

PERL Basics
In Pictures

by Paul Gruhn

www.inpics.net

PERL Basics In Pictures

Copyright

This book is provided under a Creative Commons license at:
creativecommons.org/licenses/by-nc-nd/2.5/

You are free to download, copy, and share this electronic book with others.

However, it is illegal to sell this book, or change it in any way.

If you’d like to sell or change it, just contact us at contact@inpics.net.

Trademarks and Disclaimer

Visibooks™ is a trademark of Visibooks, LLC. All brand and product names in this book
are trademarks or registered trademarks of their respective companies.

Visibooks™ makes every effort to ensure that the information in this book is accurate.
However, Visibooks™ makes no warranty, expressed or implied, with respect to the
accuracy, quality, reliability, or freedom from error of this document or the products
described in it. Visibooks™ makes no representation or warranty with respect to this
book’s contents, and specifically disclaims any implied warranties or fitness for any
particular purpose. Visibooks™ disclaims all liability for any direct, indirect,
consequential, incidental, exemplary, or special damages resulting from the use of the
information in this document or from the use of any products described in it. Mention of
any product does not constitute an endorsement of that product by Visibooks™. Data
used in examples are intended to be fictional. Any resemblance to real companies,
people, or organizations is entirely coincidental.

ISBN 1597061077

TABLE OF CONTENTS i

Table of Contents
Learning the Basics ..1

Install an FTP program ..2

Create a simple script ..14

Upload a script ...20

Set script permissions...24

Run a script from a Web page...26

Insert comments...31

Format text output with HTML tags ..34

Working with Variables.................................41

Employ single variables ..43

Print quotation marks ..54

Employ lists of variables ...63

Working with Numbers71

Perform calculations..72

Increment/decrement automatically ...75

Generate random numbers ...78

TABLE OF CONTENTS ii

Subroutines ...83

Create a subroutine ... 84

Parse form data with a subroutine ... 87

Parse form data.. 89

Logic & Loops..95

Employ conditional logic .. 96

Employ looping.. 116

Working With Files.......................................123

Create a text file ... 124

Display files.. 130

Append to files... 132

LEARNING THE BASICS 1

Learning the Basics

In this section, you’ll learn how to:

• Install an FTP program

• Create a simple script

• Upload a script

• Set script permissions

• Run a script from a Web page

• Insert comments

• Format text output with HTML tags

LEARNING THE BASICS 2

Install an FTP program

1. Open your Web browser and go to:

 www.ipswitch.com

2. Download and install WS_FTP Home.

WS_FTP

FTP stands for File Transfer Protocol, a way to transfer files between
computers over the Internet. If you have trouble configuring
FrontPage to upload pages to a Web server, use an FTP program.

Using an FTP program is the most straightforward way to upload a
Web site to a Web server. WS_FTP is the most popular FTP program
used to upload and download Web pages.

The Home version is free to use for 30 days, and can be downloaded
at www.ipswitch.com.

LEARNING THE BASICS 3

3. Open WS_FTP Home.

The Connection Wizard should open.

Click the button.

LEARNING THE BASICS 4

4. When the Site Name screen appears, type:

Perl Script Uploads

in the Site Name box.

Then click the button.

LEARNING THE BASICS 5

5. When the Server Address screen appears, type the host
address of your server in the Server Address box.

It can be something like:

www.inpics.net

washington.patriot.net

 207.176.7.217

Then click the button.

Tip: You can get the Server Address of your Web site, as well
as your username and password, from your Web server
administrator.

LEARNING THE BASICS 6

6. When the User Name and Password screen appears, type in
your username and password.

Then click the button.

LEARNING THE BASICS 7

7. When the Connection Type screen appears, leave the
connection type set at FTP.

Then click the button.

LEARNING THE BASICS 8

8. When the Finish screen appears, click the button.

LEARNING THE BASICS 9

WS_FTP should connect to your Web server:

Your
computer

Web server

LEARNING THE BASICS 10

9. In the right-hand Perl Script Uploads pane, double-click on the
public_html folder, html folder, or the folder that contains your
Web pages on the server.

You should now see the contents of your Web site on the server:

LEARNING THE BASICS 11

10. In the right-hand Perl Script Uploads pane, navigate to the cgi-
bin directory of your Web site.

Tip: You may have to click the icon to move up in the site
hierarchy.

11. Double-click the cgi-bin directory to open it.

Tip: Many Internet Service Providers require you to place all
PERL scripts into a separate cgi-bin directory. This is a good
security practice because it hides your scripts from the rest of the
world.

LEARNING THE BASICS 12

12. Click the icon.

LEARNING THE BASICS 13

13. When the Make directory window appears, type:

perlscripts

in the textbox.

14. Click the button.

You should now see a directory called perlscripts in the right
pane:

15. Close WS_FTP.

LEARNING THE BASICS 14

Create a simple script

1. Create a folder called PERLSCRIPTS on your hard drive.

2. Open the Notepad program on your computer.

LEARNING THE BASICS 15

3. Click File, then Open.

4. When the Open window appears, navigate to the
PERLSCRIPTS folder on your hard drive, then double-click it.

It should appear in the Look in box.

LEARNING THE BASICS 16

5. Click File, then Save.

6. When the Save As window appears, type:

simple.pl

in the File Name textbox.

7. Click the button.

LEARNING THE BASICS 17

8. In the blank document window, type:

#!/usr/bin/perl

print "Content-Type: text/html \n\n";

print "Welcome to ACME AUTO";

Tip: You’re now typing commands to the Web server in the
PERL language. Sometimes these commands are case-
sensitive. Use lower-case for PERL commands—that is,
everything not enclosed in quotation marks, like

“Content-Type: text/html \n\n.”

Also, don't forget to type a semicolon (;) at the end of each line.
For your commands to work, or “execute,” they need a
semicolon (;) at the end.

LEARNING THE BASICS 18

9. Save the script.

Here’s what each line of this PERL script does:

• #!/usr/bin/perl

#!/usr/bin/perl

This first line states the location of the PERL module in
your Web site. This module lets your Web server
understand PERL commands.

Contact the company/person who runs your Web server
to be sure you have the correct path to the PERL
module.

In this case, the PERL module is in a directory on the
Web server called perl, which is in the bin directory,
which is contained within the usr directory.

This path MUST be the first line of all your PERL scripts.

• (blank line)

Before the next line of code is a blank line. You can use
blank lines throughout your PERL scripts.

Blank lines allow you to group sections of code together,
which makes scripts easier to read.

LEARNING THE BASICS 19

• print "Content-Type: text/html \n\n";

print "Content-Type: text/html \n\n";

This print command tells the Web server to “print” a
line of text to a Web browser.

print "Content-Type: text/html \n\n";

This line tells the web browser that what comes next is
HTML, or text that can be read by a Web browser.

print "Content-Type: text/html \n\n";

The \n character tells the Web browser to print the
HTML code that follows on a new line.

Since there are two new lines specified, a blank line is
printed between this line of code and the next.

• print "Welcome to ACME AUTO";

print "Welcome to ACME AUTO";

This print command prints the words between the
quotes to the browser window.

print "Welcome to ACME AUTO";

Remember: for a command string to execute, there
must be a semicolon (;) at the end.

LEARNING THE BASICS 20

Upload a script

1. Open WS_FTP and navigate to the home directory on your Web
server.

It should look something like this:

LEARNING THE BASICS 21

2. In the left-hand My Computer pane, navigate to the
PERLSCRIPTS folder on your computer.

3. Double-click the PERLSCRIPTS folder.

simple.pl should appear.

LEARNING THE BASICS 22

4. In the right-hand Perl Script Uploads pane, navigate to the cgi-
bin directory, then to the perlscripts directory in your Web site.

5. Double-click the perlscripts directory.

The pane should be blank:

LEARNING THE BASICS 23

6. Click simple.pl in the My Computer pane, then click the
button.

simple.pl should now appear in the Perl Script Uploads pane:

LEARNING THE BASICS 24

Set script permissions

1. In the Perl Script Uploads pane, right-click simple.pl.

2. When the menu appears, click Properties.

LEARNING THE BASICS 25

3. When the simple.pl Properties window appears, click all the
Execute checkboxes.

4. Click the button.

LEARNING THE BASICS 26

Run a script from a Web page

1. Using Notepad, create a new Web page with this code:

<html>
<head>
<title>Run your first PERL script</title>
</head>
<body>

Click on <a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/simple.pl">this link to run
your first PERL script.

</body>
</html>

LEARNING THE BASICS 27

2. Save the Web page as perllinks.html in the PERLSCRIPTS
folder on your computer.

LEARNING THE BASICS 28

3. In WS_FTP, upload perllinks.html into the home directory of
your Web site.

Tip: Don’t upload perllinks.html into the /cgi-bin/perlscripts
directory.

Put it in the home directory of your Web site, where the home
page—index.html—resides.

LEARNING THE BASICS 29

4. Open the Web browser and go to:

www.yourwebsite.com/perllinks.html

LEARNING THE BASICS 30

5. Click the link.

The output should look like this:

LEARNING THE BASICS 31

Insert comments

1. Using Notepad, create a new script with this code:

#!/usr/bin/perl

print "Content-Type: text/html \n\n";

This is a simple script with comments
that explain what the code does.

These comments do not affect the way
the script works.

print "Welcome to ACME AUTO!"; # You
can even put comments on the same line
as executable code.

LEARNING THE BASICS 32

Tip: If you’re writing a comment in a script and it wraps to the
next line, it needs a new # character in front.

Incorrect:

The second line lets a browser
display the script output.

Correct:

The second line lets a browser
display the script output.

2. Save this script as comments.pl in the PERLSCRIPTS folder on
your computer.

LEARNING THE BASICS 33

3. Open WS_FTP and upload the comments.pl script to the
perlscripts directory in your Web site.

4. Set the script’s permissions so that Owner, Group, and World
can execute it.

LEARNING THE BASICS 34

Format text output with HTML tags

1. In Notepad, create a new script with this code:

#!/usr/bin/perl

print "Content-Type: text/html \n\n";

print "<h1 align=center>\n";

print "Welcome to ACME AUTO\n";

print "</h1>\n";

LEARNING THE BASICS 35

2. Save the script as format.pl in the PERLSCRIPTS folder.

This PERL script also includes HTML tags that format the text it
outputs to the browser window:

print "<h1 align=center>\n";

print "Welcome to ACME AUTO\n";

print "</h1>\n";

LEARNING THE BASICS 36

3. Upload format.pl to the perlscripts directory in your Web site.

4. Set its permissions so that anyone can execute it.

LEARNING THE BASICS 37

5. Open perllinks.html in Notepad.

Tip: It’s in the PERLSCRIPTS folder.

You may need to select All Files in the Files of type list.

LEARNING THE BASICS 38

6. Add a link to see the output of format.pl:

<html>
<head>
<title>Run your first PERL script</title>
</head>
<body>

Click on <a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/simple.pl">this link to run
your first PERL script.

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/format.pl">2. You can include
HTML tags in PERL code to format text.</p>

</body>
</html>

LEARNING THE BASICS 39

7. Save perllinks.html, then use WS_FTP to upload it to the home
directory in your Web site.

Tip: This is the same place perllinks.html was before. When
WS_FTP prompts you to replace the existing file, click the

 button.

8. Open the browser and go to:

www.yourwebsite.com/perllinks.html

LEARNING THE BASICS 40

9. Click the second link.

The output should look like this:

10. Close Notepad and WS_FTP.

WORKING WITH VARIABLES 41

Working with
Variables

In this section, you’ll learn how to:

• Employ single variables

• Print quotation marks

• Employ lists of variables

WORKING WITH VARIABLES 42

What’s a variable?

A variable is a placeholder for information within a PERL script.

In PERL, a Scalar variable is a single piece of information. It always
starts with a dollar sign.

Example: $myname

An Array variable is a list of information. It always starts with the “at”
sign (@).

Example: @months

Variables are essential to all programming, and very useful. For
example, you can use a Scalar variable to easily change “brown eyes”
to “blue eyes” in a PERL script:

$eyecolor=“brown”

As the old song says, “Don’t it make my $eyecolor eyes blue…”

WORKING WITH VARIABLES 43

Employ single variables

Assign a number to a single variable

1. Open Notepad, then create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

The code below makes it easy to change
numbers output by the script.

$cars_on_lot = 100;

print "<p>Welcome to ACME AUTO!</p>";

print "<p>Which one of our $cars_on_lot cars is
right for you?</p>\n";

WORKING WITH VARIABLES 44

2. Save the script as scalarnum.pl in the PERLSCRIPTS folder.

Here’s what each line of the script does:

• #!/usr/bin/perl
print "Content-Type: text/html \n\n";

These lines should look familiar. The first specifies the
path to your Web server’s PERL module. The second
tells the browser that what comes after this line is HTML.

WORKING WITH VARIABLES 45

• $cars_on_lot = 100;

$cars_on_lot is the single (scalar) variable. Scalar
variables start with a $.

The number 100 is assigned to the variable. The
number is easy to change—that’s why it’s called a
variable.

• print "<p>Welcome to ACME
AUTO!</p>";

print "<p>Which one of our $cars_on_lot
cars is right for you?</p>\n";

These lines should also look familiar. They’re HTML
code like we’ve used before, but with a difference:
$cars_on_lot.

This variable tells the Web browser to get the number
specified (100) and insert it here.

You’ll see how it works in the following steps.

WORKING WITH VARIABLES 46

3. Open WS_FTP, then upload scalarnum.pl to the perlscripts
directory in your Web site.

4. Set its permissions so that anyone can execute it.

5. In Notepad, open perllinks.html.

WORKING WITH VARIABLES 47

6. Insert a new link to scalarnum.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/format.pl">2. You can include
HTML tags in PERL code to format text.</p>

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/scalarnum.pl">3. Assign a
number to a single variable.</p>

WORKING WITH VARIABLES 48

7. Save perllinks.html, then upload it to the home directory in your
Web site.

8. Using the browser, go to:

www.yourwebsite.com/perllinks.html

9. Click the Assign a number to a single variable link.

WORKING WITH VARIABLES 49

The output should look like this:

WORKING WITH VARIABLES 50

Assign text to a single variable

1. Using Notepad, create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

The code below makes it easy to
change text output.

$company_name = "ACME AUTO";
$cars_on_lot = 100;
$deal_of_day = "Ford Mustang";

print "<p>Welcome to $company_name!</p>\n";

print "<p>Which one of our $cars_on_lot cars is
right for you?</p>\n";

print "<p>Today we have a GREAT deal on a
$deal_of_day.</p>\n";

WORKING WITH VARIABLES 51

2. Save the script as scalartext.pl in the PERLSCRIPTS folder.

Here’s what the relevant lines in this script do:

• $company_name = "ACME AUTO";

Assigns the text ACME AUTO to the scalar variable
$company_name.

• $deal_of_day = "Ford Mustang";

Assigns the text Ford Mustang to the scalar variable
$deal_of_day.

• $cars_on_lot = 100;

Assigns the number 100 to the scalar variable
$cars_on_lot.

• print "<p>Welcome to
$company_name!</p>\n";

Prints the words “Welcome to” to the browser window,
then inserts the text assigned to the scalar variable
$company_name (“ACME AUTO”).

• print "<p>Which one of our $cars_on_lot
cars is right for you?</p>\n";

Prints words to the browser window, inserting the
number assigned to the scalar variable $cars_on_lot
(100).

WORKING WITH VARIABLES 52

• print "<p>Today we have a GREAT deal on a
$deal_of_day.</p>\n";

Prints words to the browser window, then inserts the text
assigned to the scalar variable $deal_of_day (“Ford
Mustang”).

3. Upload scalartext.pl to the perlscripts directory in your Web
site and set its permissions so that anyone can execute it.

4. In Notepad, open perllinks.html.

5. Insert a new link to scalartext.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/scalartext.pl">4. Assign text
to a single variable.</p>

WORKING WITH VARIABLES 53

6. Save perllinks.html, then upload it to the home directory in your
Web site.

7. Using the browser, go to:

www.yourwebsite.com/perllinks.html

8. Click the Assign text to a single variable link.

The output should look like this:

WORKING WITH VARIABLES 54

Print quotation marks

1. In the browser, go to:

www.inpics.net/books/perl

2. Right-click maxima.jpg, then save it in the PERLSCRIPTS
folder on your computer.

WORKING WITH VARIABLES 55

3. Upload maxima.jpg to the home directory in your Web site.

4. In Notepad, create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

The code below uses a variable to
display a photo.

$cars_on_lot = 100;

$deal_of_day = "Nissan Maxima";

$pic_of_day =
"http://www.yourwebsite.com/maxima.jpg";

print "<p>Welcome to ACME AUTO!</p>\n";

print "<p>Which one of our $cars_on_lot cars is
right for you?</p>\n";

WORKING WITH VARIABLES 56

print "<p>Today we have a GREAT deal on
a $deal_of_day car:</p>\n";

print "\n";

Tip: Remember to change the www.yourwebsite.com
address in $pic_of_day =
"http://www.yourwebsite.com/maxima.jpg" to your
actual Web site address.

5. Save the script as qmarks.pl in the PERLSCRIPTS folder.

6. Upload qmarks.pl to the perlscripts directory in your Web site
and set its permissions so that anyone can execute it.

7. In Notepad, open perllinks.html.

8. Insert a new link to qmarks.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/qmarks.pl">5. Print quotation
marks.</p>

9. Save perllinks.html, then upload it to the home directory in your
Web site.

10. Using the browser, go to:

www.yourwebsite.com/perllinks.html

WORKING WITH VARIABLES 57

11. Click the Print quotation marks link.

The output should look something like this:

WORKING WITH VARIABLES 58

12. In Notepad, edit qmarks.pl to enclose the $pic_of_day
variable in \ characters:

print "\n
";

13. Save qmarks.pl and upload it to the perlscripts directory again.

14. Reload perllinks.html in your Web browser.

WORKING WITH VARIABLES 59

15. Click the Print quotation marks link again.

Its output should look like this:

Tip: Since the HTML tag requires the use of two double-
quotation marks

enclose them in \ characters to let the Web server know that
you want to print a double-quote to the screen. Otherwise, the
Web server will think you want the double-quotes to start and
end a text string in a PERL command.

\ is called an “escape character.” Escape characters are used
to print characters, such as double-quotes, that the Web server
might otherwise think were part of a PERL command or text
string.

WORKING WITH VARIABLES 60

Print with double vs. single quotes

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

Printing with Double Quotes (")
vs. Single Quotes (')

$cars_on_lot = 100;

print "<p>Welcome to ACME AUTO!</p>\n";

double quotes

print "<p>Which one of our $cars_on_lot cars is
right for you?</p>\n";

single quotes

print '<p>Which one of $cars_on_lot is right
for you?</p>\n';

2. Save the script as quotes.pl in the PERLSCRIPTS folder.

Here’s what the relevant lines in this script do:

• print "<p>Which one of our $cars_on_lot
cars is right for you?</p>\n";

By using “double quotes” in the above print statement,
the number assigned to the scalar variable
$cars_on_lot (100) is printed to the browser window.

WORKING WITH VARIABLES 61

• print '<p>Which one of $cars_on_lot is
right for you?</p>\n';

By using ‘single quotes’ in the above print statement, the
text $cars_on_lot is printed to the browser window
along with the words that surround it.

3. Upload quotes.pl to the perlscripts directory in your Web site,
then set its permissions so that anyone can execute it.

4. Open perllinks.html and insert a new link to quotes.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/quotes.pl">6. Double vs. single
quotes.</p>

5. Save perllinks.html, then upload it to the home directory in your
Web site.

6. In the browser, go to:

www.yourwebsite.com/perllinks.html

WORKING WITH VARIABLES 62

7. Click the Double vs. single quotes link.

The output should look like this:

Tip: Using single quotes (‘) with the print function

print ‘<p>Which one of $cars_on_lot is right
for you?</p>\n’;

prints literally everything in between the two quotation marks.

If you want to display the value of a variable, use double quotes
(“):

print “<p>Which one of our $cars_on_lot cars is
right for you?</p>\n”;

WORKING WITH VARIABLES 63

Employ lists of variables

Create lists of number variables

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

This script demonstrates how to
create a numeric array.

@AcmeInventory = (178,286,387);

print @AcmeInventory;

print "<p>We just created a list of numbers
using an array variable!";

2. Save the script as numberlist.pl in the PERLSCRIPTS folder.

Here’s what the relevant lines in this script do:

• @AcmeInventory = (178,286,387);

The numbers 178, 286, and 387 are assigned to the
array variable @AcmeInventory.

• print @AcmeInventory;

The numbers assigned the array variable
@AcmeInventory are printed to the browser window:
178, 286, and 387.

WORKING WITH VARIABLES 64

3. Upload numberlist.pl to the perlscripts directory in your Web
site, then set its permissions so that anyone can execute it.

4. Open perllinks.html and insert a new link to numberlist.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/numberlist.pl">7. Create a list
of numbers.</p>

5. Save perllinks.html, then upload it to the home directory in your
Web site.

6. In the browser, go to:

www.yourwebsite.com/perllinks.html

7. Click the Create a list of numbers link.

The output should look like this:

WORKING WITH VARIABLES 65

Create lists of text variables

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

This script demonstrates how to
create a text array.

@AcmeCars = ("Ford","Dodge","Chevy");

print "@AcmeCars";

print "<p>We have just created a text
array!</p>”;

2. Save the script as textlist.pl in the PERLSCRIPTS folder.

Here's what the relevant lines in this script do:

• @AcmeCars = ("Ford","Dodge","Chevy");

The words "Ford","Dodge", and "Chevy" are assigned to
the array variable @AcmeCars.

• print "@AcmeCars";

The words assigned to the array value @AcmeCars are
printed to the browser window:

Ford Dodge Chevy

3. Upload textlist.pl to the perlscripts directory in your Web site,
then set its permissions so that anyone can execute it.

WORKING WITH VARIABLES 66

4. Open perllinks.html and insert a new link to textlist.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/textlist.pl">8. Create a list
of text.</p>

5. Save perllinks.html, then upload it to the home directory in your
Web site.

6. In the browser, go to:

www.yourwebsite.com/perllinks.html

7. Click the Create a list of text link.

The output should look like this:

WORKING WITH VARIABLES 67

Print an element in a list of variables

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

This script demonstrates how to
print an element in an array

@AcmeCars = ("Ford","Dodge","Chevy");

print "<p>* $AcmeCars[0] * is the first element
in the text array.</p>";

print "<p>* $AcmeCars[2] * is the third element
in the text array.</p>";

Tip: In PERL, numbering of array variables starts at 0 not 1.

This can be confusing, but it’s common to many programming
languages.

2. Save the script as printelement.pl in the PERLSCRIPTS folder.

WORKING WITH VARIABLES 68

Here's what the relevant lines in the script do:

• print "<p>* $AcmeCars[0] * is the first
element in the text array.</p>";

The word “Ford” is printed to the browser window
because it’s the first word in the @AcmeCars array list—
the zero position.

Notice that $—signifying a single (scalar) value—is used
when printing a single element of an array. Basically,
$AcmeCars[0] means: give me the single (scalar)
value, in the zero position in the @AcmeCars array list.

• print "<p>* $AcmeCars[2] * is the third
element in the text array.</p>";

The word “Chevy” is printed because it’s in the number 2
position in the @AcmeCars array. It’s the third item in the
array list—the number two position.

3. Upload printelement.pl to the perlscripts directory in your Web
site, then set its permissions so that anyone can execute it.

4. Open perllinks.html and insert a new link to printelement.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/printelement.pl">9. Print
elements in a text array.</p>

5. Save perllinks.html, then upload it to the home directory in your
Web site.

WORKING WITH VARIABLES 69

6. In the browser, go to:

www.yourwebsite.com/perllinks.html

7. Click the Print elements in a text array link.

The output should look like this:

WORKING WITH VARIABLES 70

1.

WORKING WITH NUMBERS 71

Working with
Numbers

In this section, you’ll learn how to:

• Perform calculations

• Increment/decrement automatically

• Generate random numbers

WORKING WITH NUMBERS 72

Perform calculations

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

$var1 = 5;
$var2 = 2;

$answer = $var1 + $var2 ;

print "$var1 plus $var2 equals $answer.\n";

2. Save the script as add.pl in the PERLSCRIPTS folder.

Here's what the relevant lines in this script do:

• $answer = $var1 + $var2 ;

Adds the scalar variables $var1 and $var2 together,
then assignins the sum to a scalar variable called
$answer.

Since $var1 is 5, and $var2 is 2, $answer has a value
of 7.

3. Upload add.pl to the perlscripts directory in your Web site, then
set its permissions so that anyone can execute it.

WORKING WITH NUMBERS 73

4. Open perllinks.html and insert a new link to add.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/add.pl">10. Add five plus
two.</p>

5. Save perllinks.html, then upload it to the home directory in your
Web site.

6. In the browser, go to:

www.yourwebsite.com/perllinks.html

Click the Add five plus two link.

The output should look like this:

WORKING WITH NUMBERS 74

Tip: To subtract, just change the + sign in the script above to a
– sign.

To multiply, just change it to a * sign.

To divide, change it to /.

WORKING WITH NUMBERS 75

Increment/decrement automatically

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

$cars_on_lot = 10;

print "We have $cars_on_lot cars.\n
";

print "We got another new car.\n
";

$cars_on_lot++;

print "Now we have $cars_on_lot cars!\n<p>";

print '$cars_on_lot++ is the same to
PERL as $cars_on_lot + 1.';

2. Save the script as autoplus.pl in the PERLSCRIPTS folder.

Here's what the relevant lines in this script do:

• $cars_on_lot++;

The auto incrementer (++) adds 1 to the $cars_on lot
variable.

• print '$cars_on_lot++ is the same
to PERL as $cars_on_lot = $cars_on_lot
+ 1';

Prints the literal text: $cars_on_lot++ is the same to
PERL as $cars_on_lot + 1.

WORKING WITH NUMBERS 76

3. Upload autoplus.pl to the perlscripts directory in your Web site,
then set its permissions so that anyone can execute it.

4. Open perllinks.html and insert a new link to autoplus.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/autoplus.pl">11. Advance a
number by 1 automatically.</p>

5. Save perllinks.html, then upload it to the home directory in your
Web site.

6. In the browser, go to:

www.yourwebsite.com/perllinks.html

7. Click the Advance a number by 1 automatically link.

The output should look like this:

WORKING WITH NUMBERS 77

Tip: To automatically decrement by one, change the auto
incrementer in the script above (++) to an auto decrementer:

--

WORKING WITH NUMBERS 78

Generate random numbers

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

$random_number = rand(10);

print "<p>Your Acme Auto Lucky Number from 1 to
10 is $random_number.</p>\n";

$random_integer = int(rand(10)) + 1;

print "<p>Your Acme Auto Lucky Integer from 1
to 10 is $random_integer.</p>\n";

print "Click the Reload button on your browser
to get a new random number.";

WORKING WITH NUMBERS 79

2. Save the script as random.pl in the PERLSCRIPTS folder.

Here's what the relevant lines in this script do:

•
• $random_number = rand(10);

Assigns a computer-generated random number to the
scalar variable $random_number.

Because the number 10 is inside the parenthesis:

rand(10)

the computer-generated number will be between 0 and
9.999999999999999.

If you’d used the number 100—rand(100) it would be
between 0 and 99. 999999999999999.

• print "<p>Your Acme Auto Lucky Number
from 1 to 10 is $random_number .</p>\n";

Prints “Your Acme Auto Lucky Number from 1 to 10
is 8.77515995948674. ”

Because it is a random number, the number on your
screen will be different.

WORKING WITH NUMBERS 80

• $random_integer = int(rand(10)) + 1;

Creates a random number:

$random_integer = int(rand(10)) + 1;

Turns it into an integer:

$random_integer = int(rand(10)) + 1;

An integer is a whole number, without decimal points,
like 1, 2, 3.

Makes sure the number generated is between 1 and 10,
and not 0 and 10:

$random_integer = int(rand(10)) + 1;

Then assigns it to the scalar variable
$random_integer:

$random_integer = int(rand(10)) + 1;

• print "<p>Your Acme Auto Lucky Integer
from 1 to 10 is $random_integer.</p>\n";

Prints “Your Acme Auto Lucky Integer from 1 to 10 is
5.”

Of course, your lucky number may be different than 5,
because it’s a random number being generated.

3. Upload random.pl to the perlscripts directory in your Web site,
then set its permissions so that anyone can execute it.

WORKING WITH NUMBERS 81

4. Open perllinks.html and insert a new link to random.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/random.pl">12. Generate random
numbers.</p>

5. Save perllinks.html, then upload it to the home directory in your
Web site.

6. In the browser, go to:

www.yourwebsite.com/perllinks.html

7. Click the Generate random numbers link.

The output should look like this:

WORKING WITH NUMBERS 82

SUBROUTINES 83

Subroutines

In this section, you’ll learn how to:

• Create a subroutine

• Parse form data with a subroutine

SUBROUTINES 84

Create a subroutine

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

print "Program starts.\n";

&bigHeader;

print "Program ends.\n";

subroutines below this line

sub bigHeader {
 print "<h1>Welcome to Acme Auto!</h1>\n";
}

What is a Subroutine?
A subroutine is block of reusable code that you create within your
program.

Instructions within the subroutine can be called or executed from the
main program more then once. This makes redundant tasks simpler.

SUBROUTINES 85

2. Save the script as subsimple.pl in the PERLSCRIPTS folder.

Here's what the relevant lines in this script do:

• &bigHeader;

bigHeader is the name of the subroutine.

The & sign before the name of the subroutine tells the
Web server to execute the subroutine.

• sub bigHeader {

sub defines this as a subroutine.

bigHeader is the name of the subroutine. You can use
any name you want, but it should describe what the
subroutine does.

{ marks the beginning of what the subroutine does.

• print "<h1>Welcome to Acme Auto</h1>\n";

This is what the subroutine does: it prints the phrase
“Welcome to Acme Auto!” to the browser window in
large, bold type.

This is a very simple subroutine, but you can put as
much PERL code as you want in a subroutine.

• }

} marks the end of the subroutine.

3. Upload subsimple.pl to the perlscripts directory in your Web
site, then set its permissions so that anyone can execute it.

SUBROUTINES 86

4. Open perllinks.html and insert a new link to subsimple.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/subsimple.pl">13. Execute a
subroutine.</p>

5. Save perllinks.html, then upload it to the home directory in your
Web site.

6. In the browser, go to:

www.yourwebsite.com/perllinks.html

7. Click the Execute a subroutine link.

The output should look like this:

SUBROUTINES 87

Parse form data with a subroutine

Create a form

1. Create a new Web page with this code:

<html>
<head>
<title>Dream Car</title>
</head>

<body>

<form method="post"
action="http://www.yourwebsite.com/cgi-
bin/perlscripts/dreamcar.pl">

<h2>What’s my dream car?</h2>

Make: <input type="text" name="make">

Model: <input type="text" name="model">

<input type="submit" value="Submit">

</form>

</body>
</html>

2. Save the page as dreamcar.html in the PERLSCRIPTS folder.

SUBROUTINES 88

3. Upload it to the home directory in your Web site.

SUBROUTINES 89

Parse form data

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-type: text/html\n\n";

&getFormData;

print "<h2>Here’s my dream car:</h2>”;

print "Make: $request{'make'}”;
print "
\n";
print "Model: $request{'model'}”;

Subroutine below this line.

sub getFormData {

read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});
@pairs = split(/&/, $buffer);
foreach $pair (@pairs) {
 ($name, $value) = split(/=/, $pair);
 $value =~ tr/+/ /;
 $value =~ s/%([a-fA-F0-9][a-fA-F0-
 9])/pack("C", hex($1))/eg;
 $value =~ s/\n/ /g;
 $request{$name} = $value;
}
}

SUBROUTINES 90

Tip: When you write the code

$value =~ s/%([a-fA-F0-9][a-fA-F0-
 9])/pack("C", hex($1))/eg;

in the script above, you must write it on a single line, or the script
will not work.

It must look like this:

SUBROUTINES 91

4. Save the script as dreamcar.pl in the PERLSCRIPTS folder.

Here's what each line of the script means:

• &getFormData;

Executes the subroutine getFormData to pull
information from the form input boxes in dreamcar.html.

• print "Make: $request{'make'}”;
print "
\n";
print "Model: $request{'model'}”;

This requests the information that getFormData pulled
from the form input boxes in the Web page
dreamcar.html:

print "Model: $request{'model'}”;

Remember, one of the input boxes in dreamcar.html is
named “model:”

<input type="text" name="model">

Then it prints it to the browser window:

print "Model: $request{'model'}”;

• sub getFormData {

Defines getFormData as a subroutine, then starts it.

SUBROUTINES 92

• read (STDIN, $buffer,
ENV{'CONTENT_LENGTH'});
 @pairs = split(/&/, $buffer);
 foreach $pair (@pairs) {
($name, $value) = split(/=/, $pair);
$value =~ tr/+/ /;
$value =~ s/%([a-fA-F0-9][a-fA-F0-
9])/pack("C", hex($1))/eg;
$value =~ s/\n/ /g;
$request{$name} = $value;

This is the getFormData subroutine.

It takes the raw text from the form input boxes and
“parses” it, or puts it in a form that PERL can use.

This subroutine uses environmental variables and
regular expressions that are beyond the scope of this
book.

Don’t worry about not understanding it: after you’ve
finished this book, you can move on to other, more
advanced PERL books that explain parsing subroutines
like this one in detail.

Tip: Remember that when you write the code

$value =~ s/%([a-fA-F0-9][a-fA-F0-
 9])/pack("C", hex($1))/eg;

in the script above, you must write it on a single line, or
the script will not work.

• }

Ends the getFormData subroutine.

SUBROUTINES 93

5. Upload dreamcar.pl to the perlscripts directory in your Web
site, then set its permissions so that anyone can execute it.

6. In the browser, go to:

www.yourwebsite.com/dreamcar.html

7. Fill in the form boxes, then click the button.

The output should look something like this:

SUBROUTINES 94

LOGIC & LOOPS 95

Logic & Loops

In this section, you’ll learn how to:

• Employ conditional logic

• Employ looping

LOGIC & LOOPS 96

Employ conditional logic

If statements

1. Create a new Web page with this code:

<html>
<head>
<title>If Statements</title>
</head>

<body>

<h2>Acme Logon Page</h2>

<form method="POST"
action="http://www.yourwebsite.com/cgi-
bin/perlscripts/if.pl">

<h2>Enter Password:</h2>

Password: <input type="password" name=
"password"><p>

<input type="submit" value="Submit">

</form>

</body>
</html>

2. Save the page as if.html in the PERLSCRIPTS folder.

LOGIC & LOOPS 97

3. Upload it to the home directory in your Web site.

4. Create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

&getFormData;

$GoodPassword = 'acme';

if ($request{'password'} eq $GoodPassword){
 print "Acme Password verified!\n";
}

sub getFormData {

read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});
@pairs = split(/&/, $buffer);
foreach $pair (@pairs) {
 ($name, $value) = split(/=/, $pair);
 $value =~ tr/+/ /;
 $value =~ s/%([a-fA-F0-9][a-fA-F0-
 9])/pack("C", hex($1))/eg;
 $value =~ s/\n/ /g;
 $request{$name} = $value;
}
}

LOGIC & LOOPS 98

5. Save the script as if.pl in the PERLSCRIPTS folder, then upload
it to the perlscripts directory in your Web site.

Here's what the relevant lines in this script do:

• $GoodPassword = 'acme';

Assigns the value “acme” to the variable
$GoodPassword.

• if ($request{'password'} eq
$GoodPassword){

Compares the password word typed in the text box on
if.html to the password assigned to the variable
$GoodPassword.

If they’re the same, then the code between the curly
braces is executed:

print "Acme Password
verified!
\n";

Tip: The command eq is used to compare to text
variables. Don’t use the = sign—that’s for comparing
numbers.

6. Upload if.pl to the perlscripts directory in your Web site, then
set its permissions so that anyone can execute it.

7. In the browser, go to:

www.yourwebsite.com/if.html

LOGIC & LOOPS 99

8. In the Password box, type:

pizza

then click the button.

The output should look like this:

LOGIC & LOOPS 100

9. Go back to if.html and in the Password box, type:

acme

then click the button.

The output should look like this:

LOGIC & LOOPS 101

If/else statements

1. In the Web page if.html, change the action of its <form> tag to
use a script called ifelse.pl:

<form method="post"
action="http://www.yourwebsite.com/cgi-
bin/perlscripts/ifelse.pl">

2. Save the page as ifelse.html in the PERLSCRIPTS folder, then
upload it to the home directory in your Web site.

3. In the script if.pl, change its code from this:

if ($request{'password'} eq $GoodPassword){
print "Acme Password verified!\n";
}

To this:

if ($request{'password'} eq $GoodPassword){
print "Acme Password verified!\n";
}

else {
print "Acme Password incorrect.\n";
}

LOGIC & LOOPS 102

4. Save the script as ifelse.pl in the PERLSCRIPTS folder.

Here's what the relevant lines in this script do:

• if ($request{'password'} eq
$GoodPassword){

Compares the password word typed in the text box on
if.html to the password assigned to the variable
$GoodPassword.

If they’re the same, then the code between the curly
braces is executed.

• else {

If the two values are NOT the same then the else
condition is executed. The else condition is the block of
code in between the curly braces after the word ‘else.’

Tip: Think of it this way:

if (this is true) { then do this }

else { do this }

5. Upload ifelse.pl to the perlscripts directory in your Web site,
then set its permissions so that anyone can execute it.

6. In the browser, go to:

www.yourwebsite.com/ifelse.html

LOGIC & LOOPS 103

7. In the Password box, type:

pizza

then click the button.

The output should look like this:

LOGIC & LOOPS 104

8. Go back to ifelse.html and In the Password box, type:

acme

then click the button.

The output should look like this:

LOGIC & LOOPS 105

The OR operator

1. Create a new Web page with this code:

<html>
<head>
<title>The OR Operator</title>
</head>

<body>

<form method="post"
action="http://www.yourwebsite.com/cgi-
bin/perlscripts/or.pl">

<h2>Enter Acme Auto User Name</h2>

User Name: <input type="text" name= "username">

<input type="submit" value="Submit">

</form>

</body>
</html>

2. Save the page as or.html in the PERLSCRIPTS folder, then
upload it to the home directory in your Web site.

LOGIC & LOOPS 106

3. Change the code in ifelse.pl from this:

$GoodPassword = 'acme';

if ($request{'password'} eq $GoodPassword){
print "Acme Password verified!\n";
}
else {
print "Acme Password incorrect.\n";
}

LOGIC & LOOPS 107

To this:

$user1 = "Brandon";
$user2 = "Paul";

if ($request{'username'} eq $user1 ||
$request{'username'} eq $user2) {
print "$request{'username'} welcome to Acme
Auto.\n";
}

LOGIC & LOOPS 108

4. Save the script as or.pl in the PERLSCRIPTS folder.

Here's what the relevant lines in this script do:

• if ($request{'username'} eq $user1 ||
$request{'username'} eq $user2)

Uses the OR operator:

||

to compare two conditions.

It is asking the question, “is condition one true, OR is
condition two true?” Is the entered user name either
Brandon OR Paul?

If the entered user name is either Brandon or Paul, then
the block of code in between the curly braces is
executed.

5. Upload or.pl to the perlscripts directory in your Web site, then
set its permissions so that anyone can execute it.

6. In the browser, go to:

www.yourwebsite.com/or.html

LOGIC & LOOPS 109

7. In the User Name box, type:

Brandon

then click the button.

The output should look like this:

LOGIC & LOOPS 110

8. Go back to or.html and in the User Name box, type:

Paul

then click the button.

The output should look like this:

LOGIC & LOOPS 111

The AND operator

1. Create a new Web page with this code:

<html>
<head>
<title>The AND Operator</title>
</head>
<body>

<form method="post" action="
http://www.yourwebsite.com/cgi-
bin/perlscripts/and.pl">

<h2>Acme Logon Page</h2>

<h3>Enter User Name & Password</h3>

User Name: <input type="text" name=
"username">

Password: <input type="password"
name="password">

<input type="submit" value="Submit">

</form>

</body>
</html>

2. Save the page as and.html in the PERLSCRIPTS folder, then
upload it to the home directory in your Web site.

LOGIC & LOOPS 112

3. Change the code in or.pl from this:

$user1 = "Brandon";
$user2 = "Paul";

if ($request{'username'} eq $user1 ||
$request{'username'} eq $user2) {
print "$request{'username'} welcome to Acme
Auto.\n";
}

To this:

$user = "Brandon";
$pass = "acme";

if ($request{'username'} eq $user &&
$request{'password'} eq $pass) {
print "Welcome to Acme Auto,
$request{'username'}.\n";
}

LOGIC & LOOPS 113

4. Save the script as and.pl in the PERLSCRIPTS folder.

Here's what the relevant lines in this script do:

• if ($request{'username'} eq $user &&
$request{'pass'} eq $pass)

Uses the AND operator:

&&

to compare two conditions.

It’s asking:

Is the word entered in the textbox named username the
same as the word assigned to the variable $user?

AND

Is the word entered in the textbox named password the
same as the word assigned to the variable $pass?

If both these things are true, then execute the code in
the curly braces.

5. Upload and.pl to the perlscripts directory in your Web site, then
set its permissions so that anyone can execute it.

6. In the browser, go to:

www.yourwebsite.com/and.html

LOGIC & LOOPS 114

7. In the User Name box, type:

Brandon

8. In the Password box, type:

asdf

then click the button.

The output should look like this:

LOGIC & LOOPS 115

9. View and.html in the browser, enter Brandon as the User Name

and acme as the Password, then click the button.

The output should look like this:

LOGIC & LOOPS 116

Employ looping

Print a list of elements

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

This script demonstrates how to print
an array using a foreach loop.

@AcmeCars = ("Ford","Dodge","Chevy");

print "<p>The text array contains:</p>";

foreach $thisCar (@AcmeCars){
 print "$thisCar
\n";
}

2. Save the script as printlist.pl in the PERLSCRIPTS folder.

Here's what the relevant lines in the script do:

• @AcmeCars = ("Ford","Dodge","Chevy");

Creates the array variable @AcmeCars and places the
“Ford”, “Dodge”, and “Chevy” values into the array.

LOGIC & LOOPS 117

• foreach $thisCar (@AcmeCars){

foreach tells the Web server to “loop” through the
@AcmeCars array, going through each value in the
array, one by one.

$thisCar is a scalar variable: it tells the Web server to
pull out each separate element in the @AcmeCars array.

3. Upload printlist.pl to the perlscripts directory in your Web site,
then set its permissions so that anyone can execute it.

4. Open perllinks.html and insert a new link to printlist.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/printlist.pl">14. Print a list
of elements using a loop.</p>

5. Save perllinks.html, then upload it to the home directory in your
Web site.

6. In the browser, go to:

www.yourwebsite.com/perllinks.html

LOGIC & LOOPS 118

7. Click the Print a list of elements using a loop link.

The output should look like this:

LOGIC & LOOPS 119

Print elements in an HTML table

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-Type: text/html \n\n";

This script demonstrates how to print
array elements within a table.

@AcmeCars = ("Ford","Dodge","Chevy");

print "<html><head><title>Table
Example</title></head><body>\n";

print "<table border=1 bgcolor=yellow>\n";

foreach $thisCar (@AcmeCars){
 print "<tr><td>$thisCar</td></tr>\n";
}

print "</table></body></html>";

LOGIC & LOOPS 120

2. Save the script as tablelist.pl in the PERLSCRIPTS folder.

Here's what the relevant lines in this script do:

• print "<html><head><title>Table
Example</title></head><body>\n";

Prints the HTML tags that begin a Web page.

• print "<table border=1
bgcolor=yellow>\n";

Prints the tags that set up an HTML table.

• foreach $thisCar (@AcmeCars){

 This line tells the Web server to pull out each separate
element ($thisCar) in the @AcmeCars array, then start
doing something to $thisCar.

• print "<tr><td>$thisCar</td></tr>\n";

Tells the Web server to create a table cell for each
element, with the elements inside the cells.

• }

Tells the Web server to stop doing things with each
element in the @AcmeCars array.

• print "</table></body></html>";

Prints HTML tags that complete the table and Web page.

3. Upload tablelist.pl to the perlscripts directory in your Web site,
then set its permissions so that anyone can execute it.

LOGIC & LOOPS 121

4. Open perllinks.html and insert a new link to tablelist.pl:

<p><a
href="http://www.yourwebsite.com/cgi-
bin/perlscripts/tablelist.pl">15. Print a list
in a table.</p>

5. Save perllinks.html, then upload it to the home directory in your
Web site.

6. In the browser, go to:

www.yourwebsite.com/perllinks.html

7. Click the Print a list in a table link.

The output should look like this:

LOGIC & LOOPS 122

WORKING WITH FILES 123

Working With Files

In this section, you’ll learn how to:

• Create a text file

• Display files

• Append to files

WORKING WITH FILES 124

Create a text file

1. Create a new Web page with this code:

<html>
<head>
<title>Create Text File</title>
</head>

<body>

<h2>Today's Thought</h2>

<form name="thought"
action=”http://www.yourwebsite.com/cgi-
bin/perlscripts/textwriter.pl" method=”post”>

<input type="hidden" name="filename"
value="textthought.txt">

<textarea name="comments" rows=3 cols=50
wrap></textarea>

<p><input type="submit" value="Create Thought"
name="submit">

</form>

</body>
</html>

2. Save the page as textwriter.html in the PERLSCRIPTS folder,
then upload it to the home directory in your Web site.

WORKING WITH FILES 125

3. Create a new script with this code:

#!/usr/bin/perl
print "Content-type: text/html\n\n";

&getFormData;

$mycomments = $request{"comments"};
$myfile = $request{"filename"};

open(MYFILE,">$myfile");
print MYFILE "$mycomments";
close(MYFILE);

print "<p>The $myfile file is created with the
following thought:</p>";

print "<p>$mycomments</p>";
print "<p>$myfile</p>";

print "<a
href=\"http://www.yourwebsite.com/textwriter.ht
ml\">Enter a new thought
\n";

print "View the $myfile
text file\n";

sub getFormData {

read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});
@pairs = split(/&/, $buffer);
foreach $pair (@pairs) {
 ($name, $value) = split(/=/, $pair);
 $value =~ tr/+/ /;
 $value =~ s/%([a-fA-F0-9][a-fA-F0-
 9])/pack("C", hex($1))/eg;
 $value =~ s/\n/ /g;
 $request{$name} = $value;
}

WORKING WITH FILES 126

}

4. Save the file as textwriter.pl in the PERLSCRIPTS folder.

Here's what the relevant lines in this script do:

• $mycomments = $request{"comments"};

Requests the text entered in the text area named
comments in textwriter.html, then assigns it to the
variable $mycomments.

• $myfile = $request{"filename"};

The form in textwriter.html has a hidden text field
named filename. Here the script requests the value
assigned to it in the form—textthought.txt—then
assigns that value to the variable $myfile.

• open(MYFILE,">$myfile");

The PERL command open opens the MYFILE file
variable. Then, the > sign tells the Web server that the
value of $myfile—textthought.txt—can be
overwritten.

If textthought.txt does not exist, the Web server will
create the file. If it does exist, then the old file will be
completely overwritten with the new data.

Tip: When using the open() command, there are three
ways a file can be opened:

> Overwrites an existing file—all previous data is lost
>> Appends data to the end of an existing file
< Used for reading data as an input file

WORKING WITH FILES 127

• print MYFILE "$mycomments";

Puts, or “prints,” the text associated with the
$mycomments variable (the text entered in the
comments textbox in the form) into the file assigned to
the MYFILE file variable—textthought.txt.

Since textthought.txt doesn’t exist yet, a new text file
called textthought.txt is created to hold the text coming
in from $mycomments.

• close(MYFILE);

The close command tells the Web server that you’re
done using the MYFILE file variable.

5. Upload textwriter.pl to the perlscripts directory in your Web
site, then set its permissions so that anyone can execute it.

6. In the browser, go to:

www.yourwebsite.com/textwriter.html

WORKING WITH FILES 128

7. Enter some text in the comments area, then click the

 button.

The output should look something like this:

WORKING WITH FILES 129

8. Return to the textwriter.html page.

Enter different text in the comments area, then click the

 button again.

The output should be different.

WORKING WITH FILES 130

Display files

1. Create a new script with this code:

#!/usr/bin/perl
print "Content-type: text/html\n\n";

open (THISFILE,"textthought.txt");

foreach $line(<THISFILE>) {
print "$line
\n";
}

close (THISFILE);

2. Save the file as textviewer.pl in the PERLSCRIPTS folder,
upload it to the perlscripts directory in your Web site, then set
its permissions so that anyone can execute it.

Here's what the relevant lines in this script do:

• open (THISFILE,"textthought.txt")

Opens the file textthought.txt, and assigns the text in it
to the file variable THISFILE.

• foreach $line (<THISFILE>) {

The foreach loop loops though every line in the
THISFILE variable. In other words, it goes through
each line of the textthought.txt file.

At each line, it assigns the value of that line to the scalar
variable $line.

WORKING WITH FILES 131

• print "$line
\n";

Prints the text in each line of textthought.txt as the
script loops through them.

close (THISFILE);

Once the foreach loop is finished, the file variable that
stands for textthought.txt file is closed.

3. In the browser, go to:

www.yourwebsite.com/cgi-bin/perlscripts/textviewer.pl

The output should look something like this:

WORKING WITH FILES 132

Append to files

1. Create a new Web page with this code:

<html>
<head>
<title>Append to files</title>
</head>

<body>

<h2>Add to Today's Thought</h2>

<form name="thought"
action="http://www.yourwebsite.com/cgi-
bin/perlscripts/textappender.pl" method=”post”>

<input type="hidden" name="filename"
value="textthought.txt">

<textarea name="comments" rows=3 cols=50
wrap></textarea>

<input type="submit" value="Update
Thought">

</form>

</body>
</html>

2. Save the page as textappender.html in the PERLSCRIPTS
folder, then upload it to the home directory in your Web site.

WORKING WITH FILES 133

3. Open textwriter.pl and replace this code:

open(MYFILE,">$myfile");
print MYFILE "$mycomments";
close(MYFILE);

print "<p>The $myfile file is created with the
following thought:</p>";

print " p>$mycomments</p>";
print "<p>$myfile</p>";

print "Enter a new
thought
\n";

print "View the $myfile
text file\n";

with this code:

open(MYFILE,">>$myfile");

print MYFILE "$mycomments";

close(MYFILE);

print "
The $myfile file is updated with the
following text: <p>$mycomments</p>";

WORKING WITH FILES 134

4. Save the file as textappender.pl in the PERLSCRIPTS folder,
then upload it to the perlscripts directory in your Web site.

Set its permissions so that anyone can execute it.

Here's what the relevant lines in this script do:

•
• open(MYFILE,">>$myfile");

Opens the the MYFILE variable (textthought.txt), then
tells the Web server, with the >> sign, to add comments
entered in textappender.html to textthought.txt.

• print MYFILE "$mycomments";

Puts, or “prints,” the text associated with the
$mycomments variable (the text entered in the
comments textbox in the form) into the file assigned to
the MYFILE file variable—textthought.txt.

However, because MYFILE was opened for append
(>>), the old text remains in texxthought.txt, and the
new text is added to the end of it.

• close(MYFILE);

After MYFILE has been appended, it’s closed.

5. In the browser, go to:

www.yourwebsite.com/textappender.html

WORKING WITH FILES 135

6. In its comments box, type:

Money doesn’t grow on trees.

7. Click the button.

The output should look like this:

WORKING WITH FILES 136

MODIFYING SCRIPTS 137

Modifying scripts

#!/usr/bin/perl -w

read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});
@pairs = split(/&/, $buffer);
foreach $pair (@pairs) {
($name, $value) = split(/=/, $pair);
$value =~ tr/+/ /;
$value =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C",
hex($1))/eg;
$value =~ s/\n/ /g;
$request{$name} = $value;
}

$myemail = "you\@yourserver.com";

Parsing code.
Takes text from form
inputs and puts it in
a format PERL can
work with.

Email address
to which you’d
like the form
input sent.

Modifying downloaded scripts
Just about any basic script you’d need has already been written by
someone else. Do a Web search on “perl scripts” and you’ll find many
sites with good, useful scripts. Most are either free or inexpensive to
use.

Now that you’re familiar with PERL, you can download an existing
script that generally does what you want, then modify it to meet your
specific needs.

Below is an example of a script downloaded from a Web site. It takes
form data from a Web page and sends it to an email address. Modify a
few sections, and you can use it on your Web site.

MODIFYING SCRIPTS 138

$maillocation = "/usr/sbin/sendmail";

$name="$request{'name'}" ;
$email="$request{'email'}" ;

if ($name eq "") {
 print "Content-type: text/html\n\n";
 print "<HTML>
<HEAD>
<TITLE>Enter name</TITLE>
</HEAD>
<BODY>Please enter your name.</BODY>
</HTML>\n";
 exit;
 }

if ($email eq "") {
 print "Content-type: text/html\n\n";
 print "<HTML>
<HEAD>
<TITLE>Enter email</TITLE>
</HEAD>
<BODY>Please enter your email address.</BODY>
</HTML>\n";
 exit;
 }

print "Content-type: text/html\n\n";
print "<HTML>
<HEAD>
<TITLE>Thanks for subscribing</TITLE>
</HEAD>
<BODY>Thanks!</BODY>

Location of the
email program
on your Web
server.

Script requests text from two
form inputs on a Web page. One
input is named “name,” the
other is named “email.”

If the “name”
input is left
blank, print the
HTML text
below.

If the “email”
input is left
blank, print the
HTML text
below

If both inputs are
filled in, print the
“Thanks!”
message.

MODIFYING SCRIPTS 139

</HTML>\n";

open (MAIL, "| $maillocation") || die "aw, cant
use $maillocation";
print MAIL "To: $myemail\n";
print MAIL "From: $email\n";
print MAIL "Subject: Info from form\n";
print MAIL "\n";
print MAIL "Here’s the info:\n\n";
print MAIL "Name: $name\n";
print MAIL "Email: $email\n";
close (MAIL);

After the email program is
open, have it print an
email with the form date,
then send it to $myemail.

Open the email
program at
$maillocation on
the server.

MODIFYING SCRIPTS 140

Where To Get In Pictures Books

If you liked this book, and would like to buy more like it, visit:

www.inpics.net

In Pictures offers more than 20 titles on subjects such as:

• Computer Basics

• Microsoft Office

• Desktop Linux

• OpenOffice.org

• Web Site Layout

• Web Graphics

• Web Programming

In Pictures: computer books based on pictures, not text.

www.inpics.net

