
 1

Defending against a Denial-of-Service Attack on TCP 
 

Pars Mutaf 
pars@likya.iyte.edu.tr 

 
Department of Computer Engineering 

Izmir Institute of Technology  
Gaziosmanpasa Blv. No. 16 Cankaya Izmir 35230 Turkey 

 
 

Abstract 
 
In this paper we propose a real-time anomaly detection method for detecting 
TCP SYN-flooding attacks. This method is based on the intensities of SYN 
segments which are measured on a network monitoring machine, in real-
time. In the currently available solutions we note several important flaws 
such as the possibility of denying access to legitimate clients and/or causing 
service degradation at the potential target machines, therefore we aim to 
minimize such unwanted effects by acting only when it is necessary to do 
so: during an attack.  
 
In order to force the attackers to fall in a detectable region (hence, avoid 
false negatives) and determine the actual level of threat we are facing we 
also profit from a series of host based measures such as tuning TCP backlog 
queue lengths of our servers. Experience showed that complete avoidance 
from false positives is not possible with this method, however a significant 
decrease can be reasonably expected. Nevertheless, this requires an 
acceptable model for the legitimate use of services. We first explain why the 
Poisson model would fail in modeling TCP connection arrivals for our 
purpose and show that analyzing daily maximum arrival rates can be 
suitable for minimizing false positive probabilities. 
 
This method can allow ISPs to determine their correct requirements to cope 
with this particular attack and provide more secure services to their clients. 
 
1 Introduction 
 
The Internet has undergone a phenomenal growth in the recent past. 
However, during this period the vulnerabilities found in the TCP/IP protocol 
suite have been subjected to significant revelation as well. Particularly, the 
details of a simple denial-of-service attack popularly known as “SYN-
flooding” were published in two underground magazines and this attack still 
continues to pose a serious threat against the availability of TCP 
services[11]. The SYN-flooding attack exploits a common TCP 
implementation issue and a well-known authentication weakness found in 
IP, which do not seem correctable in the near future since they require the 
modification of the standards. 
 
Preventive approaches such access control, are not applicable to SYN-
flooding attacks since the general target is public services. Therefore, we 
propose a method for detecting these attacks in real-time and recover from 
the damage as soon as possible and in a convenient way. Network monitors 
are known to be able to detect such low-level network based attacks, 
therefore we implement this method on a network monitoring machine. The 



 2

method that we propose falls in the anomaly detection category of intrusion 
detection systems. However, we also profit from a series of host based 
measures in order to force an attacker to fall in a detectable region. 
 
The rest of this paper is organized as follows: Section 2 describes 
background material such as the IP and TCP protocols as well as the 
vulnerabilities found in these protocols which are exploited by the SYN-
flooding attack, Section 3 overviews its current solutions, Section 4 explains 
our objectives, Sections 5-10 give the details of our approach, Section 11 
proposes future work and Section 12 presents several conclusions. 
 
2 Background 
 
The Internet is a worldwide network that uses the TCP/IP (Transmission 
Control Protocol/Internet Protocol) protocol suite for communications.  
 
IP[6] is the standard internet layer protocol of TCP/IP, which provides for 
transmitting blocks of data called datagrams from sources to destinations, 
where sources and destinations are hosts identified by fixed length 
addresses. IP is a connectionless protocol. Therefore, IP datagrams may get 
delivered out of order and there is no guarantee that a datagram 
successfully gets its destination. IP does not either provide address 
authentication. Actually, any host can send datagrams with any source IP 
address[2]. Therein lies most of the threat against the integrity, secrecy and 
availability of today’s Internet assets. 
 
TCP[7] is the connection oriented transport layer protocol of the TCP/IP 
suite, designed to provide a reliable logical circuit between pairs of 
applications in hosts attached to the Internet. TCP assumes that it can 
obtain an unreliable datagram service from lower level protocols. In the 
Internet, this service is provided by IP. The primary purpose of TCP is to 
provide a reliable connection service on top of a less reliable internet 
communication system. For this, TCP supports facilities in the following 
areas: reliability, flow control, multiplexing and connections. 
 
In order to support reliability and flow control, TCP initializes and maintains 
certain status information for each data stream. The combination of this 
information including sockets, sequence numbers, and window sizes, is 
called a connection. A pair of socket (4 tuple consisting of the client IP 
address, client port number, server IP address and server port number) 
specifies the two end points that uniquely identifies each TCP connection in 
the Internet. A TCP packet is called a “segment”. 
 
For a connection to be established, the two TCPs must synchronize on each 
other’s sequence numbers. This is done by exchanging connection 
establishing segments carrying a SYN control bit and initial sequence 
numbers (ISNs). The synchronization requires each side to send it's own ISN 
and to receive an acknowledgment of it from the other side. Each side must 
also receive the  other side's ISN and send an acknowledgment (ACK). This is 
illustrated in Figure 1. 



 3

 

 
A three-way handshake is necessary because the client and server sequence 
numbers are not tied to a global clock in the network, and TCPs may have 
different mechanisms for picking ISNs. The server which receives the first 
SYN has no way of knowing whether the segment is an old delayed or not, 
and thus it must ask the sender to verify this SYN. 
 
TCP servers are concurrent. A TCP server starts a new process to handle 
each client therefore the listening server is always ready to handle the next 
coming connection request. However, there is still a chance that multiple 
connection requests arrive while the server starts a new process. In order to 
handle these incoming connection requests while the listening application is 
busy TCP employs a fixed length queue for the connections that have not 
been accepted by the server application. This is referred to as the “backlog 
queue”. However, there is an upper limit to the number of connection 
requests waiting in this queue. This limit is specified by the listening 
application by calling the listen() system call. 
 
When a new connection request arrives (i.e., a SYN segment), TCP 
acknowledges this if there is room for this new connection on the requested 
service's queue. However it should be noted that the server application will 
not see these new connection until the third segment of the 3-way 
handshake is received. If there is no room on the requested service's queue, 
TCP ignores the received SYN packet. By ignoring the SYN packet the server 
forces the client to retransmit the SYN later, hoping that the queue will then 
have room[9]. 
 
The SYN-Flooding attack exploits both this design and the authentication 
weakness in IP. The attacker generates several SYN segments with invalid 
source IP addresses to a target TCP server. Since the source hosts are non-
existing or closed, the 3-way handshake for these connections will never 
complete or be broken (a valid source host would certainly reset such an 
unreferenced connection by sending a RST segment), resulting in several 
half-open connections filling up the server's backlog queue. Then, the target 
service becomes unavailable (interrupted) until a connection establishment 
timer expires. Most implementations limit the SYN-RECEIVED state to 75 
seconds[1]. 
 
 
 

SYN (ISNC ) 

SYN (ISNS ),  ACK (ISNC +1) 

ACK (ISNS +1 ) 

CLIENT (C) SERVER (S) 

SYN-SENT

ESTABLISHED

LISTEN 

SYN-RECEIVED 

ESTABLISHED 

Figure 1. TCP 3-Way Handshake  



 4

3 Current Solutions 
 
In order to immunize servers against SYN-flooding attacks, two different 
host based measures are generally proposed: decreasing the SYN-
RECEIVED state timeout value and increasing the backlog queue limit. As 
mentioned above, the timeout value associated with the SYN-RECEIVED 
state is generally 75 seconds. Decreasing this value will reduce the time a 
half-open connection will occupy the backlog queue, therefore the duration 
of denial-of-service after the attack. However, a timeout value set too short 
will increase the risk of aborting legitimate connections over low-speed 
paths. As for the second choice, which is increasing the backlog queue limit, 
it depends on physical memory capacities. Each entry in the backlog queue 
will allocate an amount of memory which may be different for different 
implementations of TCP. The higher the chosen queue length, the more 
physical memory resources will be allocated in the case of an attack. One 
vendor proposes a backlog queue length of 8,192 in order to be able to cope 
with SYN-flooding attacks[14]. However, we note that the upper limit to the 
length of the backlog queue is generally loosely defined and it is not 
generally guaranteed that a given length will suffice in all situations. 
 
Firewall approaches do also exist which are already implemented by several 
vendors[12,13]. Such an approach requires a circuit-level gateway, which 
accepts the connection requests on behalf of the server. Once the connection 
is successfully established, the gateway acts as a relay between the client 
and server. The important advantage of this scheme is that in the case of a 
SYN-Flooding attack, the target server never sees the attacker’s packets. The 
gateway simply discards incomplete connection requests. However, the 
gateway must be immune to SYN-Flooding. In addition, with this method, 
new delays are introduced to legitimate clients. This is a generic problem 
found in firewalls. 
 
The “semi-transparent gateway” approach as called by Schuba et al[8], lets 
the connection requests pass through, however artificially completes each 
connection request. When a SYN segment destined for an internal host is 
observed, the gateway waits for the server’s answer (a segment containing a 
SYN and ACK), then reacts by generating the necessary ACK segment on 
behalf of the client. This completes the 3-way handshake. If the client is 
legitimate, it sends its own ACK segment, resulting in a duplicate ACK. The 
client’s ACK is silently discarded by the server, the connection is already 
established and data flows in both directions. In the case of an attack, the 
client’s ACK is never seen, then (after a timeout period) the gateway sends a 
RST packet in order to close the connection. The obvious advantage of this 
scheme is that the gateway does not cause any delay to legitimate 
connections. However, the timeout period before breaking incorrect 
connections is loosely defined and a small timeout period denies access to 
legitimate clients. Furthermore, in the case of a long timeout period, a flood 
of SYNs results in a large number (undefined) of established connections at 
the target hosts, which represents extra loads for these hosts. Schuba et 
al[8] call this situation as “service degradation”. 
 
A more comprehensive solution proposed by Schuba et al[8] is based on the 
classification of source IP addresses. The tool implementing this method is 
called Synkill and operates on a network monitoring machine. Regarding 
their network activities, the Synkill algorithm classifies the source IP 



 5

addresses as: never seen ( null), correctly behaving (good), potentially spoofed 
(new), and most certainly spoofed (bad ). Addresses that are administratively 
configured as good (bad ) are called perfect (evil). Examples for evil addresses 
are private networks 10.0.0.0, 172.16.0.0 and 192.168.0.0, which should 
not appear as source addresses outside their networks. Synkill can also 
operate as a state machine, which allows addresses (except the perfect and 
evil addresses) to be moved to different classes regarding their observed 
behaviours. Synkill immediately resets the connection attempts from evil 
or impossible addresses (such as 0.0.0.0 and 127.0.0.0) and takes one of 
the two possible actions mentioned above for the connection attempts from 
bad  addresses: directly sending RST or immediately completing the 
connection and sending RST after again a short timeout period. The main 
disadvantage of this approach is the possibility of breaking legitimate 
connections in the new state. Another important problem arises when the 
attacker's IP addresses does not repeat. In this case Synkill can not use 
the information contained in its database and state machine. During the 
tests of Synkill, the authors observed considerable service degrada tion 
when attack packets contained different source IP addresses, therefore they 
suggest the combination of this method with the host based measures 
mentioned above. 

 
4 Objectives 
 
Our objective is the detection of a SYN-flooding attack in real-time and each 
time we detect an attack we want to be able to define the level of threat we 
are facing and act accordingly. We note here that none of the above methods 
were designed in this sense. In stead, they were designed to analyze the 
correctness of each TCP connection and act for them separately, regardless 
of the existence of a considerable threat. However, being able to differentiate 
an attack from the normal mode of operation will have considerable 
advantages. 
 
The common flaw that we note in the methods mentioned above is early 
timeout expiries, which cause denial-of-service to legitimate clients suffering 
from low bandwidth. A long timeout period causes service degradation at the 
server as opposed to a short one that results in denial-of-service to 
particular legitimate clients. Currently, the common policy about this 
dilemma is: “clients already suffering from low quality of service should not 
victimize others”, therefore short timeout periods are generally preferred. 
One vendor calls this an “aggressive timeout”. Our statement is that the 
aggressive timeouts should not be employed when there is no obvious 
reasons to do so. In today’s Internet not every user has the chance to 
connect via high-speed paths, nor there is a guarantee that the others will 
have the same level of quality of service twenty-four hours a day. We note 
here, the importance of detecting a SYN-flooding attack, which will provide 
us the ability of employing aggressive timeouts only when it is necessary: 
during an attack. 
 
To simplify the discussion, we first consider the protection of only one host: 
ephesus* which is one of the Internet servers of Izmir Institute of Technology 
and in order to detect a SYN-flooding attack destined for this host we use a 
network monitoring machine attached to the same physical network. This 

                                                                 
* The name of the host has been changed for the reasons explained in Section 9. 



 6

machine analyzes the SYN segments destined for ephesus, classifies them 
regarding their destination ports and aims to detect it whenever a SYN-
flooding attack is launched against a given service. The method that we 
propose depends also on the proper setting of the backlog queue length of 
ephesus. Therefore we also propose a method for more precisely 
determining this value. 
 
Our study is based on a set of traces obtained by monitoring all SYN 
segments destined for ephesus during 68 days (between Monday 23/11/98 
and Friday 29/01/99). 
 
5 Detection Method 
 
The detection method that we propose is based on the intensity measures of 
SYN segments. At time of writing there exists at least one reference which 
mentions such a possibility[10]. 
 
The parameters that can be associated with the SYN flooding attack are: 
 

?? T: SYN-RECEIVED state timeout in seconds (usually 75). 
?? L: Per-port backlog queue length. 
?? A: Number of received SYN segments per second by a given TCP 

port. 
 

We call here A, as the intensity of SYN segments. 
 
In order to succeed in a SYN-flooding attack, the minimum number of SYN 
segments that an attacker must send in T seconds is L. Thus, the average 
intensity of SYN segments in L seconds must be L / T. However this is a 
minimum value and the higher the chosen rate, the more effective the attack 
will be. We note that, this situation is of considerable advantage in the 
detection of an attack. An additional parameter needed for our detection 
method is: 

 
?? Ac: the maximum acceptable (critical) A value. 

 
Then, our network monitor computes A for each second and for each port of 
ephesus, and whenever it observes the condition A > Ac satisfied, it 
considers the situation as an attack and acts accordingly. 

 
6 Backlog Queue Length Requirements 
 
In this section we describe the necessary size of the backlog queue for 
ephesus. Briefly, we aim to protect this host against undetectable attacks 
(hence, avoid false negatives) and decrease the probability of having false 
positives. 
 
 
 
 
 
 
 
 



 7

 

 
6.1 False Negatives 
 
The possible response of an attacker against this method is illustrated in 
Figure 2. It should be noted that the maximum number of SYNs that an 
attacker will be able to send (without being detected) before the SYN-
RECEIVED timer expires is: 
 

N = T ?  Ac + Ac 
 
Therefore, in order to be immune to this worst case (the most intensive but 
undetectable attack), the backlog queue length of ephesus should be at 
least N +1, which gives: 
 

L = T ?  Ac + Ac + 1 
 
Rearranged to collect the terms multiplied by Ac, this becomes: 
 

L (Ac , T ) = Ac ? (T+1) + 1 
 
where T is a configurable parameter which is generally 75 seconds. As for 
Ac, it can be chosen so that the probability of having a false positive (A > Ac 
but, in fact this is not an attack) is minimum. We want to be able to 
minimize this probability, because a false positive will cause the network 
monitor to act unnecessarily. 
 
We note here that if L is too large, an undetectable attack may result in 
another form of denial-of-service: service degradation, since in this case too 
much of the system resources will be allocated by half-open connections. 
However, such an attack requires knowledge about Ac and the correct 
synchronization to the monitor’s one -second time intervals. It is also 
possible to leave a doubt as to the exact time intervals of the monitor. In 
addition, there is no obvious way for an attacker to understand whether 
his/her attack is detected or not. 
 
6.2 False Positives 
 
Observations showed that the probability of receiving large numbers of SYNs 
in a given time interval is likely to be small during normal operation. 
Therefore we note that the larger the chosen Ac value the smaller the 
probability of false positives will be. This is illustrated in Figure 3. In this 
figure, ?  is the area limited by Ac and represents the probability of false 
positives. 
 

1 second 

. . . 
. . . 

t 

Attack Begins 

2 3 T-2 T-1 1 

Timer Expires  
Ac Ac Ac Ac Ac Ac Ac 

4 
Ac 

Figure 2. Possible Response of an Attacker 
 



 8

 

 
However in practice there will be an upper limit to Ac since it comes as a 
factor in the calculation of the backlog queue length L needed to be immune 
to undetectable attacks as formulized above (it should be noted such a 
setting in L forces the attackers to fall in the ?  region, which guarantees that 
we will not have any false negatives). Therefore, a proper statistical model is 
needed for precisely determining Ac. Nevertheless, there are important 
limitations in modeling SYN arrivals and setting L accordingly, which will be 
covered in the next section. 
 
7 Limitations in Modeling SYN Arrivals 
 

1. The Poisson model will fail 
 
In the classical teletraffic theory, call arrivals are often modeled as Poisson 
processes. We would like to have such an analytical traffic model for TCP 
call arrivals (connection arrivals) because they are easier both to convey and 
analyze. However, a number of past studies by others have shown that 
analytic models and specifically the Poisson model (which is interesting for 
our purpose), does not suite well in today’s Internet in all situations. 
Although we have not further examined the validity of these findings for our 
case (e.g., establishing statistical tests), we have reasonable pre -known 
evidences that using a Poisson model would be difficult. 
 
First, our observations showed that we can not reasonably hope to model 
connection arrivals using homogeneous Poisson processes, which require 
constant rates. This is also observed by Paxson and Floyd[3]. Figure 4 shows 
the variation of hourly connection arrival rates at ephesus (obtained from 
the first 30 days portion of our traces). The important point that we note in 
this figure is that the connection arrival rate changes regarding both the 
hour of the day and the day of the week. For example, the arrival rates are 
generally smaller around midnights and during weekends.  
 
Paxson and Floyd[3] note that during fixed length intervals (for example 1 
hour or 10 minutes) the arrival rates can be assumed constant and the 
arrivals within each interval can be modeled by a homogeneous Poisson 
process. Such a model is referred to as a “nonstationary Poisson process”. 
User session arrivals are likely to be nonstationary Poisson processes since 
a user session arrival corresponds to the time when a human decides to use  
 

?  

Ac Number of SYNs /second 

Probability 

Figure 3. Probability of False Positives 



 9

 
the network for a specific task, hence they are generally uncorrelated. 
However, for our purposes we are interested in connection arrivals rather 
than user session arrivals. Paxson and Floyd[4] note that individual TCP 
connections that comprise each session are not well modeled by a Poisson 
process. TELNET and RLOGIN connection arrivals generally correspond to a 
new user therefore are likely to be close to uncorrelated, memoryless arrivals 
and can be described using nonstationary Poisson processes. However, X11, 
FTP data transfer and HTTP sessions generally consist of more than one 
connections which do not have this property therefore are not Poisson[3]. 
For example, an HTTP session consists of several connections corresponding 
to a user selecting links to other pages on the same server. Furthermore, in 
a HTTP session, not every connection is necessarily initiated by the user. 
The images to appear on a WWW page for example, are transferred 
immediately after the transfer of the text of the page. Finally, SMTP 
connection arrivals are not Poisson since they are machine -initiated and can 
be timer-driven. Furthermore, SMTP connections may be perturbed by 
mailing list explosions in which one connection immediately follows another 
and the timer effects due to using the DNS to locate MX records[3]. 
 

2. Backlog queue length is static 
 
Another limitation that we note is that L is static. Currently no TCP/IP 
implementation provides a means for dynamically changing this parameter 
(furthermore, this would require the server and the monitor to communicate 
each other). However, as noted above, the clients’ behaviour change in time 
and adapting L to these changes is not possible. 
 

3. Different services have different characteristics 
 
We note that, each service has different characteristics and possibly 
different clients. Therefore, it would be hard to find a single model that fits 
in all services. However, in most systems a single deamon, inetd issues the 
listen() system call (hence, determine the backlog limit) on behalf of the 
daemons for which it watches ports.  

 
 
 

0

100

200

300

400

500

600

700

800

900

1000

0 24 48 72 96
12

0
14

4
16

8
19

2
21

6
24

0
26

4
28

8
31

2
33

6
36

0
38

4
40

8
43

2
45

6
48

0
50

4
52

8
55

2
57

6
60

0
62

4
64

8
67

2
69

6
72

0

Hours

N
u

m
b

er
 o

f 
S

Y
N

s 
/h

o
u

r

Figure 4. Hourly Variation of SYN Arrival Rates 



 10 

8 Estimating AMAX 

 
For the reasons explained above, we prefer setting L regarding the maximum 
SYN arrival rate that is likely to occur in the near future. Therefore, we 
propose: 
 

Ac=AMAX 
 
Figure 5 shows the changes in the maximum SYN arrival rates at services 
provided by ephesus over one-day intervals. 
 

 
In this figure, we note that maximum SYN arrival rates are generally bound 
within the interval 15-20 (48 of 68). Therefore, we can reasonably hope that 
over one-day intervals the maximum SYN arrival rates will be fairly 
consistent. Furthermore, some of the deviations from the consistent 
behaviour can be related to known social events. For example, the maximum 
arrival rates generally decrease during weekends and holidays (the days 39-
41 correspond to new-year vacation and we observe low arrival rates during 
these days). Therefore, in order to capture the most likely maximum arrival 
rate we can look at working days. The low arrival rates during days 54-59 
are known to be caused by the degradation in our ISP’s quality of service 
and the spike in day 38 is related to the new-year traffic (just before the 
vacation). Nevertheless, there is no obvious reason for the spike that we 
observe in day 23. As a result, completely avoiding false positives seems not 
possible with this method, however we can expect a significant decrease. 
 
Figure 6 shows the theoretical numbers of false positives that would occur 
during the 68 days from which our traces were obtained, for Ac values 
between 15-20. We note that even for the worst case Ac value which is 15 we 
can except a significant decrease in the number of false positives (the 
monitor would act for only 110 seconds during 68 days) and for Ac values of 
19 and 20 the number of false positives are negligible (monitor reaction for 9 
and 5 seconds during 68 days, respectively). 
 
 

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

0 7 14 21 28 35 42 49 56 63

Days

M
ax

im
u

m
 A

rr
iv

al
 R

at
e 

(S
Y

N
s/

s)

Figure 5. Daily Variation of Maximum SYN Arrival Rates 



 11 

 
9 Different Levels of Threat 
 
Regarding the intensities of observed SYN segments, we currently define 
three different levels of threat. Our network monitor takes different actions 
for each level: 
 
 Level 0: A ?  Ac 
 

In this level, where no attack is observed, the network monitor does 
not react against the connections passing by. Therefore there is no 
risk of breaking legitimate connections. 

 
Level 1: Ac < A < L / TA  

 
When an attack is detected to fall in this level, the monitor reacts 
against the SYN segments by sending RSTs for these connection 
requests after an aggressive timeout period (TA ). This guarantees that 
the attacker will not be able to fill the target server's queue. 
 
This kind of reaction has the advantage of not causing service 
degradation at the target server because no ACK is used. It should be 
noted that the security administrators will generally prefer SYN-
flooding attacks at this level. However, this requires an increase in L 
and/or a decrease in TA. The former may cause extra costs, 
nevertheless with this method it is possible to decrease TA since 
reaction against legitimate clients is minimized at level 0. 

 
  

0
5

10
15
20
25

0 7 14 21 28 35 42 49 56 63
0
5

10
15
20
25

0 7 14 21 28 35 42 49 56 63

0
5

10
15
20
25

0 7 14 21 28 35 42 49 56 63
0
5

10
15
20
25

0 7 14 21 28 35 42 49 56 63

0
5

10
15
20
25

0 7 14 21 28 35 42 49 56 63

Ac =19 

Ac =17 

Ac =15 Ac =16 

0
5

10
15
20
25

0 7 14 21 28 35 42 49 56 63

Ac =20 

Ac =18 

Figure 6. Number of False Positives per Day 
 



 12 

Level 2: A ?  L / TA 
 

When a detected attack falls in this level, the monitor reacts for 
artificially completing the attacker's connection requests by sending 
the necessary ACK segments. These connections are reset if th e 
correct ACK is not seen within an aggressive timeout period. This 
again guarantees that the attacker will not be able to fill the target 
server's queue. 
 
This reaction has the disadvantage of causing service degradation at 
the server as described in Section 3. However, again a smaller TA can 
reduce the duration of this service degradation.  

 
An important point to note here is that the Ac, L and TA values can be kept 
secret from the attacker. In this case these values can be thought as the 
keys of the proposed algorithm. Even if the attacker has full knowledge 
about the technique used, he/she will not know the actions taken against 
his/her attack, hence its consequences. Therefore the attractiveness of the 
attack will be diminished.  
 
10 Model of Operation 
 
Our network monitor can operate in two different modes: training and 
defence . The training mode consists of observing the normal client 
behaviour. Running in this mode, requires several administratively supplied 
parameters: 
 

?? The duration of the training period in days. 
?? SYN-RECEIVED state timeout in seconds (normally 75). 
?? Aggressive timeout period in seconds. 
?? The list of the hosts wanted to be protected. 

 
Regarding this information, the network monitor observes the SYN arrival 
rates, computes Ac =AMAX and outputs a backlog queue length, separately for 
each host in the list. For the reasons noted above, we prefer working days 
(and when the quality of service is normal) for running our network monitor 
in this mode. 
 
We use this information for configuring the backlog queue lengths of our 
servers, and start the network monitor in defence mode. In this mode, the 
network monitor uses the Ac values that it computed in the end of the 
training period. Then, whenever the A > Ac condition is observed for one of 
the servers, it records the necessary information (IP addresses, port and 
sequence numbers) about the suspicious set of connection attempts 
observed in that second. Given a set of suspicious connection attempts, the 
network monitor can take one of the actions described above. 

 
For each set, the percentage of connections that were reset can be also 
logged in order to provide security administrators with a means for 
differentiating between true and false positives. It should be noted that we 
can expect a small percentage of reset connections for false positives. 
Therefore, by looking at these logs, security administrators can decide 
whether the number of false positives is acceptable or not. These decisions 
can lead to heuristic changes in Ac and in this situation the network monitor 



 13 

is input a larger Ac value and it outputs the necessary L. However, the 
backlog queue must be reconfigured in this situation. 
 
11 Future Work 
 
It is also possible to analyze the distribution of RTTs (round-trip times) to 
the clients in order to be able to determine a more correct aggressive timeout 
period. RTTs can be modeled more easily since they are reported to be 
roughly Poisson[15]. Furthermore, in this case we will be able to change the 
aggressive timeout period regarding the changing behaviour of RTTs. The 
possible response of an attacker against this improvement can be training 
the network monitor with small RTTs (if possible) in order to cause denial-of-
service to legitimate clients. However, our further response can be 
considering only correctly established connections when learning RTTs. 
Given the difficulty of sequence number attacks against up to date TCP 
implementations the attacker will therefore have to use his/her own (real) IP 
address. In this case we can locate the attacker. 
 
Another possible improvement can be combining this method with Synkill. 
Although this method does not rely on source IP addresses, the Synkill 
approach will be certainly useful when the attacker's IP addresses repeat. 
However, with this combination we will not have to employ the large 
database of Synkill since IP address comparisons will be needed only 
during an attack. These entries can be discarded afterward since we do not 
react during normal operation. 
 
12 Conclusion 
 
In this paper we proposed a method for detecting SYN-flooding attacks in 
real-time. This method can allow ISPs to determine their correct 
requirements to cope with this attack. The main advantage of the method 
resides in its capability of reducing the probability of breaking legitimate 
connections during normal operation and service degradation both during 
normal operation and an attack. 
 
The cost of the method will depend on the desired availability rate. If an ISP 
provides its services to a large number of clients, it is apparent that it will 
need to employ a larger backlog queue. This method provides a means for 
determining this value regarding the behaviour of the clients and several site 
security policies. These policies can be choosing from possible levels of 
threat or choosing a probability for denying service to legitimate clients. 
 
The performance of the method depends on the correct estimation of Ac. A 
small Ac will result in a large number of false positives. Then, the network 
monitor will act for more legitimate connections, resulting in a risk of 
denying service to more legitimate clients. Therefore ongoing server workload 
characterization studies pursued by others will certainly help in better 
performance in the future. However, we will need network level SYN traces. 
For example the publicly available busy WWW server connection arrival 
traces found in ITA (Internet Traffic Archive) [16] were useless in modeling 
false positives in our case because they were obtained from application layer 
logs. 
 



 14 

Heuristic changes in Ac may be also useful. For example, multiplying Ac by a 
factor of two will almost guarantee a minimum number of false positives. 
However, this will double the necessary backlog queue length as well. 
Stevens[10] analyzed the number of SYNs received per second by a 
commercial ISP’s busy WWW server, which was providing service for 22 
organizations. He observed Ac = AMAX  = 20 during one day and for Ac = 20? 2 
= 40, this would require L = 3041 (if T = 75). We note that this is less than 
the half of the backlog queue length proposed by one vendor mentioned in 
Section 3. Therefore, we conclude that such a detection method can 
considerably decrease the primary storage requirements necessary for 
coping with SYN-flooding attacks. 
 
There is also an important problem with our approach: given the drastic 
development rate of the Internet and the computer sector, the highest arrival 
rates will also increase over long term. Such increases can be related to 
administrative policies as well. For example, installation of a large mailing 
list or a popular WWW service will certainly cause new clients to arrive, 
therefore increase the arrival rates. Running the network monitor in the 
training mode may be necessary whenever such an increase in the SYN 
arrival rates is expected or observed.  
 
Finally, we note in this method several differences from the general 
definition of anomaly detection systems. First, this method is deprived of the 
primary advantage of anomaly detection methods: capability of detecting 
unknown attacks, instead it focuses on only a known vulnerability. Second, 
anomaly detection systems generally suffer from the fact that they can be 
trained by the attackers so that eventually, intrusive activities are 
considered normal. However, in our case such attacks can be avoided by 
considering only established connections during the training. The possible 
response of an attacker can be establishing connections very frequently, 
however given the difficulty of sequence number prediction attacks against 
up to date TCP implementations, this can be too easily detected: too many 
and frequent connections from a same host. 

 
References 
 
[1] daemon9, route, infinity, IP-Spoofing Demystified, Phreak Magazine, Vol. 
7, Issue 48, File 14 (1996). 
 
[2] R. T. Morris, A Weakness in the 4.2BSD UNIX TCP/IP Software, 
Computing Science Technical Report 117, AT&T Laboratories (1985). 
 
[3] V. Paxson, S. Floyd, Wide-Area Traffic: The Failure of Poisson Modeling, 
IEEE/ACM Transactions on Networking, 3 (3) (1994) pp. 226--244. 
 
[4] V. Paxson, S. Floyd, Why We Don’t Know How to Simulate The Internet, 
Proceedings of the 1997 Winter Simulation Conference, Atlanta, GA (1997). 
 
[5] P. A. Porras, A. Valdes, Live Traffic Analysis of TCP/IP Gateways, 
Proceedings of the Internet Society Symposium on Network and Distributed 
System Security (March 1998). 
 
[6] J. Postel, editor, Internet Protocol, RFC791 (1981). 
 



 15 

[7] J. Postel, editor, Tranmission Control Protocol, RFC793 (1981). 
 
[8] C. L. Schuba et al, Analysis of a Denial of Service Attack on TCP, IEEE 
Symposium on Security and Privacy (1997). 
 
[9] W. R. Stevens, TCP/IP Illustrated, Volume 1, The Protocols , Professional 
Computing Series, Addison Wesley (1994). 
 
[10] W. R. Stevens, TCP/IP Illustrated, Volume 3, TCP for Transactions, HTTP, 
NNTP, and the UNIX Domain Protocols, Professional Computing Series, 
Addison Wesley (1994). 
 
[11] Computer Emergency Response Team, TCP SYN Flooding and IP 
Spoofing Attacks, CERT Advisory: CA 96-21 (September 1996). 
 
[12] C.P.S.T. Ltd., TCP SYN Flooding Attack and the Firewall-1 SYNDefender 
(October 1996). 
 
[13] L. S. Laboratories, Livermore Software Lab. Announces Defense against 
SYN Flooding Attacks (October 1996). 
 
[14] SUN Microsystems, SUN’s TCP SYN Flooding Solutions, SUN 
Microsystems Security Bulletin: #00136 (October 1996). 
 
[15] D. Mills, Internet Delay Experiments, RFC 889 (1983). 
 
[16] Internet Traffic Archive, data available at URL: http://ita.ee.lbl.gov 


