

Perl
Pocket Reference

FIFTH EDITION

Johan Vromans

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Perl Pocket Reference, Fifth Edition
by Johan Vromans

Copyright © 2011, 2002, 2000, 1998, 1996 Johan Vromans. All rights
reserved. Printed in Canada. Previous editions of this book were published
as Perl 4 Pocket Reference and Perl 5 Pocket Reference.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent

Printing History:
February 1996: First Edition.
August 1998: Second Edition.
May 2000: Third Edition.
July 2002: Fourth Edition.
July 2011: Fifth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference/Pocket
Guide series designations, Perl Pocket Reference, the image of the camel, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author(s) assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

978-1-449-30370-9
[T]

mailto:corporate@oreilly.com

Table of Contents

Introduction 1

Perl 5.14.1 1

Conventions used in this book 2

Features 2

Syntax 3

Embedded Documentation 3

Data Types 5

Quotes and Interpolation 5

Literal Values 7

Scalar Values 7

List Values 8

Hash Values 8

Filehandles 8

Variables 9

Context 11

Operators and Precedence 12

Statements 14

Loop blocks 14

When blocks 15

iii

Special forms 15

Packages and Modules 16

Pragmatic Modules 17

Subroutines 21

Prototypes 24

Special Subroutines 24

Object-Oriented Programming 25

Special Classes 26

Arithmetic Functions 26

Conversion Functions 27

Structure Conversion 29

String Functions 30

Array and List Functions 31

Hash Functions 34

Smartmatching 35

Regular Expression Patterns 37

Search and Replace Functions 43

File Operations 45

File Test Operators 47

Input and Output 48

Open Modes 52

Common constants 52

Standard I/O Layers 54

Formatted Printing 54

Formats 56

Directory Reading Routines 57

iv | Perl Pocket Reference

System Interaction 58

Networking 61

System V IPC 62

Miscellaneous 63

Tying Variables 64

Information from System Databases 65

Information About Users 65

Information About Groups 66

Information About Networks 66

Information About Network Hosts 67

Information About Network Services 68

Information About Network Protocols 69

Special Variables 70

Special Arrays 74

Special Hashes 75

Environment Variables 76

Threads 76

Appendix A: Command-Line Options 79

Appendix B: The Perl Debugger 82

Appendix C: Perl Links 86

Index 89

v

Perl Pocket Reference

The Perl Pocket Reference is a quick reference guide to Larry
Wall’s Perl programming language. It contains a concise
description of all statements, functions, and variables, and lots
of other useful information.

The purpose of the Pocket Reference is to aid users of Perl in
finding the syntax of specific functions and statements and the
meaning of built-in variables. It is not a self-contained user
guide; basic knowledge of the Perl language is required. It is
also not complete; some of the more obscure variants of Perl
constructs have been left out. But all functions and variables
are mentioned in at least one way they can be used.

Perl 5.14.1
Perl releases are identified by a version number, a sequence of at
least two numbers, separated by periods. This books describes
Perl 5.14.1, released on June 16, 2011.

5.14.1 Meaning

5 The language revision. Perl 5 was first released on October 17, 1994.

14 The version of this revision.
An even number indicates an official production version, while an odd
number indicates a development version.

1 The subversion. 0 (zero) is the first release, higher numbers indicate
maintenance releases.

Perl 5.14.1 | 1

Conventions used in this book
this denotes text that you enter literally.

this means variable text, i.e., things you must fill in.

this† means that if this is omitted, $− will be used instead.

word is a keyword, i.e., a word with a special meaning.

[. . .] denotes an optional part.

y points to related documents, which can be viewed
with a perldoc command.

Features
As of version 5.10, Perl supports features to selectively enhance
the syntax and semantics of the language. Features can be en-
abled with use feature and disabled with no feature, see the
section Pragmatic Modules on page 17.

Feature Perl Description Page

say 5.10 Enables the keyword say. 50

state 5.10 Enables the keyword state. 64

switch 5.10 Enables the keywords given, 15
when, break, and default.

unicode_strings 5.12 Enables Unicode semantics
in all string operations.

:5.10 5.10 All 5.10 features.

:5.12 5.12 All 5.10 and 5.12 features.

:5.14 5.14 All 5.10, 5.12 and 5.14 features.

Feature bundles like :5.14 provide a quick means to get a
fully featured Perl, although it is easier to automatically enable
version dependent features with:

use 5.14.0;

2 | Perl Pocket Reference

Syntax
Perl is a free-format programming language. This means that
in general it does not matter how a Perl program is written with
regard to indentation and lines.

An exception is when Perl encounters a sharp or pound symbol
(#) in the input: it then discards this symbol and everything
following it up to the end of the current input line. This can
be used to put comments in Perl programs. Real programmers
put lots of useful comments in their programs.

There are places where whitespace does matter: within literal
text, patterns, and formats.

If the Perl compiler encounters the special token −−DATA−−, it
discards this symbol and stops reading input. Anything follow-
ing this token is ignored by the compiler, but can be read by
the program when it is run, using the package filehandle DATA.

−−END−− behaves like −−DATA−− in the top level script (but not
in files loaded with require or do) and leaves the remaining
contents of the file accessible via the global filehandle DATA.

When Perl is expecting a new statement and encounters a line
that starts with =, it skips all input up to and including a line
that starts with =cut. This is used to embed documentation.

y perlsyn.

Embedded Documentation
Tools exist to extract embedded documentation and gener-
ate input suitable for several formatters like troff, LATEX, and
HTML. The following commands can be used to control em-
bedded documentation:

=back See =over on the next page.

=begin fmt
Sets the subsequent text up to a matching =end to be
included only when processed for formatter fmt.

=cut Ends a document section.

Embedded Documentation | 3

=end fmt See =begin.

=for fmt Restricts the remainder of just this paragraph to be
included only when processed for formatter fmt.

=headN heading
Produces a heading. N must be 1, 2, 3, or 4.

=item text
See =over below.

=over N Starts an enumeration with indent N. Items are spec-
ified using =item. The enumeration is ended with
=back.

=pod Introduces a document section. Any of the = com-
mands can be used to introduce a document section.

Each of the preceding commands applies to the paragraph of
text that follows them; paragraphs are terminated by at least
one empty line.

An indented paragraph is considered to be verbatim text and
will be rendered as such.

Within normal paragraphs, markup sequences can be inserted:

B<text> Bold text (for switches and programs).

C<code> Literal code.

E<esc> A named character, e.g., E<lt> means a < and E<gt>
means a >.

F<file> Filename.

I<text> Italic text (for emphasis and variables).

L< [text |] [ref] [/ section] >
A cross reference. text, if present, is used for output.

S<text> Text that cannot break on spaces.

X<idx> An index entry.

Z< > A zero-width character.

Markup sequences may be nested. If a markup sequence has
to contain > characters, use C<< . . . >> or C<<< . . . >>>, etc.
The last of the opening < must be followed by whitespace, and
whitespace must precede the first of the closing >.

y perlpod, perlpodspec.

4 | Perl Pocket Reference

Data Types
See the section Variables on page 9 for the role of the sigils.

Type Sigil Description

Array @ Indexable list of scalar values.

Code & A piece of Perl code, e.g., a subroutine.

Format A format for producing reports.

Glob * All data types.

Hash % Associative array of scalar values.

IO Filehandle. Used in input and output operations.

Scalar $ Strings, numbers, typeglobs, and references.

y perldata.

Quotes and Interpolation
Perl uses customary quotes to construct strings and such, but
also implements a generic quoting mechanism. For example,
the string 'Hello!' can be written as q/Hello!/, q;Hello!;,
q{Hello!}, and so on.

Customary Generic Meaning Inter. Page

'' q// Literal string No 7

"" qq// Literal string Yes 7

`` qx// Command execution Yes 7

() qw// Word list No 8

"" qr// Regular expression Yes 37

// m// Pattern match Yes 43

s/// s/// Pattern substitution Yes 44

y/// tr/// Character translation No 44

Quotes and Interpolation | 5

When the quoting mechanism involves delimiters, you can use
pairs of grouping characters, e.g., m< . . . > and s{ . . . }[. . .].

The “Inter.” column of the table on the preceding page indi-
cates whether string escape sequences are interpolated. If single
quotes are used as delimiters for pattern matching or substitu-
tion, no interpolation takes place.

String escape sequences:

\a Alarm (bell).

\b Backspace.

\e Escape.

\f Formfeed.

\n Newline.

\r Return.

\t Tab.

Combining prefixes construct characters, for example:

\53 Interpreted as octal, the character +. Octal escapes
take up to three octal digits, including leading zeros.
The resulting value must not exceed 377 octal.
In patterns, which are like qq// strings, leading zeros
are mandatory in octal escapes to avoid interpreta-
tion as a back-reference unless the value exceeds the
number of captures or 9, whichever is lower. Note
that if it’s a back-reference, the value is interpreted as
decimal, not as octal.

\cC Interpreted as a control character: Control-C.

\N{BLACK SPADE SUIT}
A named character: ♠. This requires the charnames
pragma; see page 18.

\N{U+03A3}
Unicode character with codepoint 03A3 (hex).

\o{53} A safe way to write an octal value.

\xeb Interpreted as hexadecimal: Latin-1 ë. Hex escapes
take one or two hex digits.

\x{03a3} Unicode hexadecimal: Greek Σ.

6 | Perl Pocket Reference

These escape sequences change the meaning of what follows:

\E Ends \L, \Q, and \U.

\l Lowercases the following character.

\L Lowercases up to a \E.

\u Titlecases the following character.

\U Uppercases until a \E is encountered.

\Q Quotes nonword characters until \E.

y perlop, perlunicode, perluniintro.

Literal Values

Scalar Values
Array reference

[1,2,3]

Code reference
sub { statements }

Hash reference
{key1 => val1, key2 => val2, . . . }
Equivalent to {key1, val1, key2, val2, . . . } .

Numeric
123 1−234 123.4 5E−10 0b010101 (binary) 0xff (hex)
0377 (octal)

−−LINE−− (line number in the current program)

Regular Expression
qr/string/modifiers

String

'abc' Literal string, no variable interpolation or
escape characters, except \' and \\.

"abc" A string in which variables are interpolated
and escape sequences are processed.

`command `
Evaluates to the output of the command.

Class:: A value that is mostly equivalent to "Class".

Literal Values | 7

1.2.3 v5.6.0.1
A string (“v-string”) composed of the spec-
ified ordinals. The ordinal values may be
in the Unicode range. v1.3 is equivalent to
"\x{1}\x{3}". Suitable to be compared to
other v-strings using string compare opera-
tors.

<<identifier
Shell-style “here document.”

−−FILE−−
The name of the program file.

−−PACKAGE−−
The name of the current package.

List Values
(. . .) (1,2,3) is a list of three elements.

(1,2,3)[0] is the first element from this list.
(1,2,3)[−1] is the last element.
() is an empty list.
(1..4) is the same as (1,2,3,4); likewise ('a'..'z').
('a'..'z')[4,7,9] is a slice of a literal list.

qw qw/fo br . . . / is the same as ('fo','br', . . .).

Hash Values
(. . .) (key1 => val1, key2 => val2, . . .)

Equivalent to (key1, val1, key2, val2, . . .).

Filehandles
Predefined filehandles

STDIN, STDOUT, STDERR, ARGV, DATA.

User-specified filehandles
Any name (identifier without sigil) that is not a key-
word or subroutine call can be used to designate a
filehandle.

8 | Perl Pocket Reference

Variables
$var A simple scalar variable.

$p = \$var
Now $p is a reference to scalar $var.

$$p The scalar referenced by $p.

@var An array. In scalar context, the number of elements
in the array.

$var[6] Seventh element of array @var.

$var[−1]
The last element of array @var.

$p = \@var
Now $p is a reference to array @var.

$$p[6] or $p−>[6]
Seventh element of array referenced by $p.

${$p[6]}
The scalar referenced by $p[6].

$p = \$var[6]
Now $p is a reference to the seventh element of array
@var.

$p = [1,3,'ape']
Now $p is a reference to an anonymous array with
three elements.

$var[$i][$j]
$j-th element of $i-th element of array @var.

$#var Last index of array @var .

@var[3,4,5]
A slice of array @var.

%var A hash. In scalar context, true if the hash has ele-
ments.

$var{'red'} or $var{red}
A value from hash %var. The hash key may be speci-
fied without quotes if it is simple identifier.

$p = \%var
Now $p is a reference to hash %var.

Variables | 9

$$p{'red'} or $p−>{'red'}
A value from the hash referenced by $p.

${$p{'red'}}
The scalar referenced by $p{'red'}.

$p = {red => 1, blue => 2, yellow => 3}
Now $p is a reference to an anonymous hash with
three elements.

@var{'a','b'}
A slice of %var; same as ($var{'a'},$var{'b'}).

$var{'a'}[1]
Multidimensional hash.

$var{'a',1, . . . }
Emulated multidimensional hash (obsolete).

$c = \&mysub
Now $c is a reference to subroutine mysub.

$c = sub { . . . }
Now $c is a reference to an anonymous subroutine.

&$c(args) or $c−>(args)
A call to the subroutine via the reference.

$MyPackage::var
Variable $var from package MyPackage.
Likewise @MyPackage::ary, and so on.
Variables that are not part of a package belong to the
default package main.

$::var The same as $main::var.

%MyPackage::
The package symbol table.

*var Symbol table entry (typeglob). Refers to everything
represented by var: $var, @var, %var, and so on.

*x = \ $y Makes $x an alias for $y.

*x = *y Makes all x aliases for y. Also: *x = "y".

*var{SCALAR} or *{$::{var}}{SCALAR}
The same as \$var. Likewise, *var{ARRAY} is the same
as \@var. Also HASH, CODE, FORMAT, GLOB, and IO.

10 | Perl Pocket Reference

Note that $var, @var, %var, subroutine var, format var, and
filehandle var all share the identifier var, but they are distinct
variables.

Instead of the variable identifier, a block (see page 14) that
returns the right type of reference can be used. For example,
${ $x > 0 ? \$y[4] : \$z }.

y perldata, perlref.

Context
Perl expressions are always evaluated in a context that deter-
mines the outcome of the evaluation.

Boolean A special form of scalar context in which it only mat-
ters if the result is true or false. Anything that is un-
defined or evaluates to an empty string, the number
zero, or the string "0" is considered false; everything
else is true (including strings like "00").

List A list value is expected. Acceptable values are literal
lists, arrays, and hashes. Slices of arrays, hashes, and
lists are also acceptable. A scalar value will be inter-
preted as a one-argument list.

Scalar A single scalar value is expected.

Void No value is expected. If a value is provided, it is dis-
carded.

The following functions relate to context:

scalar expr
Forces scalar context for the expression.

wantarray
Returns true in list context, false in scalar context,
and undef in void context.

Context | 11

Operators and Precedence
Perl operators have the following associativity and precedence,
listed from highest precedence to lowest. Table cells indicate
groups of operators of equal precedence.

Assoc. Operators Description

right terms and See next page.
list operators

left −> Infix dereference operator.

none ++ Auto-increment (magical on strings).
−− Auto-decrement.

right ** Exponentiation.

right \ Reference to an object (unary).
right ! ~ Unary logical NOT, bitwise NOT.
right + − Unary plus, minus.

left =~ Binds a scalar expression to a pattern match.
left !~ Same, but negates the result.

left * / % x Multiplication, division, modulo, repetition.

left + − . Addition, subtraction, concatenation.

left >> << Bitwise shift right, bitwise shift left.

right named unary E.g., sin, chdir, −f, −M.
operators

none < > <= >= Numerical relational operators.
lt gt le ge String relational operators.

none == != <=> Numerical equal, not equal, compare.
eq ne cmp Stringwise equal, not equal, compare.
~~ Smartmatch.

left & Bitwise AND.

left | ^ Bitwise OR, bitwise XOR.

left && Logical AND.

left || // Logical OR, defined OR.

↪→

12 | Perl Pocket Reference

Assoc. Operators Description

none .. Range operator.
... Alternative range operator.

right ?: Ternary if ? then : else operator.

right = += −= etc. Assignment operators.

left , Comma operator, also list element separator.

left => Same, enforces the left operand to be a string.

right list operators See below.
(rightward)

right not Low precedence logical NOT.

left and Low precedence logical AND.

left or Low precedence logical OR.
left xor Low precedence logical XOR.

Parentheses can be used to group an expression into a term.

A list consists of expressions, variables, arrays, hashes, slices, or
lists, separated by commas. It will always be interpreted as one
flat series of values.

Perl functions that can be used as list operators have either
very high or very low precedence, depending on whether you
look at the left side of the operator or at the right side of the
operator. Parentheses can be added around the parameter lists
to avoid precedence problems.

The logical operators do not evaluate the right operand if the
result is already known after evaluation of the left operand.

Compare operators return –1 (less), 0 (equal), or 1 (greater).

y perlop, perlfunc.
perldoc −f func will provide extensive information on the
named function.

Operators and Precedence | 13

Statements
A statement is an expression, optionally followed by a modifier,
and terminated with a semicolon. Statements can be combined
to form a block when enclosed in {}. The semicolon may be
omitted after the last statement of a block.

Execution of expressions can depend on other expressions
using one of the modifiers if, unless, for, foreach, when, while,
or until, for example:

expr1 if expr2 ;
expr1 foreach list ;

The operators ||, //, &&, or ?: also allow conditional execution:

expr1 || expr2 ;
expr1 ? expr2 : expr3 ;

Blocks may be used for conditional execution:

if (expr) block [elsif (expr) block . . .] [else block]
unless (expr) block [else block]

Loop blocks

[label:] while (expr) block [continue block]
[label:] until (expr) block [continue block]
[label:] for ([expr] ; [expr] ; [expr]) block
[label:] foreach var†(list) block [continue block]
[label:] block [continue block]

In foreach, the iteration variable (default $−) is aliased to each
element of the list, so modifying this variable modifies the
actual list element.

The keywords for and foreach can be used interchangeably.

In loop blocks, program flow can be controlled with:

goto label
Finds the statement labeled with label and resumes
execution there. label may be an expression that eval-
uates to the name of a label.

14 | Perl Pocket Reference

last [label]
Immediately exits the loop. Skips the continue block.

next [label]
Executes the continue block and starts the next iter-
ation of the loop.

redo [label]
Restarts the loop block without evaluating the con-
ditional again. Skips the continue block.

When blocks

when blocks can be used within a topicalizer to form a switch
statement. Topicalizers are foreach (or for), and given:

for (expr) {
[when (condition) block . . .]
[default block]

}

given (expr) { . . . }

condition testing is done using smartmatching, see page 35. The
first condition that matches will have its block executed, and
control transfers to the end of the topicalizer block. default is a
when that always matches.

In a when block, continue can be used to transfer control to the
next statement instead of skipping to the end of the topicalizer
block.

In a given block, break can be used to force leaving the topi-
calizer block.

Note that given is a relatively new feature and several aspects
of its peculiar behavior may change in subsequent Perl releases.

Special forms

do block while expr ;
do block until expr ;

Guaranteed to perform block once before testing expr.

Statements | 15

do block

Effectively turns block into an expression.

...

The placeholder ... (ellipsis) can be used as a statement to
indicate code that is not yet written. It compiles, but throws an
exception when executed.

y perlsyn.

Packages and Modules
import module [list]

Usually imports subroutines and variables from mod-
ule into the current package. import is not a built-in,
but an ordinary class method that may be inherited
from UNIVERSAL.

no module [list]
At compile time, requires the module and calls its
unimport method on list. See use on the next page.

package namespace [version] [block]
Designates the block as a package with a namespace.
Without block, applies to the remainder of the current
block or file. Sets package variable $VERSION to version,
if specified.

require version
Requires Perl to be at least this version. version can
be numeric like 5.005 or 5.008001, or a v-string like
v5.8.1.

require expr†
If expr is numeric, behaves like require version. Oth-
erwise expr must be the name of a file that is included
from the Perl library. Does not include more than
once, and yields a fatal error if the file does not evalu-
ate to true. If expr is a bare word, assumes extension
.pm for the name of the file.

16 | Perl Pocket Reference

unimport module [list]
Usually cancels the effects of a previous import or
use. Like import, unimport is not a built-in, but an
ordinary class method.

use version
use pragma

See the section Pragmatic Modules below.
By convention, pragma names start with a lowercase
letter.

use module [version] [list]
At compile time, requires the module, optionally ver-
ifies the version, and calls its import method on list.
If list is (), doesn’t call import.
Normally used to import a list of variables and sub-
routines from the named module into the current
package.
Module names start with an uppercase letter.

y perlmod.

Pragmatic Modules
Pragmatic modules affect the compilation of your program.
Pragmatic modules can be activated (imported) with use and
deactivated with no. These are usually lexically scoped.

version Requires Perl to be at least this version and enables
the feature bundle for this version. Requiring 5.12 or
newer implicitly enables pragma strict.
version can be numeric like 5.005 or 5.008001, or a
v-string like 5.8.1 or v5.14. Unfortunately, 5.14 is
interpreted as 5.140.
With no, requires Perl to be older than the given
version and doesn’t enable features.

autodie Replaces built-in functions with ones that die upon
failure.

attributes
Enables attributes.

Pragmatic Modules | 17

autouse module => funcs
Determines that the module will not be loaded until
one of the named functions is called.

base classes
Establishes an IS-A relationship with the named classes
at compile time.

bigint [options]
Uses the Math::BigInt package to handle all integer
calculations transparently.

options can be accuracy, precision, trace, ver−
sion, and lib. One-letter abbreviations are allowed.
Accuracy and precision require a numeric argument,
and lib requires the name of a Perl module to handle
the calculations.

bignum [options]
Uses the Math::BigNum package to handle all numeric
calculations transparently.

See bigint above for options.

bigrat Use the Math::BigNum and Math::BigRat packages to
handle all numeric calculations transparently.

See bigint above for options.

blib [dir]
Uses the MakeMaker’s uninstalled version of a pack-
age. dir defaults to the current directory. Used for
testing of uninstalled packages.

bytes Treats character data as strict 8-bit bytes, as opposed
to Unicode UTF-8.

charnames [sets]
Enables character names to be expanded in strings
using \N escapes.

constant name => value
Defines name to represent a constant value.

diagnostics [verbosity]
Forces verbose warning diagnostics and suppression
of duplicate warnings. If verbosity is −verbose, makes
it even more verbose.

18 | Perl Pocket Reference

encoding [encoding]
encoding encoding [STDIN => inenc] [STDOUT => outenc]

Sets the script encoding and pushes the encoding
I/O layer for standard input and standard output.
The second form allows you to select the I/O layers
explicitly.

encoding::warnings
Issues warnings when a non-ASCII character is im-
plicitly converted into UTF-8.

feature feature [, feature]
Enables features. See the section Features on page 2.

fields names
Implements compile-time verified class fields.

filetest [strategy]
Changes the way the file test operators (page 47) get
their information. Standard strategy is stat, alterna-
tive is access.

if condition , module => args
uses a module if a condition holds.

integer Enables integer arithmetic instead of double preci-
sion floating point.

less what
Requests less of something (unimplemented).

lib names
Adds libraries to @INC, or removes them, at compile
time.

locale Uses POSIX locales for built-in operations.

mro type Use method resolution order type. Values are dfs
(default) and c3.

open Establishes default I/O layers for input and output.

ops operations
Restricts unsafe operations when compiling.

overload operator => subref
Overloads Perl operators. operator is the operator (as a
string), subref a reference to the subroutine handling
the overloaded operator.

Pragmatic Modules | 19

overloading
Lexically disable or enable overloading.

parent classes
Establishes an IS-A relationship with the named classes
at compile time.

re [behaviors | "/flags"]

Alters regular expression behavior. behaviors can be
any combination of eval (allows patterns to con-
tain assertions that execute Perl code, even when the
pattern contains interpolated variables; see page 39),
taint (propagates tainting), debug, and debugcolor
(produce debugging info).
flags can be used to set default flags for regular ex-
pressions.

sigtrap info
Enables simple signal handling. info is a list of signals,
e.g., qw(SEGV TRAP).

sort [options]
Controls sort behavior. options can be stable to
require stability, −quicksort (or −qsort) to use a
quicksort algorithm, and −mergesort to use a merge-
sort algorithm.

strict [constructs]
Restricts unsafe constructs. constructs can be any
combination of refs (restricts the use of symbolic
references), vars (requires all variables to be either
predefined by Perl, imported, globally or lexically
scoped, or fully qualified), and subs (restricts the
use of bareword identifiers that are not subroutines).

subs names
Predeclares subroutine names so you can use them
without parentheses even before they are declared.

threads Enables the use of interpreter-based threads. See the
section Threads on page 76.

threads::shared
Adds data sharing between threads.

20 | Perl Pocket Reference

utf8 Enables or disables UTF-8 (or UTF-EBCDIC) in source
code.

vars names
Predeclares variable names, allowing you to use them
even if they are not fully qualified under the strict
pragma. Obsolete; use our (page 63) instead.

version Provides support for version objects.

vmsish [features]
Controls VMS-specific language features. VMS only.
features can be any combination of exit (enables
VMS-style exit codes), status (allows system com-
mands to deliver VMS-style exit codes to the calling
program), and time (makes all times relative to the
local time zone).

warnings [class]
Controls built-in warnings for classes of conditions.

warnings::register
Creates a warnings category for the current package.

y perlmodlib.

Subroutines
Subroutines need a declaration, i.e., a specification of how they
should be called, and a definition, i.e., a specification of what
they should do when called.

sub name [(proto)] [attributes] ;
Declares name as a subroutine, optionally specifying
the prototype and attributes. Declaring a subroutine
is optional, but allows the subroutine to be called
just like Perl’s built-in operators.

sub [name] [(proto)] [attributes] block
Defines subroutine name, with optional prototype
and attributes. If the subroutine has been declared
with a prototype or attributes, the definition should
have the same prototype and attributes. When name

Subroutines | 21

is omitted, the subroutine is anonymous and the def-
inition returns a reference to the code.

When a subroutine is called, the statements in block are exe-
cuted. Parameters are passed as a flat list of scalars as array @−.
The elements of @− are aliases for the scalar parameters. The
call returns the value of the last expression evaluated. wantar-
ray (page 11) can be used to determine the context in which
the subroutine was called.

Subroutines that have an empty prototype and do nothing but
return a fixed value are inlined, e.g., sub PI() { 3.1415 }. See
also the subsection Prototypes on page 24.

attributes are introduced with a : (colon). Perl supports the
following attributes:

lvalue The subroutine returns a scalar variable that can be
assigned to.

method The subroutine is a method.

There are several ways to call a subroutine.

name ([parameters])
The most common way. The parameters are passed
by reference as array @−.

&name ([parameters])
Prototype specifications, if any, are ignored.

&name The current @− is passed directly to the subroutine.

name [arguments]
If the subroutine has been declared, or defined, it may
be called as a built-in operator, without parentheses.

caller [expr]
Returns a list (package, file, line) for a specific sub-
routine call. caller returns this information for the
current subroutine, With expr, returns an extended
list; caller(0) for this subroutine, caller(1) for the
subroutine that called this subroutine, etc. See the
table on the following page.
Returns false if no caller.

22 | Perl Pocket Reference

Elements of the extended result list:

Index Name Description

0 package The calling package.

1 filename The filename.

2 line The line number.

3 subroutine The name of the subroutine.

4 hasargs True if arguments were supplied.

5 wantarray Call context.

6 evaltext Text if called by eval.

7 is_require Called by use or require.

8 hints Pragmatic hints.

9 bitmask Pragmatic hints.

10 hinthash Pragmatic hints.

defined &name
Tests whether the named subroutine has been defined
(has a body).

do name list
Deprecated form of &name.

exists &name
True if the named subroutine has been declared, ei-
ther with a body or with a forward declaration.

goto &name
Substitutes a call to name for the current subroutine.

return [expr]
Returns from a subroutine, eval, or do file with the
value specified. Without expr, returns undef in scalar
context and an empty list in list context.

y perlsub, perlmod.

Subroutines | 23

Prototypes

Proto Meaning

$ Enforces scalar context.

@ % Enforce list context; all remaining arguments are consumed.

* Accepts a bare name, a constant, a scalar expression, a typeglob,
or a reference to a typeglob.

& Requires a code (subroutine) reference.

\$ The argument must start with a $.

\@ \% The argument must start with a @, a %.

* \& The argument must start with a *, a &.

\[...] The argument must start with any of the specified sigils.

(Empty parentheses) If the subroutine returns a fixed value the call is
inlined.

− Requires a scalar expression, defaults to $−.

+ Requires an array, a hash, or a reference.

; Indicates that subsequent arguments are optional.

prototype name
Returns the prototype for the named function as a
string, or undef if the function has none.
Use CORE::name for built-in functions.

y perlsub, perlmod.

Special Subroutines
Special subroutines are user defined, but are called by Perl while
processing the program. They can be used to change the order
in which parts of a program are executed.

[sub] AUTOLOAD block
The code in block is executed when the program
calls an undefined subroutine. $AUTOLOAD contains the

24 | Perl Pocket Reference

name of the called subroutine, and @− contains the
parameters.

[sub] BEGIN block
The code in block is executed immediately when com-
pilation of the block is complete.

[sub] CHECK block
Executed (in reverse order) when the compilation of
the program finishes.

[sub] END block
Executed in reverse order when the Perl interpreter
terminates. Inside the END blocks, $? contains the
status with which the program is going to exit.

[sub] INIT block
Executed immediately before the Perl interpreter starts
executing the program.

[sub] UNITCHECK block
Executed (in reverse order) when the compilation of
the program unit finishes.

y perlsub, perlmod.

Object-Oriented Programming
An object is a referent that knows which class it belongs to.

A class is a package that provides methods. If a package fails to
provide a method, the base classes as listed in @ISA are searched,
depth first.

A method is a subroutine that expects an invocant (an object
reference or, for static methods, a package name) as the first
argument.

bless ref [, classname]
Turns the referent ref into an object in classname
(default is the current package). Returns the reference.

invocant−>method [(parameters)]
Calls the named method.

Object-Oriented Programming | 25

method invocant [parameters]
Provides an alternative way of calling a method, using
the sometimes ambiguous indirect object syntax.

See also ref (page 63), and the next section.

y perlobj, perlboot, perltoot, perltooc.

Special Classes
The special class UNIVERSAL contains methods that are automat-
ically inherited by all other classes:

can method
Returns a reference to the method if its invocant has
it, undef otherwise.

DOES role
Checks if the object or class performs the given role.

isa class Returns true if its invocant is class, or any class in-
heriting from class.

VERSION [need]
Returns the version of its invocant. Checks the version
if need is supplied.

These methods can be used as normal functions as well, e.g.,
UNIVERSAL::isa($c,Math::Complex::).

The pseudopackage CORE provides access to all Perl built-in
functions, even when they have been overridden.

The pseudopackage SUPERprovides access to base class methods
without having to specify which class defined that method.
This is meaningful only when used inside a method.

Arithmetic Functions
abs expr†

Returns the absolute value of its operand.

atan2 y, x
Returns the arctangent of y/x in the range−π

2
to +π

2
.

26 | Perl Pocket Reference

cos expr†
Returns the cosine of expr (expressed in radians).

exp expr†
Returns e to the power of expr.

int expr† Returns the integer portion of expr.

log expr†
Returns the natural logarithm (base e) of expr.

rand [expr]
Returns a random fractional number between 0 (in-
clusive) and the value of expr (exclusive). If expr is
omitted, it defaults to 1.

sin expr†
Returns the sine of expr (expressed in radians).

sqrt expr†
Returns the square root of expr.

srand [expr]
Sets the random number seed for the rand operator.

time Returns the number of nonleap seconds since what-
ever time the system considers to be the epoch. Suit-
able for feeding to gmtime and localtime.

Conversion Functions
chr expr†

Returns the character represented by the decimal value
expr.

gmtime [expr]
In list context, converts a time as returned by the time
function to a nine-element list with the time localized
for timezone UTC (GMT).
In scalar context, returns a formatted string.
Without expr, uses the current time.

Use the standard module Time::gmtime for by-name
access to the elements of the list; see localtime on the
next page.

Conversion Functions | 27

hex expr†
Returns the decimal value of expr interpreted as an
hexadecimal string. The string may, but need not,
start with 0x. For other conversions, see oct below.

localtime [expr]
Like gmtime, but uses the local time zone.

Use the standard module Time::localtime for by-
name access to the elements of the list:

Index Name Description

0 sec Seconds.

1 min Minutes.

2 hour Hours.

3 mday Day in the month.

4 mon Month, 0 = January.

5 year Years since 1900.

6 wday Day in week, 0 = Sunday.

7 yday Day in year, 0 = January 1st.

8 isdst True during daylight saving time.

oct expr†
Returns the decimal value of expr interpreted as an
octal string. If the string starts off with 0x, it will
be interpreted as a hexadecimal string; if it starts off
with 0b, it will be interpreted as a binary string.

ord expr†
Returns the ordinal value of the first character of expr.

vec expr, offset, bits
Treats string expr as a vector of unsigned integers
of bits bits each, and yields the decimal value of the
element at offset. bits must be a power of 2 greater
than 0. May be assigned to.

28 | Perl Pocket Reference

Structure Conversion
pack template, list

Packs the values in list into a sequence of bytes, using
the specified template. Returns this sequence as a
string.

unpack template, expr†
Unpacks the sequence of bytes in expr into a list,
using template.

template is a sequence of characters as follows:

a / A Byte string, null-/space-padded
b / B Bit string in ascending/descending order
c / C Signed/unsigned byte value
d / D Native double/long double
f / F Native float/Perl internal float
h / H Hex string, low/high nybble first
i / I Signed/unsigned integer value
j / J Perl internal integer/unsigned
l / L Signed/unsigned long value
n / N Short/long in network (big endian) byte order
p / P Pointer to a null-terminated/fixed-length string
q / Q Signed/unsigned quad value
s / S Signed/unsigned short value
u / U Uuencoded string/Unicode UTF-8 character code
v / V Short/long in VAX (little endian) byte order
w A BER compressed integer
W Unsigned character value
x / X Null byte (skip forward)/Back up a byte
Z Null-terminated string
. / @ Null fill or truncate to absolute/relative position

The size of an integer, as used by i and I, depends on the system
architecture. Nybbles, bytes, shorts, longs, and quads are always
exactly 4, 8, 16, 32, and 64 bits respectively. Characters s, S, l,
and L may be followed by a ! to signify native shorts and longs
instead. x and X may be followed by a ! to specify alignment.

Each character, or group of characters between parentheses,
may be followed by a decimal number, optionally between

Structure Conversion | 29

[and], that will be used as a repeat count; an asterisk (*)
specifies all remaining arguments. A template between [and]
is a repeat count equal to the length of the packed template. <
(little-endian) and > (big-endian) can be used to force a specific
byte order on a character or group.

Starting the template with U0 forces the result to be Unicode
UTF-8, C0 forces bytes. Default is UTF-8.

If a format is preceded with %n, unpack returns an n-bit check-
sum instead. n defaults to 16.

Whitespace may be included in the template for readability,
and a # character may be used to introduce comments.

A special case is a numeric character code followed by a slash
and a string character code, e.g., C/a. Here the numeric value
determines the length of the string item.

q and Q are only available if Perl has been built with 64-bit
support. D is only available if Perl has been built to support
long doubles.

y perlpacktut.

String Functions
chomp list†

Removes $/ (page 70) from all elements of the list;
returns the (total) number of characters removed.

chop list†
Chops off the last character on all elements of the
list; returns the last chopped character.

crypt plaintext, salt
Encrypts a string (irreversibly).

eval expr†
Parses and executes expr as if it were a Perl program.
The value returned is the value of the last expression
evaluated. If there is a syntax error or runtime error,
undef is returned by eval, and $@ is set to the error
message. See also eval on page 63.

30 | Perl Pocket Reference

index str, substr [, offset]
Returns the position of substr in str at or after offset.
If the substring is not found, returns –1.

lc expr† Returns a lowercase version of expr. See also \L on
page 7.

lcfirst expr†
Returns expr with its first character in lowercase. See
also \l on page 7.

length expr†
Returns the length in characters of expr.

quotemeta expr†
Returns expr with all regular expression metachar-
acters quoted. See also \Q on page 7.

rindex str, substr [, offset]
Returns the position of the last substr in str at or
before offset. If the substring is not found, returns
–1.

substr expr, offset [, len [, newtext]]
Extracts a substring of length len starting at offset
out of expr and returns it. If offset is negative, counts
from the end of the string. If len is negative, leaves that
many characters off the end of the string. Replaces the
substring with newtext if specified, otherwise, may be
assigned to.

uc expr† Returns an uppercase version of expr. See also \U on
page 7.

ucfirst expr†
Returns expr with its first character titlecased. See also
\u on page 7.

Array and List Functions
defined expr†

Not specifically an array function, but provides a
convenient way to test whether an array element has
a defined value.

Array and List Functions | 31

delete [local] elt
delete [local] @array[index1, . . .]

elt must specify an array element like $array[index]
or expr−>[index]. Deletes the specified elements from
the array. With local, the deletion is local to the en-
closing block. Returns aliases to the deleted values.
Deleting the last elements of an array will shorten the
array.

each @array
In list context, returns a two-element list consisting
of the index and an alias to the value for the next
element of the array. In scalar context, returns only
the index. After all values have been returned, an
empty list is returned. The next call to each after
that will start iterating again. A call to keys or values
will reset the iteration.

exists elt
elt must specify an array element (see delete above).
Checks whether the specified array element exists.

grep expr, list
grep block list

Evaluates expr or block for each element of the list,
locally aliasing $− to the element. In list context,
returns the list of elements from list for which expr
or block returned true. In scalar context, returns the
number of such elements.

join expr, list
Returns the string formed by inserting expr between
all elements of list and concatenating the result.

keys @array
In list context, returns a list of all the keys of the array.
In scalar context, returns the number of elements.

map expr, list
map block list

Evaluates expr or block for each element of the list,
locally aliasing $− to the element. Returns the list of
results.

32 | Perl Pocket Reference

pop [@array]
Pops off and returns the last value of the array. If
@array is omitted, pops @− if inside a subroutine; oth-
erwise pops @ARGV.

push @array, list
Pushes the values of the list onto the end of the array.
Returns the length of the resulting array.

reverse list
In list context, returns the list in reverse order. In
scalar context, concatenates the list elements and re-
turns the reverse of the resulting string.

scalar @array
Returns the number of elements in the array.

shift [@array]
Shifts the first value of the array off and returns it,
shortening the array by 1 and moving everything
down. If @array is omitted, shifts @− if inside a sub-
routine; otherwise shifts @ARGV.

sort [subroutine] list
Sorts the list and returns the sorted list value. subrou-
tine, if specified, must return less than zero, zero, or
greater than zero, depending on how the elements of
the list are to be ordered.

subroutine may be the name of a user-defined rou-
tine, a variable containing that name, or a block. If
the subroutine has been declared with a prototype of
($$), the values to be compared are passed as nor-
mal parameters; otherwise, they are available to the
routine as package global variables $a and $b.

splice @array, offset [, length [, list]]
Removes the elements of @array designated by offset
and length, and replaces them with list (if specified).
Returns the elements that were removed. If offset is
negative, counts from the end of the array. If length is
negative, leaves elements at the end of the array.

Array and List Functions | 33

split [pattern [, expr† [, limit]]]
Uses pattern to split expr (a string) into a list of strings,
and returns it. If limit is a positive number, splits
into at most that number of fields. A negative value
indicates the maximum number of fields. If limit is
omitted, or 0, trailing empty fields are not returned.
If pattern is omitted, splits at the whitespace (after
skipping any leading whitespace). If not in list con-
text, returns number of fields and splits to @−.

unshift @array, list
Prepends list to the front of the array. Returns the
length of the resultant array.

values @array
Returns a list consisting of aliases to all the values of
the array.

each, keys, pop, push, shift, splice, unshift, and values may
take an array reference as the first argument. Experimental.

Hash Functions
defined expr†

Not specifically a hash function, but provides a con-
venient way to test whether a hash element has a
defined value.

delete [local] elt
delete [local] @hash{key1, key2, . . . }

elt must specify a hash element like $hash{key} or
expr−>{key}. Deletes the specified elements from the
hash. With local, the deletion is local to the enclosing
block. Returns aliases to the deleted values.

each %hash
In list context, returns a two-element list consisting of
the key and an alias to the value for the next element
of the hash. In scalar context, returns only the key.
After all values have been returned, an empty list is
returned. The next call to each after that will start

34 | Perl Pocket Reference

iterating again. A call to keys or values will reset the
iteration.

exists elt
elt must specify a hash element (see delete on the
facing page). Checks whether the specified hash key
exists.

keys %hash
In list context, returns a list of all the keys of the
named hash. In scalar context, returns the number
of elements of the hash. Can be assigned to, to pre-
extend the hash.

scalar %hash
Returns true if there are keys in the hash.

values %hash
Returns a list consisting of aliases to all the values of
the named hash.

each, keys, and values return the elements in an apparently
random order but the order is the same for all of them.

each, keys, and values may take an array reference as the first
argument. Experimental.

Smartmatching
Note: Smartmatching is a relatively new feature and several
aspects of its peculiar behavior may change in subsequent Perl
releases.

expr1 ~~ expr2
Smartmatches expr2 against expr1.

when (expr)
In most cases, smartmatches $− against expr.
In other cases, treats expr as a boolean expression.

The behavior of a smartmatch depends on what type of thing
its arguments are. The behavior is determined by the following
table: the first row that applies determines the match behav-
ior (which is thus mostly determined by the type of the right

Smartmatching | 35

operand). Note that the smartmatch implicitly dereferences any
nonblessed hash or array ref, so the Hash and Array entries ap-
ply in those cases. For blessed references, the Object entries
apply.

Left Right Type of match implied

Any undef Undefinedness.

Any Object Invokes ~~ overloading on the object, or dies.

Hash CodeRef Sub truth for each key; true if hash is empty.

Array CodeRef Sub truth for each element; true if array is empty.

Any CodeRef Scalar sub truth.

Hash Hash True if every key is found in both hashes.

Array Hash Hash keys intersection.

Regex Hash Hash key grep.

undef Hash Always false.

Any Hash Hash entry existence.

Hash Array Hash Keys Intersection.

Array Array Smartmatches corresponding elements.

Regex Array Array grep.

undef Array Array contains undef.

Any Array Match against an array element.

Hash Regex Hash key grep.

Array Regex Array grep.

Any Regex Pattern match.

Object Any Invokes ~~ overloading on the object, or falls back.

Any Num Numeric equality.

Num Num-alike Numeric equality if it looks like a number.

undef Any Undefinedness.

Any Any String equality.

y perlop (under “Smartmatch Operator”).

36 | Perl Pocket Reference

Regular Expression Patterns
The operator qr can be used to create patterns.

qr /pattern/ [modifiers]
Creates a pattern.

Patterns can also be created implicitly when using search and
replace functions.

Modifiers can be used as indicated, but also inside of the pattern
using (?modifiers). In this case, modifiers imsx can be switched
on and off.

i searches in a case-insensitive manner.

m multiline mode: ^ and $ will match at embedded
newline characters.

o interpolates variables only once.

p preserves ${^PREMATCH}, ${^MATCH} and ${^POSTMATCH}.

s single-line mode: . will match embedded newline
characters.

x allows for whitespace and comments.

^ in (?^ . . .), uses system defaults d−imsx.

These modifiers are mutually exclusive:

a forces strict ASCII matching, repeat for stricter ASCII
matching.

d semantics depend on other settings.

l treats the pattern with locale properties.

u treats the pattern with full Unicode semantics.

y perlre, perlretut, perlrequick, perlunicode.

The elements that form the pattern are based on regular expres-
sions, but nowadays contain many nonregular extensions.

Basically each character matches itself, unless it is one of the
special characters +?.*^$()[{|\. The special meaning of these
characters can be escaped using a \.

. Matches any character, but not a newline. In single-
line mode, matches newlines as well.

Regular Expression Patterns | 37

(. . .) Groups a series of pattern elements to a single ele-
ment. The text the group matches is captured for later
use. It is also assigned immediately to $^N to be used
during the match, e.g., in a (?{ . . . }).

^ Matches the beginning of the target. In multiline
mode, also matches after every newline character.

$ Matches the end of the line, or before a final newline
character. In multiline mode, also matches before
every newline character.

[. . .] Denotes a class of characters to match. [^ . . .]negates
the class.

. . . | . . . | . . .
Matches the alternatives from left to right, until one
succeeds.

Extended patterns:

(?# text)
Comment.

(? [modifier] : pattern)
Acts like (pattern) but does not capture the text it
matches. Modifiers i, m, s, and x can be switched
off by preceding the letter(s) with a minus sign, e.g.,
si−xm.

(?= pattern)
Zero-width positive look-ahead assertion.

(?! pattern)
Zero-width negative look-ahead assertion.

(?<= pattern)
Zero-width positive look-behind assertion. Often it
is better and easier to use \K instead.

(?<! pattern)
Zero-width negative look-behind assertion.

(?< name > . . .) or (?'name' . . .)
Groups a series of pattern elements. The text the
group matches is captured for later use.

(?| pattern)

38 | Perl Pocket Reference

Capture groups are numbered from the same starting
point in each alternation branch of the pattern.

(?{ code })
Executes Perl code while matching. Always succeeds
with zero width. Can be used as the condition in
a conditional pattern selection. If not, the result of
executing code is stored in $^R.

(??{ code })
Executes Perl code while matching. Interprets the re-
sult as a pattern.

(?> pattern)
Like (?: pattern), but prevents backtracking inside.

(?(cond) ptrue [| pfalse])
Selects a pattern depending on the condition. cond
can be the number of a parenthesized subpattern, the
<name> of a subpattern, one of the zero-width look-
ahead, look-behind, and evaluate assertions.
R can be used to check for recursion: (R), (Rnumber),
(R&name), and so on.

(?(DEFINE) pattern)
The pattern is evaluated but not executed. Can be
used to define named subpatterns to be referred to by
(?&name) constructs.

(? number)
Recurses into the pattern of capture group number. 0
or R indicates the whole pattern. +1 indicates the next
capture group, −1 the previous capture group, and so
on.

(?& name) or (?P> name)
Recurses into the pattern identified by name.

(? modifier)
Embedded pattern-match modifier. modifier can be
one or more of i, m, s, or x. Modifiers can be switched
off by preceding the letter(s) with a minus sign, e.g.,
(?si−xm). A leading ^ reverts to the defaults.

Regular Expression Patterns | 39

A special group of patterns can be used to control backtracking.

(*ACCEPT)
Experimental. Terminates match signaling success.

(*COMMIT)
When backtracked into, causes match failure.

(*FAIL) (*F)
Terminates match signaling failure.

(* [MARK] : [name])
Mark a position to be used later by SKIP. See also
special variables $REGMARK and $REGERROR on page 73.

(*PRUNE [:name])
When backtracked into, terminates match.

(*SKIP [:name])
Similar to PRUNE.

(*THEN [:name])
Similar to PRUNE. When used inside an alternation,
skips to the next alternative when backtracked.

Quantified subpatterns match as many times as possible. When
followed with a ? they match the minimum number of times.
When followed with a + they match the maximum number of
times and do not backtrack. These are the quantifiers:

+ Matches the preceding pattern element one or more
times.

? Matches zero or one times.

* Matches zero or more times.

{n,m} Denotes the minimum n and maximum m match
count. {n} means exactly n times; {n,} means at least
n times.

Patterns are processed as double-quoted strings, so standard
string escapes have their usual meaning (see page 6). An excep-
tion is \b, which matches word boundaries, except in a character
class, where it denotes a backspace again.

A \ escapes any special meaning of nonalphanumeric charac-
ters, but it turns most alphanumeric characters into something
special:

40 | Perl Pocket Reference

\1, \2, \3, . . .
Refer to matched subexpressions, grouped with ().
Note that \10 means \1 followed by 0 unless the pat-
tern has at least 10 subexpressions. See also \g.

\A Matches the beginning of the string.

\b Matches word boundaries. \B matches nonbound-
aries.

\C Matches a single 8-bit byte.

\d Matches numeric. \D matches nonnumeric.

\gn \g{n}
Like \n. \g{−1} refers to the previous group, etc.

\g{name}
Refers to matched subexpression (?<name> . . .).

\G Matches where the previous search with a g modifier
left off.

\h Matches horizontal space. Complement is \H.

\k<name> \k'name' \k{name}
Alternate forms for \g{name}.

\K In substitutions, forget everything matched so far.

\N Matches anything but a newline.

\pp Matches a named property. \Pp matches non-p. Use
\p{prop} for names longer than one single character.

\R Matches generic linebreak.

\s Matches whitespace. \S matches nonwhitespace.

\X Matches Unicode extended grapheme cluster.

\v Matches vertical space. Complement is \V.

\w Matches alphanumeric plus −. \W matches non-\w.

\Z Matches the end of the string or before a newline at
the end of the string.

\z Matches the physical end of the string.

\1 and up, \d, \D, \p, \P, \s, \S, \w, and \W may be used inside
and outside character classes.

Regular Expression Patterns | 41

POSIX-like classes like [[:word:]] are used inside character
classes. These are the classes and their Unicode property names.
The second property applies when modifier a is in effect.

[:alpha:] \p{XPosixAlpha} \p{PosixAlpha}
Matches one alphabetic character.

[:alnum:] \p{XPosixAlnum} \p{PosixAlnum}
Matches one alphanumeric character.

[:ascii:] \p{ASCII} \p{ASCII}
Matches one ASCII character.

[:blank:] \p{XPosixSpace} \p{PosixSpace}
Matches one whitespace character, almost like \s.

[:cntrl:] \p{XPosixCntrl} \p{PosixCntrl}
Matches one control character.

[:digit:] \p{XPosixDigit} \p{PosixDigit}
Matches one numeric character, like \d.

[:graph:] \p{XPosixGraph} \p{PosixGraph}
Matches one alphanumeric or punctuation character.

[:lower:] \p{XPosixLower} \p{PosixLower}
Matches one lowercase character.

[:print:] \p{XPosixPrint} \p{PosixPrint}
Matches one alphanumeric or punctuation character
or space character.

[:punct:] \p{XPosixPunct} \p{PosixPunct}
Matches one punctuation character.

[:space:] \p{XPosixSpace} \p{PosixSpace}
Matches one whitespace character, almost like \s.

[:upper:] \p{XPosixUpper} \p{PosixUpper}
Matches one uppercase character.

[:word:] \p{XPosixWord} \p{PosixWord}
Matches one word character, like \w.

[:xdigit:] \p{XPosixXDigit} \p{PosixXDigit}
Matches one hexadecimal digit.

The equivalents for \s are \p{XPerlSpace} and \p{PerlSpace}.

Classes can be negated with a ^, e.g., [:^print:], the named
properties by using \P, e.g., \P{PosixPrint}.

42 | Perl Pocket Reference

See also $1 . . . $9, $+, $`, $&, $', $^R, and $^N on page 73, @− and
@+ on page 74, and %+ and %− on page 75.

y perlre, perlretut, perlrequick, perlunicode.

Search and Replace Functions
[expr =~] [m] /pattern/ [modifiers]

Searches expr (default $−) for a pattern.

For =~, its negation !~ may be used, which is true
when =~ would return false, and vice versa.

After a successful match, the following special vari-
ables are set:

$& The string that matched.
$` The string preceding what was matched.
$' The string following what was matched.
$1 The first parenthesized subexpression that

matched, $2 the second, and so on.
$+ The last subexpression that matched.
@− The start offsets of the match and sub-

matches.
@+ The corresponding end offsets.
%+ Named subpatterns that matched.
%− All named subpatterns.

If used in list context, a list is returned consisting
of the subexpressions matched by the parentheses in
pattern, i.e., ($1,$2,$3, . . .).

Optional modifiers include adilmopsux, as described
in the previous section. Additional modifiers are:

c (with g) prepares for continuation.
g matches as many times as possible.

If pattern is empty, the most recent pattern from a
previous successful m// or s/// is used.

With g, the match in scalar context can be used as
an iterator. The iterator is reset upon failure, unless
c is also supplied.

Search and Replace Functions | 43

[expr =~] m?pattern? [modifiers]
This is just like the /pattern/ search, except that it
matches only once between calls to the reset operator.

[$var =~] s/pattern/newtext/ [modifiers]
Searches the string var (default $−) for a pattern, and
if found, replaces that part with the replacement text.

If successful, sets the special variables as described
with m// and returns the number of substitutions
made, or, with modifier r, the modified result. Oth-
erwise, it returns false.

Optional modifiers include adilmopsux as described
in the previous section. Additional modifiers are:

g replaces all occurrences of the pattern.
e evaluates newtext as a Perl expression.
ee evaluates twice, and so on.
r does not change var but returns the result of

the replacement.

If pattern is empty, the most recent pattern from a
previous successful m// or s/// is used.

[$var =~] tr/search/replacement/ [modifiers]
Transliterates all occurrences of the characters found
in the search list into the corresponding character in
the replacement list. It returns the number of charac-
ters replaced, but see modifier r below.

Optional modifiers are:

c complements the search list.
d deletes all characters found in the search list

that do not have a corresponding character in
the replacement list.

r does not change var but returns the result of
the replacement.

s squeezes all sequences of characters that are
translated into the same target character into
one occurrence of this character.

[$var =~] y/search/replacement/ [modifiers]
Identical to tr.

44 | Perl Pocket Reference

If the righthand side of the =~ or !~ is an expression rather than
a search pattern, substitution, or transliteration, and its value
is not the result of a qr operator, it is interpreted as a string and
compiled into a search pattern at runtime.

See page 5 for quoting rules and string interpolation.

pos scalar†
Returns the position where the last /g search in scalar
left off. Alters the location of \G if assigned to.

study scalar†
Intended to optimize series of pattern matches on the
contents of a variable. In practice, does nothing.

File Operations
Functions operating on a list of files return the number of files
successfully operated upon.

chmod list
Changes the permissions of a list of files. The first
element of the list must be the numerical mode. If
this is a number, it must be in octal, e.g., 0644. Files
can be designated by name and by handle.

chown list
Changes the owner and group of a list of files. The
first two elements of the list must be the numerical
user ID and group ID. If either is –1, that property is
not changed. Files can be designated by name and by
handle.

link oldfile, newfile
Creates a new filename linked to the old file.

lstat file†
Like stat, but if the last component of the filename
is a symbolic link, stats the link instead of the file
it links to. file can be an expression evaluating to a
filename, or − to refer to the last file test −l operation
or lstat call.

File Operations | 45

mkdir expr† [, perm]
Creates a directory with permissions specified by
perm and modified by the current umask. If perm
is a number, it must be an octal number. Default
value for perm is 0777. See also umask on page 60.

readlink expr†
Returns the name of the file pointed to by the sym-
bolic link designated by expr.

rename oldname, newname
Changes the name of a file.

rmdir expr†
Deletes the directory if it is empty.

stat file† Returns a 13-element list with file information. file
can be a filehandle, an expression evaluating to a
filename, or − to refer to the last file test operation or
stat call. Returns an empty list if the stat fails.

Use the standard module File::stat for by-name
access to the elements of the list:

Index Name Description

0 dev Device code.

1 ino Inode number.

2 mode Type and access flags.

3 nlink Number of hard links.

4 uid User ID of owner.

5 gid Group ID of owner.

6 rdev Device type.

7 size Size, in bytes.

8 atime Timestamp of last access.

9 mtime Timestamp of last modification.

10 ctime Timestamp of last status change.

11 blksize File system block size.

12 blocks Size, in blocks.

46 | Perl Pocket Reference

symlink oldfile, newfile
Creates a new filename symbolically linked to the old
filename.

truncate file, size
Truncates file to size. file may be a filename or a file-
handle.

unlink list†
Deletes a list of files.

utime list
Changes the access and modification times. The first
two elements of the list must be the numerical ac-
cess and modification times. When both elements are
undef, the current time is used.

The inode change time will be set to the current time.

File Test Operators
These unary operators take one argument, either a filename or
a filehandle, and test the associated file to see if something is
true about it. If the argument is omitted, they test $− (except for
−t, which tests STDIN). If the special argument − (underscore) is
passed, they use the information from the preceding test or stat
call. File test operators can be stacked, e.g., −r −w −x file.

See also the filetest pragma on page 19.

−r −w −x File is readable/writable/executable by effective uid/gid.

−R −W −X File is readable/writable/executable by real uid/gid.

−o −O File is owned by effective/real uid.

−e −z File exists/has zero size.

−s File exists and has nonzero size. Returns the size.

−f −d File is a plain file/a directory.

−l −S −p File is a symbolic link/a socket/a named pipe (FIFO).

−b −c File is a block/character special file.

−u −g −k File has setuid/setgid/sticky bit set.

−t Filehandle (default STDIN) is opened to a tty.

File Test Operators | 47

−T −B File is a text/nontext (binary) file. These tests return
true on an empty file, or a file at EOF when testing a
filehandle.

−M −A −C Returns the modification/access/inode-change time
of the file. The value is relative to the time the program
started and expressed in fractional days. See also $^T
on page 72.

Input and Output
In input/output operations, filehandle may be a filehandle as
opened by the open operator, a predefined filehandle (e.g.,
STDOUT), or a scalar variable that evaluates to a reference to
or the name of a filehandle to be used.

<filehandle>
In scalar context, reads a single record, usually a line,
from the file opened on filehandle. In list context,
reads the rest of the file.

< >
<ARGV> Reads from the input stream formed by the files spec-

ified in @ARGV, or standard input if no arguments were
supplied.

binmode filehandle [, layers]
Arranges for the file opened on filehandle to be read or
written using the specified I/O layers (default: :raw).
For a list of standard I/O layers, see page 54.

close [filehandle]
Closes the filehandle. Resets $. if it was an input file.
If filehandle is omitted, closes the currently selected
filehandle.

dbmclose %hash
Closes the file associated with the hash. Superseded
by untie, see page 64.

dbmopen %hash, dbmname, mode
Opens a dbm file and associates it with the hash.
Superseded by tie, see page 64.

48 | Perl Pocket Reference

eof filehandle
Returns true if the next read will return EOF (end of
file) or if the file is not open.

eof Returns the EOF status for the last file read.

eof() Indicates EOF on the pseudofile formed of the files
listed on the command line.

fcntl filehandle, function, $var
Calls system-dependent file control functions.

fileno filehandle
Returns the file descriptor for a given (open) file.

flock filehandle, operation
Calls a system-dependent locking routine on the file.
operation is formed by adding one or more values or
LOCK− constants from the table on page 54.

getc [filehandle]
Returns the next character from the file, or an empty
string on end of file. If filehandle is omitted, reads
from STDIN.

ioctl filehandle, function, $var
Calls system-dependent I/O control functions.

open filehandle [, modeandname]
open filehandle, mode, name [, . . .]

Opens a file and associates it with filehandle. If file-
handle is an uninitialized scalar variable, a new,
unique filehandle is automatically created.

modeandname must contain the name of the file,
prefixed with the mode with which to open it. If
modeandname is not provided, a global (package)
variable with the same name as filehandle must pro-
vide the mode and name.

See page 52 for general open modes.

In modeandname, − may be used to designate stan-
dard input or output. Whitespace is allowed, and as
a consequence, this form of open cannot easily be
used to open files with names that start or end with
whitespace.

Input and Output | 49

The form with three or more arguments allows more
control over the open mode and file name.

If name is undef, an anonymous temporary file is
opened. If name is a reference to a scalar, the contents
of the scalar are read from or written to.

mode may have a list of I/O layers (page 54) appended
that will be applied to the handle.

pipe readhandle, writehandle
Creates a pair of connected pipes. If either handle is
an uninitialized scalar variable, a new, unique file-
handle is automatically created.

print [filehandle] list†
Prints the elements of list, converting them to strings
if needed. If filehandle is omitted, prints to the cur-
rently selected output handle.

printf [filehandle] list†
Equivalent to print filehandle sprintf list.

read filehandle, $var, length [, offset]
Reads length characters from the file into the variable
at offset. Returns the number of characters actually
read, 0 on EOF, and undef on failure.

readline expr†
Internal function that implements the < > operator.

readpipe expr†
Internal function that implements the qx operator.
expr is executed as a system command.

say [filehandle] list†
Just like print, but implicitly appends a newline.

seek filehandle, position, whence
Arbitrarily positions the file on a byte position. whence
can be one of the values or SEEK− constants from the
table on page 53.

select [filehandle]
Sets the current default filehandle for output opera-
tions if filehandle is supplied. Returns the currently
selected filehandle.

50 | Perl Pocket Reference

select rbits, wbits, nbits, timeout
Performs a select syscall with the same parameters.

sprintf format, list
Returns a string resulting from formatting a (possi-
bly empty) list of values. See the section Formatted
Printing on page 54 for a complete list of format con-
versions. See the section Formats on page 56 for an
alternative way to obtain formatted output.

sysopen filehandle, path, mode [, perms]
Performs an open syscall. The possible values and
flag bits of mode and perms are system-dependent;
they are available via the standard module Fcntl. If
filehandle is an uninitialized scalar variable, a new,
unique filehandle is automatically created.

mode is formed by adding one or more values or O−
constants from the table on page 53.

sysread filehandle, $var, length [, offset]
Reads length characters into $var at offset. Returns
the number of characters actually read, 0 on EOF,
and undef on failure.

sysseek filehandle, position, whence
Arbitrarily positions the file on a byte position, for
use with sysread and syswrite. whence can be one
of the values or SEEK− constants from the table on
page 53.

syswrite filehandle, scalar [, length [, offset]]
Writes length characters from scalar at offset. Returns
the number of characters actually written, or undef if
there was an error.

tell [filehandle]
Returns the current byte position for the file. If file-
handle is omitted, assumes the file last read.

Input and Output | 51

Open Modes

The following modes are valid for all forms of open:

< Input only. This is the default when the mode is
empty.

> Output only. The file is created or truncated if neces-
sary.

>> Open the file in append mode. The file is created if
necessary.

+< Read/write update access.

+> Write/read update access.

+>> Read/append access.

These modes may be followed by & to duplicate an already
opened filehandle or, if numeric, file descriptor. Use &= with a
numeric argument to create an alias to the already opened file
descriptor.

Modes for the two-argument open include:

| Opens a pipe to read from or write to a command.

|− Forks, with the file connected to the standard input
of the child.

−| Forks, with the file connected to the standard output
of the child.

Modes for the three-argument open include:

|− Opens a pipe to write to a command.

−| Opens a pipe to read from a command.

y perlopentut.

Common constants

Several input/output related constants can be imported from
the standard module Fcntl.

52 | Perl Pocket Reference

Constants related to open and sysopen are imported by de-
fault. For some constants, the widely accepted values are shown
in octal.

Value Name Description

00000 O−RDONLY Read-only access.

00001 O−WRONLY Write-only access.

00002 O−RDWR Read and write access.

00100 O−CREAT Create the file if nonexistent.

00200 O−EXCL Fail if the file already exists.

02000 O−APPEND Append data to the end of the file.

01000 O−TRUNC Truncate the file.

O−NONBLOCK Nonblocking input/output.

O−NDELAY Same as O−NONBLOCK.

O−SYNC Synchronous input/output.

O−EXLOCK Lock exclusive.

O−SHLOCK Lock shared.

O−DIRECTORY File must be a directory.

O−NOFOLLOW Do not follow symlinks.

O−BINARY Use binary mode for input/output.

O−LARGEFILE Allow file to be larger than 4 GB.

O−NOCTTY Terminal will not become the controlling tty.

Constants related to seek and sysseek must be imported ex-
plictly by specifying :seek in the import list of Fcntl.

Value Name Description

00 SEEK−SET Seek position.

01 SEEK−CUR Seek offset from current position.

02 SEEK−END Seek offset from end of file.

Input and Output | 53

Constants related to flock must be imported explictly by spec-
ifying :flock in the import list of Fcntl.

Value Name Description

001 LOCK−SH Shared lock.

002 LOCK−EX Exclusive lock.

004 LOCK−NB Nonblocking lock.

010 LOCK−UN Unlock.

Standard I/O Layers

Layer Description

:bytes Use 8-bit bytes, as opposed to :utf8.

:crlf Do CR/LF to newline translation, and vice versa.

:encoding(enc) Select a specific encoding.

:perlio Use Perl's I/O implementation.

:raw Use low-level I/O.

:stdio Use the system's standard I/O implementation.

:unix Use Unix-style low-level I/O.

:utf8 Use Perl's internal encoding of Unicode.

:Via(module) Use the specified module to handle the I/O.

:win32 Use native I/O (Microsoft Windows platforms only).

y PerlIO, perlrun (under “ENVIRONMENT/PERLIO”).

Formatted Printing
printf and sprintf format a list of values according to a format
string that may use the following conversions:

%% A percent sign.
%b An unsigned integer (binary).

54 | Perl Pocket Reference

%c The character corresponding to the ordinal value.
%d A signed integer.
%e A floating-point number (scientific notation).
%f A floating-point number (fixed decimal notation).
%g A floating-point number (%e or %f notation).
%i A synonym for %d.
%n The number of characters formatted so far is stored

into the corresponding variable in the parameter list.
%o An unsigned integer (octal).
%p A pointer (address in hexadecimal).
%s A string.
%u An unsigned integer (decimal).
%x An unsigned integer (hexadecimal).
%B Like %b, but using an uppercase B.
%D An obsolete synonym for %ld.
%E Like %e, but using an uppercase E.
%F An obsolete synonym for %f.
%G Like %g, but with an uppercase E (if applicable).
%O An obsolete synonym for %lo.
%U An obsolete synonym for %lu.
%X Like %x, but using uppercase letters.

The following flags can be put between the % and the conversion
letter:

space Prefix a positive number with a space.
+ Prefix a positive number with a plus sign.
− Left-align within the field.
0 Use zeros instead of spaces to right-align.
With o, b, x, and X: prefix a nonzero number with 0,

0b, 0x, or 0X.
number Minimum field width.
.number For a floating-point number, the number of digits

after the decimal point. For a string, the maximum
length. For an integer, the minimum width. The inte-
ger will be right-aligned, padded with zeros.

h Interpret integer as C type short or unsigned short.
hh Interpret integer as C type char.
j Interpret integer as C99 type intmax_t.

Formatted Printing | 55

l Interpret integer as C type long or unsigned long.
ll, L, q Interpret integer as C type quad (64-bit).
t Interpret integer as C type ptrdiff_t.
v Print string as series of ordinals. Use with d, o, b, x,

or X.
V Interpret integer according to Perl’s type.
z Interpret integer as C type size_t.

An asterisk (*) may be used instead of a number; the value of
the next item in the list will be used. With %*v, the next item in
the list will be used to separate the values.

Parameter ordering can be obtained by inserting n$ directly
after a % or *. This conversion will then use the nth argument.

See the section Formats below for an alternative way to obtain
formatted output.

Formats
formline picture, list

Formats list according to picture and accumulates the
result into $^A.

write [filehandle]
Writes a formatted record to the specified file, using
the format associated with that file. If filehandle is
omitted, the currently selected one is taken.

Formats are defined as follows:

format [name] =
formlist
.

formlist is a sequence of lines, each of which is either a comment
line (# in the first column), a picture line, or an argument line.
A picture line contains descriptions of fields. It can also contain
other text that will be output as given. Argument lines contain
lists of values that are output in the format and order of the
preceding picture line.

name defaults to STDOUT if omitted.

56 | Perl Pocket Reference

To associate a format with the current output stream, assign its
name to the special variable $~. A format to handle page breaks
can be assigned to $^. To force a page break on the next write,
set $− to zero.

Picture fields are:

@<<< Left-adjusted field. Repeat the < to denote the desired
width.

@>>> Right-adjusted field.
@||| Centered field.
@##.## Numeric format with implied decimal point.
@0#.## Same, padded with leading zeros if necessary.
@* Multiline field.

Use ^ instead of @ for multiline block filling.

Use ~ in a picture line to suppress unwanted empty lines.

Use ~~ in a picture line to have this format line repeated until it
would yield a completely blank line. Use with ^ fields to have
them repeated until exhausted.

See also $^, $~, $^A, $%, $:, $^L, $−, and $= in the section
Special Variables on page 70.

y perlform.

Directory Reading Routines
closedir dirhandle

Closes a directory opened by opendir.

opendir dirhandle, dirname
Opens a directory on the handle specified. If dirhan-
dle is an uninitialized scalar variable, a new, unique
handle is automatically created.

readdir dirhandle
In scalar context, returns the next entry from the
directory or undef if none remains. The entry is the
name component within the directory, not the full
name.

Directory Reading Routines | 57

In list context, returns a list of all remaining entries
from the directory.

rewinddir dirhandle
Prepares for reading the first entry again.

seekdir dirhandle, pos
Sets the position for readdir on the directory. pos
should be a file offset as returned by telldir.

telldir dirhandle
Returns the position in the directory.

System Interaction
alarm expr†

Schedules a SIGALRM signal to be delivered after expr
seconds. If expr is zero, cancels a pending timer.

chdir [expr]
Changes the working directory. expr can be a file
name or a handle. Uses $ENV{HOME} or $ENV{LOGNAME}
if expr is omitted.

chroot filename†
Changes the root directory for the process and any
future children.

die [list]
Prints the value of list to STDERR and exits with value
$!(if nonzero), or ($?>> 8) (if nonzero), or 255. list
defaults to the text "Died".

Included in the message are the name and line num-
ber of the program and the current line of input read.
This information is suppressed if the last character of
the last element of list is a newline.

Inside an eval, the error message is stuffed into $@,
and the eval is terminated returning undef. This
makes die and eval the way to raise and catch ex-
ceptions.

58 | Perl Pocket Reference

exec [program] list
Executes the system command in list; does not
return. program can be used to explictly designate
the program to execute the command.

exit [expr]
Exits immediately with the value of expr, which
defaults to zero. Calls END routines and object de-
structors before exiting.

fork Does a fork syscall. Returns the process ID of the child
to the parent process (or undef on failure) and zero
to the child process.

getlogin Returns the current login name as known by the
system. If it returns false, use getpwuid.

getpgrp [pid]
Returns the process group for process pid. If pid is
zero, or omitted, uses the current process.

getppid Returns the process ID of the parent process.

getpriority which, who
Returns the current priority for a process, process
group, or user. Use getpriority 0,0 to designate the
current process.

glob expr†
Returns a list of filenames that match the C-shell pat-
tern(s) in expr. <pattern> is a discouraged shorthand
for glob("pattern").
Use File::Glob for more detailed globbing control.

kill list Sends a signal to a list of processes. The first ele-
ment of the list must be the signal to send, either
numerically (e.g., 1), or its name as a string (e.g.,
HUP). Negative signals affect process groups instead of
processes.

setpgrp pid, pgrp
Sets the process group for the pid. If pid is zero, affects
the current process.

setpriority which, who, priority
Sets the priority for a process, process group, or a user.

System Interaction | 59

sleep [expr]
Causes the program to sleep for expr seconds, or
forever if expr is omitted. Returns the number of
seconds actually slept.

syscall list
Calls the syscall specified in the first element of the
list, passing the rest of the list as arguments to the
call. Returns –1 (and sets $!) on error.

system [program] list
Like exec, except that a fork is performed first, and the
parent process waits for the child process to complete.
During the wait, the signals SIGINT and SIGQUIT are
passed to the child process.

Returns the exit status of the child process. Zero
indicates success, not failure.

program can be used to explicitly designate the pro-
gram to execute the command.

times Returns a four-element list (user, system, cuser, csys-
tem) giving the user and system times, in seconds, for
this process and the children of this process.

umask [expr]
Sets the umask for the process and returns the old
one. If expr is a number, it must be an octal number.
If expr is omitted, umask does not change the current
umask value.

wait Waits for a child process to terminate and returns the
process ID of the deceased process (–1 if none). The
status is returned in $?.

waitpid pid, flags
Performs the same function as the corresponding
syscall. Returns 1 when process pid is dead, –1 if
nonexistent.

warn [list]
Prints the list on STDERR like die, but doesn’t exit. list
defaults to "Warning: something's wrong".
Includes program info as with die.

60 | Perl Pocket Reference

Networking
accept newsocket, listeningsocket

Accepts a new socket. If newsocket is an uninitialized
scalar variable, a new, unique handle is automatically
created.

bind socket, name
Binds the name to the socket.

connect socket, name
Connects a socket to the named peer.

getpeername socket
Returns the socket address of the other end of the
socket.

getsockname socket
Returns the name of the socket.

getsockopt socket, level, optname
Returns the socket options.

listen socket, queuesize
Starts listening on the specified socket, allowing queue-
size connections.

recv socket, $var, length, flags
Receives a message of length characters on the socket
and puts it into scalar variable $var.

send socket, msg, flags [, to]
Sends a message on the socket.

setsockopt socket, level, optname, optval
Sets the requested socket option.

shutdown socket, how
Shuts the socket down.

socket socket, domain, type, protocol
Creates a socket in the domain with the given type
and protocol. If socket is an uninitialized scalar
variable, a new, unique handle is created.

socketpair socket1, socket2, domain, type, protocol
Works the same as socket, but creates a pair of bidi-
rectional sockets.

Networking | 61

System V IPC
use the standard module IPC::SysV to access the message- and
semaphore-specific operation names.

msgctl id, cmd, args
Calls msgctl. If cmd is IPC−STAT then args must be a
scalar variable.

msgget key, flags
Creates a message queue for key. Returns the message
queue identifier.

msgrcv id, $var, size, type, flags
Receives a message from queue id into $var.

msgsnd id, msg, flags
Sends msg to queue id.

semctl id, semnum, cmd, arg
Calls semctl. If cmd is IPC−STAT or GETALL then arg
must be a scalar variable.

semget key, nsems, size, flags
Creates a set of semaphores for key. Returns the mes-
sage semaphore identifier.

semop key, . . .
Performs semaphore operations.

shmctl id, cmd, arg
Calls shmctl. If cmd is IPC−STAT then arg must be a
scalar variable.

shmget key, size, flags
Creates shared memory. Returns the shared memory
segment identifier.

shmread id, $var, pos, size
Reads at most size bytes of the contents of shared
memory segment id starting at offset pos into $var.

shmwrite id, string, pos, size
Writes at most size bytes of string into the contents of
shared memory segment id at offset pos.

y perlipc.

62 | Perl Pocket Reference

Miscellaneous
defined expr†

Tests whether the scalar expression has an actual
value.

do { expr ; . . . }
Executes the block and returns the value of the last
expression. See also the section Statements on page 14.

do filename
Executes filename as a Perl script. See also require on
page 16.

eval { expr ; . . . }
Executes the code between { and }. Traps runtime
errors as described with eval(expr) on page 30.

local [our] variable
Gives a temporary value to the named package vari-
able, which lasts until the enclosing block, file, or
eval exits. variable may be a scalar, an array, a hash,
or an element (or slice) of an array or hash.

my varlist
varlist is a variable, or parenthesized list of variables.
Creates a scope for the variables lexically local to the
enclosing block, file, or eval.

my [class] varlist [attributes]
Experimental. Built-in attribute is :shared. Module
Attribute::Handlers can be used to define additional
attributes.

our varlist
Declares the variables to be a valid global within the
enclosing block, file, or eval.

our [class] varlist [attributes]
Experimental. Built-in attributes are :shared and
:unique. Module Attribute::Handlers can be used
to define additional attributes.

ref expr†
Returns the referent type if expr is a reference. Returns
the package name if expr has been blessed into a

Miscellaneous | 63

package.

reset [expr]
expr is a string of single letters. All variables in the
current package beginning with one of those letters
are reset to their pristine state. If expr is omitted,
resets ?? searches so that they work again.

state varlist
Like my, but does not reinitialize the variables upon
reentry of the enclosing block.

state [class] varlist [attributes]
Experimental extension of state varlist.

undef [lvalue]
Undefines the lvalue. Always returns undef.

Tying Variables
tie var, classname, [list]

Ties a variable to a class that will handle it. list is
passed to the class constructor.

tied var Returns a reference to the object underlying var, or
undef if var is not tied to a class.

untie var
Breaks the binding between the variable and the class.
Calls an UNTIE method if provided.

A class implementing a tied scalar should define the methods
TIESCALAR, DESTROY, FETCH, and STORE.

A class implementing a tied ordinary array should define the
methods TIEARRAY, CLEAR, DESTROY, EXTEND, FETCHSIZE, FETCH,
POP, PUSH, SHIFT, SPLICE, STORESIZE, STORE, and UNSHIFT.

A class implementing a tied hash should define the meth-
ods TIEHASH, CLEAR, DELETE, DESTROY, EXISTS, FETCH, FIRSTKEY,
NEXTKEY, SCALAR, and STORE.

A class implementing a tied filehandle should define the meth-
ods TIEHANDLE, CLOSE, DESTROY, GETC, PRINTF, PRINT, READLINE,
READ, and WRITE.

64 | Perl Pocket Reference

Several base classes to implement tied variables are available
in the standard libraries: Tie::Array, Tie::Handle, Tie::Hash,
Tie::RefHash, and Tie::Scalar.

y perltie.

Information from System Databases

Information About Users

In list context, each of these routines returns a list of values.
Use the standard module User::pwent for by-name access to the
elements of the list:

Index Name Description

0 name Username

1 passwd Password info

2 uid ID of this user

3 gid Group ID of this user

4 quota Quota information

5 comment Comments

6 gecos Full name

7 dir Home directory

8 shell Login shell

9 expire Password expiration info

endpwent
Ends lookup processing.

getpwent
Gets next user information.
In scalar context, returns the username.

getpwnam name
Gets information by name.
In scalar context, returns the user ID.

Information from System Databases | 65

getpwuid uid
Gets information by user ID.
In scalar context, returns the username.

setpwent
Resets lookup processing.

Information About Groups

In list context, each of these routines returns a list of values.
Use the standard module User::grent for by-name access to the
elements of the list:

Index Name Description

0 name Group name

1 passwd Password info

2 gid ID of this group

3 members Space-separated list of the login names of the
group members

endgrent Ends lookup processing.

getgrent Gets next group information.
In scalar context, returns the group name.

getgrgid gid
Gets information by group ID.
In scalar context, returns the group name.

getgrnam name
Gets information by name.
In scalar context, returns the group ID.

setgrent Resets lookup processing.

Information About Networks

In list context, each of these routines returns a list of values.
Use the standard module Net::netent for by-name access:

66 | Perl Pocket Reference

Index Name Description

0 name Network name

1 aliases Alias names

2 addrtype Address type

3 net Network address

endnetent
Ends lookup processing.

getnetbyaddr addr, type
Gets information by address and type.
In scalar context, returns the network name.

getnetbyname name
Gets information by network name.
In scalar context, returns the network number.

getnetent
Gets next network information.
In scalar context, returns the network name.

setnetent stayopen
Resets lookup processing.

Information About Network Hosts

In list context, each of these routines returns a list of values.
Use the standard module Net::hostent for by-name access to
the elements of the list:

Index Name Description

0 name Host name

1 aliases Alias names

2 addrtype Address type

3 length Length of address

4 addr Address, or addresses

Information from System Databases | 67

endhostent
Ends lookup processing.

gethostbyaddr addr, addrtype
Gets information by IP address.
In scalar context, returns the hostname.

gethostbyname name
Gets information by hostname.
In scalar context, returns the host address.

gethostent
Gets next host information.
In scalar context, returns the hostname.

sethostent stayopen
Resets lookup processing.

Information About Network Services

In list context, each of these routines returns a list of values.
Use the standard module Net::servent for by-name access to
the elements of the list:

Index Name Description

0 name Service name

1 aliases Alias names

2 port Port number

3 proto Protocol number

endservent
Ends lookup processing.

getservbyname name, protocol
Gets information by service name for the protocol.
In scalar context, returns the service (port) number.

getservbyport port, protocol
Gets information by service port for the protocol.
In scalar context, returns the service name.

68 | Perl Pocket Reference

getservent
Gets next service information.
In scalar context, returns the service name.

setservent stayopen
Resets lookup processing.

Information About Network Protocols

In list context, each of these routines returns a list of values.
Use the standard module Net::protoent for by-name access to
the elements of the list:

Index Name Description

0 name Protocol name

1 aliases Alias names

2 proto Protocol number

endprotoent
Ends lookup processing.

getprotobyname name
Gets information by protocol name.
In scalar context, returns the protocol number.

getprotobynumber number
Gets information by protocol number.
In scalar context, returns the name of the protocol.

getprotoent
Gets next protocol information.
In scalar context, returns the name of the protocol.

setprotoent stayopen
Resets lookup processing.

Information from System Databases | 69

Special Variables
The alternative names for special variables are provided by the
standard module English.

The following variables are global and should be localized in
subroutines:

$− Alternative: $ARG.
The default argument for many functions and oper-
ations.

$. Alternatives: $INPUT−LINE−NUMBER, $NR.
The current input line number of the last filehandle
that was read. Reset only when the filehandle is closed
explicitly.

$/ Alternatives: $INPUT−RECORD−SEPARATOR, $RS.
The string that separates input records. Default value
is a newline.

$, Alternatives: $OUTPUT−FIELD−SEPARATOR, $OFS.
The output field separator for the print functions.
Default value is an empty string.

$" Alternative: $LIST−SEPARATOR.
The separator that joins elements of arrays interpo-
lated in strings. Default value is a single space.

$\ Alternatives: $OUTPUT−RECORD−SEPARATOR, $ORS.
The output record separator for the print functions.
Default value is an empty string.

$? Alternative: $CHILD−ERROR.
The status returned by the last ` . . . ` command,
pipe close, wait, waitpid, or system function.

$] The Perl version number, e.g., 5.006. See also $^V
on page 72.

$[The index of the first element in an array or list,
and of the first character in a substring. Default is
zero. Deprecated. Do not use.

$; Alternatives: $SUBSCRIPT−SEPARATOR, $SUBSEP.
The subscript separator for multidimensional hash
emulation. Default is "\034".

70 | Perl Pocket Reference

$! Alternatives: $OS−ERROR, $ERRNO.
If used in numeric context, yields the current value
of errno. Otherwise, yields the corresponding error
string.

$@ Alternative: $EVAL−ERROR.
The Perl error message from the last eval or do expr
command.

$: Alternative: $FORMAT−LINE−BREAK−CHARACTERS.
The set of characters after which a string may be
broken to fill continuation fields (starting with ^) in
a format.

$0 Alternative: $PROGRAM−NAME.
The name of the file containing the Perl script being
executed. May be assigned to.

$$ Alternatives: $PROCESS−ID, $PID.
The process ID of the Perl interpreter running this
script. Altered (in the child process) by fork.

$< Alternatives: $REAL−USER−ID, $UID.
The real user ID of this process.

$> Alternatives: $EFFECTIVE−USER−ID, $EUID.
The effective user ID of this process.

$(Alternatives: $REAL−GROUP−ID, $GID.
The real group ID of this process.

$) Alternatives: $EFFECTIVE−GROUP−ID, $EGID.
The effective group ID, or a space-separated list of
group IDs, of this process.

$^A Alternative: $ACCUMULATOR.
The accumulator for formline and write operations.

$^{CHILD−ERROR−NATIVE}
As $?, but returns the native status instead.

$^C Alternative: $COMPILING.
True if Perl is run in compile-only mode (command-
line option −c).

$^D Alternative: $DEBUGGING.
The debug flags as passed to Perl using command-
line option −D.

Special Variables | 71

$^E Alternative: $EXTENDED−OS−ERROR.
Operating-system dependent error information.

$^F Alternative: $SYSTEM−FD−MAX.
The highest system file descriptor, ordinarily 2.

$^H The current state of syntax checks.

$^I Alternative: $INPLACE−EDIT.
In-place edit extension as specified using command-
line option −i.

$^L Alternative: $FORMAT−FORMFEED.
Formfeed character used in formats.

$^M Emergency memory pool.

$^O Alternative: $OSNAME.
Operating system name.

$^P Alternative: $PERLDB.
Internal debugging flag.

$^{RE−DEBUG−FLAGS}
Flags for debugging.

$^{RE−TRIE−MAXBUF}
For trie optimisation of literal string alternations.

$^S Alternative: $EXCEPTIONS−BEING−CAUGHT.
Current state of the Perl interpreter.

$^T Alternative: $BASETIME.
The time (as delivered by time) when the program
started. This value is used by the file test operators
−M, −A, and −C.

$^{TAINT}
The current state of taint mode.

$^V Alternative: $PERL−VERSION.
The Perl version as a version object. Use %vd format
to print it.

$^W Alternative: $WARNING.
The value of the −w option as passed to Perl.

$^{WIN32−SLOPPY−STAT}
Controls sloppy stat on Windows.

72 | Perl Pocket Reference

$^X Alternative: $EXECUTABLE−NAME.
The name by which Perl was invoked.

$AUTOLOAD
The name of the undefined subroutine that was called.

$REGERROR
On a match failure, to the name of the failing back-
track control or the last (*MARK:name) pattern.

$REGMARK
On a successful match, this contains the name of the
last (*MARK:name) pattern.

The following variables are context dependent and need not be
localized:

$% Alternative: $FORMAT−PAGE−NUMBER.
The current page number of the currently selected
output handle.

$= Alternative: $FORMAT−LINES−PER−PAGE.
The page length of the current output handle. Default
is 60 lines.

$− Alternative: $FORMAT−LINES−LEFT.
The number of lines remaining on the page.

$~ Alternative: $FORMAT−NAME.
The name of the current report format.

$^ Alternative: $FORMAT−TOP−NAME.
The name of the current top-of-page format.

$| Alternative: $OUTPUT−AUTOFLUSH.
If set to nonzero, forces a flush after every write or
print on the currently selected output handle. Default
is zero.

$ARGV The name of the current file when reading from < > .

The following variables are always local to the current block:

$& Alternative: $MATCH.
The string matched by the last successful match.

$` Alternative: $PREMATCH.
The string preceding what was matched by the last
successful match.

Special Variables | 73

$' Alternative: $POSTMATCH.
The string following what was matched by the last
successful match.

$+ Alternative: $LAST−PAREN−MATCH.
The last bracket matched by the last search pattern.

$1 . . . $9 . . .
Contain the subpatterns from the corresponding sets
of parentheses in the last pattern successfully matched.
$10 and up are only available if the match contained
that many subpatterns.

$^N Alternative: $LAST−SUBMATCH−RESULT.
The text matched by the most recently closed group.

$^R Alternative: $LAST−REGEXP−CODE−RESULT.
Result of last (?{ code }).

y perlvar.

Special Arrays
The alternative names are provided by the standard module
English.

@− Alternative: @ARG.
Parameter array for subroutines. Also used by split if
not in list context.

@− Alternative: @LAST−MATCH−START.
After a successful pattern match, contains the offsets
of the beginnings of the successful submatches.
$−[0] is the offset of the entire match.

@+ Alternative: @LAST−MATCH−END.
Like @−, but the offsets point to the ends of the sub-
matches. $+[0] is the offset of the end of the entire
match.

@ARGV Contains the command-line arguments for the script
(not including the command name, which is in $0).

@EXPORT Names the methods and other symbols a package
exports by default. Used by the Exporter module.

74 | Perl Pocket Reference

@EXPORT−OK
Names the methods and other symbols a package can
export upon request. Used by the Exporter module.

@F When command-line option −a is used, contains the
split of the input lines.

@INC Contains the list of places to look for Perl scripts
to be evaluated by the do filename, use and require
commands.

Do not modify @INC directly, but use the lib pragma
or −I command-line option instead.

@ISA List of base classes of a package.

y perlvar.

Special Hashes
%! Each element of %! has a nonzero value only if $! is

set to that value.

%+ Contains the named subpatterns with defined values
from the last pattern successfully matched.

%− Contains all named subpatterns from the last pattern
successfully matched.

%ENV Contains the current environment. The key is the
name of an environment variable; the value is its
current setting.

%EXPORT−TAGS
Defines names for sets of symbols. Used by the
Exporter module.

%INC Contains the list of files that have been included with
use, require, or do. The key is the filename as spec-
ified with the command; the value is the location of
the file.

%SIG Registers signal handlers for various signals. The
key is the name of the signal (without the SIG
prefix); the value a subroutine that is executed when
the signal occurs.

Special Hashes | 75

−−WARN−− and −−DIE−− are pseudosignals to attach
handlers to Perl warnings and exceptions.

y perlvar.

Environment Variables
Perl uses several environment variables. With a few excep-
tions, these all start with PERL. Library packages and platform-
dependent features may have their own environment variables.

These are the most common environment variables:

HOME Used if chdir has no argument.

LC−ALL, LC−CTYPE, LC−COLLATE, LC−NUMERIC,
PERL−BADLANG, LANGUAGE, LANG

Controls how Perl handles data specific to particular
natural languages.

LOGDIR Used if chdir has no argument and HOME is not set.

PATH Used in executing subprocesses, and in finding the
Perl script if −S is used.

PERL5LIB
A colon-separated list of directories to search for Perl
library files before looking in the standard library
and the current directory.

PERLLIB Used instead of PERL5LIB if PERL5LIB is not defined.

PERL5OPT
Initial (command-line) options for Perl.

Threads
Support for threads needs to be built into the Perl executable.

The pragma threads implements thread objects and the neces-
sary operations for threads. Some of the most relevant opera-
tions are:

76 | Perl Pocket Reference

async block
Starts a thread to execute the block. Returns the
thread object.

threads−>create(sub [, args])
Creates a new thread that starts executing in the
referenced subroutine. The args are passed to this
subroutine. Returns the thread object.

threads−>list
Returns a list of joinable threads.

threads−>self
Returns an object representing the current thread.

threads−>tid
Returns the thread ID of the current thread.

threads−>yield
The current thread gives up the CPU in favor of
other threads.

thread objects support the several methods, including:

detach Detaches a thread so it runs independently.

equal(thread)
Returns true if the thread and thread are the same
thread. You can also compare thread objects directly,
using the == operator.

join Waits for the thread to complete. The value returned
is the return value from the thread’s subroutine.

tid Returns the thread ID of a thread.

The pragma threads::shared implements operations that
enable variable sharing across threads:

cond_broadcast variable
Unblocks all threads waiting for this variable. variable
must be locked.

cond_signal variable
Unblocks one thread that is waiting for this variable.
variable must be locked.

cond_timed_wait [condvar ,] variable, time
Like cond_wait, but times out at the indicated time.

Threads | 77

cond_wait [condvar ,] variable
Waits for another thread to signal (cond_signal or
cond_broadcast) the variable. variable must be locked
and will be temporarily unlocked while waiting. With
condvar, unlocks variable while waiting for a signal
for condvar.

is_shared variable
Checks if the specified variable is shared.

lock variable
Locks a shared variable against concurrent access.
The lock is automatically released when it goes out
of scope.

share variable
Marks the variable as shared.

shared_clone ref
Takes a reference, and returns a shared version of its
argument.

y perlthrtut, threads, threads::shared.

78 | Perl Pocket Reference

Appendix A:
Command-Line Options

−− Stops processing options.

−0 [octnum]
(That’s the number zero.) Designates an initial octal
value for the record separator $/. See also −l on the
following page.

−a Turns on autosplit mode when used with −n or −p.
Splits to @F.

−c Checks syntax but does not execute. It does, however,
run BEGIN, CHECK, and UNITCHECK blocks.

−C [number / list]
Controls some of the Perl Unicode features.

−d[t] [:module] [=arg [,arg...]]
Runs the script under the indicated module. With −dt
enable threads. Default module is the Perl debugger.
Use −de 0 to start the debugger without a script.

−D flags Sets debugging flags.

−e commandline
May be used to enter a single line of script. Multiple
−e commands build up a multiline script.

−E Same as −e, but implicitly enables all optional fea-
tures. See the section Pragmatic Modules on page 17.

−F pat Specifies a pattern on which to split if −a is in effect.

−h Prints the Perl usage summary. Does not execute.

−i [ext]
Activates in-place editing for files processed by the < >
construct.

Appendix A: Command-Line Options | 79

−I dir The directory is prepended to the search path for Perl
modules, @INC.

−l [octnum]
(That’s the letter el.) Enables automatic line ending
processing, e.g., −l013.

−m[−]module [=arg [, arg...]]
−M[−]module [=arg [, arg...]]

Does a use module before executing the script.
With − does a no module instead.
Without arguments, −M imports the default set and
−m imports nothing.
Otherwise, the arguments are passed to the module’s
import method.

−n Assumes an input loop around the script. Lines are
not printed.

−p Assumes an input loop around the script. Lines are
printed.

−s Interprets −xxx on the command line as a switch and
sets the corresponding variable $xxx in the script to
1. If the switch is of the form −xxx=yyy, the $xxx
variable is set to yyy.

−S Uses the PATH environment variable to find the script.

−t Turns on taint checking. warns on taint violations.

−T Turns on taint checking. dies on taint violations.

−u Dumps core after compiling the script. To be used
with the undump program. Obsolete.

−U Allows Perl to perform certain unsafe operations.

−v Prints the version and patch level of your Perl exe-
cutable. Does not execute anything.

−V [:var]
Prints Perl configuration information, e.g., −V:man.dir.
Does not execute anything.

−w Prints warnings about possible spelling errors and
other error-prone constructs in the script. Can be
enabled and disabled under program control.

80 | Perl Pocket Reference

−W Enables warnings permanently.

−x [dir] Extracts the program script from the input stream.
Switches to dir if specified.

−X Disables warnings permanently.

y perlrun.

PERL5OPT

Environment variable PERL5OPT can be used to preset the fol-
lowing command-line options: −D, −I, −M, −T, −U, −W, −d, −m, −t,
and −w.

#!

All options except −M and −m may be used on the #! line of the
Perl script.

Options −C and −T may be used on the #! line provided they are
also specified on the command-line.

#! | 81

Appendix B:
The Perl Debugger

The Perl symbolic debugger is invoked with perl −d. The com-
mand perl −de 0 is a good way to play with Perl and the de-
bugger.

Upon startup, the debugger will try to read settings and initial
commands from a file .perldb (perldb.ini on Windows) in the
current directory or, if not found, in the home directory.

Any input to the debugger that is not one of the commands
enumerated below is evaluated as a Perl expression.

a [line] command
Sets an action for line.

A [line] Deletes the action at the given line; default is the
current line. If line is *, deletes all line actions.

b [line [condition]]
Sets a breakpoint at line; default is the current line.

b subname [condition]
Sets a breakpoint at the named subroutine.

b compile subname
Stops after the subroutine is compiled.

b load file
Sets a breakpoint at requireing the given file.

b postpone subname [condition]
Sets a breakpoint at the first line of the subroutine
after it is compiled.

B [line] Deletes the breakpoint at the given line; default is
the current line. If line is *, deletes all breakpoints.

c [line] Continues (until line, or another breakpoint, or exit).

82 | Perl Pocket Reference

f file Switches to file and starts listing it.

h Prints out a long help message.

h cmd Prints out help for debugger command cmd.

h h Prints out a concise help message.

H [−number]
Displays the last −number commands.

l [range]
Lists a range of lines. range may be a number,
start − end, start + amount, or a subroutine name. If
range is omitted, lists the next screenful.

l subname
Lists the named subroutine.

L [a|b|w]
Lists lines with actions, breakpoints, or watches.

m class Prints the methods callable via the given class.

m expr Evaluates the expression in list context, prints the
methods callable on the first element of the result.

man [topic]
Views system documentation.

M Lists loaded modules and their versions.

n [expr]
Single steps around the subroutine call.

o [opt [= val]]
Sets values of debugger options. Default value is true.

o opt ? Queries values of debugger options.

p expr† Evaluates expr in list context and prints the result.
See also x on the following page.

q Quits the debugger. An end of file condition on the
debugger input will also quit.

r Returns from the current subroutine.

R Restarts the debugger.

s [expr]
Single steps.

source file
Executes the debugger commands in the named file.

Appendix B: The Perl Debugger | 83

S [!] pattern
Lists the names of all subroutines [not] matching the
pattern.

t Toggles trace mode.

t expr Traces through execution of expr.

T Prints a stack trace.

v [line] Lists a screenful of lines around the specified line.

V [package [pattern]]
Lists variables matching pattern in a package. Default
package is main.

w expr Adds a global watch-expression.

W [expr]
Deletes the global watch-expression. If expr is *, deletes
all watch-expressions.

x [depth] expr
Evaluates expr in list context and dumps the result.
With depth, dump is limited to depth levels deep.

X [pattern]
Like V, but assumes the current package.

y [n [pattern]]
Like V, but lists lexicals in higher scope n. Requires
the optional module PadWalker.

. Returns to the executed line.

− Lists the previous screenful of lines.

= [alias [value]]
Sets or queries an alias, or lists the current aliases.

/pattern [/]
Searches forward for pattern.

?pattern [?]
Searches backward for pattern.

< command
Sets an action to be executed before every debugger
prompt. If command is ?, lists current actions. If com-
mand is *, deletes all actions.

84 | Perl Pocket Reference

<< command
Adds an action to the list of actions to be executed
before every debugger prompt.

> command
Sets an action to be executed after every debugger
prompt. If command is ?, lists current actions. If com-
mand is *, deletes all actions.

>> command
Adds an action to the list of actions to be executed
after every debugger prompt.

{ command
Defines a debugger command to run before each
prompt. If command is ?, lists current commands.
If command is *, deletes all actions.

{{ command
Adds a debugger command to the list of debugger
commands to run before each prompt.

! [[-] number]
Re-executes a command. Default is the previous
command.

! [pattern]
Re-executes the last command that started with
pattern.

!! [command]
Runs external command in a subprocess.

| cmd Runs command cmd through the current pager.

|| cmd Same as |cmd, but selects DB::OUT as well.

Pressing the Enter or Return key at the debugger prompt will
repeat the last s or n command.

The debugger uses environment variables DISPLAY, EMACS, LESS,
MANPATH, PERL5DB, PAGER, OS2−SHELL, SHELL, TERM and WINDOWID,
as well as several other variables all starting with PERLDB−.

y perldebug, perldebtut.

Appendix B: The Perl Debugger | 85

Appendix C:
Perl Links

Organizational
http://www.perl.org/

The home of Perl. Here you’ll find news and informa-
tion, downloads, documentation, events, and more.

http://perlfoundation.org/
The Perl Foundation. Dedicated to the advancement
of the Perl programming language through open dis-
cussion, collaboration, design, and code.

http://www.perl.com/
Perl news site.

http://www.pm.org/
The home of the Perl Mongers, the de facto Perl user
group.

http://www.perlmonks.org
Online community of Perl users and information.

http://www.yapc.org
Grassroots symposia on the Perl programming lan-
guage.

Sources, documentation, support
http://www.cpan.org/

Comprehensive Perl Archive Network, CPAN.

http://search.cpan.org/
CPAN search engine.

86 | Perl Pocket Reference

http://www.perl.org/
http://perlfoundation.org/
http://www.perl.com/
http://www.pm.org/
http://www.perlmonks.org
http://www.yapc.org
http://www.cpan.org/
http://search.cpan.org/

http://lists.perl.org/
A huge collection of Perl-related mailing lists.

http://bugs.perl.org/
The Perl bug database.

http://history.perl.org/
Home of CPAST and the Perl Timeline.

News, blogs, publications
http://johan.vromans.org/perlref.html

Home of the Perl Pocket Reference in all its incarna-
tions.

http://johan.vromans.org/
The author’s home.

http://www.theperlreview.com/
The Perl Review.

http://perlnews.org
Perl news portal.

http://p3rl.org/
Url shortener for Perl documentation.

http://perlsphere.net/
Yet another big Perl blog aggregator.

Platforms, distributions
http://www.enlightenedperl.org/

Organization to find and enhance the best of breed
modules.

http://www.citrusperl.org
An application-oriented distribution of Perl.

http://win32.perl.org
The home of the Win32 Perl community.

Platforms, distributions | 87

http://lists.perl.org/
http://bugs.perl.org/
http://history.perl.org/
http://johan.vromans.org/perlref.html
http://johan.vromans.org/
http://www.theperlreview.com/
http://perlnews.org
http://p3rl.org/
http://perlsphere.net/
http://www.enlightenedperl.org/
http://www.citrusperl.org
http://win32.perl.org

Index

$!............58, 60, 71, 75
$"70
$$71
$'43, 74
$(...........................71
$)71
$+43, 74
$,70
$−57, 73
$.48, 70
$/.................30, 70, 79
$071, 74
$143, 74
$10..........................74
$943, 74
$:57, 71
$;70
$=57, 73
$>71
$?.......25, 58, 60, 70, 71
$@.................30, 58, 71
$ARGV.......................73
$AUTOLOAD............24, 73
$REGERROR.................73
$REGMARK73
$[...........................70
$|73
$%57, 73
$&43, 73
$<71
$\70
$]70
$^57, 73
$^A 56, 57, 71

$^C..........................71
$^{CHILD−ERROR−NATIVE}

71
$^D..........................71
$^E..........................72
$^F..........................72
$^H..........................72
$^I..........................72
$^L.....................57, 72
$^M..........................72
$^N 38, 43, 74
$^O..........................72
$^P..........................72
$^R 39, 43, 74
$^{RE−DEBUG−FLAGS} ...72
$^{RE−TRIE−MAXBUF} ...72
$^S..........................72
$^T.....................48, 72
$^{TAINT}.................72
$^V.....................70, 72
$^W..........................72
$^{WIN32−SLOPPY−STAT}

72
$^X..........................73
$− ..2, 14, 32, 35, 43, 44,

47, 70
$`43, 73
$a33
$b33
$~57, 73
%+43, 75
%−43, 75
−A48, 72
−B48

−C48, 72
−M48, 72
−O47
−R47
−S47
−T48
−W47
−X47
−b47
−c47
−d47
−e47
−f47
−g47
−k47
−l47
−o47
−p47
−r47
−s47
−t47
−u47
−w47
−x47
−z47
.............................16
/a37, 42
/c43, 44
/d37, 44
/e44
/g.................41, 43–45
/i37–39
/l37
/m37–39

Index | 89

/o37
/p37
/r44
/s.................37–39, 44
/u37
/x37–39
=back.....................3, 4
=begin.......................3
=cut..........................3
=end 3, 4
=for..........................4
=head1.......................4
=head2.......................4
=head4.......................4
=item 4
=over 4
=pod..........................4
@+43, 74
@−43, 74
@ARGV 33, 48, 74
@EXPORT....................74
@EXPORT−OK75
@F75, 79
@INC..............19, 75, 80
@ISA25, 75
@−.......22, 25, 33, 34, 74
%!75
%+43, 75
%−43, 75
%ENV58, 75
%EXPORT−TAGS75
%INC75
%SIG75
<<8

−−DATA−−....................3

−−DIE−−....................76

−−END−− 3

−−FILE−−....................8

−−LINE−−....................7

−−PACKAGE−− 8

−−WARN−−76

$^A 56, 57, 71
−A48, 72
/a37, 42
abs 26

accept61
alarm......................58
and.........................13
$ARGV.......................73
@ARGV 33, 48, 74
ARGV..........................8
async77
atan226
Attribute::Handlers..63
attributes................17
autodie....................17
$AUTOLOAD............24, 73
AUTOLOAD24
autouse....................18

−B48
−b47
B< >...........................4
=back.....................3, 4
base18
BEGIN...............25, 79
=begin.......................3
bigint18
bignum18
bigrat18
bind........................61
binmode..................48
bless25
blib18
Block 14
break...................2, 15
bytes.......................18

$^C..........................71
−C48, 72
−c47
/c43, 44
C< >...........................4
caller 22
can 26
charnames 6, 18
chdir..................58, 76
CHECK 25, 79
$^{CHILD−ERROR−NATIVE}

71
chmod 45

chomp 30
chop30
chown.....................45
chr..........................27
chroot.....................58
close..................48, 70
closedir...................57
cond_broadcast .. 77, 78
cond_signal77, 78
cond_timed_wait 77
cond_wait77, 78
connect61
constant18
continue.............14, 15
CORE26
cos..........................27
CPAN, site 86
crypt.......................30
=cut..........................3

$^D..........................71
−d47
/d37, 44
DATA 3, 8

−−DATA−−....................3
DB::OUT....................85
dbmclose.................48
dbmopen.................48
default.................2, 15
defined23, 31, 34, 63
delete 32, 34, 35
detach.....................77
diagnostics..............18

−−DIE−−....................76
die..........................17
die................58, 60, 80
DISPLAY....................85
do . 3, 15, 16, 23, 63, 71,

75
DOES 26

$^E..........................72
−e47
/e44
E< >...........................4
each 32, 34, 35

90 | Perl Pocket Reference

else.........................14
elsif14
EMACS.......................85
encoding19
encoding::warnings ...19

−−END−− 3
END..................25, 59
=end 3, 4
endgrent..................66
endhostent 68
endnetent67
endprotoent.............69
endpwent65
endservent...............68
English....................70
%ENV58, 75
eof..........................49
equal 77
eval....23, 30, 58, 63, 71
exec...................59, 60
exists............23, 32, 35
exit....................25, 59
exp27
@EXPORT....................74
@EXPORT−OK75
%EXPORT−TAGS75
Exporter74, 75

$^F..........................72
@F75, 79
−f47
F< >...........................4
Fcntl 52–54
fcntl........................49
feature....................19
feature17
fields19

−−FILE−−....................8
File::Glob59
File::stat46
fileno49
filetest19, 47
flock49, 54
for.....................14, 15
=for..........................4
foreach 14, 15

fork59, 71
format.....................56
formline.............56, 71

−g47
/g.................41, 43–45
GETALL62
getc 49
getgrent...................66
getgrgid...................66
getgrnam.................66
gethostbyaddr..........68
gethostbyname.........68
gethostent 68
getlogin...................59
getnetbyaddr 67
getnetbyname 67
getnetent.................67
getpeername61
getpgrp 59
getppid 59
getpriority59
getprotobyname.......69
getprotobynumber ... 69
getprotoent..............69
getpwent65
getpwnam 65
getpwuid............59, 66
getservbyname.........68
getservbyport...........68
getservent................69
getsockname............61
getsockopt...............61
given2, 15
glob........................59
gmtime 27, 28
goto...................14, 23
grep........................32

$^H..........................72
=head1.......................4
=head2.......................4
=head4.......................4
Here document 8
hex28
HOME58, 76

$^I..........................72
/i37–39
I< >...........................4
if19
if14
import16, 17, 80
@INC..............19, 75, 80
%INC75
index31
INIT25
int 27
integer....................19
ioctl........................49
IPC::SysV.................62
IPC−STAT62
is_shared.................78
@ISA25, 75
isa 26
=item 4

join 32, 77

−k47
keys 32, 34, 35
kill 59

$^L.....................57, 72
−l47
/l37
L< >...........................4
LANG76
LANGUAGE76
last15
lc............................31
LC−ALL76
LC−COLLATE76
LC−CTYPE76
LC−NUMERIC76
lcfirst31
length 31
LESS85
less19
lib.....................19, 75

−−LINE−−....................7
link.........................45
listen 61

Index | 91

local32, 34, 63
locale19
localtime............27, 28
lock78
log..........................27
LOGDIR76
LOGNAME....................58
lstat45
lvalue22

$^M..........................72
−M48, 72
/m37–39
m...................5, 43, 44
MANPATH....................85
map........................32
Math::BigInt18
Math::BigNum18
Math::BigRat18
method22
mkdir 46
mro..........................19
msgctl.....................62
msgget62
msgrcv62
msgsnd 62
my.....................63, 64

$^N 38, 43, 74
Net::hostent67
Net::netent..............66
Net::protoent...........69
Net::servent68
next........................15
no.............2, 16, 17, 80
not 13

$^O..........................72
−O47
−o47
/o37
oct..........................28
open19
open........48, 49, 52, 53
opendir57
ops..........................19

or13
ord 28
OS2−SHELL.................85
our21, 63
=over 4
overload19
overloading..............20

$^P..........................72
−p47
/p37
pack 29

−−PACKAGE−− 8
package...................16
PadWalker.................84
PAGER.......................85
parent20
PATH76, 80
PERL5DB....................85
PERL5LIB76
PERL5OPT76, 81
PERL−BADLANG76
PERLDB−....................85
perldoc 2
PERLLIB....................76
pipe50
=pod..........................4
pop....................33, 34
pos45
print50
printf50, 54
prototype24
push33, 34

q5
qq.........................5, 6
qr 5, 37, 45
quotemeta31
qw5, 8
qx5, 50

$^R 39, 43, 74
−R47
−r47
/r44
rand........................27

re20
$^{RE−DEBUG−FLAGS} ...72
$^{RE−TRIE−MAXBUF} ...72
read........................50
readdir...............57, 58
readline...................50
readlink 46
readpipe..................50
recv 61
redo........................15
ref26, 63
$REGERROR.................73
$REGMARK73
rename....................46
require 3, 16, 17, 23, 63,

75, 82
reset 44, 64
return 23
reverse33
rewinddir58
rindex.....................31
rmdir46

$^S..........................72
−S47
−s47
/s.................37–39, 44
s5, 43, 44
S< >...........................4
say2, 50
scalar............11, 33, 35
seek...................50, 53
seekdir....................58
select............50, 51, 85
semctl62
semget 62
semop.....................62
send........................61
setgrent...................66
sethostent................68
setnetent 67
setpgrp....................59
setpriority 59
setprotoent..............69
setpwent 66
setservent................69

92 | Perl Pocket Reference

setsockopt61
share.......................78
shared_clone 78
SHELL.......................85
shift...................33, 34
shmctl.....................62
shmget....................62
shmread..................62
shmwrite.................62
shutdown................61
%SIG75
sigtrap....................20
sin27
sleep60
socket61
socketpair 61
sort20
sort 20, 33
splice.................33, 34
split...................34, 74
sprintf50, 51, 54
sqrt.........................27
srand27
stat....................45–47
state2, 64
STDERR.............8, 58, 60
STDIN.........8, 19, 47, 49
STDOUT 8, 19, 48, 56
strict...........17, 20, 21
study 45
sub...............21, 24, 25
subs20
substr 31
SUPER.......................26
symlink...................47
syscall.....................60
sysopen..............51, 53
sysread....................51
sysseek 51, 53
system 60, 70
syswrite 51

$^T.....................48, 72

−T48
−t47
$^{TAINT}.................72
tell..........................51
telldir......................58
TERM85
threads...............20, 76
threads::shared...20, 77
tid 77
tie 48, 64
Tie::Array65
Tie::Handle..............65
Tie::Hash.................65
Tie::RefHash65
Tie::Scalar..............65
tied.........................64
time...................27, 72
Time::gmtime27
Time::localtime........28
times 60
tr............................44
truncate 47

−u47
/u37
uc...........................31
ucfirst31
umask................46, 60
undef50, 64
Unicode...................18
unimport............16, 17
UNITCHECK.....25, 79
UNIVERSAL............16, 26
unless 14
unlink.....................47
unpack...............29, 30
unshift34
untie..................48, 64
until 14, 15
use 2, 16, 17, 23, 62, 75,

80
User::grent 66

User::pwent..............65
UTF-8................18, 21
utf821
utime47

$^V.....................70, 72
values...........32, 34, 35
vars21
vec..........................28
VERSION 26
version....................21
vmsish21

$^W..........................72
−W47
−w47
wait...................60, 70
waitpid60, 70
wantarray 11, 22

−−WARN−−76
warn..................60, 80
warnings21
warnings::register ...21
when.........2, 14, 15, 35
while14, 15
$^{WIN32−SLOPPY−STAT}

72
WINDOWID85
write 56, 57, 71

$^X..........................73
−X47
−x47
/x37–39
X< >...........................4
xor 13

y5, 44
Yada Yada................16

−z47
Z< >...........................4

Index | 93

	Table of Contents
	Introduction
	Perl 5.14.1
	Conventions used in this book
	Features
	Syntax
	Embedded Documentation
	Data Types
	Quotes and Interpolation
	Literal Values
	Scalar Values
	List Values
	Hash Values
	Filehandles

	Variables
	Context
	Operators and Precedence
	Statements
	Loop blocks
	When blocks
	Special forms

	Packages and Modules
	Pragmatic Modules
	Subroutines
	Prototypes

	Special Subroutines
	Object-Oriented Programming
	Special Classes
	Arithmetic Functions
	Conversion Functions
	Structure Conversion
	String Functions
	Array and List Functions
	Hash Functions
	Smartmatching
	Regular Expression Patterns
	Search and Replace Functions
	File Operations
	File Test Operators
	Input and Output
	Open Modes
	Common constants
	Standard I/O Layers

	Formatted Printing
	Formats
	Directory Reading Routines
	System Interaction
	Networking
	System V IPC
	Miscellaneous
	Tying Variables
	Information from System Databases
	Information About Users
	Information About Groups
	Information About Networks
	Information About Network Hosts
	Information About Network Services
	Information About Network Protocols

	Special Variables
	Special Arrays
	Special Hashes
	Environment Variables
	Threads
	Appendix A: Command-Line Options
	Appendix B: The Perl Debugger
	Appendix C: Perl Links
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

