed using the carousel.

The Departments table was added in steps 3 and 4. The carousel was added in step 5. We
simply expanded the HrComponentsAppModuleDataControl data control in the Data
Controls section of the Application Navigator and dropped the collections on the page,
making the applicable selections from the menus each time. JDeveloper proceeded by adding
the components to the page and creating the necessary bindings in the page definition file. If
you take a closer look at the page's source, you will see that the af:carousel component is
created, with an associated child af:carouselItem component inside a nodeStamp facet
in it. The page source looks similar to the following code:

<af:carousel currentItemKey="#{bindings
 .DepartmentEmployees.treeModel.rootCurrencyRowKey}"
 value="#{bindings.DepartmentEmployees.treeModel}" var="item" ...
 <f:facet name="nodeStamp">
 <af:carouselItem ...
 <af:image ...
 </af:carouselItem>
 </f:facet>
</af:carousel>

Face Value: ADF Faces, JSF Pages, and User Interface Components

218

The carousel value is set to the treeModel for the DepartmentEmployees tree binding.
This binding is created when the DepartmentEmployees collection is dropped on the page
as a carousel. The tree binding is used to iterate over DepartmentEmployeesIterator,
which is also created when the DepartmentEmployees collection is dropped on the page.
The iterator result set is wrapped in a treeModel object, which allows each item in the result
set to be accessed within the carousel using the var attribute. The current data in the result
set is then accessed by the af:carouselItem using the item variable indicated by the
carousel var attribute.

In order to synchronize the department selection in the table with the department employees
in the carousel, the necessary partial trigger was added in step 6.

In step 7, we have set the af:carouselItem Text attribute to the #{item.LastName}
#{item.FirstName}, #{item.JobId} expression. This will display the employee's name
and job description underneath each carousel item. Remember that the item variable
indicates the current data object in the result set.

Finally, in steps 8 and 9, we have added an image component (af:image) to the carousel
item to further enhance the look of the carousel. The image source filename is dynamically
determined using the expression /images/#{item.JobId}.png. This will use a different
image depending on the value of the employee's job identifier. In step 9, we added the images
for each employee job identifier.

To see the carousel in action, right-click on carouselView.jspx in the Application
Navigator and select Run or Debug. Navigate through the Departments table using the
carousel component through the department's employees.

Chapter 7

219

There's more…
For this recipe, the employee images were explicitly specified as filenames, each one
indicating a specific employee job using the expression /images/#{item.JobId}.png.
In a more realistic scenario, images for each collection item would be stored in the database
in a BLOB column associated with the collection item (the employee in this example). To
retrieve the image content from the database BLOB column, you will need to write a servlet
and indicate your choice by passing a parameter to the servlet. For instance, this could
be indicated in the af:image source attribute as /yourservlet?imageId=#{item.
EmployeeId}. In this case, the image is identified using the employee identifier. A sample
demonstrating the image servlet can be found in the FOD sample.

For more information about the ADF Faces Carousel component, take a look at the section
Using the ADF Faces Carousel Component in the Fusion Developer's Guide for Oracle
Application Development Framework which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16182/toc.htm.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Using an af:poll component to periodically
refresh a table

The ADF Faces Poll component (af:poll) can be used to deliver poll events to the server
as a means to periodically update page components. Poll events are delivered to a poll
listener—a managed bean method—by referencing the method using the pollListener
attribute. These poll events are delivered to the poll listener based on the value specified by
the interval attribute. The poll interval is indicated in milliseconds; polling can be disabled
by setting the interval to a negative value. An af:poll can also be referenced from the
partialTriggers property of a component to partially refresh the component. In this case,
a pollListener is not needed.

In this recipe, we will implement polling in order to periodically refresh an employees table in
the page. By periodically refreshing the table, it will reflect any database changes done to the
corresponding EMPLOYEES schema table in the database.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Face Value: ADF Faces, JSF Pages, and User Interface Components

220

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this, we will use the MainApplication workspace that was
developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding
remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

How to do it…
1.	 Ensure that the HRComponents and the SharedComponents ADF Library JARs are

added to the ViewController project of your workspace.

2.	 Using the Create JSF Page wizard, create a JSP XML page called pollView.jspx.
Use any of the predefined quick start layouts.

3.	 Expand the Data Controls section in the Application Navigator and locate the
Employees collection under the HrComponentsAppModuleDataControl data
control. Drag-and-drop it on the pollView.jspx page. Then, from the Create menu,
select Table | ADF Read-only Table….

4.	 In the Edit Table Columns dialog, select the table columns and choose Single Row
for the Row Selection.

5.	 Switch to the Page Data Binding Definition by clicking on the Bindings tab at the
bottom of the page editor.

6.	 Click on the Create control binding button (the green plus sign icon) in the Bindings
section and select Action from the Generic Bindings category.

Chapter 7

221

7.	 In the Creation Action Binding dialog, select the Employees collection under
the HrComponentsAppModuleDataControl and then select Execute for
the Operation.

8.	 With the Execute action selected in the Structure window, change the Id property
from Execute to RefreshEmployees using the Property Inspector.

9.	 Return to the page Design or Source editor. Using the Component Palette, drag a
Poll component from the Operations section and drop it on the page.

10.	 With the af:poll component selected in the Structure window, change the
Interval property to 3000 and add a poll listener using the Property Menu next
to the PollListener property in the Property Inspector. If needed, create a new
managed bean.

11.	 Open the managed bean Java class in the Java editor and add the following code to
the poll listener:
ADFUtils.findOperation("RefreshEmployees").execute();

12.	 Finally, add a partial trigger to the af:table component using the Property Menu
next to the PartialTriggers property in the Property Inspector. In the Edit Property:
PartialTriggers dialog, select the poll component in the Available list and add it to
the Selected list.

How it works…
In step 1, we have added the HRComponents ADF Library JAR to our application's
ViewController project. We have done this since we will be using the business components
included in this library. The ADF Library JAR can be added to our project either via the
Resource Palette or through the ViewController's Project Properties | Libraries and
Classpath. The HRComponents library has dependencies to the SharedComponents
workspace, so we make sure that the SharedComponents ADF Library JAR is also added to
the project.

Then, in step 2, we created a JSF page called pollView.jspx that we used to
demonstrate the af:poll component by periodically refreshing a table of employees.
So, in steps 3 and 4, we dropped the Employees collection—available through the
HrComponentsAppModuleDataControl data control—as a read-only table on the page.

In steps 5 through 8, we created an action binding called RefreshEmployees. The
RefreshEmployees action binding will invoke the Execute operation on the Employees
collection, which will query the underlying Employees view object. So, by executing the
RefreshEmployees action binding, we will be able to update the employees table, which is
bound to the same Employees collection.

Face Value: ADF Faces, JSF Pages, and User Interface Components

222

To accomplish a periodic update of the employees table, we dropped an af:poll component
on the page (step 9) and adjusted the time interval in which a poll event will be dispatched
(in step 10). This time interval is indicated by the Interval poll property in milliseconds,
so we set it to 3 seconds (3000 milliseconds).

Then, in steps 10 and 11, we declared a poll listener using the PollListener property
of the af:poll component. This is the method that will receive the poll event each time
the poll is fired. In the process, we had to create a new managed bean (step 10). In the
poll listener, we use the ADFUtils findOperation() helper method to retrieve the
RefreshEmployees action binding from the bindings container. The ADFUtils helper
class was introduced in Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to Success: ADF
Project Setup and Foundations. The findOperation() helper method returns an oracle.
binding.OperationBinding object, on which we call execute() to execute it. As stated
earlier, this will have the effect of querying the Employees collection underlying view object,
which in effect refreshes the table.

Finally, in step 12, we had to indicate in the employees table's partial triggers the ID of the poll
component. This will cause a partial page rendering for the af:table component triggered
from the af:poll component each time the poll listener is executed.

To test the recipe, right-click on the pollView.jspx page in the Application Navigator and
select Run or Debug from the context menu. Notice how the employees table is refreshed
every 3 seconds, reflecting any modifications done to the Employees table.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Using page templates for pop-up reuse
Back in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations in the Using
a generic backing bean actions framework recipe, we introduced a generic backing bean
actions framework, called CommonActions, to handle common JSF page actions. In this
recipe, we will enhance this generic actions framework by demonstrating how to add pop-up
dialogs to a page template definition, that can then be reused by pages based on the template
using this framework. The specific use case that we will implement in this recipe is to add a
delete confirmation pop-up to the page template. This will provide a uniform delete behavior
for all application pages based on this template.

Chapter 7

223

Getting ready
You will need to have access to the SharedComponents workspace that was developed in
Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to Success: ADF
Project Setup and Foundations. The functionality will be added to both the CommonActions
generic backing bean framework and the TemplateDef1 page template definition that were
created in the Using a generic backing bean actions framework and
Using page templates recipes in Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations.

For testing purposes, you will need to create a skeleton Fusion Web Application (ADF)
workspace. For this, we will use the MainApplication workspace that was developed in
Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to Success: ADF
Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding
remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

How to do it…
1.	 Open the SharedComponents workspace and locate the TemplateDef1 page

template definition using the Application Navigator. It can be found under the WEB-
INF/templates package. Double-click on it so you can open it.

2.	 Using the Component Palette, drop a Popup component to the top facet. Modify the
af:popup component's id property to DeleteConfirmation.

3.	 Drop a Dialog component inside the af:popup added in the previous step. Using the
Property Inspector, update the dialog's Title to Confirm Deletion. Also change the
Type property to cancel.

4.	 Drop an Output Text component from the Component Palette to the dialog. Change
its Value property to Continue with deleting this record?

5.	 Using the Component Palette, drop a Button component to the dialog's buttonBar
facet. Change the af:commandButton text property to Continue.

6.	 Using the Property Inspector, add the following ActionListener to the
af:commandButton: #{CommonActionsBean.onContinueDelete}. The pop-
up source should look similar to the following:
<af:popup id="DeleteConfirmation">
 <af:dialog id="pt_d1" title="Confirm Deletion" type="cancel">
 <af:outputText value="Continue with deleting this record?"
 id="pt_ot1"/>

Face Value: ADF Faces, JSF Pages, and User Interface Components

224

 <f:facet name="buttonBar">
 <af:commandButton text="Continue"id="continueDeleteButton"
 actionListener="#{CommonActionsBean.onContinueDelete}"/>
 </f:facet>
 </af:dialog>
</af:popup>

7.	 Locate the ADFUTils helper class and open it in the Java editor. Add the following
code to the showPopup() method:
FacesContext facesContext = FacesContext.getCurrentInstance();
ExtendedRenderKitService service =
 Service.getRenderKitService(facesContext,
 ExtendedRenderKitService.class);
service.addScript(facesContext,
 "AdfPage.PAGE.findComponentByAbsoluteId ('generic:"
 + popupId + "').show();");

8.	 Redeploy the SharedComponents workspace into an ADF Library JAR.

9.	 Open the MainApplication workspace or create a new Fusion Web Application
(ADF) workspace. Ensure that you add both the SharedComponents and
HRComponents ADF Library JARs to the ViewController project.

10.	 Open the adfc-config unbounded task flow, go to Overview | Managed Beans
and add a managed bean called CommonActionsBean. For the managed bean
class, use the CommonActions class in the com.packt.jdeveloper.cookbook.
shared.view.actions package imported from the SharedComponents ADF
Library JAR.

11.	 Create a new JSPX page called templatePopup.jspx based on the
TemplateDef1 page template definition.

12.	 With the af:pageTemplate selected in the Structure window, change the template
Id in the Property Inspector to generic.

13.	 Now, expand the HrComponentsAppModuleDataControl data control in the Data
Controls section of the Application Navigator and drop the Employees collection
on the mainContent facet of the page as an ADF Read-only Form. In the Edit Form
Fields dialog, ensure that you select the Include Navigation Controls checkbox.

14.	 Using the Component Palette, drop a Button component to the form next to the Last
button. With the button selected in the Structure window, change its Text property to
Delete. Also set the ActionListener property to #{CommonActionsBean.delete}.

Chapter 7

225

How it works…
In steps 1 through 6, we have expanded the TemplateDef1 page template definition by
adding a pop-up called DeleteConfirmation. We can raise this pop-up prior to deleting
a record consistently for all of the application pages that are based on the TemplateDef1
template. Notice that the name of the pop-up should match the name used in the
CommonActions.onConfirmDelete() method to display the pop-up. This method looks
similar to the following:

public void onConfirmDelete(final ActionEvent actionEvent) {
 ADFUtils.showPopup("DeleteConfirmation");
}

The necessary code to display the pop-up is added in the ADFUtils.showPopup() method
in step 7. The ADFUtils helper class was introduced in Using ADFUtils/JSFUtils, Chapter
1, Pre-requisites to Success: ADF Project Setup and Foundations. The following is the
ADFUtils.showPopup() method:

public static void showPopup(String popupId) {
 FacesContext facesContext =FacesContext.getCurrentInstance();
 ExtendedRenderKitService service =
 Service.getRenderKitService(facesContext,
 ExtendedRenderKitService.class);
 service.addScript(facesContext,"AdfPage.PAGE.
 findComponent('generic:"+ popupId + "').show();");
}

The code in ADFUtils.showPopup() has been explained in the Using an af:pop-up
component to edit a table row recipe in this chapter. One important thing to notice is how the
template ID (generic) is prepended to the pop-up ID.

The onConfirmDelete() method is called by the generic delete action listener
CommonActions.delete(). The following is the code for the CommonActions.delete()
method:

public void delete(final ActionEvent actionEvent) {
 onConfirmDelete(actionEvent);
}

Face Value: ADF Faces, JSF Pages, and User Interface Components

226

Notice how in step 5 we have added a Continue button to the delete confirmation pop-up and
in step 6 we explicitly specify the CommonActions.onContinueDelete() method as the
continue button's action listener. The code for this method is shown as follows:

public void onContinueDelete(final ActionEvent actionEvent) {
 CommonActions actions = getCommonActions();
 actions.onBeforeDelete(actionEvent);
 actions.onDelete(actionEvent);
 actions.onAfterDelete(actionEvent);
}

First we call getCommonActions() to determine if the CommonActions bean
has been subclassed and then we call the appropriate action framework methods
onBeforeDelete(), onDelete() and onAfterDelete(). The following is the code of the
getCommonActions() method:

private CommonActions getCommonActions() {
 CommonActions actions =
 (CommonActions)JSFUtils.getExpressionObjectReference("#{"
 + getManagedBeanName() + "}");
 if (actions == null) {
 actions = this;
 }
 return actions;
}

The subclassed CommonActions managed bean name is determined by calling
getManagedBeanName(). If a subclassed managed bean is not found, then the generic
CommonActions bean is used; otherwise, the subclassed managed bean class is loaded
using the JSFUtils.getExpressionObjectReference() helper method, which
resolves the expression based on the bean name and instantiates it. The code for the
getManagedBeanName() method is shown as follows:

private String getManagedBeanName() {
 return getPageId().replace("/", "").replace(".jspx", "");
}

As you can see, the subclassed managed bean name is determined by calling the helper
getPageId(), which is shown as follows:

public String getPageId() {
 ControllerContext ctx = ControllerContext.getInstance();
 return ctx.getCurrentViewPort().getViewId().substring(
 ctx.getCurrentViewPort().getViewId().lastIndexOf("/")); }

The getPageId() determines the subclassed CommonActions managed bean name from
the associated page. The fact that the subclassed managed bean name must match the page
name, makes it a requirement for the CommonActions framework.

Chapter 7

227

We continue in step 8 by redeploying the SharedComponents workspace to an
ADF Library JAR.

To test the generic template pop-up, in step 9, we created a Fusion Web Application (ADF)
workspace and added the SharedComponents and HRComponents ADF Library JARs to its
ViewController project.

In step 10, we added a managed bean, called CommonActionsBean, to our application
based on the CommonActions class implemented in the SharedComponents workspace.

In steps 11 through 14, we created a page called templatePopup.jspx based on
the TemplateDef1 template and drop the Employees collection imported from the
HRComponents workspace, as a read-only form. Notice in step 12 how we ensured that the
af:pageTemplate component's identifier value is set to the same identifier value as in the
template definition, that is, generic. This is important for the code in step 7 that loads the
pop-up to function properly.

Finally, notice in step 14, how we set the delete button action listener to
#{CommonActionsBean.delete}. This will allow for generic processing of the delete action.

To test the recipe, right-click on the templatePopup.jspx page in the Application
Navigator and select Run or Debug from the context menu. When you click on the Delete
button, the Confirm Deletion pop-up defined in the page template will be displayed and the
CommonActions framework will be used to handle the delete action.

Face Value: ADF Faces, JSF Pages, and User Interface Components

228

There's more…
For this recipe, we configured the delete button action processing so that it can be provided
by the generic CommonActions delete() method. Assuming that you wanted to provide
specialized handling of the delete action, you can do the following:

ff Create a new managed bean with the same name as the page, that is,
templatePopup

ff Create the managed bean class and ensure that it extends the CommonActions
class

ff Provide specialized delete action functionality by overriding the following methods:
delete(), onBeforeDelete(), onDelete(), onAfterDelete() and
onConfirmDelete()

ff Set the delete command button action listener to: #{templatePopup.delete}

See also
ff Using a generic backing bean actions framework, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Using page templates, Chapter 1, Pre-requisites to Success: ADF Project Setup and
Foundations

ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Exporting data to a client file
You can export data from the server and download it to a file in the client by using the ADF
Faces File Download Action Listener component, available in the Operations section of
the Component Palette. Simply specify the default export filename and a managed bean
method to handle the download. To actually export the data from the model using business
components, you will have to iterate through the relevant view object and generate the
exported string buffer.

In this recipe, we will use the File Download Action Listener component
(af:fileDownloadActionListener) to demonstrate how to export all employees to a
client file. The employees will be saved in the file in a comma-separated-values (CSV) format.

Chapter 7

229

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this, we will use the MainApplication workspace that was
developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding
remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

How to do it…
1.	 Open the HRComponents workspace and locate the HrComponentsAppModule

application module. Open the custom application module Java implementation file
HrComponentsAppModuleImpl.java in the Java editor.

2.	 Add the following exportEmployees() method to it:
public String exportEmployees() {
 EmployeesImpl employees = this.getEmployees();
 employees.executeQuery();
 StringBuilder employeeStringBuilder = new StringBuilder();
 RowSetIterator iterator =
 employees.createRowSetIterator(null);
 iterator.reset();
 while (iterator.hasNext()) {
 EmployeesRowImpl employee = (EmployeesRowImpl)iterator.next();
 employeeStringBuilder.append(employee.getLastName()
 + " " + employee.getFirstName());
 if (iterator.hasNext()) {
 employeeStringBuilder.append(",");
 }
 }
 iterator.closeRowSetIterator();
 return employeeStringBuilder.toString();
}

3.	 Double-click the HrComponentsAppModule application module in the Application
Module and go to the Java section. Add the exportEmployees() method to the
application module's client interface by clicking on the Edit application module
client interface button (the pen icon).

Face Value: ADF Faces, JSF Pages, and User Interface Components

230

4.	 Redeploy the HRComponents workspace as an ADF Library JAR.

5.	 Open the MainApplication workspace and add the HRComponents and the
SharedComponents ADF Library JARs to its ViewController project.

6.	 Create a new JSPX page, called exportEmployees.jspx, using one of the quick
start layouts.

7.	 Expand the HrComponentsAppModuleDataControl in the Data Controls
section of the Application Navigator and locate the exportEmployees() method.
Drop the exportEmployees() method on the page selecting ADF Button from the
Create menu.

8.	 Right-click on the af:commandButton in the Structure window and select Surround
With… from the context menu. In the Surround With dialog, select Toolbar.

9.	 With the af:commandButton selected in the Structure window, change the Text
property to Export Employees and reset the ActionListener and Disabled properties
to default (remove their expressions).

10.	 Switch to the Bindings tab and add a binding using the Create control
binding button (the green plus sign icon). In the Insert Item dialog, select
methodAction and click OK. In the Create Action Binding dialog, select the
HrComponentsAppModuleDataControl in the Data Collection list and
exportEmployees() for the Operation.

Chapter 7

231

11.	 Return to the page Design or Source. Right-click on the af:commandButton in the
Structure window and select Insert Inside af:commandButton ADF Faces… from
the context menu. In the Insert ADF Faces Item dialog, select File Download Action
Listener and click OK.

12.	 With the af:fileDownloadActionListener selected in the Structure window,
set the Filename property to employees.csv in the Property Inspector. For the
Method property, expand on the Property Menu and select Edit…. In the Edit
Property: Menu dialog, create a new managed bean called ExportEmployeesBean
and a new method called exportEmployees. Click OK to dismiss the Edit Property:
Menu dialog.

13.	 Now, open the managed bean and add the following code to the
exportEmployees() method:

String employeesCSV = (String)ADFUtils.findOperation
 ("exportEmployees").execute();
try {
 OutputStreamWriter writer =
 new OutputStreamWriter(outputStream, "UTF-8");
 writer.write(employeesCSV);
 writer.close();
 outputStream.close();
} catch (IOException e) {
 // log the error
}

How it works…
In steps 1 through 4 we have updated the HRComponents ADF Library JAR by adding a
method called exportEmployees() to the HrComponentsAppModule application module.
In this method, we iterate over the Employees view object, and for each row we add the
employee's last and first name to a string. We separate each employee name with a comma to
create a string with all of the employee names in a comma-separated-values (CSV) format. In
step 3, we have added the exportEmployees() method to the application module's client
interface to make it available to the ViewController layer. Then, in step 4, we redeploy the
HRComponents workspace into an ADF Library JAR.

Steps 5 through 13 cover working on the MainApplication workspace. You could
instead create your own Fusion Web Application (ADF) workspace and apply them to that
workspace instead. First, in step 5, we add the HRComponents ADF Library JAR to the
ViewController project of the MainApplication workspace. You can do this either through
the Resource Palette or through the Project Properties | Libraries and Classpath settings.
The HRComponents library has dependencies to the SharedComponents workspace, so we
make sure that the SharedComponents ADF Library JAR is also added to the project.

Face Value: ADF Faces, JSF Pages, and User Interface Components

232

In step 6, we created a JSF page using one of the predefined quick start layouts. Then, in
steps 7 through 10, we added a command button to the page with the underlying bindings.
In step 7, note how we initially dropped the exportEmployees() method from the Data
Controls window to the page as a button. We did this so that we can initialize the underlying
page bindings. However, note how in step 10, we had to re-bind the exportEmployees()
method as a methodAction. This is because in step 9 we removed the expressions
from the ActionListener and Disabled properties, which as a result removed the
exportEmployees() methodAction binding. Defining and using this methodAction
binding will allow us to execute the exportEmployees() application module method that
returns the employees in a CSV string buffer.

In steps 10 through 13, we added the File Download Action Listener component to
the command button. Note in step 12, how we indicated a listener method, called
exportEmployees(), that will be executed to perform the download action. The actual
code for the listener was added in step 13. This code uses the ADFUtils helper class to
programmatically execute the exportEmployees methodAction binding that we added in
step 10. Executing the exportEmployees methodAction binding will result in returning the
employees in a CSV formatted string. Then, using the OutputStream passed to the download
action listener automatically by the ADF framework, we can write it to the stream. We
introduced the ADFUtils helper class in Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

To test the recipe, right-click on the exportEmployees.jspx page in the Application
Navigator and select Run or Debug from the context menu. Observe what happens when
you click on the Export Employees button. A Save As dialog is displayed asking you for the
name of the file to save the employee CSV data. The default filename in this dialog is the
filename indicated in the Filename property of the af:fileDownloadActionListener
component, that is, employees.csv.

There's more…
For more information on the af:fileDownloadActionListener component, consult the
section How to Use a Command Component to Download Files in the Web User Interface
Developer's Guide for Oracle Application Development Framework which can be found at
http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm

8
Backing not Baking:

Bean Recipes

In this chapter, we will cover:

ff Determining whether the current transaction has pending changes

ff Using a custom af:table selection listener

ff Using a custom af:query listener to allow execution of a custom application module
operation

ff Using a custom af:query operation listener to clear both the query criteria and results

ff Using a session scope bean to preserve session-wide information

ff Using an af:popup during long-running tasks

ff Using an af:popup to handle pending changes

ff Using an af:iterator to add pagination support to a collection

Backing not Baking: Bean Recipes

234

Introduction
Backing (also referred to as managed) beans are Java beans referenced by JSF pages in an
ADF Fusion web application through Expression Language (EL). They are usually dedicated to
providing specific functionality to the corresponding page. They are part of the ViewController
layer in the Model-View-Controller architecture. Depending on their persistence in memory
throughout the lifetime of the application, managed beans are categorized based on their
scope: from request (minimal persistence in memory for the specific user request only)
to application (maximum persistence in memory for the duration of the application).
They can also exist in any of the session, view, pageFlow, and backingBean scopes.
Managed bean definitions can be added to any of the following ADF Fusion web application
configuration files:

ff faces-config.xml: The JSF configuration file. It is searched first by the ADF
framework for managed bean definitions. All scopes can be defined, except for view,
backingBean, and pageFlow scopes, which are ADF-specifc.

ff adfc-config.xml: The unbounded task flow definition file. Managed beans of any
scope may be defined in this file. It is searched after the faces-config.xml JSF
configuration file.

ff Specific task flow definition file: In this file, the managed bean
definitions are accessed only by the specific task flow.

Additionally, if you are using Facelets, you can register a backing bean using annotations.

Determining whether the current
transaction has pending changes

This recipe shows you how to determine whether there are unsaved changes to the current
transaction. This may come in handy when, for instance, you want to raise a warning pop-
up message each time you attempt to leave the current page. This is demonstrated in the
recipe Using an af:popup to handle pending changes in this chapter. Furthermore, by adding
this functionality in a generic way to your application, making it part of the CommonActions
framework for example, you can provide a standard application-wide approach for dealing with
pending uncommitted transaction changes. The CommonActions framework was introduced
in the Using a generic backing bean actions framework, Chapter 1, Pre-requisites to Success:
ADF Project Setup and Foundations.

Getting ready
The functionality implemented in this recipe will be added to the ADFUtils helper class
introduced in Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations. This class is part of the SharedComponents workspace.

Chapter 8

235

How to do it…
1.	 Open the SharedComponents workspace and locate the ADFUtils.java class in

the Application Navigator.

2.	 Double-click on the ADFUtils.java to open it in the Java editor and add the
following code to it:
public static boolean isBCTransactionDirty() {
 // get application module and check for dirty
 // transaction
 ApplicationModule am =
 ADFUtils.getDCBindingContainer().getDataControl()
 .getApplicationModule();
 return am.getTransaction().isDirty();
}
public static boolean isControllerTransactionDirty() {
 // get data control and check for dirty transaction
 BindingContext bc = BindingContext.getCurrent();
 String currentDataControlFrame =
 bc.getCurrentDataControlFrame();
 return bc.findDataControlFrame(
 currentDataControlFrame).isTransactionDirty();
}

3.	 Locate the hasChanges() method in the ADFUtils helper class. Add the following
code to it:
// check for dirty transaction in both the model
// and the controller
return isBCTransactionDirty() ||
 isControllerTransactionDirty();

How it works…
In steps 1 and 2, we added two helper methods to the ADFUtils helper class, namely,
isBCTransactionDirty() and isControllerTransactionDirty().

The isBCTransactionDirty() method determines whether there are uncommitted
transaction changes at the ADF-BC layer. This is done by first retrieving the application module
from the data control DCDataControl class and then calling getTransaction() to get its
oracle.jbo.Transaction transaction object. We call isDirty() on the Transaction
object to determine if any application module data has been modified but not yet committed.

Backing not Baking: Bean Recipes

236

The isControllerTransactionDirty() method, on the other hand, checks
for uncommitted changes at the controller layer. This is done by first calling
getCurrentDataControlFrame() on the binding context to return the name of the
current data control frame, and then calling findDataControlFrame() on the binding
context to retrieve the oracle.adf.model.DataControlFrame object with the given
name. Finally, we call isTransactionDirty() on the data control frame to determine
whether unsaved data modifications exist within the current task flow context.

When checking for unsaved changes, we need to ensure that both the ADF-BC and the
controller layers are checked. This is done by the hasChanges() method, which calls both
isBCTransactionDirty() and isControllerTransactionDirty() and returns true
if unsaved changes exist in any of the two layers.

There's more…
Note that for transient attributes used at the ADF-BC layer, isDirty() will return true
only for entity object modified transient attributes. This is not the case for view object
modified transient attributes, and isDirty() in this case returns false. In contrast,
calling isTransactionDirty() at the ADFm layer will return true if any attributes have
been modified.

See also
ff Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations

ff Using an af:popup to handle pending changes, in this chapter.

Using a custom af:table selection listener
The selectionListener attribute of the ADF Table (af:table) component synchronizes
the currently selected table row with the underlying ADF table binding iterator. By default,
upon dropping a collection to a JSF page as an ADF table, JDeveloper sets the value of the
selectionListener attribute of the corresponding af:table component to an expression
similar to #{bindings.SomeCollection.collectionModel.makeCurrent}. This
expression indicates that the makeCurrent method of the collection's model is called in
order to synchronize the table selection with the table iterator binding.

In this recipe, we will cover how to implement your own custom table selection listener. This
will come in handy if your application requires any additional processing before or after a table
selection is made.

Chapter 8

237

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this, we will use the MainApplication workspace that was
developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding
remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

Moreover, this recipe enhances the JSFUtils helper class introduced in Using ADFUtils/
JSFUtils, Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations, which is
part of the SharedComponents workspace.

How to do it…
1.	 Open the SharedComponents workspace and locate the JSFUtils helper class in

the Application Navigator. Double-click on it to open it in the Java editor.

2.	 Add the following method to it, ensuring that you redeploy the SharedComponents
workspace to an ADF Library JAR afterwards.
public static Object invokeMethodExpression(String expr,
 Class returnType, Class argType, Object argument) {
 FacesContext fc = FacesContext.getCurrentInstance();
 ELContext elctx = fc.getELContext();
 ExpressionFactory elFactory =
 fc.getApplication().getExpressionFactory();
 MethodExpression methodExpr =
 elFactory.createMethodExpression(elctx,
 expr, returnType, new Class[] { argType });
 return methodExpr.invoke(elctx, new Object[] { argument });
}

3.	 Now, open the MainApplication workspace and add the SharedComponents
and the HRComponents ADF Library JARs to the ViewController project.

4.	 Create a JSP XML page based on any of the quick start layouts and drop the
Employees collection, under the HrComponentsAppModuleDataControl in the
Data Controls section of the Application Navigator, to the page.

Backing not Baking: Bean Recipes

238

5.	 With the af:table component selected in the Structure window, use the
SelectionListener property menu Edit… in the Property Inspector and add a
new selection listener, called selectionListener. Create a new managed bean
when asked.

6.	 Open the managed bean and add the following code to the custom selection listener
created previously:
// invoke makeCurrent via method expression
 JSFUtils.invokeMethodExpression(
"#{bindings.Employees.collectionModel.makeCurrent}",
 Object.class, SelectionEvent.class, selectionEvent);
// get selected data
RichTable table = (RichTable)selectionEvent.getSource();
JUCtrlHierNodeBinding selectedRowData =
 (JUCtrlHierNodeBinding)table.getSelectedRowData();
// process selected data
String[] attrbNames = selectedRowData.getAttributeNames();
for (String attrbName : attrbNames) {
 Object attrbValue =
 selectedRowData.getAttribute(attrbName);
 System.out.println("attrbName: " + attrbName +
 ", attrbValue: " + attrbValue);

How it works…
In steps 1 and 2, we updated the JSFUtils helper class by adding a method called
invokeMethodExpression() used to invoke a JSF method expression. We also ensured
that the SharedComponents workspace, where the JSFUtils helper class is defined,
was redeployed into an ADF Library JAR. Then, in step 3, we added the newly deployed
SharedComponents ADF Library JAR into the ViewController project of our application. We
also added the HRComponents ADF Library JAR to the ViewController project, as we will be
using the Employees collection in the steps that follow. You can add the ADF Library JARs
either through the Resource Palette or through the ViewController Project Properties |
Libraries and Classpath dialog settings.

In steps 4 and 5, we created a JSF page and dropped the Employees collection in it as
an ADF Table (af:table) component. The Employees collection can be found in the
HrComponentsAppModule application module which resides in the HRComponents ADF
Library JAR. Then in step 6, we added a custom table SelectionListener by defining
a method called selectionListener() in a managed bean. The code in the custom
selection listener first invokes the default selection listener, by invoking the JSF method
expression #{bindings.Employees.collectionModel.makeCurrent} using the
helper method invokeMethodExpression() that we added in step 2.

Chapter 8

239

The custom selection listener also demonstrates how to get the selected row data by
first retrieving the ADF Table component as an oracle.adf.view.rich.component.
rich.data.RichTable object. We call getSource() on the selection event and then
call getSelectedRowData() on it. The call to getSelectedRowData() returns the
ADF table binding as an oracle.jbo.uicli.binding.JUCtrlHierNodeBinding
object, which can be used to subsequently retrieve the row data. This is done by calling
getAttributeNames(), for instance, to retrieve the attribute names or by calling
getAttribute() to retrieve the data value for a specific attribute. Once this information is
known for the current table selection, additional business logic can be added to implement
the specific application requirements.

There's more…
To do the analogous task with Java code, without invoking the default selection listener
makeCurrent, involves getting the current row key from the node binding and setting the
table DCIteratorBinding iterator binding (by calling setCurrentRowWithKey() on the
iterator binding) to that key. For more information about this approach, take a look at Frank
Nimphius' ADF Corner article How-to build a generic Selection Listener for ADF bound ADF
Faces Table. It can be found currently in the following address: http://www.oracle.com/
technetwork/developer-tools/adf/learnmore/23-generic-table-selection-
listener-169162.pdf.

See also
ff Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations

ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Using a custom af:query listener to allow
execution of a custom application module
operation

The queryListener attribute of the ADF Faces Query (af:query) component indicates
a method that is invoked to execute the query. By default, the framework executes the
processQuery() method referenced by the searchRegion binding associated with
the af:query component. This is indicated by the following expression: #{bindings.
SomeQuery.processQuery}. By creating a custom query listener method, you can provide
a custom implementation each time a search is performed by the af:query component.

Backing not Baking: Bean Recipes

240

In this recipe, we will demonstrate how to create a custom query listener. Our custom query
listener will programmatically execute the query by invoking the default expression as
indicated previously. Moreover, after the query execution, it will display a message with the
number of rows returned by the specific query.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this, we will use the MainApplication workspace that
was developed in the Breaking up the application in multiple workspaces, Chapter 1,
Pre-requisites to Success: ADF Project Setup and Foundations.

The recipe also uses the SharedComponents and HRComponents workspaces, which were
created in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations and in Overriding remove() to delete associated
children entities, Chapter 2, Dealing with Basics: Entity Objects respectively.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

How to do it…
1.	 Open the MainApplication workspace and ensure that both the

SharedComponents and the HRComponents workspaces are added to the
ViewController project.

2.	 Create a JSP XML page called queryListener.jspx using one of the quick
start layouts.

3.	 Locate the EmployeesCriteria named criteria under the
HrComponentsAppModuleDataControl | Employees collection in the Data Controls
section of the Application Navigator, and drop it on the page. Select Query | ADF
Query Panel with Table… from the Create menu when asked.

4.	 With the af:query component selected in the Structure window, select Edit… from
the Property Menu next to the QueryListener and create a new custom query listener
method called queryListener. Create a new managed bean as well.

5.	 Open the managed bean that implements the custom query listener and add the
following code it:

// handle the presence of certain query criterion data
List criteria =
 queryEvent.getDescriptor()
 .getConjunctionCriterion().getCriterionList();
for (int i = 0; i < criteria.size(); i++) {
 AttributeCriterion criterion =
 (AttributeCriterion)criteria.get(i);

Chapter 8

241

 // do some special processing when a particular
 // criterion was used
 if ("SomeCriterionName".equals(
 criterion.getAttribute().getName()) &&
 criterion.getValues().get(0) != null) {
 // do something, for instance a rollback
 ADFUtils.findOperation("Rollback").execute();
 break;
 }
}
// invoke default processQuery query listener
JSFUtils.invokeMethodExpression(
 "#{bindings.EmployeesCriteriaQuery.processQuery}",
 Object.class, QueryEvent.class, queryEvent);
// display an information message indicating the
// number of rows found
long rowsFound = ADFUtils.findIterator("EmployeesIterator")
 .getEstimatedRowCount();
FacesContext.getCurrentInstance().addMessage("",
 new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Total Rows Found: " + rowsFound + "", null));

How it works…
In step 1, we added both the SharedComponents and HRComponents ADF Library JARs to
the ViewController project of our application. This can be done either through the Resource
Palette or via the Project Properties | Libraries and Classpath dialog settings.

In steps 2 and 3, we created a JSF page and dropped the EmployeesCriteria named
criteria, defined in the Employees view object, as an ADF Query Panel with Table to the
page. The Employees view object is part of the HrComponentsAppModule, that in turn
is part of the HRComponents workspace imported as an ADF Library JAR in step 1. Once
this JAR is imported to our project, the HrComponentsAppModule application module
is available in the Data Controls section of the Application Navigator. Dropping the
EmployeesCriteria named criteria on the page automatically creates the af:query and
af:table components on the page, along with the underlying binding objects in the page
definition file.

In steps 4 and 5, we created a custom query listener to be executed by the af:query
component when performing the search. We did this declaratively through the Property
Inspector that also allows us to create and configure a new managed bean, if needed. We
simply called our custom query listener queryListener and added the necessary code to
perform the search in step 4.

Backing not Baking: Bean Recipes

242

The code in the custom query listener queryListener() starts by demonstrating how
to access the underlying af:query component's criteria. In the code, we iterate over the
criteria looking for a specific criterion called SomeCriterionName. Once we find the specific
criterion, we check whether a value is supplied for it and if so, we perform some action
specific to our business domain. The criteria are obtained by calling getCriterionList()
on the oracle.adf.view.rich.model.ConjunctionCriterion object, which
is obtained by calling getConjunctionCriterion() on the oracle.adf.view.
rich.model.QueryDescriptor. The QueryDescriptor is obtained from the event
QueryEvent passed by the ADF framework to the query listener. The getCriterionList()
method returns a java.util.List of AttributeCriterion, which we iterate
over to check for the presence of the specific SomeCriterionName criterion. The
AttributeCriterion indicates a query criterion. We can then call its getValues()
method to retrieve the values supplied for the specific criterion.

To actually perform the search, we invoke the default processQuery method supplied by the
framework via the expression #{bindings.EmployeesCriteriaQuery.processQuery}.
This is done using the JSFUtils helper class method invokeMethodExpression().
The JSFUtils helper class was introduced in Using ADFUtils/JSFUtils, Chapter
1, Pre-requisites to Success: ADF Project Setup and Foundations. We added the
invokeMethodExpression() method to the JSFUtils class in the Using a custom
af:table selection listener recipe in this chapter.

Finally, we retrieved the rows obtained after performing the search by calling
getEstimatedRowCount() on the Employees iterator and displayed a message indicating
the number of records yielded by the search.

There's more…
The ConjunctionCriterion object represents the collection of the search fields for a
QueryDescriptor object. It contains one or more oracle.adf.view.rich.model.
Criterion objects, and possibly other ConjunctionCriterion objects, combined using a
conjunction operator.

For more information regarding the af:query UI artifacts and the associated af:query
model class operations and properties, consult the section Creating the Query Data Model
in the Web User Interface Developer's Guide for Oracle Application Development Framework,
which can be found at http://docs.oracle.com/cd/E24382_01/web.1112/e16181/
toc.htm.

http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm

Chapter 8

243

See also
ff Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations

ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Using a custom af:query operation listener
to clear both the query criteria and results

In the Using a custom af:query listener to allow execution of a custom application module
operation recipe in this chapter, we demonstrated how to create your own custom query
listener in order to handle the af:query component's search functionality yourself. In
this recipe, we will show how to provide a custom reset operation functionality for the
af:query component.

The default reset functionality implemented by the ADF framework resets the af:query
component by clearing the criteria values, but does not clear the results of the associated
af:table component that the framework creates when we drop some named criteria
on the page. This reset functionality is indicated by the queryOperationListener
attribute of the af:query component, and it is implemented by default by the framework
processQueryOperation() method referenced by the searchRegion binding associated
with the af:query component. It is indicated by the following expression: #{bindings.
SomeQuery.processQueryOperation}. The processQueryOperation() method
is used to handle all of the af:query component's operations such as RESET, CREATE,
UPDATE, DELETE, MODE_CHANGE, and so on. These operations are defined by the ADF
framework in the inner Operation class of the oracle.adf.view.rich.event.
QueryOperationEvent class.

In this recipe, we will implement a custom queryOperationListener that will reset both
the af:query and the af:table components used in conjunction in the same page to
provide search functionality.

Backing not Baking: Bean Recipes

244

Getting ready
This recipe relies on having completed the Using a custom af:query listener to allow execution
of a custom application module operation recipe in this chapter.

The recipe also uses the SharedComponents and HRComponents workspaces, which were
created in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations and in Overriding remove() to delete associated
children entities, Chapter 2, Dealing with Basics: Entity Objects respectively.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

How to do it…
1.	 Open the SharedComponents workspace and locate the

ExtApplicationModuleImpl.java custom application module extension class.
Add the following resetCriteria() method to it:
public void resetCriteriaValues(ViewCriteria vc) {
 // reset automatic execution
 vc.setProperty(ViewCriteriaHints.CRITERIA_AUTO_EXECUTE,
 false);
 // reset view criteria variables
 VariableValueManager vvm = vc.ensureVariableManager();
 Variable[] variables = vvm.getVariables();
 for (Variable variable : variables) {
 vvm.setVariableValue(variable, null);
 }
 // reset view criteria
 vc.resetCriteria();
 vc.saveState();
}

2.	 Redeploy the SharedComponents workspace to an ADF Library JAR.

3.	 Open the HRComponents workspace and locate the
HrComponentsAppModuleImpl.java application module implementation class.
Add the following resetEmployees() method to it:
public void resetEmployees() {
 EmployeesImpl employees = this.getEmployees();
 ViewCriteria vc = employees.getViewCriteria(
 "EmployeesCriteria");
 // reset view criteria
 super.resetCriteriaValues(vc);

Chapter 8

245

 employees.removeViewCriteria("EmployeesCriteria");
 employees.applyViewCriteria(vc);
 // reset Employees view object
 employees.executeEmptyRowSet();
}

4.	 Add the resetEmployees() method to the application module client interface and
redeploy the HRComponents workspace to an ADF Library JAR.

5.	 Open the MainApplication workspace. Double-click on the queryListener.
jspx page in the Application Navigator to open the page in the page editor.

6.	 Click on the Bindings tab. Add a methodAction binding
for the resetEmployees() operation under the
HrComponentsAppModuleDataControl data control.

7.	 With the af:query component selected in the Structure window, select Edit…
from the Property Menu next to the QueryOperationListener property in the
Property Inspector.

8.	 In the Edit Property: QueryOperationListener dialog, select the QueryListenerBean
and create a new method called queryOperationListener.

9.	 Open the QueryListenerBean.java in the Java editor and add the following code
to the queryOperationListener() method:
// handle RESET operation only
if (QueryOperationEvent.Operation.RESET.name()
 .equalsIgnoreCase(queryOperationEvent.getOperation()
 .name())) {
 // execute custom reset
 ADFUtils.findOperation("resetEmployees").execute();
} else {
 // default framework handling for all other
 // af:query operations
 JSFUtils.invokeMethodExpression(
 "#{bindings.EmployeesCriteriaQuery.processQueryOperation}",
 Object.class, QueryOperationEvent.class,
 queryOperationEvent);
}

10.	 Finally, ensure that a partial trigger is added to the af:table component for
the af:query component. You can do this using the Property Menu next to the
PartialTriggers property in the af:table Property Inspector.

Backing not Baking: Bean Recipes

246

How it works…
In step 1, we added the resetCriteriaValues() method to the
ExtApplicationModuleImpl custom application module extension class. This method
becomes available to all derived application module classes, and is used to reset the
specific named criteria values. The method accepts the ViewCriteria to reset, and
iterates over the criteria variables obtained from the criteria VariableValueManager
by calling getVariables(). For each variable, we call setVariableValue() on
the VariableValueManager specifying the variable and a null value. We also call
resetCriteria() to restore the criteria to the latest saved state, and saveState() to
save the current state. We proceed to step 2 with redeploying the SharedComponents
workspace to an ADF Library JAR.

In step 3, we added a method called resetEmployees() to the HrComponentsAppModule
application module implementation class, which is used to reset the EmployeesCriteria
named criteria defined for the Employees view object. In this method, we obtain the
criteria by calling getViewCriteria() on the Employees view object and then call
the resetCriteriaValues() method implemented in step 1 to reset the criteria
variables. Then, we reapply the criteria to the Employees view object by first calling
removeViewCriteria() and subsequently calling applyViewCriteria(). We also call
executeEmptyRowSet() to empty the Employees view object result set. This will, in effect
reset the af:table component on the page to display no records. In step 4, we added the
resetEmployees() to the application module client interface, so that it can be bound to
and invoked by the ViewController layer. We also redeployed the HRComponents workspace to
an ADF Library JAR.

In steps 5 and 6, we added a method action binding for the resetEmployees() method
implemented in step 3. We will call this method to reset the criteria and the Employees view
object rowset in step 9 from a custom query operation listener.

In steps 7 and 8, we defined a custom query operation listener, called
queryOperationListener() for the af:query component defined in the
queryListener.jspx page. This page was created in the Using a custom af:query listener
to allow execution of a custom application module operation recipe in this chapter.

In step 9, we wrote the necessary Java code to implement the custom query operation
listener. First, we checked for the specific operation to ensure that we are dealing with a reset
operation. We did this by retrieving the query operation from the QueryOperationEvent
by calling getOperation() on it, and comparing it to the QueryOperationEvent.
Operation.RESET operation. For a reset operation, we proceeded with executing the
resetEmployees operation binding. Calling resetEmployees will reset both the
af:query and af:table components. For all other af:query operations, we executed
the default framework processQueryOperation() method by invoking the expression
#{bindings.EmployeesCriteriaQuery.processQueryOperation}. This is done by
calling the JSFUtils helper class invokeMethodExpression() method.

Chapter 8

247

To ensure that the table will be visually updated by the custom reset operation, we added a
partial trigger to the af:table component by indicating the af:query component identifier
in its partialTriggers property.

There's more…
If you are writing a generic query operation listener and the presence of the reset operation
binding cannot be guaranteed, use the QueryModel.reset() method to reset the
af:query component only. The reset() method in this case is called for all system saved
searches as it is shown in the code snippet:

try {
 // execute custom reset
 OperationBinding op = ADFUtils.findOperation("reset");
 op.execute();
} catch (RuntimeException e) {
 // just reset the af:query component only
 QueryModel queryModel = ((RichQuery)queryOperationEvent
 .getSource()).getModel();
 for (int i = 0; i < queryModel.getSystemQueries().size();
 i++) {
 queryModel.reset(
 queryModel.getSystemQueries().get(i));
 }
}

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

ff Using a custom af:query listener to allow execution of a custom application module
operation recipe in this chapter

Backing not Baking: Bean Recipes

248

Using a session scope bean to preserve
session-wide information

Information stored in the DBMS can be preserved for the duration of the user session by
utilizing ADF business components to retrieve it, and a session scope managed bean to
preserve it throughout the user session. Using this technique allows us to access session-wide
information from any page in our application, without the need to create specific bindings for it
in each page.

This recipe demonstrates how to access and preserve session-wide information by
implementing the following use case. For each employee authenticated to access the
application, its specific information will be maintained by a session-scoped managed bean.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this, we will use the MainApplication workspace that was
developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

The recipe also uses the SharedComponents and HRComponents workspaces, which were
created in Breaking up the application in multiple workspaces Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations and in Overriding remove() to delete associated
children entities, Chapter 2, Dealing with Basics: Entity Objects respectively.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

The recipe assumes that ADF security has been enabled for the application and specific
users matching the employee's last name have been added to the jazn-data.xml file. For
information on how to enable ADF security take a look at Enabling ADF security, Chapter 9,
Handling Security, Session Timeouts, Exceptions, and Errors.

How to do it…
1.	 Open the HRComponents workspace. Create a view object called UserInfo based

on the Employees entity object.

2.	 Update the UserInfo view object query by adding the following WHERE clause to its
query: Employee.LAST_NAME = :inEmployeeName.

3.	 Add a bind variable called inEmployeeName. Ensure that the Value Type is set to
Expression and use the following Groovy expression in the Value field to initialize it:
adf.context.securityContext.userName.

Chapter 8

249

4.	 Ensure that you create both view object and view row Java classes.

5.	 Create an application module called UserInfoAppModule and add the UserInfo
view object to its data model.

6.	 Generate an application module implementation class, and add the following
methods to it. Also add these methods to the application module client interface.
public String getFirstName() {
 String firstName = null;
 UserInfoImpl usersInfo = (UserInfoImpl)getUserInfo();
 try {
 usersInfo.executeQuery();
 UserInfoRowImpl userInfo =
 (UserInfoRowImpl)usersInfo.first();
 if (userInfo != null) {
 firstName = userInfo.getFirstName ();
 }
 } catch (SQLStmtException sqlStmtException) {
 // handle exception
 }
 return firstName;
}
public String getLastName() {
 String lastName = null;
 UserInfoImpl usersInfo = (UserInfoImpl)getUserInfo();
 try {
 usersInfo.executeQuery();
 UserInfoRowImpl userInfo =
 (UserInfoRowImpl)usersInfo.first();
 if (userInfo != null) {
 lastName = userInfo.getLastName();
 }
 } catch (SQLStmtException sqlStmtException) {
 // handle exception
 }
 return lastName;
}

7.	 Redeploy the HRComponents workspace to an ADF Library JAR.

8.	 Open the MainApplication workspace and add both the HRComponents and the
SharedComponents ADF Library JARs to the ViewController project.

9.	 Create a managed bean called SessionInfoBean. Make sure that the managed
bean's scope is set to session. Also generate the managed bean class.

Backing not Baking: Bean Recipes

250

10.	 Open the SessionInfoBean.java class in the Java editor, and add the following
code to it:

private String firstName;
private String lastName;
public SessionInfoBean() {
}
public String getFirstName() {
 if (firstName == null) {
 UserInfoAppModule userInfoAppModule =
 (UserInfoAppModule)ADFUtils
 .getApplicationModuleForDataControl(
 "UserInfoAppModuleDataControl");
 firstName = userInfoAppModule.getFirstName();
 }
 return firstName;
}
public String getLastName() {
 if (lastName == null) {
 UserInfoAppModule userInfoAppModule =
 (UserInfoAppModule)ADFUtils
 .getApplicationModuleForDataControl
 ("UserInfoAppModuleDataControl");
 lastName = userInfoAppModule.getLastName();
 }
 return lastName;
}

How it works…
In steps 1 through 4, we created a new view object called UserInfo based on the
Employees entity object. Assuming that each employee will be authenticated to access
our application using the employee's last name, we will use the information available in
the EMPLOYEES database table to provide information specific to the employee currently
authenticated. In order to retrieve information specific to the authenticated employee, we
updated the UserInfo view object query by adding a WHERE clause to retrieve the specific
employee based on a bind variable (in step 2). In step 3, we created the bind variable and
used the Groovy expression adf.context.securityContext.userName to initialize it.
This expression retrieves the authenticated user's name from the SecurityContext and
uses it to query the specific employee.

Chapter 8

251

In steps 5 and 6, we created an application module called UserInfoAppModule, and added
the UserInfo view object to its data model and methods to retrieve the authenticated user's
information. For this recipe, we added the methods getFirstName() and getLastName()
to retrieve the user's first and last name respectively. These methods execute the UserInfo
view object and retrieve the first row from the result set. In each case, the specific information
is received by calling the corresponding UserInfo view row implementation class getter,
that is, getFirstName() and getLastName(). Other methods can be added to retrieve
additional user information based on your specific business requirements. In step 5, we also
exposed these methods to the application module client interface, so that the methods can
be bound and invoked from the ViewController layer.

In step 7, we redeployed the HRComponents workspace to an ADF Library JAR. Then, in step
8, we added the HRComponents along with the dependent SharedComponents ADF Library
JARs to the MainApplication's ViewController project.

Finally, in steps 9 and 10, we added a session-scoped managed bean, called
SessionInfoBean, to the MainApplication ViewController project and implemented
methods getFirstName() and getLastName() to retrieve the authenticated user's
information. These methods call the corresponding getFirstName() and getLastName()
implemented by the UserInfoAppModule application module in step 6. We got a reference
to the UserInfoAppModule application module in the SessionInfoBean constructor by
calling the ADFUtils helper class getApplicationModuleForDataControl() method.
The ADFUtils helper class was introduced in Using ADFUtils/JSFUtils, Chapter 1,
Pre-requisites to Success: ADF Project Setup and Foundations.

Now, we can use the following expressions on any page of our application to display the
authenticated user's information:

Authenticated user's information Expression
First Name #{SessionInfoBean.firstName}

Last Name #{SessionInfoBean.lastName}

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Handling
Security, Session Timeouts, Exceptions and Errors

Backing not Baking: Bean Recipes

252

Using an af:popup during long running tasks
For long-running tasks in your application, a pop-up message window can be raised to alert the
users that the specific task may take a while. This can be accomplished using a combination of
ADF Faces components (af:popup and af:dialog) and some JavaScript code.

In this recipe, we will initiate a long-running task in a managed bean, and raise a pop-up for
the duration of the task to alert us to the fact that this operation may take awhile. We will hide
the pop-up once the task completes.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this, we will use the MainApplication workspace that was
developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

How to do it…
1.	 Open the MainApplication workspace and create a new JSPX page called

longRunningTask.jspx based on any of the quick start layouts.

2.	 Drop a Button (af:commandButton) component from the Component Palette to
the page. You may need to surround the button with an af:toolbar component.
Using the Property Inspector, change the button's Text property to Long Running
Task and set its PartialSubmit property to true.

3.	 Create an action listener for the button by selecting Edit… from the Property Menu
next to the ActionListener property in the Property Inspector. Create a new managed
bean called LongRunningTaskBean and a new method called longRunningTask.

4.	 Edit the LongRunningTaskBean Java class and add the following code to the
longRunningTask() method:
try {
 // wait for 5 seconds
 Thread.currentThread().sleep(5000);
 } catch (InterruptedException e) {
}

5.	 Return to the longRunningTask.jspx page editor. Right-click on the
af:commandButton in the Structure window and select Insert Inside
af:commandButton | ADF Faces…. From the Insert ADF Faces Item dialog, select
Client Listener. In the Insert Client Listener dialog, enter longRunningTask for
the Method field and select action for the Type field.

Chapter 8

253

6.	 Add an af:resource to the af:document tag. Make sure that the af:resource
type attribute is set to javascript and add the following JavaScript code inside it:
function longRunningTask(evt) {
 var popup = AdfPage.PAGE.findComponentByAbsoluteId(
 'longRunningPopup');
 if (popup != null) {
 AdfPage.PAGE.addBusyStateListener(popup,
 busyStateListener);
 evt.preventUserInput();
 }
}
function busyStateListener(evt) {
 var popup = AdfPage.PAGE.findComponentByAbsoluteId(
 'longRunningPopup');
 if (popup != null) {
 if (evt.isBusy()) {
 popup.show();
 }
 else if (popup.isPopupVisible()) {
 popup.hide();
 AdfPage.PAGE.removeBusyStateListener(popup,
 busyStateListener);
 }
 }
}

7.	 Finally, add a Popup (af:popup) ADF Faces component to the page with an
embedded Dialog (af:dialog) component in it. Ensure that the pop-up identifier
is set to longRunningPopup and that its ContentDelivery attribute is set to
immediate. Also add an af:outputText component to the dialog with some text
indicating a long running process. Your pop-up should look similar to the following:

<af:popup childCreation="deferred" autoCancel="disabled"
 id="longRunningPopup" contentDelivery="immediate">
<af:dialog id="d2" closeIconVisible="false" type="none"
 title="Information">
<af:outputText value="Long operation in progress... Please
 wait..." id="ot1"/>
</af:dialog>
</af:popup>

Backing not Baking: Bean Recipes

254

How it works…
In steps 1 and 2, we created a JSF page called longRunningTask.jspx and added a
button component to it. When pressed, the button will initiate a long-running task through
an action listener. The action listener is added to the button in steps 3 and 4. It is defined
to a method called longRunningTask() in a managed bean. The implementation of
longRunningTask() simply waits for 5 seconds (step 4). We have also ensured (in step 2)
that the button component's partialSubmit property is set to true. This will enable us to
call the clientListener method that is added in steps 5 and 6.

In steps 5 and 6, we defined a clientListener for the button component. The client
listener is implemented by the longRunningTask() JavaScript method, added to the
page in step 6. The longRunningTask() JavaScript method adds a busy state listener
for the pop-up component (the pop-up itself is added to the page in step 7) by calling
addBusyStateListener() and prevents any user input by calling preventUserInput()
on the JavaScript event. The busy state listener is implemented by the JavaScript method
busyStateListener(). In it, we hide the pop-up and remove the busy state listener once
the event completes.

Finally, in step 7, we added the longRunningPopup pop-up to the page. The pop-up is raised
by the busyStateListener() as long as the event is busy (for 5 seconds). We made sure
that the pop-up's contentDelivery attribute was set to immediate to deliver the pop-up
content immediately once the page is loaded.

To test the recipe, right-click on the longRunningTask.jspx page in the Application
Navigator and select Run or Debug from the context menu. When you click on the button, the
pop-up is raised for the duration of the long-running task (the action listener in the managed
bean). The pop-up is hidden once the long-running task completes.

Chapter 8

255

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

Using an af:popup to handle pending
changes

In the recipe Determining whether the current transaction has pending changes in this
chapter, we showed how to establish whether there are uncommitted pending changes to the
current transaction. In this recipe, we will use the functionality implemented in that recipe to
provide a generic way to handle any pending uncommitted transaction changes. Specifically,
we will update the CommonActions framework introduced in Using a generic backing bean
actions framework, Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations
to raise a pop-up message window asking you whether you want to commit the changes.
We will add the pop-up window to the TemplateDef1 page template definition that we
created in Using page templates, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations.

Getting ready
We will modify the TemplateDef1 page template definition and the CommonActions actions
framework. Both reside in the Sharedcomponents workspace, which is deployed as an ADF
Library JAR and it was introduced in Breaking up the application in multiple workspaces,
Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Furthermore, we will utilize the HRComponents workspace, also deployed as an ADF Library
JAR. This workspace was introduced in Overriding remove() to delete associated children
entities, Chapter 2, Dealing with Basics: Entity Objects.

Finally, you will need to create a skeleton Fusion Web Application (ADF) workspace before
you proceed with the recipe. For this, you can use the MainApplication workspace
introduced in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

Backing not Baking: Bean Recipes

256

How to do it…
1.	 Open the SharedComponents workspace, locate the TemplateDef1 page template

definition and open it in the page editor.

2.	 Add a Popup (af:popup) component to the page. Set the pop-up identifier to
CreatePendingChanges. Add an embedded Dialog (af:dialog) component to
the pop-up and set its Title attribute to Confirm Pending Changes.

3.	 Add an Output Text (af:outputText) component to the dialog and set its
Value attribute to Pending changes exist. Do you want to save changes?
Also add a Button (af:commandButton) component to the dialog and set its
ActionListener property to #{CommonActionsBean.onContinueCreate}.
The CreatePendingChanges dialog definition should look similar to the following:
<af:popup id="CreatePendingChanges">
<af:dialog id="pt_d2" title="Confirm Pending Changes"
 type="cancel">
<af:outputText value=
 "Pending changes exist. Do you want to save changes?"
 id="pt_ot2"/>
<f:facet name="buttonBar">
<af:commandButton id=
 "continuePendingChangesButton" text="Continue"
 binding=
 "#{CommonActionsBean.onContinueCreate}"/>
</f:facet>
</af:dialog>
</af:popup>

4.	 Open the CommonActions Java class in the Java editor and add the following
methods to it:
public void create(final ActionEvent actionEvent) {
 if (ADFUtils.hasChanges()) {
 onCreatePendingChanges(actionEvent);
 } else {
 onContinueCreate(actionEvent);
 }
}
public void onCreatePendingChanges(
 final ActionEvent actionEvent) {
 ADFUtils.showPopup("CreatePendingChanges");
}
public void onContinueCreate(final ActionEvent actionEvent) {
 CommonActions actions = getCommonActions();
 actions.onBeforeCreate(actionEvent);
 actions.onCreate(actionEvent);

Chapter 8

257

 actions.onAfterCreate(actionEvent);
}
protected void onBeforeCreate(final ActionEvent actionEvent) {
 // commit before creating a new record
 ADFUtils.execOperation(Operations.COMMIT);
}
public void onCreate(final ActionEvent actionEvent) {
 ADFUtils.execOperation(Operations.INSERT);
}
protected void onAfterCreate(final ActionEvent actionEvent) {
}

5.	 Redeploy the SharedComponents workspace into an ADF Library JAR.

6.	 Open the main workspace application and ensure that both the SharedComponents
and the HRComponents ADF Library JARs are added to the ViewController project.

7.	 Create a JSPX page called pendingChanges.jspx based on the TemplatedDef1
template. Ensure that the af:pageTemplate component identifier in the page is set
to generic.

8.	 Expand the Data Controls section of the Application Navigator and drop the
Employees collection under the HrComponentsAppModuleDataControl to the
page as an ADF Form.

9.	 Expand the Operations node under the Employees collection and drop a
CreateInsert operation as an ADF Button to the page. Change the CreateInsert
button's ActionListener property to the CommonActions framework create()
method. The ActionListener expression should be #{CommonActionsBean.
create}.

10.	 Switch to the page bindings and add an action binding for the
HrComponentsAppModuleDataControl Commit operation.

How it works…
In steps 1 through 3, we added an af:popup component called CreatePendingChanges
to the TemplateDef1 page template definition. This is the popup that will be raised by the
CommonActions framework if there are any unsaved transaction changes when we attempt
to create a new record. This is done by the CommonActions onCreatePendingChanges()
method (see step 4). Note that in step 3, we added a Continue button, which when
pressed, saves the uncommitted changes. This is done through the button's action listener
implemented by the onContinueCreate() method in the CommonActions framework (see
step 4). If we press Cancel, the uncommitted changes are not saved (are still pending) and
the creation of the new row is never initiated.

Backing not Baking: Bean Recipes

258

In step 4, we updated the CommonActions framework by adding the methods to handle the
creation of a new row. Specifically, the following methods were added:

ff create(): This method calls the ADFUtils helper class method hasChanges()
to determine whether there are uncommitted transaction changes. If it finds
any, it calls onCreatePendingChanges() to handle them. Otherwise, it calls
onContinueCreate() to continue with the row creation action.

ff onCreatePendingChanges(): The default implementation displays the
CreatePendingChanges pop-up.

ff onContinueCreate(): Called either directly from create()—if there are no
pending changes—or from the CreatePendingChanges pop-up upon pressing
the Continue button. Implements the actual row creation by calling the methods
onBeforeCreate(), onCreate(), and onAfterCreate().

ff onBeforeCreate(): Called to handle any actions prior to the creation of the new
row. The default implementation invokes the Commit action binding.

ff onCreate(): Called to handle the creation of the new row. The default
implementation invokes the CreateInsert action binding.

ff onAfterCreate(): Called to handle any post creation actions. The default
implementation does nothing.

In step 5, we redeploy the SharedComponents workspace to an ADF Library JAR. Then, in
step 6, we add it along with the HRComponents ADF Library JAR to the MainApplication's
ViewController workspace.

In step 6, we created a JSPX page called pendingChanges.jspx based on the
TemplatedDef1 template. We made sure that the template identifier was set to generic,
the same as the identifier of the af:pageTemplateDef component in the TemplatedDef1
template definition. This is necessary because the code in the ADFUtils.showPopup()
helper method, which is used to raise a pop-up, prepends the pop-up identifier with the
template identifier.

In step 8, we created an ADF Form by dropping the Employees collection to the page. The
Employees collection is part of the HrComponentsAppModuleDataControl data control,
which is available once the HRComponents ADF Library JAR is added to the project.

Then, in step 9, we dropped the CreateInsert operation, available under the Employees
collection, as an ADF Button to the page. Furthermore, we changed its actionListener
property to the CommonActions create() method. This will handle the creation of the new
row in a generic way and it will raise the pending changes pop-up, if there are any unsaved
transaction changes.

Finally, in step 10, we added an action binding for the Commit operation. This is invoked
by the CommonActions onBeforeCreate() method to commit any transaction
pending changes.

Chapter 8

259

The functionality to raise a pop-up message window indicating that there
are pending unsaved transaction changes and committing the changes—
as it is implemented in this recipe—applies specifically to the new row
creation action. Similar functionality will need to be added for the other
actions in your application, for instance, navigating to the next, previous,
first, and last row in a collection.

See also
ff Determining whether the current transaction has pending changes, in this chapter.

ff Using page templates, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

ff Using a generic backing bean actions framework, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations

ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations

Using an af:iterator to add pagination
support to a collection

A collection in an ADF Fusion web application, when dropped from the Data Controls window
to a JSF page as an ADF Table, may be iterated through using the af:table ADF Faces
component. Alternatively, when dropped as an ADF Form, it may be iterated a row at a time
using the accompanying form buttons which can optionally be created by JDeveloper.

In this recipe, we will show how to add pagination support to a collection by utilizing the
iterator (af:iterator) ADF Faces component along with the necessary scrolling support
provided by a managed bean.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this, we will use the MainApplication workspace that was
developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding
remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

Backing not Baking: Bean Recipes

260

How to do it…
1.	 Open the main workspace application. Ensure that the HRComponents ADF Library

JAR is added to its ViewController project.

2.	 Create a new JSP XML page called collectionPagination.jspx based on a
quick start layout.

3.	 Expand the Data Controls window, locate the Employees collection under
the HrComponentsAppModuleDataControl and drop it on the page as an
ADF Read-only Table.

4.	 Switch to the page bindings editor, and with the EmployeesIterator iterator
selected in the Executables list, change its RangeSize property to the desired page
size. We will use 3 for this recipe.

5.	 Using the Component Palette, locate an Iterator component and drop it to the page.
Using the Property Inspector, update the af:iterator component Value, Var,
and Rows properties as shown in the following code fragment:
<af:iterator id="i1"
 value="#{bindings.Employees.collectionModel}" var="row"
 rows="#{bindings.Employees.rangeSize}"/>

6.	 Using the Property Inspector, bind the af:iterator component to a newly created
managed bean, called CollectionPaginationBean. Now the af:iterator
definition should look similar to the following:
<af:iterator id="i1"
 value="#{bindings.Employees.collectionModel}" var="row"
 rows="#{bindings.Employees.rangeSize}"
 binding="#{CollectionPaginationBean.employeesIterator}"/>

7.	 Move the af:table column contents (the af:outputText components) inside the
af:iterator component. Remove the af:table component when done.

8.	 Surround the af:iterator with a Panel Box (af:panelBox) component. Drop
a Toolbar component inside the panel box's toolbar facet. Add four buttons to the
toolbar called First, Previous, Next, and Last.

9.	 For each of the buttons, add the action listeners and the disabled conditions shown
in the following code fragment:
<af:panelBox
 text="Page # #{CollectionPaginationBean.pageNumber}"
 id="pb2">
<f:facet name="toolbar">
<af:toolbar id="t1">
<af:commandButton text="First" id="cb1"
 actionListener="#{CollectionPaginationBean.onFirst}"
 disabled="#{CollectionPaginationBean.previousRowAvailable
 eq false}"/>

Chapter 8

261

<af:commandButton text="Previous" id="cb2"
 actionListener="#{CollectionPaginationBean.onPrevious}"
 disabled="#{CollectionPaginationBean.previousRowAvailable
 eq false}"/>
<af:commandButton text="Next" id="cb3"
 actionListener="#{CollectionPaginationBean.onNext}"
 disabled="#{CollectionPaginationBean.nextRowAvailable
 eq false}"/>
<af:commandButton text="Last" id="cb4"
 actionListener="#{CollectionPaginationBean.onLast}"
 disabled="#{CollectionPaginationBean.nextRowAvailable
 eq false}"/>
</af:toolbar>
</f:facet>
<af:iterator id="i1"
 value="#{bindings.Employees.collectionModel}" var="row"
 rows="#{bindings.Employees.rangeSize}"
 binding="#{CollectionPaginationBean.employeesIterator}">

10.	 Open the CollectionPaginationBean managed bean in the Java editor and add
the following code to it:

public void onFirst(ActionEvent actionEvent) {
 this.employeesIterator.setFirst(0);
}
public void onPrevious(ActionEvent actionEvent) {
 this.employeesIterator.setFirst(
 this.employeesIterator.getFirst() - PAGE_SIZE);
}
public void onNext(ActionEvent actionEvent) {
 this.employeesIterator.setFirst(
 this.employeesIterator.getFirst() + PAGE_SIZE);
}
public void onLast(ActionEvent actionEvent) {
 this.employeesIterator.setFirst(
 employeesIterator.getRowCount() -
 employeesIterator.getRowCount() % PAGE_SIZE);
}
public boolean isPreviousRowAvailable() {
 return this.employeesIterator.getFirst() != 0;
}
public boolean isNextRowAvailable() {
 return (employeesIterator.getRowCount() >=
 employeesIterator.getFirst() + PAGE_SIZE);
}
public int getPageNumber() {
 return (this.employeesIterator.getFirst()/PAGE_SIZE) + 1;
}

Backing not Baking: Bean Recipes

262

How it works…
In step 1, we ensure that the HRComponents ADF Library JAR is added to the ViewController
project of the MainApplication workspace. We will be using this library in order to access
the Employees collection available through the HrComponentsAppModule. The library can
be added to the project either through the Resource Palette or via the Project Properties |
Libraries and Classpath options.

We created a new JSF page called collectionPagination.jspx in step 2, and in step
3, dropped the Employees collection on the page as an ADF Read-only Table component
(af:table). When we did this JDeveloper created the underlying iterator and tree bindings.
Then, in step 4, we switched to the page bindings and change the EmployeesIterator
range size to our desired value. Note that this page size is indicated in the managed bean
created in step 6 by the constant definition PAGE_SIZE and set to 3 for this recipe.

In steps 5 through 7, we setup an iterator (af:iterator) component. First, we dropped
the iterator component on the page from the Component Palette and then we updated
its value property (in step 5) to indicate the CollectionModel of the Employees tree
binding, created earlier when we dropped the Employees collection to the page as a table.
In addition, in step 5, we updated its rows and var attributes so that we will be able to copy
over the table column contents to the af:iterator component. We did this in step 7. In step
6, we also bound the af:iterator component to a newly created managed bean called
CollectionPaginationBean as a UIXIterator variable called employeesIterator.

In steps 8 and 9, we added a navigation toolbar to the page along with buttons for scrolling
through the Employees collection namely buttons First, Previous, Next, and Last. For
each button, we added the appropriate action listener and disabled the condition methods
implemented by the CollectionPaginationBean managed bean (implemented in step
10). For the complete page source code, refer to the book's relevant source code.

Finally, in step 10, we implemented the action listener and disabled the condition methods for
the navigation buttons. These methods are explained as follows:

ff onFirst(): Action listener for the First button. Uses the bound iterator's
setFirst() method with an argument of 0 (the index of the first row) to set the
iterator to the beginning of the collection.

ff onPrevious(): Action listener for the Previous button. Sets the first row to the
current value decreased by the page size. This will scroll the collection to the
previous page.

ff onNext(): Action listener for the Next button. Sets the first row to the current value
increased by the page size. This will scroll the collection to the next page.

ff onLast(): Action listener for the Last button. Sets the first row to the first row of the
last page. We call the getRowCount() iterator method to determine the iterator's
row count and subtract the last page's rows from it. This will scroll the collection to
the first row of the last page.

Chapter 8

263

ff isPreviousRowAvailable(): Disable condition for the First and Previous buttons.
Returns true if the iterator's row index is not the first one.

ff isNextRowAvailable(): Disable condition for the Last and Next buttons. Returns
true if there are available rows beyond the current page.

ff getPageNumber(): It is used in the page to display the current page number.

To test the recipe, right-click on the collectionPagination.jspx in the Application
Navigator and select Run or Debug from the context menu.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

9
Handling Security,
Session Timeouts,

Exceptions,
and Errors

In this chapter, we will cover:

ff Enabling ADF security

ff Using a custom login page

ff Accessing the application's security information

ff Using OPSS to retrieve the authenticated user's profile from the identity store

ff Detecting and handling session timeouts

ff Using a custom error handler to customize how exceptions are reported to the
ViewController

ff Customizing the error message details

ff Overriding attribute validation exceptions

Handling Security, Session Timeouts, Exceptions, and Errors

266

Introduction
The ADF security framework provides authentication and authorization services for the
ADF Fusion web application. To a certain degree, this security framework is supported in
JDeveloper through a number of wizards and overview editors (available via the Application
| Secure menu options) that allow interactive declarative configuration of certain parts of the
application's security configuration. The security overview editors simplify the work needed to
secure the application by authorizing ADF resources in a declarative manner. This resource
authorization is achieved at the task flow, page definition and business components (entity
objects and their attributes) levels. Authorization defined for task flows protects not only the
task flow's entry point but all the pages included in the task flow as view activities.

Configuring the application's session timeout can be done through a number of options in the
application's deployment descriptor file web.xml.

Customization of error and exception handling for an ADF Fusion web application can be
achieved by overriding certain framework classes and by creating your own exception classes.

Enabling ADF security
Enabling security for an ADF Fusion web application involves enabling both user
authentication and authorization. Authentication refers to enabling users to access your
application using a credentials validation login facility. On the other hand, authorization refers
to controlling access to the application resources by defining and configuring security policies
on ADF application resources, such as task flows, page definitions, and business components
(entity objects and their attributes). ADF security is enabled for the Fusion web application
through the use of the Configure ADF Security wizard available under the Application |
Secure menu option. Moreover, JDeveloper provides additional declarative support through
the jazn-data.xml security configuration overview editor, and through declarative security
support at the business components level using the entity object overview editor (General and
Attributes tabs).

In this recipe, we will go over the process of enabling security for an ADF Fusion web
application by creating and configuring the necessary artifacts, such as login, error and
welcome pages, redirection, user and role creation, and configuration using the Configure
ADF Security wizard.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this, we will use the MainApplication workspace that was
developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

Chapter 9

267

How to do it…
1.	 Open the MainApplication workspace. From the Application menu select Secure

| Configure ADF Security… to start the Configure ADF Security wizard.

2.	 In the Enable ADF Security page, select ADF Authentication and Authorization and
click Next.

3.	 In the Select authentication type page, select the appropriate ViewController project
from the Web Project combo box. Select Form-Based Authentication and click on
the Generate Default Pages checkbox. Click Next to proceed.

4.	 In the Enable automatic policy grants page, select Grant to All Objects. Click Next
to proceed.

5.	 In the Specify authenticated welcome page, click on the Redirect Upon Successful
Authentication checkbox and specify your main application page. You can click on
the Generate Default checkbox to generate a default welcome.jspx page. Click
Next to proceed. In the Summary page, review your selections and click Finish to
complete the security configuration wizard.

Handling Security, Session Timeouts, Exceptions, and Errors

268

6.	 Select Users from the Application | Secure menu to open the jazn-data.xml
security configuration overview editor. With the Users tab selected, create a user
called user1 and assign to it the test-all role. Use user1234 for the password.

7.	 Locate the web.xml deployment descriptor in the Web Content | WEB-INF folder in
the Application Navigator and double-click on it to open it. Click on the Source tab.
Change the success_url parameter value for the adfAuthentication servlet to
/faces/welcome.jspx.

8.	 Add the following welcome file list to the web.xml deployment descriptor:
<welcome-file-list>
 <welcome-file>/faces/welcome.jspx</welcome-file>
</welcome-file-list>

9.	 Open the welcome.jspx page in the page editor and add a Button
(af:commandButton) component. Change the button's text property to Logout.
Using the property menu add an Action to a method called logout defined in a
newly created managed bean called AuthenticationBean.

10.	 Open the AuthenticationBean managed bean in the Java editor and add the
following code to the logout() method:

// create a dispatcher and forward to the login.html page
final String LOGOUT_URL =
 "/adfAuthentication?logout=true&end_url=login.html";
FacesContext ctx = FacesContext.getCurrentInstance();
HttpServletRequest request =
 (HttpServletRequest)ctx.getExternalContext().getRequest();

Chapter 9

269

HttpServletResponse response =
 (HttpServletResponse)ctx.getExternalContext()
getResponse();
RequestDispatcher dispatcher =
 request.getRequestDispatcher(LOGOUT_URL);
try {
 dispatcher.forward(request, response);
} catch (Exception e) {
// log exception
}
ctx.responseComplete();
return null;

How it works…
To enable ADF security for our ADF Fusion web application, we have used the Configure ADF
Security wizard, available in JDeveloper through the Application | Secure | Configure ADF
Security… menu selection. Using the wizard will allow us to enable security in a declarative
manner as it will create all related security artifacts, including a login page, an error page,
redirection upon a successful authentication to a specific page (welcome.jspx in our case),
a test-all application role assigned to all application task flows and securable pages, and
configuration of the adfAuthentication servlet in web.xml. We started the ADF security
configuration wizard in step 1.

In step 2, we choose to enable both ADF authentication and authorization. This option
enables the ADF authentication servlet adfAuthentication to enforce access to the
application through configured login and logout pages. The adfAuthentication servlet is
added to web.xml deployment descriptor.

This also adds a security constraint for the adfAuthentication resource, a security role
called valid-users to allow all users to access the adfAuthentication resource, and a
filter mapping to web.xml.

The valid-users role is mapped in the weblogic.xml configuration file to an implicit
group called users defined in WebLogic. WebLogic configures all authenticated users to be
members of the users group. The following code snippet from weblogic.xml shows this
role mapping:

<security-role-assignment>
 <role-name>valid-users</role-name>
 <principal-name>users</principal-name>
</security-role-assignment>

This step also configures authorization for the application, which is enforced through
authorization checks on application resources based on configured application roles assigned
to them and to authenticated users.

Handling Security, Session Timeouts, Exceptions, and Errors

270

In step 3, we select the authentication type. In this case, we choose form-based
authentication and let the wizard create default login and error pages. You could create
your own login page using ADF Faces components and handle the authorization process
yourself, as it is demonstrated in Using a custom login page in this chapter. The generated
login page defines a form with the standard j_security_check action, which accepts the
username and password as input and passes them to the j_SecurityCheck method within
the container's security model. The wizard updates the web.xml file to indicate form-based
authentication and identify the login and error pages as shown in the following code snippet:

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/error.html</form-error-page>
 </form-login-config>
</login-config>

In step 4, by selecting Enable automatic policy grants, we allow the wizard to create a test-
all application role and assign it to all application resources. This will allow us to create
users with full access to the application resources once we assign the test-all role to
them. At a later phase of the application development process, you should remove this role.
Also, note that the test-all role is granted to anonymous users as well.

In step 5, we create a default welcome page that we will be redirected to upon a successful
authentication. This option added the success_url initialization parameter to the
adfAuthentication servlet. We have prepended the welcome.jspx page with /faces/
(see step 7) since we will be adding ADF Faces components to it in step 9. Step 5 completes
the security wizard. For a complete list of the files that are updated by the security wizard and
their changes, consult the table Files Updated for ADF Authentication and Authorization in
section What Happens When You Enable ADF Security of the Fusion Developer's Guide for
Oracle Application Development Framework, which can be found at http://docs.oracle.
com/cd/E24382_01/web.1112/e16182/toc.htm.

In step 6, we create a user called user1. We will use this user to test the recipe. We map the
test-all application role to the user to allow access to all of the application resources.

We add a welcome-file-list configuration to the web.xml file indicating our /faces/
welcome.jspx welcome page in step 8, so that we will be successfully redirected to the
welcome page upon successful authentication. This will allow us to test the recipe by running
the login.html page.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Chapter 9

271

In step 9, we added a Button component to the welcome page to perform the application
log out. Log out is done by defining an action called logout implemented by an
AuthenticationBean managed bean. The logout action was implemented by the
logout() method in step 10. The method creates a RequestDispatcher for the logout
URL and calls its forward() method to redirect the request. The logout URL passes a
logout parameter to the adfAuthentication servlet with the value true to indicate a
logout action. It also specifies an end_url parameter to the adfAuthentication servlet
with the login.html URL. This in effect logs us out of the application and redirects us back
to the login.html page.

To test the recipe, right-click on the login.html page and go through the authorization
process. You can log in using the user1/user1234 credentials. Upon successful
authorization, you will be forwarded to the welcome.jspx page. Click on the Logout button
to log out from the application.

There's more…
Note that the Configure ADF Security wizard does not enable authorization for pages that
are not associated with databound components, that is, they neither have associated page
definition bindings and they are not associated with a specific task flow. In such cases, these
pages appear in the Resource Grants section of the jazn-data.xml overview editor as
unsecurable pages. The welcome page, welcome.jspx page in this recipe, is one such
case. You can still enforce authorization checking in these cases by creating an empty page
definition file for the page. This is done by right-clicking on the page and selecting Go to Page
Definition from the context menu. In the Confirm Create New Page Definition dialog click on
the Yes button to proceed with the creation of the page definition file.

For more information about enabling and configuring ADF security, consult chapter Enabling
ADF Security in a Fusion Web Application in the Fusion Developer's Guide for Oracle
Application Development Framework, which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16182/toc.htm.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Using a custom login page, Chapter 9, Handling Security, Session Timeouts,
Exceptions and Errors

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Handling Security, Session Timeouts, Exceptions, and Errors

272

Using a custom login page
In the recipe Enabling ADF security in this chapter, we've seen how to enable ADF security
for an ADF Fusion web application using the Configure ADF Security wizard (available in
JDeveloper through the Application | Secure menu). In one of the steps, the wizard allows
for the creation of a default login page that handles the user authorization process. For the
specific step in that recipe, we have chosen to create a default login page.

In this recipe, we will create a custom login page utilizing ADF Faces components. Moreover,
we will handle the user authentication ourselves using custom login authentication code
implemented by the AuthenticationBean managed bean. This managed bean was
introduced in the Enabling ADF security recipe in this chapter.

Getting ready
You need to complete the Enabling ADF security recipe in this chapter before you start
working on this recipe. The Enabling ADF security recipe requires a skeleton Fusion Web
Application (ADF) workspace. For this purpose, we will use the MainApplication
workspace that was developed in Breaking up the application in multiple workspaces,
Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

How to do it…
1.	 Open the MainApplication workspace in JDeveloper. Locate and open the

AuthenticationBean managed bean in the Java editor. Add the following code
to it:
private String username;
private String password;
public void setUsername(String username) {
 this.username = username.toLowerCase();
}
public String getUsername() {
 return this.username;
}
public void setPassword(String password) {
 this.password = password;
}
public String getPassword() {
 return this.password;
}
public String login() {
 final String WELCOME_URL =
 "/adfAuthentication?success_url=/faces/welcome.jspx";

Chapter 9

273

 FacesContext ctx = FacesContext.getCurrentInstance();
 HttpServletRequest request =
 (HttpServletRequest)ctx.getExternalContext().getRequest();
 if (authenticate(request)) {
 HttpServletResponse response =
 (HttpServletResponse)ctx.getExternalContext().getResponse();
 RequestDispatcher dispatcher =
 request.getRequestDispatcher(WELCOME_URL);
 try {
 dispatcher.forward(request, response);
 } catch (Exception e) {
 reportLoginError(e.getMessage());
 }
 ctx.responseComplete();
 }
 return null;
}
private boolean authenticate(HttpServletRequest request) {
 String password = getPassword() == null ? "" : getPassword();
 CallbackHandler handler = new URLCallbackHandler(
 getUsername(), password.getBytes());
 boolean authenticated = false;
 try {
 Subject subject = Authentication.login(handler);
 ServletAuthentication.runAs(subject, request);
 ServletAuthentication.generateNewSessionID(request);
 authenticated = true;
 } catch (FailedLoginException failedLoginException) {
 reportLoginError("Wrong credentials specified.");
 } catch (LoginException loginException) {
 reportLoginError(loginException.getMessage());
 }
 return authenticated;
}
private void reportLoginError(String errorMessage) {
 FacesMessage fm = new FacesMessage(
 FacesMessage.SEVERITY_ERROR, null, errorMessage);
 FacesContext ctx = FacesContext.getCurrentInstance();
 ctx.addMessage(null, fm);
}

2.	 Create a page called login.jspx based on a quick start layout.

Handling Security, Session Timeouts, Exceptions, and Errors

274

3.	 Using the Component Palette, drop two Input Text (af:inputText) components
on the page, one for the username and another for the password. Set the Secret
property of the password input text to true. In addition, set the value attribute of
the username and password input text components (you can use the Expression
Builder dialog to do this) to the expressions #{AuthenticationBean.username}
and #{AuthenticationBean.username} respectively.

4.	 Drop a Button (af:commandButton) component on the login page and change
its text property to Login. Moreover, set the button's action property to the
expression #{AuthenticationBean.login}.

5.	 Open the web.xml deployment descriptor located in the Web Content | WEB-INF
folder in the Application Navigator and switch to the Security tab. Change the Login
Page to /faces/login.jspx.

6.	 Finally, change the LOGOUT_URL constant definition in the logout() method of the
AuthenticationBean managed bean to /adfAuthentication?logout=true&
end_url=/faces/login.jspx.

How it works…
In step 1, we added a login() method to the AuthenticationBean managed bean
(introduced in the Enabling ADF security recipe in this chapter to handle the logout
functionality), to handle the user authentication process. The login() method is set to the
action property of the Login button added to the login page in step 4. To authenticate the
user, we call the authenticate() helper method from the login() method. The code
in authenticate() retrieves the username and password values supplied by the user
and calls the static Authentication.login() to create a javax.security.auth.
Subject. It subsequently uses the Subject when calling ServletAuthentication.
runAs() to authenticate the request. The authentication process completes by calling
ServletAuthentication.generateNewSessionID() to generate a new session
identifier. Once the user is authenticated, the request is forwarded to the welcome page. This
is done by calling forward() on a RequestDispatcher object and specifying the welcome
page URL. The welcome page URL is specified using the parameter success_url to the
adfAuthentication servlet. It is identified by the constant definition WELCOME_URL, which
is defined as: /adfAuthentication?success_url=/faces/welcome.jspx.

Furthermore, we have added setters and getters for the username and password. These
are specified as value attributes to the corresponding username and password input text
components that are added to the login page in step 3.

In steps 2 through 4, we created the custom login page. We added two input text fields that
we will use to specify the login credentials (username and password), and a Login button,
which when pressed will initiate the authentication process. The username and password
input text value attributes are bound to the username and password attributes of the
AuthenticationBean managed bean respectively. Moreover, the Login button action
property is set to the login() method of the AuthenticationBean managed bean.

Chapter 9

275

In step 5, we updated the login page configuration in web.xml to point to the custom login
page. Note how we prepended the login page URL with /faces/ to allow processing of the
page by the faces servlet, since it contains ADF Faces components.

Finally, we updated the LOGOUT_URL constant used by the logout() method in the
AuthenticationBean managed bean, so that we are redirected to our custom login
page instead.

To test the recipe, right-click on the login.jspx page and go through the authorization
process. You can use the user1/user1234 credentials. Upon successful authorization, you
should be forwarded to the welcome.jspx page.

There's more…
Note that the way we have explained programmatic authentication in this recipe is proprietary
to the WebLogic Server. The recipe will have to be adapted using similar APIs offered by other
application servers.

For more information about creating a custom login page, consult section Creating a
Login Page in the Fusion Developer's Guide for Oracle Application Development Framework,
which can be found at http://docs.oracle.com/cd/E24382_01/web.1112/e16182/
toc.htm.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Enabling ADF security, Chapter 9, Handling Security, Session Timeouts, Exceptions
and Errors

Accessing the application's security
information

You can access the application's security information at the ViewController layer either through
Java code in a managed bean or through Expression Language (EL) in your JSF pages by
utilizing the methods available via the oracle.adf.share.security.SecurityContext
bean. These methods will allow you to determine whether authorization and/or authentication
are enabled in your application, the roles assigned to the authenticated user, whether the
user is assigned a specific role, and so on. At the ADF-BC level, security information can be
accessed through the methods available in the oracle.jbo.Session.

In this recipe, we will see how to access the application's security information from a managed
bean, a JSF page and at the ADF-BC level.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Handling Security, Session Timeouts, Exceptions, and Errors

276

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this purpose, we will use the MainApplication workspace
that was developed in Breaking up the application in multiple workspaces Chapter 1,
Pre-requisites to Success: ADF Project Setup and Foundations. The recipe assumes that
you have enabled ADF security by completing recipes Enabling ADF security and Using a
custom login page in this chapter.

The recipe also uses the HRComponents workspace, which was created in Overriding
remove() to delete associated children entities. Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections
to the HR schema.

How to do it…
1.	 Open the HRComponents workspace and locate the Employees custom row

implementation Java class EmployeesRowImpl.java in the Application Navigator.
Double-click on it to open it in the Java editor.

2.	 Override the isAttributeUpdateable() method and add the following code to it:
// allow employee changes only if the user has the
// 'AllowEmployeeChanges' role
return ADFContext.getCurrent().getSecurityContext().isUserInRole(
 "AllowEmployeeChanges")
 ? super.isAttributeUpdateable(i) : false;

3.	 Redeploy the HRComponents workspace to an ADF Library JAR.

4.	 Open the MainApplication workspace. Add the HRComponents ADF Library JAR
to the ViewController project.

5.	 Create a JSPX page called applicationSecurity.jspx and drop the Employees
collection (available under the HrComponentsAppModuleDataControl data
control in the Data Controls window) as an ADF Form on it.

6.	 Add a Button (af:commandButton) component to the page. Using the Property
Inspector, change the button's Disabled property to #{securityContext.userIn
Role['AllowEmployeeChanges'] eq false}.

7.	 Add an action listener to the button component by defining a new
managed bean called ApplicationSecurityBean and a method called
onApplicationSecurity.

Chapter 9

277

8.	 Open the ApplicationSecurityBean managed bean and add the following code
to the onApplicationSecurity() method:
// check for user having the 'AllowEmployeeChanges' role
if (ADFContext.getCurrent().getSecurityContext()
 .isUserInRole("AllowEmployeeChanges")) {
 FacesContext context =
 FacesContext.getCurrentInstance();
 context.addMessage(null,new FacesMessage
 (FacesMessage.SEVERITY_INFO, "User is allowed to
 edit the employee data.", null));
}

9.	 Select Application Roles from the Application | Secure menu. Create a new
application role called AllowEmployeeChanges. Click on the Add User or Role
button (the green plus sign icon) in the Mappings section, then Add User to map the
user1 user to the AllowEmployeeChanges role.

10.	 Select Resource Grants from the Application | Secure menu. Select Web Page
for the Resource Type and locate the applicationSecurity page. Click on the Add
Grantee button (the green plus sign icon) in the Granted To section, then select Add
Application Role from the menu. Add the AllowEmployeeChanges role ensuring
that the view action in the Actions section is selected.

How it works…
In steps 1 through 3, we have updated the HRComponents ADF Library JAR in order to
demonstrate how to access the application security information at the business components
level. Specifically, we have overridden the ViewRowImpl isAttributeUpdateable()
method for the custom EmployeesRowImpl row implementation class, in order to control
the Employees view object attributes that can be updated based on a specific role assigned
to the currently authorized user. We did this by calling isUserInRole() on the oracle.
jbo.Session and specifying the specific role, AllowEmployeeChanges in this case.
We obtained the Session object from the application module by calling getSession().
The effect of adding this piece of code is that if the authorized user does not have the
AllowEmployeeChanges role, none of the Employees attributes will be updatable. The
HRComponents workspace is deployed to an ADF Library JAR in step 3.

Handling Security, Session Timeouts, Exceptions, and Errors

278

In steps 4 through 6, we created a page called applicationSecurity.jspx for the
main application and dropped in it the Employees collection as an ADF Form (step 5). The
Employees collection is available under the HrComponentsAppModuleDataControl
data control in the Data Controls window once we add the HRComponents ADF Library
JAR to the ViewController project of the application (which we did in step 4). In step 6, we
added an af:commandButton component to the page and set its Disabled property to
the EL expression #{securityContext.userInRole['AllowEmployeeChanges'] eq
false}. This expression uses the SecurityContext bean to check whether the currently
authorized user has the AllowEmployeeChanges role assigned to it. If the user does not
have the role assigned, the button will appear on the page disabled.

In steps 7 and 8, we added an action listener to the button, specifying the
onApplicationSecurity method on a newly created bean. We have added code to
the onApplicationSecurity() action listener to call the SecurityContext bean
isUserInRole() method to determine whether the current user has been assigned the
AllowEmployeeChanges role. For the purpose of this recipe, we display a message if the
user is authorized to edit the employee data.

Finally, in steps 9 and 10, we added an application role called AllowEmployeeChanges and
mapped it to the user1 user. We also enabled view access to the applicationSecurity.
jspx page by adding the AllowEmployeeChanges role to it.

Observe what happens when you run the main application: if you run the
applicationSecurity.jspx page by right-clicking on it in the Application Navigator,
the employee information and the button in the page are disabled. This is because we
have not gone through the user authorization process and the current anonymous user
does not have the AllowEmployeeChanges role. This is not the case if you access the
applicationSecurity.jspx page after a successful authorization. For this purpose, we
have updated the welcome.jspx page, the page that we are redirected to upon a successful
log in, and added a link to the applicationSecurity.jspx page. Observe in this case
that both the employee fields and the button in the page are enabled.

There's more…
Some of the other commonly used SecurityContext methods and/or expressions are
listed in the following table:

Method/Expression Description
#{secrityContext.taskflowViewa
ble['SomeTaskFlow']}

Returns true if the user has access to the
specific SomeTaskFlow task flow.

#{secrityContext.
regionViewable['SomePageDef']}

Returns true if the user has access to the
specific SomePageDef page definition file
associated with a page.

#{secrityContext.userName} Returns the authenticated user's username.

Chapter 9

279

Method/Expression Description
#{secrityContext.
authenticated}

Returns true if the user has been authenticated.

#{securityContext.
userInAllRoles['roleList']}

Returns true if the user has all roles in the
comma-separated roleList assigned.

For a comprehensive list of the SecurityContext EL expressions take a look at the section
Using Expression Language (EL) with ADF Security in the Fusion Developer's Guide for Oracle
Application Development Framework, which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16182/toc.htm.

Note that you can access the SecurityContext bean at the business components
layer using the adf.context.securityContext Groovy expression. For instance, to
get the username of the currently authorized user, use the expression adf.context.
securityContext.userName.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

ff Enabling ADF security, Chapter 9, Handling Security, Session Timeouts, Exceptions
and Errors

ff Using a custom login page, Chapter 9, Handling Security, Session Timeouts,
Exceptions and Errors

Using OPSS to retrieve the authenticated
user's profile from the identity store

Oracle Platform Security Services (OPSS) is a comprehensive standards-based security
framework and the underlying security-providing platform for Oracle Fusion Middleware. It
provides an abstract layer through the use of an Application Programming Interface (API)
for accessing security provider and identity management details. It is through the use of the
OPSS API that generic access is achieved to vendor-specific security providers.

In this recipe, we will introduce the OPSS framework by implementing the following use case:
using the HR schema, for an authenticated employee-user, we will update the employee
information in the EMPLOYEES table with information from the user's profile obtained from
the identity store. For an authenticated employee-user who is not already in the EMPLOYEES
table, we will create a new row in it.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Handling Security, Session Timeouts, Exceptions, and Errors

280

Getting ready
This recipe adds a security utility helper class to the SharedComponents workspace. This
workspace was introduced in Breaking up the application in multiple workspaces, Chapter 1,
Pre-requisites to Success: ADF Project Setup and Foundations. It also updates the UserInfo
application module introduced in Using a session scope bean to preserve session-wide
information, Chapter 8, Backing not Baking: Bean Recipes. The UserInfo application
module resides in the HRComponents workspace, which was also created in Breaking up the
application in multiple workspaces, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this purpose, we will use the MainApplication workspace
that was developed in Breaking up the application in multiple workspaces, Chapter 1,
Pre-requisites to Success: ADF Project Setup and Foundations.

The recipe also requires that ADF security is enabled for the main application (see additional
recipes Enabling ADF security and Using a custom login page in this chapter) and the
presence of a main application page (we will use the welcome.jspx page developed for the
Enabling ADF security recipe).

Finally, you need a connection to the HR schema.

How to do it…
1.	 Open the SharedComponents workspace and add the following SecurityUtils

helper class to it:
public class SecurityUtils {
 private static ADFLogger LOGGER =
 ADFLogger.createADFLogger(SecurityUtils.class);
 public static UserProfile getUserIdentityStoreProfile(
 String username) {
 UserProfile userProfile = null;
 try {
 // get the identity store
 IdentityStore idStore = getIdentityStore();
 // create a search filter based on the
 // specific username
 SimpleSearchFilter filter =
 idStore.getSimpleSearchFilter(UserProfile.NAME,
 SimpleSearchFilter.TYPE_EQUAL, username);
 SearchParameters sp = new SearchParameters(filter,
 SearchParameters.SEARCH_USERS_ONLY);
 // search identity store
 SearchResponse response = idStore.search(sp);

Chapter 9

281

 // check for search results
 if (response.hasNext()) {
 User user = (User)response.next();
 if (user != null) {
 // retrieve the user profile
 userProfile = user.getUserProfile();
 }
 }
 } catch (Exception e) {
 LOGGER.severe(e);
 }
 // return the user profile
 return userProfile;
 }
 private static IdentityStore getIdentityStore()
 throws JpsException {
 // get the JPS context
 JpsContext jpsCtx = JpsContextFactory.getContextFactory()
 .getContext();
 // return the identity store
 IdentityStoreService service =
 jpsCtx.getServiceInstance(IdentityStoreService.class);
 return service.getIdmStore();
 }
}

2.	 Redeploy the SharedComponents workspace to an ADF Library JAR.

3.	 Open the HRComponents workspace and add the SharedComponents ADF Library
JAR to the HRComponentsBC business components project.

4.	 Locate the UserInfoAppModuleImpl.java custom application module
implementation class in the Application Navigator. Double-click on it to open it in the
Java editor. Add the following methods to it:
public void synchronizeEmployee() {
 try {
 // get information for currently logged-in user
 // from identity store
 UserProfile userProfile = SecurityUtils
 .getUserIdentityStoreProfile(getUserPrincipalName());
 if (userProfile != null) {
 // get EMPLOYEES row from currently logged-in user
 UserInfoImpl employees = (UserInfoImpl)getUserInfo();
 employees.executeQuery();
 UserInfoRowImpl employee =
 (UserInfoRowImpl)employees.first();

Handling Security, Session Timeouts, Exceptions, and Errors

282

 // if user is not in EMPLOYEES table, add it
 if (employee == null) {
 addEmployee(employees, userProfile);
 } else { // user in EMPLOYEES table
 String email = userProfile.getBusinessEmail();
 if (email != null &&
 !email.equals(employee.getEmail())) {
 employee.setEmail(email);
 }
 }
 // commit transaction
 this.getDBTransaction().commit();
 // requery users to fetch any calculated attributes
 employees.executeQuery();
 }
 } catch (Exception e) {
 // log exception
 }
}
private void addEmployee(UserInfoImpl employees,
 UserProfile userProfile) throws IMException {
 // create employee row
 UserInfoRowImpl employee =
 (UserInfoRowImpl)employees.createRow();
 // set required employee row data from
 // identity store profile
 employee.setLastName(getUserPrincipalName());
 employee.setEmail(userProfile.getBusinessEmail()== null ?
 "n/a" : userProfile.getBusinessEmail());
 employee.setHireDate(new Date(
 new Timestamp(System.currentTimeMillis())));
 employee.setJobId("IT_PROG");
 employee.setDepartmentId(new Number(60));
 // add employee row
 employees.insertRow(employee);
}

5.	 Add the synchronizeEmployee() method to the UserInfoAppModule
application module client interface and redeploy the HRComponents workspace to
an ADF Library JAR.

6.	 Open the MainApplication workspace and add the HRComponents ADF Library
JAR to the ViewController project.

7.	 Create a bounded task flow called syncEmployeesTaskFlow. Using the Property
Inspector change the URL Invoke property to url-invoke-allowed.

Chapter 9

283

8.	 Expand the UserInfoAppModuleDataControl in the Data Controls window and
drop the synchronizeEmployee() method to the syncEmployeesTaskFlow
task flow.

9.	 Create a managed bean called SyncEmployeesBean, and add the following
methods to it:
public String getProgrammaticallyInvokeTaskFlow() {
 // setup task flow parameters
 Map<String, Object> parameters =
 new java.util.HashMap<String, Object>();
 // construct and return the task flow's URL
 return getTaskFlowURL("/WEB-INF/taskflows/chapter9/
syncEmployeesTaskFlow.xml#syncEmployeesTaskFlow", parameters);
}
private String getTaskFlowURL(String taskFlowSpecs,
 Map<String, Object> parameters) {
 // create a TaskFlowId from the task flow specification
 TaskFlowId tfid = TaskFlowId.parse(taskFlowSpecs);
 // construct the task flow URL
 String taskFlowURL =
 ControllerContext.getInstance().getTaskFlowURL(
 false, tfid, parameters);
 // remove the application context path from the URL
 FacesContext fc = FacesContext.getCurrentInstance();
 String taskFlowContextPath =
 fc.getExternalContext().getRequestContextPath();
 return taskFlowURL.replaceFirst(taskFlowContextPath, "");
}

10.	 Open the welcome.jspx page. Using the Component Palette, drop a Link (Go)
(af:goLink) component to the page and set the link's Destination property to
#{SyncEmployeesBean.programmaticallyInvokeTaskFlow}.

How it works…
In steps 1 and 2 we have added a helper class called SecurityUtils to the
SharedComponents workspace. We will use this class to retrieve the user's
profile from the identity store. For this purpose, we have implemented the method
getUserIdentityStoreProfile(). To search for the specific username in the identity
store, it calls the IdentityStore search() method. The username specified for the
search is passed as an argument to the getUserIdentityStoreProfile(). The search
yields an oracle.security.idm.SearchResponse, which is then iterated to retrieve an
oracle.security.idm.User identity. We retrieve the user's identity store profile by calling
getUserProfile() on the User object.

In step 2, we have redeployed the SharedComponents workspace to an ADF Library JAR.

Handling Security, Session Timeouts, Exceptions, and Errors

284

In steps 3 through 5, we have made the necessary changes to the UserInfoAppModule
application module to allow for the synchronization of employee-users. We have assumed
that each employee in the EMPLOYEES HR schema table is also a user of the application.
In step 3, we have added the SharedComponents ADF Library JAR to the HRComponents
business components project so that we can make use of the SecurityUtils helper class.
Then, in step 4, we implemented a method called synchronizeEmployee(), to allow for
the synchronization of the EMPLOYEES table. This method is also exposed to the application
module's client interface (in step 5), so that it can be invoked from the ViewController layer as
an operation binding.

The synchronization of the EMPLOYEES table is based on the following logic: if the currently
authorized user is not in the EMPLOYEES table, it is added. Information from the user's
identity store profile is used to populate the EMPLOYEES table fields. If the user is already in
the EMPLOYEES table, the user's information in the EMPLOYEES table is updated with the
information from the user's identity store profile. The currently authorized user is searched in
the database using the UserInfo view object. If the user is not found in the database, we
call addEmployee() to add it. Otherwise, the user's information in the database is updated.
Note that the query used by the UserInfo view object uses a WHERE clause that is based
on the currently authorized user. This is done in a declarative manner by specifying the
Groovy expression adf.context.securityContext.userName for the binding variable
inEmployeeName used by the UserInfo view object query.

In steps 6 through 8, we have created a task flow called syncEmployeesTaskFlow
and dropped in it the synchronizeEmployee() method as a method
call activity. The synchronizeEmployee() method is available under the
UserInfoAppModuleDataControl in the Data Controls window once the HRComponents
ADF Library JAR is added to the project (this is done in step 6). Observe how in step 7 we set
the task flow URL Invoke property to url-invoke-allowed. This will allow us to invoke the
syncEmployeesTaskFlow task flow using its URL.

Steps 9 and 10 are added only so that we can test the recipe. For more information about
the code in the getProgrammaticallyInvokeTaskFlow() and getTaskFlowURL()
methods, take a look at Calling a task flow as a URL programmatically, Chapter 6, Go with the
flow: Task Flows.

To test the recipe, right-click on the login.jspx page and go through the authorization
process. You can use the user1/user1234 credentials. Upon a successful authorization, you
will be forwarded to the welcome.jspx page. Click on the syncEmployeesTaskFlow.xml
link. Observe that for new employee-users, the user information is added to the EMPLOYEES
HR table. For existing employee-users, the user information is updated in the table.

Chapter 9

285

There's more…
One of the hurdles in getting the OPSS framework to work for your specific application security
environment involves the proper configuration of the Identity Store Service. Configuration is
done through the jps-config.xml file located in the config/fmwconfig folder under the
domain directory in WebLogic. For example, in order to configure OPSS when multiple LDAP
authenticators are used in WebLogic, you will need to set up the virtualize property in
WebLogic. For a comprehensive reference on OPSS configuration, consult section Configuring
the Identity Store Service in the Fusion Middleware Application Security Guide, which can be
found at http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Calling a task flow as a URL programmatically, Chapter 6, Go with the flow:
Task Flows

ff Using a session scope bean to preserve session-wide information, Chapter 8,
Backing not Baking: Bean Recipes

ff Enabling ADF security, Chapter 9, Handling Security, Session Timeouts, Exceptions
and Errors

ff Using a custom login page, Chapter 9, Handling Security, Session Timeouts,
Exceptions and Errors

Detecting and handling session timeouts
Each time a client request is sent to the server a predefined, application-wide, configurable
session timeout value is written to the page to determine when a session timeout should
occur. A page is considered eligible to timeout if there is no keyboard, mouse or any other
programmatic activity on the page. Moreover, an additional application configuration option
exists to warn the user sometime prior to the session expiration that a timeout is imminent.

In this recipe, we will see how to gracefully handle a session timeout by redirecting the
application to a specific page, the login page in this case, once a session timeout is detected.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you
proceed with this recipe. For this purpose, we will use the MainApplication workspace
that was developed in Breaking up the application in multiple workspaces, Chapter 1,
Pre-requisites to Success: ADF Project Setup and Foundations.

http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm

Handling Security, Session Timeouts, Exceptions, and Errors

286

How to do it…
1.	 Open the MainApplication workspace in JDeveloper. Add the following

SessionTimeoutFilter filter to the ViewController project:
public class SessionTimeoutFilter implements Filter {
 private FilterConfig filterConfig = null;
 public SessionTimeoutFilter() {
 super();
 }
 @Override
 public void init(FilterConfig filterConfig) {
 this.filterConfig = filterConfig;
 }
 @Override
 public void destroy() {
 filterConfig = null;
 }
 @Override
 public void doFilter(ServletRequest servletRequest,
 ServletResponse servletResponse, FilterChain filterChain)
 throws IOException, ServletException {
 // get requested session
 String requestedSession =
 ((HttpServletRequest)servletRequest)
 .getRequestedSessionId();
 // get current session
 String currentSession =
 ((HttpServletRequest)servletRequest).getSession().getId();

 // check for invalid session
 if (currentSession.equalsIgnoreCase(requestedSession)
 == false && requestedSession != null) {
 // the session has expired or renewed
 // redirect request to the page defined by the
 // SessionTimeoutRedirect parameter
 ((HttpServletResponse)servletResponse)
 .sendRedirect(((HttpServletRequest)
 servletRequest).getContextPath()
 + ((HttpServletRequest)servletRequest)
 .getServletPath()
 + "/" + filterConfig.getInitParameter(
 "SessionTimeoutRedirect"));
 } else {
 // current session is still valid

Chapter 9

287

 filterChain.doFilter(servletRequest, servletResponse);
 }
 }
}

2.	 Open the web.xml deployment descriptor and add the following filter and
filter-mapping definitions to it. Make sure that you add these definitions at the
end of any other filter and filter-mapping definitions.
<filter>
 <filter-name>SessionTimeoutFilter</filter-name>
 <filter-class>com.packt.jdeveloper.cookbook.
 hr.main.view.filters.SessionTimeoutFilter</filter-class>
 <init-param>
 <param-name>SessionTimeoutRedirect</param-name>
 <param-value>/faces/login.jspx</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>SessionTimeoutFilter</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
</filter-mapping>

3.	 For testing purposes add the following session-timeout configuration to web.xml:
<session-config>
 <session-timeout>4</session-timeout>
</session-config>

How it works…
In step 1, we have added a filter called SessionTimeoutFilter. In it, we obtain from the
request both the session identifier of the current request and the identifier of the current
session. We compare the session identifiers, and if they differ we redirect the user to the
page identified by the SessionTimeoutRedirect filter initialization parameter. A difference
in the session identifiers indicates that a session timeout has occurred. We have set the
SessionTimeoutRedirect filter parameter to the login.jspx page in step 2. Also in
step 2, we have added the SessionTimeoutFilter filter definition to the web.xml
deployment descriptor.

Finally, for testing purposes only, we have set the application-wide session timeout to 4
minutes in step 3.

Handling Security, Session Timeouts, Exceptions, and Errors

288

There's more…
In addition to the session-timeout configuration setting in web.xml, you can configure
a session timeout warning interval by defining the context parameter oracle.adf.view.
rich.sessionHandling.WARNING_BEFORE_TIMEOUT. This parameter is set to a number
of seconds before the actual session timeout would occur and raises a warning dialog
indicating that the session is about to expire. You then have the opportunity to extend the
session by performing some activity on the page. Note that if its value is set to less than 120
seconds, this feature might be disabled under certain conditions.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

Using a custom error handler to customize
how exceptions are reported to the
ViewController

You can alter the way error messages are reported to the ADF Controller by implementing
a custom error handler class that extends the oracle.adf.model.binding.
DCErrorHandlerImpl class. The custom error handler class can then provide custom
implementations for the following methods:

ff reportException(): This method is called by the ADF framework to report an
exception. You can override this method to handle how each exception type is
reported.

ff getDisplayMessage(): Returns the exception error message. You can override
this method in order to change the error message.

ff getDetailedDisplayMessage(): Returns the exception error message details.
You can override this method in order to change the error message details.

This recipe shows you how to extend the DCErrorHandlerImpl error handling class so
that you can provide custom handling and reporting of the application exceptions to the
ViewController layer.

Getting ready
We will add the custom error handler to the SharedComponents workspace. This workspace
was created in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations.

Chapter 9

289

For testing purposes, you will need to create a skeleton Fusion Web Application (ADF)
workspace. For this purpose, we will use the MainApplication workspace that was
developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to
Success: ADF Project Setup and Foundations.

How to do it…
1.	 Open the SharedComponents workspace and add the following

CustomDCErrorHandlerImpl class to its ViewController project:
public class CustomDCErrorHandlerImpl
 extends DCErrorHandlerImpl {
 public CustomDCErrorHandlerImpl() {
 super(true);
 }
 public void reportException(DCBindingContainer
 dCBindingContainer,Exception exception) {
 // report JboExceptions as errors
 if (exception instanceof ExtJboException
 || exception instanceof JboException) {
 FacesContext.getCurrentInstance().addMessage(
 null,new FacesMessage(FacesMessage.SEVERITY_ERROR,
 exception.getMessage(), null));
 } else { // report all others as information
 FacesContext.getCurrentInstance().addMessage(
 null,new FacesMessage(
 FacesMessage.SEVERITY_INFO,
 exception.getMessage(), null));
 }
 }
}

2.	 Redeploy the SharedComponents workspace to an ADF Library JAR.

3.	 Open the MainApplication workspace and add the SharedComponents ADF
Library JAR to its ViewController project.

4.	 Open the DataBindings.cpx Data Binding Registry file and select the
root Databindings node in the Structure window. Using the Property
Menu next to the ErrorHandlerClass in the Property Inspector, specify the
CustomDCErrorHandlerImpl class implemented previously.

Handling Security, Session Timeouts, Exceptions, and Errors

290

How it works…
We have created a custom error handler called CustomDCErrorHandlerImpl in
steps 1 and 2 as part of the SharedComponents workspace. The class extends the
default error handling implementation provided by the oracle.adf.model.binding.
DCErrorHandlerImpl class. We only need to override the reportException() method
at this time to provide custom handling for the application-generated exceptions. For the
purposes of this recipe, we are looking for ExtJboException and JboException types
of exceptions, that is, exceptions generated by the business components layer, and we are
displaying them as error Faces messages at the ViewController layer. ExtJboException
is a custom application exception that was implemented in Using a custom exception
class, Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations. All other
exceptions are shown as informational messages to the user. We make sure that the
SharedComponents workspace is redeployed as an ADF Library JAR and that is added to the
main workspace ViewController project in step 3.

One last thing that we need to do is set the ErrorHandlerClass property of the
Databindings node in the DataBindings.cpx bindings registry file to our custom
CustomDCErrorHandlerImpl class. We do this in step 4.

There's more…
In this recipe, we customized the way the application exceptions are handled and reported to
the ViewController layer by providing a custom implementation of the reportException()
method. To customize the way the actual error message is formatted take a look at the
Customizing the error message details recipe in this chapter.

For more information about custom error handling in your application, consult the Customizing
Error Handling section of the Fusion Developer's Guide for Oracle Application Development
Framework, which can be found at http://docs.oracle.com/cd/E24382_01/
web.1112/e16182/toc.htm.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Customizing the error message details, Chapter 9, Handling Security, Session
Timeouts, Exceptions and Errors

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Chapter 9

291

Customizing the error message details
In the recipe Using a custom error handler to customize how exceptions are reported to the
ViewController in this chapter, we've seen how to create a custom DCErrorHandlerImpl
class and override its reportException() method in order to provide custom handling
of the application's exceptions. In this recipe, we will go over the process of overriding the
DCErrorHandlerImpl class getDisplayMessage() method, so that we can provide
custom handling of specific application error messages. In particular, we will see how to
reformat error messages generated by exceptions thrown from the database business
logic code, using functionality provided by the ADF resource bundles. More specifically, we
will assume that our application's database business logic source code throws exceptions
using a user-defined database error number, with the actual resource error number and
parameters bundled within the exception message. An example of the error message thrown
by the database layer is: ORA-20200: APPL-00007: Some Error $1parameter1$1
$2parameter2$2. In this case, the business exception generated by the database is
identified by the user-defined error number -20200. The actual error message is bundled
within the message details and it is identified by the error number 00007. The error message
parameters are delimited by the parameter placeholders $1 and $2.

Getting ready
You will need to complete Using a custom error handler to customize how exceptions are
reported to the ViewController recipe in this chapter before delving into this recipe.

How to do it…
1.	 Open the SharedComponents workspace and locate the

CustomDCErrorHandlerImpl class. Open the class in the Java editor and override
the getDisplayMessage() method.

2.	 Add the following code to the getDisplayMessage() method:
// get the error message from the framework
String errorMessageRaw =
 super.getDisplayMessage(bindingContext,exception);
// handle messages generated by the database business logic
return handleDatabaseApplicationError(errorMessageRaw);

3.	 Add the following helper methods to the CustomDCErrorHandlerImpl class:
private String handleDatabaseApplicationError(
 String errorMessageRaw) {
 // the error code for application-specific messages
 // generated by the database application-specific
 // business code
 final String APPLICATION_ERROR_CODE = "20200";

Handling Security, Session Timeouts, Exceptions, and Errors

292

 // the application error messages bundle
 final ResourceBundle errorMessagesBundle =
 ResourceBundle.getBundle("com.packt.jdeveloper.cookbook.
 shared.bc.exceptions.messages.ErrorMessages");
 // check for null/empty error message
 if (errorMessageRaw == null||"".equals(errorMessageRaw)) {
 return errorMessageRaw;
 }
 // check for database error message
 if (errorMessageRaw.indexOf("ORA-") == -1) {
 return errorMessageRaw;
 }
 // check for end of database error code indicator
 int endIndex = errorMessageRaw.indexOf(":");
 if (endIndex == -1) {
 return errorMessageRaw;
 }
 // get the database error code
 String dbmsErrorMessageCode =
 errorMessageRaw.substring(4, endIndex);
 String errorMessageCode = "";
 if (APPLICATION_ERROR_CODE.equals(dbmsErrorMessageCode)) {
 int start = errorMessageRaw.indexOf("-", endIndex)+1;
 int end = errorMessageRaw.indexOf(":", start);
 errorMessageCode = errorMessageRaw.substring(
 start, end);
 } else {
 // not application-related error message
 return errorMessageRaw;
 }
 // get the application error message from the
 // application resource bundle using the specific
 // application error code
 String errorMessage = null;
 try {
 errorMessage = errorMessagesBundle.getString(
 "message." + errorMessageCode);
 } catch (MissingResourceException mre) {
 // application error code not found in the bundle,
 // use original message
 return errorMessageRaw;
 }
 // get the error message parameters
 ArrayList parameters =
 getErrorMessageParameters(errorMessageRaw);

Chapter 9

293

 if (parameters != null && parameters.size() > 0) {
 // replace the message parameter placeholders with the
 // actual parameter values
 int counter = 1;
 for (Object parameter : parameters) {
 // parameter placeholders appear in the message
 // as {1}, {2}, and so on
 errorMessage = errorMessage.replace("{" +
 counter + "}", parameter.toString());
 counter++;
 }
 }
 // return the formated application error message
 return errorMessage;
}
private ArrayList getErrorMessageParameters(
 String errorMessageRaw) {
 // the parameter indicator in the database
 // application-specific error
 final String PARAMETER_INDICATOR = "$";
 ArrayList parameters = new ArrayList();
 // get parameters from the error message
 for (int i = 1; i <= 10; i++) {
 int start = errorMessageRaw.indexOf(PARAMETER_INDICATOR + i)
 + 2;
 int end = errorMessageRaw.indexOf(PARAMETER_INDICATOR
 + i, start);
 if (end == -1) {
 parameters.add(i - 1, "");
 } else {
 parameters.add(i - 1,errorMessageRaw.substring(start, end));
 }
 }
 // return the parameters
 return parameters;
}

4.	 Redeploy the SharedComponents workspace into an ADF Library JAR.

Handling Security, Session Timeouts, Exceptions, and Errors

294

How it works…
In steps 1 and 2, we have updated the CustomDCErrorHandlerImpl custom
error handler class by overriding the getDisplayMessage() method. The
CustomDCErrorHandlerImpl custom error handler class was added to the
SharedComponents workspace in the recipe Using a custom error handler to customize
how exceptions are reported to the ViewController in this chapter. By overriding the
getDisplayMessage() method, we will get a chance to reformat the error message
displayed by the application before it is displayed. In our case, we will reformat any messages
related to exceptions thrown from the database business logic code. This is done by the
helper method handleDatabaseApplicationError() added in step 3. This method
checks for errors originating from database exceptions by looking for the "ORA-" substring in
the error message. If this is found, the database business error message number is extracted.
This is a user-defined application-specific error message number used in the database
business logic code to throw application business logic exceptions. PL/SQL error numbers
in the range of -20000 to -20999 are reserved for user-defined errors. For this recipe, it is
defined by the constant APPLICATION_ERROR_CODE and it is equal to 20200 (we parse the
error number after the -).

If this is indeed a business logic error message, the actual resource error number is bundled
within it and it is extracted; the actual error number is saved in the errorMessageCode
variable. We use this error number to look up the actual error message string in
the application resource bundle, which is initialized by the call ResourceBundle.
getBundle(). We have used the ErrorMessages.properties bundle, introduced in
Using a custom exception class, Chapter 1, Pre-requisites to Success: ADF Project Setup and
Foundations, to store the application error messages. Resources in this bundle are identified
by error numbers prepended with the "message." string, for instance, message.00007. So,
we called getString() on the resource bundle to locate the actual error message after
we prepended the error code with "message.". This functionality is also implemented by the
BundleUtils helper class introduced in Using a generic backing bean actions framework,
Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

We retrieve the parameter values bundled in the database error message by calling the
getErrorMessageParameters() helper method. This method identifies any parameters
bundled in the raw database error message by looking for the parameter placeholder
identifiers $1, $2, and so on. The parameters are added to an ArrayList, which is iterated
when replacing the parameter placeholder identifiers {1}, {2}, and so on, in the actual
message string.

This is an example error message thrown by the database business logic code: ORA-20200:
APPL-00007: Some Error $1parameter1$1 $2parameter2$2. The error message
defined in the resource bundle for error number 00007 is message.00007=Message
generated by the database business code. Parameters: {1}, {2}. When we go
through our custom getDisplayMessage() method, the actual message displayed by the
application would be: Message generated by the database business code. Parameters:
parameter1, parameter2.

Chapter 9

295

The final step redeploys the SharedComponents workspace to an ADF Library JAR, so that it
can be reused by other application workspaces.

See also
ff Using a custom exception class, Chapter 1, Pre-requisites to Success: ADF Project

Setup and Foundations

ff Using a custom error handler to customize how exceptions are reported to the
ViewController, Chapter 9, Handling Security, Session Timeouts, Exceptions and Errors

Overriding attribute validation exceptions
At the ADF-BC layer, built-in validators are stored in the XML metadata definition file with
no ability to customize the exception message and/or centralize the application error
messages in a single application-wide message bundle file. To overcome this you can extend
the oracle.jbo.ValidationException and oracle.jbo.AttrValException
classes. Then in your custom entity object implementation class you can override the
validateEntity() and setAttributeInternal() methods to throw these custom
exceptions instead. Even better, if you have gone through the process of creating framework
extension classes (see Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF
Project Setup and Foundations), this functionality can be added to the base entity object
framework extension class and thereby used in a generic way throughout the application.

In this recipe, we will extend the oracle.jbo.AttrValException class in
order to provide a custom attribute validation exception. We will then override the
setAttributeInternal() method in the entity object framework extension class
to throw the custom attribute validation exception.

Getting ready
We will add the custom attribute validation exception to the SharedComponents
workspace. The SharedComponents workspace was created in Breaking up the application
in multiple workspaces, Chapter 1, Pre-requisites to Success: ADF Project Setup and
Foundations. Moreover, we will update the entity object framework extension class, which
resides in the SharedComponents workspace. The entity object framework extension class
was created in Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project
Setup and Foundations.

Handling Security, Session Timeouts, Exceptions, and Errors

296

How to do it…
1.	 Open the SharedComponents workspace in JDeveloper and add the following

ExtAttrValException class to the SharedBC project:
public class ExtAttrValException extends AttrValException {
 public ExtAttrValException(String errorCode,
 Object[] errorParameters) {
 super(ResourceBundle.class, errorCode,
 errorParameters);
 }
 public ExtAttrValException(final String errorCode) {
 super(ResourceBundle.class, errorCode, null);
 }
 public String getMessage() {
 return BundleUtils.loadMessage(this.getErrorCode(),
 this.getErrorParameters());
 }
}

2.	 Open the ExtEntityImpl entity object framework extension class in the Java editor
and override the setAttributeInternal() method.

3.	 Add the following code to the setAttributeInternal() method:
try {
 super.setAttributeInternal(attrib, value);
} catch (AttrValException e) {
 // throw custom attribute validation exception
 throw new ExtAttrValException(e.getErrorCode(),
 e.getErrorParameters());
}

4.	 Redeploy the SharedComponents workspace to an ADF Library JAR.

How it works…
In step 1, we have extended the AttrValException framework attribute validation
exception by providing our custom implementation class called ExtAttrValException. This
overrides the getMessage() method, which uses the helper class BundleUtils to load
the error message from the application-wide message bundle file. Using the specific exception
error code, the BundleUtils helper class was created in Using a generic backing bean
actions framework, Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Chapter 9

297

In order to utilize the custom attribute validation exception in our application, we
have overridden the setAttributeInternal() method of the ExtEntityImpl
entity object framework extension class to throw ExtAttrValException instead of
AttrValException. This was done in steps 2 and 3. The setAttributeInternal()
method validates and sets the attribute value for the attribute identified by the attrib index.

Finally, in step 4, we redeploy the SharedComponents workspace to an ADF Library JAR.

There's more…
You can follow similar steps to customize the validation exceptions of your application's entity
objects. In this case, you will need to extend the oracle.jbo.ValidationException
class. Then you will need to override the validateEntity() method of the entity object
framework extension class to throw your custom validation exception.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations

10
Deploying ADF

Applications

In this chapter, we will cover:

ff Configuring and using the Standalone WebLogic Server

ff Deploying on the Standalone WebLogic Server

ff Using ojdeploy to automate the build process

ff Using Hudson as a continuous integration framework

Introduction
The development and testing of ADF Fusion web applications in JDeveloper does not require
any special deployment work by you, the developer. JDeveloper does a pretty good job setting
up and configuring a WebLogic domain, namely the Integrated WebLogic Server, that is
subsequently used to transparently deploy applications. This transparent deployment process
takes place each time you choose to run or debug an application in JDeveloper.

To further test ADF Fusion web applications, using an environment that more closely
resembles the actual production environment, you ought to consider configuring the
Standalone WebLogic Server. This involves the creation of a WebLogic domain configured as
closely as possible to the actual production environment (server instances, clusters, security
realm configuration, services configuration, and so on) and deploying your ADF Fusion web
application to it periodically.

Deploying ADF Applications

300

There are a number of techniques used to deploy applications to the Standalone WebLogic
Server. For instance, to deploy in a continuous integration production or testing environment,
a script technique needs to be considered. On the other hand, for local development and
testing purposes, deploying from JDeveloper will suffice.

Configuring and using the Standalone
WebLogic Server

JDeveloper Studio Edition ships along with the WebLogic application server included.
WebLogic Server is an essential part of the ADF Fusion web application development process,
as it allows for the deployment, running, debugging, and testing of your application. It is
installed on the development machine during the installation of JDeveloper.

When you choose to run or debug a Fusion web application from within the JDeveloper
IDE, WebLogic is started and the application is deployed and run automatically on it. This
configuration is called "Integrated WebLogic Server" as it is tightly integrated with the
JDeveloper IDE. The very first time an ADF Fusion web application is run (or debugged)
in JDeveloper, the necessary integrated WebLogic Server configuration takes place
automatically. The configuration process creates the WebLogic domain and a server instance
to deploy the application onto.

In addition to the Integrated WebLogic Server, the WebLogic configuration software allows
for the creation and configuration of a "standalone" WebLogic domain. This domain that you
configure separately according to your specific configuration requirements is known as the
Standalone WebLogic Server. This is started independently of JDeveloper, and you deploy your
applications on it using a separate deployment process. The Standalone WebLogic Server
offers, among others, the following advantages: control over the specific configuration of the
WebLogic domain; control over the deployment process; freeing up resources in JDeveloper
when debugging and testing; freeing up resources on the development machine (when the
WebLogic Server runs on another machine); and the ability to remotely debug the application.

In this recipe, we will go over the steps involved in configuring the Standalone WebLogic
Server that we can use subsequently to deploy our ADF Fusion web application.

Getting ready
You will need WebLogic installed on your development environment. WebLogic is installed
during the installation of JDeveloper Studio Edition based on your installation choices. For
information on installing JDeveloper on a Linux distribution, take a look at the Installation
of JDeveloper on Linux recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations.

Chapter 10

301

How to do it…
1.	 Start the Fusion Middleware Configuration Wizard. You do this by running the config

script located in the common/bin directory under the WebLogic installation directory.
In the Welcome page, select Create a new WebLogic domain and click Next.

2.	 In the Select Domain Source page, select Oracle JRF – 11.1.1.0 [oracle_common]
and click Next.

3.	 In the Specify Domain Name and Location page, enter the Domain name and the
Domain location and click Next. You may keep the default values.

4.	 In the Configure Administrator User Name and Password page, enter the domain
administrator Name and User password. Confirm the password and click Next.

5.	 In the Configure Server Start Mode and JDK page, select Development Mode for the
WebLogic Domain Startup Mode and the Sun SDK from the list of Available JDKs.
Click Next to continue.

6.	 In the Select Optional Configuration page, click on the Administration Server,
Managed Servers, Clusters and Machines, and Deployments and Services
checkboxes. Click Next to continue.

7.	 In the Configure the Administration Server page, enter the Name, Listen address,
and Listen port of the administration server. You may keep the default values. Then
click on the Next button.

Deploying ADF Applications

302

8.	 In the Configure Managed Servers page, click on the Add button and specify the
Name, Listen address, and Listen port of the managed server. You may choose the
default values. Click Next to continue.

9.	 In the Configure Clusters page, click Next.

10.	 In the Configure Machines page, click on the Add button and specify the machine
Name, Node manager listen address, and Node manager listen port. You may keep
the default values. Click Next to continue.

11.	 In the Assign Servers to Machines page, shuttle the managed server from the
Server list to the specific machine in the Machine list and click Next.

12.	 In the Target Deployments to Clusters or Servers page, make sure that all libraries
are targeted to both administration and managed servers. You can do this by
selecting the managed server in the Target list and selecting the Library node in the
Deployments list. Click Next to continue.

Chapter 10

303

13.	 In the Target Services to Clusters or Servers page, make sure that all services are
targeted to both the administration and managed server. You can do this by selecting
the managed server in the Target list and clicking on the high level service nodes in
the Service list. Click Next to continue.

14.	 In the Configuration Summary page, verify the domain configuration in the Domain
Summary and Details sections. Click on the Create button to proceed with the
creation of the domain.

15.	 Once the domain is created successfully, click on the Done button in the Creating
Domain page to dismiss the configuration wizard.

How it works…
In Steps 1 through 15, we go through the process of creating and configuring a new WebLogic
domain. A domain in WebLogic is the basic administrative unit, and it consists of associated
resources such as one or more WebLogic server instances, machines, clusters, services,
applications, libraries, and others. Creation and configuration of a new WebLogic domain is
achieved using the Fusion Middleware Configuration Wizard utility. The configuration utility
can be started by running the config script located in the common/bin directory under the
WebLogic installation directory. WebLogic is installed in the wlserver_xx.x directory under
the Middleware home directory, where xx.x is the WebLogic Server version. Note that for a
Windows installation of JDeveloper, a shortcut is created for the configuration utility, called
Configuration Wizard, under the Oracle Fusion Middleware 11.1.2.x.x | WebLogic Server
11gR1 | Tools group in the Start menu.

In step 1 of the domain configuration wizard, we have chosen to create a new domain. You
can also choose to extend an existing domain by adding additional extension sources to the
domain and/or reconfiguring the domain structure (servers, clusters, machines, and so on).

In step 2, we have selected the Oracle JRF – 11.1.1.0 domain source. This will install the
necessary libraries to the domain in order to support the deployment and execution of ADF
Fusion web applications.

We proceed in step 3 to specify the domain name and location. By default, domains are
created in the user_projects/domains directory under the Middleware home directory.
Choosing this default location is acceptable for development purposes. For production
installations, you should choose a top level directory independent of the specific WebLogic
Server installation.

In step 4, we have specified the domain's administrator username and password. These
credentials are necessary to access the domain for administrative purposes either using
the console application or through any other administration utilities (WLST, weblogic.
Deployer, and so on).

Deploying ADF Applications

304

In step 5, we configured the server startup mode to be in development mode. This mode
enables the WebLogic auto-deployment feature, which allows for the automatic deployments of
applications that reside in the autodeploy domain directory. This will be fine for this recipe.
In a production environment configuration, production mode should be selected along with the
JRockit JDK. For a comprehensive list of differences between the development and production
startup modes, take a look at the Differences Between Development and Production Mode
table in the Creating Domains Using the Configuration Wizard documentation. This document
is available through the Oracle WebLogic Server Documentation Library currently at http://
docs.oracle.com/cd/E14571_01/wls.htm.

In step 6, we indicated which components we will be providing additional configuration for.
In this case, we configured the administration server, a managed server and its machine,
and the deployments and services. For each component, an additional wizard page will be
presented to further configure the specific component.

In steps 7 through 11, we created and configured the domain's server instances. The
administration server is used to manage the domain, and its creation is required. The
managed server will be used to deploy ADF applications. In both cases, we specified
the server's name, listen address, and listen port. Managed servers are assigned to
WebLogic machines (this is done in step 11). This identifies a physical unit of hardware
that is associated with a WebLogic Server instance. They are used in conjunction with the
WebLogic node manager to start and shutdown remote servers. Furthermore, WebLogic
uses a configured machine in order to delegate tasks, such as HTTP session replication, in a
clustered configuration. A machine was created and configured in step 10.

In steps 12 and 13, we have made available all installed product libraries and services, to the
managed server instance. This will allow us to deploy and run ADF Fusion web applications on
the managed server.

After reviewing the configuration in step 14, we create the domain in step 15.

There's more…
Once the domain creation completes successfully, it can be started by separately starting
the administration and managed server instances. To start the administration server, run the
startWebLogic script located in the domain bin directory. When you do so, observe in the
console window that the server is started successfully, as shown in the following screenshot:

Chapter 10

305

The managed server can be started by running the startManagedWebLogic script, also
located in the domain bin directory. Run the startManagedWebLogic script by specifying
the name of the managed server instance and the URL of the administration server, for
instance, startManagedWebLogic.cmd ManagedServer1 http://localhost:7001.
In this case, it has been assumed that the managed server name is ManagedServer1 and
that the administration server runs locally and listens to port 7001.

Note that each time you start the managed server instance, you will be asked to enter the
domain administrator username and password. To avoid having to specify these credentials
each time, create a file called boot.properties and add the following information to it:

username=<adminusername>
password=<adminpassword>

Replace <adminusername> and <adminpassword> with the administrator username
and password respectively, and place the boot.properties file in the servers/
ManagedServer1/security directory under the domain directory. Note that the
ManagedServer1 directory under the domain servers directory will not exist until you
start the managed server at least once. You may also need to create the security directory
yourself. Observe that the administrator username and password specified in the boot.
properties file will be encrypted after starting the WebLogic Server.

To start the WebLogic administration console, browse the following address:
http://localhost:7001/console. Use the administrator credentials specified
during domain creation to log in.

To avoid having to redeploy the console application each time the domain is restarted,
uncheck the Enable on-demand deployment of internal applications checkbox in the
Configuration | General tab and click Save.

http://localhost:7001
http://localhost:7001/console
http://localhost:7001/console

Deploying ADF Applications

306

For more information on the Fusion Middleware Configuration Wizard, consult the Creating
Domains Using the Configuration Wizard documentation.

See also
ff Installation of JDeveloper on Linux, Chapter 1, Pre-requisites to Success: ADF Project

Setup and Foundations

Deploying on the Standalone WebLogic
Server

Once you have created and configured a WebLogic domain, ADF Fusion web applications can
be deployed onto it. During development, deployment can take place from the JDeveloper IDE.
The process involves the creation of an Application Server connection in the Resource Palette
and the creation of deployment profiles for the ViewController project and the application
workspace. The application can then be deployed onto the standalone WebLogic domain
using the Application | Deploy menu.

In this recipe, we will go through the process of manually deploying a Fusion web application
to a WebLogic domain using the JDeveloper IDE.

Getting ready
You need to complete the Configuring and using the Standalone WebLogic Server
recipe in this chapter before delving in this recipe. Furthermore, a skeleton Fusion Web
Application (ADF) workspace is required for this recipe. For this purpose, we will use the
MainApplication workspace that was developed in the Breaking up the application in
multiple workspaces recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and
Foundations. The MainApplication workspace requires a connection to the HR schema.

How to do it…
1.	 Open the MainApplication workspace. Double-click on the ViewController project

in the Application Navigator to open the Project Properties dialog.

2.	 Click on Deployment and then click on the New… button to create a new
deployment profile.

3.	 On the Create Deployment Profile dialog, select WAR File for the Profile Type and
enter the name of the Deployment Profile Name.

4.	 On the Edit WAR Deployment Profile Properties dialog in the General section, enter
the name and location of the WAR File and specify the Java EE Web Context Root.
When done, click OK to dismiss all dialogs.

Chapter 10

307

5.	 Select Application Properties… from the Application menu. On the Application
Properties dialog, select Deployment and click on the New… button to create a new
application deployment profile.

6.	 On the Create Deployment Profile dialog, select EAR File for the Profile Type and
enter the Deployment Profile Name.

7.	 On the Edit EAR Deployment Profile Properties dialog, select the General section.
Enter the name and location of the EAR file and specify the Application name.

8.	 Select Application Assembly and ensure that the Java EE Modules to be included
in the EAR are selected. In this case, include both the Model and ViewController
projects. When done, dismiss all dialogs by clicking OK.

9.	 Select View | Resource Palette to display the Resource Palette window. In the
Resource Palette, expand the IDE Connections node. Right-click on the Application
Server node and select New Application Server Connection….

10.	 In the Name and Type page of the Create Application Server Connection wizard,
enter the Connection Name. Select WebLogic 10.3 for the Connection Type and
click Next.

11.	 In the Authentication page, enter the WebLogic administrator credentials and
click Next.

12.	 In the Configuration page, enter the WebLogic domain configuration and click Next.

13.	 In the Test page, click on the Test Connection button and ensure that Status is
successful for all tests. Make sure that the WebLogic administration server instance
is started before commencing with the tests. Click on the Finish button to complete
the definition of the connection.

Deploying ADF Applications

308

14.	 From the Application menu, select Deploy and then the deployment profile name.

15.	 In the Deployment Action page of the Deploy wizard, select Deploy to Application
Server and click Next.

16.	 In the Select Server page, select the application server connection created earlier
from the list of Application Servers. You can leave the Overwrite modules of the
same name checkbox selected. Click Next to continue.

17.	 In the Weblogic Options page, click on the Deploy to selected instances radio
button, and select the managed server instance to deploy onto, from the list of
WebLogic Server instances. Click Next to continue.

18.	 In the Summary page, verify the Deployment Summary and click Finish to proceed
with the deployment. Observe in the Deployment Log window that the application is
deployed successfully.

Chapter 10

309

How it works…
In steps 1 through 4, we have defined a deployment profile for the ViewController project of
the Mainapplication workspace. This project will be deployed as a Web Archive (WAR) file.
In step 4, we have set the location and name of the WAR file that will be generated during
deployment and specified the application context root. The context root is combined with the
servlet mapping defined in web.xml to form the complete application URL. It is the base
address for the application and all its associated resources.

In steps 5 through 8, we have defined the application's Enterprise Archive (EAR) deployment
profile. Observe how in step 7, we specify the name and location of the EAR file along with
the application name. This is the name of the Java EE application as it will appear in the
Deployments table in WebLogic. Moreover, note that in step 8, we specify the EE modules
to be included in the EAR. In this case, we have included both the Model and ViewController
projects. Failure to include both of these projects will result in a failed deployment.

In steps 9 through 13, we have created a new application server connection. We use the
Resource Palette facility and the Create Application Server Connection wizard to go through
the steps required to define a connection for a standalone WebLogic domain. Ensure that the
WebLogic domain has been started before going through this process.

With the deployment profiles in place, and with the connection to the standalone WebLogic
Server properly configured and successfully tested, we use the Application | Deploy menu to
deploy the application. This is done in steps 14 through 18. The available application server
connections were presented in step 16 based on the application server connections defined in
JDeveloper. In step 17, we choose to deploy the application to the managed server instance.

There's more…
You can check the application deployment status using the WebLogic administrator
console. To do this, go to the Summary of Deployments available by selecting Deployments
from the Domain Structure tree. The following screenshot shows our test application's
deployment status:

Deploying ADF Applications

310

Observe that the Health status of the application is OK. Also, note that the HR data source
is bundled in the deployed application. Whether the data source is bundled in the enterprise
archive (EAR) produced by the deployment process, or not, is configured in the Application
Properties dialog in JDeveloper. In the Deployment | WebLogic page, check or uncheck the
Auto Generate and Synchronize WebLogic JDBC Descriptors During Deployment option to
include or exclude the data source in the EAR file.

Note that this recipe presents a method to deploy applications directly to a WebLogic domain
using JDeveloper. This technique is typically used to deploy the application to a test environment
during the development process, as it allows testing of features such as OPSS security
configuration, LDAP configuration, and so on, that are not otherwise available when running the
application directly in JDeveloper. An alternative technique involves deploying the application
to an EAR file, which can be deployed in turn by a separate process using a variety of other
tools. The EAR file can be produced using JDeveloper or with tools such as ojdeploy (see recipe
Using ojdeploy to automate the build process in this chapter). In production environments,
continuous integration tools such as Hudson (see recipe Using Hudson as a continuous
integration framework in this chapter), can be combined with ojdeploy, ant, and WLST scripts to
automatically deploy the application to its application server. For more information on deploying
ADF applications, take a look at the section Deploying the Application in the Fusion Developer's
Guide for Oracle Application Development Framework, which can be found at http://docs.
oracle.com/cd/E24382_01/web.1112/e16182/toc.htm.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Chapter 10

311

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Configuring and using the Standalone WebLogic Server, in this chapter

Using ojdeploy to automate the build
process

ojdeploy is a command-line utility that can be used to automate the build and deployment
process of ADF Fusion web applications. It is part of the JDeveloper installation package,
and is installed alongside JDeveloper in the jdeveloper/jdev/bin directory (under the
Middleware home directory). The utility can be run directly from the command line or it can be
called from an ant script.

In this recipe, we demonstrate how to use ojdeploy to build an ADF Fusion web application
comprised of three different workspaces. The final output of the build process is the
application's Enterprise Archive file (EAR) file, which can be deployed to the Application
Server using one of several possible techniques outlined in the Deploying on the Standalone
WebLogic Server recipe in this chapter.

Getting ready
You need to have access to the SharedComponents, HRComponents and
MainApplication workspaces. These workspaces were created in the Breaking up the
application in multiple workspaces recipe in Chapter 1, Pre-requisites to Success: ADF Project
Setup and Foundations. You also need to complete the recipe Deploying on the Standalone
WebLogic Server in this chapter, to ensure that you have created the necessary deployment
profiles for the MainApplication workspace. Finally, ensure that the jdeveloper/jdev/
bin directory (under the Middleware home directory) is added to the PATH environment
variable before running ojdeploy.

How to do it…

1.	 Using a text editor create the following ojdeploy build file ojbuild.xml as follows:
<?xml version="1.0" encoding="UTF-8" ?>
<ojdeploy-build basedir=".">
<!-- shared components workspace -->
<!-- This will build the SharedComponents.jar ADF Library JAR in
the ReUsableJARs directory -->
<deploy>

Deploying ADF Applications

312

<parameter name="workspace"
 value="${application.root}
 \SharedComponents\SharedComponents.jws"/>
<parameter name="project" value="SharedViewController"/>
<parameter name="profile" value="SharedComponents"/>
</deploy>
<!-- HRComponents workspace -->
<!-- This will build the HRComponents.jar ADF Library JAR in the
 ReUsableJARs directory -->
<deploy>
<parameter name="workspace"
 value="${application.root}\HRComponents\HRComponents.jws"/>
<parameter name="project" value="HRComponentsViewController"/>
<parameter name="profile" value="HRComponents"/>
</deploy>
<!-- main application workspace -->
<!-- This will build both of the MainApplication.war and
 MainApplication.ear archives in the
 MainApplication\MainApplicationViewController\deploy and
 MainApplication\deploydirectories respectively -->
<deploy>
<parameter name="workspace"
 value="${application.root}
 \MainApplication\MainApplication.jws"/>
<parameter name="profile" value="MainApplication"/>
</deploy>
</ojdeploy-build>

2.	 Open a command shell and start the ojdeploy process by running the following
command. Change <application_root_directory> to the appropriate directory
under which your workspaces are located, as follows:
ojdeploy -buildfile ojbuild.xml -define
 application.root=<application_root_directory>

How it works…
In step 1, we have created an ojdeploy build file called ojbuild.xml. This is an XML
file that comprises ojdeploy-build nodes along with embedded deploy nodes. Each
deploy node defines a deployment process for the specific workspace, the project within
the workspace, and the named deployment profile defined for the project. This information is
specified by the workspace, project, and profile parameters respectively. If you do not
specify a project name, then the workspace deployment profile is used, as in the case of the
MainApplication workspace deploy configuration.

Chapter 10

313

In step 2, we have initiated the deployment process by running ojdeploy with the –buildfile
command-line argument. This parameter is used to specify the ojdeploy build file defined
in step 1. Moreover, observe the usage of the –define argument to define a value for the
macro application.root. This macro is used in the ojbuild.xml build file to reference
the root application directory under which all application workspaces are located.

The result of running the ojdeploy deployment process for this recipe is the creation
of the SharedComponents.jar and HRComponents.jar ADF Library JARs in the
ReUsableJARs directory, the MainApplication.war archive in the MainApplication\
MainApplicationViewController\deploy directory and the MainApplication.ear
archive in the MainApplication\deploy directory.

There's more…
Note that the ojdeploy process performs a full business components validation. This involves
the validation of all referenced business components throughout the ADF-BC projects involved
in the build process. The validation process cross-references the component metadata XML
files with the corresponding custom Java implementation classes.

For additional help on ojdeploy command-line arguments, built-in macros, and usage
examples, run ojdeploy –help in the command line. A sample output is as listed:

Oracle JDeveloper Deploy 11.1.2.1.0.6081
Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights
reserved.

Usage:

ojdeploy -profile <name> -workspace <jws> [-project <name>] [
 <options>]
ojdeploy -buildfile <ojbuild.xml> [<options>]
ojdeploy -buildfileschema

Arguments:

Name Description
profile The name of the profile to be deployed
workspace Full path to the JDeveloper Workspace file(.jws)
project Name of the JDeveloper Project within the .jws where the Profile can

be found. If omitted, the Profile is assumed to be in the workspace
buildfile Full path to a build file for batch deploy
buildfileschema Print XML Schema for the build file

Deploying ADF Applications

314

Options:

Name Description
basedir Interpret path for workspace relative to a base directory
outputfile Substitute for the output file specified in the profile
nocompile Skip compilation of Project or Workspace
nodependents Do not deploy dependent profiles
clean Clean output directories before compiling
nodatasources Not include datasources from IDE
forcerewrite Rewrite output file even if it is identical to existing file
updatewebxmlejbrefs Update EJB references in web.xml
define Define variables as comma separated name-value pairs
statuslogfile Full path to an output file for status summary - no macros

allowed
failonwarning Stop deployment on warnings
timeout Time in seconds allowed for each deployment task
stdout Redirect stdout to file
stderr Redirect stderr to file
ojserver Run deployment using ojserver
address Listen address for ojserver

Built-in macros:

Name Description
workspace.
name

name of the workspace (without the .jws extension)

workspace.dir directory of the workspace.jws file
project.name name of the project (without the .jpr extension)
project.dir directory of the project.jpr file
profile.name name of the profile being deployed
deploy.dir default deploy directory for the profile
base.dir current ojdeploy directory unless overridden by the -basedir parameter

or by the "basedir" attribute in the build script

Note: project.name and project.dir are only
available when project-level profile is being deployed.

Chapter 10

315

Examples:

Deploy a Project-level profile

ojdeploy -profile webapp1 -workspace
 /usr/jdoe/Application1/Application1.jws -project Project1
ojdeploy -profile webapp1 -workspace Application1/Application1.jws -
 basedir /usr/jdoe -project Project1

Deploy a Workspace-level profile

ojdeploy -profile earprofile1 -workspace
 /usr/jdoe/Application1/Application1.jws

Deploy all Profiles from all Projects of a Workspace

ojdeploy -workspace /usr/jdoe/Application1/Application1.jws -project
 * -profile *

Build in batch mode from a ojbuild file

ojdeploy -buildfile /usr/jdoe/ojbuild.xml

Build using ojbuild file, pass into, or override default variables in,
the build file.

ojdeploy -buildfile /usr/jdoe/ojbuild.xml -define
 myhome=/usr/jdoe,mytmp=/tmp
ojdeploy -buildfile /usr/jdoe/ojbuild.xml -basedir /usr/jdoe

Build using ojbuild file, set or override parameters in the default
section

ojdeploy -buildfile /usr/jdoe/ojbuild.xml -nocompile
ojdeploy -buildfile /usr/jdoe/ojbuild.xml -outputfile
 '${workspace.dir}/${profile.name}.jar'
ojdeploy -buildfile /usr/jdoe/ojbuild.xml -define mydir=/tmp -
 outputfile '${mydir}/${workspace.name}-${profile.name}'

More examples:

ojdeploy -workspace
 Application1/Application1.jws,Application2/Application2.jws -
 basedir /home/jdoe -profile app*
ojdeploy -buildfile /usr/jdoe/ojbuild.xml -define
 outdir=/tmp,rel=11.1.1
-outputfile
 '${outdir}/built/${workspace.name}/${rel}/${profile.name}.jar'
ojdeploy -workspace Application1/Application1.jws -basedir /home/jdoe
 -nocompile
-outputfile '${base.dir}/${workspace.name}-${profile.name}'
ojdeploy -workspace /usr/jdoe/Application1.jws -project * -profile
 * -stdout /home/jdoe/stdout/${project.name}.log

Deploying ADF Applications

316

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Deploying on the Standalone WebLogic Server, in this chapter

Using Hudson as a continuous integration
framework

Hudson is an open source continuous integration server that can be used to execute and
monitor the execution of repeated jobs, such as building a software project. In the context
of developing ADF Fusion web applications, Hudson can be used to build an ADF application
directly from the version control sources and to deploy the built enterprise archive onto the
application server. This is done automatically and continuously based on how Hudson is
configured for each job.

In this recipe, we will go through the steps of defining a Hudson job that will build and deploy
a sample ADF Fusion web application. We will check out the latest version of the application
from the version control (Subversion) repository, build the application using ojdeploy, and
finally deploy the application on the Standalone WebLogic Server using the weblogic.Deployer
deployment tool.

Getting ready
For the sample ADF Fusion web application, we will use the SharedComponents,
HRComponents, and MainApplication workspaces that were created in the Breaking up
the application in multiple workspaces recipe in Chapter 1, Pre-requisites to Success: ADF
Project Setup and Foundations. It is assumed that the application components reside in a
Subversion repository. In addition, we will utilize the ojdeploy build file developed in the Using
ojdeploy to automate the build process recipe in this chapter.

How to do it…
1.	 Download the latest version of Hudson. At the time of this writing, Hudson can be

downloaded from http://hudson-ci.org/.
2.	 Install Hudson according to the documentation instructions. For the purpose of this

recipe, we will run Hudson directly by executing java -jar hudson-x.x.x.war
from the command line. hudson-x.x.x.war is the specific version of Hudson that
was downloaded.

3.	 Access the Hudson dashboard using your browser. If you are running Hudson locally
as stated previously, the URL would be http://localhost:8080.

Chapter 10

317

4.	 Create a new job by clicking on the New Job link in the main page.

5.	 Provide the Job Name and select Build a free-style software project. Click OK
to proceed.

6.	 In the job configuration page, select Discard Old Builds.

7.	 In the Source Code Management section, select Subversion and provide the
Repository URL.

8.	 In the Build Triggers section, select Build periodically and enter 10 minutes for
the Schedule value. Use the following cron syntax 10 * * * *.

9.	 In the Build section, click on the Add build step button. Select Execute Windows
batch command (Execute shell if Hudson is running on Linux) and enter build.cmd
in the Command field.

10.	 Click on the Save button to save the job definition.

Deploying ADF Applications

318

11.	 With the job selected, click on the Configure link. In the Source Code Management
section, click on the Update credentials link under the Subversion Repository URL.

12.	 In the Subversion Authorization screen, select User name/password authentication
and enter the Subversion credentials.

13.	 From the main dashboard page, click on Manage Hudson | Configure System. In
the Global properties section, click on Environment variables and then the Add
button. Create new environment variables OJDEPLOY_PATH, WLS_DOMAIN_HOME,
WLS_ADMIN_URL, WLS_ADMIN_USERNAME, WLS_ADMIN_PASSWORD, WLS_
APPLICATION_NAME, and WLS_TARGETS and set their values appropriately.

Chapter 10

319

14.	 Create the build.cmd script file at the application root folder with the the following
code as its contents. Ensure that the build.cmd file is added to Subversion.
REM Build application using ojdeploy
"%OJDEPLOY_PATH%\ojdeploy" -buildfile ojbuild.xml -define
 application.root="%WORKSPACE%" REM Deploy EAR
call "%WLS_DOMAIN_HOME%\bin\setDomainEnv.cmd" %*
java weblogic.Deployer -adminurl %WLS_ADMIN_URL% -username
 %WLS_ADMIN_USERNAME% -password %WLS_ADMIN_PASSWORD% -name
 %WLS_APPLICATION_NAME% -undeploy
java weblogic.Deployer -adminurl %WLS_ADMIN_URL% -username
 %WLS_ADMIN_USERNAME% -password %WLS_ADMIN_PASSWORD% -name
 %WLS_APPLICATION_NAME% -deploy -upload
 "%WORKSPACE%\MainApplication\deploy\
 %WLS_APPLICATION_NAME%.ear" -
 targets "%WLS_TARGETS%"

How it works…
In steps 1 through 3, we have downloaded Hudson from the Hudson website and started it
using the java –jar hudson-x.x.x.war command. This is not the recommended way to
run Hudson in a production environment, but it will do for this recipe. It is recommended that
the Hudson Web Archive (WAR) file is deployed onto one of the supported Web containers, as
outlined in the Hudson installation documentation currently available in the Hudson wiki page
http://wiki.hudson-ci.org/display/HUDSON/Installing+Hudson. Once started,
Hudson can be accessed through a Web browser using the IP address or hostname of the
server it is running on. We have executed it locally using the default startup configuration, so
in this case, it is accessible through http://localhost:8080. The main Hudson page is
called the Hudson Dashboard.

Steps 4 through 10 detail the definition of a Hudson job that will be used to build an ADF Fusion
web application. The job uses ojdeploy to build the application Enterprise Archive (EAR) file and
weblogic.Deployer to deploy the EAR file to the Standalone WebLogic Server. Both ojdeploy and
weblogic.Deployer are accessed via an operating system script file. As we will be running Hudson
on a Windows operating system, a cmd script file is used.

A Hudson job is defined by clicking on the New Job link in the Hudson Dashboard. This
eventually takes you to the job definition page, a page with a rather long list of configuration
parameters. However, the basic configuration parameters needed to get a simple job up and
running are outlined in steps 6 through 10. First you need to specify the name of the Hudson
job and select its type. Note that the job name also becomes part of the workspace directory,
the directory used by Hudson to check out and stage the build, so be careful if you specify
a job name with spaces in it. In this case, ensure that you access the workspace directory
(when referenced) within double quotes, as in "%WORKSPACE%". The Hudson workspace is
accessible via the system-defined environment variable WORKSPACE.

Deploying ADF Applications

320

In step 5, we have also chosen a free-style software project job type, which is a
general job type.

In step 6, we have indicated what to do with previous builds. The option Discard Old Builds
will allow you to define how many days to keep your builds and the maximum number of builds
to keep.

In step 7, we specified the source control management system that we are using and entered
the source control repository information. For this recipe, we are using Subversion as our
source control management system. The credentials for accessing Subversion are specified at
a later stage (see steps 11 and 12).

In step 8, we specified the job triggers. These are the possible ways that you can trigger the
execution of the job. You can define multiple triggers. We have indicated that this job will run
every 10 minutes. Observe that we have specified the time value using cron syntax. The cron
syntax time value consists of 5 fields separated with white space: MINUTE HOUR DOM MONTH
DOW, where DOM is the day of the month and DOW is the day of the week. For further details
and examples on the cron time value syntax, see the Hudson online help.

We have concluded the definition of the job by indicating in step 9 the execution of a Windows
batch command. As indicated earlier, this is fine for the purposes of this recipe since we are
running Hudson on a Windows operating system. You will adapt this step depending on your
specific configuration. The Windows batch file that we will execute is called build.cmd and is
implemented in step 14. We saved the job definition in step 10.

In steps 11 through 13, we provide additional configuration information. Note the definition
of the environment variables in step 13. We will be using these environment variables in the
build.cmd script.

The build.cmd script file is implemented in step 14. We have used ojdeploy and the
ojbuild.xml build file that we created in recipe Using ojdeploy to automate the build
process in this chapter. Note that the application.root parameter has been set to the
job workspace directory. Hudson will check out the application from Subversion into this
directory. The script file shows how to deploy the resulted EAR file to a Standalone WebLogic
Server target. This is done using the weblogic.Deployer tool, a Java-based command-line tool
that allows for the deployment (and undeployment) of applications to and from WebLogic.
To ensure the proper configuration of the WebLogic domain environment, we have run
the setDomainEnv.cmd script prior to the deployment process. Also, note that we have
chosen to undeploy the application before its deployment. Finally, observe the usage of the
environment variables defined in step 13.

Chapter 10

321

There's more…
To manually start the job, return to the Hudson Dashboard and click on the Schedule a build
icon (the icon with the green arrow to the right).

You can monitor the job status using the Console Output page. The status of the job is
indicated at the bottom of the Console Output.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Using ojdeploy to automate the build process, in this chapter

11
Refactoring,

Debugging, Profiling,
and Testing

In this chapter, we will cover:

ff Synchronizing business components with database changes

ff Refactoring ADF components

ff Configuring and using remote debugging

ff Logging Groovy expressions

ff Dynamically configuring logging in WebLogic Server

ff Performing log analysis

ff Using CPU profiler for an application running on a Standalone WebLogic Server

ff Configuring and using JUnit for unit testing

Introduction
Refactoring support in JDeveloper allows you to modify the structure of an ADF Fusion web
application without altering the overall behavior of the application. Each time you refactor
an application component, JDeveloper transparently transforms the application structure
by taking care of any references to the component. Refactoring at the ADF Fusion web
application level allows renaming, modifying, and deleting application components. More
options exist when refactoring Java code.

Refactoring, Debugging, Profiling, and Testing

324

JDeveloper includes a comprehensive list of debugging features to allow you to debug ADF
Fusion web applications deployed and running both locally on the Integrated WebLogic Server
and remotely on the Standalone WebLogic Server. Similarly, profiling support in JDeveloper
allows you to gather CPU and memory profiling statistics for applications deployed and running
both locally and remotely.

You test your ADF Fusion web application by debugging it and profiling it in the JDeveloper IDE.
When it comes to unit testing, JUnit can be integrated in JDeveloper through the installation
of separate JDeveloper JUnit extensions. Once installed, these extensions make available
a number of wizards in JDeveloper that make adding JUnit unit tests to ADF Fusion web
applications quite easy.

Synchronizing business components with
database changes

During the development process of an ADF Fusion web application, as the database schema
evolves, there will be a need to synchronize the corresponding business components used
in order to reflect these changes in the database schema. The process of synchronizing
the business components is inherently supported in JDeveloper via the Synchronize with
Database feature. Other capabilities also exist, such as making an attribute transient for
a database table column that has been removed, and adding new entity attributes to view
objects via the Add Attribute from Entity feature.

In this recipe, we will demonstrate a business components synchronization scenario that
involves the addition, deletion, and modification of database table columns.

Getting ready
Before engaging in this recipe, you need to create a sample table in your database schema
called SYNCHRONIZATION. We will use this table to demonstrate the business objects
synchronization features. Use the following SQL code to accomplish this:

CREATE TABLE SYNCHRONIZATION (DELETED_COLUMN VARCHAR2(30),
 MODIFIED_COLUMN VARCHAR2(30));

How to do it…
1.	 Create a Fusion Web Application (ADF) workspace. Using the New Entity Object…

wizard, create an entity object for the SYNCHRONIZATION table. Also, generate a
default view object called SynchronizationView.

Chapter 11

325

2.	 Use the following SQL to modify the SYNCHRONIZATION table in the database:
ALTER TABLE SYNCHRONIZATION MODIFY(MODIFIED_COLUMN VARCHAR2(20
 BYTE));
ALTER TABLE SYNCHRONIZATION ADD (NEW_COLUMN VARCHAR2(30));
ALTER TABLE SYNCHRONIZATION DROP
 COLUMN DELETED_COLUMN;

3.	 Right-click on the Synchronization entity object in the Application Navigator and
select Synchronize with Database….

4.	 In the Synchronize with Database dialog, click on the Synchronize All button and
click OK on the verification dialog.

5.	 Open the Synchronize entity object in the Overview editor and click on the
Attributes tab. Select the DeletedColumn attribute and click on the Delete
selected attribute(s) button (the red X icon).

Refactoring, Debugging, Profiling, and Testing

326

6.	 In the Delete Attribute dialog, click on the View Usages button. Repeat step 5, this
time clicking on the Ignore button.

7.	 Double-click on the SynchronizationView view object in the Application
Navigator and click on the Attributes tab in the Overview editor. Select the
DeletedColumn attribute and click on the Delete selected attribute(s) button (the
red X icon).

8.	 Select Add Attribute from Entity… by clicking on the green plus sign on top of the
attributes list.

9.	 In the Attributes dialog, select the NewColumn attribute in the Available tree and
shuttle it to the Selected list.

How it works…
To demonstrate the business components database synchronization feature in JDeveloper,
we have created an entity object based on the SYNCHRONIZATION table. Then we altered
the table by adding, removing, and modifying table columns. The synchronization feature is
accessible by right-clicking on the entity object in the Application Navigator and selecting
Synchronize with Database…. Only entity objects are synchronized automatically. You will
have to manually synchronize all other related business component objects, including any
bindings that were made for the affected attributes and any references to these bindings
and attributes in pages and in Java code (managed beans, business components custom
implementation classes).

Observe in step 5 that the removal of a table column does not automatically remove the
corresponding entity object attribute, but makes the attribute transient instead. As the
attribute referring to a deleted column may be referenced by entity-based view objects, you
will have to delete the corresponding view object attribute manually. We did this in step 7.
Furthermore, observe that any new entity object attributes that were generated for the newly
added table columns are not automatically added to the view object. You will have to do this
manually. We do did this in steps 8 and 9.

Chapter 11

327

There's more…
Note that adding new columns to a table does not affect the behaviour of the application, if
the corresponding entity object is not synchronized. However, to use the new columns in your
application, synchronization is required.

Refactoring ADF components
JDeveloper offers extensive support for refactoring ADF Fusion web application components,
available through the Refactor main menu selections or via context menus for selected
ADF components. The refactoring of ADF application components in most cases includes
renaming, moving, and deleting these components. Refactoring of ADF components is
supported throughout the Model-View-Controller architecture of the application including
business components and their attributes, task flows, bindings, JSF files, and managed beans.
Refactoring transparently takes care of updating any references to the refactored object,
without affecting the overall functionality of the application.

In this recipe, we will demonstrate the refactoring facilities in JDeveloper by refactoring
business components, business components attributes, task flows, JSF pages, associated
page definition files and their bindings, and managed beans.

Getting ready
This recipe requires that you already have a Fusion Web Application (ADF) workspace that
comprises business components, task flows, JSF pages, associated page definition files, and
managed beans. For this purpose, we will use the MainApplication and HRComponents
workspaces. These workspaces were developed in Breaking up the application in multiple
workspaces, Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations and
in Overriding remove() to delete associated children entities, Chapter 2, Dealing with Basics:
Entity Objects respectively.

How to do it…
1.	 To refactor a business component, right-click on it in the Application Navigator,

select Refactor from the context menu and a refactoring option (Rename… or
Move…). To delete a business component, select Delete from the context menu.
Alternatively, select Rename…, Move…, or Delete from the Refactor main menu.

2.	 To refactor a business component attribute, double-click on the business component
in the Application Navigator to open the Overview editor and select the Attributes
tab. Right-click on the attribute to refactor and select any of the Rename…, Delete, or
Change Type… option.

Refactoring, Debugging, Profiling, and Testing

328

3.	 To refactor a task flow, right-click on it in the Application Navigator and select any of
the Rename…, Move…, Delete under the Refactor selection in the context menu.

4.	 To refactor a JSF page, right-click on the page in the Application Navigator and select
any of the refactoring options available under the Refactor menu.

5.	 To refactor a page definition file, select any of the refactoring options under the
Refactor main menu.

6.	 To refactor a page definition binding object, open the page data binding definition
Overview editor and right-click on the binding object to refactor in the Bindings or
Executables lists. Use the options available under the Refactor menu.

7.	 To refactor a managed bean, right-click on the managed bean in the Application
Navigator and select any of the refactoring options available under the Refactor menu.

8.	 To refactor a plain file, select the file in the Application Navigator and use any of the
available refactor options under the Refactor main menu.

How it works…
In steps 1 through 8, we have shown how to refactor almost any ADF Fusion web application
component. In most cases, the refactoring options are available in both the main menu
and context menu Refactor selections. In certain cases, such as when refactoring a page
definition filename, the refactoring options are available only in the main menu Refactor
selection. In other cases, as in the case of refactoring managed beans, additional options
exist. Finally, observe what happens when you try to delete a component that is referenced by
another component. A Confirm Delete dialog is displayed giving you the ability to discover the
component's usages. The Find Usages feature is also separately available and can be used to
determine the component's references prior to refactoring it.

There's more…
To refactor (rename) a deployment profile defined for a project, open the project
configuration file (.jpr) in a text editor and locate the oracle.jdeveloper.deploy.
dt.DeploymentProfiles node. Rename the profile identified by the profileName
value. Similarly, you can rename a deployment profile defined for the workspace. Open
the workspace configuration file (.jws) and locate the oracle.jdeveloper.deploy.
dt.DeploymentProfiles node. Rename the profile identified by the ProfileName value.
Alternatively, you can create a new deployment profile.

For information on how to manually refactor (move) the ADF business components project
configuration file (.jpx), refer to the Moving the ADF Business Components Project
Configuration File (.jpx) section in the Fusion Developer's Guide for Oracle Application
Development Framework, which can be found at http://docs.oracle.com/cd/
E24382_01/web.1112/e16181/toc.htm.

Chapter 11

329

For information on how to refactor the data bindings registry file DataBindings.cpx, refer
to section Refactoring the DataBindings.cpx File in the Fusion Developer's Guide for Oracle
Application Development Framework, which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16181/toc.htm.

Finally, to rename a workspace project, you can use the File | Rename menu.

For a comprehensive reference to refactoring ADF components in JDeveloper, refer to the
chapter Refactoring a Fusion Web Application in the Fusion Developer's Guide for Oracle
Application Development Framework, which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16181/toc.htm.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Configuring and using remote debugging
Remote debugging allows you to debug an ADF Fusion web application deployed and running
remotely on a Standalone WebLogic Server directly from JDeveloper. Once both the remote
WebLogic Server and the ADF project(s) in JDeveloper are configured to support it, a remote
debugging session can be started in JDeveloper through the Debug menu selection. The
session does not differ from a local debugging session for an application running on the
Integrated WebLogic Server, but offers a number of advantages when compared to it. Some
of these advantages are the ability to easily break inside any of the application's ADF Library
JARs, the separation of the development process from the debugging of the application,
freeing resources in JDeveloper, and using a Standalone WebLogic Server that closely
matches the production environment configuration. When WebLogic is running on a separate
machine, also consider the resources that are saved in the developer's machine.

In this recipe, we will see how to configure a managed WebLogic Server instance and
JDeveloper to support remote debugging. We will also see how to initiate a remote debugging
session in JDeveloper.

Refactoring, Debugging, Profiling, and Testing

330

Getting ready
You will need a Standalone WebLogic Server, configured and started as explained in
Configuring and using the Standalone WebLogic Server, Chapter 10, Deploying ADF
Applications. You will also need an ADF Fusion web application deployed to the Standalone
WebLogic Server. For this, you can consult Deploying on the Standalone WebLogic Server,
Chapter 10, Deploying ADF Applications.

How to do it…
1.	 Open the startManagedWebLogic script in a text editor located in the bin

directory under the domain directory. Add the following definitions to it before calling
the startWebLogic script:
@REM Configuring and using remote debugging
if "%SERVER_NAME%"=="ManagedServer1" (
 set debugFlag=true
 set DEBUG_PORT=4001
)

2.	 While in the startManagedWebLogic script, remove the nodebug argument when
calling the startWebLogic script.

3.	 Restart the WebLogic domain and log in to the WebLogic administrator console. Go
to the Summary of Servers page by clicking Environment | Servers in the Domain
Structure tree.

4.	 Click on the ManagedServer1 managed server instance and then on the
Protocols | General tabs. Click on the Enable Tunneling checkbox and then on
the Save button. Log out from the WebLogic administrator console and restart the
WebLogic domain.

5.	 In JDeveloper, double-click on the project that you want to configure for remote
debugging to open the Project Properties dialog. In the Project Properties dialog,
select Run/Debug/Profile.

6.	 Click on the Edit… button to edit the Default run configuration. Alternatively, you can
create a new run configuration specifically for remote debugging. In the Edit Run
Configuration dialog, Launch Settings page to ensure that the Remote Debugging
checkbox is selected.

Chapter 11

331

7.	 While at the Edit Run Configuration dialog, select Tool Settings | Debugger |
Remote. Ensure that the Protocol is set to Attach to JPDA and enter the information
for the Host, Port, and Timeout fields. Make sure that you enter the debug port
specified in step 1, that is, 4001 for this recipe.

Refactoring, Debugging, Profiling, and Testing

332

8.	 Dismiss the Edit Run Configuration and Project Settings dialogs by clicking OK to
save the configuration changes.

9.	 To start a remote debugging session, right-click on the specific project that was
configured in the Application Navigator and select Debug. Verify the connection
settings in the Attach to JPDA Debuggee dialog and click OK.

10.	 Observe in the Debugging Log that the connection to the remote WebLogic Server
was successful. Set the necessary breakpoints in your code and start the application
in the web browser.

How it works…
In steps 1 through 4, we configured the WebLogic managed server instance that we want to
enable for remote debugging. This was done by editing the startManagedWebLogic script
and setting the debugFlag environment variable to true. This is the script that we use to
start a managed WebLogic server instance. By setting the debugFlag to true, the managed
server will start to support remote debugging. This is actually done in the setDomainEnv
script where the JAVA_DEBUG environment variable is set. Following are the debug
configuration parameters specified in setDomainEnv:

set JAVA_DEBUG=-Xdebug -Xnoagent -
 Xrunjdwp:transport=dt_socket,address=%DEBUG_PORT%,server=y,
 suspend=n -Djava.compiler=NONE

The remote connection debug port is specified with the DEBUG_PORT environment
variable, which was also set in step 1. The changes in step 1 were specified for the
Windows operating system.

Note in step 1 how we check for the specific ManagedServer1 managed server instance
in order to set the remote debugging configuration parameters. Following this strategy, you
will be able to enable remote debugging only for the specific server instances that you are
interested. This will also allow you to specify different remote debugging ports for each
managed server. Also, note in step 2 that we had to remove the nodebug argument when
calling the startWebLogic script from within the startManagedWebLogic script.

Chapter 11

333

In step 3, we restarted the WebLogic domain with the new configuration. Then, using the
administration console, we enabled HTTP tunnelling for the ManagedServer1 instance (step
4). This will enable WebLogic to simulate a T3 protocol connection using an HTTP connection
and allow remote debugging to commence via a stateful connection between JDeveloper and
WebLogic.

In steps 5 through 8, we configure the specific ADF project to allow for remote debugging.
This configuration is done by configuring a project Run Configuration. A Run Configuration is
available in the Project Properties dialog. Part of the configuration is to specify the host and
remote connection port (4001) used in step 1.

To start a remote debugging session, ensure that the WebLogic domain is up and running.
Right-click on the project configured for remote debugging in the Application Navigator and
select Debug. Debugging is done as usual.

There's more…
To break inside an ADF Library JAR that is part of the application, you will need to enable
remote debugging for the specific ADF Library JAR project as it is outlined in steps 5 through
8. In this case, if a remote debugging session is currently in progress, you need to first detach
from it by clicking on the Terminate debug button and selecting Detach in the Terminate
Debuggee Process dialog.

See also
ff Configuring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

ff Deploying on the Standalone WebLogic Server, Chapter 10, Deploying
ADF Applications

Logging Groovy expressions
Groovy is a Java-like scripting language that is integrated in the context of ADF business
components, and is used in a declarative manner in expressions ranging from attribute
and bind variable initializations to entity object validation rules and error messages. It runs
in the same JVM as the application, is interpreted at runtime and is stored as metadata in
the corresponding business component definitions. JDeveloper does not currently offer a
debugging facility for Groovy expressions. In this recipe, we will implement a Groovy helper
class that will allow us to log and debug Groovy expressions throughout the application.

Refactoring, Debugging, Profiling, and Testing

334

Getting ready
We will add the Groovy logger class to the SharedComponents workspace. This workspace
was created in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations.

How to do it…
1.	 Open the SharedComponents workspace and create a new Java class called

GroovyLogger for the business components project.

2.	 Open the GroovyLogger Java class in the Java editor and add the following code
to it:
private static ADFLogger LOGGER =
 ADFLogger.createADFLogger(GroovyLogger.class);
public GroovyLogger() {
 super();
}
public static <T> T log(String groovyExpression, T data) {
 LOGGER.info("GroovyLogger ==> Expression: " +
 groovyExpression + ", Data: " + data);
 return data;
}

3.	 Redeploy the shared components workspace to an ADF Library JAR.

How it works…
We have added a GroovyLogger class to the SharedComponents workspace to allow
for the logging and debugging of Groovy expression. The class implements a log()
method, which accepts the Groovy expression to log, along with the expression data. It uses
an ADFLogger to log the Groovy expression. The expression data is then returned to be used
by the ADF framework.

Following is an example of how the GroovyLogger helper class can be used in your ADF
business components Groovy expressions:

com.packt.jdeveloper.cookbook.shared.bc.logging.GroovyLogger
.log("adf.context.securityContext.userName",
 adf.context.securityContext.userName)

To debug your Groovy expressions, use the GroovyLogger class in your expressions as
shown in the previous example and set a breakpoint anywhere in the log() method. Then
inspect or watch the Groovy expressions using the available debug tools in JDeveloper.

Chapter 11

335

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

Dynamically configuring logging in WebLogic
Server

In the recipe Setting up logging in Chapter 1, Pre-requisites to Success: ADF Project Setup and
Foundations, we introduced the Oracle Diagnostics Logging (ODL) framework and how it could
be utilized in an ADF Fusion web application through the ADFLogger class. In this recipe,
we will demonstrate how to dynamically configure the ODL log level for a WebLogic Server
instance at runtime. Specifically, we will configure the oracle.jbo business components
logger for the ManagedServer1 WebLogic Server instance to use the NOTIFICATION log
level. ManagedServer1 was created in Configuring and using the Standalone WebLogic
Server, Chapter 10, Deploying ADF Applications. Dynamic log configuration is done via the
WLST WebLogic administration utility. This program allows for the execution of custom scripts
written in jython (an implementation of Python written in Java) to configure ODL.

Getting ready
You will need a Standalone WebLogic Server domain configured and started. This was
explained in Configuring and using the Standalone WebLogic Server, Chapter 10, Deploying
ADF Applications.

How to do it…
1.	 With the WebLogic Standalone Server started, run the WLST program located in the

oracle_common/common/bin directory under the Middleware home. You do this
by typing wlst in the shell command line.

2.	 Connect to the WebLogic administration server instance by issuing the following
WLST command:
connect('weblogic','weblogic1','t3://localhost:7001')

3.	 Change the log level of the oracle.jbo logger to NOTIFICATION by issuing the
following WLST command:
setLogLevel(target="ManagedServer1", logger="oracle.jbo",
 level="NOTIFICATION")

Refactoring, Debugging, Profiling, and Testing

336

4.	 Verify that the oracle.jbo logger's log level was changed successfully by entering
the following command:
getLogLevel(target="ManagedServer1",logger='oracle.jbo')

5.	 Exit from WLST by typing exit().

How it works…
In step 1, we started the WLST WebLogic script tool located in the Oracle home directory. This
is the directory oracle_common/common/bin under the Middleware home. It is important
that you run WLST in the specific directory because it supports custom commands to manage
WebLogic logging.

In step 2, we connected to the WebLogic administration server instance using the connect()
command. To do so, we have specified the administrator's authentication credentials and the
administration server instance URL using the T3 protocol.

We changed the log level of the oracle.jbo logger to NOTIFICATION in step 3. The oracle.
jbo logger is defined in the logging.xml logging configuration file located in the config/
fmwconfig/servers/ManagedServer1 directory under the domain directory, and it is
utilized by the ADF Business Components framework. The log level was changed by issuing the
command setLogLevel() and specifying the target server instance, the logger, and the new
log level. The log level can be specified either as an ODL or as a Java log level. Valid Java levels
are any of the following: SEVERE, WARNING, INFO, CONFIG, FINE, FINER, or FINEST. On the
other hand valid ODL levels include a message type followed by a colon and a message level.
The valid ODL message types are: INCIDENT_ERROR, ERROR, WARNING, NOTIFICATION, and
TRACE. The message level is represented by an integer value that qualifies the message type.
Possible values are from 1 (highest severity) through 32 (lowest severity).

To verify that the log level has been successfully changed, we issued the command
getLogLevel()(in step 4) specifying the WebLogic Server instance target and the logger.
We exited from WLST by typing exit() in step 5.

There's more…
WLST includes additional commands for dynamically configuring logging in WebLogic, which
allow you to configure log handlers and to list loggers and log handlers. For a comprehensive
reference of the custom logging commands supported by WLST, refer to the Logging Custom
WLST Commands chapter in the WebLogic Scripting Tool Command Reference document.
This document is part of the WebLogic Server Documentation Library available online
currently at the address http://docs.oracle.com/cd/E14571_01/wls.htm.

Chapter 11

337

See also
ff Configuring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

Performing log analysis
A possibly lesser known feature of JDeveloper is its ability to perform ODL log analysis, known as
the Oracle Diagnostic Log Analyzer. This feature allows you to open a diagnostics log file (or use
the log file currently in the Log window in JDeveloper) and do a limited yet useful log analysis.
For the Standalone WebLogic Server, diagnostics log files are produced by applications running
on the specific WebLogic Server instance. The log files are produced and saved by WebLogic in a
directory configured by the WebLogic administrator. This directory defaults to the logs directory
under the servers directory for the specific server instance; that is, for a server instance called
ManagedServer1 they can be found in servers/ManagedServer1/logs. The servers
directory is located under the specific domain directory.

In this recipe, we will see how to analyze a diagnostics log produced when running an ADF
Fusion web application on a Standalone WebLogic Server. Alternatively, you can run the
application in JDeveloper and analyze the log produced in the Log window.

Getting ready
You will need a Standalone WebLogic Server domain configured and started. You will also
need your Fusion web application deployed to the Standalone WebLogic Server. For more
information on these topics, refer to Configuring and using the Standalone WebLogic Server
and Deploying on the Standalone WebLogic Server, Chapter 10, Deploying ADF Applications.

How to do it…
1.	 Run the application deployed on the Standalone WebLogic Server, so that a

diagnostics log file is generated. Alternatively, if you already have a diagnostics log file
to analyze, you can ignore this step.

2.	 In JDeveloper, select Tools | Oracle Diagnostic Log Analyzer from the main menu.

3.	 Click on the Browse Log Files button (the search icon) to locate the diagnostics file
and open it.

Refactoring, Debugging, Profiling, and Testing

338

4.	 Click on the By Log Message tab and specify the search criteria in the Search
section. Press the Search button to commence with the search.

5.	 In the Results table, click on a value inside the Related column for a log entry of
interest and select Related By Request from the context menu.

How it works…
Steps 1 through 5 give the details of the process of analyzing a diagnostics log file using the
Oracle Diagnostics Log Analyzer feature in JDeveloper. The Oracle Diagnostics Analyzer is
accessible via the Tools | Oracle Diagnostic Log Analyzer menu selection. Once started,
you will need to load the specific diagnostics log file to analyze. We have done this in step 3.
You can search the diagnostics log entries using either the By ADF Request or the By Log
Message tab and specifying the search criteria. The By ADF Request tab will display only the
log entries related to ADF requests made when a page is submitted. On the other hand the By
Log Message tab will search all log entries in the log file by their log level. Moreover, the search
criteria in both tabs allow you to search for diagnostic log entries based on their Log Time and
based on the message content (Message Id, User, Application, Module, and so on).

The results of the search are displayed in the Results table. The results data are sortable
by clicking on the column headers. To display all related log entries, click inside the Related
column for a log entry of interest and select any of the choices available in the context menu.
These choices are:

Chapter 11

339

Related By Results
Time Filter diagnostic log entries to view all log entries leading up to the specific

entry. You can refine the time before the entry using the dropdown.
Request Filter diagnostic log entries to view all log entries for the same web

request.
ADF Request Switches to the By ADF Request tab to display the diagnostic log entries

in a hierarchical arrangement to show their execution dependencies.

See also
ff Configuring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

ff Deploying on the Standalone WebLogic Server, Chapter 10, Deploying
ADF Applications

Using CPU profiler for an application running
on a standalone WebLogic server

Profiling allows you to connect to a Standalone WebLogic Server instance and gather profiling
statistics for your application. Profiling statistics can be subsequently used to identify and
correct performance issues. JDeveloper supports both a CPU and a memory profiler. The
CPU profiler gathers statistics related to CPU usage by the application. The memory profiler
identifies how the application utilizes memory and can be used to diagnose memory leaks.

In this recipe, we will demonstrate how to use the CPU profiler to profile an ADF Fusion
web application deployed to a Standalone WebLogic managed server instance running
on the local machine.

Getting ready
You will need a Standalone WebLogic Server configured and started as explained in
Configuring and using the Standalone WebLogic Server, Chapter 10, Deploying ADF
Applications. You will also need an ADF Fusion web application deployed to the Standalone
WebLogic Server. For this, you can consult Deploying on the Standalone WebLogic Server,
Chapter 10, Deploying ADF Applications.

Refactoring, Debugging, Profiling, and Testing

340

How to do it…
1.	 In JDeveloper, double-click on the project that you want to profile in the Application

Navigator to bring up its Project Properties dialog.

2.	 Select Run/Debug/Profile and click on the Edit… button to edit the Default
Run Configuration.

3.	 In the Tool Settings | Profiler page, enter com.packt.jdeveloper.cookbook.*
in the Start Filter. Click OK a couple of times to dismiss the Project Settings dialog,
saving the changes.

4.	 Select Run | Attach to | CPU Profilee from the main menu. On the Attach to CPU
Profilee dialog, select the WebLogic profiler agent process and click OK. The profiler
agent process is started along with the Standalone WebLogic Server.

Chapter 11

341

5.	 Once attached to the profiler agent, the Profiling <project_name> tab is displayed,
where <project_name> is the name of project you are profiling. Click on the Begin
Use Case button (the first icon in the toolbar) to initiate a new profiling use case.

6.	 To generate profiler statistics, run the application in the web browser. To terminate
the profiling session, click on the Terminate Profiling button (the red box icon) in the
main toolbar.

How it works…
Steps 1 through 3 demonstrate how to configure a project for profiling. Observe in step 3, how
we have indicated the specific package filter based on which we would like to filter the profiler
results. Profiler data will be collected only for those stack levels whose class name satisfies
the Stack Filter entry. Multiple filters can be entered, separated with spaces. You can also
click on the Advanced button in the Profiler page to select the classes you want to profile.

Steps 4 through 6 show how to start a profiling session and how to create a new use case to
collect profiling statistics. Observe in step 4, our choice for connecting to the profiler agent.
As we are running the Standalone WebLogic Server locally, we have chosen the profiler agent
from the Attach to Local Process list.

Refactoring, Debugging, Profiling, and Testing

342

There's more…
To profile an ADF Fusion web application running on a WebLogic Server on a remote
machine, the profiler agent must also be started on the remote machine as part of the
WebLogic start-up configuration. To determine the profiler agent start-up configuration
parameters, select Tool Settings | Profiler | Remote in the Edit Run Configuration dialog
and then the Remote Process Parameters tab. Adjust the remote process port as needed in
the Default Settings tab.

See also
ff Configuring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

ff Deploying on the Standalone WebLogic Server, Chapter 10, Deploying
ADF Applications

Chapter 11

343

Configuring and using JUnit for unit testing
JUnit is a unit testing framework for Java code. Unit testing refers to programmatically
testing individual pieces of code and it is actually part of the software development and
construction process. In JDeveloper, JUnit is supported via the BC4J JUnit Integration and
JUnit Integration extensions available through the Official Oracle Extensions and Updates
update center. The BC4J JUnit Integration extension makes available wizards for constructing
JUnit unit test cases, suites, and fixtures specifically for business components projects. On the
other hand, the JUnit Integration extension includes wizards to help you setup generic JUnit
artifacts. Upon installation, these extensions make available the Unit Tests category under
the General category in the New Gallery dialog.

A unit test class is a class that contains unit test methods. Unit test classes are grouped in a
test suite that runs all of the test cases together when executed. A unit test fixture is a special
class used to configure the unit tests.

In this recipe, we will implement a JUnit test suite that will test the functionality of an
application module and the view objects that are part of its data model.

Getting ready
You will need access to the HRComponents workspace created in Overriding remove() to
delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

How to do it…
1.	 In JDeveloper, select Help | Check for Updates… from the main menu. This will start

the Check for Updates wizard.

2.	 In the Source page, select Official Oracle Extensions and Updates and click Next.

3.	 In the Updates page, select the BC4J JUnit Integration and JUnit Integration
extensions and click Next.

4.	 Accept the JUnit license agreement and click Next. This will initiate the download
of the JUnit extensions. Once the download is complete, in the Summary page,
click on the Finish button. On the Confirm Exit dialog, click on the Yes button to
restart JDeveloper.

5.	 Open the HRComponents workspace and create a project by selecting Custom
Project from the General | Projects category in the New Gallery dialog.

6.	 In the Name your project page of the Create Custom Project wizard, enter
HRComponentsUnitTests for the Project Name and click on the Finish button.

7.	 Right-click on the HRComponentsUnitTests project in the Application Navigator
and select New…. From the General | Unit Tests category, select ADF Business
Components Test Suite and click OK.

Refactoring, Debugging, Profiling, and Testing

344

8.	 In the Configure Tests page of the JUnit ADF Business Components Test
Suite Wizard, make sure that the appropriate Business Components
Project, Application Module, and Configuration are selected. For this recipe,
we will select HRComponentsBC.jpr, HrComponentsAppModule, and
HrComponentsAppModuleLocal respectively. Then click Next.

9.	 In the Summary page, review the JUnit classes that will be generated and click Finish
to proceed.

10.	 Edit the HrComponentsAppModuleAMTest class and add the following code to the
setup() method:
// get the application module from the JUnit test fixture
HrComponentsAppModuleAMFixture fixture =
 HrComponentsAppModuleAMFixture.getInstance();
_amImpl = (HrComponentsAppModule)fixture
 .getApplicationModule();

11.	 Add the following code to the testExportEmployees() method:
String employees = _amImpl.exportEmployees();

12.	 To run the unit tests, right-click on the AllHrComponentsAppModuleTests.java
file in the Application Navigator and select Run. Observe the status of the unit tests
in the JUnit Test Runner Log window.

Chapter 11

345

How it works…
In steps 1 through 4, we downloaded the JUnit JDeveloper extensions using the Check for
Updates… facility. As stated earlier, there are two separate extensions for JUnit one being
specific to ADF business components projects.

In steps 5 and 6, we created a custom project to house the JUnit unit tests. Then (in steps
7 through 9), we created a JUnit business components test suite using the ADF Business
Components Test Suite Wizard. We have indicated the HRComponentsBC business
components project, and selected the HrComponentsAppModule application module and
its HrComponentsAppModuleLocal configuration. Upon completion, the wizard creates the
JUnit test suite, a test fixture class for the application module and unit test case classes for
the application module and all view object instances in the application module data model.
The unit tests that are included in the test suite are indicated by the @Suite.SuiteClasses
annotation in the test suite, as shown in the following code snippet:

@Suite.SuiteClasses({ EmployeeCountVOTest.class,
 ApplicationModulePoolStatisticsVOTest.class,
 CascadingLovsVOTest.class,
 DepartmentEmployeesVOTest.class,
 EmployeesManagedVOTest.class,
 DepartmentsManagedVOTest.class, DepartmentsVOTest.class,
 EmployeesVOTest.class,
 HrComponentsAppModuleAMTest.class })

Furthermore, observe the code in the constructor of the
HrComponentsAppModuleAMFixture fixture class. It uses the oracle.jbo.
client.Configuration createRootApplicationModule() method to create the
HrComponentsAppModule application module based on the configuration indicated
in step 8. The HrComponentsAppModule application module is then available via the
getApplicationModule() getter method.

The JUnit test cases created by the wizard are empty in most cases. In step 11, we have
added test code to the testExportEmployees() application module test case to
actually call the exportEmployees() HrComponentsAppModule application module
method. To do this, we used the application module class variable _amImpl. This
variable was initialized with a reference to the HrComponentsAppModule by calling the
HrComponentsAppModuleAMFixture getApplicationModule() method in step 10.

Refactoring, Debugging, Profiling, and Testing

346

Finally, we run the AllHrComponentsAppModuleTests.java file in the Application
Navigator in step 11 to execute the JUnit test suite.

There's more…
Note the @Test annotation to indicate a test method in the test case class. You can add
additional test methods to the unit test class by simply preceding them with this annotation.
Also, observe the @Before and @After annotations on methods setup() and teardown()
to indicate methods that are executing before and after the unit test case.

To include additional test cases to the test suite, implement the JUnit test case class and add
it to the @Suite.SuiteClasses annotation in the test suite class.

JUnit unit test suites can be integrated with ant and be part of a continuous integration
framework that runs your unit tests each time a new build of your application is being made.
For a continuous integration example using Hudson, take a look at Using Hudson as a
continuous integration framework, Chapter 10, Deploying ADF Applications.

See also
ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

12
Optimizing,

Fine-tuning, and
Monitoring

In this chapter, we will cover:

ff Using Update Batching for entity objects

ff Limiting the rows fetched by a view object

ff Limiting large view object query result sets

ff Limiting large view object query result sets by using required view criteria

ff Using a Work Manager for processing of long running tasks

ff Monitoring the application using JRockit Mission Control

Introduction
The ADF framework offers a number of optimization and tuning settings related to entity
objects, view objects, and application modules. Many of these settings are accessible in
JDeveloper in the General tab Tuning section of the corresponding Overview editor. Others
are programmatic techniques that optimize the performance of the application, such as
limiting the result set produced by a view object query, or providing query optimizer hints for
the underlying view object query. Yet more are implemented by utilizing facilities offered by
the application server, such as the use of work managers in the WebLogic Server.

Optimizing, Fine-tuning, and Monitoring

348

When it comes to monitoring, profiling, and stress testing an ADF Fusion web application,
in addition to the tools offered by JDeveloper (that is, the CPU and Memory Profiler) other
external tools can be useful. Such tools include the JRockit Mission Control, Enterprise
Manager Fusion Middleware Control, and Apache JMeter.

Using Update Batching for entity objects
When multiple entity objects of the same type are modified, the number of DML (INSERT,
UPDATE, and DELETE) statements that are issued against the database corresponds to one
for each entity object that was modified. This can be optimized by using entity object update
batching optimization. When update batching is used, the DML statements are grouped per
DML statement type (INSERT, UPDATE, and DELETE) and bulk-posted based on a configured
threshold value. This threshold value indicates the number of entity objects of the same type
that would have to be modified before update batching can be triggered.

In this recipe, we will see how to enable update batching for an entity object.

Getting ready
We will enable update batching for the Department entity object. This entity object is
part of the HRComponents workspace, which was created in Overriding remove() to delete
associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

The HRComponents workspace requires a database connection to the HR schema.

How to do it…
1.	 Open the HRComponents workspace. In the Application Navigator expand the

HRComponentsBC components project and locate the Department entity object.
Double-click on it to open the Overview editor.

2.	 In the General tab, expand the Tuning section and check the Use Update Batching
checkbox.

Chapter 12

349

3.	 Enter 1 for the When Number of Entities to Modify Exceeds.

4.	 Redeploy the HRComponents workspace to an ADF Library JAR.

How it works…
We have enabled update batching for the Department entity object by opening the entity
object Overview editor and clicking on the Use Update Batching checkbox in the Tuning
section of the General tab. We have also indicated the update batching threshold by entering
a number in the When Number of Entities to Modify Exceeds. This threshold indicates
the number of Department entity objects that would have to be modified in order for
update batching to be triggered by the ADF framework. If the threshold is satisfied, then the
framework will use a cursor to bulk-post the DML operations (one post per DML operation
type). Otherwise, separate DML statements will be posted for each modified entity object.

There's more…
Using update batching will not affect the number of times an overridden doDML() will be
called by the framework. This method will be called consistently for each modified entity
object, regardless of whether the entity object uses update batching or not.

Furthermore, note that update batching cannot be used for entity objects that fall in any of the
following categories (in these cases, update batching is disabled in JDeveloper).

ff An entity object that defines attributes that are refreshed on inserts and/or updates
(Refresh on Insert, Refresh on Update properties).

ff An entity object that defines BLOB attributes.

ff An entity object that defines a ROWID-type attribute as a primary key. This attribute is
also refreshed on inserts.

See also
ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Optimizing, Fine-tuning, and Monitoring

350

Limiting the rows fetched by a view object
The ADF Business Components framework allows you to declaratively and/or programmatically
set an upper limit for the number of rows that can fetched from the database layer by a view
object. Declaratively, this can be accomplished through the view object Tuning section in the
General page of the view object Overview editor. You can do this by selecting Only up to row
number in the Retrieve from the Database section and providing a row count.

This can also be accomplished programmatically by calling a view object's setMaxFetchSize()
method and specifying an upper row limit.

To globally set an upper limit for the number of rows that can be fetched by all view objects
in an ADF Fusion web application, the global configuration setting rowLimit in the adf-
config.xml configuration file can be used instead. Then, by overriding the framework
getRowLimit() method, you can adjust this upper limit for individual view objects as
needed. When an attempt is made to fetch rows beyond this upper limit, the framework will
generate an oracle.jbo.RowLimitExceededWarning exception. This exception can then
be caught by your custom DCErrorHandlerImpl implementation and presented as a Faces
warning message box (see Using a custom error handler to customize how exceptions are
reported to the ViewController, Chapter 9, Handling Security, Session Timeouts, Exceptions
and Errors).

In this recipe, we will see how to globally limit the number of rows fetched by all view objects
and how to override this global setting for specific view objects.

Getting ready
We will set an upper limit for the number of rows fetched by all view objects used in the
MainApplication workspace. This workspace was created in Breaking up the application
in multiple workspaces Chapter 1, Pre-requisites to Success: ADF Project Setup and
Foundations. We will also update the Employees view object to override this upper limit. This
view object is part of the HRComponents workspace developed in Overriding remove() to
delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

The HRComponents workspace requires a database connection to the HR schema.

Chapter 12

351

How to do it…
1.	 Open the MainApplication workspace and locate the adf-config.xml file. The

file is located in the Application Resources section of the Application Navigator
under the Descriptors | ADF META-INF node. Double-click on the file to open it.

2.	 In the Overview page, click on the Business Components tab.

3.	 Click on the Row Fetch Limit checkbox and specify 1000 for the upper rows
fetched limit.

4.	 Now, open the HRComponents workspace and edit the EmployeesImpl.java view
object custom implementation class.

5.	 Override the getRowLimit() method and replace the call to super.
getRowLimit() with the following:
// return -1 to indicate no row fetch limit for the
// Employees View object
return -1;

6.	 Redeploy the HRComponents workspace to an ADF Library JAR.

Optimizing, Fine-tuning, and Monitoring

352

How it works…
In steps 1 through 3, we have used the overview editor for the adf-config.xml ADF
application configuration file to specify a global threshold value for the number of rows fetched
by all view objects. For this recipe, we have indicated that up to 1000 rows can be fetched
by all view objects throughout the application. Then, in steps 4 and 5, we have overridden
the getRowLimit() method of the Employees view object to set a different fetch limit
specifically for the Employees view object. In this case, by returning -1 we have indicated that
there would be no fetch limit and that all rows should be fetched for this specific view object.

There's more…
Note that the maximum fetch limit of a view object is specified by -1, which indicates that
all rows can be fetched from the database. This does not mean that all rows will be fetched
by the view object at once, but that if you iterate over the view object result set, you will
eventually fetch all of them. As stated earlier, when a fetched row limit is set, an attempt
to iterate over the view object result set past this limit will produce an oracle.jbo.
RowLimitExceededWarning exception.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Limiting large view object query result sets
In the recipe Limiting the rows fetched by a view object in this chapter, we have seen how to limit
the number of rows that can be fetched from the database by a view object. While this technique
limits the number of rows fetched from the database to the middle layer, it will not limit the
view object query that runs in the database. In this case, a query that produces a result set in
the thousands of records will still be executed, which would be detrimental to the application's
performance. This recipe takes a different approach - actually limiting the view object query to a
predefined row count defined by the specific view object using a custom property.

Chapter 12

353

Getting ready
The recipe uses the SharedComponents and HRComponents workspaces. These workspaces
were created in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites
to Success: ADF Project Setup and Foundations and Overriding remove() to delete associated
children entities, Chapter 2, Dealing with Basics: Entity Objects recipes respectively.

The HRComponents workspace requires a database connection to the HR schema.

How to do it…
1.	 Open the SharedComponents workspace. Locate and open the

ExtViewObjectImpl.java view object framework extension class in the Java
editor. Add the following helper methods to it. Also ensure that you add a constant
definition for QUERY_LIMIT to "QueryLimit".
private boolean hasQueryLimit() {
 // return true if the View object query has a limit
 return this.getProperty(QUERY_LIMIT) != null;
}
private long getQueryLimit() {
 long queryLimit = -1;
 // check for query limit
 if (hasQueryLimit()) {
 // retrieve the query limit
 queryLimit = new Long((String)this.getProperty(QUERY_LIMIT));
 }
 // return the query limit
 return queryLimit;
}

2.	 Override the buildQuery(int, boolean) method. Replace the call to return
super.buildQuery(i, b) generated by JDeveloper with the following code:
// get the View object query from the framework
String qryString = super.buildQuery(i, b);
// check for query limit
if (hasQueryLimit()) {
 // limit the View object query based on the
 // query limit defined
 String qryStringLimited = "SELECT * FROM (" + qryString
 + ") WHERE ROWNUM <= " + getQueryLimit();
 qryString = qryStringLimited;
}
return qryString;

Optimizing, Fine-tuning, and Monitoring

354

3.	 Redeploy the SharedComponents workspace to an ADF Library JAR.

4.	 Open the HRComponents workspace. Locate and open the Employees view object
in the Overview editor.

5.	 In the Custom Properties section of the General tab, add a custom property called
QueryLimit. Set its Value to the number of rows that view object query will be
limited to.

6.	 Redeploy the HRComponents workspace to an ADF Library JAR.

How it works…
In step 1, we have added two helper methods called hasQueryLimit() and
getQueryLimit() which respectively determine the presence and retrieve the value of a
view object custom property called QueryLimit. The QueryLimit custom property, when
added to a view object, specifies a maximum number of rows threshold that the specific query
is allowed to produce.

In step 2, we have overridden the view object buildQuery() method in order to check for
the definition of the QueryLimit custom property by the view object and, if this is indeed the
case, to construct a wrapper query that will limit the rows returned by the original view object
query. The ADF Business Components framework calls the buildQuery() method when it
needs to construct the view object query prior to its execution. The view object query is limited
by adding a WHERE clause for a ROWNUM upto the value specified by the QueryLimit custom
property. Note that these methods were added to the ExtViewObjectImpl framework
extension class, part of the SharedComponents workspace, making this functionality
generic and available to all view objects throughout the ADF application. We redeployed the
SharedComponents workspace to ensure that this functionality is part of the ADF Library JAR.

In steps 4 through 6, we have updated the Employees view object, part of the
HRComponents workspace, by adding to it the QueryLimit custom property and setting its
value to the number of rows that the query is limited to.

There's more…
You can present a message informing the user that the query results for a particular search
were limited, by adding this additional functionality to the application:

1.	 Add the following code to the ExtViewObjectImpl view object framework
extension class:
private void setQueryLimitApplied(Boolean queryLimitApplied) {
 this.queryLimitApplied = queryLimitApplied;
}
private Boolean isQueryLimitApplied() {
 return this.queryLimitApplied;
}

Chapter 12

355

public String queryLimitedResultsMessage() {
 String limitedResultsError = null;
 // check for query limit having been applied
 if (isQueryLimitApplied()) {
 // return a message indicating that the
 // query was limited
 limitedResultsError =
 BundleUtils.loadMessage("00008", new String[] {
 String.valueOf(this.getQueryLimit()) });
 }
 return limitedResultsError;
}

2.	 While editing the ExtViewObjectImpl framework extension class, override the
executeQueryForCollection() method and add the following code after the
super.executeQueryForCollection() line generated by JDeveloper:
// set the queryLimitApplied indicator appropriately
if (hasQueryLimit()
 && this.getEstimatedRowCount() > getQueryLimit()) {
 this.queryLimitApplied = true;
} else {
 this.queryLimitApplied = false;
}

3.	 Add the queryLimitedResultsMessage() method to the client interface for the
specific view object that its query is limited (Employees in this example).

4.	 Create a method binding for the queryLimitedResultsMessage method for the
specific JSF page where the query is used.

5.	 Add to a managed bean with the necessary code to programmatically invoke the
method binding, as shown in the following sample code:
public String getQueryLimitedResultsMessage() {
 return (String)ADFUtils.findOperation(
 "queryLimitedResultsMessage").execute();
}

6.	 Use an af:outputText on the JSF to display the message, as shown in the
following sample code:

<af:outputText id="ot1" value="#{SomeManagedBean.
 queryLimitedResultsMessage}"
 partialTriggers="qry1" visible="#{bindings.
 EmployeesIterator.currentRow != null}"/>

Optimizing, Fine-tuning, and Monitoring

356

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

Limiting large view object query result sets
by using required view criteria

In the recipe Limiting large view object query result sets in this chapter, we presented a
programmatic technique to limit the result set produced by a view object query. A simpler way
to accomplish this in a declarative manner is to add named view criteria to the view object
ensuring that some of the criteria items are required. This will force the user at runtime to
enter values for those required criteria, thus limiting the size of the query result set.

In this recipe, we will add named view criteria to a view object and make the criteria
items required.

Getting ready
We will add named view criteria to the Employees view object. It is part of the
HRComponents workspace, which was created in Overriding remove() to delete associated
children entities, Chapter 2, Dealing with Basics: Entity Objects.

The HRComponents workspace requires a database connection to the HR schema.

How to do it…
1.	 Open the HRComponents workspace and locate the Employees view object.

2.	 Open the Employees Overview editor and go to the Query tab.

3.	 Click on the Create new view criteria button (the green plus sign icon) in the View
Criteria section.

Chapter 12

357

4.	 In the Create View Criteria dialog, add criteria items by clicking on the Add Item
button. To ensure that a specific criteria item is required, select Required from the
Validation drop-down list.

5.	 Redeploy the HRComponents workspace to an ADF Library JAR.

How it works…
Steps 1 through 4 show you how to add named view criteria to the Employees view object
with required criteria items. View criteria are added to the view object by navigating to the
Query tab of the view object Overview editor and clicking on the Create new view criteria
button. You add criteria items to the view criteria by clicking on the Add Item button in the
Create View Criteria dialog. To make a criteria item required for the query to be executed,
ensure that you set the criterion Validation to Required.

At runtime, required criteria will appear with an asterisk (*) in front of them. If you attempt to
execute the query without specifying values for any of the required criteria, a validation error
message will be shown. To proceed with the query execution, you will need to provide values
for all required criteria.

There's more…
The Selectively Required option for the view criteria item Validation indicates that the
specific criteria item will be required only as long as no other values have been supplied for
any of the other criteria items. In this case, a validation exception will be raised indicating that
the criterion is required. If a value has been supplied for any of the other criteria items, then
specifying a value for the specific criterion is not required.

Optimizing, Fine-tuning, and Monitoring

358

See also
ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Using a work manager for processing of
long running tasks

Work managers allow for the concurrent execution of multiple threads within the WebLogic
Server. They provide an alternative to the java.lang.Thread API (this API should not be
utilized by Java EE applications) for running a work, that is an isolated piece of Java code,
concurrently (or serially) as separate WebLogic-managed threads.

Work managers in the WebLogic Server fall in three categories: default, global and
application-specific work managers. The default work manager is used for applications that
do not specify a work manager. This may be sufficient for most applications. Global work
managers are WebLogic Server domain-specific and are defined explicitly in WebLogic.
Applications utilizing the same global work manager create their own instance of the work
manager to handle the threads associated with each application. Application-specific work
managers are defined for specific applications only, making them available for use by the
specific applications only.

Programmatically, work managers are supported through the interfaces defined in the work
manager API. The API is defined in the commonj.work package in the weblogic.jar library.

In this recipe, we will define a global work manager in WebLogic and implement a wrapper
framework around the work manager API. Then we will demonstrate how to utilize the wrapper
framework to run part of an ADF Fusion web application on the global work manager.

Getting ready
You will need access to the SharedComponents, HRComponents and MainApplication
workspaces before delving into this recipe. These workspaces were created in Breaking up the
application in multiple workspaces, Chapter 1, Pre-requisites to Success: ADF Project Setup
and Foundations and Overriding remove() to delete associated children entities, Chapter 2,
Dealing with Basics: Entity Objects.

The HRComponents workspace requires a database connection to the HR schema.

You will also need access to a configured standalone WebLogic server domain and your
application deployed on it. For information on these topics, take a look at Configuring and
using the Standalone WebLogic Server and Deploying on the Standalone WebLogic Server,
Chapter 10, Deploying ADF Applications.

Chapter 12

359

How to do it…
1.	 Open the SharedComponents workspace. Add the following ExtWorkManager,

ExtWork and ExtWorkListener classes to the SharedBC business components
project. When done, redeploy the workspace to an ADF Library JAR.
public class ExtWorkManager {
 private final static ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExtWorkManager.class);
 private static final String DEFAULT_MANAGER_NAME =
 "MyWorkManager";
 private String managerName = DEFAULT_MANAGER_NAME;
 private WorkManager workManager;
 private WorkListener workListener;
 private List<ExtWork> works = new ArrayList<ExtWork>();
 List<WorkItem> workList = new ArrayList<WorkItem>();
 // run the Work Manager serially by default
 private long waitType = WorkManager.INDEFINITE;
 public ExtWorkManager() {
 }
 public ExtWorkManager(String managerName) {
 // check for valid name; used default name otherwise
 if (managerName == null || !"".equals(managerName)) {
 this.managerName = DEFAULT_MANAGER_NAME;
 }
 }
 public void addWork(ExtWork work) {
 works.add(work);
 }
 public void run() {
 LOGGER.info("WorkManager.run()");
 try {
 // get the Work Manager from the context
 InitialContext ctx = new InitialContext();
 workManager = (WorkManager)ctx.lookup("java:comp/env/"
 + managerName);
 // create a listener
 if (workListener == null) {
 workListener = new ExtWorkListener(this);
 }
 // schedule work items in a work list
 workList = new ArrayList<WorkItem>();
 for (ExtWork work : works) {
 WorkItem workItem = workManager.schedule(work,
 workListener);

Optimizing, Fine-tuning, and Monitoring

360

 workList.add(workItem);
 }
 // run the Work Manager work list
 workManager.waitForAll(workList, waitType);
 } catch (Exception e) {
 LOGGER.severe(e);
 throw new ExtJboException(e);
 }
}
public List<ExtWork> getResult() {
 List<ExtWork> resultList = new ArrayList<ExtWork>();
 try {
 // iterate all work items and add their results
 // to the results list
 for (WorkItem workItem : workList) {
 resultList.add((ExtWork)workItem.getResult());
 }
} catch (Exception e) {
 throw new ExtJboException(e);
}
// return the results list
return resultList;
}
// see book's source code for complete listing
}
public abstract class ExtWork implements Work {
 private final static ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExtWork.class);
 // parameters list
 protected List<Object> parameters =
 new ArrayList<Object>();
 public ExtWork(Object... parameters) {
 super();
 // add parameters to the parameter list
 for (Object parameter : parameters) {
 this.parameters.add(parameter);
 }
 }
 public abstract Object getResult();
 // see book's source code for complete listing
}
public class ExtWorkListener implements WorkListener {
 private final static ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExtWorkListener.class);

Chapter 12

361

 private ExtWorkManager manager;
 public ExtWorkListener(ExtWorkManager manager) {
 super();
 this.manager = manager;
 }
 public void workAccepted(WorkEvent workEvent) {
 LOGGER.info("Work accepted for work manager '" +
 manager.getManagerName() + "' at " + getTime());
 }
 private String getTime() {
 Calendar cal = Calendar.getInstance();
 SimpleDateFormat sdf =
 new SimpleDateFormat("HH:mm:ss");
 return sdf.format(cal.getTime());
 }
 // see book's source code for complete listing
}

2.	 Open the HRComponents workspace and add the following ExportEmployeesWork
class to it:
public class ExportEmployeesWork extends ExtWork {
 private final static ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExportEmployeesWork.class);
 private StringBuilder employeeStringBuilder;
 public ExportEmployeesWork() {
 super();
 }
 public ExportEmployeesWork(Object... parameters) {
 super(parameters);
 }
 @Override
 public Object getResult() {
 // return the employees CSV string buffer
 return employeeStringBuilder;
 }
 @Override
 public void run() {
 LOGGER.info("ExportEmployeesWork.run()");
 // the Employees rowset iterator was passed as a
 // parameter when we created this work
 RowSetIterator iterator = (RowSetIterator)parameters.get(0);
 // get additional parameters as needed
 // Object param1 = parameters.get(1);
 // build the employees CSV string buffer
 employeeStringBuilder = new StringBuilder();

Optimizing, Fine-tuning, and Monitoring

362

 iterator.reset();
 while (iterator.hasNext()) {
 EmployeesRowImpl employee =
 (EmployeesRowImpl)iterator.next();
 employeeStringBuilder.append(
 employee.getLastName() + " "
 + employee.getFirstName());
 if (iterator.hasNext()) {
 employeeStringBuilder.append(",");
 }
 }
 // done with the rowset iterator
 iterator.closeRowSetIterator();
 }
}

3.	 Add the following exportEmployeesOnWorkManager() method to the
HrComponentsAppModuleImpl custom implementation class.
public String exportEmployeesOnWorkManager() {
 // create a Work Manager
 ExtWorkManager mngr = new ExtWorkManager("MyWorkManager");
 // add the export employees work to the Work Manager
 mngr.addWork(new ExportEmployeesWork(
 getEmployees().createRowSetIterator(null)));
 // run the Work Manager
 mngr.run();
 // get the result from the Work Manager
 List<ExtWork> works = mngr.getResult();
 StringBuilder employeeStringBuilder = new StringBuilder();
 for (ExtWork work : works) {
 ExportEmployeesWork exportWork = (ExportEmployeesWork)work;
 employeeStringBuilder.append(exportWork.getResult());
 }
 // return the employees CSV string buffer
 return employeeStringBuilder.toString();
}

4.	 Ensure that the exportEmployeesOnWorkManager() method is added to the
HrComponentsAppModule application module client interface. Then, redeploy the
HRComponents workspace to an ADF Library JAR.

Chapter 12

363

5.	 Open the main application workspace. Create a new JSPX page called
exportEmployeesUsingWorkManager.jspx and add the following code to it:
<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="exportEmployees
 UsingWorkManager.jspx" id="d1">
 <af:messages id="m1"/>
 <af:form id="f1">
 <af:panelStretchLayout id="psl1">
 <f:facet name="top"/>
 <f:facet name="center">
 <af:toolbar id="t1">
 <af:commandButton text="Export Employees" id="cb1">
 <af:fileDownloadActionListener filename=
 "employees.csv"method="#{ExportEmployees
 UsingWorkManagerBean.exportEmployees}"/>
 </af:commandButton>
 </af:toolbar>
 </f:facet>
 <f:facet name="bottom"/>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

6.	 Create a page definition file for the exportEmployeesUsingWorkManager.
jspx page and add a method action binding for the
exportEmployeesOnWorkManager() method. It is available under the
HrComponentsAppModuleDataControl data control.

7.	 Create a managed bean called ExportEmployeesUsingWorkManagerBean and
add the following exportEmployees() method to it:
public void exportEmployees(FacesContext facesContext,
 OutputStream outputStream) {
 // get the employees CSV data
 String employeesCSV = (String)ADFUtils.findOperation(
 "exportEmployeesOnWorkManager").execute();
 try {
 // write the data to the output stream
 OutputStreamWriter writer = new
 OutputStreamWriter(outputStream, "UTF-8");
 writer.write(employeesCSV);
 writer.close();
 outputStream.close();

Optimizing, Fine-tuning, and Monitoring

364

 } catch (IOException e) {
 // log exception
 }
}

8.	 Open the web.xml deployment descriptor in the Source editor and add the following
resource reference to it:
<resource-ref>
 <res-ref-name>MyWorkManager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

9.	 Ensure that the standalone WebLogic server domain is started,
then log in into the administration console using the following URL:
http://serverHost:serverPort/console, where serverHost is the
hostname or IP of the WebLogic Server machine and serverPort is the
administration server's port.

10.	 Select Environment | Work Managers from the Domain Structure tree.

11.	 In the Summary of Work Managers page, click on the New button under the Global
Work Managers, Request Classes and Constraints table.

12.	 In the Select Work Manager Definition type page, select Work Manager and
click Next.

Chapter 12

365

13.	 In the Work Manager Properties page, enter MyWorkManager for the work manager
Name and click Next.

14.	 In the Select deployment targets page, select your managed server instance from
the list of Available targets and click Finish. The work manager should now be
visible in the Global Work Managers, Request Classes and Constraints table in the
Summary of Work Managers page.

15.	 Click on MyWorkManager in the Global Work Managers, Request Classes and
Constraints table in the Summary of Work Managers page. In the Settings for
MyWorkManager page, select Ignore Stuck Threads and click on the Save button.

16.	 Restart the standalone WebLogic server domain and deploy to it the main application.

How it works…
To ease the task of dealing with work managers, we have introduced the following three
classes (in step 1):

ff ExtWorkManager: A wrapper around the functionality provided by the commonj.
work work manager API. The following methods implemented by this class make it
easy to get going with using work managers in our application:

�� ExtWorkManager(String managerName): Constructs a work manager
identified by its name

�� addWork(ExtWork work): Adds ExtWork works to the work manager

�� run(): Executes the work manager

�� getResult(): Returns the work manager result(s)

ff ExtWork: An abstract class built on top of the commonj.work.Work interface. It
accepts generic parameters during construction, which it stores in the parameters
class variable. Concrete classes must implement its run() and getResult()
methods. Class ExportEmployeesWork in step 2 is an example of a concrete
implementation of this class.

ff ExtWorkListener: Implements the commonj.work.WorkListener interface.

Optimizing, Fine-tuning, and Monitoring

366

In this recipe, we have identified the functionality of exporting data from a database table,
which was originally implemented in Exporting data to a file, Chapter 7, Face Value: ADF
Faces, JSPX Pages and Components, that can run on the work manager. It is implemented
by the method exportEmployees() in the HrComponentsAppModuleImpl custom
application module implementation class, part of the HRComponents workspace. Steps 2
and 3 illustrate how it is done:

ff Create a class that extends the ExtWork class. This class identifies a piece
of code that can run on a work manager. In our case, this was done with the
ExportEmployeesWork class in step 2. The actual code that will be executed is
then implemented by the run() method of the class.

ff Create an ExtWorkManager class and call its addWork() method to add specific
pieces of "work" to be executed by it. These are classes that extend ExtWork.
In our case, this was done in step 3 when we called addWork() specifying
ExportEmployeesWork as the specific ExtWork class:
mngr.addWork(new ExportEmployeesWork(getEmployees().
 createRowSetIterator(null)));

ff Call the ExtWorkManager class run() method to commence with the execution of
the works added to the work manager.

Observe the constructor of the ExtWork derived classes. It accepts a variable number of
parameters that are stored in the parameters class variable. For instance, in our example,
the ExportEmployeesWork was constructed specifying the Employees RowSetIterator,
as shown in the following line of code:

new ExportEmployeesWork(getEmployees().createRowSetIterator(null))

These parameters can then be accessed as shown in the ExportEmployeesWork run()
method, as follows:

RowSetIterator iterator = (RowSetIterator)parameters.get(0);

To retrieve the results produced by the work manager, you iterate over the ExtWork works and
you call getResult() for each one. The works managed by the work manager are retrieved by
calling getResult() on it. This is implemented in step 3 and is shown as follows:

List<ExtWork> works = mngr.getResult();
StringBuilder employeeStringBuilder = new StringBuilder();
for (ExtWork work : works) {
 ExportEmployeesWork exportWork = ExportEmployeesWork)work;
 employeeStringBuilder.append(exportWork.getResult());
}

Chapter 12

367

As you can see in step 2, the ExportEmployeesWork getResult() method returns the
CSV string buffer employeeStringBuilder that was built in the run() method when
iterating over the Employees view object:

public Object getResult() {
 // return the employees CSV string buffer
 return employeeStringBuilder;
}

Work manager export functionality is added in a separate HrComponentsAppModule
method called exportEmployeesOnWorkManager which is then added to the application
module's client interface and once bound, (step 6) it is invoked from a backing bean (step 7).

Steps 8 through 15 show how to create, configure, and reference a work manager. In step
8, we reference the work manager in our application by adding a resource reference to it in
the web.xml deployment descriptor. The work manager that we will be creating in steps 9
through 15 is called MyWorkManager. We use this reference to get hold of the work manager
via JNDI lookup in our code. This is done in the ExtWorkManager run() method in step 1 as
shown in the following code snippet:

InitialContext ctx = new InitialContext();
workManager = (WorkManager)ctx.lookup
("java:comp/env/" + managerName);

In this case, managerName is specified during the construction of the ExtWorkManager.
This can be seen in step 3 when the work manager is constructed:

ExtWorkManager mngr = new ExtWorkManager("MyWorkManager");

Steps 9 through 15 detail the steps of creating and configuring a global work manager in
WebLogic Server. Observe how in step 15 we have enabled the Ignore Stuck Threads setting.
This will enable us to run long-running works on the work manager without getting an indication
of a stuck thread by WebLogic. A WebLogic thread that executes for more than a specified-
preconfigured amount of time is considered by WebLogic to be "stuck". If the number of the
stuck threads in an application grow, the application might crash.

Finally, observe how the work manager is started in the ExtWorkManager run() method
in step 1. The list of works added to the work manager (by calling its addWork() method) is
iterated and each work is scheduled for execution by calling its schedule() method.

workList = new ArrayList<WorkItem>();
for (ExtWork work : works) {
 WorkItem workItem =
 workManager.schedule(work, workListener);
 workList.add(workItem);
}

Optimizing, Fine-tuning, and Monitoring

368

The schedule() method returns a commonj.work.WorkItem, which is added to a java.
util.List. We use this list to commence the execution of the work manager by calling its
waitForAll() method:

workManager.waitForAll(workList, waitType);

One important thing to notice here is the waitType argument passed to the waitForAll()
method. It can take either of the following two values:

ff WorkManager.INDEFINITE: Calling code pauses, waiting until the execution of all
works scheduled on the work manager completes.

ff WorkManager.IMMEDIATE: Return is passed immediately to the calling code
running the works scheduled on the work manager concurrently.

Furthermore, observe that the WorkItem list is iterated in the getResult() method to
retrieve the result for each WorkItem, as shown in the following code snippet:

for (WorkItem workItem : workList) {
 resultList.add((ExtWork)workItem.getResult());
}

There's more…
For more information on work managers, consult sections Description of the Work
Manager API and Work Manager Example in the Timer and Work Manager API (CommonJ)
Programmer's Guide for Oracle WebLogic Server documentation manual. This can be found in
the WebLogic Server Documentation Library currently at http://docs.oracle.com/cd/
E14571_01/wls.htm.

See also
ff Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

ff Overriding remove() to delete associated children entities, Chapter 2, Dealing with
Basics: Entity Objects

ff Exporting data to a file, Chapter 7, Face Value: ADF Faces, JSPX Pages
and Components

ff Configuring and using the Standalone WebLogic Server, Chapter 10, Deploying
ADF Applications

ff Deploying on the Standalone WebLogic Server, Chapter 10, Deploying
ADF Applications

Chapter 12

369

Monitoring the application using JRockit
Mission Control

JRockit Mission Control is a suite of tools that can be used to monitor, profile, and manage
applications deployed on the WebLogic Server running on the JRockit JVM. Moreover, the
JRockit Mission Control tools allow you to record and replay sessions, perform garbage
collection on demand, and eliminate memory leaks.

In this recipe, we will go over the installation of JRockit Mission Control Client and the steps
necessary to configure the WebLogic Server to run it. Then we will look into a monitor session
of a standalone WebLogic server instance.

Getting ready
You will need a standalone WebLogic server domain configured and your ADF application
deployed on it. For information about these topics, take a look at Configuring and using the
Standalone WebLogic Server and Deploying on the Standalone WebLogic Server, Chapter 10,
Deploying ADF Applications.

How to do it…
1.	 Download the appropriate JRockit version for your client operating system by

going to the Oracle JRockit Downloads page. This page is currently accessible via
the following URL: http://www.oracle.com/technetwork/middleware/
jrockit/downloads/index.html.

2.	 Start the installation by executing the file downloaded. Make sure that during the
installation, you choose to install the JRockit JRE as well.

3.	 Once the installation completes, ensure that you can run the JRockit Mission Control
Client by running the jrmc program in the target installation directory.

4.	 Edit the setDomainEnv script in the WebLogic Server domain bin directory and
ensure that the JAVA_VENDOR variable is set to Oracle. Also, verify that the BEA_
JAVA_HOME is set correctly to JRockit JDK home directory on the WebLogic server
machine. Finally, update the JAVA_OPTIONS environment variable to:
set JAVA_OPTIONS=%JAVA_OPTIONS% %MNGMNT_CONCOLE_OPTIONS%

5.	 Edit the startManagedWebLogic script (in the same directory) and add the
following lines:
if "%SERVER_NAME%"=="ManagedServer1" (set MNGMNT_CONCOLE_OPTIONS=-
 Xmanagement:ssl=false, authenticate=false -
 Dcom.sun.management.jmxremote.port=7092)

Optimizing, Fine-tuning, and Monitoring

370

6.	 Restart the WebLogic Server domain and ensure that when starting the server
instance configured for the management console, the JMX connectors are started.

7.	 Start the JRockit Mission Control as indicated earlier. Right-click anywhere in the JVM
Browser and select New Connection.

8.	 In the New Connection dialog, specify the standalone WebLogic server Host name
or IP and the management connection Port. Enter a Connection name and click
on the Test connection button to test the connection. Once successful, click on the
Finish button.

9.	 The connection should appear under the Connectors node in the JVM Browser
tree. Now, right-click on the connection and select Start Console. The JRockit
management console Overview tab will be displayed, monitoring the WebLogic
standalone managed server instance.

Chapter 12

371

How it works…
Steps 1 through 3 go through the process of downloading and installing JRockit Mission
Control. The installation process is straightforward; simply run the downloaded executable
file and follow the installation wizard. As noted in step 2, ensure that the JRockit JRE is
also installed.

Steps 4 through 6 demonstrate how to start a WebLogic managed server instance with
management console options enabled. This will allow us to connect to it using the JRockit
Mission Control Client (steps 7 through 9). First we need to ensure that the WebLogic Server
is started with the JRockit JVM. This can be done by specifying Oracle for the JAVA_VENDOR
environment variable in the setDomainEnv script (see step 4). You will also need to specify
the location of the JRockit JDK path on the WebLogic Server machine using the BEA_JAVA_
HOME environment variable (also in step 4).

Optimizing, Fine-tuning, and Monitoring

372

In the same script file, we have also updated the JAVA_OPTIONS environment variable to
include additional options related to the management console. These options are defined using
a new environment variable called MNGMNT_CONCOLE_OPTIONS (step 4). Then, in step 5, we
have defined the management console options specifically for our managed server instance (it is
called ManagedServer1 for this recipe). We have used the -Xmanagement:ssl=false,aut
henticate=false JVM argument to indicate that no authentication (and no SSL connection)
will be required for the management console. This will allow us in step 8, when we define the
JVM connection, to specify that no authentication credentials are required to access the JVM.
We have also indicated the management connection port (it was set to 7092 for this recipe). In
step 6, we restarted the WebLogic Server with the new management connection options.

In steps 7 through 9, we started the JRockit Mission Control Client and created a
connection to the WebLogic managed server instance configured earlier (in step 8). In step
9, we started the management console to monitor the JRockit JVM instance configured. By
default, the management console Overview tab includes a Dashboard with predefined Java
Heap and JVM CPU dials, and monitors for the Processor (machine and JVM CPU usage) and
Memory (used machine and Java heap memory). Additional JVM run-time metrics can be
added to the management console by clicking on the Add Dial (the green plus sign icon) and
the Add… buttons.

There's more…
In addition to the management console, the JRockit Mission Control Client includes the flight
recorder and memory leak detector tools. These tools are available by right-clicking in the JVM
Browser and selecting Start Flight Recording… and Start Memleak from the context menu
respectively. For more information on these tools, consult the JRockit JDK Tools Guide and JRockit
Flight Recorder Run Time Guide. These documents can be found in the JRockit Documentation
Library currently at http://docs.oracle.com/cd/E15289_01/index.htm.

See also
ff Configuring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

ff Deploying on the Standalone WebLogic Server, Chapter 10, Deploying ADF Applications

Index
Symbols
64-bit JDK

JDeveloper, configuring with 11
@Suite.SuiteClasses annotation 345
@Test annotation 346

A
activateState(Element element) method 145
activateState() method 143, 149, 150
activation 143
activation framework

for custom session-specific data 143-150
addBusyStateListener() 254
addEmployee() 284
addOrderByClause() 99
addScript() method 202
AddVMOption -DVFS_ENABLE parameter 11
AddVMOption -Xms parameter 11
AddVMOption -Xmx parameter 10
AddVMOption -XX

MaxPermSize parameter 11
addWhereClause() 99
addWork() method 366
ADF 8
ADF Applications

deploying 299
ADF Applications deployment

about 299
build process, automating using ojdeploy

311-313
Hudson, using as continuous integration

framework 316-320
Standalone WebLogic Server, configuring 300

Standalone WebLogic Server, deploying 306-
309

Standalone WebLogic Server, using 300-304
adfAuthentication servlet 268, 269
ADF-BC 8
ADF-BC framework 106
ADF Business Components 48, 70, 75
adfc-config.xml 234
ADF components

refactoring 327, 328
ADF Faces Rich Client Framework. See ADF

RC
ADF framework

about 47, 49
optimization 347

ADF Fusion Web Application
testing 324

ADF Fusion web application configuration
files

adfc-config.xml 234
faces-config.xml 234
Specific Task Flow definition file 234

ADF Library JAR
about 15, 18, 39, 50, 56
adding, manually to project 17

ADFLogger class 23, 335
ADFm 194
ADF Model layer. See ADFm
ADF Model Tester 79
ADF RC 194
ADF security

enabling 266-271
ADFUtils class

adding, to SharedComponents ViewController
project 32, 33

374

ADFUtils findOperation() helper method 222
ADFUtils.

getApplicationModuleForDataControl()
helper method 175

ADFUtils helper class 224, 234, 235, 251
ADFUtils.showPopup() helper method 225,

258
adjustCommission() application module

method 135
adjustCommission() custom application

module method 139, 141
adjustCommission() method 78, 79, 136,

137, 142
af:carousel component

about 215
using 215-218

af:iterator
using, for adding pagination support 259-262

af:outputText component 253
af:panelFormLayout components 206
af:panelGroupLayout components 206
af:poll component

about 219
using, for refreshing table 219-222

af:popup
using, during long running tasks 252-254
using, for handling pending changes 255-258

af:pop-up component
about 198
used, for editing table row 198-201
working 202, 203

af:query component
about 194
used, for constructing search page 194-196
working 197, 198

af:resource type attribute 253
af:selectManyShuttle component 210

using 210-214
afterRollback() method 96, 97
af:tree component

about 205
using 205-209

AllowEmployeeChanges role 277
analytic functions 81

ant 310, 346
Apache 22
application

breaking up, in multiple workspaces 12-17
monitoring, JRockit Mission Control used

369-372
Application Development Framework. See

ADF
application module

function, used for initializing page 164-170
pool statistics, displaying 151-155
service interface method, accessing from

139-142
shared application module, using for static

lookup data 156-158
ApplicationModuleClass attribute 152
application module granularity

defining 18
ApplicationModulePoolStatistics View object

154, 155
Application Navigator 12
ApplicationSecurityBean 276
application security information

accessing 275-278
applicationSecurity.jspx 276, 278
applyViewCriteria() 125, 246
associated children entities

deleting, remove() method used 60-62
attribute

sequencing, with gapless sequence 51, 52
attribute binding

locating 34
attribute binding value

getting 34
setting 34

AttributeCriterion 242
Attribute from Entity feature 324
attribute validation exceptions

overriding 295, 296
AttrValException 297
authenticate() method 274
Authentication.login() 274
autodeploy domain directory 304
autoSubmit property 115

375

B
backing beans 84, 234
backingBean scope 234
bAppend Boolean parameter 125
BC4J JUnit Integration extension 343
BC base classes

setting up 19-21
BEA_JAVA_HOME environment variable 371
beforeCommit() method 53
beforeRollback() method 96, 97
binding container

getting 34
bindParametersForCollection()

about 121
overriding, for setting up view object bind

variable 118, 120
bindParametersForCollection() method 118-

120
bind variables

about 66, 106
values associated with view criteria, clearing

126, 127
bind variables values, associated with view

criteria
clearing 126-128

build.cmd script file 319, 320
buildfile command-line 313
buildFromClause() 99
buildOrderByClause() 99
buildQuery(int, boolean) method 353
buildQuery() method 99, 354
buildSelectClause() 99
buildWhereClause()

about 99
overriding 100

built-in macros, ojdeploy. See ojdeploy, built-
in macros

bundled exceptions 31
BundleUtils class 296
BundleUtils helper class 296
business component

refactoring 327
synchronizing, with database changes 324-

326

business component attribute
refactoring 327

Business Component Browser 53
business components framework extension

classes
adding, to SharedComponents project 19-21
configuring 22
configuring, at component level 22
configuring, at project level 22

busyStateListener() method 254
buttonBar facet 223

C
cascading LOVs

about 110
setting up 110-114

CascadingLovs entity object 111
CASCADING_LOVS table 110
CascadingLovs view object 112
case-insensitive

handling, view criteria used 128, 129
case-insensitively

searching, view criteria used 128, 129
circular dependencies

eliminating 18
clearSelectedIndices() 214
client file

data, exporting to 228-232
clientListener method 254
CollectionPaginationBean 260
collectionPagination.jspx 260
ColorDesc attribute 116, 117
commit() method 44
COMMITSEQ_PROPERTY constant 52
CommitSequenceDepartmentDepartmentId

property 57
CommitSequence property 52
CommonActions 222
CommonActions base class 98
CommonActions bean 224, 226
CommonActions create() method 258
CommonActions delete() method 228
CommonActions.delete() method 225
CommonActions framework

create() method 258

376

onAfterCreate() method 258
onBeforeCreate() method 258
onContinueCreate() method 258
onCreate() method 258
onCreatePendingChanges() method 258

CommonActions onBeforeCreate() method
258

CommonActions.onConfirmDelete() method
225

CommonActions.onContinueDelete() method
226

component
locating, in root view 34

composition association
about 62
options 63

config script 303
ConjunctionCriterion object 242
connect() command 336
contentDelivery attribute 203, 212, 253
CPU profiler

about 339
using, for application running on Standalone

WebLogic Server 339-342
createADFLogger() method 23
create() method 44, 48, 49, 55, 82, 257, 258
createrowsetIterator() method 79
CREATESEQ_PROPERTY constant 49
CreateSequenceEmployeeEmployeeId

property 57
CreateSequence property 50
createViewCriteria() method 124
current row

restoring, after transaction rollback 95-98
custom af:query listener

about 239
using, for allowing custom application module

operation execution 239-242
custom af:query operation listener

using, for clearing queries 243-247
custom af:table selection listener

about 236
using 236-239

custom database transaction
using 159-161

CustomDCErrorHandlerImpl class 289, 291

CustomDCErrorHandlerImpl custom error
handler class 294

custom error handler
using, for customizing exceptions 288, 289

custom exception class
about 27
adding, to SharedComponents project 27-31

custom login page
using 272-274

custom method
exposing, as web service 135-138

custom properties 48
custom property

adding, to view object 92
used, for populating sequence attribute 48,

49
custom session-specific data

activation framework for 143-150
passivation framework for 143-150

D
data

exporting, to client file 228-232
database changes

business components, synchronizing with
324-326

Database Connection
creating 60

DatabaseTransactionFactory create() method
160, 161

DBTransactionImpl2 method 160
DCDataControl class 235
DCErrorHandlerImpl class 291
DCErrorHandlerImpl error handling class 288
DCIteratorBinding iterator 239
debugFlag environment variable 332
debugging 333
DEBUG_PORT environment variable 332
default values, view row attributes

setting 81-83
specifying, at entity object level 84

DeleteConfirmation 223
DeletedColumn attribute 325
Department attributes 84
DepartmentEmployeesIterator 218

377

DepartmentEmployees tree binding 218
DepartmentId attribute 107
DepartmentId bind variable 120, 121
DepartmentId setter 83
DepartmentId value 120
DepartmentName view accessor attribute

108
DepartmentsLov 107
DepartmentsLov data source 114
DepartmentsLov view object 107, 111
DepartmentsRowImpl class 85
Dependency Finder 18
Deployment profile

about 15
refactoring 328

detail record for, new master record
doDML() method, used for enforcing 73, 74

DialogListener 214
DML_DELETE flag 53
DML_INSERT flag 52, 53, 74
DML_UPDATE flag 53
doDML() method

about 48, 51, 53, 73
overriding, for populating attribute with

gapless sequence 51, 52
used, for enforcing detail record for new

master record 73, 74

E
editEmployee component 202
editEmployee pop-up 202
ejb-jar.xml 137
EmpDeptFkAssoc association 65
EmployeeCount view object 120
EmployeeId attribute 113, 214
Employees collection 238
EmployeesCriteria 241
Employees entity object 248
EmployeesImpl.java 77
EmployeesImpl.java view object 351
Employees interface 79
EmployeesLov view object 112
EmployeesRowImpl 79, 277
Employees rowset 79
Employees RowSetIterator 366

Employees view object 79, 117, 352
end_url parameter 271
Entity Association relation 60
entity-based view objects 75
EntityImpl isAttributeUpdateable() method 86
entity object 18, 47, 66
entity object attributes 48
entity object states

dead 90
deleted 90
initialized 89
modified 90
new 89
unmodified 90

entity object view accessor 109
ErrorHandlerClass property 290
errorMessageCode variable 294
error message details

customizing 291-294
exceptions

customizing, custom error handler used 288-
290

executeEmptyRowSet() 246
executeEmptyrowset() method 103
executeQueryForCollection() method 355
executeQuery() method 68, 79, 94, 98, 125
exportEmployees() method 229, 363, 366
exportEmployeesOnWorkManager() method

362, 363, 367
exportEmployeesUsingWorkManager.jspx

363
ExportEmployeesWork class 361
ExportEmployeesWork run() method 366
Expression Language (EL) expressions 89
ExtApplicationModule application module

framework extension interface 154
ExtApplicationModuleImpl application module

152
ExtApplicationModuleImpl custom framework

class 143
ExtApplicationModule interface 133
ExtAttrValException class 296
ExtendedRenderKitService class 205
ExtendedRenderKitService interface 202
ExtEntityImpl entity object framework 296

378

ExtJboException exception 74, 290
ExtViewObjectImpl framework extension class

354
ExtViewObjectImpl view object 86, 118
ExtWork class 359, 365
ExtWorkListener class 365
ExtWorkManager class 359, 365
ExtWorkManager run() method 367

F
faces-config.xml 234
Faces messages

adding 34
FavoriteColor attribute 116, 117
finalize() method 184
findAndSetCurrentRowByKey()

about 94, 98
using, for setting view object currency 92-94

findDataControlFrame() 236
findOperation() helper method 222
forward() method 271, 274
Fusion Order Demo application 33
Fusion Web Application (ADF) 60, 140
Fusion Web Application (ADF) workspace

194, 215
Fusion Web Application user interface 115

G
gapless sequence

attribute, sequencing with 51, 52
generic backing bean actions framework

about 42
adding, to SharedComponents ViewController

project 42-44
generic extension interfaces

creating 132-134
using 132-134

getActivationPassivationIds() helper method
146

getAllViewCriterias() 129
getApplicationModule() 120
getApplicationModuleForDataControl()

method 251

getApplicationModule() getter method 345
getApplicationModule() method 120
getAttribute() 239
getAttributeDef() 87
getAttributeInternal() method 59
getAttributeNames() 239
getBundleParameter() method 72
getCommonActions() method 226
getConjunctionCriterion() 242
getCriterionList() method 242
getCurrentDataControlFrame() 236
getCurrentRow() 94, 97, 103
getCustomData() method 119, 120
getDepartmentEmployees() method 62, 74
getDepartmentId() method 68
getDetailedDisplayMessage() method 288
getDetails() method 31
getDisplayMessage() method 288, 291, 294
getEmployeeDepartment() method 65
getEmployees() getter method 79
getEmployees() method 167
getErrorMessageParameters() helper method

294
getEstimatedRangePageCount() 80, 92
getEstimatedRowCount() method 65, 121,

242
getFirstName() method 251
getHireDate() method 83
getIsNewRow() method 89
getLastName() method 251
getManagedBeanName() method 226
getManagedBeanValue() method 35
getMessage() method 28, 30
getOperation() 246
getPageId() 226
getPageNumber() method 263
getPostedAttribute() method

about 58, 59
used, for determining posted attribute’s value

58, 59
getProgrammaticallyInvokeTaskFlow() 284
getProperty() method 49
getQueryLimit() method 354
getRangeIndexOf() method 91, 94

379

getRangeSize() 80
getRangeStart() method 94
getResult() method 365-368
getReturnValues() helper method 184
getRowAtRangeIndex() 80
getRowCount() method 65
getRowData() 209
getRowLimit() method 350, 351
getSelectedRowData() 239
getSelectedValues() 214
getSequenceNumber() method 49, 52
getSession() 277
getSource() 239
getTaskFlowParameters() helper method 184
getTaskFlowURL() method 284
getTransaction() 235
getUserAuthorityLevel() generic extension

interface 134
getUserAuthorityLevel() method 134
getUserIdentityStoreProfile() method 283
getValues() method 242
getVariables() 246
getViewCriteria() 246
Groovy 70, 333
Groovy expressions

about 70, 81, 109
debugging 333
logging 333
used, for resolving validation error message

tokens 70-72
working 334

Groovy helper class
implementing 333

GroovyLogger class 334
GroovyLogger Java class 334

H
handleDatabaseApplicationError() method

294
hasChanges() method 235, 236, 258
hasNext() method 68, 74, 79
hasQueryLimit() method 354
HireDate attribute 83
HRComponents ADF Library JAR 238
HrComponentsAppModule 134, 241

HrComponentsAppModuleAMTest class 344
HrComponentsAppModule application module

165, 167
HrComponentsAppModuleDataControl data

control 197, 209, 213
HrComponentsAppModuleImpl class 78
HrComponentsAppModuleImpl client

interface 134
HrComponentsAppModuleImpl custom

application module 164, 171
HrComponentsAppModuleServiceImpl.java

137
HrComponentsAppModuleService interface

142
HrComponentsAppModuleService.java 137
HrComponentsAppModuleService.wsdl 137
HrComponentsAppModuleService.xsd 137
HRComponentsCallerAppModule application

module 140
HRComponentsCallerAppModule client

interface 140
HRComponentsUnitTests 343
HRComponents workspace 76, 85, 132, 164,

165, 167, 205
HR schema 82
Hudson

about 310, 316, 346
download link 316
installing 316
using, as continuous integration framework

316-320
Hudson job 319
Hudson wiki page

URL 319
hudson-x.x.x.war 316

I
IdentityStore search() method 283
if statement 65
Implement Cascade Delete option 63
inDepartmentId bind variable 114
inEmployeeName variable 284
initialize() method 175, 184
InitializerBean 175
insertRowAtRangeIndex() 91

380

insertRow() method 91, 125
Integrated WebLogic Server 300, 324
interval attribute 219
Interval poll property 222
invokeMethodExpression() helper method

208, 209
invokeMethodExpression() method 242
isAttributeChanged() method 59
isAttributeUpdateable() method 85, 276,
isAttrValueChanged() method 59
isBCTransactionDirty() method 235
isControllerTransactionDirty() method 235
isDirty() 235
IsNewRow attribute 89
isNextRowAvailable() method 263
isPreviousRowAvailable() method 263
isQueriable() 87
isUpperColumns() 128
isUserInRole() method 277, 278
iterator binding

locating 33

J
JAVA_DEBUG environment variable 332
java -jar hudson-x.x.x.war command 319
java.lang.Object array 214
Java Logging API 25
JAVA_OPTIONS environment variable 372
java.util.List 368
jazn-data.xml file 248, 266
JDeveloper

about 8, 47, 62, 106, 323
configuring, with 64-bit JDK 11
installing, on Linux 9, 10
tuning configuration parameters 10, 11
URL, for downloading 9
user directory, configuring 11, 12

JDeveloper user directory
configuring 11, 12

JobId attribute 109
JobsLov 107
jps-config.xml file 285
JRockit Mission Control

about 369
used, for monitoring application 369, 370

working 371, 372
j_SecurityCheck method 270
JSF page

refactoring 328
JSF page component 84
JSF template

adding, to SharedComponents ViewController
project 35-42

JSFUtils class
adding, to SharedComponents ViewController

project 32, 33
JSFUtils.getExpressionObjectReference()

helper method 226
JSFUtils helper class 237
JUCtrlListBinding object 214
JUnit

about 343
configuring, for unit testing 343

JUnit Integration extension 343
JUnit test suite

implementing 343, 344
working 345

L
large view object query result sets

limiting 352-355
limiting, view criteria used 356, 357

lazyUnchached 214
Linux

JDeveloper, installing on 9, 10
List Attribute 109
List Data Source 109
List of values. See LOVs
loadParameter() method 71
log4j 22
log analysis

performing 337, 338
logging

about 22
setting up 23-26

login.jspx page 273, 287
login() method 274
log() method 23, 25, 334
logout() method 271, 274, 275

381

LOGOUT_URL constant 275
LongRunningTaskBean Java class 252
longRunningTask.jspx 252, 254
longRunningTask() method 252, 254
long running tasks

af:popup, using 252, 254
processing, Work Manager used 358-365

LovAttrib attribute 108, 109
LOV_Countries 108
LOV_FavoriteColor 116
LOV_Jobs 108
LOVs

about 18, 106, 156
cascading LOVs, setting up 110-114
multiple LOVs, setting up using switcher

attribute 106-108
static LOVs, creating 116, 117

LovSwitcher attribute 108, 109
LOV view accessor query 110

M
MainApplication workspace 205
main() method 31
makeCurrent method 236
managed bean

refactoring 328
Managed Bean values

getting 35
setting 35

managed WebLogic Server instance
configuring 329

managerName 367
MAX_DEPARTMENT_EMPLOYEES constant

68
MetadataService

used, for removing task flow definition
programmatically 182-185

method call activity 164
methodInitializer task flow 166
method validator

used, based on view object accessor 66-68
Middleware home directory 9
multiple LOVs

enabling 106
setting up, switcher attribute used 106-109

working 109
multiple workspaces

application, breaking up in 12-17
MyWorkManager 367

N
NewRowAtEnd 91
New status 88
next() method 68, 79
nodebug argument 330, 332
nodeDefinition XML nodes 210
Non-translatable Property 50
NOTIFICATION log level 335

O
ODL 22
ODL log analysis

performing 337
ojbuild.xml 311
ojdeploy

about 310
using, for automating build process 311, 312

ojdeploy build file 312
ojdeploy-build nodes 312
ojdeploy, built-in macros

base.dir 314
deploy.dir 314
profile.name 314
project.dir 314
project.name 314
workspace.dir 314
workspace.name 314

ojdeploy command-line arguments
buildfile 313
buildfileschema 313
profile 313
project 313
workspace 313

ojdeploy options
address 314
basedir 314
clean 314
define 314
failonwarning 314

382

forcerewrite 314
nocompile 314
nodatasources 314
nodependents 314
ojserver 314
outputfile 314
statuslogfile 314
stderr 314
stdout 314
timeout 314
updatewebxmlejbrefs 314

ojdeploy process 313
onActivate() method 146, 148
onAfterCommit() method 44
onAfterCreate() method 44, 258
onAfterDelete() method 226
onApplicationSecurity() method 276, 278
onBeforeCreate() method 44, 258
onBeforeDelete() method 226
onCommit() method 44
onConfirmDelete() method 225
onContinueCreate() method 257, 258
onCreate() method 258
onCreatePendingChanges() method 44, 257,

258
onDelete() method 226
onEmployeeEdit() method 202
onEmployeesShuttleInit method 212
onEndActivation() method 148, 149
onEndPassivation() method 148
onFirst() method 262
onLast() method 262
onNext() method 262
onPassivate() method 146, 148
onPrevious() method 262
onSelectManyShuttleDialogListener() method

212
onStartActivation() method 146, 148
onStartPassivation() method 146, 147
onTreeNodeSelection() method 209
onTreeNodeSelection() selection listener 208
operation binding

locating 33
Operation class 243
operation flag 74

OPSS
using, for retrieving user profile 279-284

Optimize for Database Cascade Delete option
63

oracle.adf.controller.ControllerContext.
getTaskFlowURL() method 176, 181

oracle.adf.controller.metadata.
MetadataService object 182

oracle.adf.model.binding.DCErrorHandlerImpl
class 288

Oracle ADF Model Tester 102
oracle.adf.share.security.SecurityContext

bean 275
Oracle Diagnostic Log Analyzer 22, 337
Oracle Diagnostics Logging. See ODL
Oracle Diagnostics Logging Configuration 22
oracle.jbo.AttributeDef attribute 87
oracle.jbo.AttrValException class 295
oracle.jbo.domain.Number class 77
oracle.jbo logger 336
oracle.jbo.Row object 94
oracle.jbo.server.EnityImpl class 47
oracle.jbo.Session object 143
oracle.jbo.Transaction transaction object 235
oracle.jbo.ValidationException class 295,

297
Oracle Platform Security Services. See OPSS
Override Methods dialog 48
Override Methods� icon 48

P
page definition binding object

refactoring 328
page definition file

refactoring 328
pageFlow 234
page templates

about 35
using, for pop-up reuse 222-227

parameters class variable 366
parent entity, in association

deleting, remove() method used 63, 65
partialSubmit property 254
partialTriggers property 219, 247

383

passivateState(Document, Element) method
144

passivateState() method 143
passivation 143
passivation framework

for custom session-specific data 143-150
passivation store 143
pending changes

determining, in current transation 234-236
handling, af:popup used 255-258

plain file
refactoring 328

pollListener attribute 219
pollView.jspx page 221, 222
populateAttributeAsChanged() method 49, 52
pop-up

reusing, page templates used 222-224
PopupFetchListener attribute 212, 214
posted attribute’s value

determining, getPostedAttribute() method
used 58, 59

prepare() method 164, 167, 168, 170
prepare() method call activity 166, 168, 190
prepareRowSetForQuery() 121
prepareSession() method 97, 147
prepareSession(Session) method 95
preventUserInput() 254
PrintWriter object 155
processQuery() method 239, 242
processQueryOperation() method 243, 246
profile parameter 312
project parameter 312
property sets

about 54
applying 54-57
creating 54-57

Q
query

clearing, custom af:query operation listener
used 243-247

Queryable flag 87
Queryable property, view object attributes

setting 86, 87

Queryable status
determining 86

QueryDescriptor object 242
QueryLimit 354
queryLimitedResultsMessage() method 355
queryListener attribute 239, 240
QueryListenerBean.java 245
queryListener.jspx page 240, 246
QueryModel.reset() method 247
QueryOperationEvent 246
queryOperationListener attribute 243
queryOperationListener() method 245, 246
queryView.jspx 195

R
Range Paging access mode

configuring, for view object 92
Range Paging optimization 94
Range Size option setting 94
read-only view object 76
refactoring support 323
RefreshEmployees 221
refreshView() method 93, 94
remote debugging

configuring 329-332
using 329
working 332

remote debugging session
starting 333

removeEmployeeFromCollection() method
102

removeFromCollection() 101, 103
remove() method 44, 48

overriding, for deleting associated children
entities 60-62

overriding, for deleting parent entity in
association 63, 65

removeViewCriteria() 246
reportException() method 288-291
RequestDispatcher object 274
resetCriteria() method 244
resetCriteriaValues() method 246
resetEmployees() method 244, 246
reset() method 79, 247

384

ResourceBundle.getBundle() 294
Resource Palette 213
Retrieve from the Database section 350
RIA 194
Rich Internet Applications. See RIA
rollback() method 44
root view

component, locating 34
RowCountLimit 101
Row.remove() method 101
rows

inserting, at beginning of rowset 92
inserting, at the end of rowset 90, 91
removing, from rowset without deleting from

database 101, 102
rowset 95
rowsets, iterating

drawbacks 81
rows, fetched by view object

limiting, 350, 351
RowValException objects 31
run() method 365, 366

S
saveState() 246
schedule() method 368
Scrollable 80
scrollToRangePage() 80
searchEmployeesUsingAdditionalCriteria()

method 124
search page

constructing, af:query component used 194-
196

searchRegion 243
searchUsingAdditionalCriteria() method 122,

124
secondary rowset iterator

used, for iterating view object 76-80
SecurityContext methods

#{secrityContext.authenticated} 279
#{secrityContext.

regionViewable[‘SomePageDef’]} 278
#{secrityContext.taskflowViewable[‘SomeTask

Flow’]} 278

#{secrityContext.userName} 278
#{securityContext.userInAllRoles[‘roleList’]}

279
security, for ADF Fusion Web Application

enabling 266-269
security information

accessing 275-279
SecurityUtils helper class 280, 284
selectionListener() 205, 238
selectionListener attribute 236
Selectively Required option 357
SelectManyShuttleBean 212
selectManyShuttleView.jspx 211, 213
sequence attribute

populating, custom property used 48, 49
SequenceImpl object 49
service data object (SDO) component 132
service interface method

accessing, from another application module
139-142

ServletAuthentication.
generateNewSessionID() 274

ServletAuthentication.runAs() 274
SessionInfoBean 249
SessionInfoBean.java class 250
session scope bean

using, for preserving session-wide information
248, 250

SessionTimeoutFilter filter 286, 287
SessionTimeoutRedirect filter 287
session timeouts

detecting 285, 287
handling 285, 287

session-wide information
preserving, session scope bean used 248-

251
setApplyViewCriteriaNames() method 125
setAttribute() 125
setAttributeInternal() method 295-297
setBindVariableValue() method 120
setBundledExceptionMode() method 31
setClearCacheOnRollback() 97
setConjunction() 124
setCurrentRowWithKey() 239
setDepartmentId() method 83

385

setDomainEnv script 332, 369, 371
setExecuteOnRollback() 98
setFromClause() 99
setHireDate() 83
setLogLevel() command 336
setManagedBeanValue() method 35
setManageRowsByKey() method 94, 97
setMaxFetchSize() method 350
setNamedWhereClauseParam() method 68,

69
setOrderByClause() 99
setQueriable() 87
setQuery() 99
setRangeStart() method 92, 94, 98
setup() method 344
setUpperColumns() 128, 129
setVariableValue() 246
setViewCriteriaCaseInsensitive() method 129
setVisible() 209
setWhereClause() 99
setWhereClauseParams() 99
sharedcomponents ADF Library JAR 209
SharedComponents library

creating 12, 13
SharedComponents project

business components framework extension
classes, adding to 19-21

custom application exception class, adding to
27-31

SharedComponents ViewController project
ADFUtils class, adding 32, 33
generic backing bean actions framework,

adding to 42, 44
JSF template, adding to 35-42
JSFUtils class, adding 32, 33

SharedComponents workspace 234
SharedProperties 57
showPopup() method 224
SomeCriterionName 242
source prefix 72
specific Task Flow definition file 234
SQL query 76
Standalone WebLogic Server

configuring 300-303
deploying 306-309

using 300, 304, 305
startManagedWebLogic script 305, 330,

332, 369
startWebLogic script 304, 330
static LOVs

creating 116, 117
success_url parameter value 268
super.buildWhereClause() 101
super.create() 96
super.getRowLimit() 351
super.insertRow() 91
Switcher 106
SyncEmployeesBean 283
syncEmployeesTaskFlow 282
syncEmployeesTaskFlow task flow 284
SYNCHRONIZATION 324
SynchronizationView 324
synchronizeEmployee() method 282, 284
Synchronize entity object 325
Synchronize with Database feature 324

T
table

refreshing, af:poll component used 219-222
table row

editing, af:pop-up component used 198
task flow

calling, as URL programmatically 176-180
definition removing programmatically,

MetadataService used 182-185
initializing, task flow Initializer used 170-175
refactoring 328

TaskFlowBaseBean class 184
task flow Initializer

used, for initializing task flow 170-175
taskflowInitializer task flow 172
task flows 163
TemplateDef1 page template 225
templatePopup.jspx 224, 227
test-all 270
testExportEmployees() method 344
train

creating 186-191
transaction commit operation 53
TransactionFactory property 161

386

Transaction object 235
transaction rollback 95
transient attribute

using, for indicating new view object row 88,
89

transient view object attribute
utilizing 88, 89

TreeBean 206
treeModel object 218
treeView.jspx 206

U
UI Hints sections 106
unit test class 343
Unmodified state 88
updatability, view object attribute

controlling 84, 85
controlling, at entity object level 86

Update Batching
disabling 349
enabling, for entity objects 348, 349

update batching optimization 53
url-invoke-allowed 284
UserInfo 248, 250
UserInfo application module 280
UserInfoAppModule 249, 251
UserInfoAppModule application module 251
UserInfo view object 249, 284
UserInfo view object query 248
user profile

retrieving from identity store, OPSS used 279-
284

user_projects directory 303

V
validateDepartmentEmployeeCount() method

67, 68
validateEntity() method 295, 297
validation error message tokens

resolving, Groovy expressions used 70-72
ValidationException objects 31
validation queries 18
valid-users 269
var attribute 218
varFirstName 195

VariableValueManager 246
varLastName 195
View Accessor 66
ViewController layer 8, 84
ViewController project 13, 221
view criteria

about 106
adding 356
creating 122-125

ViewCriteria class 122
ViewCriteriaItem class 122, 126
ViewCriteriaRow class 122
ViewCriteriaRow setAttribute() method 125
view object accessor

method validator, using 66-68
view object attributes

Queryable property, setting 86, 87
updatability, controlling 84, 85

view object currency
setting, findAndSetCurrentRowByKey() used

92, 94
ViewObjectImpl class 122
ViewObjectImpl method 121
view object query

changing 99, 101
FROM clause, changing 99
ORDER BY clause, changing 99
SELECT clause, changing 99
WHERE clause, changing 99

view objects
about 75
entity-based view objects 75
iterating, secondary rowset iterator used 76-

80
read-only view object 76

view row attributes
default values, setting 81-83

ViewRowImplcreate() 83
ViewRowImpl isAttributeUpdateable() method

277
virtualize property 285

W
waitForAll() method 368
WebLogic 22

387

WebLogic administration console
starting 305

weblogic.Deployer 319
weblogic-ejb-jar.xml 137
WebLogic machine 304
WebLogic Node Manager 304
WebLogic Standalone Server domain

configuring 335
logging in 335
working 336

weblogic.xml 269
web service

custom method, exposing as 135-138
web.xml 269
welcome.jspx page 270, 283
WHERE clause, view object query

changing 99

WLST 310
WLST, weblogic.Deployer 303
Work Manager

about 81, 358
using, for processing long running tasks 358-

365
working 365, 366

WorkManager.IMMEDIATE 368
WorkManager.INDEFINITE 368
workspace parameter 312

X
XML metadata files 47
xtWorkListener class 359

Thank you for buying
Oracle JDeveloper 11gR2 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle Database 11g –
Underground Advice for
Database Administrators
ISBN: 978-1-84968-000-4 Paperback: 348 pages

A real-world DBA survival guide for Oracle 11g database
implementations

1.	 A comprehensive handbook aimed at reducing
the day-to-day struggle of Oracle 11g Database
newcomers

2.	 Real-world reflections from an experienced DBA—
what novice DBAs should really know

3.	 Implement Oracle's Maximum Availability
Architecture with expert guidance

4.	 Extensive information on providing high availability
for Grid Control

EJB 3.0 Database Persistence
with Oracle Fusion
Middleware 11g
ISBN: 978-1-849681-56-8 Paperback: 448 pages

A complete guide to building EJB 3.0 database
persistence applications with Oracle Fusion
Middleware 11g

1.	 Integrate EJB 3.0 database persistence with
Oracle Fusion Middleware tools: WebLogic Server,
JDeveloper, and Enterprise Pack for Eclipse

2.	 Automatically create EJB 3.0 entity beans from
database tables

3.	 Learn to wrap entity beans with session beans
and create EJB 3.0 relationships

Please check www.PacktPub.com for information on our titles

Oracle Fusion Middleware
Patterns
ISBN: 978-1-847198-32-7 Paperback: 224 pages

10 unique architecture patterns enabled by Oracle
Fusion Middleware

1.	 First-hand technical solutions utilizing the
complete and integrated Oracle Fusion
Middleware Suite in hardcopy and ebook formats

2.	 From-the-trenches experience of leading IT
Professionals

3.	 Learn about application integration and how to
combine the integrated tools of the Oracle Fusion
Middleware Suite - and do away with thousands of
lines of code

Oracle 10g/11g Data and
Database Management
Utilities
ISBN: 978-1-847196-28-6 Paperback: 432 pages

Master twelve must-use utilities to optimize the
efficiency, management, and performance of your daily
database tasks

1.	 Optimize time-consuming tasks efficiently using
the Oracle database utilities

2.	 Perform data loads on the fly and replace the
functionality of the old export and import utilities
using Data Pump or SQL*Loader

3.	 Boost database defenses with Oracle Wallet
Manager and Security

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Prerequisites to Success: ADF Project Setup and Foundations
	Introduction
	Installation of JDeveloper on Linux
	Breaking up the application in multiple workspaces
	Setting up BC base classes
	Setting up logging
	Using a custom exception class
	Using ADFUtils/JSFUtils
	Using page templates
	Using a generic backing bean actions framework

	Chapter 2:
Dealing with Basics: Entity Objects
	Introduction
	Using a custom property to populate a sequence attribute
	Overriding doDML() to populate an attribute with a gapless sequence
	Creating and applying property sets
	Using getPostedAttribute() to determine the posted attribute's value
	Overriding remove() to delete associated children entities
	Overriding remove() to delete a parent entity in an association
	Using a method validator based on a view object accessor
	Using Groovy expressions to resolve validation error message tokens
	Using doDML() to enforce a detail record for a new master record

	Chapter 3:
A Different Point of View: View Object Techniques
	Introduction
	Iterating a view object using a secondary rowset iterator
	Setting default values for view row attributes
	Controlling the updatability of view object attributes programmatically
	Setting the Queryable property of a view object attribute programmatically
	Using a transient attribute to indicate a new view object row
	Conditionally inserting new rows at the end of the rowset
	Using findAndSetCurrentRowByKey() to set the view object currency
	Restoring the current row after a transaction rollback
	Dynamically changing the WHERE clause of the view object query
	Removing a row from a rowset without deleting it from the database

	Chapter 4:
Important Contributors: List of Values, Bind Variables, View Criteria
	Introduction
	Setting up multiple LOVs using a switcher attribute
	Setting up cascading LOVs
	Creating static LOVs
	Overriding bindParametersForCollection() to set a view object bind variable
	Creating view criteria programmatically
	Clearing the values of bind variables associated with the view criteria
	Searching case insensitively using view criteria

	Chapter 5:
Putting them all together: Application Modules
	Introduction
	Creating and using generic extension interfaces
	Exposing a custom method as a web service
	Accessing a service interface method from another application module
	A passivation/activation framework for custom session-specific data
	Displaying application module pool statistics

	Using a shared application module for static lookup data
	Using a custom database transaction

	Chapter 6:
Go with the Flow: Task Flows
	Introduction
	Using an application module function to initialize a page
	Using a task flow initializer to initialize a task flow
	Calling a task flow as a URL programmatically
	Retrieving the task flow definition programmatically using MetadataService
	Creating a train

	Chapter 7:
Face Value: ADF Faces, JSF Pages, and User Interface Components
	Introduction
	Using an af:query component to construct a search page
	Using an af:pop-up component to edit a table row
	Using an af:tree component
	Using an af:selectManyShuttle component
	Using an af:carousel component
	Using an af:poll component to periodically refresh a table
	Using page templates for pop-up reuse
	Exporting data to a client file

	Chapter 8:
Backing not Baking: Bean Recipes
	Introduction
	Determining whether the current transaction has pending changes
	Using a custom af:table selection listener
	Using a custom af:query listener to allow execution of a custom application module operation
	Using a custom af:query operation listener to clear both the query criteria and results
	Using a session scope bean to preserve session-wide information
	Using an af:popup during long running tasks
	Using an af:popup to handle pending changes
	Using an af:iterator to add pagination support to a collection

	Chapter 9: Handling Security, Session Timeouts, Exceptions,
and Errors
	Introduction
	Enabling ADF security
	Using a custom login page
	Accessing the application's security information
	Using OPSS to retrieve the authenticated user's profile from the identity store
	Detecting and handling session timeouts
	Using a custom error handler to customize how exceptions are reported to the ViewController
	Customizing the error message details
	Overriding attribute validation exceptions

	Chapter 10:
Deploying ADF Applications
	Introduction
	Configuring and using the Standalone WebLogic Server
	Deploying on the Standalone WebLogic Server
	Using ojdeploy to automate the build process
	Using Hudson as a continuous integration framework

	Chapter 11:
Refactoring, Debugging, Profiling, and Testing
	Introduction
	Synchronizing business components with database changes
	Refactoring ADF components
	Configuring and using remote debugging
	Logging Groovy expressions
	Dynamically configuring logging in WebLogic Server
	Performing log analysis
	Using CPU profiler for an application running on a standalone WebLogic server
	Configuring and using JUnit for unit testing

	Chapter 12:
Optimizing,
Fine-tuning, and Monitoring
	Introduction
	Using Update Batching for entity objects
	Limiting the rows fetched by a view object
	Limiting large view object query result sets
	Limiting large view object query result sets by using required view criteria
	Using a work manager for processing of long running tasks
	Monitoring the application using JRockit Mission Control

	Index

