
thesolidqjournal
database administration 44

The SolidQ™ Journal, April 2011 – www.solidq.com/sqj

Parameter Sniffing Problem
with SQL Server Stored Procedures

What is Parameter Sniffing?

Whenever a stored procedure is invoked,
the query optimizer tries to reuse an exe-

cution plan. If a matching execution plan exists in
cache it will be “blindly” reused. If not, a new
plan will be generated. During the plan genera-
tion the optimizer analyses and optimizes all
queries in the stored procedure. It checks possi-
ble ways to physically generate a result set and
considers several factors: existence of indexes
on the columns participating in JOIN and WHERE
clause, table size and data distribution in the
involved tables, etc, in order to estimate the
query selectivity. When an execution plan for a
stored procedure is being generated in addition
to all these factors the optimizer considers also
parameters that are submitted by the procedure
invocation. The optimizer “sniffs” these parame-
ters into the plan considerations. It could be that
the parameters don’t have any influence on the
structure and the selectivity of the resultant
query, but usually the parameter values signifi-
cantly affect the query selectivity and the gener-
ated execution plan. Is this bad? It could be. If
the parameter values for subsequent calls of the
stored procedure have similar values (actually
when their values don’t change the selectivity of
the procedure queries) the parameter sniffing is a

feature. Otherwise it could dramatically reduce
performance. Let’s take the following stored pro-
cedure on Adventure Works database as an
example:

This stored procedure returns four columns
from the table Sales.SalesOrderHeader for a
given SalesOrderID. Let’s invoke it for the first
time with the parameter 45671. Since the col-
umn SalesOrderID is a clustered primary key in
the table, the execution plan for this procedure is
simple: a clustered index seek. See figure 1,
page 45.

So, where is there parameter sniffing? If you
choose the option Show Execution Plan XML…
you can get an XML representation of the execu-
tion plan. Under the node ParameterList you can
see that ParameterCompiledValue has a value

Your users claim that suddenly the execution of one stored procedure is very slow.
However, when you execute it within SSMS with the same parameters, it runs
quickly. In addition, users said for some parameter combinations the stored proce-
dure performs well. If you are in this scenario, you are discovering the dark side of
parameter sniffing.

By Milos Radivojevic

Listing 1: Creating Sample Stored Procedure

CREATE PROCEDURE dbo.getSalesOrderHeader

@SalesOrderID int

AS

SELECT SalesOrderID,OrderDate,ShipDate,SubTotal

FROM Sales.SalesOrderHeader

WHERE SalesOrderID = @SalesOrderID

The SolidQ™ Journal, April 2011 – www.solidq.com/sqj

45671 and this parameter was considered by the
plan generation.

If we call it again with some other parameter
(for instance 56781) we can see that Parameter-
CompiledValue still has the value 45671, only
ParameterRuntimeValue was changed.

So, the generated execution plan is optimal
for the parameter value 45671. Is this a problem
here? Not at all! This plan is also optimal for the
value 56781. Actually, for this stored procedure
only one execution plan makes sense: a clus-
tered index seek. The procedure returns exactly
one row or an empty set, if there are no orders
for a given order id. The value of the parameter
by the first invocation of the stored procedure
doesn’t affect the selectivity of the resultant
query. That’s the reason why in this case the
parameter sniffing affect can be ignored. The
parameter is of course important to define which

row should be returned but absolutely doesn’t
affect the way how to return this row.

However, when different execution plans are
possible, then parameter values by the first invo-
cation can decide which one will be used for all
subsequent invocations. See listing 2.

Figure 1: Execution plan for the stored procedure from
Listing 1

Figure 2: XML version of the execution plan for the stored procedure from Listing 1 (fragment)

45

Figure 3: XML version of the execution plan for the stored procedure from Listing 1 with a different parameter
(fragment)

Listing 2: Creating Stored Procedure With Range
Operator

CREATE PROCEDURE dbo.getSalesOrderHeader

@OrderDate datetime

AS

SELECT SalesOrderID,OrderDate,ShipDate,SubTotal

FROM Sales.SalesOrderHeader

WHERE OrderDate >= @OrderDate

If the parameter values for
subsequent calls of the
stored procedure have similar
values (actually when their
values don’t change the
selectivity of
the procedure queries) the
parameter sniffing is a feature.
Otherwise it could dramatically
reduce performance.

thesolidqjournal
database administration 46

The SolidQ™ Journal, April 2011 – www.solidq.com/sqj

46

Now we have two reasonable execution plans:

Which one will be used is decided by the
value of the parameter OrderDate by the first
invocation of the stored procedure. If the param-
eter value is highly selective (few orders in the
result set) the second plan will be generated, oth-
erwise the whole table will be scanned (clus-
tered index scan). In this case we cannot ignore
the parameter sniffing affect. Some invocations
of the stored procedure end up with a non-opti-
mal plan. Usually it is a problem. It could be that
the execution plan is optimal for highly selective
parameter values and that, let’s say, 95% of calls
are with the “optimal” parameter value. In this
case we can say that these 5% have a problem
and this is, from the business logic point of view,
not so important for the application. However,
the problem is that the execution plan doesn’t
remain forever in cache. It could be removed
from there (for many reasons) and we don’t have
control over when this happens. So, after the

plan is removed from cache, it is a lottery if the
next invocation comes with an expected parame-
ter value.

Parameter sniffing is not limited to stored pro-
cedures only, all parameterized queries can be
prone to parameter sniffing: static queries with
simple, auto or forced parameterization or dynamic
queries called with sp_executesql. In this arti-
cle we’ll describe this phenomenon in stored
procedures.

When Parameter Sniffing is a
Problem?
There are two types of stored procedures prone
to parameter sniffing issues:

• stored procedures with parameters partici-
pating in the range operators

• stored procedures with optional parame-
ters

The procedure dbo.getSalesOrderHeader
belongs to the first group, and we’ll describe in
this article how to solve the parameter sniffing
problem in those stored procedures. In the next
SolidQ Journal we’ll discuss the parameter sniff-
ing problem in stored procedures with optional
parameters.

So, we’ve already seen that two execution
plans are possible for this stored procedure. If
the first invocation was with the parameter value

Figure 4: Execution plans for the stored procedure dbo.getSalesOrderHeader

Parameter sniffing is not limited
to stored procedures
only, all parameterized queries
can be prone to parameter
sniffing: static queries with
simple, auto or forced
parameterization or dynamic
queries called with
sp_executesql.

The SolidQ™ Journal, April 2011 – www.solidq.com/sqj

47

01.07.2001 then all rows are returned and accord-
ing to this a clustered index scan has been cho-
sen by the optimizer as optimal execution plan.
SQL Server had to perform 1.406 logical reads in
order to generate a result set. However, when
the stored procedure has been invoked for the
first time with the value 31.07.2005, an invoca-
tion with the parameter 01.07.2001 ends up with
94.456 logical reads! Figure 5 shows the execu-
tion time for all combinations of parameter value
selectivity and appropriate execution plans:

We can see that a call with a low selectivity
parameter performs three times better with its
optimal plan, while a high selectivity parameter
call feels better with an execution plan including
an index seek. The parameter sniffing problem
means that a stored procedure is executed with
a non-optimal plan.

Solving Parameter Sniffing Problem

Before we start solving parameter sniffing prob-
lems we have to define what we want to do.
Then we’ll see how to achieve this. One of the
misconceptions about parameter sniffing is that
the solution for the problem is to disable the
effect. This effect is not always bad: it could be
very bad, but at the same time it is a feature and
disabling solves some problems, but it can
degrade performances of well performing queries.
Although parameter sniffing is a performance

problem, its solution should include business
requirements.

As mentioned above the optimizing process :-

• considers parameter values by the first
invocation of the stored procedure

• uses a cached plan for all subsequent calls
of the stored procedure

This is the default behavior of the optimizer
and if we are not satisfied with the product of
optimization we have to change one of these fac-
tors. We can suggest to the optimizer (or force it)
not to consider the input parameters for the plan
generation or suggest that it should not use the
generated plan for all subsequent calls. In the
first case we define some “generic” execution
plan or a plan that is generated without knowl-
edge about parameter values and the plan is
used for all invocations. Or we can simply force
the optimizer to use an optimal execution plan for
all parameter combinations.

So, before we start to solve the problem we
should define the goal of our optimization i.e.
what does solving the problem actually mean. In
our stored procedure one solution would be to
use a generic execution plan. That means that all
calls of the stored procedure will be executed
with the execution plan based on the clustered
index scan operator. That means that parameter
values causing low selectivity will use an optimal
plan and the others are chosen as victim and will
always use a sub-optimal plan. If this is accept-
able from the business logic point of view, than
we have defined the goal – using an execution
plan optimal for low selectivity.

Approach 1: Affecting Parameter
Sniffing Effect and Using One Plan for
All Parameter Combinations

By taking this approach we instruct the opti-
mizer to use some specific execution plan (with
substituting input parameters) or to ignore input
parameters.

Figure 5: Execution time for low and high selective
parameter values

thesolidqjournal
database administration 48

The SolidQ™ Journal, April 2011 – www.solidq.com/sqj

Substituting Input Parameters

When we have a popular parameter value
combination we can force the optimizer to use
this combination whenever it creates an execu-
tion plan. In this case we ensure that this combi-
nation performs well always, regardless of the
existence of the plan in cache. In our case we
can decide to optimize execution for lowly selec-
tive parameters and to use the plan with the clus-
tered index scan operator (blue plan in figure 5).
This means that parameter values causing low
selectivity will use an optimal plan and the others
are chosen as victims and will always use a sub-
optimal plan. This is a business logic decision and
should be acceptable from the business logic
point of view. In this case parameter sniffing is
not disabled; instead we substitute input param-
eter values. The query hint OPTIMIZE forces the
optimizer to generate an execution plan optimal
for the value from the query hint rather than the
value submitted by the first invocation.

OPTION (OPTIMIZE FOR (@OrderDate=‘20010101’))

With the query hint we substitute the submit-
ted parameter value and parameter sniffing
effect is not disabled. The optimizer considers it
in the plan generation process; we only change
the value of the submitted parameter. This is a
solution when we want to ensure that the execu-
tion is OK for a favorite parameter combination.
This is helpful in scenarios where we identified

the most important parameter combination and
force an execution plan optimal for this combina-
tion, while performance problems with the other
combinations are ignored. In Figure 6 we can see
that this solution ensures that the plan for low
selectivity will be used for all stored procedure
calls. See figure 6.

Disable Parameter Sniffing

Disabling of parameter sniffing is helpful
when the stored procedure has several parame-
ters and there is not a favorite combination of
parameters. If parameter values are not known at
the compile time, there is nothing to be sniffed.
This is how we exclude them from execution
plan considerations. The result of disabling
parameter sniffing is, usually, an “average” plan
– not optimal, but acceptable for all parameter
combinations. We have three options to disable
or neutralize parameter sniffing effect: query
hints, query rewriting and trace flag 4136.

With Query Hint

In order to disable parameter sniffing we can
again use the OPTIMIZE query hint.

OPTION (OPTIMIZE FOR UNKNOWN)

This time the optimizer receives a suggestion
to ignore submitted parameter values. Therefore
the value is unknown and the optimizer uses the
density of table values to estimate cardinality. For
the range operator that means about 30% of
rows are expected in the result set which usually
means an average execution plan with clustered
index scan. This option is available in SQL Server
2008.

Query Rewriting

The same effect can be achieved by rewriting
some code in the stored procedure. See listing 3,
page 49.Figure 6: Solution with a generic execution plan

The SolidQ™ Journal, April 2011 – www.solidq.com/sqj

49

We introduce a local variable and assign the
value of the procedure parameter to it. Since the
optimizer compiles the stored procedure at the
batch level, the value of the argument in the
WHERE clause is not known. Therefore we get the
same plan as with the UNKNOWN hint.

Trace Flag 4136

In October 2010, as part of the cumulative
update Microsoft provided an option to disable
parameter sniffing at the instance level (KB980653).
When trace flag 4136 is on, parameter sniffing
effect is disabled for the whole instance. That
has the same effect as putting the OPTIMIZE
FOR UNKNOWN hint in all stored procedures and
queries submitted to the database engine. This
sounds very restrictive and dangerous and there-
fore there are still exceptions where this trace
flag has no effect: queries using the OPTIMIZE
FOR or RECOMPILE query hints and stored proce-
dures defined with the WITH RECOMPILE option.
Although this brings necessary flexibility and
does not break up our already implemented opti-
mizing efforts, the trace flag 4136 affects the
whole server instance and should be considered
as a last resort for solving parameter sniffing
problems.

The approach with query hints has advan-
tages over the option with local variables because
query hints don’t affect business logic in a stored
procedure and can be implemented outside of
the stored procedure. By combining the query
hint with another great SQL Server feature – plan
guides - we can solve parameter sniffing prob-

lems without changing application code. This is
very important for systems where code changes
are not allowed or where a small code change is
unacceptably expensive (project-recompile, test-
ing, deployment etc.).

Approach 2: An Optimal Plan for
Every Parameter Combination

When it is required that every combination
should have an optimal plan, disabling parameter
sniffing cannot facilitate this. We have two
options to implement this: instruct the optimizer
to generate (recompile) a new plan for every
stored procedure call or rewrite the stored pro-
cedure by using another stored procedure (deci-
sion tree stored procedure).

Listing 3: Modifying Stored Procedure By Using Local Variables

CREATE PROCEDURE dbo.getSalesOrderHeader

@OrderDate datetime

AS

DECLARE @OrderDateLocal AS datetime = @OrderDate

SELECT SalesOrderID,OrderDate,ShipDate,SubTotal

FROM Sales.SalesOrderHeader

WHERE OrderDate >= @OrderDateLocal

By combining the query hint

with another great SQL

Server feature – plan

guides - we can solve

parameter sniffing problems

without changing

application code.

thesolidqjournal
database administration 50

The SolidQ™ Journal, April 2011 – www.solidq.com/sqj

Recompile of Execution Plan

This can be done with the query hint OPTION
(RECOMPILE) or by including the option WITH
RECOMPILE in the definition of the stored procedure.

In both cases a new plan is generated for
every procedure invocation. The difference is
that OPTION (RECOMPILE) is performed at the
statement level and will not regenerate all state-

ments in a stored procedure but only the one
marked with this option. In our case it is the
same, we have only one statement. In the next
SolidQ Journal we’ll see advantage of compiling
at the statement level. Figure 7 shows that the

recompile-plan combines the initial plans for low
and high selective parameters and is optimal for
all parameters.

Decision Tree Stored Procedure

A decision tree stored procedure decides
which sub-procedure should be called based on
submitted parameters. Let’s show this solution.
See listing 6, page 51.

The procedure determines if the submitted
date is more than 10 days in the past. If so, it
calls a stored procedure for low selectivity
parameters, otherwise the version for high selec-
tive dates is selected. The sub-procedures have
the same procedure body and are identical to the
initial stored procedure dbo.getSalesOrder-
Header. The Figure 8 shows the execution plans
for high and low selective parameters.

Listing 4: Modifying Stored Procedure by Changing Stored Procedure Definition

CREATE PROCEDURE dbo.getSalesOrderHeader

@OrderDate datetime

WITH RECOMPILE

AS

SELECT SalesOrderID,OrderDate,ShipDate,SubTotal

FROM Sales.SalesOrderHeader WHERE OrderDate >= @OrderDate

Listing 5: Modifying Stored Procedure by Using Query Hint

CREATE PROCEDURE dbo.getSalesOrderHeader

@OrderDate datetime

AS

SELECT SalesOrderID,OrderDate,ShipDate,SubTotal

FROM Sales.SalesOrderHeader WHERE OrderDate >= @OrderDate

OPTION (RECOMPILE)

Figure 7: Solution with an optimal plan for each parame-
ter value combination

The SolidQ™ Journal, April 2011 – www.solidq.com/sqj

51

This solution allows reusing of execution
plans and from a performance point of view it’s
better than the version using recompile option.
However, this approach is open to maintenance
problems. For every combination where we
want to reuse an existing plan we would need
one sub-procedure. Therefore, the solution
would be unmanageable. Another maintenance
problem is that decisions about what is highly
selective are not so easy and they should be
evaluated and regularly checked to see if they
are sti l l appropriate. We can combine both

approaches by creating enough
sub-procedures to cover most
common plans and one with
recompile option for all other
combinations. Still, the number
of procedures to cover the most
common plans may become
quickly unmanageable.

We’ve seen in this article
what is parameter sniffing and
when and why it is a problem.
We have discussed different
solutions for parameter sniffing
problems with stored proce-
dures using range operators.
Next month we’l l see why
stored procedures with optional
parameters are prone to the
parameter sniffing problem and
we’ll again offer several solu-
tions for this problem.

About the Author

Milos Radivojevic is a Data Plat-
form Architect with SolidQ CEE,
located in Vienna, Austria. His pri-
mary focus is on database develop-
ment and performance tuning for
OLTP systems.

Listing 6: Modifying Stored Procedure by Using a Decision Tree Stored Procedure

CREATE PROCEDURE dbo.getSalesOrderHeaderDT

@OrderDate datetime

AS

IF @OrderDate > DATEADD(day,-10,CURRENT_TIMESTAMP)

EXEC dbo.getSalesOrderHeaderHighSelectivity @OrderDate

ELSE

EXEC dbo.getSalesOrderHeaderLowSelectivity @OrderDate

Figure 8: Execution time for low and high selective parameter values for the
decision tree stored procedure

