
BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro JavaScript with MooTools
Pro JavaScript with MooTools is unlike any other JavaScript book on the mar-
ket today. While similar books focus on either JavaScript as a language of the
browser or how to use JavaScript frameworks, Pro JavaScript with MooTools
fills the gap between these topics and moves beyond—exploring the advanced
features of JavaScript and how the MooTools framework uses these features to
further improve the language itself.

The book itself takes a unique three-pronged approach. It first walks you
through the advanced features of JavaScript and the MooTools framework,
including native augmentation and type creation, a comprehensive discussion
of JavaScript functions, object-oriented programming with native JavaScript
and MooTools Classes, and the MooTools Class internals. You’ll then learn
all about JavaScript in the DOM: the Elements Class and its internals, the
MooTools Event system, Selector engines and MooTools Slick, Ajax and the
Request Object, and Animation and the Fx classes.

The final section really sets the book apart from all others, as it discusses
JavaScript outside the browser. You’ll take an in-depth look at CommonJS
and MooTools, using MooTools outside the browser using Meso, and creating
CommonJS web applications via the MooTools Deck framework.

Mark Joseph Obcena

US $44.99

Shelve in:
Web Development / JavaScript

User level:
Intermediate–Advanced

THE APRESS ROADMAP

 Pro
JavaScript Design Patterns

Pro JavaScript
with MooTools

MooTools
Essentials

Practical Prototype
and script.aculo.us

Beginning JavaScript
with DOM Scripting

www.apress.com
SOURCE CODE ONLINE

Companion eBook

Obcena
JavaScript w

ith M
ooTools

Companion
eBook Available

Pro

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Pro

JavaScript
with MooTools
Learning Advanced JavaScript Programming

Mark Joseph Obcena
Foreword by Valerio Proietti, MooTools Founder and Lead Developer

Extending the Power of JavaScript Beyond
the Browser by Using MooTools

Written for
MooTools 1.3

i

Pro JavaScript with

MooTools
Learning Advanced

JavaScript Programming

■ ■ ■

Mark Joseph Obcena

ii

Pro JavaScript with MooTools: Learning Advanced JavaScript Programming

Copyright © 2010 by Mark Joseph A. Obcena

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3054-0

ISBN-13 (electronic): 978-1-4302-3055-7

Printed and bound in the United States of America (POD)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editors: Frank Pohlmann and Ben Renow-Clarke
Technical Reviewer: Simo Kinnunen
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Mary Tobin
Copy Editor: Sharon Terdeman
Compositor: MacPS, LLC
Indexer: Julie Grady
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

iii

To the one who owns my heart.

iv

Contents at a Glance

■Contents .. v
■Foreword .. xiv
■About the Author ... xv
■About the Technical Reviewer .. xvi
■Acknowledgments ... xvii
■Preface ... xviii
Part I: Exploring JavaScript and MooTools .. 1
■Chapter 1: JavaScript and MooTools .. 3
■Chapter 2: Functions ... 11
■Chapter 3: Objects ... 47
■Chapter 4: Classes ... 71
■Chapter 5: Classes: The Extras .. 99
■Chapter 6: Types ... 127
Part II: Conquering the Client Side ... 171
■Chapter 7: JavaScript in a Window ... 173
■Chapter 8: Elements .. 187
■Chapter 9: Selector Engines .. 245
■Chapter 10: Events .. 261
■Chapter 11: Request .. 307
■Chapter 12: Animation .. 339
Part III: Breaking from the Browser ... 359
■Chapter 13: JavaScript without Limits .. 361
■Chapter 14: MooTools on Deck .. 371
■Appendix: Resources ... 387
■Index ... 389

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

v

Contents

■Contents at a Glance .. iv
■Foreword .. xiv
■About the Author ... xv
■About the Technical Reviewer .. xvi
■Acknowledgments ... xvii
■Preface ... xviii

Part I: Exploring JavaScript and MooTools .. 1
■Chapter 1: JavaScript and MooTools .. 3

JavaScript ... 3
MooTools ... 4
The Language Extension ... 5
Your Toolkit ... 5

JavaScript Interpreter .. 6

JavaScript Console .. 6

MooTools Core and the Snippet Runner ... 8

Code Editor and JSLint ... 9

The Wrap Up ... 10
■Chapter 2: Functions ... 11

The Function ... 11
One Function, Multiple Forms ... 12

Function Declaration .. 12

Function Expression ... 14

Named Function Expression .. 15

■ CONTENTS

vi

Single-Execution Function .. 17
Function Object .. 19

Arguments .. 20

Return Values .. 24

Function Internals ... 25
Executable Code and Execution Contexts .. 25

Variables and Variable Instantiation ... 27

Scoping and the Scope Chain .. 29

Closures ... 31

The “this” Keyword .. 33

Advanced Function Techniques .. 36
Limiting Scope ... 36

Currying ... 38

Decoration .. 39

Combination ... 41

MooTools and Functions ... 42
Function Binding .. 43

Extending Functions with Methods .. 44

The Wrap Up ... 46

■Chapter 3: Objects ... 47

JavaScript is Prototypal(-ish) .. 47

A Language of Objects .. 48

The Building Blocks of Objects ... 50
Constructor Functions .. 50

Prototypes .. 53

Inheritance .. 56

The Prototype Chain .. 61
Deliberate Chains ... 63

Simplified Prototypal Programming .. 65

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

 ■ CONTENTS

vii

The Wrap Up ... 68

■Chapter 4: Classes ... 71

From Prototypes to Classes .. 71

The MooTools Class System ... 73

Constructors and Initializers ... 75

Rethinking Members ... 77
Rethinking Methods ... 78

Rethinking Properties ... 80

Inheritance .. 83
Overridden Methods ... 86

Inside this.parent() ... 90

Mixins .. 91

The Wrap Up ... 96

■Chapter 5: Classes: The Extras .. 99

Mutators .. 99
Implementing Your Own Mutators ... 101

Mutator Gotchas ... 104

The Built-in Mixins .. 106
The Chain Mixin ... 106

The Events Mixin .. 109

The Options Mixin .. 112

Static Members ... 114

Encapsulation and Visibility .. 118
Private Methods ... 120

Protected Methods ... 121

MooTools and Classes .. 125

The Wrap-Up ... 126

■Chapter 6: Types ... 127

Values and Type Systems ... 127

■ CONTENTS

viii

An Alternative Type System .. 129

Native Types and Values ... 131
Null and Undefined ... 131

Primitive Types .. 132

Composite Types .. 135

Type Casting ... 143
Casting Using Constructors .. 144

Casting Using Native Functions and Idioms ... 145

The MooTools Type System .. 147
The Type Constructor and Function Subclassing ... 147

Instance Checking .. 148

Type Detection ... 151

Working with Type Objects ... 152
Implementing New Members ... 153

Aliases and Mirroring ... 155

The extend Method and Generics .. 158

Creating New Types .. 160
A Table Type .. 160

The Table Constructor .. 162

Setter, Getter, and Removal ... 163

Membership Methods .. 164

Keys, Values and Traversals .. 165

Our Final Type .. 167

The Wrap-Up ... 168

Part II: Conquering the Client Side ... 171

■Chapter 7: JavaScript in a Window ... 173

A Language for Every Computer ... 173

Life Cycle of a Page .. 174

Pause, Script ... 175

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

 ■ CONTENTS

ix

The Scripted Browser ... 176
The Document Object Model .. 177

The Browser Object Model ... 178

Frameworks, Libraries, and Toolkits ... 182

MooTools and the Browser ... 183
Fixing Browsers with MooTools ... 183

Browser Detection ... 185

Feature Detection ... 185

The Wrap-Up ... 186

■Chapter 8: Elements .. 187

Families and Trees .. 187

Is My DOM Ready Yet? .. 191

DOM Scripting with MooTools ... 198
Selecting Elements .. 198

An Elemental Segue ... 215

Moving Elements Around ... 218

Modifying Element Objects .. 227

Creating Elements .. 231

Destroying Elements .. 235

The Element Type ... 235
Revisiting document.id .. 236

Extending Element ... 238

The Elements Type .. 239

The Universal Modificators ... 239

Element Storage ... 241

The Wrap Up ... 242

■Chapter 9: Selector Engines .. 245

What Node? ... 245

Selecting in Style .. 248

■ CONTENTS

x

Selector Engines .. 249

A Whirlwind Tour of CSS Selector Notation 249

Slick: the MooTools Selector Engine 252
Selecting Elements with Slick . .. 252

Combinator Prefixes ... 253

Reverse Combinators ... 254

Pseudo-Selector Functions .. 255

Inside Slick . .. 256
The Slick Parser Engine ... 256

The Slick Selection Engine ... 258

The Wrap-Up 259

■Chapter 10: Events . .. 261

A Loopy World ... 261

The Event Loop ... 263

Event-Based Programming ... 264

The Event Models . .. 265
The Internet Explorer Model 265

The DOM Level 2 Model ... 273

The MooTools Event System 288
Attaching Event Handlers ... 288

Preventing Default Action . .. 291

Stopping Event Propagation ... 292

Stopping Events All Together 293

Detaching Event Handlers .. 294

Dispatching Events .. 295

Event System Internals ... 296
The Event Type . .. 296

Two Layers . .. 299

The Event Table .. 299

Event Handler Wrapping .. 300

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

 ■ CONTENTS

xi

Event Handler Detachment and Dispatch .. 304

Custom Events ... 305

The Wrap-Up ... 306

■Chapter 11: Request .. 307

Requests and Responses .. 307

The XMLHttpRequest Object ... 309

Going Async .. 314

The MooTools Request Class .. 319
Creating New Requests .. 320

Adding Request Headers .. 321

Sending Data .. 322

Attaching Event Handlers ... 323

Timeouts .. 328

Event Handler Declarations .. 330

Sending the Request .. 331

Request Sending Modes .. 332

Our Final Code .. 333

Subclassing Request ... 335
Request Internals ... 335

Success Overriding .. 336

The Wrap-Up ... 337

■Chapter 12: Animation .. 339

Getting Animated .. 339

Being Stylish ... 340
CSS Styles .. 341

Explicit, Implicit, and Computed .. 342

Revisiting Style Methods .. 342

Time for Some Action .. 343
Timers .. 343

■ CONTENTS

xii

Timer Execution ... 345

A Basic JavaScript Animation ... 346

MooTools Fx Classes ... 349
Animation Objects .. 349

Tween and Morph .. 351

Fx Methods and Events .. 353

Fx Internals ... 354
The Fx Base Class .. 354

CSS Animation ... 356

The Wrap-Up ... 357

Part III: Breaking from the Browser ... 359

■Chapter 13: JavaScript without Limits .. 361

Breaking out of the Browser ... 361

CommonJS .. 362

Common Modules ... 363
Export and Require ... 363

Module Paths ... 365

MooTools and CommonJS .. 367

Meso: MooTools in the Middle .. 368

The Wrap-Up ... 369

■Chapter 14: MooTools on Deck .. 371

Revisiting Request and Response ... 371

JavaScript on the Server ... 373

JSGI ... 373
JSGI and CommonJS Engines .. 376

A Common Deck ... 379

Enter Deck .. 379
Getting Decked ... 380

Routing ... 381

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

 ■ CONTENTS

xiii

Middleware using Modules .. 382

Deck Internals ... 384
Request and Response .. 384

The Filtered Model ... 384

Dispatching .. 385

The Router .. 385

The Wrap-Up ... 385

The Wrap-Up to Conquer All Wrap-Ups ... 386

■Appendix: Resources ... 387

JavaScript ... 387

MooTools ... 387

■Index ... 389

■ CONTENTS

xiv

Foreword

I began working on MooTools in 2005, and, after a year of development, I released the very first version
to the public. MooTools slowly gained popularity, ascending to its current position as one of the top
JavaScript frameworks.

MooTools, however, has a rather steep learning curve and a very big codebase. It was never written
with absolute beginners in mind, so users are often intimidated about trying to learn it. This is
unfortunate; they’re missing out on the great power and customizability MooTools offers, simply
because it looks scary.

It is not all MooTools’ fault, of course. There’s a distinct lack of useful information available on the
subject, though I must admit that MooTools itself hasn’t done enough to correct the situation. People
who want to learn the framework are left to their own devices—and that can get really at times.

Fortunately, that’s where this book comes in. Pro JavaScript with MooTools will take you on a journey
from the building blocks of JavaScript, through the prototypal concepts, to the very inner workings of
MooTools. By the time you’re finished reading it, MooTools will hold no more secrets from you.

When I think about the best MooTools articles I have ever read on the Web, Mark’s blog, Keetology,
comes immediately to mind. Mark has been writing awesome JavaScript and MooTools material for
years, in articles (like his “Up the Moo herd” series) and in actual code (Raccoon!). His blog is a must-
read for anyone wanting to learn or expand his knowledge of MooTools, or JavaScript in general.

Pro JavaScript with MooTools isn’t simply a well-written technical book. This book thoroughly
explains how object-oriented programming works in JavaScript, and then gradually takes advantage of
your newly acquired knowledge to explain how MooTools operates, and how you can build awesome
stuff with it.

And awesome stuff is what we want you to build! MooTools is no longer an obscure framework that
sprang from a simple effects library. It’s now a full-fledged development tool with a great set of core
developers, an active and growing community, and a huge roll of user-developed applications and extensions.

But development doesn’t end with the recent successes. While this book is about MooTools 1.3, the
most recent release, it is also a preparation of sorts for version 2.0. MooTools 1.3 reflects the direction
we’re heading in the future—toward a better, faster, and more powerful MooTools. We’re working to
make the strong parts of the framework even stronger, and we’re going to improve the parts that need
improvement.

However, we want you to share in these exciting developments, and the first step toward that is
learning more about MooTools. You don’t need to be an expert to learn MooTools, as this book will show
you. All you need is a little patience, creativity—and a whole lot of milk.

Back in 2005, MooTools was just a small framework I created for fun and experimentation. It never
occurred to me that it would eventually become the subject of a book, a book whose range, I must say, is
as impressive as its depth. It makes me proud of what MooTools has achieved.

Things are just gonna get more awesome from here…

Valerio Proietti
MooTools Founder and Lead-Developer

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

xv

About the Author

■ Mark Joseph Obcena is a freelance software developer, graphic designer, and writer
from Manila, Philippines. Popularly known as keeto online, Mark is a big fan of open
source development and regularly contributes to several open source projects,
including MooTools where he’s a member of the official Community Team. He’s
currently experimenting with new programming languages while working on several
CommonJS projects, which are available from his Github page, and he sometimes
gets bullied by the MooTools community into writing a post for his web site, Keetology
(http://keetology.com).

Mark also owns a cat named Shröddy, who may or may not exist.

http://keetology.com

■ CONTENTS

xvi

About the Technical Reviewer

■ Simo Kinnunen, originally from Helsinki, lives in Tokyo, where he combines the study of the Japanese
language with being a web expert and JavaScript hacker. He is also a Zend engineer, and he spent quite a
large part of this spare time building a rather complicated web text replacement hack called cufón.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

xvii

Acknowledgments

I’ve often thought of myself as a one-man show: Mark, the Developer for Every Occasion™. This book,
however, is not mine alone. A lot of people have contributed in one way or another to make this book
possible, and I’d like to take a piece of it to thank them.

First, I want to give a big thank-you to Valerio Proietti, MooTools Founder and Lead Developer, who
has not only given his time to read early drafts of the work, but has also graced this book with a foreword.
You, sir, are truly awesome.

I’d also like to thank the MooTools team—the builders, the contributors, and the creators—who
have tirelessly given their love to the framework. This book would literally not have been possible if not
for the great work that you’ve put into MooTools. Special thanks to Christoph, Djamil, William, David,
and Thomas, who have given their input, pings, and thumbs-up for the book.

A thank-you also goes out to the members of the MooTools community, especially the regulars of
the #mootools IRC channel. Your constant need for updates about the book and unending
encouragement drove me to make this work worthy of the highlights. Thanks and []/ are also due to the
regulars of the “other” mootools IRC channel: Jabis, Michael, Graham, and Rud. You guys are all
awesome.

Of course, I won’t forget to thank Simo, my dear technical reviewer, who has given his time and
effort in reviewing the drafts of this work. Thank you for putting up with my dangling semicolons.
Chocolates and thank-yous are sent to Tokyo for you.

Another round of cheers and claps are also given to the people at Apress who believed enough in
this work to put their time into it. To Frank, thank you for giving me the chance to broadcast my ideas to
the world, and thank you for believing that I could pull off this work. To Mary and Ben, thank you for
putting up with my haphazard writing styles and weird submission schedule. And to Sharon, thank you
for adding more awesome to my writing.

Of course, I’d also like to give thanks and hugs to my family. To my mom and dad who have always
believed in me in their own quirky way, to my siblings Christine and Jan Raleigh who are now learning
the value of being connected, and to my aunt and uncle who have stood by me like a second set of
parents, thank you.

Finally, I’d like to give the biggest thanks to three people by dedicating parts of the book to them.
Part I is dedicated to my friend Garrick Cheung. Without you, this book would have never been

started. Thank you for the input, the critiques and the ideas. You are a great man, an awesome person,
and a very good friend. To Happiness.

Part II is dedicated to my very good friend Tim Wienk. Without you, this book would never have
been completed. Thank you for listening to my rants, thank you for keeping me company, thank you for
keeping me sane, and thank you for being a good friend. To Friendship.

And Part III is dedicated to P.E.M. Without you, I would have never gotten the courage to find
happiness. Thank you for showing me what’s wrong, what’s changing, and what’s possible. I’ll always be
your Marquito. To Love.

■ CONTENTS

xviii

Preface

The universe, perhaps, is just a crazy runtime environment with sparse documentation and seemingly
random side effects, and life is nothing more than a program written in a language called “Universcript.”
I conclude that this might be the case because, when I decided to invoke my audition method in the fall
of 2008 to try out for the role of Moritz Stiefel in a local production of Spring Awakening, I never
expected that it would return a Book object.

Fortunately, not all things are that quirky. The universe might think that it’s a great idea to take my
botched audition and turn it into a writing opportunity—an API decision I fully approve, by the way—but
most programming languages behave more predictably. Some languages behave predictably well, some
languages behave predictably well with some exceptions, and some languages behave predictably weird.

The fascinating thing, though, is that a language’s predictability often has less to do with the
language itself and more to do with its users. The more we learn about a programming language, the
more predictable it becomes. The key, then, isn’t coding blindly and whining (quite loudly for some)
about a language’s apparent shortcomings, but learning, experimenting, and applying. The quirks will
stay quirky, but at least now we can appreciate their quirkiness.

This book is about JavaScript as it relates to the MooTools framework. Like any other language,
JavaScript’s predictability has a lot to do with the people who code with it. While it is pretty predictable,
JavaScript does have some quirks and unique features that might not be apparent at base level.
Unfortunately, a lot of us who proudly proclaim to be JavaScript developers don’t take time to learn the
language enough to appreciate these quirks and features.

A big part of this problem, surprisingly, comes from the popularity of frameworks. JavaScript’s
almost prodigal-son-like comeback into the limelight of web development has brought forth a slew of
libraries and frameworks that promise an easier experience when working with the language. While
most of them do deliver on the promise, it comes with the cost of dependency: developers get so
comfortable with a framework that they forget there’s a powerful language underneath the abstraction.

This book tries to address this particular issue for the MooTools framework. MooTools is in the
unique position of being one of the more popular frameworks that extend and improve JavaScript rather
than bury it in the guise of an API. MooTools works with native JavaScript, uses native JavaScript, and
feels like native JavaScript. MooTools users, therefore, are exposed to the power of JavaScript at every
level—all they have to do is look at it.

If you’re looking for a recipe book, a how-to book, or a book of source code that you can copy and
paste into your next application, I’m afraid this is not that book. This book is all about exploring
JavaScript and looking at how JavaScript is used for the internals of the MooTools framework. This book
will show you how the features of JavaScript are used inside the framework, and how they come together
to create the very powerful set of APIs we know as MooTools.

In essence, this book is an extension and expansion of the Up the MooTools Herd series I previously
wrote for my blog. As with that series, this book is not aimed at beginners, but at intermediate and
advanced users. So, if you’re new to MooTools or JavaScript, I suggest you put this book on your to-read
list and grab a beginner’s book first.

This book is divided into three parts. The first part is all about JavaScript as ECMAScript, and
focuses on the native features of the language—functions, objects, and types—and the subsystems

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

 ■ PREFACE

xix

inside MooTools that work with these parts. The second part of the book focuses on JavaScript in the
browser and explores subjects such as elements, events, and animation. Finally, the last part of this book
is a short exploration of JavaScript outside the browser and gives an introduction to CommonJS and
MooTools using Deck.

As you’ll learn in the next chapter, MooTools is divided into two main projects: MooTools Core and
MooTools More. In writing this book, I’ve decided to focus solely on MooTools Core, so there’s no
mention of any of the features or extensions found in MooTools More. Also, I’ve limited myself to
MooTools version 1.3 for this book, so any features from or incompatibilities with previous versions are
not mentioned.

And with those words out of the way, it’s time for us to start our exploration. It’s best that we begin
with the opening credits and get to know our dramatis personae. So if you’re ready, let’s meet the cast:
JavaScript and MooTools.

■ CONTENTS

xx

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

P A R T I

Exploring JavaScript and
MooTools

 2

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

C H A P T E R 1

■ ■ ■

3

JavaScript and MooTools

Before we begin our exploration of how to get the most out of JavaScript using the powerful MooTools
framework, let’s focus a little on JavaScript and MooTools individually. We’ll also talk about the
JavaScript developer’s toolkit, and what you need to develop applications in JavaScript.

JavaScript
JavaScript started out as a small language called Mocha, which was created by Brendan Eich back in May
of 1995. Mocha was designed for scripting web pages, and the plan was to bundle it with Netscape’s
Navigator browser. Before the browser’s release, though, Netscape acquired a trademark license from
Sun Microsystems to use the name “Java” and the language was renamed to JavaScript. This move was
somewhat political on Netscape’s part: the release of JavaScript coincided with the new Navigator
support for Java, a popular programming language, and the name JavaScript was chosen to market the
language as a new and powerful programming language.

This marketing ploy, although somewhat disingenuous since JavaScript and Java bear no relation
except for a very superficial similarity in naming conventions and some syntax, was quite successful and
JavaScript started gaining traction among web developers. This led Microsoft to create a similar
implementation for its Internet Explorer browser, which was released in August of 1996. Microsoft
named its language JScript in order to bypass having to license the name Java from Sun Microsystems.

Netscape sought standardization for the language and submitted it to Ecma International for work
on the specification, and in June 1997, the first version of ECMAScript was adopted by the Ecma General
Assembly. The name ECMAScript was a compromise: None of the parties involved in the
standardization wanted to donate their trademark, so Ecma decided to invent a new name for the
language.

■ Note ECMAScript is the real name of the language as it’s described by the Ecma standards and specification;
JavaScript and JScript are dialects that have extra features that may not be compatible with the standard. The

JavaScript language and its development are now handled by Mozilla, and JScript continues to be developed by
Microsoft. For the most part, this book is about ECMAScript, but we’ll use the name JavaScript throughout since

it’s the more popular name.

CHAPTER 1 ■ JAVASCRIPT AND MOOTOOLS

4

While JavaScript became popular among web developers, the rest of the programming world
dismissed the language as nothing more than a curiosity. This was probably due to the fact that web
design was still in its infancy, and most of the developers who used JavaScript were considered amateurs
in comparison to other programmers who were developing systems in other languages. JavaScript, being
quite new and intended for scripting web pages, was seen as a “toy language” compared with the
established languages of the time.

That didn’t stunt JavaScript’s growth, though, and by 1999 a new specification of ECMAScript was
approved and browsers started implementing ECMAScript 3. By 2003, more complex JavaScript-
powered web applications started appearing. The huge leap from simple dynamic web pages to powerful
web applications was staggering, and JavaScript was once again in the spotlight as the main technology
that powered these applications. The revolution finally got its name in 2005 when Jessie James Garrett
published his article “Ajax: A New Approach to Web Applications.” Ajax, which stands for
“Asynchronous JavaScript and XML”, became the banner name for several technologies used to create
rich and complex web applications—at the top of which was JavaScript. We’ll learn more about Ajax in
Chapter 11.

JavaScript rose from being a dismissed language to the star of the web. However, as applications
became increasingly complex, the need for much more powerful JavaScript implementations became
more apparent and browser makers started developing more robust versions of their JavaScript engines.
JavaScript development took off from that point, and browser adoption of new features of the most
current version of the language (ECMAScript 5, which was approved in December 2009) is growing—and
there are a host of other new features still being standardized.

Another milestone was reached in January of 2009 when the CommonJS project was founded with
the aim of moving JavaScript outside the web browser. Several CommonJS implementations began to
emerge, and it’s now possible to create JavaScript applications that run outside the browser and on the
server, making JavaScript truly an all-around programming language.

MooTools
During the height of the Ajax period, JavaScript developers realized that some of the programming tasks
they were doing were repetitive and could be simplified, so developers started releasing frameworks and
libraries that included utility functions for common tasks as well as other helper methods and objects
that simplified JavaScript programming. Throughout the years, though, most of these early frameworks
and libraries became extinct, but a few of them survived and gained quite a following.

One of those frameworks is MooTools, which had its humble beginnings in a small animation
library called Moo.Fx. Back in 2005, the dominant JavaScript framework was Prototype and its effects
library called Script.aculo.us. Dissatisfied with Scriptaculous, Valerio Proietti created a new lightweight
effects library for Prototype that emphasized code quality and size, and Moo.Fx ended up being only
3KB—uncompressed.

Moo.Fx became the seed that sprouted the MooTools library. While Moo.Fx solved the immediate
effects problem with Prototype, the library itself was still a source of dissatisfaction for Valerio and he
sought to create a new framework that focused not only on quality and size, but on code modularity as
well. Eventually, Moo.Fx became the core of the MooTools effects module, and additional utility
functions and modules were added to create a standalone framework. With the release of MooTools
0.87, the framework was born.

The framework gathered a steady community and established a capable team of core developers,
and the code underwent several revisions: 1.0 became a milestone release with several new features, and
the 1.11 release is still usable today; the 1.2 release marked another milestone, with more modular code
and revisions to the base native augmentation code. During preparation of the release that followed
1.2.1, the framework was split into two codebases: MooTools Core, which represented the “core”
modules of the framework, and MooTools More, which included the plug-ins and extensions to the core.
The launch of the official MooTools Forge in December of 2009 also heralded another milestone for the

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 1 ■ JAVASCRIPT AND MOOTOOLS

5

framework: A web application dedicated to bringing together community-submitted plug-ins, the
MooTools Forge opened an official avenue where the MooTools community could share their code.

And with the release of version 1.3, MooTools has once again reinvented itself with a simpler Type
system, an improved Class implementation and a fast new selector engine. From its 3 KB beginnings as
an effects library, MooTools has grown into one of the best and most powerful JavaScript frameworks
around.

The Language Extension
MooTools complements JavaScript in a way that no other library could. When people refer to MooTools,
they call it a JavaScript library or a JavaScript framework. Though these descriptions aren’t necessarily
wrong, they don’t encapsulate the main idea behind MooTools—which is to leverage and improve the
JavaScript language itself. Therefore, I prefer to call MooTools something else: a language extension.

Developers using MooTools are expected to be JavaScript programmers first, MooTools users
second. In the MooTools community, a lot of emphasis is given to learning how to properly write
JavaScript, and everyone is expected to know at least the basics of programming. This is because
MooTools itself is so intertwined with JavaScript that learning the framework without having a basic
grasp of the language would be impossible.

What’s often surprising for new users is just how much MooTools feels like native JavaScript. Often,
people in the official MooTools IRC channel are asked whether a specific feature is from MooTools or
from native JavaScript, and for the most part it’s hard to differentiate unless you look at the
documentation. Unlike other JavaScript frameworks that impose new rules and syntax on the language,
MooTools does not aim to transform JavaScript into another language. It adheres to JavaScript
conventions, the syntax and the defined rules, and improves the language by adding new features that
leverage and improve the existing ones.

This love for the language itself is apparent in some of the main features of MooTools: the Type
system (called Natives in pre-1.3 versions) was created to provide an easier way to augment natives; the
Class system was included to simplify object-oriented programming; and the DOM modules were
crafted to provide a simpler alternative to its native counterpart for working with web documents.
MooTools makes the process of working with JavaScript easier on so many levels and it inspires
developers to add more features to the language.

In the chapters that follow you’ll see just how much MooTools complements the language. While
this is primarily a JavaScript book, MooTools is used as an exemplar of what’s possible with the
language, and how you—using only the tools available in the language itself—can create complex and
powerful new features that add value to JavaScript.

Your Toolkit
Before we venture further, you’ll need to get your toolkit together in order to run the example code
snippets in this book, as well as to build the arsenal you’ll need to develop your own JavaScript
applications.

Thankfully, working with JavaScript doesn’t require a lot of tools or any complicated software. In
fact, much of what you’ll need probably came preinstalled on your computer, and some you can easily
download for free. So without further ado, here are the components of a JavaScript developer’s toolkit.

CHAPTER 1 ■ JAVASCRIPT AND MOOTOOLS

6

JavaScript Interpreter
A JavaScript interpreter (or engine) is a program that parses and executes JavaScript programs. You’ll
need an interpreter that implements at least JavaScript version 1.5, which is equivalent to ECMAScript 3.
An ECMAScript 5 conforming interpreter is nice to have, though not necessary.

You don’t have to look far to get yourself a usable interpreter: all major graphical web browsers have
JavaScript interpreters built in and, due to the recent popularity of the language, turned on by default. At
the time of writing, there are five web browsers that have enough marketshare to be classified as
“major”:

• Firefox (www.mozilla.com/firefox/)

• Google Chrome (www.google.com/chrome/)

• Internet Explorer (www.microsoft.com/windows/internet-explorer/)

• Opera (www.opera.com/)

• Safari (www.apple.com/safari/)

Of course, not all browsers are created equal. For working with JavaScript, I recommend Firefox,
Chrome, or Safari. These three are the popular choices for JavaScript development because of their
support for standards, language implementation completeness, and availability of proper development
tools. In fact, an impromptu survey I conducted revealed that these three browsers are the browsers of
choice for most developers in the MooTools IRC channel.

Aside from a web browser, you can also obtain a JavaScript interpreter by downloading a
CommonJS implementation. These standalone JavaScript interpreters are used for out-of-the-browser
JavaScript applications. However, CommonJS implementations lack the necessary environment to run
browser-based JavaScript programs, which will be discussed more in Part Two of this book. We’ll talk
more about these CommonJS implementations and how to get them in Chapter 13.

JavaScript Console
Some of the programs we’ll be working with in the first part of this book aren’t graphical; they are very
basic programs that produce text-based output. In the old days, you might display such text output
using the native alert function. However, this could be very obtrusive, and having multiple alert calls in
one page could lead to a lot of unnecessary clicking.

Instead, the snippets in this book will use the console object and its log method to display code
output. The console object is a special browser object that’s exposed by the JavaScript console, which is
part of the development tools that come with most browsers these days. The JavaScript console is used
to display errors, warnings, and other information about running scripts, and user-generated output can
be displayed using a special call to console.log.

Safari and Chrome have a built-in JavaScript Console that can be accessed through the Webkit Web
Inspector (called Developer Tools in Chrome). For Safari, you can activate the Web Inspector by going to
Preferences Advanced and checking the Show Develop menu in menu bar option. You can then use
this menu to access the Web Inspector by selecting the Show Web Inspector menu item. Chrome, on the
other hand, has its Developer Tools enabled by default and you can access it by clicking the “wrench
menu,” then selecting Tools JavaScript Console (Figure 1–1).

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

http://www.mozilla.com/firefox
http://www.google.com/chrome
http://www.microsoft.com/windows/internet-explorer
http://www.opera.com
http://www.apple.com/safari

CHAPTER 1 ■ JAVASCRIPT AND MOOTOOLS

7

Figure 1–1. Webkit Web Inspector (Developer Tools) in Chrome

Firefox doesn’t have a JavaScript console or developer tools built in, but it does have a fantastic
developer extension called Firebug (http://getfirebug.com/). Like Webkit’s Web Inspector, Firebug is a
set of web development tools and includes its own JavaScript console, which can be accessed by clicking
the Firebug icon at the status bar or by pressing the F12 key (Figure 1–2).

When running the snippets from this book in your browser, make sure you open up your browser’s
JavaScript console so you can see the output of the code. Also, take note that the JavaScript console
allows you to evaluate code directly by entering it into the input that’s provided and hitting the Return or
Enter key, giving you a chance to dynamically perform experiments during runtime.

In this book, we’ll limit ourselves to using the console.log method for result output. The console
object, though, as well as the developer tools themselves, has a rich set of features that are essential to
JavaScript development. As these are a bit beyond the scope of this book, I advise you to refer to the
browsers’ respective documentation for more information.

http://getfirebug.com

CHAPTER 1 ■ JAVASCRIPT AND MOOTOOLS

8

Figure 1–2. Firebug’s JavaScript Console on Firefox

MooTools Core and the Snippet Runner
Since this is a book about MooTools as much as it is a book on JavaScript, you’ll need to get yourself a
copy of the MooTools framework. The easiest way to do that is to head over to
http://mootools.net/download/ and download the prepackaged release.

This book focuses on MooTools Core 1.3, so you’ll need to download that version from the site.
Older versions of MooTools have incompatibilities with the 1.3 release, so make sure you have the latest
version or the snippets and examples in this book might not work. I also recommend you use the
uncompressed version of MooTools Core when working with this book so that you’ll be able to look at
the original source code and so it’ll be easier to debug errors that might be thrown from the framework
itself.

You’ll also need to prepare a “snippet runner,” which is a basic HTML page where you can type in
the snippet you want to run. It doesn’t need to be fancy, and I used this very simple template to execute
the code while I was writing this book:

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

http://mootools.net/download

CHAPTER 1 ■ JAVASCRIPT AND MOOTOOLS

9

<!doctype html>
<html>
<head>
 <title>Snippet Runner</title>
 <script type="text/javascript" src="path-to-your-mootools-src.js"></script>
 <script type="text/javascript">
 // insert snippet to run here
 </script>
</head>
<body>
</body>
</html>

As you can see, my snippet runner is just a plain HTML page that has two <script> tags: one to link
the MooTools source file and the other to contain the snippet I’d like to run. Because most of our output
will be displayed in the JavaScript console, no special structures are needed in the script runner.

Code Editor and JSLint
To complete your toolkit, you’ll need a proper programmer’s editor for writing your code. Because the
subject of text editors often brings heated debate, I won’t go into a detailed discussion about the pros
and cons of each available editor. However, there are certain things an editor needs to be considered
usable for our purpose: syntax highlighting, line-number display, and support for JavaScript and HTML.

■ Note In case you’re wondering, I use Vim (www.vim.org) as my editor for JavaScript development—and for
writing this book. (To be exact, I use MacVim: http://code.google.com/p/macvim/.)

Most programmers’ editors these days support extensions or plug-ins and, if yours does, make sure
you find a way to integrate JSLint into your editor. JSLint is a static code analysis tool that checks your
JavaScript code and warns you of any errors you might have failed to notice. Because JSLint can analyze
your code without having to execute it, you’ll be able to correct errors before you even open your
JavaScript interpreter.

JSLint was originally created by Douglas Crockford, and you can find an online version of the tool at
www.jslint.com/. You can also download an offline version of JSLint that uses the Java-based Rhino
JavaScript interpreter, which you can run on your own computer. However, I recommend you use an
alternative implementation called JavaScript Lint or JSL (www.javascriptlint.com/), created by
Matthias Miller, that’s more flexible than Crockford’s original version and uses the C-based
Spidermonkey JavaScript interpreter from Mozilla. JSL also has better support for editor integration, and
you can find instructions for integrating it into the more popular editors at its site.

JSL uses a config file to tell it which particular rules to check against. Because some of the rules
conflict with the standard MooTools style, you’ll have to setup your JSL config file to limit warnings
regarding MooTools code.

http://www.vim.org
http://code.google.com/p/macvim
http://www.jslint.com
http://www.javascriptlint.com

CHAPTER 1 ■ JAVASCRIPT AND MOOTOOLS

10

The Wrap Up
Now that we have all of the preliminaries out of the way, it’s time to get started on our journey. It’s quite
a ride we have in front of us, but I’m positive we’ll be able to pass through all our pitstops with ease.

Our first destination will take us to functions, one of the best features of the JavaScript language. So
if you have your seatbelt buckled, let’s start our exploration.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

C H A P T E R 2

■ ■ ■

11

Functions

One of JavaScript’s best features is the language’s implementation of functions. Whereas other
languages present different function types for different purposes, JavaScript only has one function type
that covers all use cases—from subroutines to lambdas to object methods.

A JavaScript function may look simple on the outside but don’t be fooled—the architecture that
hides underneath a basic function declaration is quite complex. And while topics like function forms,
scope, context, and function execution may seem too complicated for practical consideration, learning
about these details that usually go unnoticed improves your knowledge of the language and provides
you with an arsenal to solve even the most complex of problems.

There won’t be much mention of MooTools in this chapter or the one that follows, so don’t be
surprised! Instead, we’ll be turning our focus on the two essential features of the JavaScript language—
functions and objects—and what we learn in these chapters will not only help us understand the
MooTools framework but will also assist us further on in developing complex applications.

The Function
Let’s start by agreeing on some terms. From here on, we’ll define a function as a separate block of code
that performs a certain action and returns a value. It can receive arguments, which are values passed to
the function, it can be used to compute the resulting return value, and it can be executed multiple times
by invoking it.

// a basic function with two arguments:
function add(one, two){
 return one + two;
};

// invoking the function and passing arguments:
var result = add(1, 42);
console.log(result); // 43

// invoking the function again, but with different arguments:
result = add(5, 20);
console.log(result); // 25

JavaScript is a language with first-class functions. A first-class function is a function that can be
stored in variables, passed as arguments to other functions, and even be used as return values for other
functions. This is possible because functions, like almost everything else in JavaScript, are objects. The
language also lets you create new functions and transform defined functions at runtime, which, as we’ll
see later on, enables MooTools to add improvements to native JavaScript.

CHAPTER 2 ■ FUNCTIONS

12

One Function, Multiple Forms
While there is only one function type in JavaScript, there are multiple function forms, which are the
different ways to create a function. The base syntax for most of these forms is called a function literal
and it looks like this:

function Identifier(FormalParameters, ...){
 FunctionBody
}

First is the function keyword followed by a space and an optional identifier that references your
function; next comes an optional comma-separated list of formal parameters wrapped in a pair of
parentheses, which are turned into local variables that will be available from inside of your function; and
finally, you have the optional function body where you’ll write statements and expressions. Take note
that those are not typos: a function has a lot of optional parts. We won’t elaborate on why these parts are
optional right now, but we’ll learn more about them throughout the chapter.

■ Note You’ll see the term literal in several parts of this book. In JavaScript, literals are values defined directly

from your code. "mark", 1, and true are examples of string, number, and Boolean literals, while function(){}

and [1, 2] are function and array literals respectively.

A function is called using the invocation operator () appended to the identifier (or, as we’ll see
later, to the object itself). The invocation operator can also be used to pass in actual arguments or values
for the function’s use.

■ Note The formal parameters of a function refer to the named variables you declare inside the parenthesis when

you create your function, while the actual arguments refer to the values you pass when you invoke a function.

Because functions are objects, they also have methods and properties. We’ll talk more about
methods and properties of objects in Chapter 3, but for now, let’s remember that a function has two
basic properties:

• name – contains the string value of the function’s identifier;

• length – is an integer corresponding to the number of formal parameters defined
for the function (or 0 if there are no formal parameters).

Function Declaration
From the base syntax, we can create the first function form, called a function declaration. A function
declaration is the simplest of all function forms, and most developers use this form for their code. The
following code defines a new function called add:

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

13

// a function named `add`
function add(a, b){
 return a + b;
};

console.log(typeof add); // 'function'
console.log(add.name); // 'add'
console.log(add.length); // 2

console.log(add(20, 5)); // 25

The identifier in a function declaration is required, and it will be used to create a variable in the
current scope whose value is the function. In our example, an add variable is created in the global scope
with the name property of add, equivalent to the function identifier, and the length property is 2 because
we have two formal parameters.

Because JavaScript is lexically scoped, identifiers are scoped based on where they are defined rather
than on their syntax or where they are executed. This is important to remember because JavaScript
allows us to define functions inside other functions and scoping rules might get confusing:

// outer function, global scope
function outer(){

 // inner function, local scope
 function inner(){
 // ...
 };

};

// check the outer function
console.log(typeof outer); // 'function'

// run outer to create the new functions
outer();

// check the inner function
console.log(typeof inner); // 'undefined'

In this example, an outer variable is created in the global scope and given the value of our outer
function. When it is invoked, the outer function creates a local variable called inner that is given the
value of our inner function. When we check the values using the typeof operator, the outer function
appears available in the global scope but the inner function is available only from inside the outer
function—because the inner function is stored in a local variable.

Because a function declaration also creates a variable with the same name as its identifier, you have
to make sure that there are no variables with the same name as the identifier in your current scope.
Otherwise, it’ll override the value of that variable with the function:

// a variable in the current scope
var items = 1;

// a function declaration with the
// same name; overrides value
function items(){
 // ...
};

CHAPTER 2 ■ FUNCTIONS

14

console.log(typeof items); // 'function', not 'number'

We’ll learn more about the details of JavaScript’s scoping in a while, so let’s first take a look at other
function forms.

Function Expression
The next form takes advantage of the fact that functions can be stored in variables. This form is called a
function expression because rather than explicitly defining a function, you “express” a function as a
value of a variable.

Here’s the same add function we declared above, but using a function expression.

var add = function(a, b){
 return a + b;
};

console.log(typeof add); // 'function'
console.log(add.name); // '' or 'anonymous'
console.log(add.length); // 2

console.log(add(20, 5)); // 25

In this example, we create a function literal that becomes the value of our variable add. We can then
use this variable to invoke our function, as illustrated on the last line where we use the function to add
two numbers.

You’ll notice that the length property of the function is the same as its function declaration
counterpart, but the name property is different. In some JavaScript interpreters, its value will be a blank
string (''), while in others it’ll be 'anonymous'. This happens because we didn’t specify an identifier for
the function literal. In JavaScript, a function without an explicit identifier is called an anonymous
function.

The scoping rules for function expressions are a bit different from function declarations because
they depend on variable scoping. Remember that in JavaScript, the var keyword defines a variable to be
scoped locally, and omitting the keyword creates a global variable instead:

// outer function, global scope
var outer = function(){

 // inner function, local scope
 var localInner = function(){
 // ...
 };

 // inner function, global scope
 globalInner = function(){
 // ...
 };

};

// check the outer function
console.log(typeof outer); // 'function'

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

15

// run outer to create the new functions
outer();

// check the new functions
console.log(typeof localInner); // 'undefined'
console.log(typeof globalInner); // 'function'

The function outer is defined to be of global scope, because while we use the var keyword, it’s on
the top level of the application. Inside the function are two other functions, localInner and globalInner.
The localInner function is stored in a variable that’s local to the inside of the outer function and can’t be
accessed in the global scope. However, globalInner is stored in a variable that’s defined without the var
keyword, making both the variable and the function it contains global.

Named Function Expression
Although function expressions are usually written using anonymous functions, you can also specify an
explicit identifier for your function. This is a variation of the function expression called a named
function expression.

var add = function add(a, b){
 return a + b;
};

console.log(typeof add); // 'function'
console.log(add.name); // 'add'
console.log(add.length); // 2

console.log(add(20, 5)); // 25

This example is the same as a function expression that uses an anonymous function, but we specify
an identifier for the function literal. Unlike in the previous example, the name property of this function is
'add', which is consistent with the identifier we specified, rather than 'anonymous' or an empty string.

JavaScript allows an explicit identifier for function expressions so that a function can reference itself
from the inside. You might be asking why you’d need this feature, so let’s look at two different examples.

var myFn = function(){
 // reference the function
 console.log(typeof myFn);
};

myFn(); // 'function'

In the example above, the function myFn could easily reference itself via the variable holding it
because the variable that contains the function is available inside the function scope. However, consider
the next example:

// global scope
var createFn = function(){

 // result function
 return function(){
 console.log(typeof myFn);
 };

};

CHAPTER 2 ■ FUNCTIONS

16

// different scope
(function(){

 // put the result function of `createFn`
 // into a local variable
 var myFn = createFn();

 // check if reference is available
 myFn(); // 'undefined'

})();

This example might be a little too complex, but we’ll tackle the details later. Right now, just focus on
the functions. In our global scope, we create a new function called createFn, which returns a new logging
function like our previous example. Next, we create a new localized scope and define a variable myFn and
assign the return value of createFn.

The code is similar to the earlier example, but here we use the function value that’s returned from
another function instead of directly assigning the function literal to the variable. Also, the variable myFn is
on a different localized scope, which is not accessible to our resulting function value. Thus, it’ll log
'undefined' rather than 'function' in this case, because the scoping doesn’t allow the function to
reference itself via the variable holding it.

By adding an explicit identifier to our result function, we’ll be able to reference the function itself
even if we don’t have access to the variable holding it:

// global scope
var createFn = function(){

 // result function, with identifier
 return function myFn(){
 console.log(typeof myFn);
 };

};

// a different scope
(function(){

 // put the result function of `createFn`
 // into a local variable
 var myFn = createFn();

 // check if reference is available
 myFn(); // 'function'

})();

Adding an explicit identifier is like creating a new variable that’s available from inside the function
that can be used to reference the function itself, making it possible for the function to call itself from the
inside (for recursive operations) or perform actions on itself.

A named function declaration has the same scoping rules as a function declaration with an
anonymous function: the scope of the variable determines whether the function will be local or global.
However, the additional identifier has a different scoping rule: it’s only available from inside the
function.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

17

// a function with different identifiers
var myFn = function fnID(){
 console.log(typeof fnID);
};

// the variable
console.log(typeof myFn); // 'function'

// the identifier
console.log(typeof fnID); // 'undefined'

myFn(); // 'function'

This example shows that while the variable myFn could be used to reference the function, the
identifier fnID isn’t accessible from the outside. However, accessing this identifier variable from the
inside of the function itself works.

Single-Execution Function
We touched on the subject of anonymous functions in passing when creating function expressions, but
they have much broader use than that. One of the most important is a technique that uses an
anonymous function to create a function that’s executed immediately, without storing references to it.
This form is called a single-execution function.

// create a function and invoke it immediately
(function(){

 var msg = 'Hello World';
 console.log(msg); // 'Hello World'

})();

Here we create a function literal and wrap it inside a pair of parentheses. We then use the function
invocation operator () to execute the function immediately. The function isn’t stored in a variable, nor
is any reference to it created. It’s a "run-once" function: create it, do whatever it does, and then move on.

To understand how a single-execution function works, you need to remember that functions are
objects and objects are values. Because JavaScript values can be used immediately without having to
store them in variables, you can create anonymous functions that you immediately execute just by
appending a function invocation operator.

However, notice that we wrap our function inside a pair of parentheses in the previous example,
instead of doing it like this:

// this is considered a syntax error
function(){

 var msg = 'Hello World';
 console.log('msg'); // 'Hello World'

}();

A JavaScript interpreter will throw a syntax error when it encounters these lines because it interprets
the code as a function declaration. It sees a function literal but no identifier, and it throws an error
because a function declaration requires an identifier to follow the function keyword.

CHAPTER 2 ■ FUNCTIONS

18

We need to wrap the function in parentheses in order to tell the JavaScript interpreter that it is not a
function declaration but, rather, that we are creating a function and we use its value immediately.
Because we have no identifier we can use to reference the function, we need to wrap it in parentheses in
order to create a direct reference to the function and be able to directly call it. This wrapping in
parentheses is needed only when we have no direct reference to the function, like with single-execution
functions.

■ Note The invocation operator can be included within the parentheses or outside it, like so: (function(){...

}()). Putting the operator outside is more common, though, and it’s considered as the proper MooTools style.

A single-execution function is useful in a lot of cases and the most important of these is to keep
variables and identifiers inside a localized, protected scope. Consider the following example:

// top level scope
var a = 1;

// localize scope with a single
// execution function
(function(){

 // local scope
 var a = 2;

})();

console.log(a); // 1

Here, our first variable a is declared in the top scope, making it available globally. We then create a
single execution function and redeclare a inside, changing its value to 2. But because this is a localized
variable, the original top-level a variable does not change.

This technique is popular, especially with library developers, because localizing variables into a
separate scope avoids identifier clashing. If you include two scripts that define the same identifier within
your application, the chance of one of them overwriting the value of the other is high—unless one of
them localizes their scope via a single-execution function.

Another way of using a single-execution function is when you want to perform a task with a function
and use its return value in a throwaway function:

// Store a single-execution function's
// return value to a variable
var name = (function(name){

 return ['Hello', name].join(' ');

})('Mark');

console.log(name); // 'Hello Mark'

Don’t get confused by this code: this is not a function expression. What’s happening is that we
create a single-execution function that’s immediately invoked and returns the value we want to store in
our variable.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

19

Another feature of single-execution functions is their ability to have an identifier, just like with a
function declaration:

(function myFn(){

 console.log(typeof myFn); // 'function'

})();

console.log(typeof myFn); // 'undefined'

While it may seem like this is a function declaration, it’s actually a single-execution function. Even
though we specify an identifier for the function, it does not create a variable in the current scope as a
function declaration does. This lets you reference the function from inside itself without creating a new
variable inside the current scope. This is especially useful to prevent overwriting the original values of
variables that already exist in the current scope.

Like any other function, single-execution functions can receive arguments passed via the invocation
operator. Combine this with an identifier available from inside the function and the ability to store the
return value of a single-execution function and you can create quick recursive functions for your code:

var number = 12;

var numberFactorial = (function factorial(number){
 return (number == 0) ? 1 : number * factorial(number - 1);
})(number);

console.log(numberFactorial); // 479001600

Function Object
The last function form, the function object, is different from all the rest because it does not use a
function literal. The basic syntax of this form is as follows:

// a function object
new Function('FormalArgument1', 'FormalArgument2', ..., 'FunctionBody');

Here, we use the Function constructor to create a new function by passing strings as arguments. The
first arguments define the named arguments for the function, and the last argument defines the function
body.

■ Note While we call this form a function object, remember that all functions are objects. We simply use this term
to differentiate between a function created via a literal and one created via an object constructor, which will be

discussed in the next chapter.

Here’s our add function using this form:

var add = new Function('a', 'b', 'return a + b;');

console.log(typeof add); // 'function'

CHAPTER 2 ■ FUNCTIONS

20

console.log(add.name); // '' or 'anonymous'
console.log(add.length); // 2

console.log(add(20, 5)); // 25

You’ll notice that the code is similar to using an anonymous function literal. Like an anonymous
function, a function object has either a blank string or 'anonymous' for its name property value. In the first
line, we create a new function using the Function constructor, passing in the arguments 'a', 'b', and
'return a + b;'. The first two strings will become the named arguments of the function, and the final
string will become the function body. Using this form is like using eval: the last string argument is
turned into executable JavaScript code and used as the body of the function.

■ Note You don’t need to pass the named arguments as separate strings. The Function constructor also allows for a

single string containing comma-separated name values, like so: new Function('a, b', 'return a + b;');

While this form has its uses, as we’ll see in later in this book where it’ll be used as a templating
engine, a Function object has a disadvantage over a function literal because the function’s scope is
limited to the global scope:

// global variable
var x = 1;

// localized scope
(function(){

 // local x variable
 var x = 5;

 // a function object
 var myFn = new Function('console.log(x);');
 myFn(); // 1, not 5.

})();

Even though we have a local variable x in our separate scope, the function object will not be able to
reference this because it’s evaluated in the global scope.

Arguments
All functions have access to their formal arguments from the inside. These formal arguments are turned
into local variables within the function and their values correspond to the values passed when the
function was invoked. The mapping of arguments is based on the order they were passed: the first value
corresponds to the first named argument and so on.

When the number of actual arguments passed is greater than the number of formal arguments, the
additional actual arguments are not stored in any formal argument variable. On the other hand, if the
number of actual arguments passed is less than the defined formal arguments, the remaining formal
arguments will have the value of undefined.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

21

var myFn = function(first, second){
 console.log('first: ' + first);
 console.log('second: ' + second);
};

myFn(1, 2);
// first: 1
// second: 2

myFn('a', 'b', 'c');
// first: a
// second: b

myFn('test');
// first: test
// second: undefined

Because JavaScript allows a function to receive a mutable number of arguments, it also provides a
way to access the arguments passed to the function even if there are no corresponding formal arguments
defined. This is done via the arguments object, which is an array-like object that contains the values of all
actual arguments passed to a function:

var myFn = function(){
 console.log('length: ' + arguments.length);
 console.log('first: ' + arguments[0]);
};

myFn(1, 2);
// length: 2
// first: 1

myFn('a', 'b', 'c');
// length: 3
// first: a

myFn('test');
// length: 1
// first: test

The arguments object has a length property that can be used to find out the number of arguments
passed to a function. The values of the arguments can be accessed by providing a zero-based index to
the arguments object: arguments[0] is the first value passed, arguments[1] is the second value passed,
and so on.

By using the arguments object instead of named arguments, you can create functions that take a
different number of arguments for processing. For example, we can modify our add function to accept
multiple arguments and add them:

var add = function(){
 var result = 0,
 len = arguments.length;
 while (len--) result += arguments[len];
 console.log(result);
};

CHAPTER 2 ■ FUNCTIONS

22

add(15); // 15
add(31, 12, 92); // 135
add(19, 53, 27, 41, 101); // 241

There is one big problem with the arguments object that you need to remember: it is a mutable
object. You can replace the values inside arguments or even change it entirely to another object:

var rewriteArgs = function(){
 arguments[0] = 'no';
 console.log(arguments[0]);
};

rewriteArgs('yes'); // 'no'

var replaceArgs = function(){
 arguments = null;
 console.log(arguments == null);
};

replaceArgs(); // true

The first function shows that we can overwrite the values of the arguments object, and the second
function changes the value of the object to null. The only constant item would be the length property of
the object: as long as you don’t overwrite the arguments object or change its value entirely, the length
would still reflect the number of arguments passed even if you append new objects to it:

var appendArg = function(){
 arguments[2] = 'three';
 console.log(arguments.length);
};

appendArg('one', 'two'); // 2

When writing code, take care to ensure you don’t overwrite the arguments object or change its values
so you don’t end up with weird side effects.

There’s another property of the arguments object, callee, and it’s a reference to the function itself.
In the previous section we used the function identifiers to refer to the function, and that’s similar to how
arguments.callee works:

var number = 12;

var numberFactorial = (function(number){
 return (number == 0) ? 1 : number * arguments.callee(number - 1);
})(number);

console.log(numberFactorial); // 479001600

Notice that the function here is an anonymous one: we have no identifier yet we’re able to call it
recursively via the arguments.callee property. This is the exact purpose of this property: to enable a
function to call itself without using its identifier (if it even has one).

But while it’s a useful property, arguments.callee has been deprecated in ECMAScript 5 and using it
in ES5 Strict Mode will throw an error. So, if possible, don’t use this property; instead use the identifier
techniques discussed earlier.

While JavaScript allows for a variable number of arguments to be passed to a function, it does not
enable default values. However, you can mimic default argument values by checking the passed values
and setting them if they’re undefined:

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

23

var greet = function(name, greeting){

 // check if arguments are defined;
 // if not, use a default value..
 name = name || 'Mark';
 greeting = greeting || 'Hello';

 console.log([greeting, name].join(' '));
};

greet('Tim', 'Hi'); // 'Hi Tim'
greet('Tim'); // 'Hello Tim'
greet(); // 'Hello Mark'

Because named arguments that don’t have corresponding passed values are given the value of
undefined (and thus have a "falsy value" or a value that evaluates to the Boolean false), we can use the
logical OR operator (||) to reassign a default value to the variable.

It’s also important to remember that native type arguments (such as strings or integers) are passed
to a function by value, which means that changes to these values aren’t reflected in the outside scope.
However, when used as arguments to functions, objects are passed by reference, reflecting any changes
inside the function scope:

var obj = {name: 'Mark'};

var changeNative = function(name){
 name = 'Joseph';
 console.log(name);
};

changeNative(obj.name); // 'Joseph'

console.log(obj.name); // 'Mark'

var changeObj = function(obj){
 obj.name = 'Joseph';
 console.log(obj.name);
};

changeNative(changeObj); // 'Joseph'

console.log(obj.name); // 'Joseph'

In the first function, we pass the obj.name as an argument and because it’s a native string type,
changing it from within the function does not affect the original value. But in our second function, we
pass the object itself and the function receives a direct reference to the object, enabling us to change the
property, which is reflected outside the function.

Finally, you’ll recall that I mentioned that the arguments object is array-like. This means that while
the arguments object seems to be like an array (in the sense that its values can be accessed via numeric
indices), it’s not actually an array and it doesn’t have array methods. You can, however, turn the
arguments object into a real array using the Array.prototype.slice function:

var argsToArray = function(){
 console.log(typeof arguments.callee); // ‘function’
 var args = Array.prototype.slice.call(arguments);
 console.log(typeof args.callee); // ‘undefined’

CHAPTER 2 ■ FUNCTIONS

24

 console.log(typeof args.splice); // ‘function’
};

argsToArray();

You’ll see how this is useful in later sections when we deal with more advanced techniques. For

now, just keep in mind that you can turn your arguments object into an array if you need to.

Return Values
The return keyword is used inside a function body to explicitly return a value. JavaScript allows multiple
return statements from within the code, and the function exits as soon as one is executed:

var isOne = function(number){
 if (number == 1) return true;

 console.log('Not one..');
 return false;
};

var one = isOne(1);
console.log(one);
// true

var two = isOne(2);
// 'Not one..'
console.log(two);
// false

The first time we call this function, we pass it the argument 1. This argument meets the condition of
our if statement within the function body, so the return statement is executed and the function halts.
However, in the second call, the value 2 does not meet the condition so the function continues until the
next return statement.

Multiple return statements are useful for limiting the execution of a function, and it’s common
practice to halt the function at the beginning using variable checks in order to save processing time and
prevent errors, as the following snippet of code for getting a data property from a DOM element
illustrates:

var getData = function(id){
 if (!id) return null;
 var element = $(id);
 if (!element) return null;
 return element.get('data-name');
};

console.log(getData()); // null
console.log(getData('non existent id')); // null
console.log(getData('main')); // 'Tim'

Because retrieving an element from the DOM and getting its property are expensive tasks, we place
checks within the code to immediately halt further execution in order to save processing power. The
second check also functions as a guard to prevent the code from throwing an error when calling the get
method of the object if its value is null.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

25

As a final note on return values, remember that all JavaScript functions return values—whether or
not you explicitly return one. If you don’t specify a return value via an explicit statement or if your return
statements are never executed, the return value of the function will be undefined.

Function Internals
While function forms, arguments, and return values are part of the core function topics, there are a lot of
things underneath the visible source code that require our attention. In the next sections, we’ll take a
behind-the-scenes look at the internals of functions as well as a peek at what happens when JavaScript
interpreters encounter a function. We won’t go into deep technical details, but we’ll focus on the most
important parts we need to know in order to understand functions.

Some people find parts of JavaScript arbitrary and the rules of the language seem hard to grasp at
first. Learning the internals helps a lot in understanding these seemingly random rules, and as we’ll see
throughout the next sections, knowing the inner workings of JavaScript actually contributes to making
your code much more reliable and powerful.

■ Note The actual implementation of JavaScript interpreters is mostly creator-dependent, and therefore some
details we’ll discuss in the next sections may not be true for all JavaScript interpreters. However, the ECMAScript
specification does describe general rules on how interpreters should implement functions, so we do have an

official guide to function internals.

Executable Code and Execution Contexts
JavaScript differentiates between three kinds of executable code:

• Global code is the code that’s found on the top level of the application source.

• Function code is the code that’s inside functions or what we called before the
bodies of functions.

• Eval code is the code that’s passed and executed by the JavaScript function eval().

The following example shows these different kinds of executable code:

// this is global code
var name = 'John';
var age = 20;

function add(a, b){
 // this is function code
 var result = a + b;
 return result;
};

(function(){
 // this is function code
 var day = 'Tuesday';

CHAPTER 2 ■ FUNCTIONS

26

 var time = function(){
 // this is also function code,
 // but it is separate from the code
 // above
 return day;
 };
})();

// this is eval code
eval('alert("yay!");');

The variables name, age, and most of the functions we created all reside in the top level, which mean
they’re global code. However, the code inside functions is function code, and it’s seen as separate from
the global code. In cases where there are functions inside other functions, the content of the inner
functions is also treated as separate function code—which is why the code inside the time function is
separate.

So why do we have different types of code in JavaScript? In order to keep track of exactly where it is
when interpreting code, the JavaScript interpreter uses an internal mechanism called an execution
context. During the course of running a script, JavaScript will create and enter several execution
contexts, not only to keep track of its location within the program but also to store data that’s used for
proper execution of the program.

A JavaScript program will have at least one execution context, normally called the global execution
context. When a JavaScript interpreter starts executing your program, it "enters" the global execution
context and begins interpreting the code using this execution context. When it encounters a function,
the interpreter creates a new execution context and then enters this new context and executes the
function code using this context. When the function has finished executing or when it has returned a
value, the interpreter exits the execution context and returns to the previous one.

This might get confusing, so let’s clear it up a bit with a little example.

var a = 1;

var add = function(a, b){
 return a + b;
};

var callAdd = function(a, b){
 return add(a, b);
};

add(a, 2);

callAdd(1, 2);

This code is simple enough to understand, and it’s a good example of how JavaScript creates, enters,
and leaves execution contexts. Let’s go through it step by step:

1. When the program starts, the JavaScript interpreter enters the global execution
context and starts evaluating the code. It creates the variables a, add, and
callAdd, and defines their values to be the number 1, a function, and another
function, respectively.

2. The interpreter encounters a function invocation for the add function. It creates a
new execution context, enters it, and evaluates the expression a + b, then returns
the value of this expression. After it returns the value, it leaves the new execution
context it created, discards it, and goes back to the global execution context.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

27

3. The interpreter then encounters another function invocation, this time for
callAdd. Like in step 2, it creates a new execution context and enters it before
interpreting the callAdd function body. As it evaluates the contents of the
function, though, it encounters another function invocation—to the add
function—and as for every other function invocation, the interpreter creates a
new context and enters it. At this point, we have three execution contexts: the
global execution context, one for callAdd, and another for add, the last one
being the active execution context. When the add function is finished, its
execution context is discarded and the interpreter enters the execution context
of callAdd, which also returns a value, thereby signaling the interpreter to exit
and discard this execution context and reenter the global one.

Execution contexts may be a bit confusing but since you’ll never actually deal with them directly
with your code, it’s acceptable if you don’t understand them fully at first. Still, a question comes to mind:
if we’re not gonna deal directly with execution contexts, why do we need to discuss them?

The answer lies in the other uses for execution contexts. I already mentioned that JavaScript
interpreters use execution contexts to keep track of their position in the code, but aside from this
important use, several internal objects are also associated with execution contexts that directly affect
your JavaScript program.

Variables and Variable Instantiation
The first of these internal objects is the variable object. Each execution context has its own variable
object that’s used to keep track of all the variables that are defined within that context.

The process of creating variables in JavaScript is called variable instantiation. Because JavaScript is
a lexically-scoped language, the scope of a variable depends on where it is instantiated in your code. The
only exceptions to this rule are global variables created by omitting the var keyword:

var fruit = 'banana';

var add = function(a, b){
 var localResult = a + b;
 globalResult = localResult;
 return localResult;
};

add(1, 2);

In this snippet, the variable fruit and the function add are globally scoped and can be used
throughout the whole script. On the other hand, the variables localResult, a, and b are locally scoped
and are available only inside the add function. The variable globalResult, however, is globally scoped
because the var keyword is omitted.

Variable instantiation is the first thing that happens when a JavaScript interpreter enters an
execution context. The interpreter creates a variable object for the execution context and then checks for
var declarations in the current context. These variables are then created and added in the variable object
and given the value undefined. When we consider this with our example code, we can say that the
variables fruit and add are instantiated using the variable object of the global execution context, while
the variables localResult, a, and b are instantiated using the variable object of the local execution
context of the add function. The variable globalResult, however, is a tricky one, and we’ll discuss its
implications later.

An important point to remember about variable instantiation is that it’s connected with execution
contexts in a deeper way. If you recall, we have three types of executable code in JavaScript: global code,
function code, and eval code. In turn, we can say we also have three types of execution contexts: the

CHAPTER 2 ■ FUNCTIONS

28

global execution context, function execution contexts, and eval execution contexts. And since variable
instantiation uses the variable object of an execution context, it follows that we can have only three main
types of variables in JavaScript: global variables, variables that are local to a function, and variables from
evaluated code.

This leads us to one of the things that confuse a lot of people about the language: JavaScript has no
block scope. In other C-like languages, code inside a pair of curly braces form what is called a block,
which has its own separate scope. However, because variable instantiation happens at the level of the
execution context, a variable that’s instantiated anywhere in a current execution context will be available
throughout that context, not just in the current block.

var x = 1;

if (false) {
 var y = 2;
}

console.log(x); // 1
console.log(y); // undefined

In a language that has block scope, the line console.log(y) should produce an error since you’re
trying to access a variable that’s not been instantiated (because the line var y = 2; will never be
evaluated). However, JavaScript doesn’t throw an error with this code, but instead tells us that the value
of y is undefined, which is the value of a variable that’s been instantiated but not given a value. Seems
like curious behavior, doesn’t it?

However, if we remember that variable instantiation happens at the level of the execution context,
we’ll know that this behavior is expected. When JavaScript interprets the snippet above, it starts by
entering the global execution context and then does variable instantiation by looking for all variable
declarations throughout the whole context and adds these variables to the variable object. So our code is
really interpreted like this:

var x;
var y;

x = 1;

if (false) {
 y = 2;
}

console.log(x); // 1
console.log(y); // undefined

The same context-level instantiation also applies to functions:

function test(){
 console.log(value); // undefined
 var value = 1;
 console.log(value); // 1
};

test();

Even though our variable is defined after the first call to console.log, we still get a log of undefined
rather than an error because variable instantiation happens before any other code inside the function is
run. Our variable is already instantiated and given the value of undefined before the first line of the
function body is executed, but it is only given a value of 1 on the second line. This is why it’s always good

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

29

to put all your variable declarations at the start of your code or at the beginning of a function. By
declaring all variables at the beginning, you make it clear that the variable will be available across the
whole of the current scope.

As you can see, the process of creating the variable (instantiation) and the process of assigning a
value to a variable (declaration) are done separately by the JavaScript interpreter. This leads us back to a
previous example:

var add = function(a, b){
 var localResult = a + b;
 globalResult = localResult;
 return localResult;
};

add(1, 2);

In this snippet, the variable localResult is local to the function, but the variable globalResult
becomes global. The most common explanation for this is that when you omit the var keyword, the
variable will be global, but that’s a very naive explanation. Since we know that the processes of variable
instantiation and declaration are separate, we can rewrite the function to look like how the interpreter
might see it:

var add = function(a, b){
 var localResult;
 localResult = a + b;
 globalResult = localResult;
 return localResult;
};

add(1, 2);

The variable localResult will be instantiated and a reference to it will be stored in the variable
object of the execution context. When the interpreter sees the line localResult = a + b;, it checks the
variable object of the current execution context to see if there’s a variable with the same name stored,
and because there is such a variable in our example, the value is assigned to that variable. However,
when it executes globalResult = localResult, it does not find any references so it proceeds to check
whether the variable is present in the variable object of the previous context (in this case, the global
execution context). But because it still does not find a reference to this variable, the interpreter assumes
that it’s new and creates a new variable in the last execution context it checked—which is always the
global execution context. Therefore, the variable becomes a variable of the global execution context.

Scoping and the Scope Chain
That process of looking up variables in an execution context’s scope is called identifier resolution and
it’s powered by another internal object associated with execution contexts, the scope chain. As its name
implies, the scope chain is an ordered list containing objects that the JavaScript interpreter uses to figure
out which variable a particular identifier is referring to.

Each execution context has its own scope chain that’s created before the interpreter enters the
execution context. A scope chain can contain several objects, one of which would be the variable object
of the current execution context. Let’s consider this simple code:

var fruit = 'banana';
var animal = 'cat';

console.log(fruit); // 'banana'
console.log(animal); // 'cat'

CHAPTER 2 ■ FUNCTIONS

30

The code runs within the global execution context, so the variables fruit and animal are stored in
the variable object of the global execution context. When the interpreter encounters the line
console.log(fruit), it sees the identifier fruit and looks for the value of this identifier by searching
through the current scope chain—which contains a single object, the variable object of the global
execution context. The interpreter then figures out that the variable has the value of 'banana'. The same
thing happens to the line after that.

Coincidentally, the variable object of the global execution context is used for another purpose, as
the global object. This global object has its own internal representation inside the interpreter, but it’s
also available through JavaScript itself via the window object in the browser or the global object in certain
JavaScript interpreters. All global variables are actually members of the global object: in the example
above, you can reference the variables fruit and animal via window.fruit or global.fruit and
window.animal or global.animal, depending on where you’re running the script. The global object is
present in all scope chains for all execution contexts, and in the case of global code, the global object is
the only object inside the scope chain.

It gets more complicated with functions, though. Aside from the global object, the scope chain of a
function also contains the variable object of its own execution context.

var fruit = 'banana';
var animal = 'cat';

function sayFruit(){
 var fruit = 'apple';

 console.log(fruit); // 'apple'
 console.log(animal); // 'cat'
};

console.log(fruit); // 'banana'
console.log(animal); // 'cat'

sayFruit();

For code within the global execution context, the identifiers fruit and animal refer to the variables
with the values 'banana' and 'cat' respectively, because those are the references stored in the variable
object (i.e., the global object) of the execution context. However, inside the sayFruit function the
identifier fruit has a different value because another variable fruit was also declared inside that
function. Since the variable object of the current execution context is in the front of the chain before the
global object, the interpreter knows that we are referring to a local variable rather than the global one
and correctly resolves the identifier.

Since JavaScript is a lexically-scoped language, identifier resolution also respects the position of
functions in the code. A function inside another function can see the variables from the outer function,
as in this example:

var fruit = 'banana';

function outer(){
 var fruit = 'orange';

 function inner(){
 console.log(fruit); // 'orange'
 };

 inner();
};

outer();

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

31

The variable fruit inside the inner function has the value 'orange' because the scope chain of the
function not only contains its own variable object but also the variable object of the function where it
was declared in the code (in this case, the outer function). When the interpreter encounters the
identifier fruit inside the inner function, it first looks at its own variable object. Since there’s no such
identifier there, it goes to the next object, which is the variable object of the outer function. The
interpreter then finds the identifier it needs, so it stops there and concludes that the value of fruit is
'orange'.

That, however, only applies to functions created using function literals. Function objects created
using new Function() that are inside other functions behave differently as they won’t be able to access
the variables from their external function:

var fruit = 'banana';

function outer(){
 var fruit = 'orange';

 var inner = new Function('console.log(fruit);');

 inner(); // 'banana'

};

outer();

In this example, our inner function wasn’t able to access the local variable fruit inside the outer
function, so the output of console.log(fruit) inside the inner function is 'banana' rather than 'orange'.
This happens because functions created using the new Function() form have scope chains that contain
only their own variable objects and the global object. The variable objects of any surrounding functions
aren’t added to the scope chain of these functions, and this limits scope resolution to only local and
global variables.

The creation of the scope chain happens right after the interpreter creates the execution context and
before variable instantiation. In the case of global code, the interpreter first creates the global execution
context, then the scope chain. It then proceeds to create the variable object of the global execution
context (which also becomes the global object), then it does variable instantiation before adding the
variable object to the scope chain. In the case of function code, the same thing happens but the global
object is added to the function’s scope chain first, then the variable objects of surrounding functions (if
any), with the function’s own scope chain being added last. Since the scope chain is technically a logical
stack, the order of lookup during identifier resolution depends on which object was added first, so the
most local of variable objects is added last to ensure that the local variable objects would be searched
first during identifier resolution.

Closures
The presence of first-class functions in JavaScript and the ability of these functions to reference variables
from surrounding functions give the language the base for another powerful function feature: closures.
This language feature makes JavaScript functions extra useful, though it’s also one of the more difficult
to understand parts of the language. But because we already discussed how JavaScript functions work
internally in the previous sections, we should be able to figure out how exactly closures work and how
we can use them in our code.

Normally, the lifetime of a JavaScript variable is limited by where it was declared. A global variable
will persist until the program is finished while a variable local to a function will only be available until
the function is done. When the function exits, the local variables are destroyed by the interpreter via
garbage collection and are no longer available. However, when an inner function inside another

CHAPTER 2 ■ FUNCTIONS

32

function retains a reference to a variable from the outer function and this inner function is then kept in
reference even after the execution of the outer function, the variable persists even though the outer
function has finished. When this happens, we get a closure.

Confusing? Let’s check some examples:

var fruit = 'banana';

(function(){
 var fruit = 'apple';
 console.log(fruit); // 'apple'
})();

console.log(fruit); // 'banana'

Here, we have a single execution function that creates a variable fruit. Within that function, the
value of the variable fruit is 'apple'. When the function is done, the variable fruit with the value of
'apple' is destroyed. We’re left with the global variable fruit that has the value 'banana'. No closure was
created. Let’s take a look at another one.

var fruit = 'banana';

(function(){
 var fruit = 'apple';

 function inner(){
 console.log(fruit); // 'apple'
 };

 inner();
})();

console.log(fruit); // 'banana'

This example is similar to one we saw in another section. The single execution function creates a
variable fruit and a function called inner. When the inner function gets called, it references the variable
fruit from the outer function and we get the value 'apple' rather than 'banana'. Unfortunately, the
inner function is local to the single execution function, which means it also gets destroyed after the
function is done. Still no closure, so let’s look at one more.

var fruit = 'banana';
var inner;

(function(){
 var fruit = 'apple';

 inner = function(){
 console.log(fruit);
 };

})();

console.log(fruit); // 'banana'
inner(); // 'apple'

And now it gets interesting. In this code we declared a variable called inner in the global scope and,
within our single execution function, we gave this global variable the value of a function that logs the

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

33

value of the fruit variable. Normally, the variable fruit inside the single execution function should be
destroyed after the function is done, like in our previous examples, but because we referenced this
variable inside our inner function, it is retained, which is why we get the value 'apple' when we call the
function. And this is a closure.

A closure is created when a function inside another function gets stored outside the outer function’s
scope while retaining references to a variable from the outer function. Even though the function no
longer operates inside its surrounding function, references to the variables from the surrounding
function are still retained because the internal scope chain of the function still contains the variable
object of the surrounding function, even though the surrounding function may no longer exist.

Remember that a function’s scope chain is tied to its execution context, and like every other object
associated with an execution context, it is created right after the creation of the execution context and
destroyed together with the execution context when the function exits. Also, the interpreter only creates
a function’s execution context (and therefore its scope chain) when the function is invoked. In the case
of our example above, the inner function is invoked during the last line of our code and, by that time, the
execution context (along with its scope chain and variable object) of the original anonymous function
has already been destroyed. So how can the inner function reference the local variable fruit inside the
anonymous function when the original variable object containing it is already long gone by then?

The answer lies in a function’s internal property called the scope property. All JavaScript functions
have their own internal scope property that contains references to the objects that will be used to build
the scope chain. When the interpreter creates the scope chain for a function, it looks at the function’s
scope property to see which items to add to the scope chain. Since this scope property is associated with
the function itself rather than the execution context, it persists until the function is finally destroyed—
making it usable no matter how many times the function is invoked.

A function created in the global context has a scope property that contains the global object, so its
scope chain consists only of the global object and its own variable object. A function created inside
another function has a scope object that contains all the objects inside the encapsulating function’s
scope property and the encapsulating function’s variable object.

function A(){
 function B(){
 function C(){
 };
 };
};

In this snippet, the A function’s scope property contains only the global object. The B function’s
scope property will inherit the contents of the A function’s scope property (in this case, only the global
object) plus the variable object of the A function because it’s nested inside. Finally, the C function will
have a scope property that inherits all of the objects from the B function’s scope property—the global
object and the variable object of A—plus the preceding function’s variable object.

Function objects created with the new Function() form, on the other hand, only have one item in
their scope property (which is the global object). This means that they can’t access the local variables
from surrounding functions, and therefore can’t be used to create closures.

The “this” Keyword

We’ll wrap up these sections on function internals in a bit, but we have one final item to discuss: the this
keyword. If you have experience in other object-oriented programming languages, you might have come
across a similar keyword, usually called this or self, that’s used to refer to the current instance (more on
this in Chapter 3). However, JavaScript’s this keyword is a little trickier, since its value is dependent
upon the execution context and the caller of the function. It’s also mutable, which means its value can
be changed during runtime.

CHAPTER 2 ■ FUNCTIONS

34

The value of this will always be an object, and there are several rules that dictate which object will
become the this in a particular piece of code. The simplest rule is that in the global context, this refers
to the global object:

var fruit = 'banana';

console.log(fruit); // 'banana'
console.log(this.fruit); // 'banana'

If you recall, all variables that are declared in the global context are actually properties of the global
object. Here we see that this.fruit correctly resolves to the fruit variable, showing us that the this
keyword in the snippet is in fact the global object. Functions declared in the global context will also have
the this keyword pointing to the global object inside their function bodies:

var fruit = 'banana';

function sayFruit(){
 console.log(this.fruit);
};

sayFruit(); // 'banana'

(function(){
 console.log(this.fruit); // ‘banana’
})();

var tellFruit = new Function('console.log(this.fruit);');

tellFruit(); // ‘banana’

For functions that are created as properties of objects (often termed methods), the this keyword will
refer to the object itself rather than the global object:

var fruit = {

 name: 'banana',

 say: function(){
 console.log(this.name);
 }

};

fruit.say(); // 'banana'

We’ll get further into the topic of objects in the next chapter, but for now, notice how the line
this.name resolves properly to the name property of the fruit object. In essence, it’s the same for
previous examples: since the functions in the previous examples were properties of the global object, the
this keyword inside the function body referred to the global object. So it follows that functions that are
properties of any object will have the object itself as the this value in their body.

Nested functions, on the other hand, follow one simple rule: they always have the global object as
their default this value, no matter where they appear:

var fruit = 'banana';

(function(){

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

35

 (function(){
 console.log(this.fruit); // ‘banana’
 })();
})();

var object = {

 fruit: 'orange',

 say: function(){
 (function(){
 console.log(this.fruit); // ‘banana’
 })();
 }

};

object.say();

Here, we see that the identifier this.fruit inside our two nested single execution functions resolved
to the global fruit variable. In the case of the single execution function inside the say function, the value
of this.fruit was still 'banana' even though the say function itself has its this keyword pointing to the
object object. This means that the outer function doesn’t affect the this value of the inner nested
function.

Earlier I said that the this value is mutable and this ability to change the value of the keyword has
several uses in JavaScript. Functions have two methods that can be used to change the this value: apply
and call. These methods are actually used to invoke the function without the invocation operator (i.e.,
without the use of () after the function identifier), but you can also provide arguments to these
methods to change the behavior of the function.

The apply method takes two arguments: thisValue, which is used as the value of this inside the
function, and params, which is an array of arguments to pass to the function. When the apply method is
called on a function without any arguments or when the first argument passed is null, the this value of
the function becomes the global object and no arguments are passed:

var fruit = 'banana';

var object = {

 fruit: 'orange',

 say: function(){
 console.log(this.fruit);
 }

};

object.say(); // ‘orange’
object.say.apply(); // ‘banana’

Reusing a snippet from the last example, we see that when we used apply without arguments to the
object.say function, the this value of the function becomes the global object rather than the object
itself—thereby resolving this.fruit to be 'banana' rather than 'orange'.

To set the this value of a function to another object, you simply have to pass a reference to the
object using the apply function:

CHAPTER 2 ■ FUNCTIONS

36

function add(){
 console.log(this.a + this.b);
};

var a = 12;
var b = 13;

add(); // 25

var values = {a: 50, b: 23};

add.apply(values); // 73

The apply method’s second argument can be used to pass arguments to the function being called.
This argument should be in the form of an array containing values that correspond to the function’s
formal parameters:

function add(a, b){
 console.log(a); // 20
 console.log(b); // 50
 console.log(a + b); // 70
};

add.apply(null, [20, 50]);

The other function method, call, works the same way as apply and thus follows the same rules indicated
above. The only difference is that call can take multiple arguments after the thisValue argument, and
these arguments will correspond to the formal parameters of the function in the order they were
declared:

function add(a, b){
 console.log(a); // 20
 console.log(b); // 50
 console.log(a + b); // 70
};

add.call(null, 20, 50);

Advanced Function Techniques
The previous sections are meant as a base from which to start our explorations of functions. However, in
order to fully utilize the power of JavaScript functions, we must be able to apply the various bits and
pieces we’ve learned from those sections.

In the next sections, we’ll discuss some of the advanced function techniques we can use in our code
and we’ll explore various uses for the things we’ve learned so far. Like everything else in this book, the
information here is not meant to be exhaustive, but rather a starting point for further experimentation.

Limiting Scope
Let’s say we have a program that needs to keep track of the user’s name and age. We have a variable,
user, which is an object where we keep the necessary data and two sets of functions, setName and
getName, setAge and getAge, that we’ll use to set and get the data:

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

37

// the `user` object where we keep the data
var user = {name: 'Mark', age: 23};

function setName(name){
 // make sure the name is a string
 if (typeof name == 'string') user.name = name;
};

function getName(){
 return user.name;
};

function setAge(age){
 // make sure the age is a number
 if (typeof age == 'number') user.age = age;
};

function getAge(){
 return user.age;
};

// set a new name
setName('Joseph');
console.log(getName()); // 'Joseph'

// set a new age
setAge(22);
console.log(getAge()); // 22

So far, so good. Our setName and setAge functions have checks to ensure that our values are of the
correct type before setting them. However, we notice that the user variable is in the global scope and it’s
accessible everywhere. This presents a problem since you could just set the names without using the
functions we’ve declared:

user.name = 22;
user.age = 'Joseph';

console.log(getName()); // 22
console.log(getAge()); // 'Joseph'

This isn’t good, since we want the values to be correctly typed.
So what can we do? If you recall, variables declared inside a function are local to the function itself

and are not accessible outside, and closures provide a way for a function to retain references to the local
variables of its surrounding function. We can combine both of these points to limit our user variable to a
local scope and then use closures for our setter and getter functions:

// create a single execution function
// to encapsulate the code and localize the user variable
(function(){

 // our variable is now local
 var user = {name: 'Mark', age: 23};

 // make our functions global
 setName = function(name){

CHAPTER 2 ■ FUNCTIONS

38

 if (typeof name == 'string') user.name = name;
 };

 getName = function(){
 return user.name;
 };

 setAge = function(age){
 if (typeof age == 'number') user.age = age;
 };

 getAge = function(){
 return user.age;
 };

})();

// set a new name
setName('Joseph');
console.log(getName()); // 'Joseph'

// set a new age
setAge(22);
console.log(getAge()); // 22

Now, if someone tries to set the values of user.name or user.age without going through the
functions, it will result in a runtime error since the user object is no longer available to any other code
except our getter and setter functions.

Currying
One of the best things about having first-class functions is the ability to create these functions during
runtime and store them in variables. Say we have the following snippet:

function add(a, b){
 return a + b;
};

add(5, 2);
add(5, 5);
add(5, 200);

Our last three lines call the function add to add 5 and another number. We’re adding the same base
number (5) to different numbers multiple times and it seems better if we could just set the function to
add 5 instead of having to type it every time. We could modify our add function to use 5 + b instead, but
other parts of our program might already use the add function, so this won’t do. Wouldn’t it be nice if we
could dynamically modify our add function without changing it entirely?

It turns out we can. This technique is called partial application or currying, and it involves creating
a function that "applies" some of the arguments ahead of time:

function add(a, b){
 return a + b;
};

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

39

function add5(b){
 return add(5, b);
};

add5(2);
add5(5);
add5(200);

Here, we create an add5 function that calls our add function with a preset value (in this case, 5). The
add5 function is essentially our add function but with an argument already applied (hence, partial
application). However, the snippet above doesn’t show the dynamic part. What if we have other parts in
our code where we can use this? If we were to do as we did above, we’d have to create a new function for
each of the partially applied functions we want.

This is where first-class functions come in handy. Instead of explicitly declaring our new add5
function, we can have another function that takes a function as its argument and then returns a
modified copy of that function. In our case, we can create a function that modifies our add function
dynamically to create a new partially applied function:

function add(a, b){
 return a + b;
};

function curryAdd(a){
 return function(b){
 return add(a, b);
 };
};

var add5 = curryAdd(5);

add5(2);
add5(5);
add5(200);

In this snippet we introduce a new function called curryAdd. It takes a single argument, a, which will
be the value passed as the a argument to the original add function. It then returns a new function that
has one formal parameter, b, which will be used as the b argument to add. When we call this new
function via curryAdd(5), it returns a new partially applied function that we store in a variable. Because
we have a closure, the partially applied function retains a reference to the a variable from our curryAdd
function, making it usable for the next invocations.

This, of course, is a very trivial application of curried functions, but it suffices to show how the
technique works. You’ll find uses for currying in many parts of your code and it’s a technique that comes
in handy during day-to-day development.

Decoration
Another technique that uses dynamic modification of functions and closures is decoration. The
operative word is “decorate,” and function decoration involves taking a function and adding new
"features" to it dynamically.

Say we have a function that takes a single object as its argument and stores the key-value pairs in
another object:

CHAPTER 2 ■ FUNCTIONS

40

 (function(){

 var storage = {};

 store = function(obj){
 for (var i in obj) storage[i] = obj[i];
 };

 retrieve = function(key){
 return storage[key];
 };

})();

console.log(retrieve('name')); // undefined

store({name: 'Mark', age: 23});
console.log(retrieve('name')); // 'Mark'

What if we want our store function to take in a pair of arguments instead of just a single object? So
instead of doing store({name: 'Mark'}), we also want to be able to do store('name', 'Mark'). We could
modify our store function to do this, but we’ve also used a similar style in other parts of our code, so it’s
better if we can do this dynamically.

What we can do is to create a decorator function that will wrap our store function:

var decoratePair = function(fn){
 return function(key, value){
 if (typeof key == 'string'){
 var _temp = {};
 _temp[key] = value;
 key = _temp;
 }
 return fn(key);
 };
};

(function(){

 var storage = {};

 store = decoratePair(function(obj){
 for (var i in obj) storage[i] = obj[i];
 });

 retrieve = function(key){
 return storage[key];
 };

})();

console.log(retrieve('name')); // undefined

store('name', 'Mark');
console.log(retrieve('name')); // 'Mark'

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

41

This is one of the more complex examples we’ve seen so far, so let’s take it step by step. First, we
declared a new function called decoratePair that takes a single argument, fn, which is the function we’re
decorating. decoratePair then returns a new decorated function that takes two arguments, key and
value. Since our original store function takes only a single object as its argument, the decorated function
checks whether the first argument is an object or a string. If it’s not a string, the wrapped function will
immediately be called. However, if it’s a string, the function turns it into an object before it calls the
wrapped function. When we define the store function, we pass the original function to decoratePair as a
literal.

Our decorator above ensures that we have proper arguments for the wrapped function before
calling it, but decorators can also add features after the function is called. Here we have a simple
decorator that takes the arguments from our add function and multiplies them by the second argument:

var add = function(a, b){
 return a + b;
};

var decorateMultiply = function(fn){
 return function(a, b){
 var result = fn(a, b);
 return result * b;
 };
};

var addThenMultiply = decorateMultiply(add);

console.log(add(2, 3)); // 5
console.log(addThenMultiply(2, 3)); // 15

Here we created the function addThenMultiply dynamically by passing the original add function to
decorateMultiply. The result is a function that saves the results of the add function and modifies it before
returning the value.

Function decoration is useful for a lot of tasks and it enables you to extend functions without having
to modify them directly. This is especially handy for built-in functions that you can’t modify directly, as
well as third-party code you can’t control.

Combination
A similar technique to decoration is combination, which involves putting together two functions to
create a new function. Unlike decoration, combination involves directly passing the results of one
function to another.

Here’s a simple example of how it works:

var add = function(a, b){
 return a + b;
};

var square = function(a){
 return a * a;
};

var result = square(add(3, 5));
console.log(result); // 64

CHAPTER 2 ■ FUNCTIONS

42

The square(add(3, 5)) code shows how combination works, but it’s not exactly a combined
function. Here, the value returned from add(3, 5), which is 8, is passed to the square function, which in
turn returns 64. To make this a combined function, we have to automate the process so that we don’t
have to type square(add(a, b)) all the time.

While we could simply create a function that has the square(add(a, b)) code inside it, the better
way is to write a combinator function that takes two functions and combines them:

var add = function(a, b){
 return a + b;
};

var square = function(a){
 return a * a;
};

var combine = function(fnA, fnB){
 return function(){
 var args = Array.prototype.slice.call(arguments);
 var result = fnA.apply(null, args);
 return fnB.call(null, results);
 };
};

var addThenSquare = combine(add, square);

var result = addThenSquare(3, 5);
console.log(result); // 64

Our new combinator in this snippet, called combine, is a function that takes two arguments, fnA and
fnB, which correspond to the two functions to be combined. It then returns a new combined function.
The innards of the combined function are more complex than what we’ve seen in past examples, but it
essentially takes the arguments passed to the function, turns them into an array, uses the apply method
of functions to invoke the first function, fnA, and then stores the result in a variable. The result is then
passed to the second function, fnB, before it’s returned. We then create a new function, addThenSquare,
by passing the references to our add and square functions to our combinator. The result is a function that
combines our two small functions together.

Note that the order is important when combining functions, as well the number of arguments. In
our example, we can’t have a squareThenAdd function, since square takes only one argument and returns
one value while add needs two arguments. And since JavaScript only allows for one return value,
combined functions are usually limited to functions that take a single argument.

MooTools and Functions
You’ll notice that, so far, much of our discussion has centered on functions in the context of JavaScript,
and MooTools is strangely out of the picture. This is not so unusual if you remember that MooTools
doesn’t try to turn JavaScript into something else but rather uses the available features of the language to
make it more powerful. The information we’ve learned so far is core to how MooTools implements new
features, and a cursory glance at the MooTools source code will show its extensive use of features like
single execution functions for limiting scope, closures, currying, and decoration and other techniques.

In the next sections, we’ll take a look at some of the features that MooTools adds to functions, and
see how they can be used for our own applications.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

43

Function Binding
If you recall from a previous section, we learned that a function’s this value is mutable and that we can
change it using the apply and call methods. However, there are cases when it’s time-consuming if we
have to use apply and call each time:

function setName(name){
 this.name = name;
};

var object = {name: 'Mark'};

setName.call(object, 'Joseph');
setName.call(object, 'Olie');
setName.call(object, 'Patrick');

A better solution would be to create a new version of the setName function that would be
automatically bound to the object:

function setName(name){
 this.name = name;
};

var object = {name: 'Mark'};

function setObjectName(name){
 setName.call(object, name);
};

setObjectName('Joseph');
setObjectName('Olie');
setObjectName('Patrick');

This technique is called binding, and it’s much better than the earlier example since it eliminates
the need to use call all the time. But it’s a bit time-consuming to declare new functions for all functions
you want to rebind. Fortunately, MooTools gives us an easier way to do this using the bind method of
functions. Our code above can be simplified using this method:

function setName(name){
 this.name = name;
};

var object = {name: 'Mark'};

var setObjectName = setName.bind(object);

setObjectName('Joseph');
setObjectName('Olie');
setObjectName('Patrick');

The first argument to the bind method is an object that will be the this value of the new function.
The method then returns a new function similar to the example we had in the previous snippet.

All arguments passed to bind after the first argument are passed as arguments to the function being
bound. If we have several calls to setName.call(object, 'Mark') in our code, we could simply create a
new function using var setObjectToMark = setName.bind(object, ['Mark']), and replace our previous

CHAPTER 2 ■ FUNCTIONS

44

calls with setObjectToMark(). Note, however, that bind does not do partial application: if we leave out
any arguments to the function, they will be set to undefined.

Extending Functions with Methods
While MooTools already includes several useful function methods, it also allows developers to add new
function methods easily. We’ll discuss much of how this native extension mechanism works in Chapter
6, but right now we’ll focus on how we can use this MooTools feature to add new methods.

The MooTools way to add new function methods is via Function.implement. Here’s an example:

// create a new function method `thenAdd`
Function.implement('thenAdd', function(num){
 var self = this;
 return function(){
 var args = Array.prototype.slice.call(arguments);
 var result = self.apply(null, args);
 return result + num;
 };
});

var add = function(a, b){
 return a + b;
};

// modify the add function to add 5 to the result
var addThenAdd5 = add.thenAdd(5);

console.log(addThenAdd5(2, 3)); // 10

var square = function(a){
 return a * a;
};

// modify the square function to add 2 to the result
var squareThenAdd2 = square.thenAdd(2);

console.log(squareThenAdd2(5)); // 27

To create the new method, we called Function.implement with two arguments: a string with the
value 'thenAdd', which will be the name of the method, and a function, which will be the actual method.
Our actual thenAdd method is a function that takes one argument, num, which is the number to add to the
result of the function we’re modifying. It then returns a new function that wraps the original function.

You’ll notice that we didn’t have to specify the function itself that we were modifying in our thenAdd
method. Since it’s a function method, the this keyword inside our method body already points to the
function, so when we called add.thenAdd(5), this referred to the add function, and the same thing
happens for the square.thenAdd(2) call. One other thing we did was to save the reference to the function
to a local variable via the line var self = this; so that we can reference the function inside the new
function we’re creating. If we didn’t do this, we’d lose reference to the function since the value of this
inside the new function would be the global object instead of the function we’re modifying.

As in previous examples, you’ll see that a closure is created, enabling us to reference both the
original function via self and the number argument to the thenAdd method. We also used the
Array.prototype.slice.call(arguments) technique to turn our arguments object into an array so that we
can use it with the apply method, and this also gives our new function flexibility to handle a variable

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 2 ■ FUNCTIONS

45

number of arguments. The result is a new function method that adds a number to the result of the
original function.

In the previous section on combination, we used a combinator function to join two functions. We
could rewrite our old combinator function into a new function method to make it easier to reuse the
function:

Function.implement('combine', function(fn){
 var self = this;
 return function(){
 var args = Array.prototype.slice.call(arguments);
 var result = self.apply(null, args);
 return fn(result);
 };
});

var add = function(a, b){
 return a + b;
};

var square = function(a){
 return a * a;
};

var addThenSquare = add.combine(square);

var result = addThenSquare(3, 5);
console.log(result); // 64

If you’re creating more than one method, you can pass Function.implement a single object argument
instead of a string and a function. If we were to add our two methods above in one go, we could do this
by passing an object instead:

Function.implement({

 addThen: function(num){
 var self = this;
 return function(){
 var args = Array.prototype.slice.call(arguments);
 var result = self.apply(null, args);
 return result + num;
 };
 },

 combine: function(fn){
 var self = this;
 return function(){
 var args = Array.prototype.slice.call(arguments);
 var result = self.apply(null, args);
 return fn(result);
 };
 }

});

CHAPTER 2 ■ FUNCTIONS

46

The Wrap Up
As we’ve seen in this chapter, JavaScript’s implementation of functions is truly amazing. JavaScript
functions are powerful and complex—both from the developer’s and the interpreter’s points of view. We
saw the different forms of functions available to us and discussed seemingly simple elements such as
arguments and return values. We also dived deep into the internals of functions and learned about
execution contexts, variable instantiation, and scoping. Finally, we discussed the various advanced
techniques and features of JavaScript functions like closures, currying, decoration, and dynamic
modification, and we toured the additional features that MooTools provides.

I hope you’ve learned a lot about how powerful and complex JavaScript functions are and that you
picked up a few nifty techniques to use in your own programs. However, we’re just getting started in our
exploration and this chapter is meant to be the starting point for more complex JavaScript topics.

In the next chapter, we’ll learn about objects and dive headfirst into JavaScript’s own flavor of
object-oriented programming. So if you’re ready, turn to the next chapter and let’s get started.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

C H A P T E R 3

■ ■ ■

47

Objects

The specification document for ECMAScript defines the language as “an object-oriented programming
language for performing computations and manipulating computational objects within a host
environment.” To put it simply, JavaScript is an object-oriented (OO) language.

The object-oriented approach focuses on objects, their composition, and how they interact with
each other. While the whole area that is object-oriented programming is beyond the scope of this book,
we’ll discuss JavaScript’s own flavor of object-oriented programming in this chapter.

Like the previous chapter on functions, there won’t be much talk about MooTools here. The
MooTools framework is an object-oriented framework at its core and we need to get a solid grasp of
JavaScript’s native object implementation to truly appreciate it. Don’t worry, though, this is the last
chapter where everything’s vanilla JavaScript. We’ll spend the rest of the book talking more about
MooTools.

JavaScript is Prototypal(-ish)
While all OO languages deal with objects at their core, the process by which objects are created and
composed divides most OO languages into two camps:

• Classical (or class-based) object-oriented languages use classes to create objects. A
class is a special data type that serves as a blueprint for creating objects. In a
classical OO language, you define the structure of an object by creating a class for
it and then create the object itself by creating an instance of the class, in a process
called instantiation.

• Prototypal (or prototype-based) object-oriented languages, on the other hand, do
not have classes but rely on other objects as blueprints. In a prototypal language,
you create an actual object called the prototype that reflects the structure you
want and this object is then used as a blueprint for your other objects. You create
new instances by copying the prototype itself in a process called cloning. In pure
prototypal languages, all objects can be used as prototypes.

JavaScript, at its core, is a prototypal language: there are no classes in JavaScript and objects are
created from other objects. However, JavaScript is not a purely prototypal language. In fact, it has traces
of classical features that we’ll see later on in this chapter. If you’re already familiar with other object-
oriented languages, you’ll probably find JavaScript to be weird, since the language has a unique—and
somewhat quirky—object implementation.

However, don’t be turned off too quickly: JavaScript—as an object-oriented language—is quite
flexible and its fusion of classical and prototypal features give it a highly powerful base for complex and
rich applications.

CHAPTER 3 ■ OBJECTS

48

A Language of Objects
A JavaScript object is essentially an aggregate of key-value pairs. It’s a complex data type, in contrast to
“simple” data types like strings and numbers. Each key-value pair in an object is called a property, the
key being the property name and the value being the property value.

The property name is always a string, but the property value can be any data type: primitives like
strings, numbers, or Booleans, or complex data types like arrays, functions, and other objects. Although
JavaScript makes no distinction about what data type a property contains, properties with functions as
their values are often called methods to distinguish them from other properties. To avoid confusion,
we’ll adopt this practice in our discussion: properties with values other than functions will be called
“properties” and properties with functions as their values will be called “methods”. When we need to
refer to both the properties and methods of an object, we’ll use another term from object-oriented
programming: members.

■ Note The lack of distinction between properties and methods in JavaScript arises from the fact that the
language has first-class functions. From the perspective of the interpreter, any member of an object—regardless

of value—is a property, since functions themselves can be used as values.

There are no limits to the number of properties an object can have, and an object can also have zero
properties (making it an empty object). Depending on its use, an object can sometimes be called a hash
or a dictionary or a table, reflecting its structure as a set of key-value pairs. However, we’ll stick to object
in our discussion.

The easiest way to create a new object in JavaScript is using the object literal:

// an object literal
var person = {
 name: 'Mark',
 age: 23
};

Here, we create a new object with two properties, one with the key name and the other with the key
age, and store it in our person variable—giving us a person object with two members. Notice that we
didn’t wrap the keys in quotes even though keys have to be strings. This is allowed in JavaScript as long
as the keys are valid identifiers and not reserved words. Otherwise, we have to wrap our keys in quotes:

// object literal with different keys
var person = {
 'name of the person': 'Mark',
 'age of the person': 23
};

To access a member of an object, we can use dot notation, which involves appending a period to the
object’s identifier and then the name of the key we want to access, or bracket notation, which involves
appending a pair of square brackets, [], to the end of the identifier containing a string value
corresponding to the key:

var person = {
 name: 'Mark',
 age: 23

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 3 ■ OBJECTS

49

};

// dot notation
console.log(person.name); // 'Mark'

// bracket notation
console.log(person['age']); // 23

The dot notation is actually just a shortcut—or syntactic sugar—for the bracket notation, although
it’s common practice to use dot notation most of the time. Of course, dot notation is limited to keys that
are proper identifiers; for everything else, you’ll have to use bracket notation.

var person = {
 'name of the person': 'Mark',
 'age of the person': 23
};

console.log(person['name of the person']); // 'Mark'

You’ll also use bracket notation when you’re not using a string literal for the key, but a variable that
holds a string literal:

var person = {
 name: 'Mark',
 age: 23
};

// variable to hold the key
var key = 'name';

console.log(person[key]); // 'Mark'

Accessing an object's member that's not set will return the value undefined:

var person = {};

console.log(person.name); // undefined

You can set the value of an object’s member by explicitly defining it during the creation of the object
like we did in the previous examples, but you can also set or modify a member’s value by simply
assigning a new value:

var person = {name: 'Mark'};

person.name = 'Joseph';
console.log(person.name); // 'Joseph'

console.log(person.age); // undefined
person.age = 23;
console.log(person.age); // 23

You can create methods by simply assigning a function value to an object’s member:

var person = {
 name: 'Mark',
 age: 23,

CHAPTER 3 ■ OBJECTS

50

 sayName: function(){
 console.log(this.name); // 'Mark'
 }
};

console.log(typeof person.sayName); // 'function'
person.sayName();

person.sayAge = function(){
 console.log(this.age); // 23
};

console.log(typeof person.sayAge); // 'function'
person.sayAge();

You’ll notice that we referred to the name and age members of our person object using this.name and
this.age in our methods. If you recall our discussion in the previous chapter, you know that the this
keyword for functions that are properties of objects refers to the object itself. In our case, the sayName
and sayAge functions are methods of the person object, and therefore the value of the this keyword in
their function bodies points to the person object.

The Building Blocks of Objects
While object literals are an easy way to create new objects, they don’t showcase JavaScript’s full object-
oriented capabilities. For one, limiting yourself to object literals would be time-consuming: if you need
30 objects to represent people with the properties name and age and logName and logAge methods, it
would be impractical to create literals for each of these objects. In order to be efficient, we need a way to
define the structure of our objects and use this definition to create new instances of the objects.

In a classical object-oriented language, we can create a new Person class to define the structure of
our objects. In a prototypal object-oriented language, we can simply create a base Person object for the
structure, then clone this object to create new instances. JavaScript—while nominally a prototypal
language—takes an approach that fuses both the classical and prototypal way.

Constructor Functions
The first half of JavaScript’s approach involves constructor functions (or simply, constructors). Object
literals are actually syntactic sugar for creating objects without having to use a constructor. The
following objects are equivalent:

// using an object literal..
var personA = {
 name: 'Mark',
 age: 23
};

// using a constructor..
var personB = new Object();
personB.name = 'Mark';
personB.age = 23;

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 3 ■ OBJECTS

51

The function Object is our constructor function, and using var personB = new Object() is the same
as using var personB = {}. By using new Object(), we create a new blank object and this new object is
said to be an instance of Object.

The Object constructor is special because it represents the “base” object in JavaScript: all objects in
JavaScript, regardless of which constructor was used to create them, are instances of Object. You can
check whether an object is an instance of a constructor using the instanceof operator:

// object literal
var personA = {};

// constructor
var personB = new Object();

// check whether objects are instances of Object
console.log(personA instanceof Object); // true
console.log(personB instanceof Object); // true

All objects also have a special property called constructor, which is a reference to the constructor
function that was used to create it. In the case of our simple objects above, the value of this property will
be the Object constructor:

// object literal
var personA = {};

// constructor
var personB = new Object();

// check whether objects used Object constructor
console.log(personA.constructor == Object); // true
console.log(personB.constructor == Object); // true

As the name implies, constructor functions are, obviously, functions. In fact, any JavaScript function
(with the exception of host or interpreter-implemented functions) can be used as a constructor. This is
one of the unique aspects of the language’s object implementation: instead of creating a new construct
for instantiating objects, JavaScript just relies on the readily available function construct.

Of course, you won’t be using every function you create as a constructor. In almost all cases, you’ll
create your own functions that serve the sole purpose of being constructors for your classes. A
constructor function is just like any other function—with slight changes in its internals—and it’s
common practice to define functions with their names capitalized to denote their nature as
constructors:

// our Person constructor
var Person = function(){};

// using the Person function as a regular function
var result = Person();
console.log(result); // undefined

// using the Person function as a constructor
var person = new Person();

console.log(typeof person); // 'object'
console.log(person instanceof Person); // true
console.log(person.constructor == Person); // true

CHAPTER 3 ■ OBJECTS

52

We created a new constructor called Person by simply defining a blank function. When the Person
function is called like a normal function, it returns undefined. However, when we use the new keyword in
conjunction with the Person() invocation, something different happens: it returns a new object. It is this
combination of the new keyword and a call to a constructor function that makes object instantiation
happen.

In our example, new Person() returns a blank object, just like the object returned by new Object().
The only difference in this case is that the object returned is no longer just an instance of Object, it’s also
be an instance of Person, and the constructor property of the object now points to our new Person
constructor rather than Object. But the object returned is still a blank object.

If you recall from the last chapter, the this keyword inside functions refers to an object. In the case
of our Person function, it should refer to the global object when the function is used as a regular function
(because it was declared in the global scope). However, something changes when the Person function is
used as a constructor: this no longer points to the global object, but instead points to the new object
created:

// a global object
var fruit = 'banana';

// our constructor
var Person = function(){
 console.log(this.fruit);
};

// Person as a regular function
Person(); // logs 'banana'

// Person as a constructor
new Person(); // logs undefined

We get undefined for the last line because this.fruit no longer points to any identifier available.
It’s the job of the new keyword to create a new object and change the this value of the constructor
function to point to the new object.

At the start of this section, we ran into a problem with using simple object literals for object
creation. We needed a way to create several copies of the person object without having to type each one
of them via literals. Now that we know that constructor functions can be used to create objects and that
the this keyword refers to the new object, we can use this to solve our problem:

var Person = function(name, age){
 this.name = name;
 this.age = age;
};

var mark = new Person('Mark', 23);
var joseph = new Person('Joseph', 22);
var andrew = new Person('Andrew', 21);

console.log(mark.name); // 'Mark'
console.log(joseph.age); // 22
console.log(andrew.name + ', ' + andrew.age); // 'Andrew, 21'

The first thing you’ll notice is that we changed our constructor a bit to accept arguments. This is
allowed because constructors are just like regular functions, with the exception of having their this
keyword pointing to the newly created instance. When the call to new Person is interpreted, a new object
is created and the Person function is invoked. Inside the constructor function, the arguments to name and
age are set as the values of the object properties of the same name. The object is then returned.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 3 ■ OBJECTS

53

Using constructors makes instantiating new objects of the same structure easier. Instead of
explicitly defining the structure of each object via literals, you can simply create a constructor function
that defines the structure ahead of time. This comes in handy when you need to add more members to
your objects, especially when it comes to methods:

var Person = function(name, age){
 this.name = name;
 this.age = age;
 this.log = function(){
 console.log(this.name + ', ' + this.age);
 };
};

var mark = new Person('Mark', 23);
var joseph = new Person('Joseph', 22);
var andrew = new Person('Andrew', 21);

mark.log(); // 'Mark, 23'
joseph.log(); // 'Joseph, 22'
andrew.log(); // 'Andrew, 21'

Here we added a new method called log to our objects by simply declaring the value of this.log as a
logging function inside our constructor. If we were still using object literals, we would have to define the
log function for each of our objects—and that would take too long. But by using a constructor function,
we can define the function once for all our objects.

Prototypes
While constructor functions might seem like the end point for JavaScript’s object implementation,
they’re only half of the picture. And if we limit ourselves to using constructor functions, we’ll run into
several problems.

One such problem is code organization. At the start of the last section, we wanted an easier way to
create person objects with the properties name and age, and the methods setName, getName, setAge, and
getAge. If we modify the Person constructor from the previous section according to our specification, we
end up with something like this:

var Person = function(name, age){

 // properties
 this.name = name;
 this.age = age;

 // methods
 this.setName = function(name){
 this.name = name;
 };

 this.getName = function(){
 return this.name;
 };

 this.setAge = function(age){
 this.age = age;
 };

CHAPTER 3 ■ OBJECTS

54

 this.getAge = function(){
 return this.age;
 };

};

Our Person constructor has suddenly ballooned—and we only have two properties and four
methods! Imagine if you start creating complex objects with lots of members and complex methods.
Your code would soon get hard to manage if you put everything inside your constructor.

Another issue that arises is extensibility. Suppose we have the following code:

// constructor.js
var Person = function(name, age){
 this.name = name;
 this.age = age;
 this.log = function(){
 console.log(this.name + ', ' + this.age);
 };
};

// program.js
var mark = new Person('Mark', 23);
mark.log(); // 'Mark, 23'

In this example, the Person constructor comes from another file we load from an external source
into our program and we don’t have access to change the code. But for our program, we need to add the
new methods getName and getAge to our Person instances. Since we can’t modify the constructor itself,
we can’t add these new methods inside the constructor.

Then we get a brilliant idea: let’s add the methods to the instances! Since new members can easily
be added to methods by assignment, this would be easy to do. However, we quickly run into some
problems:

// program.js
var mark = new Person('Mark', 23);
mark.log(); // 'Mark, 23'

mark.getName = function(){ return this.name; };
mark.getAge = function(){ return this.age; };

mark.getName(); // returns 'Mark'
mark.getAge(); // returns 23

var joseph = new Person('Joseph', 22);
joseph.log(); // 'Joseph, 22'

// the following lines will produce an error:
joseph.getName();
joseph.getAge();

Even though we successfully managed to add new methods to our mark instance, our joseph
instance didn’t get the same methods. We end up with the same problem we had with object literals: we
have to define the same set of members for each of our objects. This isn’t very practical, even if we build
a helper function to do it.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 3 ■ OBJECTS

55

At the beginning of this chapter, we learned that JavaScript is a prototypal language and that the
main feature of a prototypal language is its reliance on creating copies of an original object—the
prototype—to define new objects instead of using classes. But looking back, we haven’t seen any
copying involved, nor did we see any original objects that serve as prototypes. All we saw were functions
used as constructors and that new keyword.

And that’s our clue: the new keyword. Remember that when we use new Object(), the new keyword
creates a new object and uses that object as the this value of our constructor function. Actually, the new
keyword isn’t creating a new object: it’s copying an object. And the object it’s copying is none other than
the prototype.

All functions that can be used as constructors have a special property called the prototype, which is
an object that defines the structure of your instances. When you use new Object(), a new copy of
Object.prototype is made and this becomes your new object instance. This is another unique trait of
JavaScript: unlike other prototypal languages where any object can be a prototype, JavaScript defines
special prototype objects for the sole purpose of prototyping.

■ Note There is a way to mimic the prototypal style of other languages in JavaScript, though, wherein you directly
clone any object to create a new object, instead of relying on prototypes. We’ll learn how to do this in the last

section of this chapter.

The prototype object, like any other object, can have an unlimited number of members, and adding
new members to it is simply a matter of assigning new values. We could rewrite our original Person code
in this way:

var Person = function(name, age){
 this.name = name;
 this.age = age;
};

Person.prototype.log = function(){
 console.log(this.name + ', ' + this.age);
};

var mark = new Person('Mark', 23);
mark.log(); // 'Mark, 23'

Here, we moved the declaration of our log method outside of the constructor. By assigning
Person.prototype.log, we tell the interpreter that all objects created from the Person constructor should
have a log method, and this is reflected in our last line where we call mark.log(). The rest of the
constructor stays the same: we didn’t move our this.name and this.age properties to the prototype
because we want to be able to set them when we invoke our constructor.

With prototypes in mind, we could also rewrite the code we had at the start of this section into
something more manageable:

var Person = function(name, age){
 this.name = name;
 this.age = age;
};

Person.prototype.setName = function(name){

CHAPTER 3 ■ OBJECTS

56

 this.name = name;
};

Person.prototype.getName = function(){
 return this.name;
};

Person.prototype.setAge = function(age){
 this.age = age;
};

Person.prototype.getAge = function(){
 return this.age;
};

This new code is much cleaner because we’re not cramming everything inside our constructor and
we can easily add more methods in the future without having to rearrange the constructor.

Another problem we had was how to add new methods when we can’t change the constructor
function. But since we already have access to the constructor function (and therefore its prototype), we
can easily add new members without any access to the constructor itself:

// person.js
var Person = function(name, age){
 this.name = name;
 this.age = age;
};

// program.js
Person.prototype.log = function(){
 console.log(this.name + ', ' + this.age);
};

var mark = new Person('Mark', 23);
mark.log(); // 'Mark, 23'

var joseph = new Person('Joseph', 22);
joseph.log(); // 'Joseph, 22'

We actually already saw a sample of dynamic prototype augmentation in the previous chapter on
functions. One function form, the function object, used the Function constructor and we were able to
add new function methods through the MooTools function called Function.implement. All JavaScript
functions are actually instances of Function, and Function.implement actually modifies
Function.prototype. Even though we didn’t have access to the Function constructor itself—which is a
built-in constructor that’s provided by the interpreter—we’re still able to add new function methods by
augmenting Function.prototype. The augmentation of native types will be discussed later on in the
chapter on Types and Natives.

Inheritance
To understand prototypal programming in JavaScript, we need to be able to distinguish between
prototypes and instances. As we learned earlier, a prototype is an object we use like a blueprint to define
the structure of objects we want. When we copy the prototype, we create an instance of the prototype:

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 3 ■ OBJECTS

57

// Animal constructor
var Animal = function(name){
 this.name = name;
};

// Animal prototype
Animal.prototype.walk = function(){
 console.log(this.name + ' is walking.');
};

// Animal instance
var cat = new Animal('Cat');
cat.walk(); // 'Cat is walking.'

In this example, Animal and its prototype define the structure of our Animal objects, and our object
cat is an instance of Animal. When we execute new Animal(), a copy of Animal.prototype is created and
we call this copy as an instance. Animal.prototype is an object with a single member, walk, which is a
method and therefore all instances of Animal also have the same walk method.

But what happens if we change Animal.prototype after we created an instance?

// Animal constructor
var Animal = function(name){
 this.name = name;
};

// Animal prototype
Animal.prototype.walk = function(){
 console.log(this.name + ' is walking.');
};

// Animal instance
var cat = new Animal('Cat');
cat.walk(); // 'Cat is walking.'

// Does an Animal have an eat method?
console.log(typeof cat.eat); // undefined, so no.

// Add an eat method to Animal
Animal.prototype.eat = function(){
 console.log(this.name + ' is eating.');
};

console.log(typeof cat.eat); // 'function'
cat.eat(); // 'Cat is eating'

Something interesting happened here. When we first checked the value of cat.eat after we created
the cat object, we found that cat.eat was undefined. We then added a new method to Animal.prototype
called eat and checked again: cat.eat is no longer undefined but is now a function. In fact, it’s the same
function we defined for Animal.prototype.

It seems that defining new properties for a prototype updates all instances of the prototype,
regardless of when they were created. Remember that when we create a new object, the new operator
creates a new copy of the prototype and when we created cat, the prototype only had one method. If it’s
a real copy, it shouldn’t have the eat method after we defined it in the prototype. After all, if you take a
document and copy it on a photocopy machine and then write something on the original using a pen,
you wouldn’t expect that new change to automatically appear in the photocopied version, right?

CHAPTER 3 ■ OBJECTS

58

Perhaps the interpreter knows when new properties are added to the prototype and automatically
adds them to the instances? Maybe after we add the new eat method to Animal.prototype, it searches for
all instances of Animal and then adds this new method to them? We can easily check if this is the case by
doing a simple experiment. After creating a cat instance, we’ll give it its own eat method, and then we’ll
update the prototype. If the interpreter indeed copies methods from the prototype, the eat method of
our cat instance should be overwritten:

// Animal constructor
var Animal = function(name){
 this.name = name;
};

// Animal prototype
Animal.prototype.walk = function(){
 console.log(this.name + ' is walking.');
};

// Animal instance
var cat = new Animal('Cat');
cat.walk(); // 'Cat is walking.'

// Add a new eat method to cat
cat.eat = function(){
 console.log('Meow. Cat is eating!');
};

// Add an eat method to Animal
Animal.prototype.eat = function(){
 console.log(this.name + 'is eating.');
};

cat.eat(); // 'Meow. Cat is eating!'

Clearly, that’s not the case. The JavaScript interpreter does not update the instances, because our
cat.eat method points to the one we defined for the cat object rather than the one from
Animal.prototype. So what’s really happening?

All objects have an internal property called proto that points to the object’s prototype. This property
is used by the interpreter to “link” the object to its prototype. While it’s true that the new keyword creates
a copy of the prototype, it actually just creates a “superficial” copy, in the sense that the object it creates
looks like the prototype. But the truth is that the object created by new is nothing more than a blank
object that has its internal proto property set to the prototype of the constructor.

You’re probably asking, “Wait, if it’s a blank object, why does it have methods and properties like
the prototype? Where do those come from?” This is where the proto property comes in. Objects are
linked to their prototype so that the methods and the properties of the prototype can be accessed from
the object. In our example, our cat object didn’t really have its own walk method—it was actually the
walk method of Animal.prototype. When the interpreter comes across the identifier cat.walk(), it checks
whether the cat object has its own walk method. Since we didn’t explicitly define a walk method for our
cat object, it checks the proto property of the object to find its prototype, then checks the prototype to
see if it has a walk method. And seeing that there is indeed such a method in the prototype, the
interpreter uses this method for the instance.

This also explains the eat method of our other example: because we explicitly defined an eat
method for our cat object, the eat method of our Animal.prototype wasn’t called. An object overrides
the members of the prototype if it has a member of the same key, and the members of an object’s
prototype are available only when they aren’t overridden by the object’s own members.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 3 ■ OBJECTS

59

An object’s member that’s from the prototype (as opposed to a member that was explicitly defined
for it) is said to be inherited, and the process of obtaining members from an object’s prototype is called
inheritance. You can check if an object has its own member using the hasOwnProperty method that’s
available to all objects:

var Animal = function(){};
Animal.prototype.walk = function(){};

var dog = new Animal();

var cat = new Animal();
cat.walk = function(){};

console.log(cat.hasOwnProperty('walk')); // true
console.log(dog.hasOwnProperty('walk')); // false

Here we explicitly defined a walk method for our cat object, but we didn’t do the same for our dog
object. When we call cat.hasOwnProperty('walk'), it returns true because cat now has its own walk
member. In contrast, dog.hasOwnProperty('walk') returns false because there’s no explicitly defined
walk member for dog. Interestingly, if we do cat.hasOwnProperty('hasOwnProperty'), it’ll return false,
because the hasOwnProperty method itself is inherited from Object.

One thing to consider is the value of this: inside a constructor, the value of this always points to the
instance and never to the prototype. Functions defined from the prototype have another rule: if they are
called directly from the prototype, the this value will point to the prototype object, but when they are
called from an object inheriting from the prototype, this will point to the instance rather than the
prototype:

var Animal = function(name){
 this.name = name;
};

Animal.prototype.name = 'Animal';

Animal.prototype.getName = function(){
 return this.name;
};

// Call `getName` directly from the prototype
Animal.prototype.getName(); // returns 'Animal'

var cat = new Animal('Cat');
cat.getName(); // returns 'Cat'

Here we changed our code a bit so that the Animal.prototype object will have its own name property.
When we called the function directly, this.name points to the value of the name property of
Animal.prototype. However, when we called cat.getName(), this.name points to the value of cat.name
(which we set in our constructor).

The prototype and its instances are separate objects, and the link between them goes only one way:
changes to the prototype are reflected to all its instances but changes to the instances affect only the
instances. However, weird behavior occurs when complex types come into play wherein changes to one
instance affect all other instances.

Remember that in JavaScript we have both primitives and complex types. Primitives such as strings,
numbers, and Booleans are always used by value: a copy is made when they are passed to functions or
assigned to variables. However, complex types like arrays, functions, and objects are always used by

CHAPTER 3 ■ OBJECTS

60

reference, which means that they aren’t copied but rather a “pointer” to the original complex type is
created:

// Create an object
var object = {name: 'Mark'};

// "Copy" the object into another variable
var copy = object;

console.log(object.name); // 'Mark'
console.log(copy.name); // 'Mark'

// Change the value of our copy
copy.name = 'Joseph';

console.log(copy.name); // 'Joseph'
console.log(object.name); // 'Joseph'

When we did var copy = object, no new object was created. Rather, our variable copy was assigned
a reference to the same original object that was the value of object. Therefore, both copy and object now
reference the same object. A change made to copy was therefore reflected to object because they’re
really pointing to the same object.

Objects can have members that are complex types, such as an object with a property that’s another
object. Prototypes, being objects themselves, can also have complex types as properties. The problem
arises when you define a property in a prototype that points to a complex object, because this property
will then be inherited by all instances and they will all therefore point to a single object:

var Animal = function(){};

Animal.prototype.data = {name: 'animal', type: 'unknown'};

Animal.prototype.setData = function(name, type){
 this.data.name = name;
 this.data.type = type;
};

Animal.prototype.getData = function(){
 console.log(this.data.name + ': ' + this.data.type);
};

var cat = new Animal();
cat.setData('Cat', 'Mammal');
cat.getData(); // 'Cat: Mammal'

var shark = new Animal();
shark.setData('Shark', 'Fish');
shark.getData(); // 'Shark: Fish'

cat.getData(); // 'Shark: Fish'

Both the cat and shark objects don’t have their own data property, so they inherit the object from
Animal.prototype. Because of this inheritance, cat.data and shark.data both point to the same object
that was defined from Animal.prototype. Any change in one instance therefore gets reflected in other
instances and gives us unwanted behavior.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 3 ■ OBJECTS

61

The easiest way to solve this would be to remove the data property from Animal.prototype and give
our instances their own data property. This could easily be done inside the constructor:

var Animal = function(){
 this.data = {name: 'animal', type: 'unknown'};
};

Animal.prototype.setData = function(name, type){
 this.data.name = name;
 this.data.type = type;
};

Animal.prototype.getData = function(){
 console.log(this.data.name + ': ' + this.data.type);
};

var cat = new Animal();
cat.setData('Cat', 'Mammal');
cat.getData(); // 'Cat: Mammal'

var shark = new Animal();
shark.setData('Shark', 'Fish');
shark.getData(); // 'Shark: Fish'

cat.getData(); // 'Cat: Mammal'

Because the this keyword inside our constructor points to the instance itself, setting this.data
inside it would give the instance its own data property and won’t affect our prototype. The end result is
that all our instances now have their own data properties, and changing these properties will no longer
affect other instances.

The Prototype Chain
The Object constructor and its corresponding prototype is the base object in JavaScript. All objects,
regardless of how they are constructed, inherit from Object. In the case of the following code, this is
simple enough to understand:

var object = new Object();

console.log(object instanceof Object); // true

Because we constructed object using the Object constructor, we can say that the internal proto
property of object points to Object.prototype. However, consider the following code:

var Animal = function(){};

var cat = new Animal();

console.log(cat instanceof Animal); // true
console.log(cat instanceof Object); // true
console.log(typeof cat.hasOwnProperty); // 'function'

We know for a fact that cat is indeed an instance of Animal, since it was created using new Animal().
We also know that all objects have a method called hasOwnProperty, which they inherit from Object. But

CHAPTER 3 ■ OBJECTS

62

how can our cat object inherit from Object when its internal proto property points to Animal? And how
can cat be an instance of both Animal and Object at the same time when we didn’t even use the Object
constructor?

The answer lies within the prototypes. By default, a constructor’s prototype is a basic object that has
no methods or properties of its own. Sound familiar? Yes, it’s like an object that’s created using new
Object()! We could have written our code in the following form:

var Animal = function(){};

Animal.prototype = new Object();

var cat = new Animal();

console.log(cat instanceof Animal); // true
console.log(cat instanceof Object); // true
console.log(typeof cat.hasOwnProperty); // 'function'

And now it’s clearer that Animal.prototype inherits from Object. Aside from inheriting from its own
prototype, an instance also inherits from the prototype of the prototype of the prototype.

Sound confusing? Let’s examine this in our code above. Our cat object is created using new Animal,
so it inherits properties and methods from Animal.prototype. The value of Animal.prototype is an object
created using new Object(), so it inherits the properties and methods from Object.prototype. In turn,
these properties and methods that our Animal.prototype inherits from Object.prototype are also passed
to any instances of Animal. And, therefore, we can say that our cat object indirectly inherits from
Object.prototype.

The internal proto property of our cat object points to Animal.prototype, and, in turn, the internal
proto property of our Animal.prototype points to Object.prototype. This continuous linking between
the prototypes is called the prototype chain, and we can say that the cat object’s prototype chain
extends from the cat object itself to Object.prototype.

■ Note Object.prototype is always the end of the prototype chain, and this prototype’s proto property does not
point to any other object—otherwise there would be no end to the prototype chain and it would be impossible to

traverse it. Object.prototype itself is not created using any constructors, but rather set by the interpreter

internally, thus making it the only object that is not an instance of Object.

The process of looking up properties and methods of an object through the prototype chain is called
traversal. When the interpreter encounters cat.hasOwnProperty, it first looks at the object itself to see if
there’s a member called hasOwnProperty in the object. When it doesn’t find one, it looks at the next
object in the prototype chain, which is Animal.prototype. As there’s still no such member in this object,
it moves on to the next object in the prototype chain, and so on. If it finds the member we’re looking for
in one of the objects in the chain, it stops the traversal and uses this member. If it reaches the end of the
chain (which is Object.prototype) and still does not find what it’s looking for, it returns the value
undefined for the member. In our example, the traversal ends at Object.prototype, where the
hasOwnProperty method comes from.

An object is always an instance of at least one constructor: for objects created using literals and
objects created using new Object(), they’re instances of Object. For objects created using a different
constructor, they will be an instance of both the constructor used to create them as well as an instance of
all the constructors used to create the prototypes in their prototype chain.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 3 ■ OBJECTS

63

Deliberate Chains
The prototype chain becomes useful once we start creating more complex objects. Say we want to have
an Animal object: all animals have a name, and all animals should be able to eat to survive. Therefore, we
could write the following code:

var Animal = function(name){
 this.name = name;
};

Animal.prototype.eat = function(){
 console.log('The ' + this.name + ' is eating.');
};

var cat = new Animal('cat');
cat.eat(); // ‘The cat is eating.’

var bird = new Animal('bird');
bird.eat(); // ‘The bird is eating.’

So far so good. But now we want our animals to make noises, so we need to add methods. Moreover,
these animals make different sounds: a cat meows and a bird tweets, so a cat needs a meow method and a
bird needs a tweet method. Of course, we can simply create these methods on the animals themselves,
but it would be impractical since we plan on creating many cat and bird objects. We could also simply
add both these methods to Animal.prototype, but that would be wasteful since birds never meow and
cats never tweet.

What if we simply create separate constructors for both objects? We can create Cat and Bird
constructors and modify their prototypes to fit the particular animal. But both these animals eat—do we
really need to define an eat method for each of the animals? That would mean quite a number of
repeated declarations should we decide to add more types of animals.

With our knowledge of the prototype chain, we realize that there’s a better solution. We can code
our program so that we have separate Cat and Bird objects with proper methods and still inherit the
methods that both animal share from our original Animal prototype:

var Animal = function(name){
 this.name = name;
};

Animal.prototype.eat = function(){
 console.log('The ' + this.name + ' is eating.');
};

var Cat = function(){};

Cat.prototype = new Animal('cat');

Cat.prototype.meow = function(){
 console.log('Meow!');
};

var Bird = function(){};

Bird.prototype = new Animal('bird');

CHAPTER 3 ■ OBJECTS

64

Bird.prototype.tweet = function(){
 console.log('Tweet!');
};

var cat = new Cat();
cat.eat(); // ‘The cat is eating.’
cat.meow(); // 'Meow!'

var bird = new Bird();
bird.eat(); // ‘The bird is eating.’
bird.tweet(); // 'Tweet!'

We left our original Animal constructor and prototype as they were and created two new
constructors, Cat and Bird. We used empty functions for our new constructors since we didn’t have
anything to set inside them, but we could have as easily added some other statements inside them if
needed. The default prototypes for Cat and Bird were replaced with instances of Animal, so our Cat
and Bird objects will also inherit from Animal.prototype. Finally, we added proper methods to the
prototypes—meow for Cat and tweet for Bird. When we finally instantiated our objects, the results were
two objects that inherit from both their immediate prototypes and from Animal.prototype.

In classical programming languages, the process of creating a specialized version of a class by
creating a new class and inheriting directly from the original class is called subclassing. JavaScript, being
a prototypal language, does not have classes and, in essence, the only thing we are doing is creating a
deliberate prototype chain. We say “deliberate” because we explicitly set which objects will be included
in the prototype chain of our instances.

There is no limit to the size of your prototype chain, and you can extend your chain to allow for
more specialization:

var Animal = function(name){
 this.name = name;
};

Animal.prototype.eat = function(){
 console.log('The ' + this.name + 'is eating.');
};

var Cat = function(){};

Cat.prototype = new Animal('cat');

Cat.prototype.meow = function(){
 console.log('Meow!');
};

var Persian = function(){
 this.name = 'persian cat';
};

Persian.prototype = new Cat();

Persian.prototype.meow = function(){
 console.log('Meow...');
};

Persian.prototype.setColor = function(color){

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 3 ■ OBJECTS

65

 this.color = color;
};

Persian.prototype.getColor = function(){
 return this.color;
};

var king = new Persian();
king.setColor('black');
king.getColor(); // 'black'
king.eat(); // 'The persian cat is eating.'
king.meow(); // 'Meow...'

console.log(king instanceof Animal); // true
console.log(king instanceof Cat); // true
console.log(king instanceof Persian); // true

Here we created a new specialized version of Cat called Persian. You’ll notice that we created a
Persian.prototype.meow method, which overwrites (during traversal) the original Cat.prototype.meow
method for instances of Persian. If you check, you’ll see that the king object is an instance of Animal,
Cat, and Persian, which means our prototype chain was correctly set.

The real power of prototype chains (deliberate or not) is when we see it in conjunction with
inheritance and prototype chain traversal. Because all of the prototypes are linked, a change at one point
in the chain will be reflected in the items below that point. If we add a new method or property to
Animal.prototype, for instance, all prototypes that inherit from Animal will also receive those new
members. This gives us a way to extend several objects easily and quickly.

As your programs grow in complexity, deliberate chains help keep your code organized. Instead of
jamming all your code into one prototype, you can create multiple prototypes that have deliberate
chains to reduce the amount of code you’re working with and keep your program manageable.

Simplified Prototypal Programming
You should realize by now that JavaScript’s object-oriented flavor is in a class of its own. JavaScript’s
status as a prototypal language is largely nominal: constructor functions and the new keyword are
elements you’d expect to find in classical languages, and JavaScript’s use of inheritance from
prototypes—while clearly a prototypal characteristic—relies on specialized prototype objects, making
them similar to classes. The design of the language’s object implementation was in part affected by
language politics: JavaScript was created during a time when classical languages were the standard, and
it was decided to give the language some features that would be familiar to classical programmers.

However, JavaScript is a flexible language. While we may not be able to change the core
implementation of objects, we can leverage what’s already available to give the language a more pure
prototypal feel (and as we’ll see in the next chapter, even a more classical feel).

In this “simplified” prototypal model, we’ll forgo the complexities of JavaScript prototyping and focus
on objects themselves. Instead of creating a constructor and setting prototypes, we’ll use real objects as the
prototypes and create new objects by “cloning” these prototypes. To get a better idea of what we’re going to
do, let’s first use an example from another prototypal programming language called Io:

Animal := Object clone
Animal name := "animal"

Cat := Animal clone
Cat name := "cat"

myCat := Cat clone

CHAPTER 3 ■ OBJECTS

66

Since this isn’t a book about Io, we’ll stick to the basics. Like JavaScript, the base object of Io is called
Object. However, Io’s Object isn’t a constructor (i.e., not a function), but rather a real object. At the start
of our code, we created a new object, Animal, by cloning the original Object object. Object clone in Io
means “access the clone method of Object and execute it,” since Io uses spaces instead of periods or
brackets to access properties. Next we set the name property of Animal to the proper string and then
created a new object called Cat by cloning the Animal object and also set a name property for it. Finally,
we created our myCat object by cloning our final Cat object.

We can do something similar in JavaScript:

var Animal = function(){};
Animal.prototype = new Object();
Animal.prototype.name = 'animal';

var Cat = function(){};
Cat.prototype = new Animal();
Cat.prototype.name = 'cat';

var myCat = new Cat();

Similar, but not exactly the same. In our Io example, the final myCat object inherits directly from
Cat, Animal, and Object, which are all actual objects and not constructors. In our JavaScript example,
our final myCat object inherits from Cat, Animal, and Object via their prototype properties, and Cat,
Animal, and Object are functions rather than objects. In other words, Io does not have constructors and
it clones directly from objects, while JavaScript has constructor functions and clones prototypes rather
than real objects.

We could have the same feature in JavaScript if we could control the internal proto property of
objects. For instance, if we have an Animal object and a Cat object, we could change the proto property
of the Cat object so that it links directly to the Animal object (as opposed to linking to a prototype) so
that Cat would inherit directly from it.

While the proto property itself is internal and can’t be changed, several JavaScript engines have
introduced a special object property called __proto__ that’s accessible from the JavaScript API. The
__proto__ property of an object can be used to change an object’s internal proto property, making it
possible to directly inherit from another object:

var Animal = {
 name: 'animal',
 eat: function(){
 console.log('The ' + this.name + ' is eating.');
 }
};

var Cat = {name: 'cat'};
Cat.__proto__ = Animal;

var myCat = {};
myCat.__proto__ = Cat;

myCat.eat(); // 'The cat is eating.'

There are no constructors in this example: Animal and Cat are real objects created using literals. By
setting Cat.__proto__ = Animal, we told the interpreter that the internal proto property of Cat should
be the Animal object. In the end, myCat inherits from both Cat and Animal and its prototype chain does
not have any objects that are prototype. This is a simplified prototypal model that doesn’t involve any
constructors or prototype but instead relies on setting the prototype chain to use real objects.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 3 ■ OBJECTS

67

You can take a similar approach via Object.create, a new function introduced in ECMAScript 5. It
takes a single argument, an object, and creates a new blank object with the internal proto property set to
the object passed to it:

var Animal = {
 name: 'animal',
 eat: function(){
 console.log('The ' + this.name + ' is eating.');
 }
};

var Cat = Object.create(Animal);
Cat.name = 'cat';

var myCat = Object.create(Cat);
myCat.eat(); // 'The cat is eating.'

Notice that Object.create is similar to the clone method from Io, and internally, they actually do

the same thing. When we did var Cat = Object.create(Animal), the interpreter created a new object
and set its internal proto property to point to the Animal object. We can reproduce the original Io
example using Object.create and the results will be strikingly similar:

var Animal = Object.create({});
Animal.name = 'animal';

var Cat = Object.create(Animal);
Cat.name = 'cat';

myCat = Object.create(Cat);

Unfortunately, while both these approaches are nice, they’re not available everywhere. The
__proto__ property is not a part of the ECMAScript specification, so not all JavaScript engines support it.
Object.create, while included in the specs, is from ECMAScript 5—which is less than a year old at the
time of writing and isn’t implemented in all engines yet. If you need multiple engine support for your
programs (especially if it’s a web application), keep in mind that these approaches won’t work on all
platforms.

There is, however, a way to implement Object.create on older engines. Remember that JavaScript
objects are used by reference. If you store an object in a variable x and then do y = x, both x and y will
now point to the same object. Also, the prototype property of a function is an object and the default
object can be overridden by simply assigning a new object to it:

var Animal = {
 name: 'animal',
 eat: function(){
 console.log('The ' + this.name + ' is eating.');
 }
};

var AnimalProto = function(){};
AnimalProto.prototype = Animal;

var cat = new AnimalProto();

CHAPTER 3 ■ OBJECTS

68

console.log(typeof cat.purr); // 'undefined'

Animal.purr = function(){};

console.log(typeof cat.purr); // 'function'

This should be familiar by now. We created an Animal object with two members, a name property
and an eat method. We then created an “intermediate” constructor called AnimalProto and set its
prototype property to the Animal object. Because of references, AnimalProto.prototype and Animal
both point to the same object, and thus, when we created our cat instance, it was actually inheriting
directly from the Animal object—just like an object produced by Object.create.

With this in mind, we can mimic Object.create for JavaScript engines that don’t support it:

if (!Object.create) Object.create = function(proto){
 var Intermediate = function(){};
 Intermediate.prototype = proto;
 return new Intermediate();
};

var Animal = {
 name: 'animal',
 eat: function(){
 console.log('The ' + this.name + ' is eating.');
 }
};

var cat = Object.create(Animal);

console.log(typeof cat.purr); // 'undefined'

Animal.purr = function(){};

console.log(typeof cat.purr); // 'function'

To start, we used if (!Object.create) ... in the first line to check whether Object.create already
exists so that we won’t overwrite it. Our Object.create function is simple enough: it creates a new
constructor called Intermediate and sets this constructor’s prototype to the proto object passed. It
then returns an instance of this intermediate constructor. Because it uses the features already available
in older implementations, our Object.create function is compatible with almost every modern engine.

The Wrap Up
In this chapter we learned all about JavaScript’s object implementation and how it differs from other
languages. While at its core a prototypal language, JavaScript has features that put it in a different
category as a blend of both classical and prototypal languages. We saw how we can create objects using
simple literals and constructors with prototypes. We examined inheritance and how JavaScript traverses
the prototype chain, and we implemented a simple prototypal model that hides the complexity of
prototypes.

Because JavaScript is an object-oriented language at its core, the concepts we’ve learned here will
help us in developing complex programs in JavaScript. And while the mechanics of object-oriented
programming are beyond the scope of this book, I hope I’ve given you enough information to help you
explore the topic further.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 3 ■ OBJECTS

69

Now that we’ve learned how objects work with native JavaScript, we’re left to ask a new question:
“But what about MooTools?” This is a very interesting question because we didn’t see much of
MooTools in this chapter. Thankfully, we’re just getting started and we still have room to learn one
unique way MooTools handles objects. I call it unique because MooTools doesn’t just use the concepts
presented here to create simple features—it uses them to do something far more dramatic. And that’s
the subject of our next chapter.

So if you have your cup of tea or coffee ready, I suggest you sit back and relax as we explore
MooTools in depth.

CHAPTER 3 ■ OBJECTS

70

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

C H A P T E R 4

■ ■ ■

71

Classes

In the previous chapter, we learned about JavaScript’s object implementation and discovered how ideas
from both prototypal and classical languages were incorporated into the language. This merging of
approaches is somewhat unique to the language and sometimes makes it harder for new developers to
learn how object-oriented programming in JavaScript works.

MooTools, with its focus on modularity and simplicity, provides an elegant alternative to the native
implementation. To put it succinctly, MooTools turns JavaScript into a classical language. In this
chapter, we’ll learn how this class system works, and we’ll examine some of the techniques used by
MooTools to add a major language feature to JavaScript.

From Prototypes to Classes
Suppose we need to create several JavaScript objects to represent people. These objects need to have
two properties, name and age, and a method called log to print out the values of these properties.
Recalling what we learned from the last chapter, we come up with this snippet:

var Person = function(name, age){
 this.name = name;
 this.age = age;
};

// Properties
Person.prototype.name = ‘’;
Person.prototype.age = 0;

// Methods
Person.prototype.log = function(){
 console.log(this.name + ’, ‘ + this.age);
};

// Creating a new Person instance
var mark = new Person("Mark", 23);
mark.log(); // ‘Mark, 23’

First, we created a Person constructor by assigning a function to our variable. We then defined the
name, age, and log members by augmenting our constructor’s prototype object. Finally, we created a
new instance object using new Person(). We know that the new keyword creates a new object that
inherits from Person.prototype, and we stored our newly created object in our mark variable.

So the whole process—without thinking too much of the details—can be summed up in three steps:
create a constructor function, modify its prototype property, and instantiate it using new. Of course, this

CHAPTER 4 ■ CLASSES

72

is from a JavaScript perspective—in true prototypal languages (like our Io example in the last chapter),
the process is much simpler: create an object, and clone it to create a new object.

Unlike their prototypal counterparts, though, classical programming languages don’t use objects to
define other objects but instead rely on a special construct called a class to define objects. A class—
much like a prototype—defines the structure of an object by specifying its properties and methods. For
example, here’s an implementation of a Person class in a classical language called ooc:

Person: class {

 // Properties
 name := ""
 age := 0

 // Methods
 init: func (name: String, age: Int) {
 this name = name
 this age = age
 }

 log: func {
 printf("%s, %d", this name, this age)
 }

}

// Creating a new Person instance
mark := Person new("Mark", 23)
mark log() // "Mark, 23"

First, we created a new class called Person and then we defined several members: the properties
name and age, which are a string and an integer respectively, and two methods, init and log. We then
created a new object instance of Person called mark and called its log() to print out the name and age of
our instance. You’ll notice that we didn’t have a constructor function, although we did have an init
method that looks similar to our original constructor. We’ll learn more about this difference later. The
important thing to note right now is that both our JavaScript and ooc examples are doing the same task
of defining objects to represent people, even though they’re using different constructs to do it.

While they are both defining the structure of objects, classes and prototypes are different within the
languages themselves. In a true prototypal language (which JavaScript is not), prototypes are always
objects and any object can be a prototype. In contrast, classes can be objects or primitive types,
depending on the language implementation. Classical languages also use special syntax to define
classes, as in our ooc example, while prototype languages define prototypes like regular objects. This
special syntax for classes makes the structure of instances immutable in most cases: you won’t be able to
add new members to objects without defining them first through the class—something you can freely do
in prototypal language. For instance, you won’t be able to do mark occupation := 'JavaScript
Developer' in our ooc example above because the property occupation wasn’t defined in our class.

But the biggest difference is in terms of inheritance and types. Objects in classical languages inherit
from classes and, because the word class implies a group of things, these objects are seen not only as
instances of those classes but also members of that group defined by class. In the case of our ooc
example, the object mark not only inherits from the Person class but it’s also a member of a group that is
composed of all Person objects. We commonly refer to this grouping as a type. It’s the job of a class not
only to define the structure of objects but also define the type of those objects.

However, we can’t have the same grouping in true prototypal languages. Since objects are cloned
and inherit directly from other objects, there’s no separate construct that defines the type of the objects.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 4 ■ CLASSES

73

For example, we have a Person object and we clone it to create a mark object. We can say that the mark
object inherits from Person and that it’s a copy of the Person object. But this doesn’t mean that the mark
object is of the type Person because Person itself is just an object and it doesn’t define a grouping.

So where does JavaScript stand in this? Interestingly, it’s somewhere in the middle. JavaScript is
technically a prototypal language but it also contains classical influences. For one, a JavaScript object
doesn’t inherit from just any plain object but from the special prototype object defined as a property of
the constructor. In essence, JavaScript prototypes are similar to classes because they’re special language
constructs. The existence of these special language constructs—prototypes and constructor functions—
means we could have "types" in JavaScript because they create groupings for our objects. But because
the prototype is still an object, JavaScript still implements prototypal rather than classical inheritance.

The MooTools Class System
Take a look at the previous JavaScript and ooc examples. Clearly, the class declaration in ooc is cleaner
than the declarations in JavaScript. In our ooc example, all the properties and methods of our object
were declared inside the class {...} declaration and you could easily see what members our instances
would have. Our JavaScript example, on the other hand, is more verbose and repetitive: there’s no visual
grouping for our constructor and prototype members and we had to write Person.prototype several
times.

This becomes even more apparent as you start writing large JavaScript applications where you need
to declare many different kinds of objects. I don’t know about you, but typing stuff over and over again
seems counterproductive and tedious to me.

Developers were quick to see this problem and they developed many techniques to simplify object-
oriented programming in JavaScript. The best solution, of course, was to implement a class system in
JavaScript. There are many class systems available from different frameworks, each with its own feature
set, but arguably the best among all of them is the MooTools class system.

That’s quite a big assertion on my part, so let me give you a few reasons:

• The syntax of MooTools classes is similar to what’s found in actual classical
languages.

• The MooTools class system is built on the native JavaScript object
implementation—all the magic is already in the language itself.

• The class system abstracts and extends the native object implementation, adding
useful features that simplify object-oriented programming.

• Inheritance is handled by the class itself—including direct inheritance and
"multiple inheritance" using "mixins" (more on these later and in the next
chapter).

• The system itself is extensible, which means you can add new features easily.

We’ll discuss these points more thoroughly throughout this chapter, but here’s the most important
thing to consider: MooTools doesn’t give you a half-baked class system that’s nothing more than syntax
changes. Instead, the MooTools class system is a complete implementation of class-based programming
for JavaScript.

The first point is actually easy to prove. To give you a taste, here’s how we implement the previous
examples using a MooTools class:

var Person = new Class({

 // Properties
 name: '',

CHAPTER 4 ■ CLASSES

74

 age: 0,

 // Methods
 initialize: function(name, age){
 this.name = name;
 this.age = age;
 },

 log: function(){
 console.log(this.name + ‘, ‘ + this.age);
 }

});

// Creating a new Person instance
var mark = new Person(‘Mark‘, 23);
mark.log(); // ‘Mark, 23’

Pretty, isn’t it? In fact, it looks strikingly similar to our ooc example. But even with the syntax
change, using the class is no different from how we’d use a constructor: we still used the new keyword, we
still passed arguments to our constructor function, and we still got a new object that inherits from
Person.

In MooTools, we create a class using the Class constructor. This constructor takes a single object
argument called params, the key-value pairs that will become the members of the class. The object
passed to the class constructor is your blueprint, and it defines how you want your instances to look. It
then returns a constructor function. Let’s take a look at another class:

var Animal = new Class({

 name: 'Animal',

 eat: function(){
 console.log(this.name + ' is eating.');
 },

 walk: function(){
 console.log(this.name + ' is walking.');
 }

});

var myAnimal = new Animal();
myAnimal.eat(); // 'Animal is eating.'
myAnimal.walk(); // 'Animal is walking.'

console.log(myAnimal instanceof Animal); // true

Here we create a new class called Animal by passing an object to the Class constructor. Our object
literal has three members: a property called name and two methods, eat and walk. The Class constructor
returns a new constructor function and then we create an instance of the class called myAnimal using new
Animal(). Because we declared the eat and walk methods for our class using the object literal, we are
able to call these methods on our myAnimal object. Finally, we use the instanceof operator to verify that
our new myAnimal object is indeed an instance of Animal.

I mentioned that the MooTools class system is built upon the native object implementation, and we
saw that the Class constructor takes an object that describes the members of the class we’re creating and

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 4 ■ CLASSES

75

then returns a constructor. If we connect these two pieces of information, we get the gist of how the
Class constructor works: it creates a new constructor function, goes through the keys we specified in the
object argument, appends these keys to the new constructor’s prototype property, and returns the
constructor.

It might sound too simple, but that’s exactly how the core of the MooTools class system works. A
MooTools class is nothing more than a simple abstraction of the constructor-prototype pair with
additional extensions to make working with them simpler. This means that everything we learned in the
previous chapter about objects and prototypes still applies to classes.

Of course there are major differences, particularly in how we’ll look at things from now on. Because
MooTools abstracts the native prototypal implementation, there’s almost no need for us to work directly
with prototypes—and in most cases, you won’t even notice you’re working with prototypes.

Another thing we have to change is how we talk about object-oriented programming itself. Since
we’ll be dealing with classes rather than prototypes, we’ll be using classical terms from here on. It’s a
weird shift to talk about JavaScript in a classical manner, but because MooTools provides a complete
system for classical programming, we’ll need to use proper terms when working with the class system.

Constructors and Initializers
In the MooTools class system, there’s no distinction between the constructor and the prototype because
we have only one blueprint object: the class. Before, we had to create a constructor function and then
augment its prototype property to add new methods. But since we’re only going to deal with classes
from now on, we’ll only have to worry about the class itself and the members we’ll be defining in our
class.

One shift we’ll have to make when switching from the prototypal model to the classical one is to
forget about the actual constructor function. In the prototypal model, we used the constructor function
to prepare the object. In the case of our Person constructor, we set the name property of the instance to
the value of the argument passed. When it comes to more complex programs, constructor functions tend
to be more complex than this, performing lots of operations that set up the new instance.

But we didn’t declare a constructor function in our implementation of the Person class using the
MooTools class system. Instead, the stuff we usually place inside the constructor’s body was placed in a
special method called initialize in our class declaration. This method is called the initializer and it
effectively replaces the constructor function from the prototypal model.

In essence, both the constructor and the initializer are used for the same thing: to set up the new
instance. The main difference is that the constructor in the prototypal model is technically separate from
its prototype and is not inherited by its instances, while an initializer is an actual method that’s inherited
by objects:

var Person = new Class({

 // Properties
 name: '',
 age: 0,

 // Methods
 initialize: function(name, age){
 this.name = name;
 this.age = age;
 },

 log: function(){
 console.log(this.name + ‘, ‘ + this.age);
 }

CHAPTER 4 ■ CLASSES

76

});

var mark = new Person(‘Mark‘, 23);
console.log(typeof mark.initialize); // 'function'

console.log(typeof Person); // 'function'
console.log(typeof Person.prototype.initialize); // 'function'

However, having an initialize method doesn’t mean we don’t have an actual constructor. In our
Person class example, Person is our constructor and Person.prototype.initialize is the initializer. Since
the MooTools class system still uses the native prototype-based object implementation, we still need
constructor functions to augment their prototype properties and to create new objects using the new
keyword.

One misconception is that the initialize function we declare in our class will become the
constructor function for the class, but this isn’t the case. All classes actually use a common constructor
function. We say “common constructor” not because all classes use the exact same function, but
because all of them have a constructor that looks like this:

// the common constructor function
function(){
 reset(this);
 if (newClass.$prototyping) return this;
 this.$caller = null;
 var value = (this.initialize) ? this.initialize.apply(this, arguments) : this;
 this.$caller = this.caller = null;
 return value;
}

Most of the stuff inside this common constructor might look like gibberish right now, but for the
moment let’s focus on the line that starts with var value. This is the most important line in the common
constructor and it invokes the instance’s initialize method, passing any arguments given to the
common constructor. Also, note that the return value of the initialize method is stored in the variable
value and returned at the end of our common constructor.

Applying this to our previous example, the call to new Person('Mark', 23) first invoked the Person
function (which is the common constructor) and then the instance’s initialize method was called,
passing the argument 'Mark' to it. These invocations are transparent: when looking at it from the
outside, it seems that the initialize method was invoked directly.

The separation of the constructor function and the initialize method might seem redundant—after
all, we could just remove the common constructor and use the initialize function as the constructor
itself. This distinction, however, is important because of the difference between instantiation and
initialization.

Instantiation is the process of creating a new object, while initialization is the process of setting up
the object. With our original prototypal model, both the instantiation and initialization phases happen:
first instantiation via the new keyword and then initialization by calling the constructor.

But there are times when we want to create an object without initializing it. It’s probably hard to
think of why we’d want to do this, but we’ll see how it’s useful later on. What we do need to realize right
now is that with our original prototypal model, we can’t separate instantiation and initialization,
because the constructor always gets called after creating a new object. Having a separate method for
initialization solves this problem because we can now bypass the initialization phase if necessary.

The common constructor also enforces some workarounds for the language, like removing object
references and adding private methods. Since we already have a function automating these tasks for us,
we can focus our attention on the class itself rather than having to write these workaround codes every
time.

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 4 ■ CLASSES

77

Rethinking Members
In the prototypal model, we had to worry about the separation of the constructor and the prototype.
While the constructor is still invoked to process the instance, it’s not part of the instance itself—which
can lead to some confusion later on. In contrast, the MooTools class system eliminates this distinction
by making the constructor "irrelevant" and instead turning to the initialize method. With a class, the
only things you have to worry about are the actual members of your object.

The MooTools class system still uses the native prototypal implementation, and members are still
added to the prototype of the constructor of the class. Because properties and methods still behave the
same way, we can easily apply what we already learned about them from the last chapter.

The process of adding members to the prototype of the class isn’t straightforward, though. It may
seem that the Class constructor simply takes the members of the object argument passed and adds them
directly to the prototype, but there’s a more complex process happening underneath.

Before we go any further, let’s revisit a problem we encountered in the last chapter. Suppose we
have the following class:

// person.js
var Person = new Class({

 name: '',
 age: 0,

 initialize: function(name, age){
 this.name = name;
 this.age = age;
 },

 log: function(){
 console.log(this.name + ', ' + this.age);
 }

});

This class is found in a file called person.js, which is an external file that’s not accessible to us. Now
we want to add new methods to this class: getName, setName, getAge, and setAge. We don’t have access to
the class declaration itself, so we can’t edit it directly. What we did in the last chapter was to augment
Person.prototype to add the new members. Since classes use the native prototypal implementation, we
could use the same technique to augment our Person class.

That also works with classes, but it’s not considered proper MooTools style. Classes abstract
prototypes, so there’s no need to directly augment the prototype object. The proper way is to use a class
method known as implement to add these new members:

// program.js
Person.implement({

 getName: function(){
 return this.name;
 },

 setName: function(name){
 this.name = name;
 },

 getAge: function(){

CHAPTER 4 ■ CLASSES

78

 return this.age;
 },

 setAge: function(age){
 this.age = age;
 }

});

We call the implement method of our Person class and then pass it an object literal containing the
methods we want to add to our class. The result is that all instances of Person will now have those
methods, just like the result we’d get if we augmented the prototype object directly.

All classes have the implement method: it’s a part of the simplified abstraction of the MooTools class
system. I said that it’s not proper MooTools style to directly augment the prototype of a class, but that’s
an understatement. What I should have said was this: always use the implement method. Unless you
know what you’re doing and unless you have a real need to do so, never directly augment the prototype of
a class.

Some might think that this is too strict a rule. If MooTools classes just abstract the native prototypal
implementation, augmenting class prototypes should work. This isn’t the case, though: part of the
abstraction provided by classes is ensuring proper object behavior. The implement method doesn’t just
add members to the prototype directly, but instead processes the members first to make sure that
everything will work as expected.

You might have noticed that the implement syntax is similar to the Class constructor’s syntax, with
both requiring an object literal describing the properties and methods to be added to the prototype of
the class. That’s because the Class constructor itself uses implement to add the members. All class
members go through the implement method—even the ones passed through the Class constructor.

The implement method looks through each of the items from the object argument and checks
whether it should process that particular item before it adds it to the prototype. The processing depends
on the type of the item: properties undergo different processing from methods, and there is special
processing done to items with particular keys. Since we’re talking about members now, we won’t go into
detail about those keys here; instead we’ll focus on how implement processes methods and properties.

Rethinking Methods
In the prototypal model, adding methods is done simply by adding a property to the prototype with a
function value:

var myFn = function(){
 console.log('Hello');
};

var Person = function(){};
Person.prototype.log = myFn;

var mark = new Person();

console.log(typeof mark.log); // 'function'
console.log(mark.log == myFn); // true

mark.log(); // 'Hello'

Here, we assign the function that’s stored in the myFn variable to Person.prototype.log. Because
functions are referenced, both myFn and Person.prototype.log now point to a single function, which we

D
ow

nl
oa

de
d

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

CHAPTER 4 ■ CLASSES

79

confirm by comparing myFn and mark.log. No surprises here. However, the behavior is different with
classes:

var myFn = function(){
 console.log('Hello');
};

var Person = new Class({
 log: myFn
});

var mark = new Person();

console.log(typeof mark.log); // 'function'
console.log(mark.log == myFn); // false

mark.log(); // 'Hello'

We know that the log method is our original myFn function, because mark.log() outputs as expected.
But when we compare mark.log and myFn, we’re told that they’re not the same function. This means that
myFn and Person.prototype.log point to different functions. But how come mark.log() still works as if
both functions are the same?

This is one of the changes brought about by the implement method. We learned about function
decoration in Chapter 2; well, the implement method decorates all methods in a class. All class methods
you pass to implement are changed to the following decorated function:

function(){
 if (method.$protected && this.$caller == null) throw new Error('The method "' + key + '"
cannot be called.');
 var caller = this.caller, current = this.$caller;
 this.caller = current; this.$caller = wrapper;
 var result = method.apply(this, arguments);
 this.$caller = current; this.caller = caller;
 return result;
}

Don’t get scared yet—right now you can ignore most of the lines in this extremely confusing
function. The most important line here is the one that starts with var result. The identifier method in
this function points to the actual method you passed in your declaration. In the case of our previous
example, method points to the same function as myFn. Because it’s simply a decorator, calling this
function also invokes the original function. The results of your original function are then stored in a
variable and returned. The whole process is transparent, and you won’t notice what’s happening when
you’re working with classes.

This decorated function also stores the original method in a special property called $origin. We can
compare the methods as follows:

var myFn = function(){
 console.log('Hello');
};

var Person = new Class({
 log: myFn
});

var mark = new Person();

CHAPTER 4 ■ CLASSES

80

console.log(typeof mark.log); // 'function'
console.log(mark.log == myFn); // false

console.log(mark.log.$origin == myFn); // true

mark.log(); // 'Hello'

Arguably, this function seems like the most complex of all functions in MooTools, and it does take a
while to understand it. This complex decoration might be overwhelming right now, but we’ll learn how it
works throughout this chapter and the next. While understanding how this function works internally
isn’t essential to working with classes, it’ll help you see how MooTools implements classical features like
calling overridden methods and hiding private methods.

Rethinking Properties
If you look back at all the prototype-based examples we’ve seen so far, you’ll notice that we never
declared properties for most of them. Instead of augmenting them to the prototype itself, we created the
properties inside the constructor. We did this so we wouldn’t encounter this particular behavior:

var data = {name: '', age: 0};

var Person = function(name, age){
 this.data.name = name;
 this.data.age = age;
};

Person.prototype.data = data;

Person.prototype.log = function(){
 console.log(this.data.name + ', ' + this.data.age);
};

var mark = new Person('Mark', 23);
mark.log(); // 'Mark, 23'

data.name = 'Joseph';
data.age = 22;

mark.log(); // 'Joseph, 22'

console.log(data == Person.prototype.data); // true

We discussed why this problem occurs in the last chapter, but the basic explanation is that both
data and Person.prototype.data point to the same object, so any changes to one are reflected in the
other.

However, this approach isn’t recommended when using classes. In fact, it’s advised to declare all
properties for classes when possible. But unlike our previous example, the problem doesn’t come up
when using classes, and changing the value of the data object doesn’t affect the data property of our mark
object:

var data = {name: '', age: 0};

var Person = new Class({

CHAPTER 4 ■ CLASSES

81

 data: data,

 initialize: function(name, age){
 this.data.name = name;
 this.data.age = age;
 },

 log: function(){
 console.log(this.data.name + ', ' + this.data.age);
 }

});

var mark = new Person('Mark', 23);
mark.log(); // 'Mark, 23'

data.name = 'Joseph';
data.age = 22;

mark.log(); // 'Mark, 23'

console.log(data == Person.prototype.data); // false

This is another effect of using the implement method. Properties declared for a class undergo a
process called dereferencing, which removes any reference from the object. This is done by creating a
copy of an object that’s exactly like the original. For instance, both the data and Person.prototype.data
objects above might look like the same object, but the latter is really just a copy. Instead of augmenting it
directly into the prototype, a copy of data was created and assigned to Person.prototype.data. Any
references to data were removed, and changes to this object no longer affect the copy.

The dereferencing done by implement is recursive: if an object contains another object, the inner
object is also dereferenced. In an array of objects, for example, not only is a copy of an array created, but
each object inside the array is also copied. However, dereferencing is limited to only some kinds of
objects: arrays, objects created using literals or new Object(), and objects created using user-defined
constructors. Objects like functions, dates, and DOM objects aren’t dereferenced since they’re host
objects, and primitives like strings and numbers don’t need to be dereferenced because they’re not
reference types. For example, the date object won’t be dereferenced in the following:

var date = new Date();

var Item = new Class({
 date: date
});

var obj = new Item();

console.log(obj.date == date); // true

Dereferencing, however, doesn’t just happen on the class level: instances are also dereferenced. To
understand why, we need to take a look at a variation of the original problem:

var Person = function(name, age){
 this.data.name = name;
 this.data.age = age;
};

CHAPTER 4 ■ CLASSES

82

Person.prototype.data = {name: '', age: 0};

Person.prototype.log = function(){
 console.log(this.data.name + ', ' + this.data.age);
};

var mark = new Person('Mark', 23);
mark.log(); // 'Mark, 23'

var joseph = new Person('Joseph', 22);
joseph.log(); // 'Joseph, 22'

mark.log(); // 'Joseph, 22'

console.log(mark.data == joseph.data); // true

This is an even bigger problem: because both mark and joseph inherit from Person.prototype, their
data properties both point to the same object. Therefore, any changes made to one instance also affect
all other instances. This is what we’d expect from objects, and if you recall our discussion in the previous
chapter, we solved this by moving the data declaration into the constructor to give each instance its own
separate data property.

The MooTools class system, on the other hand, solves this automatically for us:

var Person = new Class({

 data: {name: '', age: 0},

 initialize: function(name, age){
 this.data.name = name;
 this.data.age = age;
 },

 log: function(){
 console.log(this.data.name + ', ' + this.data.age);
 }

});

var mark = new Person('Mark', 23);
mark.log(); // 'Mark, 23'

var joseph = new Person('Joseph', 22);
joseph.log(); // 'Joseph, 22'

mark.log(); // 'Mark, 23'

console.log(mark.data == joseph.data); // false

The dereferencing here is no longer done by implement, but by the common constructor. If you look
back at the code for the common constructor in the section on Constructors and Initializers, you’ll see
that the first line is a function call: reset(this). The this keyword in that code points to the newly
created instance of the class, and the reset function is the private dereferencing function for class
instances.

CHAPTER 4 ■ CLASSES

83

When we called new Person(), a new instance is created and then the Person constructor is called.
The first thing the constructor does is to call reset to dereference the instance. This instance, of course,
already inherits from Person.prototype, so the properties declared in our prototype are copied and
reassigned in the object to give each instance its own copy. This automated process ensures that all our
instances have their own copies of the objects declared in the prototype.

Inheritance
Because classes are just abstractions of the native prototypal implementation, instances still inherit from
the prototype of their constructors, and the prototype chain is still traversed to look for members.
Setting up the prototype chain, though, is different with classes.

In the last chapter, we were able to make objects that inherit from multiple prototypes by creating
deliberate chains:

var Animal = function(name){
 this.name = name;
};

Animal.prototype.eat = function(){
 console.log('The ' + this.name + ' is eating.');
};

var Cat = function(){};

Cat.prototype = new Animal('cat');

Cat.prototype.meow = function(){
 console.log('Meow!');
};

var cat = new Cat();
cat.eat(); // ‘The cat is eating.’
cat.meow(); // 'Meow!'

Here we created a Cat constructor and then set its prototype to be an instance of Animal. Because of
how the prototype chain works, all instances of Cat not only inherit from Cat.prototype but also from
Animal.prototype. To set the deliberate chain, we had to assign an actual object as the prototype of the
new constructor. This is the essence of prototypal inheritance: objects inherit from other objects.

Classical inheritance has a different view: objects—and classes themselves—inherit from classes. If
we were to write the example above in a classical language, we would have to declare that the Cat class
inherits from the Animal class. This inheritance is direct: the Cat class won’t be inheriting from an
instance of the Animal class, like in our JavaScript example, but from the Animal class itself. In classical
terms, we then say that the Cat class is a subclass of the Animal class, and the Animal class is the
superclass of the Cat class.

The MooTools class system provides classical inheritance with a simple interface. When we
implement the example above using classes, we get the following:

var Animal = new Class({

 name: '',

 initialize: function(name){
 this.name = name;

CHAPTER 4 ■ CLASSES

84

 },

 eat: function(){
 console.log('The ' + this.name + ' is eating.');
 }

});

var Cat = new Class({

 Extends: Animal,

 initialize: function(){
 this.name = 'cat';
 },

 meow: function(){
 console.log('Meow!');
 }

});

var cat = new Cat();
cat.eat(); // ‘The cat is eating.’
cat.meow(); // 'Meow!'

As you’ve probably guessed, the important line in this snippet is Extends: Animal. Extends is one of
the special keywords processed by the implement method, and it’s actually connected to a function that
we’ll talk about more in the next chapter. The important point to know right now is that this line declares
that our Cat class is a subclass of Animal, and sets the prototype chain of the Cat class to inherit from
Animal.

■ Note Extends, like other special keywords, is case-sensitive. Always remember to capitalize the first letter.

Unlike our prototypal example, we passed Animal in our declaration instead of new Animal().
Extends allows us to declare inheritance using classes themselves instead of instances of those classes.
Aside from being easier to write, this has the added benefit of being easier to read: a quick glance at our
Cat class informs us that it’s a subclass of Animal because we can easily see the Extends declaration.

The Extends inheritance mechanism is another MooTools abstraction. Since we’re still using
prototypes beneath the class system, JavaScript expects our prototype chain to be declared using the
prototypal model. Extends does this automatically for us: when the implement method sees the Extends
keyword, it creates a new instance of the class we declared and uses this new instance to set up the
prototype chain.

In our example above, implement goes through each of the items in our object literal to build the Cat
class. When it encounters Extends: Animal, it creates a new instance of the class by instantiating new
Animal(). It then sets the prototype of the common constructor to the new Animal instance and adds the
other members of the class to the prototype. Finally, the Class constructor returns the common
constructor and it becomes the final Cat class.

CHAPTER 4 ■ CLASSES

85

In our section on the common constructor, we found out that the class system distinguishes
between instantiation and initialization. I also said that there are times we would want to create
instances without initializing them. Extends is one of those times: the instance of the superclass created
via Extends isn’t initialized:

var Superclass = new Class({

 initialize: function(name){
 console.log('Initializing Superclass.');
 }

});

var Subclass = new Class({

 Extends: Superclass,

 initialize: function(){
 console.log('Initializing Subclass.');
 }

});

var obj = new Subclass(); // 'Initializing Subclass.'

In this code, we get only the 'Initializing Subclass' log in our console. When Subclass was
created, an instance of Superclass was created to become the value of Subclass.prototype. But this
instance of Superclass wasn’t initialized, which we confirm because there’s no log in the console.

This behavior happens because of how initializers work. It’s the job of the initializer to prepare an
instance and to set it up in a way that’s unique to the instance. Often, this is done using special
arguments that are passed when creating an instance. Take a look at the following snippet:

var Postable = function(element){
 this.element = element;
 this.element.method = 'POST';
};

When we create instances of Postable, we are expected to pass an element argument to the
constructor. The instance is then initialized by setting the value of its element member to the element
argument we passed, then a new property called method is added to the member. A problem occurs,
though, when we try to create a subclass:

var Postable = function(element){
 this.element = element;
 this.element.method = 'POST';
};

var SubPostable = function(){};

SubPostable.prototype = new Postable(); // this will throw an error

To make SubPostable a subclass of Postable, we had to declare SubPostable.prototype to be a new
instance of Postable. But since Postable had a combined constructor and initializer, we get an error
when we create the instance without passing an element argument.

Of course, we can simply pass an argument when we create the new instance, but what argument
should we pass? Remember that during the process of subclassing, we don’t yet know which arguments

CHAPTER 4 ■ CLASSES

86

are going to be passed—those items will be available when we instantiate the class. We could pass a
dummy object, but doing so just to bypass an error isn’t good programming.

On the other hand, we’ll never run into such a problem with the MooTools class system because
constructors and initializers are separate. Even though the class system creates an instance of Postable
and sets it as the prototype of Subpostable, the initialized method of the Postable instance never gets
called:

var Postable = new Class({

 element: null,

 initialize: function(element){
 this.element = element;
 this.element.method = 'POST';
 }

});

var SubPostable = new Class({

 Extends: Postable

});

To fully understand why MooTools does this, we need to think back to the prototype chain. We
create deliberate chains in order to create extensions and variations of our original prototypes. An
Animal prototype, for instance, should contain members that are shared by all animals, such name,
eat(), and sleep(). It could then be specialized to make Cat, Bird, or Dog prototypes, each with its own
set of methods that are unique to cats, birds, or dogs. These specializations could be further divided into
specific types of cats, birds, or dogs. The important thing to consider is that we’re doing this in order to
inherit members from all these classes without having to rewrite members again: an instance of Magpie,
for example, might inherit properties and methods from Magpie.prototype, Bird.prototype and
Animal.prototype.

JavaScript’s object implementation requires us to declare a prototype as an instance of another
prototype in order to create a deliberate chain. Unfortunately, the use of constructor functions as
initializers in the prototypal model works against us, since the processes of instantiation and
initialization are merged into one function. If the only reason we set the prototype to an instance of
another prototype is to inherit members, we shouldn’t need to initialize the instance into a usable state,
because we’re not going to use it except for traversal.

This concern is handled properly by the MooTools class system: because we only need to instantiate
the superclass in order to access its properties and methods for our subclass, the superclass is
instantiated without being initialized. When we need to finally initialize our object, we can do so in the
subclass itself without having to worry about how the superclass handles initialization.

Overridden Methods
The prototype chain is invisible: there’s no direct way to check whether a prototype inherits from
another object. MooTools classes, on the other hand, have visible links to their superclass, which is
called parent:

var Animal = new Class({

 name: '',

CHAPTER 4 ■ CLASSES

87

 initialize: function(name){
 this.name = name;
 }

});

var Cat = new Class({

 Extends: Animal,

 initialize: function(){
 this.name = 'cat';
 }

});

console.log(typeof Animal.parent); // 'undefined'
console.log(typeof Cat.parent); // 'function'
console.log(Cat.parent == Animal); // true

The parent property of a class is a reference to its superclass. In our example, Animal.parent is
undefined, since it doesn’t have a superclass, but Cat.parent correctly points to Animal, since Cat is a
subclass of Animal. While the parent property of classes doesn’t have much use in development, there’s
another parent that is important. Before we talk about it, though, let’s tackle a problem that arises with
inheritance: how to access overridden methods.

When we look back at how the prototype chain is traversed, we remember that each object in the
chain is checked for the property being accessed. If a property isn’t found in the first item in the chain,
the next item is checked—and so on until we find the property.

var Animal = function(){};

Animal.prototype.log = function(){
 console.log('This is an Animal.');
};

Animal.prototype.eat = function(){
 console.log('The animal is eating.');
};

var Cat = function(){};

Cat.prototype = new Animal();

Cat.prototype.eat = function(){
 console.log('The cat is eating.');
};

var tibbs = new Cat();
tibbs.log(); // 'This is an Animal.'
tibbs.eat(); // 'The cat is eating.'

In this example, tibbs.log() refers to Animal.prototype.log. Because we didn’t declare
Cat.prototype.log, the original log method from our Animal.prototype is the one inherited by our Cat
instances. However, we specified our own Cat.prototype.eat method, and because of the way the

CHAPTER 4 ■ CLASSES

88

prototype chain is traversed, our Cat instances inherit this method instead of Animal.prototype.eat. We
therefore say that Cat.prototype.eat overrides Animal.prototype.eat.

Overridden methods are very straightforward as long as you’re not doing anything fancy. However,
one problem that often comes up is how to access the overridden methods of a superclass. Because you
won’t be able to access the scope chain directly, you’ll have to call the overridden method from the
superclass directly via its prototype:

var Animal = function(){};

Animal.prototype.log = function(){
 console.log('This is an Animal.');
};

Animal.prototype.eat = function(){
 console.log('The animal is eating.');
};

var Cat = function(){};

Cat.prototype = new Animal();

Cat.prototype.eat = function(){
 Animal.prototype.eat.apply(this);
 console.log('The cat is eating.');
};

var tibbs = new Cat();
tibbs.log(); // 'This is an Animal.'
tibbs.eat();
// 'The animal is eating.'
// 'The cat is eating.'

Here, we called the overridden eat method of Animal.prototype by directly invoking it using
Animal.prototype.eat.apply(this). We need to use apply or call when accessing the overridden
method because we want the function to be bound to the current instance.

MooTools classes use a more elegant approach. All subclasses are given a new method called
parent, which can be used to call the overridden method:

var Animal = new Class({

 log: function(){
 console.log('This is an Animal.');
 },

 eat: function(){
 console.log('The animal is eating.');
 }

});

var Cat = new Class({

 Extends: Animal,

 eat: function(){

CHAPTER 4 ■ CLASSES

89

 this.parent();
 console.log('The cat is eating.');
 }

});

var tibbs = new Cat();
tibbs.log(); // 'This is an Animal.'
tibbs.eat();
// 'The animal is eating.'
// 'The cat is eating.'

If you look at our eat method in the Cat class, we called the parent method to call the overridden eat
method of the Animal superclass. Like our original prototypal example, the call to this.parent() inside
the eat method calls Animal.prototype.eat. Unlike our prototypal example, though, we no longer need
to use apply or call, since the parent method already does this for us.

The parent method becomes really handy when used in conjunction with overridden methods that
do lots of processing, like initializers:

var Animal = new Class({

 name: '',

 initialize: function(name){
 this.name = name;
 },

 getName: function(){
 return this.name;
 }

});

var Cat = new Class({

 Extends: Animal,

 initialize: function(name){
 this.parent(name);
 this.name += ', the Cat.';
 }

});

var tibbs = new Cat('Tobias');
console.log(tibbs.getName()); // 'Tobias, the Cat.'

In this example, we first call the initialize method of the Animal class using this.parent, passing
the necessary argument, before doing our own processing, which involves adding the string ', the
Cat.' to the name property. In essence, the parent method not only makes it possible to call the
overridden method, but also provides a way to "extend" it with our own property.

The parent method is available only to subclasses that inherit through the Extends property. If we
tried to call this.parent() inside the Animal class, for instance, we’d get an error about not having a
parent method.

CHAPTER 4 ■ CLASSES

90

Inside this.parent()
The parent method itself is an interesting function, and it’s one of the most ingenious parts of the
MooTools codebase. If you look at the source, you’ll see that the parent method looks like this:

function(){
 if (!this.$caller) throw new Error('The method "parent" cannot be called.');
 var name = this.$caller.$name, parent = this.$caller.$owner.parent;
 var previous = (parent) ? parent.prototype[name] : null;
 if (!previous) throw new Error('The method "' + name + '" has no parent.');
 return previous.apply(this, arguments);
}

There’s only one parent method in a subclass, but it changes depending on where it was called. We
don’t really need to learn how it works, but it’s an interesting topic that will help us understand exactly
how MooTools solves the problem of overridden methods. But before we can fully understand how the
parent method works, we have to retrace a few steps.

Remember that before adding methods to the prototype, implement decorates the functions using
the wrapper function we saw earlier. The wrapper function has several special properties, the most
important ones being $owner and $name:

var Animal = new Class({

 name: '',

 initialize: function(name){
 this.name = name;
 },

 getName: function(){
 return this.name;
 }

});

console.log(Animal.prototype.getName.$owner == Animal); // true
console.log(Animal.prototype.getName.$name); // 'getName'

The $owner property points to the class itself, while $name is the name of the method you declared.
In our example, Animal.prototype.getName.$owner points to the Animal class, while
Animal.prototype.getName.$name has the value 'getName'. Take note that the $name property isn’t taken
from the identifier of the function itself, but from the key we used when we declared the method.

The main purpose of the wrapper function is to keep track of which method is currently called.
When we call a method from an instance, the wrapped method sets the internal $caller property of the
instance to itself. The $caller property is used to determine which current function is running. When we
call tibbs.getName() for example, the $caller property will be set to the getName method.

Now when we call this.parent() inside a method, the function checks the $caller property to
determine which of the methods invoked it. If there’s no $caller property, it will throw an error,
preventing parent from being called from outside a method. If there’s a $caller, though, the parent
method will store its $name property to determine the name of the method and then access the
superclass using $owner.parent. The method then checks whether there’s an overridden method from
the superclass and invokes it, returning the arguments.

Let’s trace how it all works with this example:

CHAPTER 4 ■ CLASSES

91

var Animal = new Class({

 name: '',

 initialize: function(name){
 this.name = name;
 },

 getName: function(){
 return this.name;
 }

});

var Cat = new Class({

 Extends: Animal,

 initialize: function(name){
 this.parent(name);
 this.name += ', the Cat.';
 }

});

var tibbs = new Cat('Tobias');
console.log(tibbs.getName()); // 'Tobias, the Cat.'

First, we call new Cat(), thereby calling the initialize method. The $caller property is then set to
initialize, with $caller.$owner pointing to the Cat class and $caller.$name set to 'initialize'. We then
call this.parent() inside the initialize method, and it gets the superclass by accessing
$caller.$owner.parent, which points to Animal. Finally, this.parent() checks for the existence of the
initialize method in the Animal class and invokes it, using apply to rebind it to the current instance.
The result is that we were able to invoke an overridden method from our superclass.

It might be hard to wrap you head around at first, but once you understand how parent works, you’ll
realize how elegantly MooTools solves complex problems to provide a nice API.

Mixins
JavaScript’s inheritance model allows for only single direct inheritance. An object directly inherits only from
a single prototype, although it can indirectly inherit from multiple prototypes via the prototype chain.

Using the prototype chain for multiple inheritance, though, has its limitations. Take, for example,
the following snippet:

var Phone = new Class({

 sound: 'phone.ogg',

 initialize: function(number){
 this.number = number;
 },

 call: function(from){

CHAPTER 4 ■ CLASSES

92

 this.ring();
 new Notification('New call!');
 },

 ring: function(sound){
 sound = sound || this.sound;
 new Sound(sound).play();
 }

});

var AlarmClock = new Class({

 sound: 'alarm.ogg',

 initialize: function(alarmTime){
 this.time = alarmTime;
 },

 alarm: function(time){
 if (time == this.time) {
 this.ring();
 new Notification('Wake up sleepy head!');
 }
 },

 ring: function(sound){
 sound = sound || this.sound;
 new Sound(sound).play();
 }

});

Here we have two classes, Phone and AlarmClock, and both have the same method called ring that
plays a sound. This is considered bad design because we repeat the code for the ring method in both
classes. When developing applications, we want to reuse code as much as possible.

We can, of course, simply make a new superclass that will be inherited by Phone and AlarmClock. But
direct inheritance isn’t a good design choice here: a phone and an alarm clock aren’t really variations of
the same object, so a RingingObject class is out of the question.

The MooTools class system supplies a very good system for code reuse:

var Ringer = new Class({

 sound: 'ring.ogg',

 ring: function(sound){
 sound = sound || this.sound;
 new Sound(sound).play();
 }

});

var Phone = new Class({

CHAPTER 4 ■ CLASSES

93

 Implements: Ringer,

 initialize: function(number){
 this.number = number;
 this.sound = 'phone.ogg';
 },

 call: function(from){
 this.ring();
 new Notification('New call!');
 }

});

var AlarmClock = new Class({

 Implements: Ringer,

 initialize: function(alarmTime){
 this.time = alarmTime;
 this.sound = 'alarm.ogg';
 },

 alarm: function(time){
 if (time == this.time) {
 this.ring();
 new Notification('Wake up sleepy head!');
 }
 }

});

Here, we declare a new class called Ringer, and we transfer the sound and ring members to this new
class. But instead of declaring them to be subclasses of this new class, we use the Implements keyword to
declare that the Phone and AlarmClock classes should take the properties and methods of the Ringer class
and use them.

The Ringer class is an example of a mixin. As its name implies, a mixin is a class that’s "mixed in" or
combined with another class. Mixins present a form of multiple inheritance, and the MooTools class
system makes it easy to create and implement your own mixin.

The Implements keyword is used to add mixins to your class. It can either take a single value, which is
a name of the class you’d like to combine, or an array of class names:

var Ringer = new Class({

 sound: 'ring.ogg',

 ring: function(sound){
 sound = sound || this.sound;
 new Sound(sound).play();
 }

});

var Charger = new Class({

CHAPTER 4 ■ CLASSES

94

 charge: function(){
 new ElectricalSocket().connect(this);
 }

});

var Phone = new Class({

 Implements: [Ringer, Charger],

 initialize: function(number){
 this.number = number;
 this.sound = 'phone.ogg';
 },

 call: function(from){
 this.ring();
 new Notification('New call!');
 }

});

var phone = new Phone(0000);
console.log(typeof phone.ring); // 'function'
console.log(typeof phone.charge); // 'function'

Mixins are actual classes, but they’re usually written without an initialize method since they’re
not meant to be used like regular classes. Rather, mixins are considered to be collections of properties
and methods that will be added to other classes, and they provide a simple way to share and reuse code
among many classes.

The Implements keyword should give you a clue as to how mixins are added to classes. When the
implement method sees this keyword, it creates new instances of these classes that are then fed to
another implement call. This process adds the members of the instance that are inherited from the mixin
class to the class itself. Without using the Implements keyword, we could mimic this process by using
implement directly:

var Ringer = new Class({

 sound: 'ring.ogg',

 ring: function(sound){
 sound = sound || this.sound;
 new Sound(sound).play();
 }

});

var Phone = new Class({

 initialize: function(number){
 this.number = number;
 this.sound = 'phone.ogg';
 },

CHAPTER 4 ■ CLASSES

95

 call: function(from){
 this.ring();
 new Notification('New call!' + this.from);
 }

});

Phone.implement(new Ringer);

This snippet shows exactly how mixins were done in older versions of MooTools. You shouldn’t do
this with the current versions, though, since it’s verbose and hard to read. You should declare your
mixins using Implements in your class declaration for readability.

One cool thing about mixins, though, is that the parent method respects their previous prototype
chain rather than their new one. What this means is that when the parent method is called from within a
method in a mixin that has been added to a class, the method will call the corrresponding overriden
method in the mixin’s original prototype chain:

var MixinSuper = new Class({

 log: function(){
 console.log('MixinSuper');
 }

});

var Mixin = new Class({

 Extends: MixinSuper

 log: function(){
 this.parent();
 }

});

var Super = new Class({

 log: function(){
 console.log('Super');
 }

});

var Sub = new Class({

 Extends: Super,

 Implements: Mixin

});

new Sub().log(); // 'MixinSuper'

CHAPTER 4 ■ CLASSES

96

Unlike direct inheritance using Extends, mixins aren’t linked to the prototype chain. Instead, their
members are added directly to the prototype of your class. This means that changes to a mixin after it’s
been implemented into your class aren’t inherited:

var Ringer = new Class({

 sound: 'ring.ogg',

 ring: function(sound){
 sound = sound || this.sound;
 new Sound(sound).play();
 }

});

var Phone = new Class({

 Implements: Ringer,

 initialize: function(number){
 this.number = number;
 this.sound = 'phone.ogg';
 },

 call: function(from){
 this.ring();
 new Notification('New call!');
 }

});

var phone = new Phone(0000);
console.log(typeof phone.ring); // 'function'

Ringer.implement('ringLoudly', function(sound){
 sound = sound || this.sound;
 new Sound(sound).playLoudly()
});

console.log(typeof phone.ringLoudly); // 'undefined'

Moreover, you can’t call overridden methods via the parent method. The only way to call overridden
mixin methods is to call them directly from your mixin’s prototype, as we did in an example earlier.

The Wrap Up
In this chapter, we learned a lot about classical programming and how it differs from the prototypal
model. We learned about classes, their similarities to prototypes, and the differences between the two.
We also learned about the MooTools class system and how it provides a classical interface to JavaScript’s
object implementation. We found out how MooTools separates constructors from initializers, and how it
encapsulates working with prototypes via the implement method. We dived into the internals of
inheritance with classes, the parent method, and how to do multiple inheritance with mixins.

CHAPTER 4 ■ CLASSES

97

If you think we’re done talking about classes, though, you’re in for a surprise. The MooTools class
system is as elegant as it is complex, and we’ve only touched the base of it in this chapter. In the next
chapter, we’ll learn more about the secrets of MooTools classes, as well as how to do complex
programming using them.

So if you’re ready, strap on your backpack and tie your shoelaces—it’s time to trek deeper into the
MooTools class system.

CHAPTER 4 ■ CLASSES

98

C H A P T E R 5

■ ■ ■

99

Classes: The Extras

The things we’ve learned about the MooTools class system in the previous chapter fall under the
category of “essential knowledge.” While they form the foundation of what we need to know about
classes, there are several other topics related to the classes that we need to discuss. Instead of cramming
them all together, we set aside a separate chapter for these additional topics.

In this chapter, we’ll learn about the “extras” that are part of the MooTools class system and how we
can use them to create better and more flexible classes.

Mutators

In a class declaration, adding the Extends and Implements keys changes the class itself: the first one
makes a class inherit from a superclass, while the second adds properties and prototypes from mixins
into the class. In the last chapter, we called these two as “special keywords,” but they’re really functions.
In MooTools, we call these special functions as mutators.

As the name implies, a mutator is a function that changes or “mutates” the class. In some
programming languages, such functions are called class macros because they transform classes
according to various user-defined rules.

In MooTools, all mutators are stored in the Class.Mutators object. The Extends keyword in a class
declaration corresponds to the mutator function Class.Mutators.Extends, and the same goes for
Implements, which corresponds to Class.Mutators.Implements.

■ Note Don’t confuse the use of the word mutator in MooTools with its use in some classical languages. A
mutator in classical terms is what we usually refer to as a “setter” method, which is a method that changes the
value of an instance’s property, in contrast to an accessor or “getter” method, which returns the property. As

noted above, MooTools’ mutators are actually class macros or functions that transform a class.

Invoking the mutator that corresponds to a key is the job of the implement method. For every key
passed to it, the implement method checks Class.Mutators to see if there’s a mutator function that
corresponds to the key. If a mutator is found, implement invokes the function and passes the value of the
key as an argument. To illustrate, let’s look at this class declaration:

var Duck = new Class({

 Extends: Bird,

CHAPTER 5 ■ CLASSES: THE EXTRAS

100

 Implements: [Events, Options],

 options: {
 name: '',
 color: ''
 },

 initialize: function(name){
 this.setOptions(name);
 }

});

In this example, we’re declaring the Duck class by passing an object literal containing our members
to the Class constructor. The Class constructor, after doing some preliminary processing, then calls the
implement method to add the members to our new class. The implement method goes through each item
in the object literal, starting with Extends, and checks whether there’s a mutator named Extends in
Class.Mutators. Since there is one, it calls Class.Mutators.Extends using the call method, binding the
Duck class as the this keyword value and passing in the Bird class as an argument. It then does the same
thing for Implements, which is also a mutator, but this time passing the array [Events, Options] as an
argument. The initialize method, on the other hand, isn’t a mutator and there’s no
Class.Mutators.implements, so it’s added to the class just like a regular method.

Most class transformations are done via mutators, and they can be used to implement features from
classical language easily. Take the two built-in mutators, Extends and Implements, for instance. They
may be doing complex transformations to facilitate inheritance, but they’re actually pretty simple
functions. Extends, for example, which is the mutator that handles subclassing, does its job using only
four lines:

Class.Mutators.Extends = function(parent){
 this.parent = parent;
 this.prototype = getInstance(parent);
};

The Extends mutator has its this keyword bound to the current class and accepts one parameter,
parent, which refers to the superclass. When the mutator is called, it first adds a parent property to the
current class and assigns the superclass as its value. It then creates a new, uninitialized instance of the
superclass using the private getInstance function and sets the prototype of the current class to this
instance.

Applying this to our previous Duck class example, the Extends mutator is called and passed the Bird
superclass as an argument. The mutator then sets the value of Duck.parent to point to the Bird class.
Finally, a new, uninstantiated instance of Bird is created and set as the value of Duck.prototype.

In contrast, the Implements mutator looks a bit more complex:

Class.Mutators.Implements = function(items){
 Array.from(items).each(function(item){
 var instance = new item;
 for (var key in instance) implement.call(this, key, instance[key], true);
 }, this);
};

As with the Extends mutator (or any other mutator for that matter), the this keyword of the
Implements mutator is also bound to the current class. It receives a single argument, items, which could
be a single mixin class or an array of mixin classes. The first thing it does is to make sure that the items
argument is an array by passing it to Array.from. It does this so that it can use the same code for either a
single mixin or an array of mixins. It then loops though each of the mixins using the each array method,

CHAPTER 5 ■ CLASSES: THE EXTRAS

101

which takes as an argument a callback function that will be invoked for each item in the array, and a
second optional argument that will be used as the this value of the callback function. In this example,
we set the this value of the callback function to the current class by passing the this keyword as the
second argument to the each method.

The callback function itself receives a single argument item, which is a reference to the mixin, and it
then creates an instance of the mixin. It then loops through the instance and adds each member to the
current class using the implement function, which is a private version of the implement class method.

Applying this to our previous example, the Implements mutator is called and passed an array of
mixins, [Events, Options], which becomes the value of the items variable. Because items is already an
array, Array.from returns the same array and the mutator function loops through each item in the array.
For each item, the callback function is called and is first passed the Events class. The callback function
then creates an instance of the Events class and goes through each of its members and adds them to the
Duck class using the implement function. The each method then moves to the next item in the array,
Options, and the callback function is called once more and the process is repeated.

Amazingly, it only takes those two simple functions to form the core of MooTools’ implementation
of classical inheritance. When used with the class system, mutators enable us to create complex
transformations using simple functions. But to fully understand the power of mutators, we’ll need to
implement our own mutator function.

Implementing Your Own Mutators
The mutator we’ll implement is an easy one: a mutator for creating getter and setter methods. Take a
look at the following class definition:

var Person = new Class({

 $name: '',
 $age: 0,
 $occupation: '',

 setName: function(name){
 this.$name = name;
 return this;
 },

 getName: function(){
 return this.$name;
 },

 setAge: function(age){
 this.$age = age;
 return this;
 },

 getAge: function(){
 return this.$age;
 },

 setOccupation: function(occupation){
 this.$occupation = occupation;
 return this;
 },

CHAPTER 5 ■ CLASSES: THE EXTRAS

102

 getOccupation: function(){
 return this.$occupation;
 }

});

var mark = new Person();
mark.setName('Mark');
mark.setAge(23);
mark.setOccupation('JavaScript Developer');

console.log(mark.getName() + ', ' + mark.getAge() + ': ' + mark.getOccupation());
// 'Mark, 23: JavaScript Developer'

A few things about this class: first, you’ll see that we prefixed all our properties with the dollar ($)
character. JavaScript allows identifiers to begin with the dollar character, and it’s MooTools style to mark
“internal” properties—properties that should not be accessed directly outside the object—by prefixing
them with the dollar character (more on this later). So in this example, $name, $age, and $occupation are
considered internal properties and they shouldn’t be accessed directly outside the object, which is why
we have three pairs of getter and setter methods to modify them.

Another thing you’ll notice is that we have a lot of repetition: the bodies of our three pairs of getters
and setter are similar—the only difference among them is the name of the property they’re accessing.

If we need to add another property, we’ll have to write another set of those methods. This leads to
unnecessary work. Wouldn’t it be easier if we could automate this? We should, in fact, and we’re going to
implement a mutator to automatically create the getter and setter methods.

Creating a mutator is as simple as augmenting Class.Mutators. Mutator names should always be
capitalized in order to differentiate them from normal class members: it’s easier to see which keys
correspond to mutators if the keys are visually different. Here, we’ll choose an appropriate name for our
mutator, GetterSetter, since it creates getter and setter methods.

Let’s see how we can create this mutator. First, we’ll need the mutator function to know the names
of the properties for which methods will be created. These names will be the arguments to our function.
As with the Implements mutator, we want to be able to receive a single property name or an array of
property names. Then, we’ll need to implement the getter method for that property using the implement
method. We’ll also have to do the same for the setter method.

With these specifications, we’ll end up with something like this:

Class.Mutators.GetterSetter = function(properties){
 var klass = this;
 Array.from(properties).each(function(property){
 var captProp = property.capitalize(), // changes 'prop' to 'Prop'
 $prop = '$' + property; // changes 'prop' to '$prop'

 // setter method
 klass.implement('set' + captProp, function(value){
 this[$prop] = value;
 return this;
 });

 // getter method
 klass.implement('get' + captProp, function(value){
 return this[$prop];
 });
 });
};

CHAPTER 5 ■ CLASSES: THE EXTRAS

103

Before I explain how this works, though, let’s see how it’s used:

var Person = new Class({

 GetterSetter: ['name', 'age', 'occupation']

});

var mark = new Person();
mark.setName('Mark');
mark.setAge(23);
mark.setOccupation('JavaScript Developer');

console.log(mark.getName() + ', ' + mark.getAge() + ': ' + mark.getOccupation());
// 'Mark, 23: JavaScript Developer'

Nifty, isn’t it? We turned that complex class declaration into a simple one that uses only a single
mutator. This and the previous examples generate the same class, but this one is simpler to write since
it’s automated.

Our GetterSetter mutator might look more complicated than the built-in mutators we’ve seen so
far, but they work using the same principles. Like the Implements mutator, GetterSetter accepts a single
string or an array of strings as an argument. These strings will be used for the name of the property and
the name of the methods. We also use the same Array.from function to turn the arguments into an array,
and we use the each array method to loop through each item in the array.

In the first line of our GetterSetter mutator, you’ll see a weird declaration: var klass = this;. This
is a MooTools idiom that solves the issue of object referencing within functions. Remember that inside
our mutator, the this keyword points to the class itself. However, within the callback function for the
each array method, the this keyword points to the array and not the class. In the Implements mutator,
we bound the callback function to the class by passing a second argument to each. However, in our
GetterSetter mutator, we forgo the binding by declaring a local variable klass instead. Since the klass
variable is available to our callback function due to lexical scoping, we will still be able to reference the
class itself without having to rebind. Another reason we did this is to avoid confusion: since we’ll need to
use the this keyword inside the getter and setter methods themselves, it’ll be easier to track which
object we’re talking about if the class itself is given a different identifier.

■ Note We used the identifier klass in this example because class is a reserved word—it can’t be used as an

identifier. In MooTools Core, the idiom is usually written as var self = this;.

The actual implementation of the getter and setter methods to the class happens inside the callback
function. The first thing the callback function does is to transform the string property name into two
forms: one capitalized using the string-capitalize method, and the other prefixed with the $ character.
The capitalized version of the name is stored in the captProp variable and then used for the method
names, while the $ prefixed version is stored in $prop and used inside the methods themselves to access
the property. We then called the implement method of the class to add our methods.

When applied to our Person class, the mutator assigns the Person class as the value of the klass
variable, and it receives the argument ['name', 'age', 'occupation']. This array is then passed to
Array.from, which returns it without modification. Using the each method to loop through the array, the

CHAPTER 5 ■ CLASSES: THE EXTRAS

104

callback function is called and it first receives the property 'name' and transforms it into two forms:
'Name' and '$name'. The implement method of the Person class is then called, passing in getName and the
function that will become the actual getName method. The same is then done for the remaining
properties.

When getName or any other method added by the mutator is called, it accesses the property using
this[$prop]. For getName, $prop has the value '$name', so this[$prop] is the same as accessing
this.$name. Because of closures, the getName method retains the value of these variables outside of the
GetterSetter mutator. The result is a very easy way to implement getter and setter methods using only a
mutator.

Mutator Gotchas
While mutators themselves are easy to understand, their use can sometimes lead to weird behavior. One
important thing to remember is that mutators are applied according to the order they’re declared. As
each mutator is processed, it can affect the already implemented members of the class and this leads to
unexpected results.

Let’s take a look at some tricky behavior you might encounter:

var Super = new Class({

 log: function(){
 console.log('Super');
 }

});

var Mixin = new Class({

 log: function(){
 console.log('Mixin');
 }

});

var Sub = new Class({

 Extends: Super,

 Implements: Mixin

});

var obj = new Sub();
obj.log(); // ?

What do you think is the value that will appear when we call obj.log()? If you answered 'Mixin',
you are right. First, Extends: Super makes the Sub class inherit from Super, which means that Sub will
inherit the log method from Super via its prototype chain. But because the Implements mutator adds the
methods from the Mixin class directly into the current class, the Sub class gets its own log method that
overrides the original log method from Super. The result is that we get Mixin instead of Super when we
call obj.log(). So, how about the next example?

var Super = new Class({

CHAPTER 5 ■ CLASSES: THE EXTRAS

105

 log: function(){
 console.log('Super');
 }

});

var Mixin = new Class({

 log: function(){
 console.log('Mixin');
 }

});

var Sub = new Class({

 Implements: Mixin,

 Extends: Super

});

var obj = new Sub();
obj.log(

Here, we flipped the declarations: Implements now comes before Extends, so what’s the value of

obj.log()? This is a tricky snippet and even I got confused when I first encountered it. Without knowing the
internals of the MooTools class system, we’d probably say that the value would still be Mixin, like our
previous snippet, since the prototype chain is still in effect. Implements will add the log member of the
Mixin class to the Sub class, and then Extends will make Sub inherit from Super. Because Implements adds
the log method directly, it will override the log method of Super, which is what we’d expect from how the
prototype chain works. So it’s Mixin, right? Actually, the answer is that obj.log() will output Super.

You’re probably asking, “Huh? That’s unexpected!” First, recall what I said about how the order of
declaration affects the behavior of mutators: because each mutator is called according to the order in
which it was declared, mutators can affect any members already implemented in the class. At the start of
the declaration, we first used Implements to add the log method from the Mixin class to Sub, so now Sub
has its own log method. And then we used Extends to make Sub inherit from Super. But now, remember
how the Extends mutator actually works: first, it assigns the superclass to the parent property of the
subclass and then it creates an instance of the superclass and assigns it as the prototype of the subclass.

And that explains the weird behavior. Because Extends assigns a new value to the prototype
property of the subclass, the old prototype object is destroyed—as well as any properties or methods it
already contains. This means that when we did Extends: Super in our example, a new instance of Super
was created and it replaced the old Sub.prototype object that contained our log method from Mixin.
Thus, obj.log() outputs Super rather than Mixin. Essentially, declaring Extends in your class effectively
destroys all properties and methods you’ve already added prior to the Extends declaration.

An Implements declaration also affects previously implemented members:

var Mixin = new Class({

 log: function(){
 console.log('Mixin');
 }

CHAPTER 5 ■ CLASSES: THE EXTRAS

106

});

var Sub = new Class({

 log: function(){
 console.log('Sub');
 },

 Implements: Mixin

});

var obj = new Sub();
obj.log(); // 'Mixin'

In this snippet, we declared the log method of the Sub class first before we declared Implements.

When the implement class method parses this, it first adds the log method from our Sub declaration to
Sub.prototype. But when we get to the Implements declaration, the methods of Mixin are then added to
the class, and because the Mixin class has its own log method, it overwrites the original log method that
has already been implemented. Therefore, we get Mixin in our obj.log() invocation rather than Sub.

But even though these quirky behaviors are present in the MooTools class system, they’re easy to
dodge if you know how the system works and if you follow the recommend style. Good MooTools
developers always write their mutator declarations at the start of their class declarations, with Extends
coming first since it’s the most “destructive” mutator. Implements then comes next, since it also
overrides any previous methods, and then any other mutator you might use. If you use proper MooTools
style, gotchas such as these won’t ever be a problem.

The Built-in Mixins
In the previous chapter, we learned that mixins provide a way to implement multiple inheritance in
classes. We learned that mixins are reusable classes whose properties and methods are added to a class
directly, which is different from prototypal inheritance where members are inherited using the
prototype chain.

MooTools includes three built-in mixins: Chain, Events, and Options. These mixins are used
throughout MooTools, and their behavior affects the way most MooTools classes work.

The Chain Mixin
The Chain mixin is a simple class that enables us to add chainable call queues to classes. This has very
special applications for asynchronous programming, as we’ll see in later chapters, but right now we’ll
present a simple example to show how this mixin can be used.

Suppose we have the following class:

var Phone = new Class({

 busy: false,

 call: function(name){
 console.log('Calling ' + name);
 this.busy = true;

CHAPTER 5 ■ CLASSES: THE EXTRAS

107

 (function(){
 console.log('End call to ' + name);
 this.busy = false;
 }).delay(5000, this);

 return this;
 }

});

var phone = new Phone();
phone.call('Tim');

Here we have a simple class called Phone with a single method called call. When we invoke this
method, it sets the busy property of the instance to true, indicating that the instance is currently
occupied with an operation. It then creates a timer function that is automatically invoked after 5000
milliseconds (or five seconds) that will then change the busy status of the instance to false.

Now suppose we want the class to accept calls only when it’s not busy. We could do this by adding
an if statement at the start of our method that will check the busy property of the instance.

var Phone = new Class({

 busy: false,

 call: function(name){
 if (this.busy) return this;

 console.log('Calling ' + name);
 this.busy = true;

 (function(){
 console.log('End call to ' + name);
 this.busy = false;
 }).delay(5000, this);

 return this;
 }

});

var phone = new Phone();
phone.call('Tim');
phone.call('Chris');

In this snippet we invoke the call method twice. For the first invocation, the busy property is false,
so the function continues execution. For the second invocation, though, the busy property will be true
because it was just set by the first invocation, and the delayed function that resets the busy property
won’t have been fired yet because it takes five seconds before a call is ended. Thus, the second
invocation will be ignored.

But what if we want to keep that second invocation? Instead of completely ignoring it, can we
somehow store this second invocation and simply call it after the first call is done? That’s where the
Chain mixin comes in.

CHAPTER 5 ■ CLASSES: THE EXTRAS

108

The Chain mixin adds a special method called chain to classes that implement it. This method
accepts a single argument, fn, which should be a function, and then stores this function in an internal
call queue that can be accessed later.

var Phone = new Class({

 Implements: Chain,

 busy: false,

 call: function(name){
 if (this.busy){
 var bound = this.call.bind(this, name);
 this.chain(bound);
 return this;
 }

 console.log('Calling ' + name);
 this.busy = true;

 (function(){
 console.log('End call to ' + name);
 this.busy = false;
 }).delay(5000, this);

 return this;
 }

});

var phone = new Phone();
phone.call('Tim');
phone.call('Chris');

Here we added the Chain mixin to our Phone class and we modified our call method. Instead of
simply returning the instance if the busy property is true, we also created a bound version of the call
method that keeps the current argument. What happens now is that when we invoke call while the
instance is busy, the instance uses the chain method to store this invocation into the call queue, and we
can then use it later. The second invocation to call is no longer ignored, but is kept for later use.

This brings us to the second part of the equation: the callChain method. This method is used to
invoke the first function on the call queue. It accepts a variable number of arguments, all of which will be
passed to the function from the queue that’s being invoked.

var Phone = new Class({

 Implements: Chain,

 busy: false,

 call: function(name){
 if (this.busy){
 var bound = this.call.bind(this, name);
 this.chain(bound);
 return this;
 }

CHAPTER 5 ■ CLASSES: THE EXTRAS

109

 console.log('Calling ' + name);
 this.busy = true;

 (function(){
 console.log('End call to ' + name);
 this.busy = false;
 this.callChain();
 }).delay(5000, this);

 return this;
 }

});

var phone = new Phone();
phone.call('Tim');
phone.call('Chris');

In this snippet we modified our delayed function to invoke callChain after it has set the busy
property back to false. What happens now is that when callChain is invoked, it checks whether there
were previous calls saved in the queue, and calls the first of these saved calls. The result is that all our
function calls are now queued.

As I mentioned, the Chain mixin is used prominently in asynchronous MooTools classes, like
Request and Fx. We’ll take a look at how these classes use the Chain mixin later, but now we’ll move on to
another class that’s used heavily in MooTools.

The Events Mixin
The Events mixin is used to add callback functionality to classes. An event, to define it very generally, is
something interesting that happens, and classes can use the Events mixin to tell other parts of a program
that something interesting has happened.

Reusing our previous Phone example, let’s say we want to make our class more flexible by separating
the logical and presentational parts of it. The logical part of the class deals with how the class actually
works in terms of changes in state and data, while the presentational parts deal with how these changes
are shown to the user. The toggling of the busy status of the class is logical, while the logging of the name
is presentational. With this in mind, let’s split up our class into several parts:

var Caller = new Class({

 busy: false,

 call: function(name){
 this.busy = true;

 (function(){
 this.busy = false;
 }).delay(5000, this);

 return this;
 }

});

CHAPTER 5 ■ CLASSES: THE EXTRAS

110

var Display = new Class({

 callStart: function(name){
 console.log('Calling ' + name);
 },

 callEnd: function(){
 console.log('End call to ' + name);
 }

});

var Phone = new Class({

 initialize: function(){
 this.caller = new Caller();
 this.display = new Display();
 },

 call: function(name){
 this.caller.call(name);
 }

});

We divided the main components of the Phone class into two separate classes: the Caller class,
which deals with toggling the busy status of the instance, and the Display class, which is used to log the
call data. We then created a new Phone class that wraps these two classes together.

However, we now run into a problem: because our Caller and Display classes are now separate,
there’s no way to glue them together. In particular, the Display class no longer has a way to determine
when to display the information using console.log. What we need then is a way for the Caller and
Display classes to communicate—even though they’re now separate classes.

This brings us to the Events mixin. Using this built-in mixin, we can turn our Caller class into an
event dispatcher, which is simply an object that can produce events. We then use the fireEvent method
from the Events mixin, which is the method used to broadcast that an event has happened. This method
takes one main argument, type, which is a string denoting the type of event that will be dispatched, and
an optional argument, args, which should be a value or array of values to be passed to the event
handlers.

var Caller = new Class({

 Implements: Events,

 busy: false,

 call: function(name){
 this.busy = true;
 this.fireEvent('callStart', name);

 (function(){
 this.busy = false;
 this.fireEvent('callEnd', name);
 }).delay(5000, this);

CHAPTER 5 ■ CLASSES: THE EXTRAS

111

 return this;
 }

});

In this snippet we modified our Caller class to use the Events mixin via Implements. We then added
two calls to fireEvent, the first right after setting the busy property to true to dispatch the callStart
event, and the second inside our delayed function to dispatch the callEnd event. In both invocations we
passed the name variable as the second argument, which in turn will be passed to the event handlers.

Dispatching the events, though, is only half of the story. Even if our Caller class now has the ability
to broadcast events, those events are useless unless they’re heard. And that’s where event handlers come
in. An event handler is a function that listens to a class, waiting for a particular event to happen. When
an event is dispatched, the event handlers associated with the event are invoked. This is how the classes
communicate.

Event handlers are “attached” to the event dispatcher object. In our case, we need to attach our
event handlers to the Caller instance. We can do this using the Events mixin’s addEvent method, which
takes two arguments: type, which is a string denoting the event name, and fn, which is the event handler
function.

var Caller = new Class({

 Implements: Events,

 busy: false,

 call: function(name){
 this.busy = true;
 this.fireEvent('callStart', name);

 (function(){
 this.busy = false;
 this.fireEvent('callEnd', name);
 }).delay(5000, this);

 return this;
 }

});

var Display = new Class({

 callStart: function(name){
 console.log('Calling ' + name);
 },

 callEnd: function(){
 console.log('End call to ' + name);
 }

});

var Phone = new Class({

CHAPTER 5 ■ CLASSES: THE EXTRAS

112

 initialize: function(){
 this.caller = new Caller();
 this.display = new Display();

 this.caller.addEvent('callStart', this.display.callStart);
 this.caller.addEvent('callEnd', this.display.callEnd);
 },

 call: function(name){
 this.caller.call(name);
 }

});

Here we updated our Phone class’s initialize method with two calls to the caller object’s addEvent
method. In the first invocation we attached the callStart method of the display object as the callStart
event handler, and the second object does the same with the callEnd method, but for the callEnd event.
The result is that our two separate classes can now communicate using events.

Events are useful not only for classes but also for a host of other programming purposes. We’ll learn
more about events and event-based programming in Chapter 10.

The Options Mixin
A common MooTools idiom is the use of special option object arguments to class constructors as a way
of customizing class instances. As its name implies, the Options mixin makes it easy to implement this
idiom in your classes.

The Options mixin adds a single method called setOptions that takes a variable number of option
object arguments and adds them to the options object property of the class.

var Person = new Class({

 Implements: Options,

 initialize: function(options){
 this.setOptions(options);
 },

 log: function(){
 console.log(this.options.name + ', ' + this.options.age);
 }

});

var mark = new Person({name: 'Mark', age: 23});
mark.log(); // 'Mark, 23'

Here we created a new Person class that implements the Options mixin. We then created an
initialize method for the class that accepts an options argument, which we then pass to the setOptions
method of the class. The setOptions method will then take this object and add its properties to the
options property of the instance. We’re able to access this options property in all other parts of the class,
which is how we were able to get options.name and options.age in our log method.

CHAPTER 5 ■ CLASSES: THE EXTRAS

113

A more powerful use of the Options mixin, though, is for setting default options for our classes. We
can do this by declaring an explicit options property in our class that contains the default values for our
options.

var Person = new Class({

 Implements: Options,

 options: {
 name: 'Blah',
 age: 0
 },

 initialize: function(options){
 this.setOptions(options);
 },

 log: function(){
 console.log(this.options.name + ', ' + this.options.age);
 }

});

new Person({name: 'Tim', age: 21}).log(); // 'Tim, 21'
new Person({name: 'Chris'}).log(); // 'Chris, 0'
new Person().log(); // 'Blah, 0'

In this example we defined an explicit options property in our class declaration. What happens now
is that when setOptions is called, it merges the values of the explicit options property together with the
passed values from the options argument. This gives us the ability to define default values for our
options—an idiom that’s used widely in MooTools itself.

Finally, we close this section with a special feature of the setOptions method. If the current class
implements the Events mixin together with the Options mixin, all properties passed to setOptions in the
form on<Name> will be added as event handlers:

var Person = new Class({

 Implements: [Events, Options],

 initialize: function(options){
 this.setOptions(options);
 }

});

var sleep = function(){
 console.log('Sleeping');
};

new Person({
 onSleep: sleep
});

new Person().addEvent('sleep', sleep);

CHAPTER 5 ■ CLASSES: THE EXTRAS

114

Here, the two last operations are equivalent: passing an option with the name onSleep is the same as
attaching an event handler for the sleep event using addEvent.

Static Members
One feature of some classical programming languages is the existence of static members. A static
member is a property or method that is accessible via the class itself, but not from its instances. Revising
our ooc example from Chapter 4:

Person: class {

 // Properties
 name := ""
 age := 0

 // Methods
 init: func (name: String, age: Int) {
 this name = name
 this age = age
 }

 log: func {
 printf("%s, %d", this name, this age)
 }

 // Static Property
 count := static 0

 // Static Methods
 addPerson: static func {
 Person count += 1
 }

 getCount: static func {
 printf("Person count: %d", Person count)
 }

}

// Creating a new Person instance
mark := Person new("Mark", 23)
mark log() // "Mark, 23"

// Accessing the static method
Person addPerson()
Person getCount() // "Person count: 1"

In this example, we added three new static members to our original ooc Person class: a static
property count and the static methods addPerson and getCount. Because these members are static, we
can’t call them using our mark instance. Instead, we called them directly from the class itself, as seen in
the last lines. You’ll also notice that in our addPerson and getCount methods, we didn’t use the this
keyword. Instead, we accessed the count property through the class identifier itself.

CHAPTER 5 ■ CLASSES: THE EXTRAS

115

Because static members seem more like members of the class rather than members of the instance,
they’re often called class members. In fact, that is exactly what they are in languages where classes are
objects, like JavaScript: they’re properties and methods of the class itself. The implement method, for
instance, is an example of a class member since it’s called from the class itself and not through instances
of the class.

Here’s a reimplementation of the ooc example in JavaScript using a class:

var Person = new Class({

 // Properties
 name: '',
 age: 0,

 // Methods
 initialize: function(name, age){
 this.name = name;
 this.age = age;
 },

 log: function(){
 console.log(this.name + ‘, ‘ + this.age);
 }

});

// Static Property
Person.count = 0;

// Static Method
Person.addPerson = function(){
 this.count += 1;
};

Person.getCount = function(){
 console.log(‘Person count: ‘ + this.count);
};

// Creating a new Person instance
var mark = new Person(‘Mark‘, 23);
mark.log();

// Accessing the static method
Person.addPerson();
Person.getCount(); // ’Person count: 1’

As in the ooc example, the count property and addPerson and getCount methods become members
of the Person class itself. Because the Person class is an object, creating static members is as simple as
augmenting the Person object itself. So instead of declaring our static members inside the class, we just
added them to our Person class directly. You’ll also notice that in the addPerson and getCount methods,
we used the this keyword instead of Person to access the count property. Since the methods are added
to the class itself, they becomes methods of the class—and the value of the this keyword inside the
method bodies is set to the class itself.

MooTools provides a function method called extend that we could use to easily add class members:

CHAPTER 5 ■ CLASSES: THE EXTRAS

116

var Person = new Class({

 // Properties
 name: '',
 age: 0,

 // Methods
 initialize: function(name, age){
 this.name = name;
 this.age = age;
 },

 log: function(){
 console.log(this.name + ‘, ‘ + this.age);
 }

});

Person.extend({

 // Static Property
 count: 0,

 // Static Method
 addPerson: function(){
 this.count += 1;
 },

 getCount: function(){
 console.log(‘Person count: ‘ + this.count);
 }

});

// Creating a new Person instance
var mark = new Person(‘Mark‘, 23);
mark.log();

// Accessing the static method
Person.addPerson();
Person.getCount(); // ’Person count: 1’

The extend method is declared via Function.prototype and is inherited by all functions. Because a
MooTools class is in essence a function, we could use the extend method for classes too. The method is
similar to the implement method in that it takes an object argument with keys and values referring to
members that will be added. Unlike implement, though, extend does not add the members to the
prototype of the class, but to the class object itself.

CHAPTER 5 ■ CLASSES: THE EXTRAS

117

■ Note Don’t confuse the extend method with the Extends mutator. Unlike Implements and implement, which
are similar in how they work, Extends and extend perform different operations. And as I mentioned, extend is a

function method inherited from Function.prototype, not Class.prototype.

Taking it one step further, we could combine what we learned from the previous sections to
implement a Static mutator, so we could combine the declarations inside the class itself:

Class.Mutators.Static = function(members){
 this.extend(members);
};

var Person = new Class({

 Static: {

 // Static Property
 count: 0,

 // Static Method
 addPerson: function(){
 this.count += 1;
 },

 getCount: function(){
 console.log(‘Person count: ‘ + this.count);
 }

 },

 // Properties
 name: '',
 age: 0,

 // Methods
 initialize: function(name, age){
 this.name = name;
 this.age = age;
 },

 log: function(){
 console.log(this.name + ‘, ‘ + this.age);
 }

});

// Creating a new Person instance
var mark = new Person(‘Mark‘, 23);
mark.log();

// Accessing the static method

CHAPTER 5 ■ CLASSES: THE EXTRAS

118

Person.addPerson();
Person.getCount() // ’Person count: 1’

The Static mutator is a very simple mutator that receives an object argument containing the
members that will be added to the class and invokes the extend method of the class. To use it, we simply
declared a Static key inside our class with an object value containing the static members we’d like to
add. The result is a cleaner and tighter class declaration.

One last thing to remember before we move on is that static or class members aren’t inherited.
Because they are added to the class itself rather than the class’s prototype, class members are not
inherited by subclasses. This is different from how real classical languages with static members work,
although we can mimic the behavior by overriding the original Extends mutator:

(function() {

 var origExtends = Class.Mutators.Extends;

 Class.Mutators.Extends = function(parent){
 origExtends.call(this, parent);

 var members = {};
 for (var key in parent){
 if (parent.hasOwnProperty(key) && !this.hasOwnProperty(key)) members[key] =
parent[key];
 }
 this.extend(members);
 };

})();

We first stored the original Extends mutator function in the origExtends variable so that we can call
it later. We then overrode our Class.Mutators.Extends mutator with a new function. The first line of the
new mutator function calls the original mutator function in order to set the prototype chain of the class.
We then loop through the members of the superclass and check for class members that we should copy
into the new class. We used hasOwnProperty to check the members so that we will copy only the
members that were added directly to the class and not the ones inherited from Function.prototype or
from Class.prototype. Finally, we use the extend method to add the members from our superclass to our
new class.

Encapsulation and Visibility
Looking back at all the classes we’ve created so far, you’ll notice that all of them are self-contained: we
defined our classes so that they have all the properties and methods they’ll need. We didn’t store the
information about our objects in a separate location, nor did we define external functions to perform
operations on our objects. Instead, we defined the properties and methods of our classes so that each
instance of our class—each object—is usable on its own.

The idea of having each object contain all data (properties) and behavior (methods) it needs is an
important principle in object-oriented programming called encapsulation. Encapsulation dictates that
each object should be self-contained: classes should declare the properties and methods needed so that
everything is contained within the object.

Related to the principle of encapsulation is the idea that while you should include all of the
properties and methods needed to make your object self-contained, you should also limit what you
expose of your object. In other words, you should only expose the properties and methods of your object

CHAPTER 5 ■ CLASSES: THE EXTRAS

119

that need to be exposed to enable other objects to effectively use your object. This principle is called
visibility and it’s an important part of class design.

Take, for example, the following class:

var Person = new Class({

 // Properties
 name: '',
 age: 0,

 // Methods
 initialize: function(name, age){
 this.name = name;
 this.age = age;
 this.format();
 },

 log: function(){
 console.log(this.name + ‘, ‘ + this.age);
 },

 format: function(){
 this.name = this.name.capitalize();
 this.age = parseInt(this.age);
 }

});

// Creating a new Person instance
var mark = new Person(‘mark’, ’23’);
mark.log(); // ’Mark, 23’

mark.format(); // returns nothing

Here we have the same Person class from the previous examples but with a new method called
format. This new method does two things: first, it ensures that our name property is capitalized and
second, it ensures that our age property is an integer. It’s called automatically from our initializer and it
doesn’t return anything. In other words, it’s an internal method: it’s used by our class to perform a
necessary action, but it’s not meant to be called outside of the class.

The principle of visibility tells us that since it’s not needed to make the class work, our format
method should not be visible outside of our object. However, we could still invoke the function as in the
last line of the snippet.

Internal methods such as format that are necessary but aren’t meant to be called outside the object
itself must have their visibility limited so that only the object itself can access them. Most classical
languages allow you to set the visibility of your members to one of three levels:

• Public members are members that are accessible from within and from without
the instance. In the example above, all our members are public.

• Private members, on the other hand, are accessible only from within the instances
of the class. Private properties can be accessed only by methods of the instance
and private methods can be invoked only by other methods of the instance. Also,
if a subclass inherits from a superclass with private members, instances of this
subclass won’t be able to access the private members of the superclass.

CHAPTER 5 ■ CLASSES: THE EXTRAS

120

• Finally, protected members are like private members: protected properties and
methods can be accessed and invoked only from within the instance. However,
unlike private members, protected members are also available to subclasses that
inherit them.

Most popular classical languages support these three visibility levels. One notable exception,
though, is the Python programming language, which supports only public members. To circumvent this
“limitation,” Python programmers use a generally accepted naming convention: any member that’s
prefixed by an underscore (e.g., _format) is considered protected. By accepting a common idiom, Python
programmers are able to implement a form of style-guided visibility system.

The use of naming conventions to denote visibility can also be applied to JavaScript. Like Python, all
members in JavaScript are public and it’s usually the naming conventions that enable us to determine
which methods are protected and which are public. In fact, you already saw one MooTools convention:
the use of $ to prefix protected properties.

However, there are ways to actually mimic the behavior of private and protected methods in
JavaScript. One involves using closures and the other is a nifty feature implemented by the MooTools’
class system.

Private Methods
The easiest way to mimic private methods in JavaScript is to wrap your class declaration in a function
and create a local function that will become your “private method”:

var Person = (function(){

 // Our "private" method
 var format = function(){
 this.name = this.name.capitalize();
 this.age = parseInt(this.age);
 };

 // Our class
 return new Class({

 // Properties
 name: '',
 age: 0,

 // Methods
 initialize: function(name, age){
 this.name = name;
 this.age = age;
 format.call(this);
 },

 log: function(){
 console.log(this.name + ', ' + this.age);
 }

 });

})();

CHAPTER 5 ■ CLASSES: THE EXTRAS

121

// Creating a new Person instance
var mark = new Person('mark', '23');
mark.log(); // ’Mark, 23’

console.log(typeof mark.format); // 'undefined'

First, we used a single-execution function as an enclosure for our class declaration. Inside our
enclosure, we moved our original format method to a local function of the same name. Our class
declaration is also inside our enclosure, so it has access to the local function. We then changed the
function invocation inside the initialize method from this.format() to format.call(this), since
format is no longer a class method but a separate function. We used the call method to bind the this
keyword inside our format function to the current instance. Because the format function is localized, it
can’t be called outside the body of the enclosure. However, when we returned the class object at the end
of the function, we created a closure that retains references in our methods to the local format function.
The result is that we get the same behavior as private methods: we’re able to call the function from
within our class, but it can’t be called from outside it.

While this technique effectively mimics how private methods work, there are some drawbacks. The
first is that unlike true private methods, our “private methods” aren’t actually methods of the class, but
external functions that are accessible only to the class because of closures. This means that we can’t
override them, nor can we change their implementation dynamically like real private methods.

Another drawback is that all methods that need to use the private method will have to be declared
within the scope of the enclosing function. Because we employed an enclosure to localize the private
function, methods that are declared from outside the enclosure also won’t be able to access the
function. This limits the extensibility of our class.

But perhaps the biggest drawback comes from the nature of private methods. Since they can’t be
accessed by inheriting classes, private methods have far too limited use. If a subclass needs the
functionality of a private method from its superclass, it needs to either call a public or protected method
from its superclass that has access to the method, or implement its own copy of the private method—
both of which aren’t appealing solutions.

Protected Methods
A better solution would be to use protected methods instead of private methods. A protected method
also has limited visibility, but unlike a private method, it’s accessible to inheriting subclasses. While
there are times when you’d actually need to use private methods, there are more uses for protected
methods in most programs you’ll be building.

Unlike private methods, though, there’s no simple way to implement protected methods in
JavaScript. Fortunately, MooTools solves this for us by implementing its own version of protected
methods:

var Person = new Class({

 // Properties
 name: '',
 age: 0,

 // Methods
 initialize: function(name, age){
 this.name = name;
 this.age = age;
 this.format();
 },

CHAPTER 5 ■ CLASSES: THE EXTRAS

122

 log: function(){
 console.log(this.name + ', ' + this.age);
 },

 format: function(){
 this.name = this.name.capitalize();
 this.age = parseInt(this.age);
 }.protect()

});

// Creating a new Person instance
var mark = new Person('mark', '23');
mark.log(); // 'Mark, 23'

mark.format(); // 'Error: The method "format" cannot be called.'

This snippet is similar to our original example where all the members are public, but you’ll see that
in our declaration for format, we called on the protect method of the function. When called from inside
the initialize method, our format method works normally. However, when called from outside the
object like we did in the last line, the format method throws an error. This effectively mimics the
behavior of a protected method.

The implementation of protected methods in MooTools is divided into two parts: first is the protect
method itself and the second comes from the wrapper function. The protect method is declared
through Function.prototype and is inherited by all functions, but its power only becomes apparent
when the method is used in conjunction with the wrapper function provided by the class system.

If you’ll recall, all class methods are wrapped in a special wrapper function. If you’ll look back at the
code for the wrapper function in the previous chapter, you’ll see that much of it involves setting the
values of the current and caller variables. As we saw from the previous chapter, these variables are used
to track down the currently running method for the this.parent method that’s used to invoke
overridden methods from the superclass.

But aside from tracking overridden methods, the wrapper function also tracks the running method
(aka, the “current” method) and which method invoked the running method (aka, the “caller” method).
It is also the job of the wrapper function to ensure that protected methods are callable only from within
the class by checking whether the protected method was invoked by another method inside the class or
whether it was invoked directly from outside the class.

To illustrate how this works, let’s apply it to our previous example. When we called new
Person('mark', '23'), the constructor calls our initialize method. The wrapper function for this
method sets initialize as the current method. Since initialize was called directly, the value of the
caller method is set to null. The initialize method then invokes the protected method format and the
wrapper function for format reconfigures the variables: it sets format as the current method and
initialize as the caller method. Because format is protected, the wrapper function checks whether
format was called from another method inside the object. It does this by checking the value of the caller
method. If the method was invoked by another method inside the object, caller will never be null. In this
example, the wrapper will see that the caller is initialize, and it will execute the format method as
expected.

When we call the format method directly, the same sequence of operations is performed. The
wrapper function first sets format as the current method and the value of the caller method will be null,
since format was called directly. Since a protected method like format can only be called by another
method of the object, the wrapper function will throw an error when it sees that the value of the caller
method is null.

You’ll fully understand how this all works when you look at the wrapper function that we saw in the
previous chapter. Right before and just after the invocation of the actual method are a set of declarations
that set the values of the current and the caller methods. It is these values that enable the class system to

CHAPTER 5 ■ CLASSES: THE EXTRAS

123

determine not only overridden methods from the superclass but also the chain of calls leading to the
current method call—which is how the class system knows whether to invoke the function or throw an
error.

Like real protected methods, MooTools’ protected methods are also available to inheriting classes:

var Person = new Class({

 // Properties
 name: '',
 age: 0,

 // Methods
 initialize: function(name, age){
 this.name = name;
 this.age = age;
 this.format();
 },

 log: function(){
 console.log(this.name + ', ' + this.age);
 },

 format: function(){
 this.name = this.name.capitalize();
 this.age = parseInt(this.age);
 }.protect()

});

var Mark = new Class({

 Extends: Person,

 initialize: function(){
 this.name = 'mark';
 this.age = '23';
 this.format();
 }

});

// Creating a new Person instance
var mark = new Mark();
mark.log(); // 'Mark, 23'

mark.format(); // 'Error: The method "format" cannot be called.'

Even though our format method is protected, our Mark class still has access to it since the class
inherits from our original Person object. The format method still works as expected, and still throws an
error if called directly.

The implementation of protected methods in MooTools—while perfect for most use cases—can be
a bit weird unless you know the internals. One particular gotcha is when protected methods are used in
closures:

CHAPTER 5 ■ CLASSES: THE EXTRAS

124

var Thing = new Class({

 test: function(){
 var self = this;
 (function(){
 self.log();
 })();
 },

 generate: function(){
 var self = this;
 return function(){
 self.log();
 };
 },

 log: function(){
 console.log(‘Yes’);
 }.protect()

});

var obj = new Thing();
obj.test(); // ’Yes’

var fn = obj.generate();
fn(); // "Error: The method "log" cannot be called.'

Our class Thing has one protected method called log and two public methods: test and generate.
When we call the test method, it creates a single-execution function that calls the log method. Because
the single-execution function is created, invoked, and destroyed within the context of the test function,
the call to the log method succeeds, since the whole procedure happens from inside the context of the
method. On the other hand, generate returns a function that calls log inside its body, creating a closure.
Because the procedure moves the invocation of the log method outside of the context of the generate
method, the invocation fails and an error is thrown. This is because by the time that log is finally called,
the generate function would have finished its execution. The call to log then would be just like directly
calling log from the outside.

Because of how they’re implemented, protected methods can only be called in the immediate body
of other methods. This means that protected methods can’t be used in callback function, event handlers,
or any other function that uses closures, because the invocation gets removed from the current context.
So if you need to use a method for any of these things, it’s better to use a public method instead of a
protected one.

Finally, we end this section with another mutator. In the section on static members, we
implemented a Static mutator to simplify the process of declaring static members. To make the process
of declaring protected methods easier, let’s implement a corresponding Protected mutator:

Class.Mutators.Protected = function(methods){
 for (var key in methods){
 if (methods[key] instanceof Function) this.implement(key, methods[key].protect());
 }
};

As an exercise, I’ll leave it to you to explain how our Protected mutator works and how to use it. This
is a very easy exercise, since it’s very similar to our Static mutator.

CHAPTER 5 ■ CLASSES: THE EXTRAS

125

MooTools and Classes
MooTools is a class-based framework not only because it provides the best JavaScript class system
currently available, but because it uses this class system itself. While other JavaScript frameworks
provide some form of plug-in or extension system to add extra functionality to the framework, MooTools
expects developers to use the built-in class system to do this.

Since the class system is central to MooTools, every developer who uses the framework is expected
to know at least the basics of creating and extending classes. After reading this and the previous chapter,
I expect that you already understand the MooTools class system deeply and I won’t be surprised if you’re
well on your way to mastering the system.

However, knowing how to create classes and knowing how to properly design classes are wholly
separate things. The first involves syntax and technique, which is easy enough to master. The second, on
the other hand, involves a firm understanding of the principles and concepts of object-oriented
programming, and it’s a bit harder to master these.

These principles and concepts are, of course, outside the scope of this book, though we have
touched on some of them, like code reuse, inheritance, encapsulation, and visibility. The only way to
learn them is by reading books on object-oriented programming and design, and by using what you’ve
learned in experimentation and in building complex JavaScript programs.

I will, however, provide you with some pointers that should come in handy:

• Follow the MooTools style and code conventions. While coding style is mostly a
personal preference, the MooTools project keeps its own set of conventions that is
followed for all code that’s part of the framework. All snippets from this book are
written according to this convention, and a guide is included at the end of this
book for reference. I suggest that you follow the official conventions even if you’re
writing code for personal use. Having a common style makes it easier to share and
reuse code, and enables us to have a common set of idioms that we can all
understand.

• Encapsulate. Remember to make your classes self-contained. Make sure that
instances of your classes can be used on their own, and be mindful of the visibility
of your members.

• If it’s too big, split it. Sometimes your methods will get too complex and
sometimes your classes will seem too big. If this is the case, you might be putting a
lot of stuff in one place. It’s better to split these items into multiple methods or
multiple classes. Don’t be afraid to rewrite your code and divide it into smaller
logical parts.

• Reusability is important. We create classes because we want to reuse code: instead
of writing a function for each object, we create a blueprint and reuse the
properties and members of that blueprint. When you see yourself doing the same
thing over and over again, find a way to share a piece of code across all items that
use it, like a mixin or a superclass. This is often called the DRY Principle (Don’t
Repeat Yourself).

• Plan for extensibility. As your project grows, you might need to add a behavior to
your classes or modify members that already exist. Plan your classes in a way that
permits extensibility and change. This ensures that your classes are flexible
enough to handle anything new that might come up.

CHAPTER 5 ■ CLASSES: THE EXTRAS

126

• Learn how to use design patterns. A design pattern is a particular idiom that
dictates how to create common types of classes. While design patterns in general
are beyond the scope of this book, you’ll see several patterns used throughout the
framework and I’ll call your attention to them. As part of your study, read up on
the common design patterns that you can use for your programs.

But perhaps the best advice I can give is to never stop learning. Read books about object-oriented
programming and classical languages. Check out the code for the classes included in MooTools Core.
The best way to learn the MooTools class system is to experiment and observe how MooTools does
things. In fact, that’s exactly what we’ll do in the chapters ahead: we’re going to look at the internals of
core MooTools classes.

I can assure you that a lot more amazing things can be done using the features that MooTools—and
the JavaScript language itself—provides.

The Wrap-Up
In this chapter, we learned more about the MooTools class system. We found out about mutators, which
are class macros that enable us to transform the behavior and composition of our classes. We learned
about static members and how to implement them, as well as the concepts of encapsulation and
visibility and how we can use them to improve our classes.

The MooTools class system is actually part of a tandem. Its partner, called the type system, is very
similar to the class system, but its use and purpose is different. In the next chapter, we’ll learn all about
types and native augmentation and how MooTools uses the type system to improve the features that
JavaScript already provides, as well as how it adds new features of its own.

So if you’re ready, put on your favorite swimwear and let’s dive into the MooTools type system.

C H A P T E R 6

■ ■ ■

127

Types

The class system we’ve been studying is one half of a pair of systems that MooTools implements. The
other half, the MooTools type system, is very similar to the class system, but it focuses more on data as
values and the various forms that values take.

Unlike the native object implementation and classes we discussed in separate chapters, the native
JavaScript type system and the MooTools type system will both be tackled in this chapter. The two type
systems are deeply intertwined, and discussing them separately wouldn’t really aid our understanding of
their similarities and differences.

With that in mind, let’s talk about types.

Values and Type Systems
At the heart of programming is the manipulation of data. Whether we’re writing a spreadsheet program
to process numbers, a complex algorithm to animate images on a web page, or a backend system to keep
track of user information, we’re still working with data and its representations.

In our programs, we express our data in terms of values. The following, for example, are all valid
JavaScript values:

42
true
'hello'
function square(x){ return x * x; };
{name: 'mark'}

The first value is a number, the second is the boolean value true, the third, a string spelling the word
“hello”, the fourth, a function named square, and, finally, a simple object. While all of these values
represent data, they don’t represent the same kind of data. Each value can be differentiated from the
others by the kind of data it represents.

We distinguish the values in terms of their types. We can use the JavaScript typeof operator to
determine the type of a value:

console.log(typeof 42); // 'number'
console.log(typeof true); // 'boolean'
console.log(typeof 'hello'); // 'string'
console.log(typeof function(){}); // 'function'
console.log(typeof {name: 'mark'}); // 'object'

The type of a value determines not only what kind of data it represents, but also what operations
can be performed on it. Two Number values, for instance, can be added together to obtain their sum.
However, you can’t directly add a Number value to an Object value. In the same sense, you can’t invoke
a String or get the substring of a Function.

CHAPTER 6 ■ TYPES

128

■ Note We’re going to adopt the ECMAScript specification’s standard of using capitalized type names. Thus, when
you see “Object,” we are referring to the Object type, in contrast to “object,” which could mean any object. In the

same way, we have Function versus function, Number versus number, and String versus string.

The types that values can take, as well as the operations that can be performed on particular types,
are determined by the language’s type system. The type system also provides ways to determine the type
of a value and ways to convert a value from one type to another.

JavaScript uses a type-by-specification system: the type of a particular value is defined directly by
the language specification. The result of the application of the typeof operator to a value is governed by
specific rules defined by the ECMAScript specification, and the interpreter uses these rules to determine
the type of any value.

JavaScript’s type system is, unfortunately, quirky. It might appear fine from the example above, but
it’s skewed at best when used in practical situations. To illustrate, let’s use the typeof operator to
determine the types of some other values:

console.log(typeof {name: 'mark'}); // 'object'
console.log(typeof [1, 2, 3]); // 'object'
console.log(typeof new Date()); // 'object'

Here we have three values: a basic object, an array, and a date object. These three values have
different structures and uses, so we’d expect them to be different types. However, this is not the case; all
these values are considered to be of the Object type in JavaScript.

JavaScript, at its core, is an object-based language. Most values in JavaScript are objects—and even
the values that are not objects—like strings and numbers—are turned into objects when needed (more
on this later). Weirdly enough, JavaScript’s type system thinks that since all values are objects, they
should all be grouped under the same type: Object. So an array or a date object, for example, is of the
Object type in JavaScript, even if it’s a special kind of object.

This is technically “logical,” of course: since arrays and dates are objects, their type would be Object.
But while this is okay from a semantic point of view, it becomes totally useless—and, often,
counterproductive—for practical purposes. For us to be able to properly manipulate values, we need to
be able to differentiate between the values we’re working with. It’s okay to think of everything as an
object, but we also need a way to determine what kind of object it is exactly.

JavaScript’s type system doesn’t help in this area. All objects in JavaScript are of the Object type. The
only exception is functions, which JavaScript distinguishes as the Function type, but that’s just because
these objects have the unique ability to be invoked. Any other object—regardless of its structure, use, or
mode of creation—is of the Object type.

There is, however, an alternative. In the previous chapter we saw how objects are created using
classes. We learned that a class is a special language construct that serves as a blueprint for creating
objects by defining the structure of these objects in terms of properties and methods. When we
instantiate a class, we create a new object that’s structured according to the definition we put in our
class.

Classes can actually be used as an alternative type system: a type-by-class system. Classes define
the structure of objects and what operations can be done on these objects, effectively differentiating
objects in terms of structure and use. An instance of the Car class, for example, is a different kind of
object when compared to an instance of the Animal class. This is analogous to how types are determined:
a Car value (or object) is different from an Animal value and it’s their types (or classes) that determine
what kind of value they are and what operations can be performed on them.

In fact, this type-by-class system is used as the native type system in many classical languages, like
Ruby. As with JavaScript, every value in Ruby is an object instance of a class. The class and the type of an
object are therefore the same thing in Ruby, and classes themselves are treated as types.

CHAPTER 6 ■ TYPES

129

Interestingly, JavaScript also has an internal facility for a type-by-class system. Though there is no
native class construct in JavaScript, the term “class” is used internally by the language to signify the type
of an object. All JavaScript objects have an internal class property, which is a string containing the name
of the object’s type. Unfortunately, this property is only used internally by the interpreter for its type-
based operations, and is not actually used in the language-accessible type system, which makes it
unusable for our current purpose. To really implement a proper type system, we must do it ourselves by
extending the language.

An Alternative Type System
Let’s recall what we know about JavaScript objects. We know that all objects are created using a
constructor function and these inherit from the prototype properties of these constructors. Like classes,
constructor functions and their prototypes define the structure of objects through properties and
methods. Since every possible JavaScript value (with the exception of null and undefined) has its own
constructor, constructors can be used to implement a type-by-class system in JavaScript. Native
constructors like Object, Array, or Date would become “classes” in this system, and the instances of
these constructors would be typed properly according to the particular constructor.

MooTools classes seem like good candidates to use in a type-by-class system, since they’re just
abstractions on the native constructor-prototype pair. We could simply turn native constructors like
Object into classes and use the same type-by-class system implemented in languages like Ruby.
Unfortunately, this is impossible to do because of how the MooTools class system is implemented.

To illustrate, let’s say we want to create a new Animal class. To do this, we pass an object that defines
the structure of the class as an argument to the Class constructor. The Class constructor then returns a
new Animal class. This Animal class is actually an abstracted constructor function created internally and
returned by the Class constructor. It is the job of the Class constructor to create the constructor function
that will become the class object. Therefore, a particular constructor function can only be considered a
class object if it was created using Class.

The problem is that constructors like Object or Array are built-in objects; they’re implemented
directly by the JavaScript engine using another language, usually C or C++, and their implementation
details aren’t available via the JavaScript interface. Because only the Class constructor can create the
abstracted constructor function that would become our class object, we’ll have to replace the native
implementation of these built-in constructors with our own if we want to turn them into classes. In
other words, to turn built-in constructors into classes, we have to destroy them first.

Because of this limitation, MooTools doesn’t use classes to implement its type system. Instead, it
introduces a new class-like construct called a type object, which is created using the Type constructor.

Like a class, a type object is an abstracted constructor function that has additional properties and
methods that make it easier to manipulate the underlying prototype object. But unlike a class, the actual
constructor function that becomes the type object isn’t created inside the Type constructor. Rather, type
objects are simply existing constructor functions that are transformed by the Type constructor into type
objects. Any existing constructor can therefore be turned into a type object—which makes it possible to
use built-in constructors without replacing them.

The native Array constructor, for example, is turned into a type object simply by passing it to the
Type constructor. The Type constructor doesn’t create a new constructor function to replace the native
Array constructor. Instead, it turns the original Array constructor function into a type object by
augmenting it with new properties and methods. Thus, the built-in Array constructor and the MooTools
Array type object are one and the same. Nothing was replaced or destroyed. In fact, most built-in
constructor functions are turned into type objects automatically when MooTools loads.

Type objects perform two main functions. First, a type object is a representation of the actual kind
of value in terms of what makes it different from all other values. For example, the Array type object
represents all values that are ordered lists of data, while the Function type object represents all values
that are separate units of code that can be invoked.

CHAPTER 6 ■ TYPES

130

Second, a type object also functions as a “class” (in the object-oriented sense of the word) for the
particular type, which means that the structure and behavior of the values of that type are controlled by
the type object. Because the type object is a constructor function, all instances of this type inherit from
its prototype property. The type object can therefore be used to modify or augment the structure of all
values under that type.

The MooTools type system abstracts part of the native type system in the same way that the class
system abstracts the native constructor-prototype model. But unlike the class system, the MooTools
type system is meant to be a direct replacement—not just a simple alternative. The easiest way to see the
type system in action is by using the typeOf function:

console.log(typeOf(42)); // 'number'
console.log(typeOf(true)); // 'boolean'
console.log(typeOf('hello')); // 'string'
console.log(typeOf(function (){})); // 'function'
console.log(typeOf({name: 'mark'})); // 'object'
console.log(typeOf([1, 2, 3])); // 'array'
console.log(typeOf(new Date())); // 'date'
console.log(typeOf(new Class())); // 'class'

The typeOf function mimics the native typeof operator in the MooTools type system. Like its native
typeof counterpart, the typeOf function gives us the type of a value as a string. Unlike the typeof
operator, though, the typeOf function knows how to properly differentiate among objects. You’ll see that
arrays, dates, and classes don’t return 'object' as their type, but rather their types as defined by their
type objects.

■ Note typeof is a JavaScript operator, like the addition operator + or the instanceof operator, so you don’t
need parentheses when using it. The typeOf function, however, is a true function, so you have to invoke it using

the invocation operator (aka, parentheses). Also, take note of the “camelCase” name: typeOf(), not typeof().

An important point to note is that since MooTools introduces a separate construct for its type
system, classes are not used to determine the type of an object. The separation of classes and types
means that objects created using classes will have both a class and a type:

// a class
var Person = new Class();

// an instance
var mark = new Person();

console.log(mark instanceof Person); // true
console.log(typeOf(mark)); // 'object'

In this example, mark isn’t of the Person type but rather of the Object type, even if its class is Person.
In the MooTools system, objects created from MooTools classes always have Object as their type and
only objects created from the actual MooTools type constructors are given a different type.

While this is indeed a limitation, it’s not such a big problem compared to the limitations of the
native type system. Take, for instance, arrays and regular expressions: both of these are vastly different
kinds of objects, but the native type system marks both as Object types—and in the case of regular
expressions, they could even be typed as Functions in some implementations! We might not be able to

CHAPTER 6 ■ TYPES

131

distinguish among the class-defined object types with the MooTools type system, but at least we’re able
to tell whether an object is really a regular expression or a function.

Besides, the MooTools type system is able to distinguish among all native object types, which means
that the only objects that will return 'object' when passed to the typeOf function are plain objects and
objects created using classes. So it becomes much easier to guess what kind of object we’re dealing with.
Combined with our knowledge of the actual classes we use in our programs, the limitation of the class
system becomes almost nonexistent.

Native Types and Values
Before we actually discuss the internals of the MooTools type system, we need to familiarize ourselves
with the native types and the values they take. If you’re one of those people who have already
memorized the ECMAScript language specification, feel free to skip this part. But if you only know the
basics of JavaScript types, keep on reading because much of what follows discusses the internals of the
types themselves, rather than their basic use.

The ECMAScript specification defines six main types: Undefined, Null, Boolean, String, Number,
and Object. We could further classify these types into three groups:

• Existence Types are special types whose values represent the condition of not
having values. Null and Undefined are both existence types.

• Primitive Types (or “primitives” for short) represent the simplest immutable (or
unchangeable) values. Strings, numbers, and booleans are all primitives.

• Composite Types represent compound values whose structures and behavior can
be changed. All objects (including functions) are composite types in JavaScript.

All JavaScript values are typed as one of these native types, and we’ll examine these native types and
values as well as their corresponding MooTools type objects in the following sections. We’ll also learn
the value a particular type takes when it’s converted to another value through the process of type
casting.

Null and Undefined
The Null and Undefined types are the only existence types in JavaScript. These types and their values
are special because they don’t represent data, but instead stand for the absence of data.

■ Note The ECMAScript language specification categorizes the Null and Undefined types as primitive types.

However, I put them in their own group since they behave differently from other primitive values.

The Null type has only one value, which is represented by the null keyword. The null value denotes
the absence of a value: assigning null to a variable means that the variable does not have an actual value.
Thus, the Null value is like a placeholder value in cases where there’s no value to use.

Like the Null type, the Undefined type has only one value, which is represented by the undefined
variable. The undefined value is used to represent the value of any variable that has been declared but
not defined:

CHAPTER 6 ■ TYPES

132

// declare a variable
var thing;

console.log(typeof thing); // 'undefined'
console.log(thing === undefined); // true

// define the value
thing = 1;

console.log(typeof thing); // 'number'
console.log(thing === undefined); // false

Remember that in Chapter 2 we learned that variable declaration and variable definition are
executed by JavaScript as two distinct steps. When a variable is declared but not given a value, its value is
automatically set to undefined. The undefined value is also used as the value of object members that
don’t exist, as well as the value of a function’s formal parameters with no corresponding argument
passed during invocation.

One important thing to consider with the Undefined type is that its only representation—the
undefined variable—is a variable, not a keyword. This means that the actual value of the undefined
variable can be changed:

// declare a variable
var thing;

// change the value of undefined
undefined = 'nooo!';

console.log(thing === undefined); // false

The ECMAScript committee’s decision to make undefined a variable was an unfortunate choice
that’s been resolved in ECMAScript 5 by making the variable read-only. However, you should still be
careful not to change the value of the undefined variable since ECMAScript 3 is still widely used, and
doing so would create havoc in your programs.

The null and undefined values can be transformed into primitives through type casting—and we’ll
see how this is done in a later section. For now, let’s just remember that the null value is cast into the
number value 0, the string value 'null' and the boolean value false. Meanwhile, the undefined value is
cast into the number value NaN, the string value 'undefined' and the boolean value false.

Null and Undefined also have the distinction of being the only native types with no constructor
functions. Therefore, they have no corresponding MooTools type object. Any variable that has null or
undefined for its value will have no properties or methods, and trying to access a member of a null or
undefined value will result in an error.

One important thing to note here is that MooTools treats the Undefined value the same as the Null
value, which means that typeOf(undefined) will return 'null' instead of 'undefined'. This is a
simplification on the part of MooTools, since both values represent the same state of not having an
actual value. Therefore, in order to check for undefined in MooTools, you’ll have to use strict
comparison, such as value === undefined.

Primitive Types
The three primitive types—Number, String, and Boolean—represent the simplest of all possible values
in JavaScript. They’re the most basic types of data in terms of structure, containing only actual values
without any properties or methods.

CHAPTER 6 ■ TYPES

133

■ Note That last statement might be a bit surprising. In JavaScript, only objects have properties and methods,
while primitives like strings and numbers don’t—although they sometimes appear as if they do. We’ll get around

to that in a bit.

Primitive values are immutable, which means that they can’t be modified. When a primitive value is
stored in a variable or passed as an argument to a function, a new copy of the value is created—giving
them their other name, value types.

Booleans
The simplest primitive type is the Boolean type, which has only two possible values: true and false; these
are represented in code by the true and false literals. Booleans represent the truth value of an
expression. For instance, 4 == 4 yields true because the number 4 is indeed equal to itself, while (2 + 2)
== 5 yields false since the correct answer should be 4. When cast to number values, true and false yield
1 and 0, respectively, and when cast to strings, they become 'true' and 'false'.

Numbers
The Number type, on the other hand, represents numeric values. A number value is represented in code
using number literals, which are simply numeric characters written directly in the JavaScript program.
Also within the Number type are two special values represented by the variables Infinity and NaN.

The Infinity variable represents the value of numeric infinity—in other words, a really, really large
number (mindblowing, in fact). The NaN, meanwhile, represents the special not-a-number value, which
is the result of an impossible mathematical operation—like squaring a negative number. NaN also
represents any non-numeric value cast into the Number type. You can check whether a number value is
NaN using the built-in isNaN function, and whether a value is not Infinity using the isFinite function.

■ Note Like undefined, Infinity and NaN are variables, so you’ll also have to be careful not to overwrite their

default values. These variables have also been declared as read-only in ECMAScript 5.

All number values are cast to the boolean true except for 0 and NaN, which are cast to the boolean
false. When cast to strings, number literals are simply turned into their string literal representation—
like 42 to '42'—while NaN and Infinity are cast to 'NaN' and 'Infinity'.

String
Finally, the String type represents values that are sequences of characters—or, to put it simply, string
values are representations of textual data. Strings are created using string literals, which are pairs of
single or double quotes (i.e., ‘‘ or ““) surrounding one or more characters. Each character in a string is
given a numeric index that starts with 0, and strings with no characters are called empty strings.

CHAPTER 6 ■ TYPES

134

Empty strings are cast to the boolean value false, non-empty strings to true. Casting strings to
number values is a little more complex. An empty string is always cast to the number value 0, while non-
empty strings are checked first before being cast. If the characters in the string represent a valid number
value, then the string is cast to the actual number value of the characters, otherwise the string is cast to
the number value NaN. So the string '24.50' is cast to the number value 24.50, but the string 'hello' will
be cast to NaN.

Primitives as Objects
A unique thing about JavaScript’s primitive types is that they can behave like objects. To give you an
example, let’s take a look at how the substring of a string value can be retrieved:

console.log('Hello World!'.substring(0, 4)); // 'Hello'

Here, we have a string value "Hello World!" created through a literal. We then invoked the
substring method, which takes two arguments—from and to—that represent the numeric indices for the
beginning and the end of the substring. We passed 0 and 4, telling the substring method to take the first
up to the fifth character in the string and return it. The result is a new string, 'Hello'.

Remember the object method called hasOwnProperty? We said that all objects inherit a
hasOwnProperty method from Object.prototype, and strangely enough, even primitives have them:

console.log(typeOf('M!'.hasOwnProperty)); // 'function'
console.log(typeOf((42).hasOwnProperty)); // 'function'
console.log(typeOf(true.hasOwnProperty)); // 'function'

So strings, numbers, and booleans all inherit the hasOwnProperty method. But inheriting properties
and method from Object.prototype is a characteristic of objects, not primitives. Does this mean that
strings, numbers, and booleans aren’t really primitive values but are objects?

That’s not the case, of course. Earlier in the chapter, we saw that the typeof operator returns the
proper types for primitive values. If these values were objects, typeof would have returned 'object' and
not 'string', 'number', and 'boolean'. This was clearly not the case.

But if they’re truly primitive values, why do they behave like objects? The answer lies in JavaScript’s
use of wrapper objects. For each primitive type, JavaScript has a corresponding “object version” of that
type, which is simply an object representation of a primitive value. Thus, we have three constructors that
represent primitive types: String, Number, and Boolean.

The instances of these three constructors are objects, not primitive values, and we can confirm this
using the native typeof operator:

console.log(typeof 'hello'); // 'string'
console.log(typeof new String('hello')); // 'object'

console.log(typeof 42); // 'number'
console.log(typeof new Number(42)); // 'object'

console.log(typeof false); // 'boolean'
console.log(typeof new Boolean(false)); // 'object'

The name “wrapper object” comes from the use of these constructors. When the JavaScript
interpreter sees a primitive value in an expression that requires an object, it creates a wrapper object
that is used as an object representation of the primitive value. The following is what actually happens to
the string example above:

console.log(new String('Hello World').substring(0, 4)); // 'Hello'

CHAPTER 6 ■ TYPES

135

The string literal "Hello World" is first turned into a string object by passing the original value to the
String constructor. The substring method of String.prototype is then invoked, and a new string
primitive is returned as a result of the method call.

The process of turning primitives into objects is done automatically by the JavaScript interpreter,
and the process is repeated for every operation. When the operation is done, the wrapper object is
discarded and the original primitive value is restored. Since the wrapper object is created and destroyed
for each property access operation, any property added to the wrapper object isn’t persisted, and this
preserves the immutability of the primitive value:

var str = 'Hello World';
str.type = 'greeting';

console.log(str.type); // undefined

Here we stored the string value "Hello World" to our variable str. When the second line is executed,
a new string object wrapper is created to wrap the value of str, before adding a new property called type
to the object. Because this wrapper object is destroyed right after the operation, accessing str.type on
the last line produces undefined. Thus, the original string value remains unchanged.

You can, however, persist changes by explicitly converting a primitive into an object:

var str = new String('Hello World');
str.type = 'greeting';

console.log(str.type); // 'greeting'

■ Note You don’t have to worry about the performance implications of this wrapping process. Even if wrapper
objects are created and destroyed for each property access, all modern JavaScript implementations handle the

process efficiently.

Because of this automated wrapping process, primitive types can be used just like normal objects.
The existence of constructor functions for primitive types also makes it possible to add new properties
and methods that will be “inherited” by primitive values. Primitive types are represented in the
MooTools type system by the type objects Boolean, Number, and String.

As a final note before we move on, be reminded that numeric literals need to be enclosed in a pair of
parentheses when they are used in property-access operations, like (42).hasOwnProperty(). Forgetting
to do so—like 42.hasOwnProperty()—results in a syntax error because the parser will think you’re
declaring a floating point literal.

Composite Types
JavaScript has only one composite type: the Object type. However, it can be divided into subtypes that
define the special kinds of objects, such as arrays or dates. Unlike the native type system, the MooTools
type system differentiates between objects according to these subtypes.

We already talked about objects in detail before, so we won’t go into the internals of JavaScript’s
object implementation here. We know that objects are aggregate values composed of an unordered
collection of key-value pairs. We also know that all objects are associated with a constructor function
and they inherit from the prototype property of their respective constructor.

CHAPTER 6 ■ TYPES

136

Unlike primitives, objects are mutable: their structure and their behavior can be changed. When
stored in variables or passed as arguments, new copies of the object aren’t created. Instead, a reference
to the original object is passed, effectively “sharing” the same object in all operations. Because of this
behavior, objects are also called reference types.

The ECMAScript specification divides objects into two kinds:

• Native objects (also called built-in objects) are objects provided by the language
and defined directly by the ECMAScript specification. All complying ECMAScript
implementations provide the same set of native objects. Built-in constructor
functions and their prototypes, the Math object, and native functions like eval are
all examples of native objects.

• Host objects are objects provided by the host environment (i.e., the interpreter)
for the purpose of correctly executing an ECMAScript program. They are
independently defined by a particular JavaScript implementation and are
therefore “non-standard” when viewed against the ECMAScript specification. The
DOM objects of a browser, the Module functions of a CommonJS engine, and the
additional objects created by a JavaScript implementation are examples of host
objects. By virtue of their being a language extension rather than a simple
framework or library, we’ll consider the objects provided by MooTools as host
objects.

■ Note As an aside, the language we know as “JavaScript” is technically the ECMAScript language plus a
standard set of browser-specific host objects. Thus, all JavaScript implementations are ECMAScript

implementations—but not all ECMAScript implementations are JavaScript implementations.

We have already seen some of these native and host objects, like functions, objects, and classes, in
the previous chapters. We’ll discuss most of the browser-specific host objects in the second part of this
book, and the CommonJS host objects in part three.

Object-to-Primitive Casting
Casting objects to primitive types follows different rules depending on the kind of object being
converted.

The easiest rule is object-to-boolean value casting: all objects are cast to the boolean value true. You
should take note of this since even a boolean object created using new Boolean(false) is cast to true. Its
internal value might be false, but it’s still cast to true since all objects are truthy.

When casting objects to strings, the toString method of the object is called. All objects inherit a
basic toString method from Object.prototype, which returns a string in the form'[object <Class>]'.
<Class> in this form refers to the internal class property of the object, so a basic object will return
'[object Object]' while an array will return '[object Array]'.

However, most native objects override the toString method with their own implementation that
usually returns a more appropriate string value. The primitive wrapper objects, for instance, have
toString methods that return the string representations of their primitive values as described above.

To cast objects to numbers, JavaScript uses another object method called valueOf. If the return
value of this method is a number, or if it can be cast into any number that is not NaN, then this value is
used as the numeric value of the object. Otherwise, the toString method of the object is called and the

CHAPTER 6 ■ TYPES

137

return value of that method is again cast into a number. If the return value of toString is still not a
number value, the object is cast to NaN.

The default valueOf method inherited from Object.prototype returns the object itself, which means
that all objects are cast to NaN by default. Primitive wrapper objects, however, return their primitive
values with the valueOf method, and return their string-cast values for toString. The primitive values
inside object wrappers are then cast according to the rules we saw in the previous section.

Not all built-in objects provide their own valueOf method, so it’s safe to assume that most objects
will be cast to NaN. We’ll take note of how a particular native object type implements the valueOf and the
toString methods as we discuss them.

The Base Object
At the top of the object hierarchy is the basic object, created using an object literal or via the Object
constructor. The Object constructor represents the base object, and all objects inherit from
Object.prototype.

The Object constructor, unlike other built-in constructors, is not turned into a type object by
MooTools in order to prevent extension of its prototype. This is because Object.prototype is considered
off-limits: no new properties or methods should be added to it. To understand why, let’s examine a basic
JavaScript program:

// a basic object
var obj = new Object();

console.log(typeOf(obj.constructor)); // 'function'
console.log(typeOf(obj.hasOwnProperty)); // 'function'

for (var key in obj) console.log(key);

Using the typeOf function, we confirm that a base object inherits properties and methods like
constructor and hasOwnProperty from Object.prototype. We then use the for-in statement, which loops
through all the members of an object, to print out the names of our objects members. If we execute this
program using a JavaScript interpreter, though, the console.log(key) in the for-in statement will never
be executed—and it will appear as though our object has no members.

The reason for this behavior is that JavaScript differentiates between enumerable and non-
enumerable properties. An enumerable property is any property that will be listed by a for-in loop, while
a non-enumerable property is the opposite. All non-enumerable properties are thus considered to be
“invisible” in a for-in loop.

All default properties and methods of Object.prototype are non-enumerable to ensure that new
objects appear “blank.” This is a way to avoid confusion among new developers: unless you know the
internals of the prototypal system, you might be surprised to see new objects already having properties
and methods. Therefore, the properties and methods that are defined by the language itself are marked
as non-enumerable by default to prevent novices from thinking that these methods were added directly
to the object.

On the other hand, all properties and method that we define in code are enumerable by default. If
we augment a native object or replace its existing member with our own value, the new value we add will
appear in for-in statements. In the case of Object.prototype, this makes things go awry because all
objects inherit from this prototype. New objects no longer appear “blank” and you no longer have a way
of knowing whether a member was implemented natively or if it was added directly to the object without
having to call the hasOwnProperty method.

Because it is currently impossible to implement non-enumerable properties in most JavaScript
interpreters, the JavaScript community has decided that Object.prototype should never be augmented.
As one JavaScript saying goes: “Object.prototype is verboten.” The MooTools developers agree with this

CHAPTER 6 ■ TYPES

138

statement, and it was decided that the Object constructor itself should not be turned into a type object
to prevent misuse.

■ Note I stated that it’s currently impossible to implement non-enumerable properties in most interpreters

because, at the time of writing, most of these implementations still adhere to ECMAScript 3. ECMAScript 5, on the

other hand, allows setting properties that are non-enumerables through descriptors.

Functions
Functions represent distinct, standalone chunks of executable code. They are the only native object type
that has the distinction of being given a different “type” by the typeof operator. This is because
functions are the only objects that have associated executable code that is run when the function is
invoked.

A function object’s executable code is stored in a special internal property called call (not to be
confused with the call method). When either the invocation operator, (), or the apply and call methods
of a function object are invoked, the executable code of the internal call property is executed by the
interpreter. This internal call property is also the distinguishing property by which the typeof operator
differentiates a function from any other object: the ECMAScript specification explicitly defines that only
functions have this internal call property.

We’ve already discussed the internal details of functions in Chapter 2, so we won’t go too deep here.
The Function constructor, which can be used to create function objects, is the main constructor for
functions, and all functions inherit from Function.prototype. The MooTools type system automatically
turns Function into a type object.

Function.prototype doesn’t implement its own valueOf method, which means calling fn.valueOf()
will return the function itself. The default toString method, on the other hand, is overridden, and it
returns the source code of the function. Take note, however, that the output of the toString method is
implementation-dependent: not all JavaScript engines will output the same string source.

One other distinctive feature of functions is that they are the only other object type—along with
regular expressions—that can’t be implemented using a basic object. You can implement a JavaScript
version of any other native object type using a basic object literal, but you can’t make a function by
simply using an object literal. Because of this, functions can’t be subclassed using normal inheritance
patterns, and this presents a very unique problem for both classes and type objects that we’ll see later
on.

Arrays
An array is an object representing an arbitrary-length, ordered collection of values. JavaScript arrays can
store any valid value, including objects, functions, and other arrays. And unlike its counterparts in some
programming languages, a JavaScript array doesn’t expect all values to be of the same type, which means
you can store values with different types in one array. All arrays inherit from the prototype property of
the Array constructor.

Each value in an array is called a member and each member is associated with a numeric index that
signifies its position in the collection. Arrays have a special dynamic property called length, which
represents the number of members in an array. Arrays are usually created using the array literal, which
is a pair of square brackets enclosing a set of values separated by commas, like [1, 2, 3].

Arrays inherit the default valueOf method from Object.prototype, and calling this method simply
returns the array itself. Meanwhile, the toString method is overridden in Array.prototype: it returns the

CHAPTER 6 ■ TYPES

139

string representation of each member of the array separated by a comma, like '1,2,3'. Notably, this
string value is the same as the result of calling the join method of arrays:

[1, 2, 3].join(','); // '1,2,3'

JavaScript arrays are implemented differently from the “real” arrays of other programming
languages. A JavaScript array is nothing more than an object with numeric indices as keys and with a
dynamic property length—plus additional methods inherited from Array.prototype. In fact, the array
above could have very well been written as:

{
 '0': 1,
 '1': 2,
 '2': 3,
 length: 3
}

This is the basic structure of a JavaScript array. The numeric indices for this example—as well as for
regular array—are strings, not numbers, since object keys need to be valid JavaScript identifiers. When
numeric values are used to access the members of an array or an object using the bracket notation like in
our example, the interpreter automatically converts these numbers to strings—something we can verify
by using our two examples in a similar way:

// real array
var arr = [1, 2, 3];

for (var i = 0, l = arr.length; i < l; i++){
 console.log(arr[i]);
}

/* output:
 1
 2
 3
*/

// "object" array
var objArr = {
 '0': 1,
 '1': 2,
 '2': 3,
 length: 3
};

for (var i = 0, l = objArr.length; i < l; i++){
 console.log(objArr[i]);
}

/* output:
 1
 2
 3
*/

Both the real array and the dummy array created using a basic object behaved the same in this
snippet because the implementation of JavaScript arrays is based on regular objects with a few minor

CHAPTER 6 ■ TYPES

140

differences. First, real arrays inherit from Array.prototype, which enables us to use nice array methods
like forEach, and second, the length properties of real arrays are dynamically updated. The length
property also behaves differently from other properties because changing its value by assignment
actually changes the number of members in an array.

Our dummy array actually represents another set of objects in JavaScript called array-like objects.
As its name implies, an array-like object is an object that looks similar to an array: it has numeric indices
for keys and it has a length property that reflects the number of members it contains. The arguments
object of functions, DOM collections, and nodelists are examples of array-like objects.

Because these objects aren’t true arrays, they don’t inherit from Array.prototype and you can’t call
array methods through them. However, you can invoke the methods of Array.prototype and bind the
this keyword to these array-like objects to perform array operations using them. For example, we could
turn our dummy array-like object into a true array using the Array.prototype.slice technique we used
in the chapter on functions:

var objArr = {
 '0': 1,
 '1': 2,
 '2': 3,
 length: 3
};

console.log(typeOf(objArr)); // 'object'

// turn it into a true array
objArr = Array.prototype.slice.call(objArr);

console.log(typeOf(objArr)); // 'array'

All array methods can be used for array-like objects with this technique, not just slice. This is
possible because the methods of Array.prototype are implemented as generics, which means they can be
used on any object.

Arrays, for example, have the methods unshift and push, which add members to the beginning and
the end of the array, respectively. We can use these two methods to augment our array-like object using
the same approach as with slice:

var objArr = {
 '0': 1,
 '1': 2,
 '2': 3,
 length: 3
};

console.log(objArr.length); // 3

// the first member of the array
console.log(objArr[0]); // 1

// add a member to the front
Array.prototype.unshift.call(objArr, 0);

console.log(objArr[0]); // 0
console.log(objArr.length); // 4

// add a member to the back

CHAPTER 6 ■ TYPES

141

Array.prototype.push.call(objArr, 4);

console.log(objArr[4]); // 4
console.log(objArr.length); // 5

// check that it's still an object
console.log(typeOf(objArr)); // 'object'

The array methods not only modified our object as if it were a real array, they also automatically
adjusted the length property of the object. This proves that JavaScript arrays are truly implemented
using simple objects, and it also gives us a very useful technique we can use for building our own array-
like objects.

Regular Expressions
Regular expression objects or regexps are used for the string pattern-matching feature of JavaScript.
Regular expressions are created using the RegExp constructor or using a regular expression literal, and
they inherit from RegExp.prototype. Like arrays, JavaScript doesn’t consider regexp objects as separate
object types, but rather as special versions of the basic object type.

The toString method of RegExp.prototype will return the string version of a regular expression
literal. This string representation is implementation-specific, and is sometimes parsable by the RegExp
constructor. Meanwhile, the valueOf method of regexps is inherited from Object.prototype, so it returns
the object itself.

■ Note In ECMAScript 5, the toString() method of a regexp object is required to return a string that’s parsable

by the RegExp constructor.

Curiously, some JavaScript implementations will output 'function' when the typeof operator is
applied to a regexp object. While it is true that both functions and regular expressions share the same
trait of not being implementable using a basic object, this behavior is actually a byproduct of a buggy
feature addition that was wrongly copied by other implementations.

Mozilla implemented a special feature for its SpiderMonkey JavaScript engine that allowed direct
calls to regexp objects as though they were functions. For example, this feature allowed the expression
/string/.exec('string') to be shortened to /string/('string'). Mozilla added the ability to use the
invocation operator on regular expressions—just like functions—and doing so would automatically call
the exec method of the regexp object.

To implement this feature, Mozilla added an internal call property to the regexp object—a property
that should be available only to functions, according to ECMAScript standards. This internal call
property of the regexp object exploits the same technique of binding executable code to an object as in
the case of functions, but here the executable code is actually the regexp’s exec method. And this is
where everything went haywire.

The typeof operator only checks a single property to determine whether an object is a function: the
internal call property. However, because of this new feature added by Mozilla, the typeof operator gets
tricked when it encounters regular expression objects, and it mistakenly outputs 'function' rather than
'object'.

This might not have been such a big deal if not for the fact that this feature—along with its bug—was
copied by other implementations. JavaScriptCore, the JavaScript engine of the Webkit project and the
Safari browser, implemented this same feature. Google, in developing its Chrome browser, also used

CHAPTER 6 ■ TYPES

142

Webkit, but replaced JavaScriptCore with its own JavaScript implementation called v8. Unfortunately,
this new engine was implemented to remain compatible with the JavaScriptCore engine it replaced, so
the same feature and the same bug persisted.

Because of this bug, it’s impossible to actually differentiate between real functions and regexp
objects through the typeof operator alone in some browsers. Mozilla has fixed this bug in the version of
SpiderMonkey that shipped with Firefox 3, but it still persists in the current versions (at the time of
writing) of Chrome and Safari. Fortunately for us, the MooTools typeOf function is immune from this
bug.

Regexps are a powerful feature of any programming languages, and they allow us to retrieve parts of
a string using patterns. We won’t be discussing them in detail in this book, but we’ll see much of their
use in the chapters that follow.

Dates
Date objects represent calendrical values. They are created using the Date constructor and they inherit
from Date.prototype. Unlike other built-in types, dates don’t have a corresponding literal form: all date
objects need to be created using the Date constructor function.

Essentially, a date object is a collection of numeric values that represent a specific date value. Stored
inside a date object are values for the year, month, day, hour, minute, second, and millisecond that
represent a specific calendrical value. However, date objects are fully encapsulated: these values are
accessible only through getter and setter methods defined by Date.prototype.

The toString method of a date object returns a string representation of the date value in the form
<weekday> <month> <day> <year> <hours>:<minutes>:<seconds> <timezone>, like 'Wed Jun 03 1987
19:30:00 GMT+0800 (PHT)'. This string representation is parsable by the Date constructor, so you can use
it to build a similar date object.

■ Note As with the regexp object, the return value of the date toString method is implementation-specific.

However, all major JavaScript engines follow the format presented above.

Similarly, the valueOf method from Date.prototype also returns the value of the date object, but as a
numeric timestamp. This timestamp is a representation of the number of milliseconds since January 1,
1970 00:00:00 GMT (often called the Epoch). Calling the valueOf method for the date object above
therefore yields 549718200000. This numeric value is also the same value returned by the getTime date
method.

■ Note The epoch timestamp in most programming languages is a 10-digit number, plus additional decimal

places to denote offsets. JavaScript, in contrast, uses a 12-digit timestamp.

Date objects are the only native objects that can be cast to their proper strings and number values.

CHAPTER 6 ■ TYPES

143

Error Objects
ECMAScript designates a group of objects called error objects that are used for error-handling
operations. When the JavaScript interpreter encounters problematic code, it “throws” an error object
that can then be handled by the program through the try-catch statement.

The main error constructor, Error, represents the most basic type of error object. It has a name
property, the default value of which is "Error", and a message property, which contains the specific
human-readable error message. Some JavaScript implementations also add other non-standard
properties, like the line number of the error or the stack trace for the execution context where the error
occurred.

JavaScript itself doesn’t use the base Error constructor, though. Instead, it uses special error
subclasses:

• EvalError—for errors involving the eval function.

• RangeError—for errors when numeric values exceed the defined bounds of
possible numeric values.

• ReferenceError—for errors that happen when performing operations on invalid
references, such as accessing the properties of an undefined variable.

• SyntaxError—for errors that arise from being unable to parse improperly written
code.

• TypeError—for errors involving passing incorrect value types to operations.

• URIError—for errors involving the URI encoding and decoding functions.

The name properties of these error subclasses are the same as the identifiers of their constructor
functions.

The valueOf method of error objects is inherited from Object.prototype. Thus, they return the
objects themselves. Meanwhile, the toString method of error objects is implementation-specific, and
weirdly enough, the return value of this method isn’t required by the specification to be the actual error
message—which means that implementations can simply output anything they want. Thankfully, most
JavaScript implementations do return the value of the message property of the error object when the
toString method is invoked.

■ Note In ECMAScript 5, the toString method of error objects is required to return strings in the form

'<ErrorType>: <message>'.

The MooTools framework has a unique policy of handling errors gracefully and silently, so errors are
rarely used. Thus, Error and the other built-in error subtypes are not turned into type objects.

Type Casting
We’ve seen the rules on how values are cast from one type to the other, but we didn’t actually find out
how to convert objects from one type to another. Type casting can be tricky in some cases, so we need to
discuss how values of one type can actually be converted to another type.

CHAPTER 6 ■ TYPES

144

Like other dynamic languages, JavaScript actually performs automatic, or implicit, type casting.
Implicit type casting is when values are cast from one type to another by the interpreter in order to
properly execute an operation. These transformations are usually silent and aren’t noticeable unless
they’re carefully observed.

The best example of implicit type casting is the automatic wrapping of primitives with object
wrappers when the primitive values are used in operations that require objects. The interpreter silently
wraps the primitive value with an object wrapper, and we don’t really need to do anything to make this
happen.

Similarly, the values null and undefined, as well as all object values, are turned into primitives when
they are used in operations that require primitives. For instance, using an object in a division or
multiplication operation automatically casts the object into a number value. Similarly, statements that
require boolean values, like the if statement, as well as the property access operator [], also do implicit
boolean and string casting. And wrapper objects for primitives are automatically cast to their primitive
values if needed.

■ Note JavaScript has numerous implicit casting rules, and we can’t cover all of them in this section. Instead, I advise

you to read one of the recommended books on JavaScript noted in the Resources section at the end of this book.

In contrast to implicit casting, explicit type casting is the process of directly transforming one value
into another using special operations. There are several ways to explicitly cast a value from one type to
another, and we’ll explore each one in turn.

Casting Using Constructors
The first and easiest way to explicitly cast a value to another type is to use the built-in constructors. Most
native JavaScript constructors can actually be invoked as regular functions, and they perform type
conversions when used this way.

The constructor objects for primitive wrappers, for instance, can be used to convert values to
primitive types:

// boolean
console.log(Boolean(0)); // false
console.log(Boolean('')); // false
console.log(Boolean('24')); // true
console.log(Boolean({})); // true

// number
console.log(Number(false)); // 0
console.log(Number('')); // 0
console.log(Number('24')); // 24
console.log(Number({})); // NaN

// string
console.log(String(false)); // 'false'
console.log(String(24)); // '24'
console.log(String({})); // '[object Object]'
console.log(String([1, 2, 3])); // '1,2,3'

CHAPTER 6 ■ TYPES

145

The casting operations here follow the same rules we described earlier: primitives are converted
using the rules for converting one primitive type to another, while objects are converted using their
valueOf and toString methods.

An important thing to remember is that the return values of these primitive conversions are actual
primitive values and not objects—only when used in conjunction with the new operator do they return
objects. Thus, String(1) will return the primitive string value '1', while new String(1) will return a new
string object.

Native object constructors, on the other hand, behave differently when used as regular functions. The
Function, Array, RegExp, and Error constructors, when invoked as regular functions, operate the same as if
they were used with the new keyword. Thus, they don’t actually perform type casting, but rather, they
perform object instantiation. It is therefore advisable not to invoke them as regular functions.

The Date constructor’s behavior, in contrast, is unique when it’s invoked as a function: it doesn’t
perform type casting nor does it create a new date object. Instead, it returns the current date as a string.

Finally, the Object constructor performs type casting according to the actual type of value passed. If
you pass in a primitive value, it will return a wrapped object version of that value—so you’ll receive
either an instance of String, Number, or Boolean. But if you pass in an object value, the constructor will
simply return the same object, with no modification. And if you pass in null or undefined, it will return a
new plain object—just like doing new Object().

Casting Using Native Functions and Idioms
There are two special functions defined in JavaScript that handle string-to-number conversions:
parseFloat and parseInt. Unlike the Number constructor, these functions are more lenient when used for
parsing strings, as they allow non-numeric trailing characters in the strings.

The parseFloat function converts both integer and floating point numbers, while parseInt can only
convert to integers:

console.log(Number('42 is the answer.')); // NaN
console.log(parseInt('42 is the answer.')); // 42
console.log(parseFloat('42 is the answer.')); // 42

console.log(parseInt('3.14')); // 3
console.log(parseFloat('3.14')); // 3.14

console.log(parseInt('024')); // 20
console.log(parseInt('024', 10)); // 24

The last two lines feature a quirk with the parseInt implementation. The parseInt function has a
special “feature” that treats strings that begin with 0 as octal values. Thus, parseInt('024') returns the
value 20 instead of 24. This creates a problem when parsing non-octal strings that start with 0, although
you can solve it by passing a second argument, radix, which tells the function what base to use for the
conversion. This “feature” has been removed in ECMAScript 5.

One idiom that’s used to convert any value to a number is JavaScript’s implicit type conversion for
mathematical operations. By using numeric identity operations (such as subtracting 0 from a value or
dividing or multiplying a value by 1), you can convert a value to a number:

console.log('42' / 1); // 42
console.log('42' - 0); // 42
console.log('42' * 1); // 42

console.log(true - 0); // 1
console.log(false * 1); // 0

console.log({} - 0); // NaN

CHAPTER 6 ■ TYPES

146

But don’t use the addition identity operation (x + 0) because the + operator is both the addition
and concatenation operator in JavaScript. You can, however, use + as a unary operator for the purpose of
numeric casting:

console.log(+'42'); // 42
console.log(+true); // 1
console.log(+{}); // NaN

To convert any value (except for null and undefined) to a string, we can simply use the toString
method. This works with primitives as well because of the automatic object wrapping mechanisms:

console.log(true.toString()); // 'true'
console.log((42).toString()); // '42'
console.log([1,2,3].toString()); // '1,2,3'

■ Note Number.prototype.toString() is a special case, because it allows you to specify an argument, radix,

that will be used as the base for conversion. By default, the radix value is 10.

Another way to convert values to strings is to exploit the concatenation operator, +. This operator is
used for both addition of numbers and concatenation of strings, but it gives special priority to string
values: if one of the operands in the expression is a string, it also casts the other value into a string. We
can therefore turn any value into a string by concatenating it with an empty string:

console.log(true + ''); // 'true'
console.log(42 + ''); // '42'
console.log([1,2,3] + ''); // '1,2,3'

Finally, casting values to booleans is rarely done since JavaScript allows any value to be used in
place of an actual boolean value when needed. If you do want to convert a particular value into its
boolean representation quickly, though, you can use the double-negation trick:

console.log(!!''); // false
console.log(!!'M'); // true

console.log(!!0); // false
console.log(!!42); // true

console.log(!!{}); // true
console.log(!![]); // true

The negation operator, !, automatically casts a value into a boolean and it reverses a boolean true
value to false and vice versa. Using the negation operator twice yields the same boolean value that was
negated at the start of the expression. For example, the number value 0 is cast to the boolean value
false. When negating this value, we get !false == true. The true value is then negated again, and the
final value goes back to false. Thus, we get a proper conversion from 0 to false.

CHAPTER 6 ■ TYPES

147

The MooTools Type System
Now that we’ve familiarized ourselves with the native type system and its components, let’s turn our
attention to its MooTools counterpart. The most important component of the MooTools type system is
the Type constructor, and it is this simple constructor function that enables us to streamline the process
of working with native types.

The Type Constructor and Function Subclassing
The Type constructor accepts two arguments: a required name argument, which should be a string
representation of the capitalized type name, and an optional object argument, which is the constructor
function to be transformed. If an object argument is passed, the Type constructor returns the same
object after it adds additional properties and methods to it. Otherwise, it returns null.

As I mentioned earlier, the Type constructor doesn’t create new constructor functions but rather
transforms already existing constructors into type objects by augmenting new properties and methods
to it. To illustrate, here’s how the native Array constructor is turned into a type object:

new Type('Array', Array);

And that’s all it takes to turn a native constructor into a type object. We simply instantiated a Type
object using the new keyword and passed the name of the type, 'Array', and the native Array constructor
function. You’ll notice that we didn’t even need to store the results in a variable. Because the Array
constructor is transformed directly, there was no need to store the result of the expression in a new
identifier. The process is both simple and elegant—and certainly says a lot about the MooTools type
system implementation

One question that continually pops up when developers see that example is whether the new
keyword is actually needed. If we’re not really creating a new object but simply transforming an existing
constructor function into a type object, why not just make Type a simple function? Does it really have to
be a constructor?

The question is even more valid once you consider the fact that instances of Type are not really
“instances” of Type:

new Type('Array', Array);

// make sure that Array is a type object
console.log(typeOf(Array)); // 'type'

// is Array an instance of Type?
console.log(Array instanceof Type); // false

We do know that Type transforms the constructor directly, so it really doesn’t create a new object.
The type object returned by the Type constructor isn’t really an instance of Type since it’s a function that
already existed before we passed it to the constructor. So does this mean we could really do away with
using new?

To answer this question, we must first examine the same question but with regard to classes, which
are similar to type objects. Unlike the Type constructor, the Class constructor actually creates a new
constructor function for the class, so using the new operator with Class seems like a logical thing to do.
What’s surprising is that the same behavior can be observed in classes as well:

var Person = new Class();

// make sure that Person is a class

CHAPTER 6 ■ TYPES

148

console.log(typeOf(Person)); // 'class'

// is Person an instance of Class?
console.log(Person instanceof Class); // false

This seems a little counter-intuitive: the Class constructor creates the new constructor for the class,
so we’d expect that the result of instantiating the Class constructor would be a class instance. But when
the instanceof operator is used to check, classes exhibit the same behavior of not being instances of the
Class constructor—just like type objects with Type.

Recall something I mentioned earlier in this chapter about functions: they are one of the two types
of objects in JavaScript that can’t be created using a basic object (the other being regular expressions)—
which means they can’t be subclassed. The reason for this is simple: functions depend on an internal
call property that references the executable code that’s called when the function is used in conjunction
with the invocation operator. Since we have no way of setting this internal property in regular objects,
we can’t create subclasses of the Function type because we’ll end up referencing the same executable
code.

The Type and Class constructors both deal with constructor-prototype pairs, with emphasis on
constructors. In essence, type objects and classes are “subclassed” functions: they’re constructor
functions that have special properties and methods. But because JavaScript places no distinction
between regular functions and constructors (except for their behavior when used with new), both Type
and Class need to circumvent the limitation of function subclassing using direct augmentation of
functions, rather than simple prototypal inheritance.

Here’s how it works. For the type definition new Type('Array', Array), a new object inheriting from
Type.prototype is created by the new operator and then used as the this value inside the Type
constructor. Type then takes all the properties and methods of this new instance and adds them to the
Array constructor function, thereby making sure that the resulting Array type object will “inherit” the
members in Type.prototype. The operation involves direct augmentation of members to the type object,
and not inheritance via the prototype chain. The new keyword is essential because it creates the template
object that will be used for augmentation. The same thing is applicable to the Class constructor, with the
minor difference of the resulting class object being created inside the Class constructor itself.

Of course, direct augmentation has its limitations, which we already saw in the Chapter 3. The main
issue would be dynamic modification: since type objects and classes are augmented directly, any
changes to Type.prototype and Class.prototype aren’t propagated to existing type objects and classes.
This isn’t a big issue in practice, though, since the number of type objects and predefined classes in the
MooTools-Core library are small enough to modify directly.

The snippets above don’t just show why we need something like the new operator when we’re
creating new type objects, they also shows us some limitations encountered when trying to implement a
new type system on top of the existing one. In order for the replacement MooTools type system to be
fully usable, it needs to cover not only the creation and management of types but also things like
instance checking and type detection.

Interestingly, the core mechanisms for adding these two features to the MooTools type system are
implemented by the Type constructor itself, as we’ll see in the next two sections.

Instance Checking
Native JavaScript instance checking is done using the instanceof operator. We’ve already seen it in
action several times in this and earlier chapters, so it hardly needs any introduction.

The instanceof operator works by comparing the constructor of the object on the left-hand side of
the expression to the constructor function on the right-hand side. In the expression myCar instanceof
Car, for example, the constructor function that created the myCar object is compared to the Car
constructor to see if they’re the same function. If they are, the expression evaluates to true.

CHAPTER 6 ■ TYPES

149

However, if the constructor function for the myCar object and the Car constructor aren’t the same,
the expression doesn’t immediately evaluate to false. Instead, the prototype chain of the myCar object is
traversed, and the constructor function of each object in the prototype chain is compared with the Car
constructor. Only when the last constructor function has failed comparison will the expression evaluate
to false.

This “deep” comparison is why the instanceof operator evaluates to true not only for the immediate
constructor of the object, but also the ancestral constructors of the object. All objects are therefore seen
as instances of the Object constructor, since all objects inherit from Object at one point in their
prototype chain.

As you’ve probably guessed by now, the constructor property of objects plays a central part in
native instance checking. All objects are linked to their corresponding constructor functions via their
constructor property, and it’s the value of this property that gets compared to the constructor function
on the right-hand side of the expression.

In our examples in the previous section, both type objects and classes fail the instanceof test
because they don’t have links to the Type and Class constructors directly. Both type objects and classes
are abstracted constructor functions, so their prototype chain consists only of instances of Object and
Function. Because the Type and Class constructors augment these constructor functions directly rather
than through prototypal inheritance, their constructor functions never get “linked” to the object. Thus,
type objects and classes are not seen as true instances of their respective constructors by the instanceof
operator.

To circumvent this limitation, a link has to be made by the MooTools type system between these
objects and their constructors. This is done by adding a new property to these objects called
$constructor. Like its native constructor counterpart, the $constructor property is a reference to the
object’s original constructor function. Type objects therefore have their $constructor properties
pointing to Type, while classes have theirs pointing to Class.

Of course, just because MooTools added a new property that resembles the native constructor
property doesn’t mean that instanceof will respect it. The MooTools type system works on a separate
level from the native one, so we can’t expect a simple solution like that to take care of the issue
altogether. Instead, MooTools adds the second part of the equation by creating a new function to replace
the instanceof operator: the instanceOf function.

The instanceOf function takes in two arguments: item, which is the object being checked, and
object, which should be a constructor function to check against. Unlike the instanceof operator it
replaces, though, the instanceOf function properly handles cases like type objects and classes:

// Type Object
new Type('Array', Array);

// make sure that Array is a type object
console.log(typeOf(Array)); // 'type'

// is Array a native instance of Type?
console.log(Array instanceof Type); // false

// is Array an instance of Type in MooTools?
console.log(instanceOf(Array, Type)); // true

// Class
var Personn = new Class();

// make sure that Person is a class
console.log(typeOf(Person)); // 'class'

// is Person a native instance of Class?

CHAPTER 6 ■ TYPES

150

console.log(Person instanceof Class); // false

// is Person an instance of Class in MooTools?
console.log(instanceOf(Person, Class)); // true

Revamping our examples from the previous section, you’ll notice that instanceOf(Array, Type) and
instanceOf(Person, Class) now both return true. This tells us that Array and Person are instances of
Type and Class respectively—which is exactly what we would want to know.

■ Note Like typeOf, the instanceOf function isn’t an operator like its native instanceof counterpart but a real
function. Therefore, the use of the invocation operator is essential, as well as proper casing (it’s instanceOf(),

not instanceof()).

Like its native counterpart, the instanceOf function works by comparing the constructor of the item
argument with the constructor function that’s the value of the object argument. Unlike the native
instanceof operator, though, instanceOf is aware of the $constructor property and uses this property
instead of the regular constructor property as much as possible. The comparison process involves a
direct equality test, which means that instanceOf(Array, Type) is somewhat equivalent to
Array.$constructor == Type.

I said “somewhat equivalent” because the comparison isn’t a one-off process. Like the native
instanceof operator, the instanceOf function also does “deep” comparison, so checking whether an
object is an instance of some ancestral constructor also works:

new Type('Array', Array);

console.log(instanceOf(Array, Type)); // true
console.log(instanceOf(Array, Function)); // true
console.log(instanceOf(Array, Object)); // true

The creation of the $constructor property is done by the Type constructor (and by the Class
constructor for classes). When the constructor function argument is processed by Type, it adds a
$constructor property to the constructor function that’s used for the instanceOf function. The
$constructor property of the constructor function passed to Type is always set to the Type function itself,
so that instanceOf will be able to determine that the type object is an instance of the Type constructor.

However, the Type constructor doesn’t just add a $constructor property to the constructor
argument, but also to the prototype of the constructor argument. In the snippet above, for instance, Type
doesn’t just set Array.$constructor to Type, but also adds the property Array.prototype.$constructor.
The $constructor property of the prototype is then set to the constructor itself, so in our example,
Array.prototype.$constructor == Array. This additional prototype property creates one big difference
between the instanceof operator and the instanceOf function: the ability to check primitive values.

The instanceof operator, by design, only works if the left-hand side of the expression is an object,
not a primitive. If you use a primitive as the value of the left-hand side, it won’t work: 'hello'
instanceof String evaluates to false. The instanceof operator does not perform type-casting, so
primitive values are treated as true primitives and not objects.

However, the instanceOf function doesn’t have the same limitation. Because it depends on the
$constructor property rather than the true native type of the value, the instanceOf function is able to
determine types even for primitive values. In the process of accessing the $constructor property of the
value passed, primitives are automatically turned into objects within the instanceOf function, and

CHAPTER 6 ■ TYPES

151

therefore inherit the $constructor property from their respective type objects. Thus,
instanceOf('hello', String) evaluates to true.

Before we move on, though, it’s important to note that the instanceOf function also uses instanceof
internally as a fallback mechanism in case regular $constructor checking doesn’t work. This is an
important thing to remember because of a special group of types that don’t have type objects, which
we’ll encounter in a bit.

Type Detection
JavaScript gives us the typeof operator for detecting the types of our values. But as we saw earlier in this
chapter, the native typeof operator leaves a lot to be desired. Its replacement from the MooTools type
system, the typeOf function, does a better job at detecting the types of values as well as differentiating
among the actual types of objects.

Unlike the instanceOf function, though, which only depends on the constructor and $constructor
properties of the value passed, the typeOf operator uses a couple of different ways to properly detect the
type of a value. At the top of the list is the use of type objects to pass special functions to their instances,
which are called family methods.

A family method is a special private method that’s added by the Type constructor to the prototype of
the type object that’s used to return the type of the object. It is a very simple function that simply returns
the lowercase name of the type as a string. When creating new Type('Array', Array), for example, the
Type constructor adds a new method called $family to Array.prototype, and this new method simply
returns the lowercase equivalent of the name passed to the Type constructor. Thus,
Array.prototype.$family returns ‘array’ when invoked.

This family method is then invoked by the typeOf function to return the type of the value. Because
the family method is added to the prototype of the type object directly, all instances of the type will
therefore inherit the same family method. So detecting the type of an object is as simple as calling its
$family method. In the case of arrays, for instance, doing [].$family() or typeOf([]) returns ‘array’ for
both cases—which is the actual type of the object. The typeOf operator simplifies this process of calling
the $family function of the object by doing it automatically.

You might be asking then, “What’s the use of calling typeOf then, when I could just invoke the
$family method directly?” Well, the first answer is because typeOf is part of the private API—and like
many things in the private MooTools API, it’s bound to change eventually. Making direct calls to this
method makes your code prone to breakage when new versions of the library come out—especially ones
that change the internal API dramatically (and it happens!).

But even if we’re absolutely sure that it will never break—and that’s highly unlikely—there’s an even
bigger reason why you should not call the $family method directly:

// regular object
var obj = {};

// typeOf
console.log(typeOf(obj)); // 'object'

// obj.$family
console.log(obj.$family()); // this will throw an error

In this snippet, passing the obj variable to typeOf works as expected, and we get the proper type—
’object’—as the return value. However, if we try to do obj.$family(), we’ll get an error—because obj has
no method named $family.

Remember that the $family method is inherited by objects from their type objects, and it is added
directly to the prototype of the type object via the Type constructor. However, some objects don’t have a
$family method because they don’t inherit the method from their type objects. In fact, it’s just not the
case of not inheriting the method; it’s a case of not having actual type objects in the first place!

3

CHAPTER 6 ■ TYPES

152

Some native constructors, Object being the most notable, are not turned into type objects by the
MooTools type system. A few of them aren’t turned into type objects because they’re not used in
common programming tasks, while some aren’t converted to impose restrictions. The Object
constructor is the chief example of that second reason: it isn’t turned into a type object to prevent
extension of Object.prototype.

One other important set of types are those with no real constructors. For instance, argument
objects, which are created for use inside functions, don’t have a corresponding constructor—there’s no
Argument constructor in JavaScript. Other notable examples are DOM objects like textnodes and
whitespaces, which also don’t have constructor functions.

The MooTools type system recognizes these types even though they don’t have corresponding type
objects. However, it presents a little challenge to using $family directly. Because not all values inherit a
$family method, we can’t depend on this function alone to detect the type of a value. So, as in the case of
our example above, we can’t call the $family method directly because there’s a risk that the object might
not have the method to begin with.

This is the prime reason why the $family method should not be used as a replacement for typeOf.
The typeOf function is smart enough to know whether the value in question has a $family method that
can be called and does so if that’s the case. If there’s no $family method present, though, it uses another
technique to detect the type.

So what’s this other technique? It’s called duck typing, and its name comes from the common
saying: “If it walks like a duck and talks like a duck, then it must be a duck.”

Duck typing bases its assumption of an object’s type according to the structure of the object. As long
as the object’s properties and methods match the declared properties and methods for a type (walks like
a duck and talks like a duck), it’s considered to be of that type (it must be a duck). Duck typing is
commonly used in dynamically typed languages to support substitutability. Because of the loose
requirements of duck typing, you can design your code in such a way that it accepts objects of any type
as long as they have a particular method or property.

However, very loose duck typing can’t be applied to a type system directly, since we’d risk having
false positives. For example, you can check for the existence of a length property to find out whether an
object is an array, and it’ll work for the most part, but it’ll also think that string objects, argument
objects, and element collections are arrays, since all of those appear to be array-like.

For duck typing to be really useful, the criteria for considering an object to be a type need to be very
strict. The typeOf function uses several strict criteria to determine the type for values that have no type
objects. Argument objects, for example, are tested not only for the presence of the length property, but
for the existence of a callee property as well.

This, of course, isn’t perfect and is easily bypassed by cunning manipulation of code. The code
typeOf({length: 1, callee: 1}), for example, will return “arguments” even if what you have is not really
an argument object. Unfortunately, there’s nothing we can do about this, since duck typing is the only
other solution we can use for values with no corresponding type objects. Thankfully, though, we can use
the idea of duck typing to craft code that doesn’t rely entirely on the specificity of type to do its job.

Take note that family methods take precedence in the typing process for typeOf. Duck typing is a
fallback technique used only for objects with no corresponding type objects. And if these two techniques
don’t work, the typeof operator is used by the typeOf function as a last resort.

Working with Type Objects
Up to this point we’ve been talking about type objects in the context of type detection. But as I said
earlier in this chapter, a type object also acts as the representative for its instances. Like classes, type
objects are abstracted constructor-prototype pairs that can be used to change the structure and
behavior of the items of that type. In fact, both classes and type object share very similar methods to
accomplish this, as we’ll see later on. And just like classes, type objects also have a special set of methods
available only to them that can be used to streamline the process of working with types.

CHAPTER 6 ■ TYPES

153

Implementing New Members
When working with native JavaScript, adding new properties or methods to existing types is done by
augmenting the prototype object of their respective constructor. If we want to add a new repeat method
for strings, for instance, we have to do something like this:

var str = 'hello';

console.log(typeOf(str.repeat)); // 'null'

String.prototype.repeat = function(times){
 var arr = [];
 while (times--) arr.push(this);
 return arr.join('');
};

console.log(typeOf(str.repeat)); // 'function'
console.log(str.repeat(3)); // 'hellohellohello'

At the start of the code, the repeat method doesn’t exist yet, so str.repeat is typed as 'null'. We
then declare this new method by assigning a function to String.prototype.repeat. Afterwards, we check
whether the repeat method is now available for strings, and we use it to repeat the string ‘hello’ three
times.

We looked at this technique of augmenting the prototype property of a class in a previous chapter,
and we saw how it’s not the best way to add new members to a class. Adding new members directly to
the prototype limits the additional features MooTools can offer, and the verbosity of the code could
mean having to manage really complex declarations in the future. Instead of doing it that way, we
learned that it’s better to use the implement class method, which replaces the need for direct
augmentation and streamlines the process of implementing new members.

Like classes, type objects also have an implement method, and we can use this method to rewrite the
previous snippet:

var str = 'hello';

console.log(typeOf(str.repeat)); // 'null'

String.implement({

 repeat: function(times){
 var arr = [];
 while (times--) arr.push(this);
 return arr.join('');
 }

});

console.log(typeOf(str.repeat)); // 'function'
console.log(str.repeat(3)); // 'hellohellohello'

The implement methods of classes and type objects are used similarly: implement accepts as an
argument an object literal that describes the properties and methods you want to add and it loops
through each of these members and adds them to the prototype.

While they appear to be the same function from the outside, the implement method of objects is not
the exact same method as the one for classes. In the chapter on classes, we discovered the various
internal features of the class implement method, including dereferencing, code wrapping, and mutator

CHAPTER 6 ■ TYPES

154

management. The type implement method also has some powerful internal features, although overall, it
is much simpler than its class counterpart.

One of the more noticeable differences is that the type implement method does not do wrapping:

var myFn = function(){
 console.log('fn');
};

// class
var Person = new Class();

Person.implement({
 method: myFn
});

var shiela = new Person();

console.log(shiela.method == myFn); // false

// type
String.implement({
 method: myFn
});

var str = 'hello world';

console.log(str.method == myFn); // true

In the first part of this snippet, we compare the method method of the Person class with the original
myFn function using the line shiela.method == myFn. The result is false, which is expected because the
implement method of classes wraps the original function in order to add additional class features. In the
case of types, however, the methods added through implement are not wrapped but are added directly to
the type’s prototype object. Thus, when we do str.method == myFn, we get true—and this tells us that the
methods are indeed the same function.

Newly added methods are not wrapped by the type implement method because the wrapper is no
longer needed. Classes need method wrappers in order to implement protected methods and
this.parent, but type objects don’t support (or need) either of these features. Moreover, type objects are
created using existing constructors that often already have existing members in their prototypes, and
wrapping these existing methods might break them.

In the previous chapter, we learned about the protect method, which is used to implement
protected methods in classes. The protect method has another use, in fact, and that is to protect a native
method from being overridden. Consider the following example:

// original method
String.implement('method', function(){
 console.log('Original');
}.protect());

'hello'.method(); // 'Original'

// override original
String.implement('method', function(){
 console.log('Override');
});

CHAPTER 6 ■ TYPES

155

'hello'.method(); // 'Original'

Here we first implemented a new String method called method which simply logs 'Original' in our
console. However, we also called the protect method of the function value we’re passing to implement,
making our new method protected. When we tried to override this original method by calling implement
again with a new method definition, our original function wasn’t overridden, which is why we still get
the same string in our logs.

The protect method is therefore very handy for making sure that native methods that browsers
already implement aren’t overridden by the user. By default, all the native methods for native objects
defined by the ECMAScript specification are protected by MooTools, and therefore cannot be
overridden by the user.

Aliases and Mirroring
Type objects support a special feature called aliasing, which is simply reimplementing an existing
method using another name. It is done using the alias method, which takes two string arguments: the
name for the new method and the name of the old method to be aliased.

var str = 'howdy';

// implement the original
String.implement({

 repeat: function(times){
 var arr = [];
 while (times--) arr.push(this);
 return arr.join('');
 }

});

console.log(str.repeat(2)); // 'howdyhowdy'

// alias repeat
String.alias('again', 'repeat');
console.log(str.again == str.repeat); // true

console.log(str.again(2)); // 'howdyhowdy'

In this example, we aliased the original repeat method of the String type simply by calling
String.alias('again', 'repeat'). The alias method then takes the original function value of
String.prototype.repeat and copies it to String.prototype.again. The result is that the two methods
now point to the same function, making it possible to substitute calls to one for the other.

Aliasing is a very useful feature for creating shortcuts for commonly used methods with very long
names. The Array method forEach, for example, is automatically aliased by MooTools into the each
method, which is shorter and easier to type. You can do the same for other methods in any type objects
to shorten your code and make it cleaner.

An important thing to note, though, is that aliasing uses implement internally, and all aliases
methods are true references. Therefore, if you override the original method, your alias will not be
updated:

CHAPTER 6 ■ TYPES

156

var str = 'hi';

// implement original
String.implement({

 original: function(){
 console.log('hello');
 }

});

String.alias('copy', 'original');
console.log(str.copy == str.original); // true

str.original(); // 'hello'
str.copy(); // 'hello'

// override original
String.implement({

 original: function(){
 console.log('woot!');
 }

});

console.log(str.copy == str.original); // false

str.original(); // 'woot!'
str.copy(); // 'hello'

In the first part of the snippet, both the original method and its aliased copy method point to the
same function, and therefore act as the same method. However, when we reimplement the original
method, the aliased copy method doesn’t get updated.

Another useful feature that’s related to aliasing is called mirroring. While aliasing allows you to
reimplement a method on a type, mirroring allows you to copy any implemented method from one type
to another. To perform mirroring, we use the mirror method of a type, which accepts a single argument
that is a type object. Take a look at the following snippet:

var arr = [], str = 'hello';

console.log(arr.log); // undefined
console.log(str.log); // undefined

// make String "mirror" Array
Array.mirror(String);

// implement log on array
Array.implement({

 log: function(){
 console.log('log called.');
 }

CHAPTER 6 ■ TYPES

157

});

console.log(arr.log == str.log); // true

arr.log(); // method called.
str.log(); // method called.

The important line in this snippet is Array.mirror(String). This tells the type system that String is a
“mirror” of Array, and any methods implemented on Array from then on should also be implemented on
String. Because of this mirroring, the log method we implemented on the Array type is also
implemented on String.

Mirroring makes it possible to automatically implement methods across multiple types. A single
type can have multiple mirrors, which makes implementing the same method among many types easier
and cleaner. The Array type, for instance, could have mirrors for other array-like objects, so that any
method that’s implemented for arrays would also be available to these objects.

It’s the job of the implement method to manage mirrors. When the implement method of a type is
called, it not only adds the properties and methods to the type object’s prototype, but also checks
whether the type has mirrors. The implement method then adds the properties and methods to these
mirrors, making sure that the members are available to these types as well.

Because mirroring is managed by implement, only those members that are added after the mirror
was declared would be automatically added. Existing properties and methods aren’t copied, so we have
to do that manually if we want to copy them. For instance, even though String was added as a mirror of
Array, only the methods that were added via implement after the declaration would be copied—like the
log method. Existing array methods, like splice or push, aren’t copied automatically.

Another thing to consider is that mirrors aren’t reciprocal: implemented methods on a type will be
implemented on all its mirrors, but implemented methods for the mirrors aren’t added for the type. In
the example above, any method implemented on Array after the mirror declaration would be copied to
String, but any method implemented on String won’t be copied to Array. If you want reciprocal
mirrors, you’ll have to declare mirrors for both types.

The mirror method of type objects isn’t actually limited just to type object arguments. We can also
pass a callback function that will be invoked for every item that’s implemented:

var callback = function(name, method){
 console.log(name);
};

Array.mirror(callback);

Array.implement({

 logA: function(){},

 logB: function(){}

});

In this example, we declared the callback function to be a mirror for Array. For every item
processed by implement, the callback function will be invoked and passed two arguments. The first
argument, name, is the key of the item being implemented and the second argument, method, is the actual
function. For this code, the callback function will be invoked first with the arguments ‘logA’ and a
function, and then with ‘logB’ and another function.

Function mirrors are especially useful in cases when you want to process the method first before
implementing it on another type. For example, the MooTools Elements type uses a function mirror to

CHAPTER 6 ■ TYPES

158

transform methods from Element into methods that work on an array-like object. We’ll learn more about
this particular trick in Chapter 8 on the Element type.

The extend Method and Generics
We first saw the use of the extend method in the chapter on class extras. This method is inherited from
Function.prototype, and allows us to augment function objects directly:

var fn = function(){};

console.log(fn.prop); // undefined
console.log(fn.item); // undefined

fn.extend({

 prop: 'property',

 item: 'item'

});

console.log(fn.prop); // 'property'
console.log(fn.item); // 'item'

Instead of declaring the properties prop and item directly using an assignment statement, we passed
an object to the extend method of fn containing these new properties. The result of using extend is the
same as a normal assignment, but it’s cleaner and more organized.

Classes, being abstracted constructor functions, also inherit the extend method from
Function.prototype. Type objects, on the other hand, also have an extend method, but it’s an overriding
method that’s inherited from Type.prototype. The original extend method from Function.prototype and
the one from Type.prototype have the same external API—they both accept an object argument and they
both perform the same extension operation using direct augmentation. Type.prototype.extend has an
additional feature that’s not present in its Function.prototype counterpart—but we’ll talk about this in
the next section.

One important use of the extend method that we saw before was to add static methods to classes.
We can also do this with type objects:

Array.extend({

 identity: function(){
 console.log(this === Array);
 },

 log: function(){
 console.log('Hello');
 }

});

Array.identity(); // true
Array.log(); // 'Hello'

Here we added two static methods to Array, identity, and log. The identity method is used to
show that the this keyword in the static method is bound to the type object, while the log method is a

CHAPTER 6 ■ TYPES

159

simple method that logs the string ‘Hello’. Though these two are very trivial examples, they tell us that
static methods work the same for type objects as they do for classes: they’re actually methods of the type
object itself rather than its instances.

There’s a special group of static methods, though, that are particularly important in MooTools and
they’re called generics. A generic is a static version of an instance method that can be applied to any
object. Generics are handy for using methods from one type on another type without having to directly
call the method from the prototype.

The best way to explain generics is with an example. In the section on array objects in this chapter, I
mentioned that array methods are intentionally generic in the sense that they can be used on any object.
For example, we can use the push method of arrays to add a new item to an array-like object:

var obj = {0: 'pizza', length: 1};

console.log(obj.length); // 1

// invoke the push method of arrays
Array.prototype.push.call(obj, 'soda');

console.log(obj.length); // 2

In order to access the push method, we had to access the method via Array.prototype. We then used
the function method call, passing in the arguments obj and 'soda'. The first argument becomes the
value of the this keyword inside the push method, while the second is the actual item that will be pushed
into the object. The result is that the string 'soda' is pushed into our array-like object, and its length
property is automatically incremented.

Now imagine that you need to use the push method on that particular object several times through
your code. Accessing it via Array.prototype is unnecessarily verbose, and doing it multiple times leads to
unnecessary repetition—not to mention having to use the call method, too. To really make these
methods useful, we need an easier way to access them.

This is where generic methods come in. Take a look at this version of the previous example:

var obj = {0: 'pizza', length: 1};

console.log(obj.length); // 1

// invoke the push method of arrays
Array.push(obj, 'soda');

console.log(obj.length); // 2

We replaced the original call to Array.prototype.push.call(obj, 'soda') to Array.push(obj,
'soda'). Array.push is a generic method. Using this method is the same as calling
Array.prototype.push.call, and it expects the same arguments. The first argument is always the this
keyword value for the method, and the arguments after that are the actual arguments for the method.
The result is the same, but the actual invocation pattern is shorter than our original example.

MooTools automatically creates the generic versions of the methods of all native types. The string
instance method split, for example, is available via the String.split generic, while the regexp method
test is accessible via RegExp.test. All generic methods have the same invocation signature: the first
argument is always the this keyword value, and the arguments after that will be the actual arguments
passed to the method.

The implement method also creates generic methods automatically. Any method you add using the
implement method would have a corresponding generic method:

console.log(typeOf(Array.log)); // 'null'

CHAPTER 6 ■ TYPES

160

Array.implement({

 log: function(){
 console.log('Hello');
 }

});

console.log(typeOf(Array.log)); // 'function'

Array.log(); // 'Hello'

Generic methods are used heavily in the MooTools framework. In fact, MooTools forgoes extending
Object.prototype by implementing all additional Object methods as generics. We’ve already
encountered some generics used inside MooTools in the previous chapters, like Array.slice and
Object.merge, and we’ll encounter more of them as we go along.

Another set of important static methods are the from methods, and there are four of them:
String.from takes any argument and returns the string value of the argument. The call

String.from([1, 2, 3]), for example, returns ‘1,2,3’.
Number.from takes any argument and uses parseFloat to change the argument to a number value. It

then returns that value as a number, or null if it can’t be turned into a proper number.
Array.from takes any argument and returns an array. If the argument passed is already an array, it

returns the argument without modification. If the argument passed is an array-like object, array.from
turns it into a true array before returning it. If the argument is neither an array nor an array-like object, it
returns a new array containing the argument. For example, Array.from('hello') will return [‘hello’].

Function.from takes any argument and returns a function. If the argument passed is already a
function, function.from returns it without modification. Otherwise, it returns a new function that
returns the passed argument: Function.from('hello') will return function(){ return 'hello' }.

We already saw Array.from in Chapter 5, and we’ll see it—and the other from methods—again
throughout this book.

Creating New Types
One of the best things about the MooTools type system is its extensibility and openness. Not only are
developers allowed to use the type system to implement new methods for native types, but we’re also
encouraged to make use of the publicly available Type constructor to implement our own set of custom
types.

This was not always the case, of course. Prior to version 1.3 of MooTools, the inner workings of the
MooTools type system were considered off-limits to developers. In older versions of the framework, the
type system was implemented through the private Native constructor, which was a more complex
forerunner of the Type constructor. It was one of those APIs that the experts knew about and used, but
was not discussed in the documentation nor divulged to regular developers because of its private status.

However, times have changed and the Native constructor has been replaced with the simpler Type
API—which is considered part of the public API. It’s great that we can take full advantage of the type
system now, and we’ll do just that by implementing our own custom type.

A Table Type
As an example, we’ll create a new type called a table. A table is a wrapper for the basic JavaScript object
that supports getters and setters, as well as other utility methods. Before we actually implement it, let’s
see an example of its usage:

CHAPTER 6 ■ TYPES

161

var table = new Table();

// setting values
table.set('item', 'pencil');
table.set({'fruit': 'banana', 'person': 'shiela'});

// accessing objects
table.get('item'); // returns 'pencil'
table.get('item', 'fruit'); // returns {item: 'pencil', fruit: 'banana'}
table.get('event'); // returns undefined

// removal
table.set('event', 'birthday');
table.get('event'); // returns 'birthday'

table.remove('event');
table.get('event'); // returns undefined

// membership
table.hasKey('item'); // returns true
table.hasValue('banana'); // returns true
table.keyOf('pencil'); // returns 'item'

// keys and values
table.keys(); // returns ['item', 'fruit', 'person']
table.values(); // returns ['pencil', 'banana', 'shiela']
table.length(); // returns 3

// traversal
table.each(function(item, key){
 console.log(key + ': ' + item);
});

/*
 item: pencil
 fruit: banana
 person: shiela
*/

Unlike a basic object, the items in a table aren’t accessible from the table object directly via dot
notation, but are accessible only using the get and set methods. We’ll also have a remove method for
removing items from the table, and three membership methods, hasKey, hasValue, and keyOf, to check
whether specific keys or values are present in the table. Finally, we have the utility methods keys, values,
and length to give us more information regarding the table itself, and an each method for table traversal.

This sounds like a very complex type, but it’s actually pretty simple to implement as we’ll see
through this section. All the utility functions we need to implement this are already available through
native JavaScript functions and MooTools language additions, and creating this new type will be quite
easy.

CHAPTER 6 ■ TYPES

162

The Table Constructor
The first thing we need to consider, though, is the constructor. Unlike classes, type objects make no
distinction between constructors and initializers. In fact, there are no initializers for type objects: the
constructor function acts both as object constructor and initializer.

There are two main reasons why this design was implemented for the type system. First is that
native type constructors don’t separate constructors and initializers, so it was deemed necessary to
follow this standard in the MooTools type system. The second reason is more important: it is because
type constructors were created for the purpose of initializing basic data types, which should be much
simpler and more lightweight than classes. If you want a full-featured object system, use a class;
otherwise, use a type. (We’ll talk more about these distinctions in the last part of this section).

Since the special constructor features like automatic dereferencing available to classes aren’t
implemented for type objects, we need to make sure we’re mindful of these issues. Dereferencing is the
biggest of these issues, and we have to make sure that we create any object-based property inside the
constructor itself, rather than declare them in our prototype.

In our table type, we’ll need one of these object properties called $storage. Since it’s an object
property, we need to set it inside our Table constructor:

function Table(){
 this.$storage = {};
};

This is the foundation of our table type: the Table constructor. We used a function definition rather
than a declaration since we want our constructor to have a proper name property—and also since this is
recommended MooTools style. Inside the constructor, we have a line that creates a $storage property
for the instance, which will then be used to store the items for our table. Because $storage is an object,
we set it inside the constructor rather than in Table.prototype so that each table instance will have a
unique storage object.

In order to make our Table constructor similar to native types, we need to give it the ability to be
called as a regular function. If you recall from earlier in this chapter, we found out that native
constructors could be called as regular functions, and they either perform type casting or create new
instances. We’ll follow the latter: if our Table constructor is called in conjunction with the new keyword,
it’ll act as a regular object constructor; otherwise, it’ll return a new Table instance.

function Table(){
 if (instanceOf(this, Table)){
 this.$storage = {};
 } else {
 return new Table();
 }
};

We modified our constructor by adding an instanceOf check to see if the new keyword was used. If
our Table constructor was called with the new keyword, the value of this inside the function will be an
instance of the Table type. On the other hand, calling Table as a regular function sets the this keyword
differently, so we’ll need to instantiate and return a true instance of the Table type.

Now that the constructor is ready, all we need to do is turn it into a type object, and that’s as simple
as passing it to the Type constructor:

function Table(){
 if (instanceOf(this, Table)){
 this.$storage = {};
 } else {
 return new Table();
 }

CHAPTER 6 ■ TYPES

163

};

new Type('Table', Table);

var table = new Table();

console.log(typeOf(table)); // 'table'

Setter, Getter, and Removal
With the constructor done, it’s now time to implement our getter and setter methods. Instead of adding
these methods directly to Table.prototype, we’ll use the implement method so that our code is more
organized.

The methods themselves are very simple:

Table.implement({

 set: function(key, value){
 this.$storage[key] = value;
 return this;
 },

 get: function(key){
 return this.$storage[key];
 }

});

The first method is set, and it takes two arguments: a string key, which is the identifier for the item,
and value, which can be any value associated with the key. Storing the value in the $storage itself is as
simple as assigning the particular key to the value. The get method, on the other hand, requires only one
argument, key, which is the key of the item being accessed, and returning the value from the storage is
also done using the simple access expression.

However, if you look back at the example use, you’ll notice that the set and get methods have two
forms. In the first form, they’re used like the simple declaration above: set requires two arguments,
while get requires a single one. In the second form, they’re used to perform multiple operations. The set
method in this form requires only one argument, an object literal, and it adds all the items from this
object to the storage. Meanwhile, the get method in the second form accepts multiple key arguments,
and returns an object containing the results.

To implement these new forms, we can modify our methods so they’ll accept different argument
types. The set method would have to be modified to check the first argument: if the argument is a string,
it’s used as a key and the second argument is used as the value, and if it’s an object, the method should
loop through the object and add each item to the internal storage. The get method, on the other hand,
will have to check for the number of arguments and return either a single value or an object containing
multiple key-value pairs depending on the number of key arguments passed.

It sounds like a very complicated task to add these additional features. Fortunately, MooTools
already has it covered with two function decorators we can use to transform our set and get methods.
The first is the overloadSetter decorator, which takes a function with the signature fn(key, value) and
gives it the ability to accept object literal arguments, such as fn({key: value}). The second decorator,
overloadGetter, takes a function with the signature fn(key) -> value, and turns it into a function that
can accept the signature fn(key1, key2, ...) -> {key1: value1, key2: value2, ...}.

These two decorators are implemented as function methods, and using them for our functions is as
simple as invoking them in our declaration:

CHAPTER 6 ■ TYPES

164

Table.implement({

 set: function(key, value){
 this.$storage[key] = value;
 return this;
 }.overloadSetter(),

 get: function(key){
 return this.$storage[key];
 }.overloadGetter()

});

Just by adding these invocations, we’ve transformed our set and get methods into methods that
take different argument types. With this declaration, our methods are now usable in the two forms we
saw in the initial example.

Finally, we add the remove method, which deletes items from the storage:

Table.implement({

 remove: function(){
 var storage = this.$storage;
 Array.from(arguments).each(function(key){
 delete storage[key];
 });
 }

});

Like our decorated get method, the remove method can take multiple key arguments. Unlike get,
though, we didn’t decorate remove but instead used very simple code to implement the method. First, we
created a local variable storage so we could access the internal storage object from inside our callback
function. We then used the Array.from generic to transform the arguments object into a true array, and
finally we looped through each of the arguments using the each method and deleted them from the
storage. The result is a cleanly implemented remove method that accepts multiple arguments.

Membership Methods
Next on our list of methods are the three membership methods: keyOf, hasValue, and hasKey. The keyOf
method takes a single argument, value, and returns the key associated with that particular value, while
the hasValue and hasKey methods check whether a particular value or key exists in the table.

Let’s implement the easiest one first: hasKey. If you recall our discussion on objects, we learned that
if we try to access a nonexistent property of an object, we’ll get the undefined value. We can therefore
implement hasKey simply by checking whether a particular key in our storage object is equal to the
undefined value:

Table.implement({

 hasKey: function(key){
 return this.$storage[key] !== undefined;
 }

});

CHAPTER 6 ■ TYPES

165

The next two methods, keyOf and hasValue, are trickier. Since they operate on values rather than
keys, we have no way to directly access them through our storage object. What we need to do is to use a
traversal loop to go through each of the items in our storage and compare their value with the argument.

The hasValue method is easier to implement, since we’ll simply have to check if the particular value
exists in our storage object, regardless of which key is associated with it:

Table.implement({

 hasValue: function(value){
 var storage = this.$storage;
 for (var key in storage){
 if (storage[key] === value) return true;
 }
 return false;
 }

});

Inside our hasValue method, we loop through each item in the storage object using a for-in loop.
For every item we go through, we compare the value of the item with the value argument passed to our
method. If we get a match, we immediately halt execution of the function by returning true. If the loop
finishes without finding any matches, we fall back to a return value of false.

The keyOf method is similar to the hasValue method, but instead of returning a boolean, we return
the actual key associated with the object, or null if there’s no such key:

Table.implement({

 keyOf: function(value){
 var storage = this.$storage;
 for (var key in storage){
 if (storage[key] === value) return key;
 }
 return null;
 }

});

Keys, Values and Traversals
We’re almost done with our Table type, but we need to implement a couple more methods. Thankfully,
they’re all similar to our previous item-traversing functions, so it will be very easy to implement them.

Two of the methods we still need to implement are keys and values, which deal with the keys and
the values as groups. The keys method returns all the keys of the items in a table, while the values
method returns the values of these items:

Table.implement({

 keys: function(){
 var storage = this.$storage;
 var results = [];
 for (var key in storage) results.push(key);
 return results;
 },

CHAPTER 6 ■ TYPES

166

 values: function(){
 var storage = this.$storage;
 var results = [];
 for (var key in storage) results.push(storage[key]);
 return results;
 }

});

We introduce a new variable in these methods called results, which is an array the keys and values
are pushed into. Like hasValue or keyOf, both methods require a traversal loop to iterate through the
items in the storage object. For each pass of the traversal loop, the methods push the current key or
value into the results array. At the end of the methods, we return the results array, which then contains
the needed values.

For the length method, we need to create a method that returns the number of items in the table.
One way to do this is through another traversal loop, with an accumulator variable that is incremented
with each pass through the loop. But a much simpler way is to reuse the keys (or values) method:

Table.implement({

 length: function(){
 return this.keys().length;
 }

});

Instead of writing another traversal loop for length, we simply invoked the keys method to retrieve
an array of keys and then return the length of the array. This shortcut is possible since the number of
keys in the internal storage would be equal to the number of items it contains.

Finally, we need to implement the last method: each. Like the array method of the same name, the
each method of our Table type accepts a callback function that will be invoked for every item in the table
as well as an optional bind argument that will be the this keyword value for the callback function. The
callback function will receive three arguments when invoked: the current value, the current key, and the
table itself.

Table.implement({

 each: function(fn, bind){
 var storage = this.$storage;
 for (var key in storage) fn.call(bind, storage[key], key, this);
 return this;
 }

});

Table.alias('forEach', 'each');

As with our previous methods, we use a for-in loop to traverse our storage object. For each item in
our storage, we invoke the callback function fn using the call method, binding the object value of our
bind argument and passing in the current value, the current key, and the table itself. Since we don’t need
to return any special value for this method, we simply return the table itself at the end of the function.
We also add an alias, for the each method called forEach in order to conform to the native name of the
method.

CHAPTER 6 ■ TYPES

167

Our Final Type
Now that we’ve implemented all the necessary methods for our Table type, let’s combine all our snippets
into our final code:

function Table(){
 if (instanceOf(this, Table)){
 this.$storage = {};
 } else {
 return new Table();
 }
};

new Type('Table', Table);

Table.implement({

 set: function(key, value){
 this.$storage[key] = value;
 return this;
 }.overloadSetter(),

 get: function(key){
 return this.$storage[key];
 }.overloadGetter(),

 remove: function(){
 var storage = this.$storage;
 Array.from(arguments).each(function(key){
 delete storage[key];
 });
 },

 hasKey: function(key){
 return this.$storage[key] !== undefined;
 },

 hasValue: function(value){
 var storage = this.$storage;
 for (var key in storage){
 if (storage[key] === value) return true;
 }
 return false;
 },

 keyOf: function(value){
 var storage = this.$storage;
 for (var key in storage){
 if (storage[key] === value) return key;
 }
 return null;
 },

 keys: function(){

CHAPTER 6 ■ TYPES

168

 var storage = this.$storage;
 var results = [];
 for (var key in storage) results.push(key);
 return results;
 },

 values: function(){
 var storage = this.$storage;
 var results = [];
 for (var key in storage) results.push(storage[key]);
 return results;
 },

 length: function(){
 return this.keys().length;
 },

 each: function(fn, bind){
 var storage = this.$storage;
 for (var key in storage) fn.call(bind, storage[key], key, this);
 return this;
 }

});

Table.alias('forEach', 'each');

It looks good, right? Using what we’ve learned about the Type constructor and type objects, we were
able to implement a totally new object type. The simplicity of the MooTools type system is apparent in
this sample code: our code is clean and organized, the API itself is easy to follow and understand, and
the results are awesome enough to warrant real-life usage.

There is, of course, room for improvement. Our Table type is fine as it is, but still has some issues
that need fixing. A particular improvement that I want you to figure out is how to limit items to only
those that are directly defined through set. For example, calling table.get('constructor') will always
return a value, even if we never set a ‘constructor’ item. This is because our internal storage object
inherits several properties and methods from Object.prototype, and these members are also accessible
to our methods. The easiest way to solve this would be to add checks using hasOwnProperty in our
methods—and I’ll leave it to you to fix the code accordingly.

The Wrap-Up
In this chapter, we learned about the native JavaScript type system and its MooTools counterpart. We
learned what a type is exactly, as well as how JavaScript handles native types. We went through the
various native types that JavaScript implements, and the rules that govern their transformation from one
type to the other.

We also learned about the components of the MooTools type system and type objects in particular,
which are class-like objects that are used to manage and enhance native types. We discovered how we
can easily extend native types, and we topped it off by implementing our own custom type

This chapter certainly discusses quite a handful of topics, and I hope it is a fitting finale for part one
of this book. We’ve gone through a lot of stuff in the past six chapters, from functions and objects to
classes and types, and I expect that, at this point, you’ve already acquired the knowledge you’ll need to
understand much more complicated JavaScript code.

CHAPTER 6 ■ TYPES

169

If your understanding is still a bit shaky, though, I advise you to reread this and the previous
chapters. We’re going to start exploring more complicated terrain in the next chapters, and unless you’re
comfortable with what we’ve already studied, you might have a hard time understanding parts two and
three of this book.

But if you think that you’re ready to trek onward, better put on your hiking boots because we’re
about to explore exotic lands crafted outside the ECMAScript specification.

Ready? Then turn the page so we can begin our exploration of JavaScript in the browser.

CHAPTER 6 ■ TYPES

170

P A R T II

Conquering the Client Side

 172

C H A P T E R 7

■ ■ ■

173

JavaScript in a Window

In the previous chapters, we explored JavaScript as ECMAScript, a powerful object-oriented language,
and we saw how MooTools uses the native features of the language to enhance it by adding features like
a class system and a better type system.

But while the JavaScript language itself is a very interesting topic, the application of JavaScript for
practical use is important as well. From its inception, JavaScript has always been a practical language,
specifically for creating applications that run on a web browser. Of course, this is no longer the case.
JavaScript has ceased to be a browser-bound language and has moved into the realm of the server, as
we’ll see in the last part of this book. However, we must first focus on JavaScript as it was envisioned: a
language for building browser-based programs.

This chapter begins our journey through browser-based JavaScript. First, we’ll learn a little about
the browser itself, and then we’ll take a look at the APIs the browser provides for working with web
documents. Finally, we’ll discuss the issue of cross-browser development, and how MooTools makes
working with multiple-browsers possible.

A Language for Every Computer
JavaScript can be considered the most popular scripting language in the world. Most personal
computers today, from big desktop machines to tiny handhelds and smartphones, have full JavaScript
interpreters installed on them—usually as part of the default software package. And JavaScript owes this
ubiquity to being the default scripting language of the humble web browser.

Well, maybe not so humble anymore. In the early days of the Internet, web browsers were very
simple applications for displaying content. Web pages back then were simple: some text, a few images,
and not much graphical style. Basic stuff compared to what we regularly see online these days.

But things got a little more complex when Netscape introduced JavaScript in 1996, which led to the
new idea of the scripted browser. Suddenly, simple web pages became much more interactive, and the
browser became far more than an application to display web pages. And it was this ability to add
dynamic behavior to web sites that gradually evolved over the years into the complex JavaScript
ecosystem we have today.

These days, browsers are much more powerful, more efficient, and more flexible. The competition
among browser developers to create the best web browser can be brutal at times, but it does have the
benefit of bringing about innovations in web technologies. And for a programming language like
JavaScript, whose fate is irreversibly tied to the web browser, such innovations are beneficial to its
future.

But what role does the browser really play in the JavaScript ecosystem? To put it simply, the browser
is the platform for developing JavaScript applications: our programs are not only built around it, our
users also access our programs via the browser. And while the browser is no longer the only JavaScript
platform (more on this in Part Three), its availability and pervasiveness in modern computing is enough
to warrant our full attention.

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

174

The subject of browsers is quite complex—after all, it’s both an application and a platform. It’s not
possible to really get into a deep discussion on the internal architecture of a browser in this chapter,
especially since there’s no "one true browser," so instead we’ll focus on the browser as part of the
JavaScript ecosystem, particularly on the additional APIs it provides for our use. But before any of that,
we need to understand a very basic subject that seems to be glossed over by most JavaScript books: how
does a browser actually display a page?

Life Cycle of a Page
At its core, the web browser is an application that displays web pages. The main component of a web
page is the HTML markup that describes the nature and content of the page and defines the external
resources that are associated with the page, like style sheets and images. It is the job of the browser to
turn this markup from text-based code into a graphical representation that will be displayed to the user.

Each browser uses different methods to achieve this, and how one browser does it may or may not
be the same as how others do it. Still, there is a general flow that’s applicable to all browsers, as Figure
7.1 illustrates.

The first thing a browser does is download the particular page for processing. When we enter a
Uniform Resource Identifier (or URI) in a browser, the browser’s fetch engine uses this identifier to
locate and download the page and store it in its resource cache, where downloaded resources are kept
for a specific amount of time to avoid having to download them each time they’re accessed. In fact, if the
page or resource we’re accessing is already in the cache, the fetch engine often skips the downloading
process, and uses this cached version instead.

When the fetch engine finishes downloading the page, the browser does a quick parsing of the
markup to detect external resources—things like images, CSS stylesheets, or embedded media. The fetch
engine then downloads these external resources while the browser starts the next step in the process.

As the fetch engine downloads the resources, the browser starts parsing the HTML markup of the
page to build a DOM Tree. We’ll discuss this in more depth later and in the next chapter, but for now it’s
enough to say that this DOM Tree is the HTML markup transformed into a hierarchical, tree-structured
object. At this point, the text-based HTML markup becomes a usable object that can be manipulated by
the browser.

The browser then starts parsing the CSS style sheets and the style definitions associated with the
page to create a style object. This style object is used to determine how the browser will display the page,
and it consolidates the final styles that will be applied to items in the DOM Tree based on the rules of
CSS.

When both the DOM Tree and the style object have been prepared, the browser builds the render
tree by applying the rules from the style object to the DOM Tree. The resulting render tree is sometimes
different from the DOM tree: since some items won’t be displayed because of style rules, they won’t be
present in the render tree and won’t be processed in the next step.

Now the browser proceeds to do what is called a reflow, a process by which the browser’s layout
engine calculates the size and position of individual items in the render tree in relation to the whole
page. By the time this process is done, all items in the page are properly positioned, and the final layout
of the page is finished.

The last step in displaying the page is handing over the work to the browser’s paint engine, which
renders or "paints" the graphical representation of the page by combining the data from the render tree
with the calculations done by the reflow. The page is then displayed by the browser in its window, and
the user will be able to view it.

However, that’s not the end of the story. After the page has been rendered, the browser will go into
an event loop—and this is when things start getting interesting. Basically, the browser waits for
something to happen, and that something is loosely termed an "event." An event can be anything from a
user clicking a link or resizing the browser window to scripts performing manipulations on the page.
When the browser detects an event that affects the layout of the page, it goes through the reflow and
painting steps once again in order to update the displayed page.

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

175

Figure 7–1. A typical browser flow

This "reflow, paint, wait for event" process is repeated by the browser for as long as necessary. In
fact, this looping process plays a central role in visual animation as well as in browser events, which we
will talk about in Chapters 12 and 9 respectively.

Pause, Script
One element that has to be taken into account in this rendering process is <script> tags. We know that
<script> tags are the containers that enable us to program a web page, and whatever we put inside these
tags is executed by the JavaScript interpreter that’s built into the browser. This execution complicates
the rendering process.

JavaScript is a single-threaded language—there can be only one process working at a time. Take a
look at this example:

function B(){
 console.log('B');
};

console.log('A'); // 'A'
B(); // 'B'
console.log('C'); // 'C'

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

176

The output of this snippet is 'A', 'B' and 'C', in that order. After we logged the first string 'A', we
called the function B() and it logs the second string 'B'. The execution is sequential: the JavaScript
interpreter waits for the function to finish before executing the next line.

This single-threaded nature also affects the rendering process. When the browser’s parsing engine
encounters a <script> tag, it halts its parsing to let the JavaScript interpreter execute the contents of the
<script> first. It is only after the interpreter finishes executing the script that the parsing (and rendering)
process continues. In the case of scripts that have a src attribute, the browser first fetches the external
script and then executes the contents of the script before continuing—which could make your web
pages unresponsive for a time.

There are two reasons for this behavior. The first is because of the scripted nature of the browser:
JavaScript, through browser-exposed APIs, can manipulate items on the page, which leads to a
difference between the original content of the page and the new, modified version. Since JavaScript can
affect the page’s layout, the browser needs to make sure that all these layout-modifying processes are
executed before rendering the page so that the final layout that will be displayed remains consistent with
the modification.

The second reason is so that all scripts in the page are executed sequentially. Because all scripts on a
web page share the same global environment, it is common for programs to be divided across multiple
scripts, which then share data through the global environment. If scripts weren’t executed sequentially,
a script that depends on some variables being set by a script declared prior to it might not get access to
these variables. Scripts are therefore executed according to the order they appear on the page to make
sure any dependencies are properly resolved.

This blocking process and sequential execution, though, presents a very distinctive problem in
terms of DOM manipulation. We’ll look at it in detail in the next chapter. Right now, we’ll focus our
attention on the APIs that intersect the browser and JavaScript.

The Scripted Browser
If we are being truly technical, the things we’ve discussed in the previous chapters were about
ECMAScript—not JavaScript. In fact, almost all of the snippets we presented could be executed by any
compliant ECMAScript 3 interpreter—whether or not that interpreter is a JavaScript interpreter.

JavaScript is really a different beast from ECMAScript, though. While JavaScript is based on
ECMAScript, it adds other host objects to the language that make it possible to execute complex
programs in the browser. It is these additional APIs that turn ECMAScript into JavaScript, and enable the
language to transform the browser from an application for displaying static web pages into a fully
scriptable application platform.

Unfortunately, things are not really that simple: there is no definitive specification of what actually
constitutes JavaScript, or what makes it different from ECMAScript—except for the idea that JavaScript
has additional features. What these additional features are exactly, we can’t precisely say. To quote Allen
Wirfs-Brock, implementer of Tektronix Smalltalk and current JavaScript Language Architect for
Microsoft:

In an ideal world, a standards specification is the complete story. A JavaScript implementation
would just include everything in the ECMAScript specification and nothing more. [..] In the real world of
the web, things are not so clear-cut. Specifications are seldom perfect and sometimes they are
intentionally incomplete or ambiguous. [..] The result is that there are widely implemented and used
features that are not defined by any standard specification.

The problem is rooted in how JavaScript—and ECMAScript—came to be. After Netscape introduced
JavaScript and the idea of the scripted browser in 1995, Microsoft decided to implement the same
features for its Internet Explorer browser. To do this, Microsoft reverse-engineered JavaScript to create
JScript, a seemingly compatible language implementation. Standardization of the language into
ECMAScript came later, after both Netscape and Microsoft had already shipped their own
implementations.

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

177

Standardization didn’t help in defining all of JavaScript either. ECMAScript was created to
standardize the core of the language itself, in terms of language syntax, semantics, and execution. But
the true core of JavaScript during those times—the API that enabled developers to use the language for
web pages—was left out of the specification, along with the all the additional features each browser
maker implemented to attract more developers to use their respective browsers.

And as the years passed, more features were added by browser developers that were not in the
specification. Some of these innovations were later absorbed into the official language, some became
consensus features that were adopted by all browsers even though they were not in the specs, and the
rest became browser-specific features that are incompatible or missing from other implementations.
The result is a rich and powerful language with a long list of features that may or may not work in all
implementations—and more unfortunate, a language whose entire scope we can never define.

Thankfully, all is not lost. We may never really know what JavaScript is, but we don’t have to in order
to use it. The core language—ECMAScript—is well-defined, and the most important APIs for browser-
based development have been standardized, or at least considered "stable enough" consensus features
to guarantee they’ll work in all browsers. And the two most important APIs, the Browser Object Model
and the Document Object Model, are our next topics.

The Document Object Model
The Document Object Model, or DOM, is a set of technologies that define the API for interacting with
and manipulating documents—particularly XML documents and its cognate variants. At its center is the
idea of the document as an object composed of smaller interconnected objects, which can be
manipulated to control the structure of the document itself. While the DOM specification isn’t bound to
one programming language, the DOM and JavaScript have become almost synonymous with client-side
scripting.

Like JavaScript and other web technologies, the DOM came into existence long before it became a
specification. When Netscape released its first JavaScript-enabled version of the Netscape Navigator
browser, it included a very basic API for manipulating the page consisting of the global document object
and array-like properties referencing document elements, such as document.forms, document.images, and
document.anchors. Microsoft, in creating its JavaScript-compatible JScript, implemented the same API in
order to make its Internet Explorer browser compatible with web pages developed in Netscape
Navigator.

Those early APIs form the first cross-browser implementation of a DOM-like ancestor, which we
now call DOM Level 0. This "level 0" designation indicates that these APIs are non-standard, but they
formed the basis of further standardization efforts. Much of DOM Level 0 is still implemented in most
browsers, and some of the parts that were not standardized became important consensus features as
we’ll see later.

After their initial scurry to release the first versions of JavaScript and JScript, Netscape and Microsoft
eventually diverged by adding two new, different DOM implementations. Netscape developed a model
that revolved around layers, which are special scriptable elements representing individual documents.
Microsoft, on the other hand, developed a special object called document.all, which is an array-like
object representing all elements in the document.

These two models are called the Intermediate DOMs and they gave web developers more powerful
document-manipulation features, at the expense of cross-browser compatibility. Developers then had to
either target individual browsers or create two versions of the code to support both. Suddenly, DOM
scripting became much more cumbersome and complicated, and it is perhaps this complexity that
fostered the initial animosity towards the JavaScript language—even though the DOM itself was
technically separate from JavaScript.

Fortunately, the standardization of the JavaScript language as ECMAScript triggered the eventual
standardization of the DOM. The World Wide Web Consortium (W3C) spearheaded the effort in 1997,
and the first specification for the DOM, named DOM Level 1, was released four years later. The DOM
Level 1 specification was initially targeted toward XML documents, but because XML and HTML are

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

178

cognate languages, the DOM model was deemed appropriate for HTML use as well. This specification
came in two parts: Core and HTML. The Core specification detailed the structure and API of the
document as an object composed of other objects, while the HTML specification added features
specifically for HTML documents.

Eventually, Netscape and Microsoft adopted this new standard, which brought cross-browser
compatibility back for both browsers. When Netscape passed its development torch to the Mozilla
foundation, Mozilla decided to drop the previous layer-model from Netscape’s intermediate DOM and
instead focused on DOM Level 1 exclusively for its Firefox browser. Meanwhile, Microsoft—for the sole
purpose of backward compatibility—still includes legacy DOM support in Internet Explorer.

The next DOM specification to arrive was DOM Level 2, which brought new DOM features. This
specification is composed of six parts, the two most important of which are the DOM Events and the
DOM Styles specifications. DOM Events added a new event model to the DOM—a very important
feature that we’ll discuss in length in Chapter 9, while DOM Styles added further CSS and style sheet
capabilities to the model, which are important for visual animations, as we’ll see in Chapter 11. After
DOM Level 2 came DOM Level 3, which builds on DOM Level 2 and adds new features to the Core and
Events specification, as well as new specifications such as XML loading and saving and document
validation.

One thing to bear in mind is that even if the DOM specifications are considered standards, browser
support for these specifications isn’t as well-defined as you might think. DOM Level 1 is highly
supported in most browsers, but DOM Levels 2 and 3 are a different matter. Browsers generally
implement only subsets of these specifications, which means that not all features are available in all
browsers. This creates problems when using these APIs for cross-browser scripting.

Thankfully, the subset of important APIs—such as the ones dealing with document manipulation—
is available in all browsers. This doesn’t mean that they’re perfect, of course. In fact, a lot of these APIs
have implementation-specific bugs that make the DOM a very hard thing to work with—and these issues
are the reason frameworks like MooTools exist. Frameworks were specifically built to make working with
multiple browsers easier by abstracting the native APIs to implement cross-browser solutions. MooTools
uses several techniques to do this, which we’ll discuss later in this chapter.

Because the DOM itself is a complex set of APIs and interrelated ideas, we can’t cover all of it in this
chapter. Therefore, we’ll divide our discussion across several chapters, starting with the core of the DOM
model in the next chapter, then events and styles, and ending with some specific DOM manipulation
tasks connected to the whole "Ajax" movement. Right now, though, we’ll focus on an important part of
the legacy DOM.

The Browser Object Model
The Browser Object Model, or BOM, is a set of related APIs that deal with the browser itself. At its heart
is the idea of representing the browser window as a JavaScript object. The BOM API is represented by the
top-level window object, which acts not only as the main interface for accessing the BOM but also as the
representation of the actual browser window and as the global JavaScript object in the browser.

Technically, the BOM is part of the DOM, specifically the Level 0 DOM, and it’s one of the consensus
features in browser-based JavaScript: there is no specification that describes the BOM, which means that
it’s pretty much implementation-dependent. However, most browsers do implement a "standard" set of
useful objects for the BOM:

• navigator—represents the browser application itself.

• location—represents the current resource being displayed.

• history—represents the browser’s history timeline.

• document—represents the current HTML page.

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

179

All of these objects are properties of the window object and, since the window object also serves as the
global object in the browser, these objects are also available as top-level objects in JavaScript. There are
some other BOM APIs, like screen or frames, which we won’t cover here since they aren’t relevant to our
current discussion.

Since the BOM itself is not that complex an object, we’ll simply go through these important
members in the next sections. One exception is the document object, which we’ll discuss in the next
chapter because of its importance in the DOM Element model. And we’ll cover the actual use of these
objects in practice later on as we go through this chapter and the next ones, so we’ll limit our discussion
here to the basics.

■ Note Some parts of the BOM might not retain their status as consensus features for long. HTML5, the newest
version of the HTML language currently under development, includes specifications for most parts of the BOM, like

window, location, and history. This means that future browsers will no longer have to depend on an API based on

what we loosely describe as DOM Level 0, but on a better specification.

The navigator Object
The name of the navigator object is of course a reference to the first scripted browser, Netscape
Navigator. When Microsoft reverse-engineered the original JavaScript implementation to create its own
JScript engine for Internet Explorer, the name of the object was retained—probably for the purpose of
cross-platform compatibility. Because the BOM is not part of the ECMAScript standard, the object
identifier navigator was never replaced, and all major browsers still support this BOM object.

The navigator object acts as the representation of the current browser, and the properties of this
object are used to describe the browser. In an ideal world, the navigator object would be the prime
candidate for browser detection: we’d simply detect the browser by examining the properties of the
navigator object, and then work around the various bugs in the browser using platform-targeted code.
Of course, we live in a far from ideal world, and the navigator object and its properties are almost useless
for browser detection.

Early developers saw the same potential for the navigator object as a useful way to perform browser
detection. Unfortunately, those early days of browser development were truly competitive: not only were
browser vendors trying to lure more developers to their products by adding new features, they were also
trying to win market share by ensuring that web pages developed in other browsers would work with
theirs. Specifically, early browser vendors made sure that their implementations appeared as if they were
Netscape Navigator (the leading browser at the time), and a big part of this involved spoofing the
properties of the navigator object.

This practice hasn’t died out, and we still see browsers with navigator.appName properties with the
value 'Netscape', even though Netscape Navigator is no longer widely used. Thus, a lot of the properties
of the navigator object are useless for the purpose of browser detection, and we won’t talk about the
navigator object in detail for the same reason.

One property, though, navigator.userAgent, is still important and is still used for browser detection,
despite traces of legacy spoofing being present in its value. We’ll talk about this later in the section on
browser detection.

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

180

The location Object
The location object represents the current location of the browser. In particular, it represents the
current page from which the specific JavaScript code is executed.

The most important property of the location object is href, a string that denotes the current URL of
the page. If we access a page with the URL
http://www.foobaz.com:80/_files/test.html?name=mark#index, for example, that entire URL will be the
location.href value. The href property therefore denotes the full URL of the current page and is useful
for getting the location of the currently running script.

Aside from the href property, the location object also has properties that refer to each part of the URL:

• protocol represents the particular protocol used to access the page, usually with
the value http: or https:. Note that the value of this property also includes the
colon, not just the protocol name. In our example above, the value of
location.protocol is 'http:'.

• hostname represents the host section of the page’s URL, including any
subdomains. In our example, location.host has the value 'www.foobaz.com'.

• port represents the port section of the URL as a string—if available. If no port is
specified in the URL, location.port will be equal to an empty string. In our
example URL, the value of this property is '80'.

• host is a shortcut property that combines both the hostname and port values of the
page’s URL with proper delimiters. The value of location.host in our URL, for
example, is 'www.foobaz.com:80'.

• pathname represents the specific resource location as defined by the URL. The
value of this property always starts with /, and for URLs with no specific paths, the
value will only be '/' to denote the root resource. In our example URL,
location.pathname is equal to '/_files/test.html'.

• search represents the query string portion of the URL. The query string is a string
that’s used to pass data to the server. Usually it contains a collection of key-value
pairs in the format key=value, with each pair delimited by an ampersand (&). The
whole string—as represented by location.search—follows the same URL format
by being prefixed with a question mark. The value of location.search for our
example is '?name=mark'.

• hash represents the anchor part of the URL, and its value is an empty string if not
present in the URL. Like the search property, hash also follows the URL format by
being prefixed with a hash sign, #. In our example, location.hash is '#index'.

As you’ve probably noticed, the href property combines all of these properties together to produce
the final URL. You can get the same value as location.href by concatenating the other properties with
the proper delimiters:

var url = [
 location.protocol,
 '//',
 location.host,
 location.pathname,
 location.search,
 location.hash
].join('');

console.log(url === location.href); // true

http://www.foobaz.com:80/_files/test.html?name=mark#index
http://www.foobaz.com
http://www.foobaz.com:80

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

181

The location object also has methods for working with the browser’s location. The three most
important ones are reload, assign, and replace.

• The reload method reloads the current page and is equivalent to refreshing the
page using the browser. It takes a single optional boolean argument, force, which
determines whether to bypass the browser’s cache and reload the page directly
from the server.

• The assign method takes a single argument, url, and loads that URL in the current
window. Take note that the url value is interpreted as a relative URL unless you
specify a protocol. For example, if we are on http://foobaz.com/ and we do
location.assign('mootools.net'), the URL http://foobaz.com/mootools.net will
be loaded. However, if we do location.assign('http://mootools.net') instead,
the proper location will be loaded in the browser.

• The replace method works just like assign with one big difference: it does not
register the URL in the browser’s history. If we do
location.assign('http://mootools.net'), for example, a new entry in the
browser’s history will be created and the user can go back to the previous page
using the back button. However, if we do
location.replace('http://mootools.net'), no new entry is created in the history.
Instead, the current entry in the history will be modified to point to the loaded
location.

The reload and assign methods are the two most-used methods of the location object, although
replace can be handy in some cases.

One nifty feature of the location object is related to the assign method: the properties of the
location object are dynamically tied to the actual location, and changing the value of a property changes
the location of the page as well. For example, setting location.href = 'http://mootools.net' will load
the URL in the current window—the same behavior we get with
location.assign('http://mootools.net').

The really interesting use of this feature, though, is when we work with the properties of location
that relate to parts of the URL. When we assign a new value to a property that references only a section of
the URL, it changes only that section of the URL. Going back to our original URL example,
http://www.foobaz.com:80/_files/test.html?name=mark#index, if we do location.hostname =
'mootools.net', it loads http://mootools.net:80/_files/test.html?name=mark#index in the current
window. As you can see, only the original hostname is changed—from www.foobaz.com to mootools.net—
and all the other parts of the URL remain the same. The same thing goes for all other sectional
properties, such as search or port.

One really important use of this feature is with history management via location.hash. Unlike other
URL parts, changing the anchor of a URL doesn’t reload the page. Together with the history object, this
makes it possible to implement some kind of history management for Ajax applications, as we’ll see in
Chapter 11.

The history Object
The most basic model of the web is of documents connected through hyperlinks. Users go to one
document and navigate by clicking a link in the document that points to another document. Because of
this linked nature, browsers had to find a way to present a linear progression of changes from one
location to another, as well to provide a way to help users navigate through this linear progression. Thus,
the concept of browser history was born.

http://foobaz.com
http://foobaz.com/mootools.net
http://mootools.net
http://mootools.net
http://mootools.net
http://mootools.net
http://mootools.net
http://www.foobaz.com:80/_files/test.html?name=mark#index
http://mootools.net:80/_files/test.html?name=mark#index
http://www.foobaz.com

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

182

The history object represents the linear history of the current browser window. In earlier browsers,
the actual locations that were visited were available through the history object as URL strings. This,
however, presented a large privacy hole in the browser, and was thus scrapped.

The history object today is a very simple object containing one property, length, which represents
the number of items in the current window’s history stack. It also has two simple methods, back and
forward, which respectively load the previous and next locations in the browser history relative to the
current location.

Another method, go, takes a numeric argument and loads the particular location relative to the
current location, which is given the index 0. For instance, history.go(-1) will load the previous page in
the history, which therefore makes it similar to doing history.back(), while history.go(2) will load the
page after the next page in the history, just like hitting the browser’s forward button twice.

■ Note The new HTML5 specification adds two new methods to the history object: pushState and replaceState.
These are considered history-modifying features, and they are important features that can be used to manage

history states for Ajax applications. We’ll talk more about them in Chapter 11.

Frameworks, Libraries, and Toolkits
If you recall Mr. Wirfs-Brock’s words earlier in this chapter, you’ll notice they refer in particular to
specifications and how the lack of standards for a lot of browser features make it hard for browser
developers to create truly compatible products. However, specifications only refer to one side of the
story. If we happen to suddenly find ourselves in an ideal world where all features are standardized with
proper specifications, we still have to grapple with one big problem: implementation inconsistencies. Or
to put it more succinctly, bugs.

We could have perfect standards, and for the most part we have a very good set of them in our less-
than-ideal world, but we can’t escape the fact that the software industry is one that makes mistakes. We
have clear, solid specifications for ECMAScript, the DOM, and the HTML language, yet our browsers are
far from perfect in their implementations. Standards are therefore only part of the equation: getting
browsers to properly implement these specifications is just as important.

And this is a real problem we face in cross-browser development. Not only are we dealing with the
fact that not all features are available in all browsers, we also have to work around the various bugs in the
features that are present. Fortunately, this problem isn’t crippling and most inconsistencies and bugs
can be solved using JavaScript itself. This brings us to the topic of frameworks, libraries, and toolkits.

Most of the popular JavaScript code collections these days would call themselves a library, a
framework, or a toolkit. These terms have very different meaning in software development, so for the
purpose of our discussion, we’ll use the most generic term—library—to denote all of them. All current
JavaScript libraries—despite how they may categorize themselves—were built with at least one of these
three goals in mind:

• Make cross-browser DOM development easier by providing abstractions that
work around the inconsistencies and incompatibilities of the browser.

• Make cross-browser JavaScript development better by fixing inconsistencies
among different implementations.

• Add additional features that make working with both the DOM and JavaScript
easier.

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

183

The first goal is perhaps the most important one, because JavaScript’s main stage has always been
the browser. All major JavaScript libraries, including MooTools, will have some facility that makes
writing cross-browser DOM scripts easier using simpler APIs. These APIs include stuff for element
creation and manipulation, style management, an events system, and animation systems.

The last two goals are sometimes seen as much less important, depending on the library. While
most JavaScript libraries add features that make working with the DOM easier, not all of them are
concerned with adding new features to the JavaScript language. We do know that’s not the case with
MooTools: the framework implements several non-DOM related features, such as the class system and
the type system, which makes MooTools a true JavaScript framework and not just a DOM scripting
library. But it is important to note that not all libraries give the same amount of focus to the language as
MooTools.

We’ve already examined how MooTools adds new language-level features to JavaScript in the
previous chapter on Class and Type, and we’ll examine the specifics of MooTools’ DOM-related features
in the next chapters.

MooTools and the Browser
As I mentioned, a big problem with cross-browser development is the fact that browsers are often
inconsistent. While we do have full specifications for ECMAScript and the DOM, it doesn’t necessarily
follow that the browser implementations follow these specifications properly. Whether the
inconsistencies are the consequences of bugs or a vague misinterpretation of the spec is of no big
concern for us; what matters is that the cross-browser development is often a buggy affair.

And because browser vendors are largely concerned with making their own products better rather
than maintaining compatibility with their competitors, the burden of making cross-browser
development easier therefore gets passed to frameworks and libraries like MooTools.

Fixing Browsers with MooTools
At a general level, the MooTools approach is based on the idea of abstraction versus fabrication. What
this means is that instead of creating an entirely new system to replace the native one, MooTools creates
a new system by providing a new API that abstracts the native system. We’ve already seen this approach
at work in the class and the type systems, and we’ll see the same philosophy applied to DOM-related
APIs as well.

This approach provides a big benefit when it comes to dealing with browser-specific issues. Because
the native system is abstracted, MooTools is able to apply fixes internally, without the user’s knowledge.
This makes it possible to apply additional fixes in the future without changing APIs. It also makes it
possible to apply fixes in a fine-grained manner, targeting only specific items without affecting the whole
system.

MooTools has two main ways of dealing with implementation fixes. The first is test-based fixes, and
this technique is easier to implement in most cases. Basically, MooTools tests for inconsistencies in the
current browser by running a piece of code and then deciding whether or not to apply a fix based on the
results of the test.

One example is Array.prototype.splice. In certain versions of Firefox and Internet Explorer, the
splice method does not work properly with array-like objects. As we found out in Chapter 6 when we
discussed Type, array methods should be generic according to the specs and they should work not only
on real arrays but on array-like objects, too. Unfortunately, this is not the case with some versions of the
aforementioned browsers, which becomes a problem for MooTools’ Elements type that relies on this
method.

To overcome this issue, MooTools uses a simple test-based fix. First, it performs a basic operation
on an array-like object using splice, and then it checks the result. If the result is correct, MooTools does
nothing. However, if the result is incorrect, MooTools implements its own version of splice for the

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

184

Elements type that works properly. The result is a proper splice method for Elements regardless of
browser. And because the fix is applied on an as-needed basis, only browsers with improper
implementations are targeted, and browsers that are already conformant are left alone.

But while test-based fixes are handy, not all issues can be resolved using this method. The limitation
of this technique is imposed by how the technique itself works: to successfully apply the fix, you must be
able to run a test that detects the need for a fix. Unfortunately, some issues aren’t testable, like memory
and rendering issues. These problems can be detected and observed with the proper external tools, but
they can’t be tested using JavaScript alone due to the lack of proper APIs.

Therefore, another technique must be used. These issues, more often than not, are browser-specific,
which means that only a single browser is affected. This therefore limits the scope of the fix: if we know
that the current browser is buggy, we can apply the fix. Finding out whether there are problems with the
current browser and what code needs to be applied to fix them is a whole other topic, but applying the
fix itself is easy—all we have to do is detect the current browser and run the fix-related code as
necessary.

MooTools provides a single global object, Browser, that forms the center of MooTools’ browser-
related APIs. Some of its properties like Document, Element, and Event, are actually references to the
native browser objects of the same identifiers, which are used further on for MooTools’
reimplementation of the element and event systems. The Browser object itself, though, has a much more
important use: it’s the basis for browser-specific decisions in the MooTools framework.

The Browser object has two main properties that relate to the browser itself: name, which is the string
name of the current browser, and version, which denotes the version of the current browser as a
number. For example, if MooTools is run on a page in Google Chrome 7, Browser.name will be 'chrome'
and Browser.version will be 7.

Additionally, the Browser object has dynamic properties that act as shortcuts for these two
properties. The first one is the dynamic name property, which is added via Browser[Browser.name] =
true;. In Chrome, for example, Browser.chrome will be equal to true and Browser.ie will be undefined.
On the other hand, Browser.ie will be true in Internet Explorer, while Browser.chrome will be undefined.
The other dynamic property is the dynamic name-version property, which combines the name and
version of browser, such as Browser.chrome7 or Browser.ie8.

■ Note The dynamic name-version property has a limitation that makes the property name only register major
versions. For example, Firefox 3.5 will register Browser.firefox3, and not Browser.firefox3.5, because the

period—which is used in version numbers as a delimiter—is used for property access in JavaScript.

These Browser properties are used throughout MooTools, and they’re essential to fixing browser-
specific issues. Suppose we find an issue with Apple Safari that affects version 5 of the browser, and we
need to apply some code to fix the issue. Using the Browser object, we simply have to do something like
this:

if (Browser.safari5){
 // code
}

If we run this code on Safari 5, the code inside the if block will be executed, thereby targeting the
browser properly. However, other browsers will ignore this code because Browser.safari5 will be
undefined in them and the if condition will fail.

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

185

Browser Detection
The Browser object raises an interesting question: how does MooTools actually know what browser is
currently running? This brings us to the topic of browser detection.

There are two main techniques for browser detection and the first is called user agent sniffing. User
agent is another term for client software in a client-server system, such as a browser. In the web
architecture, user agents identify themselves to servers using a special string called the user agent string,
which follows the format <Product Name>/<Product Version> <Comments>.

The current browser’s user agent string is accessible via the navigator object’s userAgent property,
and user agent sniffing relies on this property for detecting the current browser. The core of the
operation involves running some regexp-based tests on the userAgent property value, then extracting
parts of the string for use.

The user agent string is easily parsable, even if the structure of user agent strings among browsers
varies widely. The problem with this technique, though, is that user agent strings are easily changed, and
therefore can’t be relied on. This is especially problematic when user agent spoofing is involved, where
user agents "pretend" to be other user agents by passing the user agent string of another user agent to
the server.

A second technique is much less prone to spoofing, and it’s called feature sniffing. This technique
involves checking for the existence of several special features in the current environment: if the
environment has the both features X and feature Y, then it’s probably browser Z. Feature sniffing
therefore relies on the existence of certain objects to perform inference, and is therefore related to the
concept of duck typing as we saw in the previous chapter.

But while feature sniffing is much more reliable than user agent sniffing, it’s more brittle. Because
we’re checking for the existence of certain objects, adding or removing these objects from the current
environment will result in wrong inferences. It’s even more problematic when we take into account the
pace of browser development: new versions of browsers are released more often these days, and a
feature we use for feature sniffing could be gone instantly.

In versions of MooTools prior to 1.3, feature sniffing was the choice for browser detection. For
example, MooTools relied on the existence of window.opera to check if the current browser is Opera,
while it used window.ActiveXObject to check for Internet Explorer. This worked well for the framework—
until the release of Firefox 3.6, which removed the getBoxObjectFor method of the document object,
thereby breaking the MooTools feature-sniffing tests. This affected all versions of MooTools, making it
necessary to call for an upgrade for all MooTools users.

Because of the magnitude of this incident, it was decided to move away from feature sniffing to user
agent parsing for future versions of the framework, which of course included MooTools 1.3. In preparing
the name and version properties of the Browser object, MooTools first parses navigator.userAgent using
a regular expression, and then uses this parsed version to fill up the values of the properties. The
properties are then used to create the dynamic name and name-version properties.

Feature Detection
But because user agent sniffing is easily breakable using spoofing, MooTools does not rely entirely on
the name and version properties of the Browser object. As I mentioned earlier, test-based fixes are
normal in MooTools and are used as much as possible. Another technique, related to both test-based
fixes and feature sniffing, is called feature detection, and is employed as well.

Feature detection, like feature sniffing, relies on the existence of certain features in the current
environment. However, like test-based fixes, feature detection is used mainly for fine-grained fixes and
feature-based decision-making rather than true browser detection like feature sniffing.

A good example of this involves the events system, which we will discuss in detail in Chapter 9.
There are two main event models: the standard DOM Level 2 Events model, which is supported by all
major browsers, and the proprietary Internet Explorer model. In attaching events to elements, MooTools
uses feature detection by checking the existence of the addEventListener method, which is the native

CHAPTER 7 ■ JAVASCRIPT IN A WINDOW

186

method of the DOM Level 2 model. If it doesn’t exist, MooTools then checks for the Internet Explorer
model’s counterpart for that method, called attachEvent. MooTools doesn’t rely on the value of
Browser.name, but rather, it uses feature detection to decide which event model to use.

The Wrap-Up
This chapter gave us some insight into the browser, as well as the issues involved in browser-based
JavaScript. We learned how the browser renders a page, as well as the special exception given to scripts.
We then found out about the two main APIs that are used for browser-based scripting, the DOM and the
BOM, and we discussed a bit about their use and their structures. Finally, we learned about cross-
browser issues and how MooTools performs user-agent sniffing and feature detection to make cross-
browser scripting possible.

In the next chapter, we’ll continue investigating browser-based JavaScript by exploring the most
important API for browser-based development: the DOM Element API. We’ll learn about DOM scripting
and how MooTools abstracts the native DOM Element API to provide a sane and more consistent API
that works across all supported browsers.

So if you’re ready, turn off your mobile phone, take a seat, and applaud as we focus the spotlight on
Elements.

C H A P T E R 8

■ ■ ■

187

Elements

When working with JavaScript in the browser, the first and most important subject to learn is the DOM
and its relationship to the JavaScript language. In fact, the bulk of the work done with browser-based
JavaScript belongs to the category of DOM Scripting, a fancy term that basically means programming the
DOM.

In this chapter, we’ll learn about the DOM Tree, which is the representation of the HTML document
as an object, and how to manipulate it through MooTools’ DOM API. We’ll also learn about the Element
and Elements types, the two main type objects MooTools uses to add functionality to elements in the
DOM Tree.

This chapter will guide you through the basics of DOM Scripting, and the concepts you learn here
will be applied throughout the rest of the book. So if you’re ready, let’s start our exploration of the DOM.

Families and Trees
We learned in the previous chapter that after it downloads an HTML resource, the browser starts parsing
the HTML markup to turn it into a DOM Tree. This special data structure is used for some internal
preprocessing involving calculations related to how the page will eventually be rendered, but it’s used
for other things as well. In particular, the DOM Tree is also eventually used to create an object that will
be exposed to JavaScript as part of an API, which we refer to as the DOM.

At the heart of the DOM is the idea of an HTML page as an object. Because JavaScript was originally
intended as a language for working with web pages, it needed an appropriate API for manipulating the
contents of a web page. And since, at heart, it’s an object-oriented language, it’s only fitting that
JavaScript be given an API that represents an HTML page as an object.

A web page’s representation in the DOM is called a document, which is not just an object but a
special structural object called a tree. As its name implies, the tree structure is taken from the real world
concept of a tree—although in reality it doesn’t look anything like a tree. The name is actually a
metaphor for a tree’s hierarchical and branching structure, as we’ll see.

A tree is composed of several linked items called nodes. At the starting point in the tree is a special
node called the root node, from which all other nodes branch. A node that branches off from another
node is called a child node, and the node from which that node branches is called a parent node. A
parent can have multiple child nodes, as in the case of the root node, but a node can only have one
parent node—or no parent node if it’s the root node. If nodes have the same parent, they’re said to be
sibling nodes, while a node with no children is called a leaf node.

Take a look at Figure 8–1:

k

CHAPTER 8 ■ ELEMENTS

188

Figure 8–1. A basic tree structure

Here we have a basic tree with six nodes. The node named A is the root node and it is the parent
node of two child nodes, B1 and B2. B1 is a leaf node, but B2 has two children of its own, C1 and C2. C1
has a single child, a leaf node called D, while C2 has none. The nodes B1 and B2 are sibling nodes, as are
the two nodes C1 and C2.

To apply this idea of a tree structure to an HTML document, we need to examine the source markup
of the page and see how it is turned into object. Let’s look at the following example:

<html>
 <head>
 <title>Greeter</title>
 </head>

 <body>

 <p>Hello World!</p>
 </body>
</html>

Since I expect that you already understand this HTML document, I won’t go into detail about tags
and attributes. The first thing you’ll notice is that the HTML source is already hierarchical, but in a
container sense. For example, the <html> is the container for all the items: everything in the source is
within the <html> tag and its corresponding </html> end tag. You’ll also notice that some tags, like
<html>, <body> and <p> can contain other tags as well as text, while other tags like don’t contain
anything (and doesn’t have an end tag, either).

When transforming the markup to a tree structure, the <html> tag becomes our root node since it’s
the tag that contains everything else. The <head> and <body> tags then become the child nodes for <html>
and the tags within these tags become child nodes themselves. An interesting case is the tag, which
is always a leaf node, since it can’t contain any other tags.

Transforming this into a diagram, we have Figure 8–2:

CHAPTER 8 ■ ELEMENTS

189

Figure 8–2. HTML source as a tree

However, we have something missing. How about the text inside some of those tags? How is that
represented? We could actually represent it as nodes too, but we’d have to designate those nodes as a
special type called a text node to differentiate them from normal tags. Figure 8–3 shows the text nodes in
place.

Figure 8–3. HTML source as a tree, with text nodes

CHAPTER 8 ■ ELEMENTS

190

■ Note Whitespace, like tabs and spaces, is actually treated using additional text nodes in the DOM Tree. To keep

it simple, though, our discussion will disregard whitespace and limit itself to elements and text nodes.

Now that our HTML source is ordered in a tree structure, we can easily transform it into a JavaScript
object. As I said, the DOM’s main object representation is the document object, which is an object of
type Document and represents the whole tree. Each of the nodes we saw in Figure 8–3 is transformed into
an object that inherits from the Node type, which represents a single node in the document structure. A
page’s document will have a single node object representing the root <html> node, a single node object
representing the <head> node, and a single node object that represents the <body> node. Within the
<head> and <body> nodes go all the other nodes from the tree.

The Node type, though, isn’t itself used, but it is further subtyped into the Element and CharacterData
types.

The Element node represents actual HTML tags, which are called elements when they are
transformed into objects. Element is then further subtyped to HTMLElement, which represents element
objects from HTML documents (as opposed to other documents that use the DOM model).
Furthermore, HTMLElement is subtyped into particular elements, like HTMLHtmlElement for the <html>
node, HTMLParagraphElement for <p> nodes and so forth.

The CharacterData type, on the other hand, only has two main subtypes: Comment and Text. Comment
represents HTML comments in the document, while Text represents the text nodes that are contained
within tags.

These subtypes enable nodes to have specialized properties and methods that aren’t available from
the top Node type. However, the properties that associate a particular node to the tree itself are inherited
by node objects directly from the Node type:

• The parentNode property is a reference to the node object that is the parent of the
current node or null if it has no parent. In our original example, the parentNode
property of the <p> node object is the <body> node object, while the <html> node
object—being the root node—has a parentNode property of null.

• The childNodes property is an array-like object containing a list of all the children
of a node. Accessing the length property of this object will give you the total
number of children for a node. In our example, the <html> element has a
childNodes property with the length of 2, and this property contains two objects:
the <head> node object and the <body> node object.

• Related to the childNodes property are two properties named firstChild and
lastChild, which are references to the first and last children of a node. If a node
has no children, both properties will be null. If a node has only one child, both
properties will point to the same node object.

• The previousSibling and nextSibling properties reference the sibling nodes of a
node object. If a node is the only child of its parent, both properties will be null. In
the same vein, the previousSibling property of the first child node and the
nextSibling of the last child node will always be null.

All nodes regardless of type have these properties and it is these properties that make it possible to
find a particular node within the document tree using JavaScript, which will be discussed in depth in
Chapter 9 when we talk about the Selector Engine.

The document object itself is actually a node, but it’s important to note that it’s not actually the root
node—although it may seem as such—but rather the object representation of the html page itself as an

CHAPTER 8 ■ ELEMENTS

191

object tree of nodes. The true root node of a document is the <html> node, although it is rarely used. The
more commonly accessed nodes are the <head> and <body> nodes, since these are the nodes that contain
the data relevant to the page. In the native DOM API, the <body> node is accessible through
document.body, but no such shortcut is available for <head>. MooTools, though, adds a feature to make
the <head> node available via document.head.

When working with nodes in MooTools, you can use the typeOf function to distinguish between
elements and textnodes. The typeOf function will return 'element' for element nodes and 'textnode' for
text nodes. In practice, you won’t have to distinguish between them that much, since MooTools puts
much more focus on elements, as we’ll see. But before we do, we have to look back at <script> tags.

Is My DOM Ready Yet?
In the previous chapter, we learned that the HTML source is parsed sequentially to create the DOM tree.
The browser goes through the HTML source and "interprets" each of the tags it encounters, creating new
nodes and elements for the DOM tree. We also learned that <script> tags are executed sequentially by
the browser. When the browser encounters a <script> tag, it executes the code contained between the
tags before moving on to parse the next tag in the HTML source. In the case of external scripts, the
browser downloads the external code first and then executes it, and only after that will the parsing start
again.

This sequential parsing of the DOM, together with the blocking nature of script execution, presents
a gotcha when it comes to DOM scripting. To truly understand this issue, let’s suppose we’re browsers
trying to parse the following HTML source sequentially:

<html>
 <head>
 <title>Test</title>
 </head>

 <body>

 </body>
</html>

Let’s do it step by step:

1. First, we see the <html> tag and create a new node. Since the <html> tag has a
corresponding closing tag, we know it can contain other tags as well, so we’ll
mark it as our current parent. Our DOM Tree currently has one node.

2. We parse the next tag, <head>, and create a new node that becomes the child of
our current parent, <html>. Because <head> also has a corresponding closing
tag, it can be a parent as well, so we set this new node as our current parent.
Our DOM Tree now has two nodes.

3. The next tag we encounter is <title> and we create a new node for this. The
current parent is <head>, so our <title> node becomes a child of the <head>
node. As with <html> and <head>, we’ll mark the <title> node as our current
parent since it can contain other tags. We now have three nodes.

4. Within the <title> tag we encounter our first text, so we create a new textnode
that will be a child node of our current parent, <title>. Because text nodes
can’t have child nodes, we won’t set this node as our current parent, so <title>
is still the current parent node. The DOM Tree now has four nodes.

CHAPTER 8 ■ ELEMENTS

192

5. We now encounter </title>, a closing tag that tells us that the <title> node is
complete and has no other children. We set our current parent back to the
parent of <title>, which is <head>. Since we didn’t add any new nodes, we still
have four nodes in our DOM Tree.

6. Another end tag comes into our view, </head>, which marks the end of the
<head> node. We set the current parent to the parent node of <head> so our
current parent is <html> again. Our DOM tree is unchanged with four nodes.

7. We see a new tag, <body>, so we create a new child node for our current parent,
<html>. Since <body> has an end tag, we set <body> as our current parent. We
now have five nodes in our tree.

8. The next tag is an tag, so we create a new child node for the current
parent <body>. The tag is one of the few tags that doesn’t have a closing
tag, and is therefore seen as "self-closing." It can’t have any child nodes, so we
won’t set it as the current parent. Our DOM Tree now has six nodes.

9. We then encounter an end tag, </body>, signaling the end of the <body> tag, so
we set the current parent back to the parent node of the <body> tag, <html>. Our
DOM Tree remains unchanged, so we still have six nodes.

10. Finally, we get to the last tag, </html>, signaling the end of the <html> tag and
the end of our HTML source. The final DOM Tree has been built and it contains
six nodes in total.

Now if you’ve been paying attention to the steps, you’ll notice that the DOM Tree grows as each tag
is parsed. We started with a single node and ended up having six nodes. The number of nodes in each
step can be different from the number of nodes before or after that step, and only after everything has
been parsed will we know how many nodes there actually are in the DOM Tree.

With this in mind, we can say that our DOM tree only becomes final after we’ve parsed the HTML
source completely. We call the final DOM Tree—with all tags parsed and turned into nodes—the
completed DOM Tree. From the start of parsing right up to the step before we finally parse the </html>
end tag, we don’t have a completed DOM Tree, only part of it—and we call this a partial DOM Tree. The
interesting thing about the partial DOM Tree is that each step of the parsing process can potentially
change the DOM Tree, and so the partial DOM Tree in one step can be different from the partial DOM
Tree in another step.

Now suppose we add a <script> tag into our HTML source, like so:

<html>
 <head>
 <title>Test</title>
 <script src="mootools.js"></script>
 <script>
 console.log(typeOf(document.body));
 </script>
 </head>

 <body>

 </body>
</html>

We won’t parse this step by step again, since we can just think of the extra step we’ll add to the
parsing we did above: after step 5, we now have to parse the two <script> tags and then create new child
nodes for the current parent <head>. However, we also have to execute the code contained within the

CHAPTER 8 ■ ELEMENTS

193

<script> tag before we move on to the next step. Only after console.log(typeOf(document.body));
finishes can we move to the next step of parsing the </head> tag and closing the <head> node.

Okay, so what’s the gotcha I was talking about then? The best way to see the issue is to run the
example HTML page in your browser. Remember that document.body points to the <body> node, so you’ll
probably expect typeOf(document.body) to return 'element'. However, if you try to run it in your
browser, you’ll see that typeOf(document.body) doesn’t return 'element'—it returns 'null'.

And that’s the gotcha. Our main interface for manipulating the DOM is the document object, and we
use this object to access the nodes in our DOM Tree. But an important thing to remember is that the
document is a true mirror of the DOM Tree: whatever the state of the DOM Tree is, it will be reflected in
the document object.

This goes back to the idea of a partial DOM Tree. In our example, typeOf(document.body) returns
'null' instead of 'element' because at the point that the script is executed, we only have a partial DOM
Tree. This partial DOM Tree already contains the <html>, <head>, and <title> nodes, but the <body> node
is yet to be parsed, so document.body is truly null at that point. And because executing the script is a
blocking process, the browser can’t just continue parsing the rest of the HTML source: it has to wait until
the JavaScript interpreter finishes before it can parse the rest of the HTML source.

Because browser-based JavaScript is largely concerned with manipulating elements in the DOM
tree, we need to make sure they’re accessible when we start working with them. If we start working on
elements before they’re created—like we did in the preceding example—we’ll run into errors and other
weird behavior.

There are several ways around this. The first is to move your script to right after the element you’re
working on to make sure that the element is already in the DOM tree when you need it:

<html>
 <head>
 <title>Test</title>
 <script src="mootools.js"></script>
 </head>

 <body>
 <script>
 console.log(typeOf(document.body));
 </script>

 </body>
</html>

In this example, typeOf(document.body) will return 'element' as expected since the <body> node will
be available by the time our script is executed.

While this technique works, it gets hard to manage as your script grows. For example, if we add
some new function to our script that modifies the element in our page, we have to move the script
again. If our script changes yet again after that, we’ll have to move our script to reflect the change.

Moving scripts around could get taxing after a while, especially if you have many of them. So a
better technique is to move the scripts to the bottom of the page, right before the </body> tag:

<html>
 <head>
 <title>Test</title>
 <script src="mootools.js"></script>
 </head>

 <body>

 <script>

CHAPTER 8 ■ ELEMENTS

194

 console.log(typeOf(document.body));
 </script>
 </body>
</html>

Placing scripts right before the </body> is a good way to ensure that the elements you’ll need to
access are already available. Since the </body> tag is almost always the second to the last tag in the page
(the last always being the </html> tag), it is safe to assume that all tags would have been parsed and
turned into proper nodes in the DOM tree by the time this closing tag is reached. Therefore, the partial
DOM Tree right before the </body> tag—even though it’s not yet truly complete—will be close to being a
complete DOM Tree. Scripts executed at this point will therefore have access to an almost complete
DOM Tree with the necessary nodes accessible and ready for manipulation.

Placing scripts right before </body> also yields an additional benefit: pages appear to load faster.
Since executing scripts halt the parsing of the DOM tree, they also block the rendering steps. While a
script is executing, the browser can’t render anything on the page. If you have a script in the <head> of
your page that takes too long to execute or one that takes too long to download, it will take quite some
time before the browser can start the reflow and painting processes that will output the page in the
window.

If the scripts are at the bottom of the page, however, the browser can start the reflow and painting
process earlier. Since there are no scripts to block the rendering process, the browser can output the
page faster and the user will be able to see it immediately. By the time the browser reaches the scripts at
the bottom of the page, most of your site would already be visible, so there’s no blocking behavior
apparent to the viewer.

Unfortunately, this technique has one flaw. Say we have the following HTML source:

<html>
 <head>
 <title>Test</title>
 <script src="mootools.js"></script>
 </head>

 <body>

 <p>Some text.</p>
 <p>Another text.</p>
 <div>
 <p>More Text Here</p>
 </div>
 <script src="change_content.js"></script>
 </body>
</html>

Here we have an external script called change_content.js instead of an embedded one. The script is
huge, several hundred kilobytes, and includes the following snippet:

...

// Remove the hello image..
var img = $('hello');
img.destroy();

...

The snippet says to retrieve the element with the id “hello” and remove it from the DOM. Easy
enough, right? However, consider the rendering flow: the browser first renders the image; then when it

CHAPTER 8 ■ ELEMENTS

195

gets to the script tag, it has to download the script first before executing the code that removes the image
from the page. The result is that the user will see the image appear and then disappear—which could get
pretty confusing.

While the example might sound contrived, this is actually a very common phenomenon called Flash
of Unstyled Content or FOUC for short. Originally an issue with Cascading Style Sheets, FOUCs have
now entered the JavaScript domain because of the numerous style and behavioral modifications added
via scripts. What happens is that users see the page’s initial “unstyled” content, which then suddenly
changes because of modifications done via JavaScript.

But while FOUCs are more annoying than truly problematic, a similar issue—which I’ll dub as a
Moment of Behaviorless Interaction or MOBI—is worse. Instead of styles, MOBIs are concerned with
behavior. Let’s change the code above:

<html>
 <head>
 <title>Test</title>
 <script src="mootools.js"></script>
 </head>

 <body>
 <p>Click Me!</p>
 <script src="add_events.js"></script>
 </body>
</html>

And here’s the corresponding add_events.js script:

...

// Say hello
var greeter = $('greeter');
greeter.addEvent('click', function(event){
 event.preventDefault();
 alert('Hey There Mister!');
});

...

The scenario remains the same: add_events.js is a large script file that has to be downloaded and
executed by the browser at the end of the page. Unlike the previous example, though, add_events.js
doesn’t change the style of an element in the page; instead it adds behavior to an element. In particular,
it defines an event handler (we’ll discuss these in Chapter 10) that will be fired when the link with the id
“greeter” is clicked.

However, the same FOUC issue rears its head here: the link will be rendered by the browser first,
and then the browser will download and execute the external script. Because the script will be executed
a bit later, there will be a few moments when users will be able to click the link and nothing will happen.
The behavior hasn’t been added at that point, and your page will seem interactionless—and thus you’ll
get a "Moment of Behaviorless Interaction."

Both FOUCs and MOBIs present an interesting issue for DOM scripting. On the one hand, this is
where the blocking behavior of script tags comes in handy: by placing script tags in the <head> of the
document, you’ll be sure that they’re executed and ready before any of the actual content in the <body> is
displayed—so styles and behavior will already be defined by the JavaScript interpreter. On the other,
however, this brings us back to our original problem: if our script is in the <head> of our document, we’ll
only have access to a partial DOM tree.

The solution then has to be two-fold: first, the script must be placed early on the page (preferably in
the <head>) so that it will be downloaded and ready beforehand, and second, the execution of the script

CHAPTER 8 ■ ELEMENTS

196

must somehow be delayed until after we have a complete enough DOM tree to work with. The solutions
we’ve seen so far can’t meet these requirements, so we’ll have to look in another place: JavaScript events.

An event in the broadest sense is something that happens within the lifetime of a page. In our
previous add_events.js snippet, for instance, we added an event handler—which is basically a
function—that will be executed as an effect of an event happening (in that case, a link being clicked). For
our particular issue right now, we’ll also make use of an event, one that tells us when there is a complete
enough DOM tree to work with.

That event is called the DOMReady event, and it’s a special event that MooTools provides. Changing
our FOUC example to use this event, we end up with this:

<html>
 <head>
 <title>Test</title>
 <script src="mootools.js"></script>
 <script src="change_content.js"></script>
 </head>

 <body>

 <p>Some text.</p>
 <p>Another text.</p>
 <div>
 <p>More Text Here</p>
 </div>
 </body>
</html>

Now for the change_content.js:

...

window.addEvent('domready', function(){
 // Remove the hello image..
 var img = $('hello');
 img.destroy();
});

...

We do two things here: first we move our script to the top of the HTML source so that we’ll get the
blocking behavior. This ensures that our event handlers and other necessary boilerplate code are
executed and prepared before any content is rendered. Next, we wrap the original image-destroying
code inside a function and register that function as an event handler for the DOMReady event. If we run
this on the browser, we’ll get our desired result.

We’ll talk more about how the DOMReady event works in Chapter 10, but right now it suffices to say
that by using DOMReady, we’re telling the browser to defer the execution of the event handler function
until the DOM tree is complete enough.

Applying the same to our second example, we get the following:

<html>
 <head>
 <title>Test</title>
 <script src="mootools.js"></script>
 <script src="add_events.js"></script>
 </head>

CHAPTER 8 ■ ELEMENTS

197

 <body>
 <p>Click Me!</p>
 </body>
</html>

As for the add_events.js script:

...

window.addEvent('domready', function(){
 // Say hello
 var greeter = $('greeter');
 greeter.addEvent('click', function(event){
 event.preventDefault();
 alert('Hey There Mister!');
 });
});

...

As in our previous example, we move the script to the <head> of the page to ensure that it’s executed
before any content rendering happens. We again use the DOMReady event to defer execution of the code
until the DOM Tree is in a complete enough state for manipulation. The result is that we get rid of the
MOBI, and users will be able to interact with our page without seeing any undefined behavior.

■ Note There is another way to achieve the same results in browsers, one that involves using a special <script>
tag attribute called defer. When a <script> is declared with a defer attribute, the browser delays execution of
the script until the DOM is ready—just like the DOMReady event. Unfortunately, support for defer isn’t available in

all major browsers, so we'll stick to DOMReady for the time being.

The obvious question then is whether it’s better to entirely replace the technique of adding scripts at
the bottom with DOMReady handlers. The answer to this question, of course, is "it depends." Using
DOMReady handlers has the benefit of making sure that style and behavioral changes are declared before
any content is rendered, but putting all scripts on the top of your page will slow rendering time. On the
other hand, putting scripts in the bottom enables the browser to render the page quicker, but at the
expense of getting FOUCs and MOBIs.

Personally, I find that the sweet spot lies in using both techniques at the same time. The best way to
do this is to divide your JavaScript programs into small logical parts. Scripts that declare important style
and behavioral changes should be placed at the top, while scripts that aren’t particularly important
should be placed at the bottom. With this scheme, FOUCs and MOBIs are eliminated, and the blocking
time before rendering is minimized.

Since we won’t be creating complex programs in this chapter, we’ll be using both techniques
separately. For examples that use only the native DOM APIs, we’ll place scripts at the bottom of the page,
while examples that work with MooTools will use a DOMReady handler.

CHAPTER 8 ■ ELEMENTS

198

DOM Scripting with MooTools
DOM scripting is the common term for using JavaScript to program a web page, and much of it involves
manipulating elements on a page: selecting elements, creating new elements, moving elements around,
changing their attributes and styles, and destroying them when necessary.

To script the DOM, you’ll need to use the API provided by the DOM itself. Unfortunately, it’s not a
perfect API. In fact, a common saying in the JavaScript world is that when people say they hate
JavaScript, what they’re really saying is that they hate the DOM. I find this somewhat true, but
unfortunate: the DOM API is one of the harder APIs to work with, but not because it was designed that
way. The problem lies with the browsers that implement the API: somehow, browsers always find a way
to add bugs and deviations from the specs. As such, the DOM API is inconsistent, and what works for
one browser may not work for another.

The developers of MooTools know this, and the bulk of the framework was created just for the
purpose of taming the mess that is the DOM. In fact, the MooTools API effectively replaces the DOM API,
making it almost unnecessary to use native DOM methods for most tasks.

With this in mind, we won’t go through the native DOM API in detail. Aside from the fact that
MooTools abstracts this API so we don’t have to worry about it, the subject has already been covered in
numerous JavaScript books—and is therefore not worth repeating. If you want to learn more about it,
you can refer to any of the DOM Scripting books in the References section at the end of this book.

What follows is an overview of how basic DOM manipulation is done through the MooTools-
provided API. Be sure to pay attention to what follows, since we’ll be discussing what forms the core of
DOM scripting with MooTools.

Selecting Elements
The most basic task in DOM scripting is selecting a particular element from the DOM Tree. In order to
manipulate a particular element in the DOM Tree, we must first find it using special functions called
selector functions.

The ID Selector
The most commonly used selector function is the ID Selector, document.id, which takes a single string
argument id and returns the element from the DOM Tree with the corresponding id:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log(document.id('hello').get('tag')); // 'img'
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div>

CHAPTER 8 ■ ELEMENTS

199

 <p>more text here</p>
 </div>
 </body>
</html>

Here we use document.id to fetch the element with the id “hello”, which is an image element. We
then confirm that we got the proper element by calling the get method of the element to determine the
element’s tag name. This call returns 'img', which confirms that we got the proper method.

The semantics of HTML require id attributes to be unique: a particular id should be used only once
for a single element. Because document.id selects an element based on its id attribute, it will always
return a single element if an appropriate one is found. If there is no element in the DOM Tree with the id
passed to document.id, it returns null:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log(document.id('hi')); // null
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div>
 <p>more text here</p>
 </div>
 </body>
</html>

The document.id method is idempotent: applying the function to a result of the function returns the
same result:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var result = document.id('hello');

 // pass result to document.id again
 console.log(document.id(result) === result); // true

 // result's tag
 console.log(result.get('tag')); // 'img'
 });
 </script>
 </head>

 <body>

CHAPTER 8 ■ ELEMENTS

200

 <p>some text.</p>
 <p>another text.</p>
 <div>
 <p>more text here</p>
 </div>
 </body>
</html>

We first invoke document.id to fetch our element with the id hello, and then store the returned
image element in our variable result. We then invoke document.id again, but this time pass the image
element using the result variable. Comparing the result of this new call to the original result, we see that
they are indeed the same objects. This is because document.id returns the passed argument immediately
if it’s already an element—which makes it safe to apply the function on an element object more than
once. In the same vein, document.id('hello') === document.id('hello') will be true, because
document.id will always return the same element when called with the same argument.

The document.id method is similar to the native document.getElementById function. The difference
is that the native document.getElementById function returns a native HTMLElement, while document.id
returns an instance of the MooTools Element type—which we’ll discuss in depth later. However,
MooTools overrides the native getElementById function with its own variant that’s more or less like the
document.id function, which we can confirm by comparing the results of both:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log(document.id('hello') === document.getElementById('hello')); //
true
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div>
 <p>more text here</p>
 </div>
 </body>
</html>

In this example we see that the return value of document.id('Hello') and
document.getElementById('hello') are the same element objects. This is because of MooTools’
overriding of the native getElementById function. If MooTools didn’t override this function, the results
would not be the same objects: document.id would return a MooTools Element instance, while
getElementsById would return a native HTMLImageElement object.

As I mentioned, document.id is a very popular function, and it’s not uncommon to use it more than
once in a single program. Because of this, MooTools provides a shortcut, called the dollar selector
function: $:

<html>
 <head>

CHAPTER 8 ■ ELEMENTS

201

 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log($('hello').get('tag')); // 'img'
 console.log(document.id('hello') === $('hello')); // true
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div>
 <p>more text here</p>
 </div>
 </body>
</html>

Both $ and document.id return the same element in this example, and you can use $ as a
replacement for document.id in most instances.

The use of the dollar symbol ($) as a function shortcut is a popular practice, and most JavaScript
frameworks include a similar function. In fact, some libraries—JQuery being the most notable
example—actually depend on $ by default. Unfortunately, this creates issues with library
interoperability: loading two different libraries in a single page would lead to one library overriding the $
function of the other library.

In order to add some interoperability, MooTools includes a feature called dollar-safe mode:
MooTools automatically checks whether a $ function has already been declared, and if so, it won’t
declare its own $ function. This way, MooTools won’t override the $ function of other libraries.

Of course, this might not be the behavior you want. Because document.id is used often, you might
want to have the $ shortcut ready for use all the time. Some older MooTools scripts also depend on the
MooTools $ function and it will lead to errors if they get another library’s $ function instead. You can
force the MooTools $ function by adding a declaration as a prelude to your scripts:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 // ensure that $ is MooTools'..
 window.$ = document.id;

 window.addEvent('domready', function(){
 console.log($('hello').get('tag')); // 'img'
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div>

CHAPTER 8 ■ ELEMENTS

202

 <p>more text here</p>
 </div>
 </body>
</html>

By declaring window.$ = document.id, you’ll be able to force the use of the MooTools document.id
function as the $ function.

By doing this however, you’ll override the $ function of any other library loaded along with
MooTools, which may affect interoperability with other scripts. If you simply want to use the $ function
for your own scripts, you can use a single-execution function to localize $:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 // localize the $ function
 (function($){

 window.addEvent('domready', function(){
 console.log($('hello').get('tag')); // 'img'
 });

 })(document.id);
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div>
 <p>more text here</p>
 </div>
 </body>
</html>

■ Note Most JavaScript developers agree, though, that using multiple JavaScript frameworks in a single page is a
recipe for disaster. In general, JavaScript frameworks were designed to be used separately, and MooTools is no
exception. Because it's strongly recommended to avoid using MooTools with another framework on a single page,

most of the issues with the dollar-safe mode will likely never pop up. However, if you're developing scripts that
you'll be distributing to other users, you should use document.id instead of the dollar function since you can't be

sure your end users will be using MooTools alone.

CHAPTER 8 ■ ELEMENTS

203

CSS-Based Selectors
The MooTools document.id function and the native DOM API document.getElementById function are
considered simple selector functions: you pass them a string id and they return the element with that
particular id. However, the native DOM API provides two simpler selector functions:
document.getElementsByTagName and document.getElementsByClassName:

<html>
 <head>
 <title>test</title>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>
 <script>
 console.log(document.getElementsByTagName('p').length); // 3
 console.log(document.getElementsByClassName('viewable').length); // 2
 </script>
 </body>
</html>

The document.getElementsByTagName function takes one argument, tag, and returns all elements of
the corresponding tag, while document.getElementsByClassName also takes a single argument, class, and
returns all elements with the corresponding class. In our example, we used getElementsByTagName to get
all paragraph elements and we used getElementsByClassName to get all elements that have the class
viewable.

HTML semantics allow multiple instances of a tag type in a single document, as well as using a
single class attribute value for multiple elements. Because of this, getElementsByTagName and
getElementsByClassName don’t return single elements—they return instances of NodeList. A NodeList is a
read-only array-like object containing the elements that were gathered by the selector function. As we
saw in the example above, our code received two NodeList instances, and we were able to determine the
number of elements in the NodeList by the length method.

MooTools doesn’t override these two functions, but instead unifies them in a single function: the
double-dollar function, or $$. This function takes a single argument, selector, and returns all the
elements that correspond to the selector. For example, we can use $$ to replace
document.getElementsByTagName:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log($$('p').length); // 3
 });
 </script>
 </head>

 <body>

CHAPTER 8 ■ ELEMENTS

204

 <p>some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>
 </body>
</html>

Instead of calling document.getElementsByTagName('p') in this example, we simply used $$('p') and
it returns similar results. Checking the length property of the returned value, we see that the number of
elements returned is 3, which is consistent with our previous getElementsByTagName example.

Replacing getElementsByClassName though, is a bit different because you can’t just pass the class
name:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log($$('viewable').length); // 0
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>
 </body>
</html>

Calling $$('viewable') gives back a return value with a length property of 0—which means that no
elements were selected. This is because the $$ function’s argument, the string selector, is expected to be
a CSS Selector.

The semantics of CSS selectors is a complex subject in itself, and we’ll learn more about them in
Chapter 9 when we discuss the selector engine. For now, it is enough to understand that an identifier
such as p or viewable is interpreted in CSS selector semantics as a type selector. Type selectors
correspond to particular HTML tags. When we use $$('p'), it returned all elements with the tag p. In the
same way, $$('viewable') will return all elements with the tag viewable—which, in the case of our
example, corresponds to no elements.

In order to use $$ to select elements with the particular classname, you must prefix your classname
with a period:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log($$('.viewable').length); // 2

CHAPTER 8 ■ ELEMENTS

205

 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>
 </body>
</html>

Notice that we used the argument '.viewable' instead of 'viewable' like in the previous example.
By prepending a period to the identifier, we tell $$ that we’re looking for a class and not an element. The
result is that $$('.viewable') returns a value with the length property of 2, which is what we’d expect.

The $$ function can also be used to retrieve elements using their ids by prepending the selector id
with a hash symbol:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log($$('#hello').length); // 1
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>
 </body>
</html>

Here we called $$ with the argument '#hello', which means we want to select all elements with the
id “hello”. Take note, though, that while they do the same thing here, document.id and $$ are not
interchangeable: the former always returns a single element, while the latter always returns a collection
of elements—a collection that contains a single element in this case.

While getElementsByTagName and getElementsByClassName return NodeList instances, the $$ function
returns another array-like object called Elements. As its name implies, Elements is a collection of
MooTools Element objects. We’ll learn more about Elements later, but right now it’s important to keep in
mind that the selector functions in MooTools that return a collection of elements will return an Elements
instance and not a NodeList.

Unlike document.id, which is idempotent, the $$ function will always return a new instance of
Elements, even when called with the same arguments:

CHAPTER 8 ■ ELEMENTS

206

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log($$('.viewable') === $$('.viewable')); // false
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>
 </body>
</html>

Our snippet $$('.viewable') === $$('.viewable') is false here because the result of a $$ call will
always return a new Elements instance, and therefore these two calls produce different objects. In the
same vein, passing the result of a previous $$ call to another, like $$($$('.viewable')), won’t return the
same Elements instance, unlike document.id, which returns the same element no matter how many times
it’s applied.

Passing a single element—such as the result of document.id or $—to $$ will produce a new Elements
instance with a single item, but passing an Elements instance—such as the result of $$—to document.id
or $ will produce null:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var img = $('hello');
 var viewable = $$('viewable');

 console.log($$(img).length); // 1
 console.log($$(img)[0] === img); // true

 console.log($(viewable)); // null
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>

CHAPTER 8 ■ ELEMENTS

207

 </body>
</html>

So far we’ve used the id, the tag, and the class selectors, but not together. The $$ function also allows
for the use of combined CSS selectors, which use combinations of all of these as well as more complex
CSS selectors:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){

 // all images with the class viewable..
 console.log($$('img.viewable').length); // 1

 // all images that have the src attribute
 console.log($$('img[src]').length); // 2

 // all images with the src attribute 'hi.png'
 console.log($$('img[src="hi.png"]').length); // 1

 // all elements that have class attributes
 console.log($$('[class]').length); // 2

 // all paragraphs and images
 console.log($$('p, img').length); // 5

 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>
 </body>
</html>

We’ll learn more about complex CSS selectors in Chapter 9 when we discuss Slick, the selector
engine that MooTools uses. For now, it’s enough to remember that $$ accepts not only simple selectors
but complex selectors as well.

Aside from $$, MooTools also provides two other selector functions that accept CSS selector strings
as arguments. The first one is getElements, which is actually an Element method. When invoked from an
element, getElements returns the elements inside the element that match the selector string. To
illustrate, let’s look at this snippet:

<html>
 <head>
 <title>test</title>

CHAPTER 8 ■ ELEMENTS

208

 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log($('wrapper').getElements('p').length); // 2
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <div id="wrapper" class="viewable">
 <p>more text here</p>
 <p>another text.</p>
 </div>
 </body>
</html>

First we use $('wrapper') to select the element with the id wrapper, which is our div element. Next,
we call the getElements method of our div element and pass the argument 'p', and we get back an
Elements instance that contains the two paragraph elements inside our div element. To translate this to
English, our code says, "From the element with the id 'wrapper', get all elements with the tag 'p'."

The great thing about getElements is that it’s an Element method: you can use it to limit the search to
only a part of the DOM Tree. In our example, the search is limited to only the contents of our div, which
means that the search will be faster.

You can actually use getElements to replace $$ by calling document.getElements, which searches the
whole document:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log($$('p').length); // 3
 console.log(document.getElements('p').length); // 3
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <div id="wrapper" class="viewable">
 <p>more text here</p>
 <p>another text.</p>
 </div>
 </body>
</html>

Another element method, getElement, works like getElements—but instead of returning an Elements
instance, it returns a single Element that matches the selector string.

CHAPTER 8 ■ ELEMENTS

209

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log($('wrapper').getElement('p').get('text')); // 'more text here'
 });
 </script>
 </head>

 <body>

 <p>some text.</p>
 <div id="wrapper" class="viewable">
 <p>more text here</p>
 <p>another text.</p>
 </div>
 </body>
</html>

Like our getElements example, we pass the argument 'p' as our selector string. This time, though,
we use the method getElement, which returns only the first matching element. In this case, we confirm
this by getting the text contained by our paragraph, which is 'more text here' as expected.

■ Note It is worth noting that the getElement and getElements functions act like the MooTools counterparts of
the native querySelector and querySelectorAll functions, respectively. However, these two native methods
have limited browser support, unlike the MooTools methods that work across all supported browsers. Keep in

mind, though, that they are not interchangeable within MooTools.

Both getElements and getElement have a trick up their sleeves: they understand CSS combinators as
prefixes. Combinators are special markers that join two simple selectors, and we’ll learn more about
them in Chapter 9. By default, getElement and getElements use the descendant combinator when no
combinator-prefix is present in the argument passed to them. The descendant selector is marked by a
space in between two simple selectors, and it’s used to select elements within a particular element.
Doing $('wrapper').getElements('p'), for example, is the same as doing $$('#wrapper p').

But to illustrate how combinator-prefixes work with these two functions, we need a more complex
combinator as an example. The adjacent sibling combinator, denoted by +, is used to select an element
that is an adjacent sibling of an element. Let’s take a look at how we can use it:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log($('hello').getElement('+').get('src')); // 'hi.png'
 });

CHAPTER 8 ■ ELEMENTS

210

 </script>
 </head>

 <body>

 <p>some text.</p>
 <div id="wrapper" class="viewable">
 <p>more text here</p>
 <p>another text.</p>
 </div>
 </body>
</html>

First we select the element with an id “hello”, which is the first image element in our DOM Tree.
We then call the getElement method of this element, passing the adjacent sibling selector '+' as an
argument. This returns the first adjacent sibling of our element, which is the second image element in
this example. We confirm this by calling the get method of the element returned by getElement to
retrieve the value of its src attribute.

Relation-Based Selectors
The last set of selector functions select elements based on their relation to a particular element. These
selector functions are methods of the Element type, and are therefore available to all element objects.

The first ones are the sibling selectors, getPrevious and getNext, which return the previous and next
sibling element of an element. Both functions take an optional selector argument, which is used to
match the sibling. When invoked without an argument, they return the adjacent sibling of the element.

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var el = $('img2');

 // without arguments
 console.log(el.getPrevious().get('id')); // 'img1'
 console.log(el.getNext().get('id')); // 'div2'

 // with selector arguments
 console.log(el.getPrevious('div').get('id')); // 'div1'
 console.log(el.getNext('.textual').get('id')); // 'p2'
 });
 </script>
 </head>

 <body>
 <p id="p1" class="textual">Hello!</p>
 <div id="div1"></div>

 <div id="div2"></div>

CHAPTER 8 ■ ELEMENTS

211

 <p id="p2" class="textual">Hi!</p>
 </body>
</html>

The getPrevious and getNext methods have “greedy” versions, getAllPrevious and getAllNext,
which return an Elements instance instead of a single element. Like their non-greedy counterparts, these
two methods also accept an optional selector argument that is used to match the elements.

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var el = $('img2');

 // without arguments
 console.log(el.getAllPrevious().length); // 3
 console.log(el.getAllNext().length); // 2

 // with selector arguments
 console.log(el.getAllPrevious('div').length); // 1
 console.log(el.getAllNext('.textual').length); // 1
 });
 </script>
 </head>

 <body>
 <p id="p1" class="textual">Hello!</p>
 <div id="div1"></div>

 <div id="div2"></div>
 <p id="p2" class="textual">Hi!</p>
 </body>
</html>

The getPrevious and getNext methods return either a single element or null if there is no sibling
found, while getAllPrevious and getAllNext always return an Elements instance.

The getSiblings method is like a combination of both getAllPrevious and getAllNext methods,
and returns all siblings regardless of position:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var el = $('img2');

 // without arguments
 console.log(el.getSiblings().length); // 5

 // with selector arguments
 console.log(el.getSiblings('.textual').length); // 2

CHAPTER 8 ■ ELEMENTS

212

 });
 </script>
 </head>

 <body>
 <p id="p1" class="textual">Hello!</p>
 <div id="div1"></div>

 <div id="div2"></div>
 <p id="p2" class="textual">Hi!</p>
 </body>
</html>

The next set of relation-based selector functions comprises the children selectors, the first of which
is the getChildren method of Element instances. Like the previous relation-based selector functions,
getChildren can take an optional selector string argument to limit the return value. When invoked
without an argument, it returns all child elements regardless of type.

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var el = $('wrapper');

 // without arguments
 console.log(el.getChildren().length); // 4

 // with selector argument
 console.log(el.getChildren('img').length); // 2

 // getChildren versus getElements
 console.log(el.getElements('*').length); // 6
 });
 </script>
 </head>

 <body>
 <div id="wrapper">
 <div id="hello">
 <p>Hello World!</p>
 </div>

 <div id="hi">
 <p>Hi Universe!</p>
 </div>

 </div>
 </body>
</html>

Notice the last line in our code where we used the getElements method instead of the getChildren
method. Calling getElements with the universal selector returns an Elements collection with six items,

CHAPTER 8 ■ ELEMENTS

213

but getChildren only returns four items. This is because getChildren selects child nodes while
getElements selects descendant nodes by default: getChildren does not count the two paragraph
elements inside the divs since they’re descendants of wrapper and not direct child nodes.

The last two children selector functions are getFirst and getLast, which respectively return the first
and last child of an element. Like the other functions so far, you can pass an optional selector string
argument to limit the selection.

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var el = $('wrapper');

 // without arguments
 console.log(el.getFirst().get('id')); // 'hello'
 console.log(el.getLast().get('id')); // 'img2'

 // with selector argument
 console.log(el.getFirst('img').get('id')); // 'img1'
 console.log(el.getLast('div').get('id')); // 'hi'
 });
 </script>
 </head>

 <body>
 <div id="wrapper">
 <div id="hello">
 <p>Hello World!</p>
 </div>

 <div id="hi">
 <p>Hi Universe!</p>
 </div>

 </div>
 </body>
</html>

And finally, we have the parent selector function, getParent, which returns the parent element of a
particular element. When called without an argument, getParent returns the direct parent of the
element, while calling it with a selector argument returns the first parent (direct or indirect) that
satisfies the selector matcher.

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var el = $('world');

 // without an argument
 console.log(el.getParent().get('tag')); // 'p'

CHAPTER 8 ■ ELEMENTS

214

 // with selector arguments
 console.log(el.getParent('section').get('id')); // 'greeting'
 console.log(el.getParent('div').get('id')); // 'wrapper'
 });
 </script>
 </head>

 <body>
 <div id="wrapper">
 <section id="greeting">
 <p>
 Hello <em id="world">World!
 </p>
 </section>
 </div>
 </body>
</html>

The getParent selector function also has a greedy version, getAllParents, which works like the

getParent method but returns all parents of an element as an Elements collection.

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var el = $('world');

 // without an argument
 console.log(el.getParents().length); // 6

 // with selector arguments
 console.log(el.getParents('div, p').length); // 3
 console.log(el.getParents('div').length); // 2
 });
 </script>
 </head>

 <body>
 <div>
 <div id="wrapper">
 <section id="greeting">
 <p>
 Hello <em id="world">World!
 </p>
 </section>
 </div>
 </div>
 </body>
</html>

CHAPTER 8 ■ ELEMENTS

215

You’ll notice that the getParent method, when called without an argument, returned an Elements
collection with six members. We get six and not five because the root element, <html> is also counted as
a parent.

An Elemental Segue
Before we move on, we need to clear up some things about Element objects and Elements objects. As I’ve
mentioned in passing, an Element object refers to a single element node in the DOM Tree, while an
Elements object is an array-like collection that represents a group of Element objects. We’ll have an in-
depth look at these types in a later section, so right now we’ll discuss some important details regarding
their usage.

The first one involves the use of Element and Elements for existence checks. All MooTools selector
functions that return a single element—like document.id or getElement—will return either an Element
instance, or null. This makes it easy to check for the existence of an element:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var el1 = document.getElement('div');
 console.log(el1 ? 'el1 exists!' : 'el1 does not exist!'); // 'el1 exists!'

 var el2 = document.getElement('section');
 console.log(el2 ? 'el2 exists!' : 'el2 does not exist!'); // 'el2 does not
exist!'
 });
 </script>
 </head>

 <body>
 <p id="para1">some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>
 </body>
</html>

For our first existence check, we use document.getElement to return the first div in our document.
Because this div element exists, the function returns an element object and our console.log call outputs
'el1 exists!'. Our second check, on the other hand, tries to select the first section element in the
document. Since there are no section elements in our document, the function returns null and
console.log outputs “el2 does not exist!”. So for functions that return single elements or null,
checking the existence of an element is simply a matter of a falsy comparison.

Functions that return Elements objects, in contrast, aren’t as straightforward. These functions—like
$$ and getElements—always return an Elements collection, regardless of whether it did or did not find
elements. This means that if no elements are found, you won’t get back a null value, but simply an
Elements instance containing no elements. Now if you recall our previous discussion on types, we
learned that all array-like objects—empty or not—are truthy values, which means that a simple truth
check like we did above won’t suffice.

CHAPTER 8 ■ ELEMENTS

216

Instead, of using Boolean comparison, we need to access the length property of Elements objects to
determine whether the object is empty. Thus, we could do the following:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var els1 = document.getElements('div');
 console.log(els1.length > 0 ? 'els1 has members!' : 'els1 is empty!'); //
'els1 has members!'

 var els2 = document.getElements('section');
 console.log(els2.length > 0 ? 'els2 has members!' : 'els2 is empty!'); //
'els2 is empty!'
 });
 </script>
 </head>

 <body>
 <p id="para1">some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>
 </body>
</html>

Here we compared the length property of the returned Elements objects to see if they’re greater than
0. If the length is greater than 0, it implies that our collection isn’t empty, and the opposite if it’s not
greater than 0.

Elements also has a very interesting interface. We’ve seen that a single element object has its own set
of special methods, like get or destroy. These methods are inherited by element objects from
Element.prototype. The interesting thing about these methods is that they can be used with an Elements
instance as you would in a single element object.

To illustrate, we’ll use one of the basic element methods, get, to return the text of an element:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 console.log($('para1').get('text')); // 'some text.'
 });
 </script>
 </head>

 <body>
 <p id="para1">some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>

CHAPTER 8 ■ ELEMENTS

217

 </body>
</html>

First we select our paragraph element using the $ function, as in $('para1'). This returns the
paragraph element, whose get method we invoke with the argument 'text' to retrieve the text inside the
element. This method returns a string, 'some text' which corresponds to the text of our paragraph.

Nothing surprising so far. But what happens if instead of a single element, we invoke the get
method of an Elements collection?

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var result = $$('p').get('text');
 console.log(result); // ['some text.', 'another text.', 'more text here']
 console.log(typeOf(result)); // 'array'
 });
 </script>
 </head>

 <body>
 <p id="para1">some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>
 </body>
</html>

We select all the paragraphs in the document using the $$ function, and then we call the get method
of the returned Elements object, storing it in our result variable. When we log the result variable, it
shows us that the get method doesn’t return a string like our previous example. Instead, it returns an
array of strings.

The basic rule is that when an Element method is called on an Elements instance, it will return an
array of results instead of a single return value. The code above could be done like so:

<html>
 <head>
 <title>test</title>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var result = [];

 $$('p').each(function(element){
 result.push(element.get('text'));
 });

 console.log(result); // ['some text.', 'another text.', 'more text here']
 console.log(typeOf(result)); // 'array'
 });
 </script>
 </head>

CHAPTER 8 ■ ELEMENTS

218

 <body>
 <p id="para1">some text.</p>
 <p>another text.</p>
 <div class="viewable">
 <p>more text here</p>
 </div>
 </body>
</html>

Calling an Element method on an Elements instance will iterate over each element in the Elements
collection and then invoke that particular method on each element. Therefore, doing
$$('p').get('text') is technically the same as invoking the get method of each element in the
collection and storing the value in an array.

A tricky thing to consider is when calling an Element method that returns a collection object on an
Elements instance. If we do $('id').getParents(), for example, the method will return an Elements
collection containing all the parent element objects of the element with the id “id”. If we call
$$('a').getParents(), on the other hand, it will return an array containing several Elements object, each
representing the parent elements of each anchor element in the document. This could get confusing
really fast.

To avoid the complexity of nested collections, it is recommended you perform operations like this
by iterating over each element in the Elements object. You can easily do this using the each method of
Elements. So instead of doing $$('a').getParents(), you could do:

$$('a').each(function(element){
 element.getParents();
});

The each function of an Elements object is similar to the each function of arrays: it takes a single
argument, callback, which is a function with the signature: function(item, index, collection). It then
iterates over each element in the collection and invokes the callback function, passing in the
appropriate arguments.

Interestingly, MooTools uses the each method internally to transform Element methods into
methods that can be used on Elements. We’ll see how MooTools does this when we look at these types
later in this chapter.

Moving Elements Around
Now that we know how to select elements from the DOM Tree, the next thing we need to learn is how to
move them around. However, since we’re moving away from simply selecting elements to actually
changing them, it is important that we first consider the DOM Tree’s relationship to the rendered page.

The DOM Tree that’s accessible for our use via the JavaScript DOM API isn’t just an abstraction of
the page, it is a true representation of the document. Any changes we make in the DOM Tree are
reflected immediately and will be apparent to the user interacting with your page. For instance,
changing the src attribute of an image element or changing the styles of a paragraph will immediately
trigger a reflow and a repaint, which then updates the displayed page. Changing the property of an
element doesn’t just affect the DOM Tree, it also affects what your users will see on their screen.

It’s important to keep this idea in mind when working with the DOM Tree and elements in general.
Some operations performed on elements will be silent and will not show any visible change on the page,
but most actions will trigger a noticeable change. Remembering this helps us make informed decisions
as to how to craft our code, and will make our programs better.

CHAPTER 8 ■ ELEMENTS

219

inject
MooTools provides several Element methods for moving elements in and around the DOM Tree, the
most popular being inject. It has two forms, the simpler of which involves passing the id of the element
to where the subject element will be moved as an argument. For example, suppose we have this section
in our DOM Tree:

<div id="items"></div>
Home Page

Now we want to move the link inside the empty div. We can use the inject method like so:

var link = $('home-link');
link.inject('items');

First we select our link element using $('home-link') and store it in a variable link. We then call
the inject method of the element, passing in the id of our div, ‘items’, as a string. As a result, the DOM
Tree now looks like this:

<div id="items">
 Home Page
</div>

By calling the inject method, we turn our link object—which was originally a sibling of the div—
into a child of the div object. The inject method therefore takes the subject (i.e., the element from which
the method was called) and moves it into the target (i.e., the element passed as an argument to inject).

■ Note We'll be using the previous form for our examples from now on. Instead of showing the whole HTML
source, we'll only show snippets that represent sections in our DOM Tree. All of the HTML source code in our
examples should go into the <body> tag, while all our JavaScript source code is supposed to go into a <script>

tag in the head, wrapped in a DOMReady handler. We're using this form for two reasons: to keep our examples
shorter and to work around the fact that the actions modify the DOM Tree as an object and not the actual HTML
source. That final reason is important: modifying the DOM Tree does not actually change the HTML source code,

only the object representation of it (i.e., the DOM Tree itself).

The inject method uses document.id internally, which is why we can simply pass a string id as an
argument. But one thing we learned about document.id is that it’s idempotent: passing an element
object to document.id will return the same element object. This means that we can also do the following
to achieve the same results:

var link = $('home-link'),
 div = $('items');

link.inject(div);

Instead of passing a string argument, we simply pass an actual element object that will be the new
parent of our link object. The resulting DOM Tree will be the same:

CHAPTER 8 ■ ELEMENTS

220

<div id="items">
 Home Page
</div>

The second form of the inject method involves passing a second argument called where. This is a
string argument that tells inject exactly where to place the element. Suppose we have the following
section in our DOM Tree:

<div id="items">
 Profile
 Contact
</div>
Home Page

We want to move our “home-link” link element into the “items” div, but we want it to go on the top
before any other element. If we do a simple inject:

var link = $('home-link');
link.inject('items');

We'll get this:

<div id="items">
 Profile
 Contact
 Home Page
</div>

Our home-link element is injected into the bottom of the items div, which is not what we wanted.
However, we can use the second form of the inject method by passing a second argument, where:

var link = $('home-link');
link.inject('items', 'top');

This will produce a result like this:

<div id="items">
 Home Page
 Profile
 Contact
</div>

By specifying the where argument as 'top', we’re able to control the inject method’s positioning of
the element. By default, the inject method uses the where option 'bottom' when no argument is
specified, which is why it usually inserts the subject element as the last child of the target.

Aside from 'top' and 'bottom', you can also use two other values as arguments to where: 'before'
and 'after'. These two options alter the behavior of inject such that the method no longer moves the
subject element to inside the target, but moves the subject around the target as a sibling.

To illustrate, let’s take the original DOM Tree section:

<div id="items">
 Profile
 Contact
</div>
Home Page

Now let's use 'before' as the argument:

CHAPTER 8 ■ ELEMENTS

221

var link = $('home-link');
link.inject('items', 'before');

Our resulting DOM Tree section will now look like this:

Home Page
<div id="items">
 Profile
 Contact
</div>

Instead of moving the link inside the items div, the inject method moved the link object so that it
comes before the items div. On the other hand, if we use the 'after' option:

var link = $('home-link');
link.inject('items', 'after');

Our resulting DOM Tree section will remain the same:

<div id="items">
 Profile
 Contact
</div>
Home Page

Because the link object is already after the items div, calling link.inject('items', 'after') has no
effect.

The 'before' and 'after' options may not seem that useful in these examples, but they can actually
help in fine-tuning your inserts. Suppose we have the following section:

<div id="items">
 Home Page
 Profile
 Contact
</div>
Projects

Now we want to move the projects-link element into the items div, but we want it to be the second
element inside items. We can’t use 'top' or 'bottom' because they insert elements at the topmost and
bottommost area of the target, but we can use 'after':

var link = $('projects-link');
var links = $('items').getElements('a');

link.inject(links[0], 'after');

Right after we select our projects-link element, we use the getElements method to select all the links
inside out items div. Now instead of injecting projects-link right inside our items div, we tell the inject
function to insert the subject element after the first link element inside items—which we reference by
accessing the element via its numeric index (collections are array-like, remember?). The resulting
section looks like this:

<div id="items">
 Home Page
 Projects
 Profile
 Contact
</div>

CHAPTER 8 ■ ELEMENTS

222

Aside from showing us a great way to use the 'after' option, this example also gives us a new
insight about moving elements: it’s not just about parents and children. For the most part, a lot of DOM
element movement is concerned with inserting elements into other elements but there are also times
when you’ll want to do sibling-based insertions, as we did above.

Like all Element methods, inject can also be used with an Elements instance. Suppose we have these
two lists:

<ul id="first">
 Item A
 Item B
 Item C

<ul id="second">

To transfer all the list items from the first list to the second list, all we have to do is to select those
items and use inject:

var items = $('first').getElements('li');
items.inject('second');

This will move items between lists, producing the following DOM Tree section:

<ul id="first">

<ul id="second">
 Item A
 Item B
 Item C

An important thing to note, though is that you can’t use an Elements instance as the target for
inject. Because inject uses document.id internally, passing an Elements instance to will result in a null
value as the target and will therefore throw an error.

replaces
The next movement method is called replaces, and it’s used to replace one element with another.

<div>
 Home
</div>

Profile

Now we want to replace the home-link element with the profile-link element, so we use replaces:

var link = $('profile-link');
link.replaces('home-link');

Like the inject method, the replaces method also uses document.id internally, which means we can
pass it either a string id or an actual element—but not an Elements instance. Running the script above,
our DOM Tree will now look like this:

CHAPTER 8 ■ ELEMENTS

223

<div>
 Profile
</div>

The profile-link element was moved to the original position of the home-link element, thereby
replacing that element. But what happens to the home-link element? The short answer is that it gets
destroyed and removed from the DOM Tree. This is an important thing to remember when using
replaces: the target element that’s replaced by the subject will be removed and destroyed—and that
includes any elements inside that target element.

It might seem that using replaces isn’t a good idea, especially because it tends to destroy elements.
However, when we use it with the element creation techniques we’ll discuss in the next section, it’ll
make a lot more sense: you’ll see that you can use replaces to update elements in the DOM Tree with
new ones.

One more caveat with replaces, though: don’t use it for an Elements collection with more than one
item or you’ll get errors. This is because replaces removes the original element from the DOM, thereby
turning it into a null value. For example, if we do $$('section').replaces('main-div'), the first section
element will be used to replace the main-div element and main-div will be destroyed. The same process
will be called for the next section element, but since main-div is now destroyed, it will try to replace a
null value with an element—resulting in an error. My advice is to use replaces for single element-with-
element replacements.

wraps
Next on our list is another element method called wraps. As its name implies, wraps takes the subject
element and wraps the target element with it:

Home
<div id="items"></div>

Now we’ll use wraps to make the items div enclose the home-link element:

var items = $('items');
items.wraps('home-link');

Our resulting section will now look like this:

<div id="items">
 Home
</div>

Like inject and replaces, wraps also uses document.id internally so you can pass string ids or
element objects (but again, not Elements instances). And, like inject, wraps can also take a second
argument so you can specify where the target element will be inserted. This is useful when your
wrapping element already has children, like so:

Home
<div id="items">
 Profile
</div>

By default, wraps uses 'bottom' as the value for the second argument, but you can also pass the
other option values such as 'top':

var items = $('items');
items.wraps('home-link', 'top');

CHAPTER 8 ■ ELEMENTS

224

This produces the following DOM Tree section as a result:

<div id="items">
 Home
 Profile
</div>

What’s interesting with the wraps method is that it is similar to replaces: the subject element
replaces the target element by taking its position in the DOM Tree. Unlike replaces however, wraps does
not discard the target element but turns it into a child node of the subject. In the examples above, the
items div element was moved to the original position of the home-link element, but home-link wasn’t
removed from the DOM Tree. Instead, it was moved inside the items div.

This behavior has weird consequences when wraps is used on an Elements instance. Take, for
example, the following section:

Home

<div id="div1"></div>
<div id="div2"></div>
<div id="div3"></div>

Now let’s call wraps on a collection of divs:

var divs = $$('div');
divs.wraps('home-link');

The resulting DOM Tree section will look like this:

<div id="div1">
 <div id="div2">
 <div id="div3">
 Home
 </div>
 </div>
</div>

To understand why we get this result, we need to remember that the Elements versions of Element
methods are modified so they can be used with collections. This modification involves adding an
internal loop that applies the method to each item of the collection. Our wraps code above can therefore
be rewritten like this:

var divs = $$('div');
divs.each(function(div){
 div.wraps('home-link');
});

In the first iteration of the loop, the first div object, div1, is inserted in the original position of the
home-link element, thereby replacing it. The home-link element is then inserted inside div1, turning it
into a child node of the div. The loop then continues, and the second div, div2, is used to replace home-
link. Because home-link is now inside div1, div2 is also injected inside div1 first so that it can take the
new position of home-link and then home-link is again injected into div2. The process is repeated a third
time for div3, and the final result is what we see in the DOM Tree section above. Because of this
cascading behavior, it is advised not to use wraps for Elements instances.

CHAPTER 8 ■ ELEMENTS

225

grab
The three movement methods we’ve seen so far—inject, replaces, and wraps—all follow the same
pattern: the element from where the methods were called (the subject) is the element that’s going to be
moved to another location (the target). These methods are therefore nominative methods because the
element becomes the subject of the method. However, MooTools has two other methods that are
accusative. In this case, the element from where the methods are called becomes the target and the
arguments passed to the methods are the ones that become the subject of the movement. That sounds
more complicated than it is, so let’s look at a few examples to make it clear.

The first of these two accusative methods is grab, which works like inject but instead of moving the
subject, it moves the target.

<div id="items"></div>
Home Page

With this example, we can move home-link to within items using grab:

var items = $('items');
items.grab('home-link');

This produces the following section in the DOM Tree:

<div id="items">
 Home Page
</div>

The grab method moved the home-link element inside the items div. This illustrates why we call
grab accusative: the subject of our code, items, isn’t the one being moved. Instead, the target—which in
our example is home-link—is the one that’s inserted into the subject. This is the reverse of how
nominative methods work. With a nominative method like inject, if we do $('items').inject('home-
link'), the items div will be inserted inside home-link. However, this grab code would be equivalent to a
reversed form of inject: $('home-link').inject('items').

Like inject, grab uses document.id internally, so you can pass a string id or an element object as an
argument (but not an Elements instance). The grab method also accepts where arguments, such as
‘bottom’ and ‘top’.

The second accusative method, and the last movement method, is called adopt. It is similar to grab,
but it allows for multiple arguments: you can pass string ids, element objects, or even Elements
instances. Revisiting our earlier two-list example:

<ul id="first">
 Item A
 Item B
 Item C

<ul id="second">

We can move the items from the first list to the second using adopt:

var listItems = $('first').getElements('li');
$('second').adopt(listItems);

The result is as we’d expect:

<ul id="first">

CHAPTER 8 ■ ELEMENTS

226

<ul id="second">
 Item A
 Item B
 Item C

Unlike all other methods so far, adopt allows for several elements at once, so passing an Elements
instance will not result in an error. It does not support where arguments, but it can take more than one
argument. This allows us, for example, to move items from several places instantly:

<ul id="first">
 Item A
 Item B
 Item C

<ul id="second">
 Item D
 <li id="itemE">Item E

<ul id="third">
 Item F
 Item G

<ul id="final">

We want to move all list items from the first and third lists into the final list and we also want to
move the list item with the id “itemE” to the final list. We can do this quickly using adopt:

var firstItems = $('first').getElements('li');
var thirdItems = $('third').getElements('li');

$('final').adopt(firstItems, thirdItems, $('itemE'));

And here’s the result:

<ul id="first">

<ul id="second">
 Item D

<ul id="third">

<ul id="final">
 Item A
 Item B
 Item C
 Item F
 Item G

CHAPTER 8 ■ ELEMENTS

227

 <li id="itemE">Item E

With a single adopt call, we were able to move several elements from different sources at once. This
makes adopt ideal for multiple transfers between elements.

■ Note The adopt method isn’t just fast in terms of code: it’s also fast internally because it uses a special DOM
feature called document fragments. A document fragment is like a mini DOM Tree that can be used to store
elements prior to inserting them into the DOM. The amazing thing about this feature is that a fragment can be

inserted directly into the DOM without having to loop through its contents. This makes for very fast inserts—

something that's important for large element collections.

Modifying Element Objects
Aside from moving them around, another common operation on elements is modifying their attributes
and styles. MooTools provides both separate and unified APIs for these processes, and we’ll look at the
methods from these APIs one by one.

Working with Attributes
The first attribute method is setProperty, which is used to add or modify element attributes. It takes two
arguments: attribute and value, which are the attribute being set and the value it will be set to.

Home

Here we have a simple link element. We want this link to open in a new page, so we decide to add a
target attribute to it and point it to _blank. We can do this using setProperty:

var link = $('home-link');
link.setProperty('target', '_blank');

This will add a new target attribute to our element, like so:

Home

When the attribute argument is an attribute that does not exist yet on the element, setProperty will
add this new attribute to the element. However, if the element already has that attribute defined,
setProperty will update the value of the attribute. This means we can change the href of our original link
like so:

var link = $('home-link');
link.setProperty('href', 'otherhome.html');

This updates our link’s href property:

Home

The setProperty method is not limited to attributes that are considered "valid" in the sense that
they’re included in the HTML specs. You can use any attribute you’d like, even weird ones. The snippet

CHAPTER 8 ■ ELEMENTS

228

$('home-link').setProperty('super-weird-attrib', 'wow'), for example, is just as "valid" as our other
example with setProperty.

You can define multiple properties using the setProperties method, which takes a single object
argument instead of two string arguments:

var link = $('home-link');
link.setProperties({
 'href': 'otherhome.html',
 'target': '_blank',
 'super-weird-attrib': 'wow'
});

This will update our original example to produce this:

Home

The getProperty method is the accessor equivalent of setProperty. It takes a single string argument,
attribute, and returns the corresponding value of the attribute as a string for existing attributes and null
for nonexistent attributes.

var link = $('home-link');
console.log(link.getProperty('target')); // '_blank'
console.log(link.getProperty('silliness')); // null

It also has a multiple-argument equivalent, getProperties, that accepts several attribute arguments
and returns a map of the values:

var link = $('home-link');
console.log(link.getProperties('target', 'silliness')); // {target: '_blank', silliness: null}

The final attribute method is removeProperty, which is used to remove an attribute from an element.
It takes a single argument, attribute, which is the name of the attribute to remove:

var link = $('home-link');
console.log(link.getProperty('target')); // '_blank'

// remove the target attribute
link.removeProperty('target');

console.log(link.getProperty('target')); // null

An interesting thing to note is that if you pass null as the value argument for the setProperty
method, setProperty will behave like removeProperty:

var link = $('home-link');
console.log(link.getProperty('target')); // '_blank'

// remove the target attribute
link.setProperty('target', null);

console.log(link.getProperty('target')); // null

This works because setProperty checks the value argument and if it is null, it calls removeProperty
automatically. The check is actually a non-existence check, which means simply that calling
setProperty('target') will trigger removeProperty('target'), because the value argument is undefined
(and therefore equal to null).

CHAPTER 8 ■ ELEMENTS

229

Working with Styles
While attributes are a straightforward topic, element styles are much more complicated because they
involve a discussion of browser style rendering and CSS styles. In order to keep our focus, we’ll defer the
deep discussion on styles to Chapter 12, when we talk about animation and the Fx classes. For now, we’ll
talk about the simple style-related methods: setStyle and getStyle.

The setStyle method takes two arguments, property and value. The property argument is a string
that corresponds to the specific style property that will be set, while the value argument is the value that
will be used for the property.

<div id="wrapper"></div>

Suppose we have a div element with the id “wrapper” in our DOM Tree and we want to set its
background color to black. We can do this using setStyle, like so:

var div = $('wrapper');
div.setStyle('background-color', '#000');

We called setStyle and passed two arguments: first is the string 'background-color' and the second
is another string '#000'. The first argument tells setStyle that we want to change the background-color
style property of our div, and the second tells it that we want to change this particular style property to
black (#000 is the HEX color code for black).

Internally, the setStyle method works by modifying the element’s style property, which is a
CSSStyleDeclaration object. An element’s style property represents the particular styles defined via the
element’s style attribute. After we called the code above, the div’s style attribute will be updated to
reflect the changes in the style property:

<div id="wrapper" style="background-color: #000;"></div>

This change of the style property will be reflected in the rendered page, and your users will see it in
their browser window immediately.

You can set several styles at once using a variant of the setStyle method called setStyles. This
variant takes a single object as an argument, each key-value pair of which represents a single style
declaration. Suppose we want to update our wrapper div to have a white background and a height of
200px:

var div = $('wrapper');
div.setStyles({
 'background-color': '#FFF',
 'height': '200px'
});

This results in an update of the div element:

<div id="wrapper" style="background-color: #FFF; height: 200px;"></div>

The accessor equivalent of setStyle is getStyle. It takes a single argument, property, and returns
the value of the style property with that name. Continuing with our example, we can find out the value of
our wrapper div’s background-color using getStyle:

var div = $('wrapper');
console.log(div.getStyle('background-color')); // '#FFF'

Finally, like setStyle, getStyle also has a multi-argument method: getStyles. It takes multiple
property arguments and returns an object containing the values for those properties.

7

CHAPTER 8 ■ ELEMENTS

230

Get, Set, and Erase
Undoubtedly the most useful set of element modification methods is composed of three simple
functions: set, get, and erase. These three methods can be used to do the work of all the modification
methods we’ve seen so far—which gives them their nickname universal modificators—and their use
extends to areas we haven’t covered yet.

These three methods are dynamic: their behavior changes depending on the argument passed to
them. In particular, they get their behaviors using a special object called Element.Properties, which
defines the rules—called dynamic property objects—for how they behave according to how they were
called and the arguments passed to them. We’ll learn more about how this all works in a later section,
but right now we’ll focus on how they’re used.

The set method is called the universal setter because it can be used to set the value of almost any
element property. It takes two arguments: property, which tells the method which property we’d like to
set, and value, which is the value to set that property to.

The set method understands several property values by default. For example, passing 'html' as the
property argument, like $('myEl').set('html', '<p>Hello!</p>'), will turn set into an innerHTML setter
that changes the HTML source of the element. Other default properties include 'text', which sets the
inner text of an element, and 'class', which changes the element’s class attribute.

But that’s only the simple property options. Remember our setStyle method? The set method also
understands the 'style' option, which means we can do something like this:

$('wrapper').set('style', 'background-color: #000');

And how about setStyles, which uses an object argument? No problem, it’s supported via the
'styles' option, too:

$('wrapper').set('styles', {'background-color': '#000', 'height': '200px'});

For attributes, it gets even simpler: if set receives a property argument that it doesn’t understand, it
automatically uses setProperty:

$('home-link').set('target', '_blank');

Because set doesn’t understand the 'target' option by default, it will invoke setProperty to handle
the setting. The code above is in fact conceptually the same as doing setProperty('target',
'_blank')—but it’s much terser.

One great thing about set is that it can be used to set multiple properties at once. Instead of calling
set multiple times, you can simply pass it an object argument with the things you want to set:

$('wrapper').set({
 'html': '<p>Hello!</p>',
 'class': 'greeting',
 'styles': {
 'background-color': '#000',
 'color': '#FFF'
 },
 'fancy-attrib': 'magical'
});

The resulting update will be similar to this:

<div id="wrapper" class="greeting" style="background-color: #000; color: #FFF;"
 fancy-attrib="magical">
 <p>Hello!</p>
</div>

CHAPTER 8 ■ ELEMENTS

231

The get method, in a similar manner, is the universal getter method. This method takes a single
argument, property, and returns the value associated with that property. Like set, get understands the
default property options, like 'html' or 'text', as well as special options like 'style', and it also defaults
to getProperty when it doesn’t understand the passed property option.

var div = $('wrapper');
console.log(div.get('html')); // '<p>Hello!</p>'
console.log(div.get('class')); // 'greeting'
console.log(div.get('style')); // 'background-color: #000; color: #FFF;'
console.log(div.get('fancy-attrib')); // 'magical'

You can also use a single get call to retrieve multiple properties. To do this, you have to pass it an
array containing the properties you want to access. It then returns an object containing the results, like
so:

var div = $('wrapper');
var result = div.get(['html', 'class', 'style', 'fancy-attrib']);

console.log(result);
/*
{
 'html': '<p>Hello!</p>',
 'class': 'greeting',
 'style': 'background-color: #000; color: #FFF;',
 'fancy-attrib': 'magical'
}
*/

The final universal modificator, erase, is the universal remover method. It is invoked in the same
fashion as get, but it removes properties instead of returning them. Since erase is pretty much self-
explanatory, we won’t go into detail—although I do have to mention that erase is rarely used because
you can achieve the same results by passing a null value with set.

These three universal modificators are the swiss-army knives of element modification, and their use
is much broader that what we see here. We’ll take a look at how they’re implemented in a later section,
and we’ll see more of their use in the next chapters.

Creating Elements
While moving elements around the DOM Tree and modifying their properties is enough for some
scripting tasks, some programs involve creating new elements and inserting them into the DOM Tree.
MooTools provides several ways to do this, each with its own pros and cons.

The easiest way to add new elements to the page is by adding new HTML source to the document.
You can do this by setting the HTML source of an element using the set method.

Suppose we have an empty list like so:

<ul id="list">

We can add an item to the list by inserting some new HTML source:

var list = $('list');
var htmlString = 'Item A';

list.set('html', htmlString);

CHAPTER 8 ■ ELEMENTS

232

We called the set method of the list element, passing in 'html' to tell it that we want to modify the
HTML source of the element. We also passed a second argument, htmlString, which contains the actual
HTML source string we want to insert. This code will produce a DOM Tree section like this:

<ul id="list">
 Item A

Setting the HTML source of the element will create new elements, and we can then use the selector
functions to select the new elements and manipulate them as we would with elements that are already
in the tree.

This technique is the fastest way to create new elements, and it is the preferred method to use for
really large element insertions—such as updating the document using HTML responses from
XMLHttpRequest. Internally, set('html') works by setting the innerHTML property of the element, which is
fast because it’s a simple assignment statement.

However, this method is not the holy grail of element creation. For one, it changes the actual
structure of your element by replacing its internal HTML source: any child nodes inside the element will
be destroyed and replaced with the new HTML. While this is fine in some cases, most of the time you’ll
want to keep structure, so simply replacing the HTML source of an element won’t suffice.

The second technique involves cloning an already existing element using the clone method. Take,
for instance, the following section:

<ul id="list">
 Item A
 Item B

Now we simply want to add a new list item to the list, without destroying the original list items. We
can do this by cloning one of the list items:

var newItem = $('list').getElement('li').clone();

We use the getElement method to select a single list item from the list, then we use clone to create a
new element that copies the element. However, if we look at the result of this snippet, we’ll see that
nothing changed:

<ul id="list">
 Item A
 Item B

The clone was created, but it didn’t appear in the DOM Tree. What gives?
What happened is that the new element was indeed created, but it’s not yet in the DOM Tree. This is

an important point that you have to understand: when you create new elements, they exist outside the
DOM Tree. They are not yet part of the DOM Tree, and you have to explicitly insert them using one of
the movement methods we saw in the previous section. Until then, they are simply element objects that
are inside the JavaScript environment but outside the DOM.

With this in mind, we can modify our original snippet:

var newItem = $('list').getElement('li').clone();
newItem.inject('list');

And this will update the list element like so:

<ul id="list">
 Item A

CHAPTER 8 ■ ELEMENTS

233

 Item B
 Item A

As you can see, the new element is exactly like the element it was cloned from. In fact, almost every

property from the original element will be copied to the clone. One exception is event handlers, which
are not cloned by default—but you can clone event handlers from one element to another using the
cloneEvents method, which we’ll talk about in Chapter 10.

You can update your newly cloned object using the methods we saw in the previous section. For
example, we can use set to change the text of our new element:

var newItem = $('list').getElement('li').clone();
newItem.set('text', 'Item C').inject('list');

This will yield the following result:

<ul id="list">
 Item A
 Item B
 Item C

Like using set('html') however, cloning elements using the clone method is a very limited
technique. Because cloning involves copying elements, the kinds of elements you can create are limited
to the ones already in your DOM Tree. In order to have true flexibility, we need a proper element
constructor—and that constructor is, of course, Element.

Like other type constructors, the Element constructor is used in conjunction with the new keyword. It
takes a single required argument, tag, which corresponds to the type of element you want to create.
Going back to our list example:

<ul id="list">
 Item A
 Item B

We can add a new list item by creating a new element object via the Element constructor and then
injecting it into our list:

 var newItem = new Element('li');
 newItem.inject('list');

This will update our list with the new element:

<ul id="list">
 Item A
 Item B

The new element we created has no inner text, nor does it have any attributes attached because the
Element constructor creates blank element objects by default. Like in the example for clone, we can
update our newly created element using the modification methods we saw in the previous section.

 var newItem = new Element('li');
 newItem.set('text', 'Item C').inject('list');

CHAPTER 8 ■ ELEMENTS

234

We use the set method to change the inner text of our new list item, and this will update the result
like this:

<ul id="list">
 Item A
 Item B
 Item C

While this works, there’s an even easier way to do it. The Element constructor actually allows a
second argument, properties, which is an object that will automatically be passed to set. We can remove
the extra call to set in our example above and move the text setting to the Elements constructor:

var newItem = new Element('li', {'text': 'Item C'});
newItem.inject('list');

This internal use of the set method makes it easy to define really complex elements:

new Element('div', {
 'id': 'wrapper',
 'class': 'container',
 'html': '<p>Hello!</p>',
 'styles': {
 'background': '#000',
 'color': '#FFF',
 'font-size': '12px'
 },
 'data-name': 'wrapper div'
});

This snippet creates a new div element and automatically sets both its attributes and styles, as well
as its innerHTML value. Using the Element constructor this way makes it easy to create elements on the fly
and decreases additional calls to the element modification methods.

Before we close this section, though, there’s one more nifty trick with Element: you aren’t limited to
passing just an HTML tag for the first argument—you can also use a full CSS selector.

Suppose you want to create a new link that looks like this:

Home Page

The common way would be to specify all those properties using the second argument, like so:

new Element('a', {
 'id': 'home-link',
 'class': 'internal',
 'href': 'home.html',
 'target': '_blank',
 'text': 'Home Page'
});

This is the preferred way of doing it. However, a nifty feature is that you can move all those
declarations (except text) into the first argument by passing a CSS selector instead:

new Element('a#home-link.internal[href="home.html"][target="_blank"]', {text: 'Home Page'});

This will produce the same results as the previous example. Unfortunately, it doesn’t look as pretty,
but it does showcase the selector-parsing abilities built into the Element constructor.

CHAPTER 8 ■ ELEMENTS

235

Destroying Elements
Finally, we end with the methods for destroying elements. Let’s say we have the following DOM Tree
section:

<div id="nav">
 Home
</div>

We can destroy the element in several ways. The first is with the destroy method, which removes an
element from the DOM Tree and destroys the object completely:

var homelink = $('home-link').destroy();
console.log(typeOf(homelink)); // 'null'

In this snippet we call the destroy method of the home-link element, which removes the element
from the DOM Tree and then deletes the actual node object, making it completely unusable from
thereon. The resulting HTML section will look like this:

<div id="nav"></div>

Another way to remove elements is through the dispose method. Like the destroy method, the
dispose method also removes an element from the DOM Tree. However, it does not completely destroy
the element, which makes it possible to reuse the element later:

var homelink = $('home-link').dispose();
console.log(typeOf(homelink)); // 'element'

Like the previous example, this snippet also results in the following DOM Tree section:

<div id="nav"></div>

However, the dispose method does not destroy our element completely, but instead only removes it
from the DOM Tree. This is why we get 'element' instead of 'null' when we pass the argument to
typeOf. The dispose method thus makes it possible for us to remove an element from the DOM Tree and
reinject it later if needed.

Finally, we have the empty method. Unlike the previous two methods, the empty method does not
remove the element from where it was called, but instead destroys the children of the element.

$('nav').empty();

In this snippet we called the empty method of the nav element. This will remove all the elements
inside the nav element, producing the same DOM Tree section as above:

<div id="nav"></div>

Internally, the empty element uses destroy, which means that all the child elements are completely
obliterated. We can achieve the same thing by calling destroy on all child nodes:

$('nav').getChildren().destroy();

The Element Type
The Element type is unarguably the most important MooTools type object when it comes to DOM
scripting. All element objects—both inside and outside the DOM Tree—inherit from Element.prototype
and with this type object, MooTools is able to extend all elements in the page to create a better API for
working with the DOM.

CHAPTER 8 ■ ELEMENTS

236

In the native DOM API, the Element constructor is a placeholder constructor: you can access it using
its identifier, but you can’t invoke it as a constructor using the new keyword. This is because the Element
constructor isn’t actually used for creating elements. Instead, the Element constructor is used to
implement a proper prototype chain between Node and HTMLElement, which means it’s used for nothing
else aside from inheriting properties from Element.prototype. In fact, Internet Explorer versions prior to
version 9 go the extra mile and hide the Element constructor from the DOM API, making it inaccessible
from JavaScript.

MooTools, on the other hand, gives good use to the Element constructor by turning it into a proper
constructor. MooTools does this by storing the browser’s native Element constructor (if available) in
Browser.Element and then overriding this native constructor with a new global type object. This involves
declaring a new constructor function called Element in the global scope to override the native
constructor. The prototype of this new constructor is then pointed to the prototype of the original using
Browser.Element.prototype, which effectively turns the new Element type into a full replacement for the
native one—prototype included.

On the inside, Element is a very simple constructor. As we saw in the previous section, it can take two
arguments: tag, which is the element to be created, and properties, which are properties passed to the
set method of the newly created element.

When the value of the tag argument is a string and is a simple HTML tag like 'a' or 'section', the
Element constructor simply passes the arguments to a special function called document.newElement. This
function first calls on the document.createElement function, which is a function from the native DOM
API, to create a new element with that particular tag. It then passes the new element to document.id,
which will return the element immediately, and then the set method is invoked using the properties
object as an argument. The resulting element is then be returned by the Element constructor.

If the value of the tag argument is a complex string selector like our last example in the previous
section, an extra step is added to the process. The Element constructor first parses the string selector
using the selector engine so it can separate the actual tag from the attributes, and then adds these
attributes to the properties object. It then goes through the same process as above, producing an
element as a result.

However, if the tag argument isn’t a string to begin with, all these steps are skipped and the tag
argument is passed directly to document.id for processing. The result then is whatever document.id
returns.

You’ll notice that the return value of the Element constructor is never the instance created through
the new keyword. This is intentional: for the most part, we want our elements to be instances of their true
types, like HTMLAnchorElement for links or HTMLDivElement for divs. The Element constructor, on the other
hand, creates generic elements. We therefore discard this generic element and use
document.createElement to create a proper instance.

In any case, the results are the same: document.createElement returns an element that inherits from
Element, so our Element methods are still present in the new elements even if they weren’t constructed
directly via the Element constructor.

Revisiting document.id
The document.id function, which we first encountered as a means to select elements from the DOM, is a
very interesting function. As we found out, this function is used throughout the Element constructor, as
well as inside the document.newElement function. So what exactly does it do?

Like the universal modificator methods, document.id is a dynamic method: its behavior changes
depending on the arguments passed to it. The function can understand three kinds of arguments:
strings, elements, and objects. Each of these argument types has its own special operation stored in a
special function named after that type.

When you pass a string argument to document.id, it performs the string operation. This operation
starts with an id search using the selector engine. The selector engine called Slick (which we’ll learn
more about in Chapter 9), is the one responsible for actually selecting elements from the DOM Tree.

CHAPTER 8 ■ ELEMENTS

237

MooTools only wraps the Slick API to provide its own variants, but all element selection still happens
using the selector engine.

The selector engine will search for the element using the string id argument passed to document.id.
If it doesn’t find a match, document.id will simply return null. If it finds a match, however, a second
operation is done.

This second operation is called the element operation. It involves turning the element returned by
the selector engine into a unique MooTools element by providing it with a special property called uid.
This uid property is used internally by MooTools, and is therefore not of concern right now. The element
operation also does object extension for elements that do not inherit methods automatically from
Element. When this operation is done, the final element object is returned by document.id.

If the argument to document.id is an element object, something else happens. The function will first
check this element instance if it’s already a proper MooTools element by checking its $family and uid
property. If these properties exist in the element object, document.id simply returns the object
immediately. However, if one of the properties is missing, it means that the element hasn’t been
properly extended yet, and document.id will perform the element operation on this object to turn it into
a proper element before returning it.

When document.id receives an object argument that’s not an element, though, it performs an object
operation. This is one of the more interesting operations because it involves a special feature of objects
(and classes). In particular, the object operation involves checking whether the object argument has a
special method called toElement. If it doesn’t, the object operation will exit and document.id will return
null. If it does, however, the object operation will invoke this method to retrieve the element value of
object, and then use the returned value for the element operation.

To understand how the object operation works, let’s look at these examples:

console.log(document.id({})); // null

Here we passed an empty object to document.id, which then performs the object operation on the
argument. The object operation checks whether the object has a toElement method, and since it doesn’t,
it simply terminates and document.id returns null.

However, suppose we pass an object with a toElement method:

var obj = {
 toElement: function(){
 return new Element('div');
 }
};

console.log(document.id(obj)); // <div></div>

Here we define a new object called obj with a toElement method that returns a new div element.
When we pass this object to document.id, we no longer get null. Instead, document.id performs the object
operation, which calls the toElement method of the obj. The div element returned by the method is then
processed through the element operation to turn it into a proper element, before returning it from
document.id.

This special feature makes it possible for us to create types and classes that can be used with
document.id:

var Widget = new Class({

 initialize: function(element){
 this.element = element;
 },

 toElement: function(){
 return this.element;

CHAPTER 8 ■ ELEMENTS

238

 }

});

Instances of this Widget class can now be simply passed to document.id to retrieve an actual
element. When the instance of a class with a toElement method is passed to it, document.id will call the
toElement method in order to get the element value of the class. We can therefore treat toElement like the
valueOf method, but for exporting the element value of an object instead of its primitive value.

Extending Element
Because the Element constructor is a type object, we can use the same type object methods we saw in
Chapter 6 to add new methods to element objects.

As with other types, we use the implement method to add new methods to Element:

Element.implement({

 switchClass: function(first, second){
 var hasSecond = this.hasClass(second);
 this.removeClass(hasSecond ? second : first);
 this.addClass(hasSecond ? first : second);
 return this;
 }

});

This adds a new method to Element.prototype that’s used for switching between two classes:

var myDiv = new Element('div', { 'class': 'yes' });

console.log(myDiv.get('class')); // 'yes'

myDiv.switchClass('yes', 'no');
console.log(myDiv.get('class')); // 'no'

myDiv.switchClass('yes', 'no');
console.log(myDiv.get('class')); // 'yes'

One thing you’ll notice in our switchClass method is that we end the function by returning the
element itself, via return this. This is deliberate: almost all Element methods—with the exception of
selector and getter methods—will return the element itself. This is to provide for a chaining pattern,
which allows us to call multiple methods in a single chain.

new Element('div').set({
 'class': 'yes'
}).switchClass('yes', 'no').inject(document.body);

This chaining pattern is popular, and it’s especially useful for instances where you don’t want to
keep references to the element using a variable. However, method chaining should be used moderately:
very long chains make your code very unreadable and can sometimes lead to errors if a part of your
chain returns a value other than an element. Because this problem plagues new MooTools users who
come from other libraries that heavily use chaining, I will give you just a single piece of advice regarding
it: variables are cheap in JavaScript—use them.

CHAPTER 8 ■ ELEMENTS

239

As with other types, the methods of Element can also be used as generics. They follow the same rule
as other generic functions: the first argument needs to be the object that will be the this keyword value,
followed by the actual arguments to the method:

Element.set(document.id('wrapper'), 'class', 'container');

The Elements Type
While the Element type is a native constructor that is turned into a type object by MooTools, the Elements
type, in contrast, is a purely MooTools construct and it is a very interesting type to study because it
showcases one of the real-world uses of custom types.

The Elements type is a special array-like type created by MooTools to represent collections made up
of several Element instances. In older versions of MooTools, the Elements type was actually a real array
instance with additional properties. However, its current implementation is no longer based on a true
array but on an array-like object.

Being an array-like object, an Elements instance has a length property that denotes the number of
elements in the collection, and an Elements instance with a length property of 0 is considered an empty
collection. Each item inside the collection is referenced by a zero-based numeric index, which can be
accessed using the bracket notation.

In itself, Elements is a boring type. Unlike the Element constructor that can be used to create new
elements, the Elements constructor functions only as an aggregator. It takes a single optional argument,
nodes, which must be an array or array-like object containing elements. The Elements constructor itself
does not perform DOM Tree lookups nor create new elements, but only iterates through the arguments
passed to it, checking whether the argument is an element and then pushing it into itself. In fact,
functions that return Elements instances, like $$ or getElements, first search for the elements using the
selector engine and then pass the results from the selector engine to a new Elements instance as a final
step.

The basic methods that are available from Elements instances, like each or slice, are in fact methods
that Elements copies directly from Array.prototype. Elements copies all Array methods for its use, and
then hooks to Array.implement via Array.mirror(Elements) so that any newly implemented Array
method will also be available to Elements. However, Elements does reimplement a few Array methods
with its own variants that check whether the arguments passed are element objects.

But the really cool thing about Elements is how it receives Element methods. If you recall our earlier
examples, we saw that Element methods can be called through Elements instances. This is possible
because of a special hook attached to Element using the mirror. This hook automatically implements a
looping version of the Element method that iterates over the collection and applies the function to each
of the elements in the collection. The result is Element methods that are collection-aware that can be
used on Elements instances.

Finally, as with other type objects, you can use the implement method of Elements to add new
methods to its instances. However, it is rarely used, since most of the methods for Elements are better
implemented through Array or Element instead.

The Universal Modificators
Earlier, when we were discussing element modification, we came across a set of element methods called
the universal modificators. These three functions—set, get, and erase—are the three most useful
modification functions in MooTools, and their dynamic behavior supports a wide array of uses.

As I mentioned earlier, the behavior of these modificator methods is controlled by a special object,
Element.Properties. This object is reminiscent of the Class.Mutators object, because like
Class.Mutators, Element.Properties is used to store special objects called property objects.

CHAPTER 8 ■ ELEMENTS

240

When a universal modificator function is called, the first thing it does is to take the passed property
argument and use it to search for a property object in the Element.Properties object, like so:
Element.Properties[property]. If a corresponding property object is found, the universal modificator
method will then check if the property object has a method that corresponds to the name of the
universal modificator, and if so, it will invoke this function, passing in the arguments it received. If no
property object is found, or if the property object does not have a method that corresponds to the name
of the modificator function, the modificator will default to using an attribute-modifying function.

Let’s clear this up with some examples. Here, for instance, are property object definitions for the
'style' option:

Element.Properties.style = {

 set: function(style){
 this.style.cssText = style;
 },

 get: function(){
 return this.style.cssText;
 },

 erase: function(){
 this.style.cssText = '';
 }

};

When we call $('wrapper').set('style', 'background: #000'), the first thing the set function
does is to look for the property object 'style' via Element.Properties['style']. Because a style
property object is present, as we see above, the set function will proceed by checking if
Element.Properties.style has a method called set—which it does. As a final step, it invokes the set
method using Element.Properties.style.set.apply(this, value), binding the this keyword of the
method to the current element and passing 'background: #000' to the method. The function then sets
the style.cssText property of the element, thereby changing its style. If we invoked get('style') or
erase('style') instead of set, the same lookup will occur, but the get or erase method of
Element.Properties.style will be invoked instead of set.

However, if a corresponding property object is not found, the modificator method will default to an
attribute method. For example, if we do set('magical', 'wand'), the set method won’t be able to find
Element.Properties['magical'], so no property object will be used. This will force set to use
setProperty instead, which adds the attribute “magical” to the element. In the same vein, get will default
to getProperty, and erase will default to removeProperty.

The great thing about dynamic properties is that you can define your own property objects. The
process is as simple as adding a new property object to Element.Properties. Here’s an example that adds
a dynamic property, “display”:

Element.Properties.display = {

 set: function(type){
 return this.style['display'] = type || 'block';
 },

 get: function(){
 return this.getComputedStyle('display');
 },

CHAPTER 8 ■ ELEMENTS

241

 erase: function(){
 return this.style['display'] = 'none';
 }

};

After adding this property object, we can use it in conjunction with our modificator methods, like
so:

var main = $('main');

main.erase('display');
console.log(main.get('display')); // 'none'

main.set('display', 'block');
console.log(main.get('display')); // 'block'

Dynamic properties like 'style' or 'html' are only a couple of the default properties included in
MooTools that can be used with universal modificator methods. MooTools adds properties for other
complex operations involving things like events, XMLHttpRequest functions, and even Fx animations.
We’ll see more uses for dynamic properties in the next chapters.

Element Storage
There are times when you want to associate certain data to elements. For most kinds of objects, we’d
normally do this by augmenting the object itself with new properties. However, augmenting new
properties to elements can sometimes have weird effects on some browsers that track the state of
elements, so directly attaching this data to the element itself isn’t recommended.

A commonly used technique is to attach such data to the element using attributes. We could, for
example, use the get and set method to do this:

var element = $('item');

// store the data
element.set('price', 20);

// retrieve the data
console.log(element.get('price')); // '20'

Here we attach the price data to our item element using the set method, which adds a new attribute
to our item element and stores the data as the value of that attribute. We then fetch the data back using
the get method, which returns the value of this attribute.

While this technique works, it has some limitations. First, we need to make sure that we’ll use keys
for our data that don’t conflict with the known element attributes. For instance, we used price in our
example, but we can’t use keys like id, name, or href because these are known attributes that have
special meaning in HTML.

Second and most important, using attributes for storage limits us to string data. Since attribute
values are stored and retrieved as strings, all our values will be typecast to strings:

var element = $('item');

// store the data
element.set('items', [1, 2, 3]);

CHAPTER 8 ■ ELEMENTS

242

// retrieve the data
console.log(element.get('items')); // '[1,2,3]'

Here we tried storing an array in our element object using an attribute. Because attributes need to
be strings, our array was first cast to a string value before it was attached to our element. When we
retrieve the data again using get, we get back a string and not the original array.

Because associating data with elements is a common operation, MooTools provides a special
feature called element storage that enables us to attach data directly to an element. We can do this using
two element methods, store and retrieve.

var element = $('item');

// store the data
element.store('price', 20);

// retrieve the data
console.log(element.retrieve('price')); // 20

In this snippet we modified our original example to use the store and retrieve methods from the
element storage API. Like in our original example, the price data was attached to the element, which
makes it possible for us to retrieve it later.

Unlike using attributes for data storage, the MooTools element storage API is much more flexible
because it does not actually store anything on the element. Instead, the element storage API uses a
private object store that’s accessible only to store and retrieve. This private object store uses the uid
property of an element to determine the data associated with the object, which it then exposes to store
and retrieve for processing.

Because the element storage API uses a JavaScript object, it’s possible to store any kind of data
inside it without losing references.

var element = $('item');

var array = [1, 2, 3];

// store the data
element.store('items', array);

// retrieve the data
console.log(element.retrieve('items') === array); // true

In this snippet we use element storage to store an array in the element. When we retrieve this stored
array and compare it with the original, we see that it’s still the same array.

This flexibility of the element storage API makes it usable in many areas, and MooTools employs it
for some of its most important features. We’ll see these storage uses as we go through the next chapters.

The Wrap Up
Wow, we certainly covered quite a bit of ground in this chapter, didn’t we? We learned about the DOM
Tree and how the various objects inside it are connected through a hierarchy. We also learned about
elements, and got a taste of DOM Scripting, MooTools style.

We found out the different ways to select elements, modify their position, and change their
properties and styles. We learned about the various ways to create new elements and how the Element
and Elements constructors work. Finally, we discussed the universal modificator functions and how they
can be used for easier DOM Scripting.

CHAPTER 8 ■ ELEMENTS

243

I can’t stress enough the importance of this chapter. The concepts you learned here are the basics of
all DOM Scripting using MooTools, and the stuff we saw in this chapter will appear a lot in the next
chapters. If you still haven’t gotten a hang of how everything works, I suggest you reread this chapter
once more. Go on—it will be worth it.

We’ll continue talking about elements in the next chapter, but we’ll focus on how they’re selected
from the DOM Tree. We won’t talk about functions and methods to do these, though, since we already
did that here. Instead, we’ll explore the Deus behind the Machina: the thing that enables us to actually
find that elemental needle in the DOM Tree haystack.

So line up at the concession stand and get yourself a soda and some popcorn because the show’s
about to begin: the supporting cast are CSS Selectors, and the star is the Selector Engine.

CHAPTER 8 ■ ELEMENTS

244

C H A P T E R 9

■ ■ ■

245

Selector Engines

Selecting elements from the DOM is quite an easy affair these days. We simply use the element methods,
put in a selector, and we’re done. However, the technology that operates this selection process is
actually quite complex. In fact, it’s interesting enough that it warrants our attention for the next few
pages.

In this chapter, we’ll learn how selection is done in tree-based structures like the DOM. We’ll also
learn about the MooTools selector engine, called Slick, which makes the process easier for us.

What Node?
In Chapter 7, we learned about trees, which are special data structures composed of several linked
nodes. We learned that all trees have one node from which all other nodes come, and we called that the
root node. We also learned that nodes have parents, children, and even siblings—like one big, happy
family. What we didn’t discuss, however, is how we find a node in this family.

Let’s look again at a simple tree structure (Figure 9–1).

Figure 9–1. A simple tree with six nodes

This is the tree we first saw in Chapter 7. It has 6 nodes: A, B1, B2, C1, C2, and D. Now let’s say we are
tasked to find the node marked as C1. How do we find it?

CHAPTER 9 ■ SELECTOR ENGINES

246

Of course, this might sound silly. You can clearly see where C1 is in the diagram and you can just
point at it with your finger, so this isn’t much of a challenge. But what if there was no diagram and all we
had was code:

var tree = {
 root: {
 name: 'A',
 children: [
 {
 name: 'B1',
 children: []
 },
 {
 name: 'B2',
 children: [
 {
 name: 'C1',
 children: [
 {
 name: 'D',
 children: []
 }
]
 },
 {
 name: 'C2',
 children: []
 }
]
 }
]
 }
};

This snippet transforms our tree from a diagram into a JavaScript object. We kept everything fairly
simple: each object—aside from the tree object itself—is a node. Nodes have two properties: name and
children. The name property is a string and it’s the representation of the node’s actual name. The
children property is an array that contains other nodes. Now we can go back to our original problem:
how do we locate the node named C1?

There are two ways we can do this. One way is a bit like cheating: since we know exactly where the
node is, we can use simple object access methods to get the node directly. We know that C1 is the first
child of B2, and we know that B2 is the second child of A, so we can simply take that information and use
it to access the node:

var C1 = tree.root.children[1].children[0];
console.log(C1.name === 'C1'); // true

Here’s what happens when we run that code: we first access node A using tree.root, because A is
the root node of the tree. We then access B2 by taking the second child of A, or children[1], before
finally accessing C1 by taking the first child of B2 using children[0]. When we check the name property of
the node, we find out we’re right—we’ve located C1.

This location method, where nodes are found by accessing the absolute path from the root of the
tree to the actual node being sought, is called path selection. Think of it like going from the front door of
your house to a particular room, say your kitchen. The front door is your root node, while the kitchen is

CHAPTER 9 ■ SELECTOR ENGINES

247

the node you’re seeking. Because you already know how to get from your front door to your kitchen, you
just need to follow a particular path to get there.

This location method is quite fast, since we’re simply pinpointing a node in terms of the path you
have to take to it from the root node. However, the speed of this method is hampered by its inflexibility.
In order to do path selection, we need to know in advance where we’re going, then plan a path that leads
from the starting point to the final location. But what if we don’t know the path?

Reusing our house example, let’s say we’re in a different house. We’ve never been there before, and
we don’t know the floorplan of the house or what rooms it contains. Now we’re told that we need to find
the room with the blue wallpaper. We aren’t told which room that is, so it could be any room: it could be
the living room; it could be the kitchen; it could even be a small walk-in closet. In this case, we can’t use
path selection since we don’t know what path to take from the front door to the blue-wallpapered room.
In fact, we don’t really know where this room is. So how do we find it?

I’m sure we’d all probably do the same thing: check all the rooms until we find the one with the blue
wallpaper. We’d start with the room closest to us and check the wallpaper. If the wallpaper is blue, we’re
done—we found our room. If not, we move on to the next room and check that, and so on until we find
our blue-wallpapered room.

This same technique can be applied to solve our original problem. If we want to find the node
named C1, we can check each node in the tree, starting from the top and working our way down until we
find the node in question.

var find = function(node, name){
 if (node.name == name){
 return node;
 } else if (node.children && node.children.length){
 for (var i = 0, y = node.children.length; i < y; i++){
 var found = find(node.children[i], name);
 if (found) return found;
 }
 }
 return null;
};

var C1 = find(tree.root, 'C1');
console.log(C1.name === 'C1'); // true

Here we implemented a recursive function called find to locate a particular node. It accepts two
arguments: node, which is the node object to search for first, and name, which is the name of the
particular node we’re looking for.

The function works like this: first, it checks the current node to see if its name property matches the
name argument. If it does, it’s the node we’re looking for so the node is simply returned and the process
ends. If it’s not the same, the process continues, and the find function is applied to each of the current
node’s children until we find the node we’re seeking. If we fail to find any node with that name, the
function simply returns null.

This location method is called traversal selection. Unlike path selection where a predefined path is
used to locate a particular node, traversal selection works by visiting each node in the tree and testing it
against a criterion.

Because traversal goes through each of the nodes in the tree, it’s considerably slower than path
selection. The saving grace, though, is that we can speed up future searches by narrowing the search to a
specific part of the tree: instead of beginning future searches at the root node, we can start at a lower
point of the tree, thereby limiting the number of nodes that need to be traversed.

You can see that in our example we applied the same find function to each node, which means that
a specific subset of the tree’s nodes can be searched. And because this subtree is smaller, the search will
be faster.

CHAPTER 9 ■ SELECTOR ENGINES

248

var find = function(node, name){
 if (node.name == name){
 return node;
 } else if (node.children && node.children.length){
 for (var i = 0, y = node.children.length; i < y; i++){
 var found = find(node.children[i], name);
 if (found) return found;
 }
 }
 return null;
};

var C1 = find(tree.root, 'C1');
console.log(C1.name === 'C1'); // true

var D = find(C1, 'D');
console.log(D.name === 'D'); // true

Here we did a further search for another node, D, which is a child of the C1 node. Instead of starting
the search for the D node from the root of the tree, we used a specific subtree where the C1 node is the
root. Since we’re limiting our search to a smaller part of the tree, the operation is faster.

But the best thing about traversal selection is the flexibility. In our examples, we didn’t need to know
exactly where the node was in order to find it. We simply invoked our function, passing in the tree and
the name of the node, and it searched the tree for us. The only real requirement is that we know the
name of the node we want to locate; after that everything’s done automatically.

Selecting in Style
Tree traversal is actually the process that powers DOM APIs such as getElementById,
getElementsByTagName, and getElementByClassName. These functions all take a single argument that is
used as the criterion to match the node’s id, tag, or classname, respectively. Then they traverse the DOM
using the node where they were invoked as the starting point for the search. They then return the node
(or nodes) that match the criterion, just like our find function.

The flexibility of tree traversal becomes more apparent as soon as we start working with more than
one selection criterion. In our examples above, we searched a node using its name property. However,
real DOM nodes rarely have just one property, and you may well want to pass several criteria, such as
both a tag name and a class name, in order to match a node.

A good example of this use case is the browser’s style engine, which uses CSS selectors. A CSS
selector is a special notation that describes the criteria for matching nodes in the DOM tree. In preparing
the page for rendering, the browser will read the style declarations on the page’s style sheets and select
each element that matches the declarations’ selectors so it can apply the style rules.

div.colored {
 color: blue;
}

Here is an example CSS declaration. The part that reads div.colored is the selector, while the item
surrounded by curly braces is the style rule. In this case, the browser searches all div elements in the
page with the class “colored” and then applies the rule to all of them, giving their text a blue color.

Because of its close ties with HTML, the CSS selector notation is very expressive in defining the
search criteria for DOM tree traversal. Using very simple pieces, we can build complex criteria sets that
can be used to select elements from the DOM Tree in order to apply styles to them.

CHAPTER 9 ■ SELECTOR ENGINES

249

Selector Engines
The simplicity and expressiveness of the CSS selector notation didn’t escape early JavaScript developers.
They realized that the same notation could be useful for DOM scripting with JavaScript. If we could
somehow use CSS selectors for selecting elements from the DOM Tree in JavaScript, it would make
scripts much easier to write. CSS selectors would let us quickly select all the elements we need for an
operation without having to perform long-winded path selection. Thus, JavaScript-based CSS selector
engines were born.

A selector engine is a fancy term for a special mechanism that’s used to select nodes from a DOM
Tree using traversal. Our find function, for instance, is an example of a simple selector engine. A browser
has several internal selector engines, too, including one used for the style engine and another for DOM
functions such as getElementById.

A JavaScript selector engine, in contrast, is one that’s implemented dynamically using JavaScript.
There are several JavaScript selector engines available today, and each major library or framework uses
one. MooTools uses its own selector engine called Slick to power all DOM selector functions, such as $$
or getElements.

A Whirlwind Tour of CSS Selector Notation
JavaScript selector engines are usually tied to a specific selector notation, and in most cases, it’s the CSS
selector notation. Because the notation itself is important in understanding how selector engines work,
we need to become familiar with the selector notation before we move on.

Simple Selectors
A simple selector as defined by the CSS3 specs is composed of “either a type or universal selector
followed by zero or more attribute selectors, ID selectors, or pseudo-classes, in any order.”

A type selector is used to select elements based on their tag name, such as div or span. A related
selector, called a universal selector, is denoted by the asterisk symbol (*), and is used to select elements
regardless of their tag. The type and the universal selectors are the simplest selectors available.

An id selector is used to select an element based on the value of its id attribute. Each id attribute in
a given document must be unique, so the id attribute can only be used to match a single element. In CSS
selector notation, an id selector is prefixed by the hash symbol, #, like #item or #wrapper.

A class selector is used to select elements based on the value of their class attribute. An element can
have several CSS classes, and a CSS class can be used for more than one element. In CSS selector
notation, a class selector must be prefixed by a period, such as .notification or .colored.

An attribute selector is used to select elements based on the value of their attributes. The syntax of
an attribute selector is [<Attribute Name><Operator>"<Value>"]. The <Attribute Name> refers to an
attribute of the element to select, such as name or href, and this is the only required part of an attribute
selector. The <Operator> can be one of the following:

• = (equal to)

• ~= (includes in space list)

• |= (includes in pipe list)

• ^= (starts with)

• $= (ends with)

• *= (contains)

CHAPTER 9 ■ SELECTOR ENGINES

250

This <Operator> is used to compare the actual value of the node’s attribute with the <Value>
specified in the selector. The first three are full matchers, which compare the exact values of the node
attributes with the <Value>.For example:

[name]
[name="item"]
[name~="item"]
[name|="item"]

The first selector selects all elements with a name attribute, regardless of value. The second selects all
elements with a name attribute with the exact value of item, while the third selects all elements that have
the value item in a space-separated list. Finally, the last selector selects all elements that have the value
item in a hyphen-separated list in their name attribute, such as <div name="item-a">.

The last three <Operator> values are substring matchers, which compare only a part of the node’s
attribute value to the <Value>.

[name^="item"]
[name$="item"]
[name*="item"]

The first selector selects all elements with a name attribute that starts with item, such as <div
name="itemPrice"> or <div name="itemQuantity">. The second selector selects all elements with a name
attribute that ends with item, like <div name="sale_item">. The last selector selects all elements that
contain item, regardless of its position, like <div name="excitement"> or <div name="parasitemia">.

Each of these pieces can be used on its own, but they’re usually combined to form more specific
selectors. For example:

form[target="iframe"][method="POST"]
*[href="http://keetology.com"].navigation
#wrapper.ie
[name*="password"].error

You’ll notice that the spec said that each simple selector must begin with either a type or a universal
selector, but our last two selectors don’t begin with either. In these cases, the universal selector is
implied: #wrapper.ie is therefore the same as saying *#wrapper.ie.

Pseudo-Selectors
Simple selectors are used to match elements based on their definition and structure. The properties
matched by these selectors are defined in the HTML source and can therefore be easily inspected. There
are special selectors, though, that don’t deal with properties, but rather with states, and they’re called
pseudo-selectors.

A pseudo-selector is a special selector that selects an element based on its particular state at a
particular period of time. A very simple example of this involves a elements. In most browsers, hovering
over an a element changes the element’s color to tell the user that it’s clickable. When the user mouses
over the a element, it changes state and this state can be detected using the :hover pseudo-selector to
change the color of the element.

In CSS selector notation, a pseudo-selector is prefixed by a colon, as in :hover or :first-child.
Some pseudo-selectors, such as :lang, also require an argument like a function, which can be added
using parentheses:lang(de) or :lang(tl).

Because some pseudo-selectors signify fleeting states, not all of them are supported by selector
engines. Here are the ones most commonly supported:

p

http://keetology.com

CHAPTER 9 ■ SELECTOR ENGINES

251

• :empty—matches a node with no child nodes.

• :first-child—matches a node if it’s the first child of its parent.

• :last-child—matches a node if it’s the last child of its parent.

• :only-child—matches a node if it has no sibling nodes.

• :contains(<text>)—matches a node that contains the string value passed as the
argument to <text>

• :not(<selector>)—matches a node if it doesn’t match the simple selector passed
as the argument to <selector>

• :first-of-type—matches a node if it’s the first element of its type (i.e., a tag).

• :last-of-type—matches a node if it’s the last element of its type.

• :only-of-type—matches a node if it’s the only element of its type.

Combined Selectors
While simple selectors are enough in most cases, sometimes we need to be more specific. For example,
say we want to select all a elements that are the children of a div element. This criterion can’t be
expressed using a simple selector, so we need another way to express this: combined selectors.

A combined selector is composed of two or more simple selectors that are connected using a
combinator. A combinator is a special symbol that denotes the relationship of one simple selector to
another.

div a
div > a
div ~ a
div + a

Here we have four combined selectors, each composed of two simple selectors. The combinators
here are the characters in between the combined selectors: a whitespace character, a greater than
symbol, a tilde, and a plus sign.

The whitespace character is the descendant combinator. It is used to denote a descendant
relationship between two nodes: the node that matches the selector on the right must be a descendant
of the node that matches the selector on the left. In our example, it will match all a elements so long as
they’re inside a div.

The greater than symbol is the child combinator. It is used to denote a parent-child relationship
between two nodes: the node that matches the selector on the right must be a child of the node that
matches the selector on the left. In our case, it will match an a element only if its parent node is a div.

The tilde symbol is the general sibling combinator. It is used to denote a preceding sibling
relationship between the two nodes: the node that matches the selector on the right must be preceded
by a node that matches the selector on the left. In our example, the selector will match an a element that
has a previous div element sibling.

Finally, the plus sign is the adjacent sibling combinator. It is used to denote a sibling relationship
between two nodes: the node that matches the selector on the right must be a sibling of the node that
matches the selector on the left. In our example, the a node must be a sibling of the div node in order to
be selected. It’s important to note with this combinator that the position is relevant: if the a comes
before the div, it won’t be matched—the position must be exactly as defined by the selector.

CHAPTER 9 ■ SELECTOR ENGINES

252

Selector Grouping
You can apply a specific CSS rule to multiple selectors by using a selector group. A selector group is
composed of two or more simple or complex selectors separated by a comma:

h1, h2, h3, div.content > a:hover {
 color: red;
}

Here we have a selector group composed of four separate sub-expressions. We have three simple
selectors—h1, h2, and h3—together with a complex selector, div.content > a:hover. This specific rule
will therefore be applied to all these elements.

Slick: the MooTools Selector Engine
The release of MooTools 1.3 brought a new selector engine called Slick to the MooTools framework. This
new selector engine is the brainchild of Thomas Aylott, one of the core developers, and it applies recent
advances in selector engine development to create a powerful and flexible implementation that drives
much of MooTools’ DOM selection functionality.

In the previous chapter, we saw the multitude of selector functions and methods that MooTools
provides for DOM scripting. All of these functions actually use Slick selection methods internally, and
they’re basically abstractions of the simple selector functions available with Slick.

Selecting Elements with Slick
Slick has two main selector functions for selecting elements from the DOM Tree. The first one,
Slick.find, takes two arguments: context, which is the root node where the traversal will begin, and
expression, which is a CSS selector string that will be used to match elements. It will then return the first
node that matches the selector string, or null if none is found.

Slick.find(document, 'div');

Here we have a very simple invocation of the Slick.find function. For the context parameter, we
pass in the document object, which tells Slick we want to search the whole document. We then pass 'div'
as the value of the expression argument, which means we’re looking for a div element. Slick will traverse
the document object to look for a div. When it finds one, it returns this node immediately.

The MooTools document.id function is actually implemented using the Slick.find method. A very
simple version of document.id using Slick.find would look something like this:

document.simpleID = function(id){
 return Slick.find(document, '#' + id);
};

Of course, this version is an oversimplification of the actual document.id function, which—as we
learned in the previous chapter—performs several operations aside from simply selecting elements
using their ids. However, it does illustrate how the MooTools document.id uses the Slick.find method.

The second Slick selector function is called Slick.search, and it takes the same two main
arguments: context and expression. Like Slick.find, the Slick.search function uses the context
argument as the starting point for the traversal process, and the expression argument to match the
elements. Unlike Slick.find, though, Slick.search returns all elements that match the selector as an
array.

Slick.search(document, 'div');

CHAPTER 9 ■ SELECTOR ENGINES

253

In this snippet, we use the same arguments as we did with the Slick.find example above. Here,
however, we won’t receive either a single node object or null as the return value. Instead we’ll get an
array that contains all the nodes that match the selector. If there are no matches, we’ll receive an empty
array.

As you’ve probably guessed, Slick.search is used to implement the MooTools $$ function.

var simple$$ = function(expression){
 return Slick.search(document, expression);
};

As with our simpleID example above, the implementation shown here is also a simplification of the
real $$ function. Like document.id, the $$ function performs other processes aside from simply selecting
the elements using Slick.search.

One important thing to know is that the Slick.find and Slick.search functions return native node
objects and not MooTools Element or Elements instances. In some browsers that allow for extending the
native Element type, the nodes returned by these functions might appear like normal MooTools Element
instances, but this is a byproduct of extending the native Element type.

That’s why document.id, $$, and the other MooTools selector functions don’t simply return the
values from the Slick functions like our simpleID and simple$$ methods above. Instead, they process
these nodes returned by Slick internally in order to turn them into real MooTools Element and Elements
instances before returning them.

One great feature of Slick has to do with the context argument. Because Slick.find allows us to pass
in any node as the value of this argument, we can greatly limit our searches to specific parts of the DOM
Tree.

var post = Slick.find(document, 'div.post');
var author = Slick.find(post, 'div.author');

In this snippet, we initially select the first div element with the class post in our document object.
Then, in the next line, we take the returned node from the previous call and use that as the new context
for the next selection.

Being able to limit selection to only a part of the DOM Tree using the context argument speeds up
the selection process, because the traversal only happens on a smaller portion of the tree. This is
beneficial to DOM scripting, and it makes complex selection relatively cheap, which is important for
large DOM Trees.

The context argument also makes it relatively easy for MooTools to implement the Element selector
methods like getElement and getElements. When these selector methods of an Element instance are
invoked, the instance will be used as the value of the context argument. Thus, the expression
div.getElement('a') will be processed internally as Slick.find(div, 'a'), which means that the
benefits of limited tree traversal will be available.

Combinator Prefixes
In normal CSS syntax, we place combinators between two simple selectors to combine them into a
single selector expression. Slick, however, allows string selectors to start with combinators rather than
selector expressions.

To understand how this works, we need to go back to the two arguments to Slick.find and
Slick.search. Remember that context is used as the starting point for the traversal, while expression is
used to match the nodes.

Slick.find(document, 'div');

Here we have document for the context and 'div' for the expression. If we translate this to an
English phrase, we could say that the operation is to “select all div elements from inside the document.”

CHAPTER 9 ■ SELECTOR ENGINES

254

That phrase gives us a clue as to what kind of combinator might be in effect here. The phrase says to
select all div elements, regardless of their position, as long as they’re inside the document object. This
sounds like the descendant combinator, which selects all nodes inside another node. If we were to write
this in a CSS-syntax kind of way, we’d end up with something like this:

document div

There is, of course, no “document” type in CSS, so this selector won’t work in actual CSS syntax.
However, it does give us a glimpse of how Slick.find and Slick.search treat the arguments passed to it:
the context argument becomes the leftmost expression in the CSS selector expression, and the
expression argument is appended to the right of the context.

var wrapper = Slick.find(document, '#wrapper'); // document #wrapper
var links = Slick.search(wrapper, 'div.name > a'); // #wrapper div.name > a

Now we have a bigger example consisting of two expressions. In the first line we want to find the
element with the id wrapper in the document, which translates to the CSS selector expression document
#wrapper. In the next line, we use the node we selected in the first line as the new context, which
translates to the CSS expression #wrapper div.name > a.

So by default, the expression argument is appended by Slick as though we’re using the descendant
combinator. However, the interesting thing is that we can change this default behavior by appending a
combinator in front of our expression.

Slick.find(document, '> div'); // document > div

In this example, we added a child combinator prefix to our expression argument. When Slick
interprets this expression, it no longer uses the default descendant combinator but instead honors the
combinator prefix we used. So instead of selecting all div elements from inside the document context,
Slick will now select only the div elements that are the direct children of the document.

Slick understands all CSS3 combinators, and therefore allows all of these combinators as prefixes in
selector expressions. And because MooTools itself uses Slick internally, most MooTools Element
methods can also take advantage of combinator prefixes, for example:

div.getElements('> a');
wrapper.getElement('+ div');

Reverse Combinators
One of the more impressive features of Slick is its support for reverse combinators. These combinators
are used just like regular combinators, but they alter the selection behavior by flipping the relationship
described by the combinator.

The default CSS combinators describe a top-down relationship between nodes: the nodes that
match the selector on the left of the combinator always comes first in the DOM Tree before the nodes
that match the selector on the right. For example, the expression div > a uses the child combinator to
describe the relationship of the div elements to the a elements, and it means that we want to select all
anchor elements that are the children of div elements. The relationship is therefore top-down in the
sense that all div elements must be the parents of the anchor elements that will be selected. The same is
true for the other combinators: the descendant combinator denotes a top-down ancestor-descendant
relationship, while the adjacent sibling combinator denotes a relationship between an older child and its
sibling.

The selection process for normal combinators is therefore from a higher part of the DOM Tree to a
lower part. Reverse combinators, as their name implies, switch the relationship of the default
combinators from top-down to bottom-up and reverse the selection process. To understand how this
works, let’s take a look at a simple reverse combinator expression:

CHAPTER 9 ■ SELECTOR ENGINES

255

a !> div

Here we took the original div > a expression and flipped it: the a selector now goes to the left of the
combinator, and the div selector goes to the right. We also changed our original child combinator with a
weird looking one that looks like a negated child combinator.

In the original example, the child combinator denoted that the nodes that match the selector on the
right should be direct children of the nodes that match the selector on the left. In this flipped expression,
however, everything is reversed: the nodes that match the selector on the left should be direct children
of the nodes that match the selector on the right. We are therefore no longer selecting children in this
case, but parents—which gives this !> combinator its name: parent combinator.

Reverse combinators therefore allow us to switch the traversal of the DOM Tree by giving us a way
to select higher nodes from lower nodes—something we can’t do with normal combinators. All Slick
reverse combinators start with an exclamation point:

• ! is the ancestor combinator, which is the reverse of the descendant combinator.

• !> is the parent combinator, which is the reverse of the child combinator.

• !~ is the previous sibling combinator, which is the reverse of the general sibling
combinatory.

• !+ is the previous adjacent sibling combinator, which is the reverse of the adjacent
sibling combinator.

Like regular combinators, reverse combinators can also be used as prefixes in selector expressions.

div.getElement('! div');

Here we used the ancestor combinator as a prefix for the getElement expression. The result is similar
to what we’d get if we use the MooTools method getParent, which actually uses reverse combinators
internally.

Pseudo-Selector Functions
Slick supports all of the common pseudo-selectors we’ve seen so far, together with a few additional ones:

• :enabled—matches a node if its disabled property is false.

• :disabled—matches a node if its disabled property is true.

• :checked—matches a checkbox if it’s currently checked.

• :focus—matches a node if it currently has user focus.

• :selected—matches a form element if it’s currently selected.

The interesting thing about pseudo-selectors in Slick is that they’re actually implemented as
functions. We can think of pseudo-selectors as conditional functions that are applied to nodes in order
to test whether they pass a certain condition.

For example, the :enabled pseudo-selector function is actually implemented like so:

function (node){
 return node.disabled === false;
}

This function can then be used to test the nodes during the selection process. For instance, when we
pass the selector expression input:enabled to Slick, it first selects all input elements in the context, then

CHAPTER 9 ■ SELECTOR ENGINES

256

it invokes the :enabled pseudo-selector function for each one of them. The function then checks the
disabled property and returns a Boolean value. If the pseudo-selector function returns true, the node
will be included in the results. Otherwise, it will be removed from the results.

Slick allows us to add our own pseudo-selectors using the Slick.definePseudo function. This
function takes two arguments: name, which should be the name of the pseudo-selector without the colon
prefix, and fn, which is the function associated with the selector.

Slick.definePseudo('input', function(node){
 var tag = node.tagName.toLowerCase();
 return (tag == 'input' || tag == 'select' || tag == 'textarea');
});

Here we defined a simple pseudo-selector that can be used to select all form elements. All pseudo-
selector functions receive the current node being tested as their first argument. As you can see, we did a
simple tagname comparison to check the tagname of the node. This function, like all other pseudo-
selector functions, will return a Boolean result that will be used to filter out elements from the results.

Custom pseudo-selectors can also take in arguments from the selector string using a second
parameter:

Slick.definePseudo('custom', function(node, arg){
 console.log(arg);
 return false;
});

In this snippet we defined a dummy pseudo-selector called custom that can accept string arguments.
When this function is called by Slick, it will pass in the arguments to the selector along with the node
itself. Thus, the expression :custom(something) will pass the string value 'something' to the function
when it is invoked. Take note that Slick does not parse the actual value of the argument, and therefore
only passes strings to all pseudo-selector functions.

Inside Slick
Slick is composed of two main parts: the parsing engine and the selection engine. The parsing engine, as
its name implies, is concerned with taking string CSS selectors and turning them into objects that will be
used for the selection process. The selection engine, on the other hand, does the gruntwork of taking the
parsed selector object from the parsing engine and using it to traverse the DOM Tree and select the
appropriate elements.

The Slick Parser Engine
The parser engine, Slick.Parser, is used to transform a string CSS selector into an expression object,
which is used later for the actual selection process. Expression objects, to put it simply, are simple
objects that define the structure of a particular CSS selector expression.

Slick uses a recursive regular expression-based parser function to transform string selectors into
expression objects. This parser function is accessible through the Slick.parse method. It takes a single
string argument, expression, and returns a selector object. For example:

Slick.parse('#wrapper > a.highlight, h1')

This will return an expression object that looks like this:

CHAPTER 9 ■ SELECTOR ENGINES

257

{
 // the raw expression string
 raw: '#wrapper > a.highlight, h1',

 // selector groups
 expressions: [

 // selector expression
 [
 {combinator: ' ', tag: '*', id: 'wrapper'},
 {combinator: '>', tag: 'a', classList: ['highlight'], classes: [{value:
'highlight', regexp: RegExp}]}
],

 // selector expression
 [
 {combinator: ' ', tag: 'h1'}
]
],

 // number of selector groups
 length: 2,

 // reversal function
 reverse: fn,

 // Slick flag
 Slick: true
}

You can see that the basic structure of an expression object is simple enough. Each expression
object has a raw property that contains the actual selector string that was parsed. It also has an
expressions array that contains each sub-expression from the selector string. Our example had two sub-
expressions, #wrapper > a.highlight and h1, so the expressions array has two members.

Each sub-expression is turned into an expressions array composed of several objects. Each object
represents a simple selector from the sub-expression. The first selector in our example, for instance,
consists of two simple selectors, so its expressions array has two objects. Our second selector, however,
has only a single simple type selector, so it has only one object in its corresponding expressions array.

Each object breaks down a simple selector according to its parts. There’s a member that denotes the
combinator used (which defaults to a descendant combinator) and then members that denote each
specific part, like the class names or the id, or the tag. As we’ll see later, the combinator is important in
this object, because it will be used for traversal decisions by the selection engine later.

Finally, Slick adds three more properties to the expression object: length, which indicates the
number of selector groups in the expression, reverse, which is a function used to reverse the expression,
and Slick, which is a simple flag that helps the parser to avoid reprocessing an expression object.
Because selector string parsing can be taxing on performance, Slick caches parsed selectors for later use.
If the same string selector is passed to Slick twice, Slick will simply return the expression object from its
cache that was previously parsed. This enables Slick to avoid recomputing selectors for each call to the
Slick.parse function.

CHAPTER 9 ■ SELECTOR ENGINES

258

The Slick Selection Engine
Once a string CSS expression has been turned into a selector object, it is then turned over to the
selection engine called Slick.Finder. It is up to this engine to parse the selector object and locate the
node or nodes in question.

Both Slick.find and Slick.search use a single internal function called search to perform the
selection. This function takes the context and expression arguments from the two functions, calls
Slick.parse to turn the string expression into an expression object, and uses this expression object to
traverse the context to find the nodes being selected.

I mentioned in the previous section that the combinator properties from the expressions are
important for Slick’s functionality. This is because Slick uses a combinatorial traversal mechanism,
where the combinators of each expression are used to decide how to select the nodes being matched.
Slick does this by assigning each supported combinator a function.

To illustrate how this works, let’s say we’re using the following expression:

Slick.search(document, 'div p > a');

Here we’re trying to select all the anchor elements that are direct children of paragraph elements,
which are in turn descendants of div elements. The context we’re using here is the document object,
which means that we’ll start the search from the top-most level of the document.

Parsing this, we get an expression object with an expressions property like this:

'expressions':[
 [
 {'combinator':' ','tag':'div'},
 {'combinator':' ','tag':'p'},
 {'combinator':'>','tag':'a'}
]
]

Because we didn’t have selector groups in our expression, we end up with a single expression group.
This expression group divides our original expression into three objects: one for the div tag, one for the p
tag, and one for the a tag.

Now that it has an expression object to work with, the search function will begin the selection
process. First, it assigns the context argument as the initial context for the search. It then takes the first
expression group from the expressions array and starts the actual traversal with that expression group.

The search function takes the first object in the group and looks at its combinator property. In our
example, the first one is the descendant combinator, so search calls the internal 'combinator: '
function, which is the function associated with the descendant combinator. The internal 'combinator: '
function will then take the initial context, which is the document in our case, then search this context for
all the elements that match the properties of the first object. In our case, we’re matching all elements
with the type div, so the 'combinator: ' function will take all the descendant elements of the document
element and check whether they’re of the div type before storing them in an array. In cases where there
are other matchers present—such as class names, pseudo-selectors, or attribute selectors—the search
function will also test the nodes against those criteria before storing the ones that pass into the array.

If there were no elements selected during the first selection process, the search function stops there
and returns immediately. However, if there were elements matched, the process continues to the next
object in the expression group. Before that happens, however, the search function first switches the
context so that the next elements will be searched in relation to the results of the previous search. In our
example, this means that after all the div elements from the document have been selected, search will
switch the context so that the next selection will take place in the context of these new divs.

What happens next is that the search function will take the next object from the expression group
and again check its combinator property. In our case, the combinator is once again the descendant
combinator, which means that the search function will again call the 'combinator: ' function. This

CHAPTER 9 ■ SELECTOR ENGINES

259

time, however, search will call this function for each node that was selected from the previous
expression. So for each div that was selected in the previous round, the 'combinator: ' function will be
invoked in order to fetch the paragraph elements. Like before, the function will also test the nodes using
the criteria defined in the object before adding them into a new array.

All the paragraph elements selected from all div elements are combined into a single array, and
search will once again switch the context to this new array. The process will then be repeated for the
final object in the expression group, which uses the 'combinator:>' function to search for child nodes.
The process is continued and repeated until all of the objects from the expression group have been
selected. If there are other expression groups in the expression object, the process will be repeated for
that as well.

If there are no matches at any point of the selection process for an expression group, the search
function moves on to the next expression group until all groups have been examined. In cases where
only single elements are needed—such as with Slick.find—the process is stopped as soon as one
element is found.

The Wrap-Up
In this chapter, we learned more about trees and how nodes in a tree could be selected using traversal.
We also learned about selector engines and the CSS selector notation that most of them use. Finally, we
learned about Slick and its API. We found out about its special features that we can use with our
MooTools code, and took a peek at the internals of this awesome selector engine.

In the next section, we’ll explore another important topic in DOM Scripting, one that changes the
way we write our code. So, if you’re ready, hop on your elemental horse and turn the page so we can
explore the crazy world of DOM events

CHAPTER 9 ■ SELECTOR ENGINES

260

C H A P T E R 10

■ ■ ■

261

Events

Events are the lifeblood of the most powerful JavaScript applications. At its core, the browser is an event-
based programming platform, and a very nice one at that. Without a firm grasp of JavaScript events, we
won’t be able to create sophisticated programs, so it’s essential that we study how exactly event-based
programming fits into the whole JavaScript ecosystem.

In this chapter, we’ll talk about events and event-based programming, and we’ll look at the two
main models that are used for browser event systems. We’ll also take a look at the MooTools event
system, which unifies these two models and makes cross-browser event-based programming easier and
more powerful.

A Loopy World
If you look back at the programs we’ve worked on so far, you’ll notice that all of them are linear: the
program is interpreted a piece at a time, jumping for function calls and ending when there is no more
code to be interpreted. Take a look at the following code, for example:

var sum = function(num1, num2){
 return num1 + num2;
};

sum(2, 3);

The interpreter first executes our function expression, setting the value of the sum variable as a
function that takes two arguments and adds them. Then, the interpreter executes the invocation
sum(2, 3), calling the sum function to add the two values and then returning the result. After the last line,
our program is done: there is no more code to be interpreted, and our program therefore “exits” and
finishes execution.

While there are hundreds of simple programs like this, most programs aren’t so linear. Most user
applications, such as word processors or painting programs, never really exit. In fact, barring crashes or
explicitly closing the program, most applications will run continuously. This behavior is different from
the programs we’ve seen thus far, which exit as soon as they’re done with all their instructions. Like that
bunny on TV, those applications just keep going and going.

But how exactly do these applications keep themselves from exiting? We know that programs exit
naturally when there are no more instructions to interpret. No matter how long our programs are, there
still comes a point when the interpreter will run out of instructions and exit, so the length of code isn’t
what’s keeping these applications alive. The only way to keep a program from exiting is to keep it from
running out of instructions, and the simplest way to do that is to use a loop.

A loop is a block of code that is repeatedly executed. Some loops execute code over and over for a
predefined amount of time, while some others run indefinitely until they’re explicitly stopped. Compare
the example above with this one:

CHAPTER 10 ■ EVENTS

262

var add5 = function(num){
 return num + 5;
};

while (true){
 var num = prompt('Please enter a number to add 5 to, or "quit" to exit.');
 if (num == 'quit'){
 break;
 } else {
 num = parseFloat(num);
 if (num !== NaN) alert(num + ' plus 5 is ' + add5(num));
 }
}

In this example, we’re using a JavaScript while statement to create a loop. A while loop will repeat
the block within its braces until the condition inside the parentheses evaluates to false. In our example,
our condition is a literal true, which means that the loop will never exit on its own. Since our loop will
keep on iterating indefinitely, the interpreter has to keep on executing the block inside the loop. The
result is a program that never exits.

Examining the code further, the first thing we do inside the loop is ask the user for a number using
the prompt function. prompt is a special browser-provided function that opens a small dialog window
where users can type in their input. The interesting thing about prompt is that it blocks execution: the
interpreter waits for the user to type in some input and hit OK before proceeding with the next line of
code. In our example, the if statement won’t be processed until the user inputs a value to the prompt
dialog. And only after that can we proceed with processing the input.

If we boil it down to the basics, the whole process consists of three core steps: wait, process, repeat.
The waiting step is done by a blocking construct that also listens to user input, which in the case of our
example is the prompt function. The process step is then performed by the main logic part of the
application. Finally, the repeat step is guaranteed by the looping structure we use to continuously
perform the operations. Putting these three together, we get a very important programming construct
called the main loop.

The main loop is the essential ingredient for long-running programs. All long-running programs—
from low-level system programs to GUI applications like word processors—will implement some sort of
main loop. Sometimes the main loop is implemented directly in the program itself, but it could also be
provided by the environment where the program is running, like the operating system or the runtime
interpreter.

In the case of browser-based JavaScript, the main loop is provided by the browser. When we
discussed how the browser processes a web page in Chapter 7, we saw that the browser enters a looping
phase at the end of the process, and that looping phase is controlled by none other than a main loop.

The browser-provided main loop is internal, and is automatically created for each window. Because
the browser implicitly enters a main loop during the lifetime of a page, all scripts in a page don’t
necessarily terminate after they’re executed by the interpreter. Instead, the variables and objects they’ve
created remain alive along with the page. This is different from a true linear program where everything is
destroyed after the program finishes execution.

Because the browser treats each document as a single program sharing a single environment, all
scripts on a page also share the same main loop, which makes it possible to perform the process step
from the wait-process-repeat flow in any part of your application.

The main loop provided by the browser isn’t usually called as such, though. Rather, we use another
name, one that reflects the event-based nature of the browser.

CHAPTER 10 ■ EVENTS

263

The Event Loop
The browser-provided main loop is more commonly called the event loop. To understand this term, let’s
first look back at our earlier looping example:

var add5 = function(num){
 return num + 5;
};

while (true){
 var num = prompt('Please enter a number to add 5 to, or "quit" to exit.');
 if (num == 'quit'){
 break;
 } else {
 num = parseFloat(num);
 if (num !== NaN) alert(num + ' plus 5 is ' + add5(num));
 }
}

If you recall, we found out that the prompt function performs the wait step of the three-step main
loop process by blocking the execution until the user provides input for us to process. Here, the user
input is a string we can then check using simple code. If the string is equal to ‘quit’, we step out of the
loop and end execution; otherwise, we try turning it into a number value using parseFloat, and then use
it for our add5 function. Our wait step in this case is very limited, because we’re only waiting for user
input, and we’re only concerned about the data the user provides us using the prompt dialog.

If we examine GUI-based applications, on the other hand, we’ll see that a lot more things could
happen. An application’s interface may have complex controls, like data grids or file browsers, as well as
interactive items like menus or input forms. The complexity of these applications can’t be handled like
our prompt-based example; otherwise, we’ll end up with hundreds of blocking functions to handle each
of the items in the interface—and that would be too complicated to work with.

To avoid the difficulty of having a separate blocking function to handle each control on a complex
application, most applications employ a single “waiting” construct called an observer that monitors all
of the controls in the application. The observer blocks execution and waits for something to happen in
the application. When something happens, like when a user clicks a button or the window gets resized,
the observer takes note of this and creates an object called an event. The event object encapsulates the
details of the action, such as the type of action, the target of the action, and other information that can
be used to respond to the action. The event object is then handed over to a dispatcher, which informs
the program of the event so that it can react by performing some process.

With this model, the steps thus change from wait-process-repeat to a more specialized one:
observe-dispatch-repeat. And because events are central to this model, the main loop is therefore given
a more appropriate name: an event loop.

Because a web page is like a graphical application, browsers employ an event loop for the
programming environment. In the browser, a global observer monitors all elements in a page—from the
document element itself to small elements like or —and waits for something to happen.
When a user interacts with the page, the observer creates a new event object and passes it to the
dispatcher, which then informs the JavaScript program that something has happened. This process is
repeated over and over again until the page is closed, which then formally marks the termination of the
program.

CHAPTER 10 ■ EVENTS

264

Event-Based Programming
The event loop, of course, has a more powerful use than just keeping applications alive for a long time.
Because events are central to the event-loop model, we’re given a flexible programming paradigm for
handling graphical applications called event-based programming.

In the programs we’ve worked on so far, most of the code is explicitly executed. In our earlier
prompt-based code, for example, we explicitly invoke the add5 function after processing the user’s input.
This explicit invocation works in our case because we know that at that point of our program, we would
already have the user’s data accessible to us in a variable.

In a graphical application like a web page, however, we don’t really know when a user will interact
with the controls. A user may click on a link two seconds after the page loads, or she may do so after ten
minutes. We also don’t know whether the user will click one link or another, or if she’ll even click
anything at all.

This is the reason for having a global observer in our event loop that waits for an event. The observer
will wait until something happens, then it will create a new event object that represents what has
happened and send it to the dispatcher, which then informs our program that an event has been fired.

This behavior leads to an interesting inversion of our original process. In our original approach, we
explicitly invoke our function to perform an action. In the event-based model, however, we can no
longer do that because anything can happen. What we have to do, rather, is to wait for the dispatcher to
tell us that something has happened and then react accordingly.

Of course, the global observer and dispatcher are only one side of the equation. These things are
provided in the browser environment and are present whether we want to use them or not. In order to
make use of the event-based approach, we also have to craft our applications to be event-aware. As an
example, let’s say we have the following HTML markup:

<ul id="contacts">
 <li data-id="contact-001">Garrick Cheung
 <li data-id="contact-002">Djamil Legato
 <li data-id="contact-003">Christoph Pojer
 <li data-id="contact-004">Jabis Sevon
 <li data-id="contact-005">Tim Wienk

On the browser’s side, the event loop’s observer will be listening to all of the elements on the page
automatically. The observer will be listening to the list element, as well as all the list item elements inside
the list. Any actions performed on the elements will be noted by the observer. So if we click on one of the
list items, for instance, the observer will take note of this and create a click event and then tell the
dispatcher that a list item has been clicked.

Now let’s say we want our application to be able to react to that click event. Every time a list item is
clicked, we want to log the data-id attribute of the clicked item using console.log. This is where the
second part of the event-based equation—the part that we have to implement ourselves through our
code—comes into play.

To make our programs event-aware, we have to explicitly tell the environment—and the dispatcher
in particular—that we’d like to react to events. We do this using a special API that focuses on event
handlers. An event handler, also called an event listener, is a function that’s called in response to an
event.

In DOM scripting, event handlers are attached directly to each element. It is the job of the
dispatcher to call these handler functions when an event happens. In our example, we have to attach a
click event handler for each item in the list, which tells the dispatcher that we want to react to the click
event of the list items. When an item is clicked, the observer creates an event object and passes it to the
dispatcher, which then looks for the click event handlers of the clicked item and invokes them.

So now we have the two parts of the equation for event-based programming in the browser: the
event loop, which is concerned with monitoring the items on a page and dispatching events, and the

CHAPTER 10 ■ EVENTS

265

event handlers, which are functions we use to handle events. Together these form the browser’s event
system. But while the ideas seem straightforward enough, the actual implementation details of event-
based programming in browsers is a little more complex than what we’ve seen so far.

The Event Models
There are two models currently used by browsers to implement their events systems. The first is the
standard model that’s from the DOM Level 2 spec, and the second is a proprietary model used by
Microsoft for its Internet Explorer browser. While these two models share the flow we discussed, they
both have specific quirks that we need to look at, and that’s what we’ll do right now.

■ Note There is a third model, the legacy event model, which is the original event model that comes with the
legacy DOM. This model is still widely supported in browsers, but its use is now considered bad practice due to
the availability of better event models, and no major JavaScript library still employs this model. Therefore, we

won’t discuss the legacy event model here.

The Internet Explorer Model
We’ll start with the simpler model, the Internet Explorer model. This model is used in all major versions
of IE up to the latest (version 9 as of this writing), and is specific only to this browser. It involves three
methods of the Element type: attachEvent, removeEvent, and fireEvent.

Attaching Event Handlers
Looking back at our earlier problem, we had the following HTML markup:

<ul id="contacts">
 <li data-id="contact-001">Garrick Cheung
 <li data-id="contact-002">Djamil Legato
 <li data-id="contact-003">Christoph Pojer
 <li data-id="contact-004">Jabis Sevon
 <li data-id="contact-005">Tim Wienk

We said that we wanted to react to click events on the list items. Specifically, we wanted to output
the value of the data-id attribute of the clicked element using console.log. We learned that to do that,
we have to attach an event handler—a function—to each of the elements to tell the browser’s event
dispatcher that we’d like to handle the click events of the items.

In the Internet Explorer model, we use the attachEvent function to attach event handlers to an
element. The function takes two arguments: type, which is a string denoting the event we’d like to
handle, and handler, which is the handler function we’re going to attach:

var handler = function(){
 console.log('Clicked.');
};

CHAPTER 10 ■ EVENTS

266

var contacts = $('contacts').getElements('li');
contacts.each(function(contact){
 contact.attachEvent('onclick', handler);
});

First, we declare a handler function, which is the event handler we’ll use for all our elements. Next,
we select all list items inside the contacts list and loop through them, calling on their attachEvent
method. We pass two arguments: ‘onclick’, which tells the event system that the event handler we’re
attaching responds to the click event, and ‘handler’, which is the identifier of our actual function. If you
run this code in an Internet Explorer browser and click one of the list items, you’ll get the string
‘Clicked.’ on your console.

■ Note Notice the string we passed to attachEvent. We used ‘onclick’ rather than ‘click’, and this is an important
thing to remember when working with the Internet Explorer model. Event names, when passed to the event

methods of IE, need to be prefixed by “on”. Forgetting to do this means IE will ignore your event handlers.

A specific event handler can be attached only once per event type. If you call attachEvent multiple
times with the same arguments, the other calls will be ignored.

var handler = function(){
 console.log('Clicked.');
};

var item = $('item');
item.attachEvent('onclick', handler);
item.attachEvent('onclick', handler);
item.attachEvent('onclick', handler);

Here we try to attach the same event handler three times to the item element. When we run this in
Internet Explorer and click on the item element, though, we only get a single ‘Clicked’ console output.
This is because the second and third calls to attachEvent are ignored. This is a feature of all event models
that prevents us from accidentally attaching the same event handler twice.

One of the more glaring problems with IE’s event model, however, is the fact that multiple event
handlers for an element aren’t called in the order they were attached.

var handlerA = function(){
 console.log('Handler A.');
};

var handlerB = function(){
 console.log('Handler B.');
};

var item = $('item');
item.attachEvent('onclick', handlerA);
item.attachEvent('onclick', handlerB);

When we run this on Internet Explorer and click on the item element, the browser will invoke both
event handlers, but the order will be random. For one click, they might be invoked in order. For another,
handlerB might be invoked first.

CHAPTER 10 ■ EVENTS

267

This is intentional behavior, as noted on the MSDN website, which says that event handlers are fired
randomly. Unfortunately, we can’t do anything about it. The rule of thumb, therefore, is to write your
event handlers so that the order of their invocation isn’t dependent on the order they were attached.

The Global Event Object
So now our list items are clickable, but our coded event handler is still incomplete. We want the event
handler to output the value of the clicked element’s data-id property, but right now it only logs
‘Clicked.’ All of the items, when clicked, will output the same thing, so we need a way to differentiate
among items inside our event handler. To be exact, we want a way for our event handler to know exactly
which item was clicked.

One way to do this is to use different event handlers for each element, like so:

var contacts = $('contacts').getElements('li');
contacts.each(function(contact){
 contact.attachEvent('onclick', function(){
 console.log('Clicked on ' + contact.get('data-id'));
 });
});

Instead of declaring a single event handler for all our list items, we create a new event handler
function for each element. When we run this example, each item will output a different string when
clicked. If we click on the second list item, for example, it will output ‘Clicked on contact-002’.

While this works, it’s not as good as having a single event handler. For one, we’re creating too many
functions: if our list has a hundred elements, we’d have to create a hundred handler functions as well,
and that could affect performance. And more importantly, we’re using anonymous functions in our
example that are created inside the scope of the each callback, which means that we can’t access these
functions—something we’ll need to do if we want to detach the handlers, as we’ll see later. So it’s better
if we have a single handler function to handle all these items, but we’re back to our original problem:
how do we know which element was clicked?

Let’s recall how the event loopz works: first, the observer monitors all elements on the page and
when something happens, it creates an event object that contains data about the event, which it hands
off to the dispatcher, which then invokes the event handler. The key, therefore, is the event object,
because that’s where the observer puts all data about what happened—and one of those pieces of data is
the element where the event happened.

In Internet Explorer, there is only one global event object that is accessible via window.event. The
global event object is where the global observer puts the details of the event, and we can read the
properties of this object to find out more about the event that we’re handling.

An important property of the global event object is srcElement, which is a reference to the actual
element where the event happened. We can use this property to pinpoint which element was actually
clicked, and we can then edit our code to make use of this property:

var handler = function(){
 // get the clicked element using window.event
 var contact = $(window.event.srcElement);
 console.log('Clicked on ' + contact.get('data-id'));
};

var contacts = $('contacts').getElements('li');
contacts.each(function(contact){
 contact.attachEvent('onclick', handler);
});

CHAPTER 10 ■ EVENTS

268

We modified our handler function in this example to access the clicked list item using
window.event.srcElement. We then output the value of the data-id attribute of the element as in our
individual handler example. When we run this in the browser, we’ll get properly differentiated output for
each of our list items, just as we require.

■ Note In our example, we passed the value of window.event.srcElement to $ instead of using it directly, in
order to give it the MooTools Element methods. The value of srcElement isn’t extended by default, due to Internet

Explorer’s DOM model, so we need to pass it first to $ to be able to use Element methods like get.

Aside from srcElement, the IE event object also has some other properties that are useful for event
handling:

• The type property is a string that contains the type of event that’s currently being
handled, without the “on” prefix. If the current event is a click event, for example,
the value of window.event.type will be ‘click’. If you’re handling a mouseover
event, the value of this property will be ‘mouseover’.

• The button property is a number that’s used to indicate which mouse button was
used to perform a mouse-related action such as a click. The value of this property
will be 1 if the left button was pressed, 2 if the right button was pressed, and 4 if it’s
the middle button. If more than two buttons were pressed, the value of this
property will be the sum of the two button values, like 3 if both the left and right
button were pressed or 7 if all buttons were pressed together. If no button was
pressed during the event, the value of this property will be 0.

• altKey, ctrlKey, metaKey, and shiftKey are special Boolean properties that tell the
state of the modifier keys during the event. If you click on an element while
holding down the shift key on the keyboard, for example, the shiftKey property
will have the value true.

• The keyCode property is used in conjunction with the keyboard events. For the
keydown and keyup events, the value of this property will be a numeric value that
represents the keycode value of the specific key pressed, such as 77 for the M key
or 118 for the F7 key. Meanwhile, the value of the property when used in
conjunction with the keypress event will be the Unicode value of the specific
character, such as 77 for the uppercase M and 109 for the lowercase m.

• clientX, clientY, offsetX, and offsetY are coordinate properties used in
conjunction with mouse events. The first two are used to determine the position
of the mouse relative to the top-left corner of the window, while the last two are
used to determine the position of the mouse relative to the top-left corner of the
srcElement.

You won’t need to use all these properties all the time when working with events, but there will be
times you’ll need this information to properly handle an event.

CHAPTER 10 ■ EVENTS

269

Cancelling Default Actions
There are two other properties of the event object we need to discuss. The first is returnValue, which is a
special Boolean flag you can use to prevent the default action of an event. For example, let’s say you have
a set of links on your page:

Home
About
Projects

When clicking links on a page, the default action of the browser is to load the location specified in

the href property of the link. However, let’s say you don’t want to perform this default action. Instead,
you want to simply log the value of the href property. To do this in the Internet Explorer model, we have
to write:

var handler = function(){
 window.event.returnValue = false;
 console.log($(window.event.srcElement).get('href'));
};

var links = $$('a');
links.each(function(link){
 link.attachEvent('onclick', handler);
});

By setting the value of window.event.returnValue to false inside our handler function, we tell the

browser that we don’t want to perform the default action for the event. In this case, we’re preventing the
browser from loading a new page when a link is clicked.

Event Propagation
The last important property of the event object that we’ll talk about is called cancelBubble, and it’s
connected with the concept of event propagation. To understand this concept, we have to go back to the
idea of the DOM Tree.

Suppose we have the following HTML markup:

<html>
 <body>

 </body>
</html>

To simplify the markup, I didn’t include the <head> portion, but this example will work for our

purpose. In our discussion of the DOM Tree in the last chapter, we learned that each item in the page is
turned into a node by the browser. In this case, we have four nodes: the <html> node, the <body> node,
and the node, and the document node, which is the representation of the page as a whole.

One thing you’ll notice is that the relationship between parent nodes and child nodes is visible from
the markup itself. The element, for example, is visually enclosed by the start and closing tags of the

CHAPTER 10 ■ EVENTS

270

<body> element. From this view, the child element therefore lies inside the parent element, and this leads
us back to the concept of event propagation.

Event propagation tells us that when an event happens on an element, it also happens on the
elements that enclose that element. Because the element is enclosed by its parent, the events of a single
element ripple and affect its parent as well. In other words, the events that happen on a child node are
also propagated upwards to its parent node.

However, the propagation doesn’t stop at the parent node of the element that received the event.
Instead, the event continues upward until it reaches the last node. If we click on the element, for
example, we are not only clicking the element itself, we are also clicking all the elements that enclose it,
which are the <body>, <html>, and document elements.

When we put the idea of the event propagation together with the other things we’ve learned, we get
a very advanced event model. First the global observer monitors all elements on a page, waiting for
something to happen. When something interesting occurs, the observer creates an event object to
capture the details of what happened. It then passes this event object to the dispatcher, which invokes
the appropriate event handlers for the target element, which is the element from where the event
originated. It does not end there, however: the dispatcher then starts event propagation by looking for
the parent elements of the source element and it will fire event handlers for these elements as well.

It’s easy to observe this behavior. Let’s take our example and modify it a bit:

<html>
 <head>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 // the image
 $$('img').attachEvent('onclick', function(){
 console.log('img');
 });

 // the body element
 $$('body').attachEvent('onclick', function(){
 console.log('body');
 });

 // the html element
 $$('html').attachEvent('onclick', function(){
 console.log('html');
 });

 // the document element
 $$(document).attachEvent('onclick', function(){
 console.log('document');
 });
 });
 </script>
 </head>
 <body>

 </body>
</html>

CHAPTER 10 ■ EVENTS

271

You can run this script in Internet Explorer, and you can click on the element to test it. If you
look at the console output, you’ll see the following strings in order: ‘img’, ‘body’, ‘html’, ‘document’. The
order of the output is the same as the order of the elements in the DOM Tree. The dispatcher first calls
the click handler for the target element, which is the element, and then it calls the event handlers
for the parent elements of , starting from its immediate parent, <body>, and ending at its final
parent, document.

This event propagation model is called a bubbling model, because the propagation of the event
starts from the bottommost node in the DOM Tree and ends at the topmost node, like a bubble floating
from the bottom to the top.

I mentioned earlier that there’s a special property in the global event object called cancelBubble.
This property is useful for controlling the dispatcher’s propagation of the event. If we set this property to
true, the propagation will be stopped, and the event handlers of the elements further up the tree will no
longer be invoked.

Let’s look at the following example to see how it works:

<html>
 <head>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 // the image
 $$('img').attachEvent('onclick', function(){
 console.log('img');
 });

 // the body element
 $$('body').attachEvent('onclick', function(){
 console.log('body');
 window.event.cancelBubble = true;
 });

 // the html element
 $$('html').attachEvent('onclick', function(){
 console.log('html');
 });

 // the document element
 $$(document).attachEvent('onclick', function(){
 console.log('document');
 });
 });
 </script>
 </head>
 <body>

 </body>
</html>

In this snippet, we set the cancelBubble property of the global event object to true inside the <body>

event handler. When we run this in the browser and click on the image, we get the following console
output: ‘img’, ‘body’. Because we canceled the bubbling of the event in the click event handler of the

CHAPTER 10 ■ EVENTS

272

<body>, the dispatcher stopped further propagation of the event, and no longer called the click event
handlers of the other elements.

Detaching Event Handlers
Just as with attaching event handlers, the Internet Explorer event model also gives us a method for
detaching event handlers, called detachEvent. Like attachEvent, the detachEvent method is available on
all elements, and takes two arguments: type, which is the type of event handler that we’re detaching, and
handler, which is the actual handler function we’re removing.

For example, here’s an event handler that detaches itself after the element has been clicked three
times:

var counter = 0;
var handler = function(){
 if (counter < 3){
 console.log('Hello!');
 } else {
 window.event.srcElement.detachEvent('onclick', handler);
 }
 counter++;
};

var item = $('item');
item.attachEvent('onclick', handler);

When the element with the id “item” is clicked, the handler function will be invoked, which then

checks how many times the function has been called. If it’s been called less than three times, the
function simply outputs ‘Hello’ via the console. However, if it’s been called more than three times, the
handler function detaches itself from the element.

Notice that we use the same function identifier, handler, for both the attachEvent and detachEvent
methods. This is because the value of the handler method must be the exact same function you used
with attachEvent. The event dispatcher will search through the event handlers for the element and
compare each handler to the function; if it finds a match, that handler is detached. This is why I advised
against using anonymous functions if you need to detach events later: if you don’t have access to the
original function you used for attachEvent, you won’t be able to detach it via detachEvent.

Dispatching Events
Finally, we have the last important event method called fireEvent. This method is used to dispatch
events from JavaScript, without any user intervention. To use this method, we have to create our own
event object using a special IE function called document.createEventObject, which returns an event
object we can use:

var handler = function(){
 console.log(window.event.type); // 'click'
 console.log(window.event.faked); // true
};

var link = $('main');

CHAPTER 10 ■ EVENTS

273

link.attachEvent('onclick', handler);

// dispatch a click event
setTimeout(function(){
 // create a new event object
 var e = document.createEventObject();
 e.faked = true;

 // dispatch
 link.fireEvent('onclick', e);
}, 5000);

In this example, we attach a basic event handler to the element with an id “main”. We then use

setTimeout to create a delayed function that will be called after five seconds. When this function is
called, it creates a new event object using document.createEventObject that will be used as the value of
window.event when we fire the click event of the element by calling fireEvent(‘onclick’, e). The result
is that the click event of the element will be called after five seconds, even if we don’t do anything.

Notice how we extended the event object with a property called faked. Because the event object is
like any other JavaScript object, we can simply augment it directly with new properties. An important
thing to take note of, though, is that the event generated by document.createEventObject is a blank event
object: the values of its type and srcElement properties will automatically be filled based on the
fireEvent call, but its other values, like button or keyCode will be blank. Therefore, you have to
specifically augment the object with those properties to make it appear like a real event object generated
by the global dispatcher.

The DOM Level 2 Model
One of the things that came out in the second version of the DOM standard is the DOM Events
specification. This module was created to define a standard event model that can be used in all
browsers. All major browsers, except Internet Explorer versions 8 and below, have adopted this event
model, and it is therefore the standard model that should be used when working with DOM events.

Attaching Events
The implementation details of the standard Events model are very similar to the Internet Explorer
model, with a few key differences. Like the Internet Explorer model, it starts with a method for attaching
events: addEventListener. Like the IE equivalent, attachEvent, addEventListener takes three arguments:
type, which is a string denoting the type of event to handle, listener, which is the event handler
function to invoke in response to an event, and useCapture, which is used for the capturing mode. The
last argument requires some more discussion, but for now let’s assume it is always supposed to be false.

Rewriting our list item example from the previous section, we get the following snippet:

var handler = function(){
 console.log('Clicked.');
};

var contacts = $('contacts').getElements('li');
contacts.each(function(contact){
 contact.addEventListener('click', handler, false);
});

CHAPTER 10 ■ EVENTS

274

Here we declare our event handler function called handler, which logs the string ‘Clicked.’ when

invoked. We then select all the list item elements inside our contacts element and loop through them
using the Elements method, each. Inside our each callback, we call the addEventListener method of the
element to attach our event handler.

You’ll notice a key difference between attachEvent and addEventListener in our example: the type
argument for addEventListener doesn’t include the “on” prefix. This is a very important distinction.
When using the IE model and attachEvent, the name of the event is always prefixed with “on”. However,
when using the standard DOM Events model and addEventListener, the name of the event should not be
prefixed with “on”.

When we run this example in a browser that supports the standard model (any browser aside from
Internet Explorer 8 and below), you’ll see that the result is the same as the Internet Explorer example:
clicking on a list item will log the ‘Clicked.’ string.

Like in the IE model, the standard model does not allow the same event handler to be attached more
than once.

var handler = function(){
 console.log('Clicked.');
};

var item = $('item');
item.addEventListener('click', handler, false);
item.addEventListener('click', handler, false);
item.addEventListener('click', handler, false);

Here we try attaching the handler function as the click event hander of the item element three

times. When we run this on a browser and click the element, however, we get only a single console
output because the second and third invocations of addEventListener are ignored since the handler
function is already attached.

The standard model guarantees that the order of invocation for the event handlers is according to
the order they were added.

var handlerA = function(){
 console.log('Handler A.');
};

var handlerB = function(){
 console.log('Handler B.');
};

var item = $('item');
item.addEventListener('click', handlerA, false);
item.addEventListener('click', handlerB, false);

When we run this example and click on the item element, we’ll always get two console outputs in

this order: ‘Handler A.’ and ‘Handler B.’. The order of the handler invocation in the standard model
always follows the order in which the event handlers were attached. This is different from the
problematic IE model, which invokes event handlers randomly.

CHAPTER 10 ■ EVENTS

275

Event Objects
Remember that in our Internet Explorer example in the previous section, we accessed the event object
generated by the global observer using the window.event identifier. We then used this object to access
information regarding to the event by inspecting its properties.

In the standard model, however, there is no window.event. Instead, the event object is passed
directly as an argument to our handler functions:

var handler = function(event){
 console.log(event.type); // 'click'
};

var contacts = $('contacts').getElements('li');
contacts.each(function(contact){
 contact.addEventListener('click', handler, false);
});

Here, we add a new formal parameter to our handler function called event. When a click event

occurs on one of the list items, the dispatcher invokes the click event handlers of that element, passing
an event object as an argument. The handler can then inspect this event object to learn more about the
event. Here we log the type property of the event object to know what kind of event it is.

Like the global event object in the IE model, the event objects in the standard model also have
properties that contain information about the event. All event objects in the standard model actually
inherit from Event.prototype, which defines a handful of useful properties, such as type. Another
important property, target, is equivalent to the srcElement property in the IE model. This property is a
reference to the element from where the event occurred:

var handler = function(event){
 var contact = $(event.target);
 console.log('Clicked on ' + contact.get('data-id'));
};

var contacts = $('contacts').getElements('li');
contacts.each(function(contact){
 contact.addEventListener('click', handler, false);
});

In this snippet, we modified our example from the last section to use the event object argument to

the handler function. We pass the value of event.target to the $ function to extend it, and then we
retrieve the value of its data-id attribute before logging it via console.log.

The standard model, however, provides a very nice shortcut for event handlers. In the IE model,
event handlers are fired from the global context, and the value of their this keyword is the window
object. Meanwhile, the standard model fires the event handlers of an element as though they are
element methods, which means that the this keyword inside the event handlers will point to the
element.

We can therefore rewrite our previous example to use this instead of event.target:

var handler = function(event){
 var contact = $(this);
 console.log('Clicked on ' + contact.get('data-id'));

CHAPTER 10 ■ EVENTS

276

};

var contacts = $('contacts').getElements('li');
contacts.each(function(contact){
 contact.addEventListener('click', handler, false);
});

Aside from type and target, there are a few other properties that events inherit from

Event.prototype:

• bubbles is a Boolean property that denotes whether the event can be propagated
by bubbling. Most events, like click, mouseover, or keypress, are bubbling events,
but there are some events, like the load and unload events of windows, that do not
bubble. If an event supports propagation by event bubbling, this property will be
true and false otherwise.

• cancelable is a Boolean property that denotes whether the default action for an
event can be canceled. Remember when we used the returnValue property of the
IE event object to cancel the default action of the page? This property of the
standard model event object tells us whether cancelling the default action of an
event is possible.

• currentTarget is a reference to the current element where the event is taking place
during event propagation. This property is different from the target property,
which always remains the same whether or not the currentTarget is the actual
source of the event.

• eventPhase is a special property that can be compared with special browser-
defined constants to check for the event propagation phase that’s happening
when the event handler was fired.

All these properties are read-only, which means we can’t set their values. This is different from the
IE model, where some properties can be set to perform a particular action. The last two properties,
however, deserve some more discussion, so we’ll examine each of them in turn.

The Current Target
To understand the currentTarget property, let’s recall our discussion about event propagation. We said
that DOM events are propagated: the event is first dispatched from the target element, which is the
origin of the event, and then it’s fired for each of the parent elements of the target.

One limitation of the IE event model is that we don’t have a way to check whether our event handler
was called directly, or whether it was called through propagation. The global event object contains a
srcElement that points to the event target, but there aren’t any properties that tell us the current element
whose event is currently being dispatched. Recall our example:

<html>
 <head>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 // the image
 $$('img').attachEvent('onclick', function(){

CHAPTER 10 ■ EVENTS

277

 console.log('img');
 });

 // the body element
 $$('body').attachEvent('onclick', function(){
 console.log('body');
 });

 // the html element
 $$('html').attachEvent('onclick', function(){
 console.log('html');
 });

 // the document element
 $$(document).attachEvent('onclick', function(){
 console.log('document');
 });
 });
 </head>
 <body>

 </body>
</html>

Here if we click on the element, we get the console output ‘img’, ‘body’, ‘html’, then

‘document’. If we click anywhere inside the page, but outside the element, we’ll still get an output:
‘body’, ‘html’, ‘document’. For these two cases, window.event.srcElement changes to reflect the target:
for the first case, this property will point to the element, while it will point to the <body> element
for the second case. However, from inside our event handlers, we can’t determine whether the event
originated from the current element or another element, because all we have access to is the target
element, not the current element whose handler is being fired.

The standards model solves this by providing the currentTarget property. This property is a
reference to the current element whose handler is being fired. For the target element’s event handlers,
the target and currentTarget properties of the passed event object will be the same object. In contrast,
elements whose event handlers are fired due to event propagation will have different currentTarget and
target properties.

<html>
 <head>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){

 var handler = function(event){
 if (event.currentTarget == event.target)
 console.log('The source of the event is ' + $(this).get('tag'));
 };

 var items = $$('img, body, html').concat(document);
 items.each(function(item){
 item.addEventListener('click', handler, false);
 });

CHAPTER 10 ■ EVENTS

278

 });
 </script>
 </head>
 <body>

 </body>
</html>

In this snippet, we create a generic event handler called “handler” that compares the values of the

currentTarget and target properties of the event object argument. Next we take the , <body>,
<html>, and document elements and combine them in an Elements collection, then loop through each of
them to attach a click event handler via addEventListener. When we run this script in a browser and click
an element, we won’t get console output for every item even though we’re using propagation. Instead,
the handler function will call console.log only if the clicked element is the true target of the event.

Interestingly, though, we don’t need the currentTarget property at all, because the standard model
calls the event handlers like element methods. The value of the this keyword inside our event handlers
is the same as the value of the currentTarget property. We could have very well written the code above
like this:

<html>
 <head>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){

 var handler = function(event){
 if (this == event.target)
 console.log('The source of the event is ' + $(this).get('tag'));
 };

 var items = $$('img, body, html').concat(document);
 items.each(function(item){
 item.addEventListener('click', handler, false);
 });

 });
 </script>
 </head>
 <body>

 </body>
</html>

Three Phases of Event Propagation
The next property we need to discuss, eventPhase, is also related to event propagation, and it highlights
the most important difference between the Internet Explorer event model and the DOM Level 2 Events
model.

CHAPTER 10 ■ EVENTS

279

When we discussed event propagation in the IE model, we learned that it uses a bubbling model of
propagation: the event is first fired for the target node, and then the event “bubbles” up to the parent
nodes of the target until it reaches the last node in the tree.

Netscape implemented a similar event model, but used a reverse type of propagation. Instead of
starting from the bottom, the Netscape model starts firing the event from the topmost node and then
goes all the way down the DOM Tree until it reaches the target element. In this approach, the event flows
from the topmost node to the last, target node like a drop of water, which gives it the name the trickling
model.

In standardizing the event model, the W3C decided to combine both approaches: instead of simply
supporting the bubbling method of propagation, the DOM Level 2 Events model was designed to
support the trickling method as well. In order to support both types of propagation, the standard event
model allots each one a phase.

When an event happens in the standard model, the dispatcher first uses the trickling approach in
what’s called the capturing phase. In this phase, the dispatcher invokes the event handlers for the event
of the topmost node first, then it goes down the DOM tree and invokes the event handlers of the parents
of the target element. When the dispatcher finally reaches the target element, it moves to the second
phase, the “at target” phase and fires the event handler for the target element itself, starting with the
trickling handlers for the target and then the bubbling handlers. Finally, the dispatcher moves to the last
phase, the bubbling phase, where it will go back up the DOM Tree and fire events for each parent node,
thus performing a bubble propagation.

The use of both the trickling and bubbling models does not mean that event handlers for each event
will be fired twice. Instead, you are given the choice of attaching an event handler that will be invoked
during the capturing phase or one that will be invoked during the bubbling phase.

All our examples above are called during the bubbling phase of the event dispatch. To make an
event handler use the trickling phase instead, we need to use the third Boolean argument to
addEventListener, called useCapture. Passing a truthy value to this argument makes the event handler
use the trickling model, while passing a falsy value makes the event handler use the bubbling model:

<html>
 <head>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){

 // trickling model
 document.getElement('html').addEventListener('click', function(e){
 console.log('Trickling Handler');
 }, true);

 // bubbling model
 document.getElement('html').addEventListener('click', function(e){
 console.log('Bubbling Handler');
 }, false);

 });
 </script>
 </head>
 <body>
 </body>
</html>

CHAPTER 10 ■ EVENTS

280

In this example, we attach two event handlers to the <html> element, one for the trickling phase and
the other for the bubbling phase. When we run this in a browser and click anywhere, we get two log
outputs: ‘Trickling Handler’ and then ‘Bubbling Handler’.

The three event phases are represented by three property constants of the Event constructor:
Event.CAPTURING_PHASE, Event.AT_TARGET, and Event.BUBBLING_PHASE. You can then compare the value of
the eventPhase property of the event object to know the phase when your target was invoked. This is
useful for creating event handlers that can be used for both the trickling model and the bubbling model:

<html>
 <head>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){

 var handler = function(event){
 var phase = '';
 switch (event.eventPhase){
 case Browser.Event.CAPTURING_PHASE:
 phase = 'Capturing';
 break;
 case Browser.Event.AT_TARGET:
 phase = 'Target';
 break;
 case Browser.Event.BUBBLING_PHASE:
 phase = 'Bubbling';
 }
 console.log(phase + ': ' + $(this).get('tag'));
 };

 var items = $$('img, body, html');
 items.each(function(item){
 // capturing listener
 item.addEventListener('click', handler, true);

 // bubbling listener
 item.addEventListener('click', handler, false);
 });

 });
 </script>
 </head>
 <body>

 </body>
</html>

In this example, we declare a single handler function that can be used for all phases in the standard
event model. Inside the function, we compare the value of event.eventPhase to the phase constants.
Note that we access the phase constants using Browser.Event.<PHASE_NAME> rather than via
Event.<PHASE_NAME>. This is because the MooTools event system implements its own Event type, as we’ll
see later. The handler function will then log the phase, together with the tag of the current element. If we
run this in a browser and click the image element, we get the following output:

CHAPTER 10 ■ EVENTS

281

Capturing: html
Capturing: body
Target: img
Target: img
Bubbling: body
Bubbling: html

The console output matches the order of the phases, as well as the order of the event dispatch for

each of our phases. It starts with a capture phase on the topmost node, <html>, and then goes to <body>.
It then moves to the “at target” phase and starts by firing the trickling handler of the target, then the
bubbling handler. Finally, it goes back up to perform the bubbling phase starting with the immediate
parent of the target, <body>, then moving up the DOM Tree to <html>.

While the trickling model of propagation is interesting and useful in some cases, it is almost never
really used in cross-browser development. The biggest reason for this is the lack of support for a trickling
model in the older IE versions. In fact, MooTools itself, as we’ll see later in this chapter, relies entirely on
the bubbling model, and for most development concerns, the bubbling model suffices entirely.

Stopping Event Propagation
In the IE model, we use the cancelBubble property of the global event object to stop further event
propagation. In the standard model, we use the event method stopPropagation to do this.

The stopPropagation method is available in all error objects, inherited from Event.prototype. When
called in any event handler, it will stop the event propagation no matter what phase it is in.

The last part is important: the stopPropagation method works in any phase and if called from earlier
phases, it will stop the propagation for later phases. For example, if you call stopPropagation on a
handler during the capturing phase, the event propagation stops there and does not enter the “at target”
or bubbling phases.

<html>
 <head>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){

 var handler = function(event){
 var phase = '';
 switch (event.eventPhase){
 case Browser.Event.CAPTURING_PHASE:
 phase = 'Capturing';
 event.stopPropagation();
 break;
 case Browser.Event.AT_TARGET:
 phase = 'Target';
 break;
 case Browser.Event.BUBBLING_PHASE:
 phase = 'Bubbling';
 }
 console.log(phase + ': ' + $(this).get('tag'));
 };

CHAPTER 10 ■ EVENTS

282

 var items = $$('img, body, html');
 items.each(function(item){
 // capturing listener
 item.addEventListener('click', handler, true);

 // bubbling listener
 item.addEventListener('click', handler, false);
 });

 });
 </script>
 </head>
 <body>

 </body>
</html>

Here, we called event.stopPropagation() during the capturing phase. When we try clicking the

 element, we get the following output:

Capturing: html

The event propagation stops at the trickling handler of the first element and no longer goes through

any other handlers or phases.
However, remember that event propagation is concerned with broadcasting events from the target

node to its parents, or the reverse for the trickling model. Stopping propagation, therefore, only stops the
dispatcher from invoking the event handlers of other nodes, but not the other event handlers of the
same node. Let’s look at another example:

<html>
 <head>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){

 var handler = function(event){
 var phase = '';
 switch (event.eventPhase){
 case Browser.Event.CAPTURING_PHASE:
 phase = 'Capturing';
 break;
 case Browser.Event.AT_TARGET:
 phase = 'Target';
 event.stopPropagation();
 break;
 case Browser.Event.BUBBLING_PHASE:
 phase = 'Bubbling';
 }
 console.log(phase + ': ' + $(this).get('tag'));
 };

CHAPTER 10 ■ EVENTS

283

 var items = $$('img, body, html');
 items.each(function(item){
 // capturing listener
 item.addEventListener('click', handler, true);

 // bubbling listener
 item.addEventListener('click', handler, false);
 });

 });
 </script>
 </head>
 <body>

 </body>
</html>

Here we stopped the propagation at the “at target” phase rather than the capturing phase. Clicking

on the element, we get the following console output:

Capturing: html
Capturing: body
Target: img
Target: img

All our elements in this example have two handlers: one for the capturing phase and one for the

bubbling phase. We know that if the element is the target of the action, both handlers will be called
successively. In the case of using stopPropagation, we only stopped the event from going to the next
phase of the process: we didn’t stop the dispatcher from invoking the other event handlers of the node
that we’re working with. Thus, we get two “Target: img” logs rather than one.

Preventing Default Action
We used the returnValue property of the global event object in the IE model to stop the browser from
performing the default action associated with the event. In the standard model, we have method called
preventDefault that’s used for the same thing.

Going back to our links example:

Home
About
Projects

Here we have a set of links. When we click a link item, the default action of the browser is to navigate

away from the page and load the URL of the link as defined by the href property. In the IE model, we
used window.event.returnValue = false to prevent this from happening. In the standards model, we
simply have to invoke the preventDefault method:

var handler = function(event){

CHAPTER 10 ■ EVENTS

284

 event.preventDefault();
 console.log($(this).get('href'));
};

var links = $$('a');
links.each(function(link){
 link.addEventListener('click', handler, false);
});

Inside our handler function, we invoke event.preventDefault(), which tells the browser that we

don’t want to perform the default action for the event. In this case, we don’t want our links to navigate us
away from the page.

Event Flavors
When we discussed the properties of Event.prototype above, you might have noticed that the event
object doesn’t have properties that relate to specific events. The IE model’s global event object has
properties like keyCode, button, and clientX, which are properties you’d use for more complex event
handling. However, I never mentioned these properties for the event object. Does this mean they’re
omitted from the standard model?

This is not the case, of course. Instead of cramming all these properties into the Event type, as IE
does with its global event object, the standard model defines subtypes for different kinds of events. The
bulk of the common events—such as blur, change, and scroll—inherit directly from Event.prototype,
while mouse events and keyboard events inherit from special subtypes.

The first subtype is UIEvent, which is directly subtyped from the Event type. This is a general type for
all user-interface events, and is used as the constructor for three browser events: DOMActivate,
DOMFocusIn, and DOMFocusOut. These events, as well as this event type, aren’t used that much in browsers.
Instead, UIEvent serves as a supertype for the other special user-interface events.

One of the special user-interface events is mouse events, which are under the MouseEvent type. The
type is subtyped directly from UIEvent, and is used as the constructor for events like click, dblclick,
mouseover, and mousemove. The MouseEvent.prototype object defines several properties that are used for
working with mouse events:

• button is a numeric value that indicates the button pressed during a mouse event.
It can take one of three values: 0 for the left button, 1 for the middle button, and 2
for the right button. Note that the values of this property are not compatible with
the IE model’s button property.

• altKey, ctrlKey, metaKey, and shiftKey are Boolean properties that indicate the
state of their corresponding modifier keys during the event. These properties are
compatible with the IE model’s properties of the same name.

• clientX, clientY, screenX, and screenY are coordinate properties that indicate the
position of the mouse pointer during the mouse event. The first two, clientX and
clientY, determine the position of the mouse pointer relative to the top-left
corner of the window, while the final two, screenX and screenY, determine the
position of the mouse pointer relative to the top-left corner of the user’s screen.

Like the properties of the IE model’s global event object, the properties of MouseEvent instances are
useful when we’re working with complex event handlers. There are incompatibilities between the two
models, but it’s easy to work around these incompatibilities in the code, as we’ll see later when we
discuss the MooTools event system.

CHAPTER 10 ■ EVENTS

285

The other group of special user-interface events is keyboard events. The DOM Level 2 Events
standard actually didn’t include keyboard events, but they were later added in the DOM Level 3
specification. Keyboard events inherit from the KeyboardEvent type, which is subtyped from UIEvent.

■ Note An important exception is Opera, which has no KeyboardEvent type, but instead uses the main Event

type to implement its keyboard events.

Like MouseEvent.prototype, KeyboardEvent.prototype contains special properties related to
keyboard events:

• keyCode is a number representing the keycode value of the particular key pressed,
like 77 for M and 118 for F7.

• charCode is a number representing the Unicode value of the particular key
pressed, such as 77 for the uppercase M and 109 for the lowercase m.

• altKey, ctrlKey, metaKey, and shiftKey are Boolean properties that indicate the
state of the modifier keys during the keypress event. These are equivalent to the
properties of the same name from the MouseEvent type, as well as with the IE
model’s global event object.

You’ll notice that the standard model separates the property for accessing the keycode and Unicode
numbers of keyboard events, unlike in the IE model where there’s only one property that changes
depending on the event type. This means that these two keyboard event models are somewhat
incompatible.

In practice, the existence of different event types in the standard model shouldn’t make event
handling much different from the IE model. One thing we have to do, though, is to be mindful of the
event type and what kind of event object we might receive for that event type. A simple criteria for
determining the kind of event object for a specific event is to look at how the event is triggered: if it’s
triggered by the mouse, we get a mouse event; if it’s triggered by the keyboard, we get a keyboard event;
and if it doesn’t fall into these two categories, then chances are it’s a basic event.

The last part is not that straightforward, though. The DOM Level 3 Events model introduces several
other event types, like wheel events, text events, and mutation events. The proliferation of touch-
capable devices also brings about a new type of events called touch events. All these event types would
have different properties associated with them, which, unfortunately, we can’t cover in this chapter.
However, we’ll find out later how these events can be handled easily through the MooTools system.

Detaching Event Handlers
Like its IE counterpart, the standard event model also provides a method to detach event handlers called
removeEventListener.

This method is similar to the IE model’s detachEvent method, and also takes three main arguments:
type, which is a string denoting the type of event, handler, which should be a reference to the event
handler to detach, and useCapture, which indicates whether we’re removing a bubbling or trickling
handler. Rewriting our old self-detaching handler example to the standard model, we get this:

var counter = 0;
var handler = function(event){
 if (counter < 3){

CHAPTER 10 ■ EVENTS

286

 console.log('Hello!');
 } else {
 event.target.removeEventListener('click', handler, false);
 }
 counter++;
};

var item = $('item');
item.addEventListener('click', handler, false);

Like the IE version of this example, the handler function automatically detaches itself after it has
been called thrice. Also like detachEvent, the removeEventListener method’s handler function needs to
be the exact same function that was attached using addEventListener in order to work properly.

We learned a few sections ago that the standard model supports both the trickling and bubbling
models of propagation. We also found out that the third argument to addEventListener is used make the
event handler use the trickling model. The removeEventListener method’s third argument, just like
addEventListener, is called useCapture. If we pass a truthy value for this argument, the method will
detach the trickling event handler, and if we pass a falsy value, it will detach the bubbling event handler.

var trickling = function(event){
 console.log('Trickling');
};

var bubbling = function(event){
 console.log('Bubbling');
 event.target.removeEventListener('click', trickling, true);
};

var item = $('item');
item.addEventListener('click', trickling, true);
item.addEventListener('click', bubbling, false);

The first time we run this and click on the element with the id item, we’ll get the following console
output:

Trickling
Bubbling

Our bubbling handler will then detach the trickling event handler; then, clicking on the same
element will produce only the following in the console log:

Bubbling

Dispatching Events
The IE model’s explicit dispatch API is quite simple: create a new event object using the
document.createEventObject function, and then dispatch the event on the element using the fireEvent
method. The standard model’s dispatch APIs, though, are much more complex.

First, you need to create an event object, using the document.createEvent function. This function
takes a single argument, eventType, which is a string that denotes the prototypal type of the event. It can
be one of these four values:

• ‘HTMLEvents’ – for general events that will inherit from the Event type.

• ‘UIEvents’ – for user-interface events that will inherit from the UIEvent subtype.

CHAPTER 10 ■ EVENTS

287

• ‘MouseEvents’ – for mouse events that will inherit from the MouseEvent subtype.

• ‘KeyboardEvents’ – for keyboard events that will inherit from the KeyboardEvent subtype.

You must supply the document.createEvent function with one of these four strings as an argument.
Take note of the spelling: the eventType argument has to be in proper case and should always be plural.
Failing to pass a proper eventType value to document.createEvent will result in an exception.

The document.createEvent function returns an event object. However, it does not end there. The
event object returned by this function is uninitialized, which means its properties haven’t been properly
set to their values. In the IE model, we simply set these properties by directly assigning them a value. In
the standard model, however, all event properties are read-only, so we’ll need to use methods to set the
values of these properties.

Each event type has its own initialization method. For events of the Event type, it’s called initEvent,
and it takes three arguments: eventType, which is a string that denotes the actual name of the event like
‘blur’ or ‘focus’; canBubble, which is a Boolean that will be the value of the bubbles property of the
object; and cancelable, which is a Boolean that will be the value of the cancelable property.

var event = document.createEvent('HTMLEvents');
event.initEvent('blur', false, true);

The snippet above will create a new Event object with a type property value of ‘blur’, a bubbles
property value of false, and a cancelable property value of true.

Do you see a pattern? The arguments of the initialization method map directly to the properties of
the event object. While this is an interesting way to do it, the approach becomes quite problematic when
working with complex events, like those that inherit from MouseEvent or KeyboardEvent. Just to show you
how complex it can get, here are the function signatures for those two events:

initMouseEvent: function(
 type,
 canBubble,
 cancealable,
 view,
 detail,
 screenX,
 screenY,
 clientX,
 clientY,
 ctrlKey,
 altKey,
 shiftKey,
 metaKey,
 button,
 relatedTarged
)

initKeyboardEvent: function(
 type,
 bubbles,
 cancelable,
 view,
 key,
 location,
 modifiers,
 repeat
)

CHAPTER 10 ■ EVENTS

288

Yes, you’re seeing that correctly: the initMouseEvent method does indeed have 15 parameters in
total, while the initKeyboardEvent has 8 parameters. This means that if you’re initializing a MouseEvent,
you have to provide fifteen arguments—in that order. That’s quite a lot of arguments for a single event!

So let’s say that we’re gonna keep it simple and use a simple Event instance for our dispatch. In the
IE model, we use the fireEvent method to dispatch an event object, passing in the event type as a string
and the event object itself. The standard model’s dispatch method, appropriately called dispatchEvent,
works the same way. However, it only requires the event object argument—the type of the event is
determined by the type property of the event object:

var event = document.createEvent('HTMLEvents');
event.initEvent('mouseover', false, true);
document.dispatchEvent(event);

This snippet will dispatch an event called mouseover in the document object. Note that the basic
event dispatcher in the standard model doesn’t take into account actual event types when dispatching
events. This means that the mouseover document handlers of the document object will be invoked by the
dispatcher in this example, even if mouseover should have been initialized using initMouseEvent and
not with initEvent.

The complexity of the standard model’s dispatch API is one of the reasons why most JavaScript
libraries provide their own event system—and the MooTools event system is what we’ll learn about next.

The MooTools Event System
The existence of two event models is a constant source of problems for web developers. While writing
applications that use either one is easy enough, writing applications that work with both event models is
much more difficult. Factor in the implementation-dependent inconsistencies of both APIs, and you get
a ton of headaches.

MooTools solves this problem by providing its own event system. This event system is an
abstraction of the native event system, and is built to work with both the IE model and the standard
model. Instead of writing code that targets one of the two native models, we can write code that uses the
MooTools events API that works no matter what model the current browser uses.

The MooTools event system is a hybrid that combines elements from the two native models. From the
IE model it takes the bubbling-only propagation model, the use of a single event type and the succinctness
of the dispatch API. From the standard model it takes the idea of passing event objects as handlers, the
binding of event handlers to the current target, and the use of event object methods to perform actions. It
also provides powerful features of its own, like custom events and event pseudo-functions.

We will discuss each of these items in turn, but first we have to go over the common operations
involving events: attaching events, preventing default actions, stopping event propagation, detaching
events, and dispatching events.

Attaching Event Handlers
All element objects inherit the event handler attaching method, addEvent, from Element.prototype. This
method takes two arguments: type, which is a string denoting the type of event to handle, and fn, which
is the handler function to attach:

var handler = function(){
 console.log('Clicked');
};

var item = $('item');
item.addEvent('click', handler);

CHAPTER 10 ■ EVENTS

289

This snippet attaches the function “handler” as the click event handler for the element with the id
“item”. Like the standard model, the type argument should be the real name of the event, and should
not have an “on” prefix. Clicking on the element with the id “item” will then invoke the event handler
function and log ‘Clicked’ in the console.

Like the standard model, event handlers in the MooTools event system are invoked with an event
object argument:

var handler = function(event){
 console.log(typeOf(event)); // 'event'
};

var item = $('item');
item.addEvent('click', handler);

Here we added a formal parameter to the handler function so that we’ll get an identifier to the event
object argument. When we click on the item element, we get console output equal to the result of the
typeOf(event) call, which in this case is ‘event’. This means that the event objects passed to the event
handler are instantiated from the Event type, which we’ll discuss in a little bit.

Also like the standard model, the event handlers in MooTools are bound to the current element.
This means that the this keyword inside the handler functions reference the element where the event
was attached:

var item = $('item');

var handler = function(event){
 console.log(this === item); // true
};

item.addEvent('click', handler);

In this example, we check whether the this keyword inside the handler function is the same as the
item element. Since we attach the event handler to the item element, the this keyword is therefore
bound to this element and so our output is true.

The MooTools event system, like the IE model, only supports event bubbling, which means that you
won’t be able to attach trickling event handlers to elements. This decision is due to the fact that there’s
no way to implement a capturing phase to Internet Explorer, which makes it quite impossible to support
trickling event handlers.

Because the addEvent method is an Element method, it means we can use it on Elements instances as
well:

var links = $$('a');
links.addEvent('click', function(event){
 console.log('I was clicked');
});

Here we attached a click event handler to all the links in the page. This is a very nice shortcut for
attaching event handlers to multiple items at once.

Another Element method, addEvents is used to attach several event handlers at once. It takes a single
argument, events, which is an object containing the event handlers to attach. The keys of the events
object correspond to the name of the events to attach, while the values are the event handler functions:

var item = $('item');
item.addEvents({

 'click': function(event){
 console.log('Clicked');

CHAPTER 10 ■ EVENTS

290

 },

 'dblclick': function(event){
 console.log('Double-Clicked');
 },

 'focus': function(event){
 console.log('Focused');
 }

});

Here we attached three different event handlers to the item element using addEvents. We passed an
object to the method containing the keys of the events we wanted to handle—’click’, ‘dblclick’, and
‘focus’—together with their corresponding handler functions. This attaches all three event handlers in a
single method call, making addEvents a very nice shortcut for attaching multiple event handlers at once.

In the Chapter 8, we learned about the universal modificator functions: get, set, and erase. We
learned that these functions depend on the Element.Properties hash for dynamic properties, such as
styles or html. One of the dynamic properties available is Element.Properties.events, which can be
used for attaching multiple events using set. We can therefore rewrite our example as the following:

var item = $('item');
item.set('events', {

 'click': function(event){
 console.log('Clicked');
 },

 'dblclick': function(event){
 console.log('Double-Clicked');
 },

 'focus': function(event){
 console.log('Focused');
 }

});

Here we replace the call to addEvents to set(‘events’). This example and the previous one work the
same way, because the Element.Properties.events object uses addEvents internally for this dynamic
setter.

While this may not be that interesting when it comes to attaching events to existing elements, the
fact that the set method understands events gives us a nice shortcut for attaching events during element
creation. Remember that the Element constructor takes a second argument, properties, which is an
object that the constructor passes to the set method. This makes it possible to combine the element-
creation and event-attaching calls:

var div = new Element('div', {
 events: {
 'click': function(event){
 console.log('Clicked');
 }
 }
});

CHAPTER 10 ■ EVENTS

291

Here we created a new div element and attached a click event handler to it. Instead of separating the
calls to addEvents, we simply included an events object in the properties argument to the Element
constructor. This gives us a very handy way to attach event handlers to new elements.

Like its counterpart from the native event models, the MooTools addEvent method allows event
handlers to be attached only once.

var handler = function(){
 console.log('Clicked.');
};

var item = $('item');
item.addEvent('click', handler);
item.addEvent('click', handler);
item.addEvent('click', handler);

In this snippet, we tried attaching the handler function as a click event handler to the item element
three times. Like in the native event models, though, the handler function will only be attached once in
order to prevent us from accidentally attaching the function more than once.

One tricky part is the dispatch order of event handlers. We learned that in the IE model, event
handlers are invoked randomly, while in the standard model, they are invoked according to the order
they were added. The MooTools event system, being built on top of these two native models, inherits the
dispatch order of whatever model the current browser uses.

var handlerA = function(){
 console.log('Handler A.');
};

var handlerB = function(){
 console.log('Handler B.');
};

var item = $('item');
item.addEvent('click', handlerA);
item.addEvent('click', handlerB);

If we run this snippet on a browser that uses the standard model, we’re guaranteed that handlerA
will always be called first before handlerB. But if we run this on IE, we’ll also get the same behavior as the
IE model where event handlers are invoked randomly. This is because, as we’ll see later on, MooTools
uses both models internally in its implementation of an event system.

Preventing Default Action
Remember this example?

Home
About
Projects

We have a set of links that point to different pages and we wanted to stop the browser from doing
the default click action, which is to load the page referenced by the href attribute of the links. In the IE
model, we used window.event.returnValue = false to do this, while we used the preventDefault
method of the event object in the standard model.

MooTools takes its inspiration from the standard model, and provides its own preventDefault
method for its event object:

CHAPTER 10 ■ EVENTS

292

var links = $$('a');
links.addEvent('click', function(event){
 event.preventDefault();
});

Here we attach a new event handler to all the links using addEvent. Inside our handler function, we
use the preventDefault method of the event object argument to stop the browser from performing the
default action associated with the event.

Stopping Event Propagation
Let’s take a look at a rewriting of an earlier example that let us observe event propagation at work:

<html>
 <head>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var items = $$('img, body, html');
 items.addEvent('click', function(event){
 console.log('Clicked: ' + this.get('tag'));
 });
 });
 </script>
 </head>
 <body>

 </body>
</html>

In this example, we attach a click event handler to the , <body>, and <html> elements. When we
run this example on the browser and click on the element, we get the following output:

Clicked: img
Clicked: body
Clicked: html

We already know that this is event propagation at work: the events that happen on the target node
are propagated upwards to its parent nodes. This model of propagation, where the event dispatch
happens from the bottom up, is called the bubbling model and it is the only propagation model
supported by all event systems—including MooTools’.

In instances when we don’t want propagation to happen, we can stop it using native techniques. In
the IE model, we use the window.event.cancelBubble property, and in the standard model, we use the
stopPropagation method. Like preventDefault, the MooTools event system also takes its cue from the
standard system:

<html>
 <head>
 <script src="mootools.js"></script>
 <script>
 window.addEvent('domready', function(){
 var items = $$('img, body, html');
 items.addEvent('click', function(event){
 event.stopPropagation();
 console.log('Clicked: ' + this.get('tag'));

CHAPTER 10 ■ EVENTS

293

 });
 });
 </script>
 </head>
 <body>

 </body>
</html>

Event objects in MooTools also have a stopPropagation method that halts the event propagation
process. Here we invoke the stopPropagation method of the event object inside our handler function,
making the propagation halt when any of the elements is clicked. Running this in a browser and clicking
on the image element, we get the following output:

Clicked: img

The event bubbling was stopped after that first click, and the event handlers of the parent nodes of
the image element were not fired.

Stopping Events All Together
There are some cases when we’ll want to prevent the default action of an event as well as stop the event
propagation process. Take the following example for instance:

<html>
 <body>
 Home
 </body>
</html>

Here we have a simple HTML snippet. We want to prevent the default behavior when the link is
clicked, and we want the event propagation to also be halted. We can do the following to achieve this:

var link = $$('a');
link.addEvent('click', function(event){
 event.preventDefault();
 event.stopPropagation();
});

We attach a click event handler to our link and inside the event handler, we call the preventDefault
and stopPropagation methods of the event object argument to stop the browser from performing the
default click action for the link, as well as to prevent our click event from being propagated.

MooTools, however, provides another method called stop, which can be used as a shortcut to
replace these two calls:

var link = $$('a');
link.addEvent('click', function(event){
 event.stop();
});

Instead of calling preventDefault and stopPropagation separately, we call the stop method of the
event object. Internally, this method combines the preventDefault and stopPropagation methods into
one function, making it easier to call both functions at once. The results of this snippet and the previous
are the same: the link’s default click action is stopped, and the event propagation process is halted.

CHAPTER 10 ■ EVENTS

294

Detaching Event Handlers
The MooTools event system provides the removeEvent method that can be used to detach event handlers
from elements, which is similar to IE’s detachEvent and the standard removeEventListener. It takes two
arguments: type, which is a string denoting the event name, and fn, which is the handler to detach.

var counter = 0;
var handler = function(event){
 if (counter < 3){
 console.log('Hello!');
 } else {
 this.removeEvent('click', handler);
 }
 counter++;
};

var item = $('item');
item.addEvent('click', handler);

Here we rewrote our self-detaching handler example to use the MooTools event API. Like its native
counterparts, the removeEvent method expects that the fn argument is the exact same handler function
that was attached using addEvent in order to properly detach the event handler.

Like addEvent, removeEvent has a multiple-handler version called removeEvents. It also takes a single
argument, events, which is an object containing the events to detach:

var item = $('item');

var clickHandler = function(){},
 dblclickHandler = function(){},
 focusHandler = function(){};

item.addEvents({
 'click': clickHandler,
 'dblclick': dblclickHandler,
 'focus': focusHandler
});

item.removeEvents({
 'dblclick': dblclickHandler,
 'focus': focusHandler
});

In this snippet, we create three event handlers: clickHandler, dblclickHandler, and focusHandler.
We then use the addEvents method to attach all three handlers to the item element. Next we call on
removeEvents to detach the dblclick and focus handlers. Our item method now has only one event
handler, the one for click.

Take note that unlike addEvents and set, the removeEvents handler can’t be used with the universal
modificator function erase. This is because the Element.Properties.events object doesn’t define an
erase function, so the erase method won’t have a dynamic property function to use.

CHAPTER 10 ■ EVENTS

295

Dispatching Events
The MooTools event dispatch API is patterned after the IE model, which is much simpler than the
standard model. Internally, though, it’s much more complex than either model, but we’ll talk about that
later.

To dispatch events in MooTools, we use the fireEvent method. This method takes two arguments:
type, which is the type of event to dispatch as a string, and event, which is an object that will be passed
as the event object to the handlers:

var handler = function(){
 console.log('Clicked');
};

var link = $('main');
link.addEvent('click', handler);

// dispatch a click event
setTimeout(function(){
 link.fireEvent('click');
}, 5000);

In this snippet, we dispatch the click event of the link element after 5 seconds. This will call the
handler function, and give us a log output of ‘Clicked’.

You’ll notice that we didn’t supply fireEvent with a second argument. This is because the event
argument to fireEvent is optional. For native events, MooTools automatically creates an Event object for
fireEvent, but you can also supply this argument yourself—or omit it if necessary, like what we did in
our example.

You can pass any object argument to fireEvent, even if it’s not a true event object:

var handler = function(event){
 console.log(event.foo); // 'bar'
};

var link = $('main');
link.addEvent('click', handler);

// dispatch a click event
setTimeout(function(){
 link.fireEvent('click', {foo: 'bar'});
}, 5000);

Here we passed a basic object with the property foo to fireEvent. When fireEvent dispatches our
handler function, it passes the object we used as an argument. The console will then output the value of
the foo property, which is ‘bar’.

Another great feature of fireEvent is that you can have more than one argument for the event
handler by providing an array argument to event:

var handler = function(a, b){
 console.log(a); // 'foo'
 console.log(b); // 'bar'
};

var link = $('main');
link.addEvent('click', handler);

CHAPTER 10 ■ EVENTS

296

// dispatch a click event
setTimeout(function(){
 link.fireEvent('click', ['foo', 'bar']);
}, 5000);

In this example, we dispatch the click event of link using the fireEvent method, but we pass an
array of two strings as the event argument. These two strings are then passed to the event handlers of the
element. In this case, the first string corresponds to the a parameter of handler, while the second string
corresponds to b.

As you can see, the MooTools event dispatch API is a far cry from the complex dispatch APIs we’ve
seen so far. This simplicity of the dispatch API—and the whole events system—is in part due to nifty
tricks that MooTools uses for its event system. And these tricks are what we’re going to look at now.

Event System Internals
Now that we’ve seen the external API that we’ll use to work with the MooTools event system, it’s time to
dig deeper and look at how MooTools implements its event system. There are several moving parts that
we need to put together to get a full view of the MooTools event system, and we’ll discuss each one in
turn.

The Event Type
Unlike the standard model (and like the IE model), there’s just one event type in MooTools, represented
by the Event type object. And unlike all other types we’ve seen so far, the Event type is special because it
does not directly override the native event type of the browser. Instead, the Event type acts as a “proxy”
for the native event type.

This might be confusing, so let’s have an example:

var item = $('item');

var firstEvent;

item.addEventListener('click', function(event){
 firstEvent = event;
}, false);

item.addEventListener('click', function(event){
 console.log(firstEvent === event); // true
}, false);

Here we attach two click event handlers to the item element. The first event handler stores the value
of its event object into a variable called firstEvent, while the second event handler compares whether
the event object passed to the first handler—as stored inside firstEvent—is the same as the event object
passed to it. When we run this on a browser and click on the item element, we get a console output of
true, which means that they’re the same objects.

However, take a look at this example

var item = $('item');

var nativeEvent;

item.addEventListener('click', function(event){

CHAPTER 10 ■ EVENTS

297

 nativeEvent = event;
}, false);

item.addEvent('click', function(event){
 console.log(nativeEvent == event); // false
});

In this snippet, we also attach two click handlers to the item element, but we do so using both the
standard event API and the MooTools event API. Like the previous example, the second event handler
also compares the two event objects. However, as we’ll see if we run this in the browser, the event object
passed to the first event handler is a different object from the one passed to the second event handler.

These examples are interesting because they show us that the MooTools event system uses a
different event object from the native one. Unlike with Elements, MooTools does not directly extend the
native event objects, but rather creates a new type that “wraps” the original event object. This new type
is, of course, the Event type.

The Event constructor requires a single argument, event, which should be a native event object. The
event constructor then takes this native event object and stores it as a property of the Event instance,
making it accessible via the event property name. This means you can access the native event object that
a MooTools event object wraps via the event property:

var item = $('item');

var nativeEvent;

item.addEventListener('click', function(event){
 nativeEvent = event;
}, false);

item.addEvent('click', function(event){
 console.log(nativeEvent == event.event); // true
});

In this example, we modified our second event handler so that it compares the nativeEvent object
to the event property instead of directly comparing the two event objects. The console output in this
case is true, telling us that the event property of the MooTools event object is the original native event
object passed by the browser’s event dispatcher.

In order to make the Event type cross-browser, it needs to support the IE model as well. Because the
IE model does not supply individual event objects, the Event constructor makes use of window.event for
this browser. We can confirm this with the following snippet:

var item = $('item');

item.addEvent('click', function(event){
 console.log(window.event == event.event); // true
});

This snippet, works in Internet Explorer only, confirms that the event property of the event object
passed to our click handler is the same object as the global event object.

This native event wrapping is essential because it enables MooTools to have a flexible Event type
that works regardless of which event model the browser uses. Internally, the MooTools uses feature
detection—which we discussed in Chapter 7—to implement the methods of the Event type.

Let’s take the preventDefault method of MooTools event objects, for example. In the IE model, we
have to use window.event.returnValue = false to stop the browser from performing the default action
for an event. On the other hand, we use the preventDefault method to achieve the same in the standard
model. The MooTools preventDefault method is implemented like so:

CHAPTER 10 ■ EVENTS

298

Event.implement('preventDefault', function(){
 if (this.event.preventDefault) this.event.preventDefault();
 else this.event.returnValue = false;
 return this;
});

Using the wrapped event object, MooTools detects whether the current browser supports the
standard model’s preventDefault method, and then calls the method if so. If the current browser
doesn’t, MooTools falls back to the IE model’s returnValue technique.

Similarly, the stopPropagation method is implemented using feature detection:

Event.implement('stopPropagation', function(){
 if (this.event.stopPropagation) this.event.stopPropagation();
 else this.event.cancelBubble = true;
 return this;
});

Like native event objects, the MooTools event object has properties that give us more information
about the event.

• type is the string name of the event, such as ‘click’ or ‘mouseover’.

• target is a reference to the element where the event originated.

• shift, alt, meta, and ctrl are Booleans that denote the state of the modifier keys
during the event. These properties are similar to the shiftKey, altKey, metaKey,
and ctrlKey properties of native event objects.

• code is a property is similar to the keyCode value in the IE model, which means that
it has a different value depending on the keyboard event. For the keydown and
keyup events, this property will be a number that represents the keycode value of
key pressed, such as 77 for the M key or 118 for the F7 key. Meanwhile, this
property, when used in conjunction with the keypress event, will be the Unicode
value of the specific character, such as 77 for the uppercase M and 109 for the
lowercase m.

• key event is a lowercase string that contains the name of the key pressed during a
keyboard event. For example, if the user pressed the Enter key, the value of this
property will be ‘enter’. Other possible values are ‘up’, ‘down’, ‘left’, ‘right’,
‘space’, ‘backspace’, ‘delete’, and ‘esc’.

• wheel is a special numeric property used for the mousewheel event that indicates
the amount of scrolling of the user’s mousewheel that triggered the event.

• page and client are coordinate objects that indicate the position of the mouse
pointer during a mouse event. The page object has two properties, x and y, which
indicate the horizontal and vertical coordinates of the pointer in relation to the
document. The client object also has two properties, x and y, which indicate the
coordinates of the pointer in relation to the window.

These properties are added directly by the Event constructor to the event object instance by going
through the native event object. Like the IE model, the MooTools event object does not differentiate
between different event types, but uses a single type to handle all events. Most of these properties are
compatible with the native event objects from both models, but some don’t have native equivalents. If
you need to access the native properties, though, remember that you can always access the native event
object using the event property.

CHAPTER 10 ■ EVENTS

299

Two Layers
There are actually two layers to the MooTools event system. One layer deals with making the event
system work with the native event layer, and the other deals with the MooTools-specific event features.
These two layers are intertwined, and you won’t notice this unless you dig through the source.

At the native level are two Element methods called addListener and removeListener, which are
cross-browser wrappers for the event handler attachment and detachment functions. The addListener
method takes two arguments, type and fn, which correspond to the same arguments used for
attachEvent and addEventListener. When we invoke the addListener method of an element, it attaches
the fn handler function using addEventListener if the browser supports the standard model, or
attachEvent if the browser supports the IE model.

The removeListener method also takes the same two arguments, and it corresponds to the
detachEvent and removeEventListener methods from the native models. Like the addListener method,
the removeListener method is also aware of the event model used by the browser and switches between
using detachEvent and removeEventListener automatically.

These are the two methods that allow MooTools to attach and detach handlers in a cross-browser
function. When we call the addEvent and removeEvent methods, MooTools automatically calls on addListener
and removeListener from inside these methods to add the native event handlers for the browser.

The Event Table
However, things aren’t as straightforward as that. The addEvent and removeEvent methods actually
perform several operations before attaching and detaching the native event handlers. Like the class
system, MooTools adds powerful new features to the native event system using JavaScript, and these
new features depend on addEvent and removeEvent to work.

The first feature that MooTools adds is an internal event table. The event table is an object where
the event handlers for an element are stored. Each element has its own internal event table, which is
kept inside an element’s storage object:

var item = $('item');

console.log(typeOf(item.retrieve('events'))); // 'null'

var handler = function(){};
item.addEvent('click', handler);

console.log(typeOf(item.retrieve('events'))); // 'object'

An element’s event table can be accessed through the storage method retrieve that we saw in the
Chapter 8, and it is kept under the key events. In this example, we first try accessing the element’s event
table by calling on retrieve(‘events’), but because our element has no event handlers yet, we get null.
After this line, we attach an empty click event handler to the same element, and then try retrieving its
event table again. This time we don’t get null; instead we get an object. And this object is the element’s
newly created event table.

The event table is actually a collection of weakmaps that are used to keep track of your event
handlers. A weakmap is a special object that has two properties, keys and values. Unlike a regular object
where the mapping is direct, a weak map uses index-based mapping. For instance, look at the following
object map:

{
 'keyA': function A(){},
 'keyB': function B(){}
}

CHAPTER 10 ■ EVENTS

300

This object has two keys, keyA and keyB, which have two function values. The mapping here is direct:
keyA is a direct reference to function A, while keyB is a direct reference to function B. In contrast, a
weakmap uses indirect mapping:

{
 'keys': ['keyA', 'keyB'],
 'values': [function A(){}, function B(){}]
}

Here the object has two properties, keys and values, which are both arrays. The keys array stores the
keys of the objects, while the values array stores the values of the keys. The mapping here is indirect: the
first item in the keys table corresponds to the first item in the values table, and so on. So the value of the
key keyA, which has the index 0 in the keys array, is function A(){}, which has the index 0 in the values
array. Because the mapping between items is indirectly done using indices of the array, the mapping is
considered “weak”. Thus, the name “weakmap.”

Why does the event table use weakmaps? The answer lies in the fact that weakmaps have a very
interesting feature: because the keys of a weakmap are stored using an array, you can use any value as a
key. That means you can use objects, functions, or even arrays themselves. You’ll understand why this is
important in a little while.

An element’s event table is composed of several weakmaps, one for each event. In the example
above, the event table of the item element would look like this:

{
 'click': {
 'keys': [handler],
 'values': [function(){ return handler.call(element); }]
 }
}

Here we see that the event table has one property, click, which contains the weakmap for the
element’s click event handlers. When we attached the handler function as the event handler of the item
element, MooTools first pushed the handler function to the click weakmap’s keys array.

But what about the value? We see in this example that the value isn’t the handler function, but
another function that calls handler. This is because the MooTools event system (like the class system),
does function wrapping. What this means is that the handler functions we pass to addEvent are wrapped
in another function.

Event Handler Wrapping
In the chapter on classes, we saw how the MooTools implement method wraps the methods of a class in a
special wrapper function in order to provide features such as this.parent() and protected functions. In
the MooTools event system, the addEvent method also wraps the handler function to provide additional
features.

The MooTools event system makes a distinction between user events and native events. A user
event is an event that’s not natively supported by the browser, and is therefore never dispatched by the
native event dispatcher. For instance a foo event or a bar event are user events: these events may be
created by the user for his own use, and are dispatched in the code using the MooTools fireEvent
method. However, because the browser doesn’t understand these events, they will never be dispatched
by the native event systems, so we don’t need to add native event handlers for these.

Native events, on the other hand, are the events that the browser supports. These include events like
click and mouseover, as well as a host of other events defined by the environment and the different
DOM standards. Because they are dispatched by the browser directly, we need to add native event
handlers for these events using the addEventListener or attachEvent methods.

CHAPTER 10 ■ EVENTS

301

In the MooTools event system, handler functions are processed depending on whether they’re user
events or native events. For user events, the handler function will be wrapped with a very simple
wrapper function that looks like this:

function(){
 return fn.call(self);
}

This is the basic wrapper used in MooTools for user events. The fn identifier in this case is the actual
event handler function passed to addEvent, while self is a reference to the element. The wrapper uses
fn.call(self) in this case to make sure that the handler function is called with its this keyword
pointing to the element. This solves the problem in the IE model, where the event handlers have their
this keyword pointing to window.

Because user events aren’t understood by the browser, no native event handler is added to the
element. This means that after wrapping the handler function, the addEvent method will simply store
this wrapped function inside the element’s event table, under the values array of the particular event
weakmap.

On the other hand, native events are much more complicated. MooTools keeps track of which
events are native events using a special object called Element.NativeEvents:

Element.NativeEvents = {
 // mouse click events
 click: 2, dblclick: 2, mouseup: 2, mousedown: 2, contextmenu: 2,

 // mouse wheel events
 mousewheel: 2, DOMMouseScroll: 2,

 // mouse movement events
 mouseover: 2, mouseout: 2, mousemove: 2, selectstart: 2, selectend: 2,

 // keyboard events
 keydown: 2, keypress: 2, keyup: 2,

 // mobile events
 orientationchange: 2,

 // touch events
 touchstart: 2, touchmove: 2, touchend: 2, touchcancel: 2,

 // gesture events
 gesturestart: 2, gesturechange: 2, gestureend: 2,

 // form events
 focus: 2, blur: 2, change: 2, reset: 2, select: 2, submit: 2,

 // window events
 load: 2, unload: 1, beforeunload: 2, resize: 1,
 move: 1, DOMContentLoaded: 1, readystatechange: 1,

 // misc events
 error: 1, abort: 1, scroll: 1
};

CHAPTER 10 ■ EVENTS

302

This is the actual Element.NativeEvents object. Each key of this object corresponds to the name of a
known and supported native event. Here you’ll see all the common events like click, dblclick, and
keypress.

When we call the addEvent method, MooTools will check the value of the type string argument
against the properties of the Element.NativeEvents object to check whether we’re attaching a user event
or a native event. If the value of the type argument corresponds to a property of the
Element.NativeEvents object, addEvent will wrap the event handler argument and then attach it using
the addListener method we discussed a few sections back before pushing the wrapped function to the
values array of the event’s weakmap.

And there lies the distinction between user events and native events. For user events, MooTools
doesn’t attach a native event handler to the element using addListener, but simply stores the wrapped
event handler inside the values array. On the other hand, MooTools does attach a native event handler
for native events before storing the wrapped function in the events table.

Notice, however, that the events defined in the Element.NativeEvents object have different values.
Most of the events have the value 2, but some events, like unload and resize have the value 1. Those
values group the native events into two categories: events with the value of 1 are non-bubbling and non-
cancelable, while the events with the value of 2 are bubbling and cancelable.

This distinction is important. For non-bubbling and non-cancelable events, their event objects
become somewhat useless: they can’t be canceled, so we can’t use preventDefault and they can’t bubble
so we don’t have to use stopPropagation. In contrast, bubbling and cancelable are more interesting
because they enable us to control the event itself.

This grouping becomes even more important in MooTools. For events that are non-bubbling and
non-cancelable, MooTools does not create event objects:

window.addEvent('resize', function(event){
 console.log(event); // undefined
});

Here we attached a resize event handler to the window object. When we run this in a browser and
resize the window, we see that MooTools does not pass an event object to the handler function, which is
why we get undefined. This is because the resize event falls under the non-cancelable and non-bubbling
category.

This behavior is controlled by the function wrapping. If the native event we’re adding falls under the
non-bubbling, non-cancelable category, MooTools wraps the event handler function like a simple user
event:

function(){
 return fn.call(self);
}

As with simple events, this wrapper function takes the fn function—which is the original event
handler passed to addEvent—and invokes it via the call method, binding it to the current element. This
wrapped function will then be added as a native event handler to the element using the addListener
method.

Notice that the wrapper function doesn’t have an event formal parameter. This means that the
event object passed by the native event system will be discarded by this wrapped event handler—which
is why we don’t get event objects in our handler function.

On the other hand, bubbling, cancelable events are wrapped in a different function:

function(event){
 event = new Event(event, self.getWindow());
 if (condition.call(self, event) === false) event.stop();
}

CHAPTER 10 ■ EVENTS

303

Here you can see that the event formal parameter is now in place, making this wrapped function
able to receive the event object from the native event system. Inside the function, the native event
received from the native event system is first turned into a MooTools event object by passing it to the
Event constructor. The condition identifier in this case is a reference to a function, which we’ll discuss
later. For now, think of the condition as the same function as the original event handler passed to
addEvent. This wrapped function is then attached as a native event handler to the element using
addListener.

It’s easy to get confused in the process, so let’s recap it using two examples. Let’s start with a basic
user event:

var item = $('item');
item.addEvent('foo', function(){
 console.log('Foo');
});

Here we call addEvent to attach a foo event handler to the item element, passing in the value ‘foo’ for
the type argument and a function for the fn argument. The process then proceeds as follows:

1. First, addEvent checks whether the item element has an event table by calling
item.retrieve('events'). Since this is the first time an event was attached to
the item, no event table for the element exists yet, so addEvent will create a new
one.

2. The addEvent method then looks for the foo weakmap in the newly created
event table. Since there’s no foo weakmap yet, it creates a new one by assigning
item.retrieve('events')['foo'] = {keys:[], values: []}, before pushing
the event handler fn to the foo weakmap’s keys array.

3. The Element.NativeEvents object is then checked to see if there’s a native event
called foo. Since there’s no native event with that name, no native event
handler will be added.

4. The event handler function is then wrapped using the simple wrapper function.

5. The addEvent method then pushes the wrapped event handler to the values
array of the foo weakmap.

Now let’s trace the process for a native event:

var item = $('item');
item.addEvent('click', function(){
 console.log('click');
});

For this example, we’re attaching a click event handler to the item element.

1. The addEvent method checks for the item element’s event table, creating a new
one if it doesn’t exist.

2. The click weakmap of the item element’s event table is checked, and a new one
created if one doesn’t exist.

3. The Element.NativeEvents object is checked to see if there’s a native event
called click, and the value of this native event will be checked, too.

4. Since Element.NativeEvents.click exists with the value 2, the event handler
will be wrapped in a special wrapper function that takes the passed event object
and turns it into a MooTools event object.

CHAPTER 10 ■ EVENTS

304

5. The wrapped event handler is then attached as a native event listener for the
element’s click event using addListener.

6. The addEvent method then pushes the wrapped event handler to the values
array of the click weakmap.

One thing we have to understand is that the handler function we pass to addEvent is never really
attached directly as a native element event handler. Rather, it’s the wrapped version of the handler
function that is attached for native events. This enables MooTools to do two things: first, it makes the
event handlers bound to the element by ensuring that they are invoked using the call method, and
second, it gives MooTools the chance to turn the native event object into a MooTools event object before
it is passed to the actual event handler.

Event Handler Detachment and Dispatch
Because event handlers are wrapped, we get a very interesting problem when it comes to detaching
them. Remember that to work properly, the native handler detachment functions, removeEventListener
and detachEvent, depend on being provided with the exact same attached handler function. However,
the native event handlers that the MooTools event system adds are wrapped versions—which means we
don’t have access to them. How do we remove them then?

This brings us to the importance of weakmaps in the event table. Because the weakmap allows us to
use non-string keys, we’re able to use the original handler function as the key. We can then associate the
handler function by making it the value of the particular key in the weakmap. As long as we can provide
the original handler function to it, the MooTools event system will be able to locate the wrapped event
handler in our event’s weakmap.

When we call removeEvent, the method first searches the event’s weakmap to find the handler
function and its associated wrapped version. Then it deletes the handler function from the keys array of
the weakmap, before checking if the event is a native event handler. If it is, it calls on removeListener,
passing in the wrapped handler function, in order to detach the native event handler from the element.
Finally, the wrapped version is removed from the weakmap.

And that leaves us with just one item: the dispatch API. One interesting feature of the dispatch
component of the MooTools event system is that it does not rely on explicit dispatch. For the MooTools
event attachment and detachment APIs, we saw that they used native APIs in order to provide these
features, explicitly calling native methods such as addEventListener and removeEventListener. The
MooTools event dispatcher, however, doesn’t call on native methods directly, so there are no calls to the
IE fireEvent or standard dispatchEvent methods.

Instead, MooTools relies on implicit dispatch for the native event system. Remember that in
addition to storing the event handlers in its own internal event table, MooTools also attaches native
event handlers to elements that call the original event handlers. These act as the “dispatchers” for the
MooTools event system.

Explicit dispatch using the MooTools fireEvent method, on the other hand, is a whole different
matter. Like the native explicit dispatchers, fireEvent expects us to provide our own event objects for
the dispatch. The great thing, though, is that the fireEvent method is flexible enough that we can pass
any kind of value to it to serve as the arguments for our event handlers.

When we call the fireEvent method of an element, it first searches the event table of the element for
handlers attached to that particular event. It then loops through each one in turn, invoking them with
the arguments you’ve passed for the event handler. This is very similar to how the native dispatch
systems work.

CHAPTER 10 ■ EVENTS

305

Custom Events
Let’s look at that native event handler again:

function(event){
 event = new Event(event, self.getWindow());
 if (condition.call(self, event) === false) event.stop();
}

As I mentioned some paragraphs above, the condition identifier here is a function, and I said that
it’s the event handler we passed to addEvent. Of course, that was a simplification. While there are some
cases where condition is indeed the handler function, it can also be something else—something that
highlights one of the best features of the MooTools event system.

Recall that there are two kinds of events supported by MooTools: user events, which are created by
the user but not understood by the native event system, and native events, which are events defined by
specifications and the browser’s own event system. We said that the main difference between these two
is that MooTools attaches native event handlers to the elements for native events, while user events
don’t get any native handlers attached.

MooTools actually supports a third kind of event, a hybrid between user events and native events
called custom events. A custom event is a user-defined event that’s based on a native event, and
therefore uses native event handlers. We can think of native events as our own modified version of
native events, which we can define and use for our own programs.

To see how custom events work, let’s try creating our own event. First, though, let’s see how we
might use it:

var item = $('item');
item.addEvent('click', function(event){
 if (event.shift) console.log('shift click!');
});

Here we have a simple event handler attached to the item element. Inside our event handler, we
check the event object’s shift property to see if the shift key was pressed while the user was clicking on
the element. When we run this in the browser and try clicking on the element, we get no console output.
However, if we click on the element while holding down the shift key, we’ll get the console output ‘shift
click!’.

So let’s say we’re going to use this kind of handler a lot. Wouldn’t it be easier if we could simply
attach an event handler directly to a shiftclick event so that we don’t have to check event.shift every
time? This is where custom events come in.

All custom events are stored in a special object called Element.Events. To define a new custom
event, we simply have to augment this object with a new custom event object. A custom event object is a
simple object that has two main properties: base, which is a string that defines the native event where
the custom event will be based from, and condition, which is a function that’s going to be used to test
whether the event has happened.

Going back to our shiftclick event, let’s see how to define it. First we need a base event, and in this
case, it’ll be the click event. Second, we need a test, which is simple enough in our case: check if the shift
key was pressed during the event. And with that, we have our custom event:

Element.Events.shiftclick = {

 base: 'click',

 condition: function(event){
 return event.shift;

CHAPTER 10 ■ EVENTS

306

 }

};

Now that it’s defined, we can rewrite our original example to something much simpler:

var item = $('item');
item.addEvent('shiftclick', function(event){
 console.log('shift click!');
});

In this new snippet, we attach an event handler for the new shiftclick event. Now when we click on
the element, MooTools will automatically run our condition function to check whether the shift key was
pressed during the event by looking at the value of the event.shift property. If is the shift key was
pressed, our event handler will be invoked, and we’ll get a nice console output of ‘shift click!’.

Since we now know about custom events, we’ll need to revisit our addEvent and removeEvent
processes to take custom events into account. When we attach a new event handler using addEvent, the
first thing MooTools does after pushing the event handler function to the event table is to check the
Element.Events object to see whether the type argument we passed is a custom event. If it is a custom
event, MooTools will wrap the event handler in a wrapper function that looks like this:

function(event){
 if (custom.condition.call(this, event)) return fn.call(this, event);
 return true;
}

This function will become the value of the condition identifier we saw earlier in this section, which
is invoked inside the native event handler. The custom.condition identifier in this new wrapper function
actually points to the condition function defined in the custom event object. If the custom.condition
function returns true, our real handler function will be invoked.

The next thing that MooTools does is to check the base property of the custom event object. The
base property of the custom event object is used to determine the native event that will be the basis of
the custom event. MooTools will then add a native event handler to this native event, which will be used
to fire the condition function.

The result is a very powerful addition to the event system that allows us to define a multitude of new
events based on native events already understood by the browser. This gives us freedom to design new
and much more complex events that we can use to write rich and powerful applications for the browser.

The Wrap-Up
And here ends this loopy chapter. We started out with the basics of event-based programming: main
loops, event loops, event systems, and events themselves, and then we examined the browser’s own
event system. We took a look at the two main models of event systems, then moved on to saner grounds
as we explored the MooTools event system and how it enables us to create truly cross-browser event-
based programs.

The next chapter brings us back to elements and how they are selected. We won’t talk about
functions and methods to do this, though—no, that was done in Chapter 8. What we will explore is the
Deus behind the Machina: the thing that enables us to actually find that elemental needle in the DOM
Tree haystack.

So line up at the concession stand and get yourself a soda and some popcorn because the show’s
about to begin: the supporting cast is the CSS Selectors, and the star is the Selector Engine.

C H A P T E R 11

■ ■ ■

307

Request

There is perhaps no bigger revolution that propelled JavaScript to where it is today than Ajax. This
paradigm shift that started in the early 2000s brought JavaScript back to the center of Web development
and restored the luster it had lost during its early years. And this whole revolution happened because of
the rediscovery of a very interesting object called the XMLHttpRequest.

In this chapter, we’ll learn about the HTTP request and response process, and how XMLHttpRequest
fits into the equation. We’ll also talk about the MooTools Request class, a simple abstraction of the native
XMLHttpRequest API, and how it makes working with requests easier and more MooToolsian.

Requests and Responses
At the most basic level, browsers are tools for displaying resources on the Web, resources that are stored
in special places called servers. At the heart of the Web is the communication between browsers and
servers, and it is this communication that underlies everything we do online.

The communication between browsers and servers is a very complex topic, one that touches
subjects we don’t really need in our discussion. However, a certain part of browser-server
communication—the request-response flow—is integral to understanding web applications, and we
need a basic understanding of this process in order to fully grasp the things we’ll see later.

When a browser loads a resource, it first sends a request to the server. A request is a set of directives
containing information about what exactly we’re requesting, as well as other criteria for the resource
we’re trying to fetch. Let’s say we’re loading http://foo.com/index.html in our browser. The browser
first connects to the server for foo.com and then sends a request that looks like this:

GET /index.html HTTP/1.1
User-Agent: BrowserX/1.1
Host: foo.com
Accept: text/html

This request has several parts. The first line starts with the method, which is a verb that describes the
action we want to perform on the particular resource. In this example, we use the GET method, which
tells the server we would like to fetch the particular resource. Other supported verbs include POST and
PUT for sending user data to a particular resource, DELETE for removing a particular resource, and HEAD for
retrieving the headers for a resource.

Right after the method comes the resource URI, which describes the path of the resource we want to
access. In our example, we told the server for foo.com that we want to access the resource called
/index.html. Finally, the first line ends with an HTTP version identifier, which tells the server which
version of the HTTP protocol we’d like to use.

The first line, which is called the request line, is the most important part of the request because it
contains the essential information about the request. The next lines, called headers, contain other
information about the request. A header is a key-value pair that takes the form <Header Name>: <Header

http://foo.com/index.html

CHAPTER 11 ■ REQUEST

308

Value>. Each header appears on a separate line, and each describes a specific criterion or property of the
request.

Our example has three headers. The first is User-Agent, which identifies the current browser to the
server. In our example, the browser is called BrowserX and its version identifier is 1.1. Normally, the
value of the User-Agent header is exactly the same string as the value of the navigator.userAgent
property we saw in Chapter 7. Next is an Accept header, which tells the server what kinds of files we’d
like to receive. In our example, we tell the server to give us files that have the mimetype text/html, a
common mimetype for HTML files. Finally, we have the Host header, a required header in HTTP/1.1.

After sending this request to the server, the browser waits for a response. A response is a set of
directives and properties the server sends back as an answer to a particular request. Our hypothetical
foo.com server, for example, could send us back this response in answer to our request:

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 87

<html>
<head>
 <title>Hello World!</title>
</head>
<body>
 Hello World!
</body>
</html>

The first line of the response begins with the HTTP version identifier, which tells the browser which
version of the HTTP protocol the server used to answer the request. This is followed by the status code, a
numeric value that determines the nature of the response. A 200 status code, for example, means that the
request was correctly answered by the server and there were no errors in putting together a response. A
404 status code, on the other hand, means that the server couldn’t find the particular resource asked for
by the request. The status code is followed by the status text, which is a textual representation of the
status code, in our case OK.

Because the first line of the response contains information about the status of the response, it’s also
called the status line.

Just as with requests, the headers come after the first line. The response headers, of course, describe
the nature of the response, and they also give the browser some instructions regarding how to interpret
the particular response. In our example, we have two headers: Content-Type, which describes the
mimetype of the response data, and Content-Length, which is the length of the response data.

Right after the final header comes a mandatory blank line, followed by the most important part of
the response: the body. In most cases, the body contains the actual file data for the particular resource,
like in our example where we received the HTML source of the page as a body. This part of the response
is the actual content, and is therefore the part we’re most interested in.

With the response in hand, the browser can start parsing the HTML source and display the page.
When a new resource is needed, the whole process is repeated. This request-response cycle is the
lifeblood of browser-server interaction, and it affects the way we develop web applications in a massive
way.

The basic request-response cycle fits the model of the web as a collection of hyperlinked
documents. A browser first sends a request for a document to a server, and the server then sends a
response back to the browser with the requested document. When the user clicks on a hyperlink, the
process is repeated. The cycle of requesting a resource and then parsing the response for the resource is
suitable for this model of the web because we’re working with documents with a very limited interaction
framework: open a resource, click links to open more resources, repeat.

Many web applications actually implement this same document-style interaction, and it works for
the most part. First a page is shown to the user, then the user performs an action, such as filling in a form

CHAPTER 11 ■ REQUEST

309

and submitting it, which triggers the browser to send a request to the server containing the data
provided by the user. The server processes the data and sends a response containing the updated page,
which is then displayed to the user by the browser. This process is repeated when the user performs
another action.

While this works for simple applications, building more complex web applications that somehow
mimic the desktop application model is hard to fit in this style. Desktop applications, which most users
are familiar with, are often very dynamic: an action is immediately reflected in the interface, no loading
or reloading involved. Simple web applications, on the other hand, feel a lot less like applications and
more like web sites because they are too constrained by the hyperlink-style request-response cycle: if a
part of the interface needs to be updated, the entire page has to be reloaded.

The problem isn’t about developers not being smart enough to create desktop-style applications.
Rather, it’s about the lack of an API for issuing HTTP requests using JavaScript. Requests happen at the
browser level: a default event or piece of JavaScript code triggers the browser to load a page, and the
browser does the appropriate HTTP requests to load or reload a page. In the past, there was no
infrastructure in place that let developers request data from servers directly using JavaScript.

The landscape changed, however, in the early years of the 21st century, with the rediscovery of a
then obscure API. This API, originally developed for loading XML documents into JavaScript, became an
instant hit because it enabled developers to make direct HTTP requests using JavaScript. Suddenly,
JavaScript gained the necessary ingredient to create powerful web applications.

Using this API, web applications could load or post new content from the server without having to
refresh the whole page. This helped developers create rich, complex applications that can rival desktop
applications. Users no longer have to wait for a page to reload in order to see their changes, because
applications can now make those changes in the background and then update the interface to reflect the
changes.

JavaScript-based HTTP requests made web applications less like web sites and more like desktop
apps, and the browser became the platform that enabled these rich, dynamic applications to run.
JavaScript, as the language of the browser, became the old new cool thing, and the language regained
popularity and regard within the developer community. And all of this is because of an obscure object
called the XMLHttpRequest.

The XMLHttpRequest Object
That obscure object called the XMLHttpRequest, or XHR, is at the heart of the new model of internal
requests. First introduced by Microsoft in 1999, XHR is a special object that can be used to make HTTP
requests—as well as receive appropriate HTTP responses—from within JavaScript. This object gives us a
very simple API that can be used to build a request and send it to a server, as well as the appropriate
means to handle the responses the server sends back. As its name implies, an XHR was originally used
for retrieving XML documents, but it is flexible enough to be used for any kind of data.

You create an XHR object using the XMLHttpRequest constructor:

var xhr = new XMLHttpRequest();

This snippet creates a new instance of XMLHttpRequest, which we can now use to send requests to
servers. Unlike most other constructors, the XMLHttpRequest constructor takes no arguments, but rather
depends on methods to set the appropriate values for the request.

CHAPTER 11 ■ REQUEST

310

■ Note Older versions of Microsoft Internet Explorer do not have an XMLHttpRequest constructor. Instead, XHRs
are created by instantiating ActiveX objects that implement the XMLHttpRequest API. Because this topic has

already been covered in numerous books and articles, we won't talk about cross-browser XHR instantiation here.

The first of these methods is open, which is used to initialize a request. It takes two required
arguments: method, which is an uppercase string indicating the HTTP method of the request, and url,
which is a string that points to the location of the resource we’re trying to access. A third argument,
async, is used to determine the mode of the request. We’ll look at how this third argument affects
requests later, but for now we’ll pass false as the value of this argument.

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', false);

In this snippet, we created a new XHR object called xhr, then called its open method to initialize it.
We passed three arguments to open: 'GET', which corresponds to the HTTP method GET,
'http://foo.com/index.html', which is the resource we’re trying to load, and a false value, the use of
which we’ll find out later.

There are several important things you need to remember about these arguments. First, the method
argument should always be in uppercase, so it’s 'GET' and 'POST', not 'get' or 'Post'. Second and more
important, the value for the URI should be in the same domain as the current domain running the script.
In our example, we assume that the script is running in the foo.com domain, not www.foo.com or
dev.foo.com.

■ Note That last point is important. One of the limitations of XHRs is imposed by the same-origin policy. This is a
security concept that limits XHRs to requesting resources only from the same domain in which they are running.
This security “feature” was put into place to prevent malicious scripts from sending or loading data from other

malicious sites.

You’ll notice that these arguments correspond to the request line of the HTTP request message:

GET /index.html HTTP/1.1

The HTTP version identifier, which is the last part of the request line, isn’t included in the formal
parameters of the open method, because the browser itself sets which version of the HTTP protocol to
use.

Another method of XHRs is setRequestHeader, which is used to add appropriate headers to the
request. It takes two arguments: header, which is a string name of the header we’re adding, and value,
which is the value of the header.

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', false);
xhr.setRequestHeader('Accept', 'text/html');

Here we added a single request header called 'Accept', which tells our server the kind of file we
want to receive. Our request message now looks like this:

http://foo.com/index.html
http://foo.com/index.html
http://www.foo.com
http://foo.com/index.html

CHAPTER 11 ■ REQUEST

311

GET /index.html HTTP/1.1
Accept: text/html

Note that some common or required headers, such as Host or User-Agent, are added automatically
by the browser, so we no longer need to add them explicitly.

At this point, our request is ready to be sent to the server. We do this using the send method:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', false);
xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

Here we send the original example above by calling the send method of our XHR object. This tells
the browser to send an HTTP GET request to foo.com to retrieve the /index.html resource.

Sometimes you’ll need to send data with your request, especially for requests that use the POST and
PUT methods. In that case, you’ll need to pass the optional body argument to the send method. This
argument should be a string that contains the data you want to send.

var data = 'name=Mark&age=23';

var xhr = new XMLHttpRequest();
xhr.open('POST', 'http://foo.com/data/', false);
xhr.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded');
xhr.setRequestHeader('Content-Length', data.length);
xhr.send(data);

In this snippet, we need to send the value of the data variable to http://foo.com/data. First we
create a new XHR object, then we initialize it using the open method, specifying the POST method and the
URL endpoint. We then set two necessary headers, Content-Type and Content-Length, which are used by
the server in parsing the data. Finally, we send the request using the send method, passing in the data
variable that becomes the body of our request. Our request message will look like this:

POST /data HTTP/1.1
Host: foo.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 16

name=Mark&age=23

Now that we’ve sent the request, it’s time to parse the response. When the data is received back
from the server after sending the request, the browser will update the XHR object and put the data from
the response into properties. Let’s say that after sending our GET example above, the server responds
with the following:

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 87

<html>
<head>
 <title>Hello World!</title>
</head>
<body>
 Hello World!
</body>
</html>

http://foo.com/index.html
http://foo.com/data
http://foo.com/data

CHAPTER 11 ■ REQUEST

312

We can access the parts of this response using the properties of the XHR object itself. The first
property is status, a numeric value that corresponds to the status code of the response:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', false);
xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

console.log(xhr.status); // 200

Here we sent the original GET example, which returns the response we saw above. We then retrieve
the status code of the response by accessing xhr.status, whose value in this example is 200, just like our
response.

A related property, statusText, gives us the status code plus the status text of the response as a
string:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', false);
xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

console.log(xhr.statusText); // 'OK'

Response headers can be accessed using the getResponseHeader method. This method takes a single
argument, headerName, and returns the value for that particular header:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', false);
xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

console.log(xhr.getResponseHeader('Content-Type')); // 'text/html'
console.log(xhr.getResponseHeader('Content-Length')); // '87'

console.log(xhr.getResponseHeader('Fake-Header')); // null

The getResponseHeader method always returns a string containing the value of the header if the
header is present, and null if the header doesn’t exist in the response. In this example, we used the
getResponseHeader method to retrieve the values of the Content-Type and Content-Length headers of the
response. Because these two headers exist in the response, getResponseHeader returns their values as
strings. However, when we tried retrieving the value of Fake-Header using the same method, we get null
because the response doesn’t have this header.

You can retrieve all response headers using the getAllResponseHeaders method. This method
returns a string containing all the headers of the request, one header per line.

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', false);
xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

console.log(xhr.getAllResponseHeaders());

This snippet will log the following string:

'Content-Type: text/html
Content-Length: 87'

http://foo.com/index.html
http://foo.com/index.html
http://foo.com/index.html
http://foo.com/index.html

CHAPTER 11 ■ REQUEST

313

Finally, you can access the body of the response itself using responseText, which is a string
containing the raw response body:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', false);
xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

console.log(xhr.responseText);

This will give us the following console output:

'<html>
<head>
 <title>Hello World!</title>
</head>
<body>
 Hello World!
</body>
</html>'

The responseText property contains the actual body of the response and is not parsed by the
browser. This allows us to retrieve any kind of resource from the server for use in our applications.

One thing to note is that the value of responseText can be null or an empty string in some cases. If
the server returned a response with no body, or if there was a server-based error, the responseText
property will be empty. However, if there was an error in the request itself or an error from the server
side that resulted in a wrong response, the value of the property will be null.

An easy way to guard against errors is to check the status code of the response. Usually, a response
with a status code greater than or equal to 200 but less than 300 is considered a “successful” response
from the HTTP protocol point of view. Therefore, we can add a simple if statement to our code to check
for success:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', false);
xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

if (xhr.status >= 200 && xhr.status < 300){
 console.log(xhr.responseText);
} else {
 console.log('Unsuccessful Request.');
}

Our if statement in this example checks the status code of the XHR object to see whether its value is
greater than or equal to 200 but less than 300. If it is, it logs the responseText property of the XHR.
Otherwise, it will log 'Unsuccessful Request.'. Because the response status for this example is 200, we’ll
get a proper console output like the previous one.

Because the XMLHttpRequest API was originally created with XML documents in mind, there’s
another property called responseXML, which is a document object. If the content-type of the response
body is an XML document, the browser will automatically try to parse the responseText value into a
DOM Tree object, and set it as the value of responseXML. However, if the response is not an XML
document—as in our case—the responseXML property is set to null.

There are times you’ll need to cancel a request, and you can do that using the abort method:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', false);

http://foo.com/index.html
http://foo.com/index.html
http://foo.com/index.html

CHAPTER 11 ■ REQUEST

314

xhr.setRequestHeader('Accept', 'text/html');
xhr.send();
xhr.abort();

There are many reasons you might want to abort a request, such as if the user decides to cancel the
action. Or you may want to set some sort of timeout for the request. The XMLHttpRequest object doesn’t
natively support timeouts, which means it will wait for a response from the server as long as possible.
You can use abort together with the setTimeout function to automatically cancel a request after a
specific time:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html');
xhr.setRequestHeader('Accept', 'text/html');

// timeout
setTimeout(function(){
 xhr.abort();
}, 5000);

xhr.send();

Here we combined the abort method with setTimeout to cancel the request after 5 seconds. If the
request hasn’t received a response after 5 seconds, the timeout function will automatically cancel the
request, making it possible to create some sort of timeout function that can be used to cancel long-
running requests.

Going Async
The requests we made above using XHR objects are synchronous, which is a fancy term for blocking:
after sending the request, the browser halts all processes in the current window until it receives a
response. Only after getting a response back from the server will the browser continue execution.

While that’s fine in some cases, synchronous requests are problematic in general because loading
resources takes time. Since the browser blocks all processes during synchronous requests, your
application will remain unresponsive during this time and the user won’t be able to interact with it. If
you’re loading a large file, for instance, it might take a few seconds for the browser to finish loading the
response from the server—a few seconds that might be enough reason for your bored user to stop using
your application. Factor in the slow speed of some Internet connections plus the latency between the
user’s physical location and the server, and you get a user-experience nightmare.

Thankfully, we have an alternative: asynchronous requests. An asynchronous (or async) request
happens in the background and is therefore non-blocking. Using an async request, we can send a
request to the server and continue without waiting for a response. Because it doesn’t block the browser
from performing other processes, our application remains interactive while the request is being
processed, and users won’t notice anything happening until we get the response back and update the
interface.

To use the async mode of XHRs, we must initialize our objects with the third argument for the open
method. This third parameter, called async, takes a Boolean value: if the value is true, the request will be
asynchronous. In the previous examples, we passed false to this argument, which made our requests
synchronous. To make our request asynchronous, we simply have to change that value to true:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', true);
xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

http://foo.com/index.html
http://foo.com/index.html

CHAPTER 11 ■ REQUEST

315

In this snippet, we changed the synchronous example from the last section into an asynchronous
version by passing a true value as the async argument to open. When we send our request using the send
method, it will now be done in the background, and the lines after the send invocation will immediately
be interpreted. This behavior is different from the synchronous example, where the script waits for a
response from the server before executing the next lines.

The use of async requests, though, requires a different approach. Until the previous example, all of
our code snippets were written with the synchronous calls in mind. This enabled us to access the values
of the XHR object directly after our send invocation:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', false);
xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

console.log(xhr.responseText.length); // 87

Since synchronous requests block further execution until the response arrives, we’re able to get the
response values like this. By the time our first console.log line is evaluated, the response has already
been received, so we can read the data immediately.

But what about async requests?

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', true);
xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

console.log(xhr.responseText); // undefined

Here we modified the example to use an async request instead of a synchronous one. Even if both
examples point to the same URL, this example will always log undefined for the responseText property. This
is because, unlike in our previous example, the JavaScript interpreter will not wait until the response is
received before interpreting the line after the send call. Instead, the interpreter triggers the browser to
perform a non-blocking background request and then goes on to interpret the rest of the program.

Because the request is asynchronous, we won’t be able to access the properties right after we invoke
send, because we don’t know for sure whether the response has arrived from the server by the time the
interpreter evaluates our access code—and often, the response arrives much later.

To work with asynchronous requests, then, we need a new plan of attack. Instead of immediately
accessing the properties of the XHR after sending it, we need to defer this access until we actually get a
response. In other words, we need to wait for the response to actually arrive before processing it. And the
technique we’ll use to do that should already be familiar to us, since we just discussed it in the previous
chapter: events.

An XHR object supports one main event: the readystatechange event. This event is dispatched by
the XHR every time its ready state changes, which we’ll discuss in a bit. In order for us to effectively use
async requests, we must therefore attach an appropriate event handler for this event.

Attaching an event handler to an XHR, however, is a bit tricky. In browsers that support the standard
model, we can use the addEventListener method for this purpose. Internet Explorer, on the other hand,
does not implement event methods such as attachEvent on XHR objects. We must therefore use an older
style of event attachment that’s supported by all browsers—event handler properties:

var xhr = new XMLHttpRequest();

// attach handler
xhr.onreadystatechange = function(){
 console.log('Ready State Change.');
};

http://foo.com/index.html
http://foo.com/index.html

CHAPTER 11 ■ REQUEST

316

Instead of using a method to attach an event handler, we attached the event handler directly to the
object through a property name that’s composed of the “on” prefix plus the name of the event. In this
case, we attached a readystatechange event handler by assigning a function to the onreadystatechange
property of the XHR object. This method of attaching the event handler is part of the legacy event model,
which comes from the DOM Level 0 days of the browser but is still supported by all major browsers.

Of course, attaching the event handler is just part of the equation. Take a look at the following
example:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', true);

// attach handler
xhr.onreadystatechange = function(){
 console.log('Ready State Change.');
};

xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

If we try running this in the browser, we'll get the following console output:

'Ready State Change'
'Ready State Change'
'Ready State Change'
'Ready State Change'

We got four log outputs, which means that our event handler was dispatched four times. Instead of
just dispatching the event when it receives a response from the server, the XHR dispatches the
readystatechange event for every phase of the request-response cycle.

If we look back at the request-response cycle, we can see that there are four phases. The first phase
is connecting to the server where the HTTP request message will be sent. The second phase is sending
the actual request message to the server. The third phase is downloading the response data. The fourth
phase is ending the download phase and parsing the data from the response. So the four phases are
connect, send, download, and complete.

These four phases are connected to the “ready state” of the XHR. An XHR object has a special
property, readyState, that contains a numeric value that tells us the current phase the XHR object is in:

• 0 - the XHR has just been created, but its open method hasn’t been called yet so it
remains uninitialized. This XHR phase does not correspond to a request-response
flow phase.

• 1 - the XHR has been initialized, but the request hasn’t yet been sent to the server
using send.

• 2 - the XHR’s request has been sent, and the preliminary data—headers and status
codes—are available.

• 3 - the XHR’s response is being downloaded and the responseText property
already has partial data.

• 4 - the XHR’s response has been downloaded completely and we can now process
the data.

http://foo.com/index.html

CHAPTER 11 ■ REQUEST

317

As the XHR moves from one phase to the next, it dispatches the readystatechange event to inform us
of the change of state. We can then use the readyState property to check which phase it is in.

Let’s modify the previous example:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', true);

// attach handler
xhr.onreadystatechange = function(){
 switch(xhr.readyState){
 case 1: console.log('1: Connect'); break;
 case 2: console.log('2: Send'); break;
 case 3: console.log('3: Download'); break;
 case 4: console.log('4: Complete'); break;
 }
};

xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

In our readystatechange event handler, we used a switch statement to check for the value of the
readyState property. Here’s the corresponding console output from our snippet when run on the
browser:

'1: Connect'
'2: Send'
'3: Download'
'4: Complete'

The first line in our output, '1: Connect', is logged after we call the open method. The open method
changes the state of the XHR from 0 to 1, which dispatches the readystatechange event. The second line
is logged after we call send, which changes the state from 1 to 2, triggering another dispatch of the
readystatechange event. As the browser starts receiving data from the server, it changes the state of the
XHR to 3, dispatching a third readystatechange event that logs our third line. Finally, the last
readystatechange event is dispatched when the browser finishes downloading the whole response from
the server, thereby logging our fourth and last line.

The last phase is perhaps the most important of these four phases, because it’s only when we have
all of the response data that we can start parsing it for our purposes. This means that until the
readyState of our XHR object is 4, we can’t access the complete data from our response. With this in
mind, we can now create a proper event handler for our async request:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', true);

// attach handler
xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 console.log(xhr.responseText);
 }
};

xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

Here we changed our readystatechange handler by adding an if statement that checks whether the
readyState property is equal to 4. If the value of this property is anything other than 4, the data isn’t

http://foo.com/index.html
http://foo.com/index.html

CHAPTER 11 ■ REQUEST

318

ready yet and we won’t be able to read the full response body. But if the value is equal to 4, our response
has been completely downloaded, and we can begin using it or parsing it for our needs.

One thing we also have to factor in is the simple guard we included to check for failed requests.
Remember that we checked the value of the response’s status code in the previous section to determine
whether the response was successful or not. We should also add that into our new event handler:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', true);

// attach handler
xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if (xhr.status >= 200 && xhr.status < 300){
 console.log(xhr.responseText);
 } else {
 console.log('Unsuccessful Request.');
 }
 }
};

xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

Finally, we can also add a timeout that will automatically cancel our request if it takes too long:

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://foo.com/index.html', true);

// attach handler
xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if (xhr.status >= 200 && xhr.status < 300){
 console.log(xhr.responseText);
 } else {
 console.log('Unsuccessful Request.');
 }
 }
};

xhr.setRequestHeader('Accept', 'text/html');
xhr.send();

// timeout
setTimeout(function(){
 xhr.abort();
}, 5000);

And with that, we now have our complete asynchronous XHR code.

http://foo.com/index.html
http://foo.com/index.html

CHAPTER 11 ■ REQUEST

319

The MooTools Request Class
Now that we’ve looked at the native XMLHttpRequest implementation, you might have noticed a few
things:

• The initialization method open has to be called separately from the constructor
function, which doesn’t fit with the normal JavaScript (or MooTools) style.

• Native XHRs dispatch only a single event type in most browsers, which means that
we have to cram all our code into a single event handler for both successful and
failed requests.

• Timeouts aren’t natively implemented, so we need to add separate code to handle
this for us.

• We don’t have the flexibility to handle different response types, and we have to
parse the responses ourselves.

Because XHRs are used a lot these days, you’ll probably encounter these issues in most applications
you build. Therefore, we need a somewhat better API for working with XHRs to streamline the process
for us.

Thankfully, MooTools provides us with the API we need: the Request class. This special class is an
abstraction of the native XHR class, and can be used as a replacement for native XHR code. Like the
Event type, the Request class is a wrapper: it does not override the native XMLHttpRequest type, but
instead wraps it in order to add functionality. Unlike most of the constructors we’ve discussed so far,
Request is implemented as a class rather than as a type object in order to enable subclassing—which, as
we’ll see later in this chapter, makes Request a really powerful feature of MooTools.

In the sections to come, we’ll translate the following native XHR code to a version that uses the
Request class:

window.addEvent('domready', function(){
 var notify = $('notify'),
 data = 'name=Mark&age=23';

 var xhr = new XMLHttpRequest();
 xhr.open('POST', 'http://foo.com/comment/', true);

 xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if (xhr.status >= 200 && xhr.status < 300){
 notify.set('html', xhr.responseText);
 } else {
 notify.set('html', 'Request failed, please try again.');
 }
 }
 };

 xhr.setRequestHeader('Accept', 'text/html');
 xhr.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded');
 xhr.setRequestHeader('Content-Length', data.length);

 xhr.send(data);
 notify.set('html', 'Request sent, please wait.');

http://foo.com/comment

CHAPTER 11 ■ REQUEST

320

 // timeout
 setTimeout(function(){
 xhr.abort();
 notify.set('html', 'Request timeout, please try again.');
 }, 5000);
});

In this snippet, we send a POST request to http://foo.com/comment/ in order to send the data to the
server. We then wait for a response from the server to tell us whether the operation was successful, and
this response is composed of an HTML string that we’ll insert into the notify element.

Creating New Requests
The first thing we need to do is to create a new request object using the Request constructor. This
constructor takes a single argument, options, which is an object containing options for our request
object.

var data = 'name=Mark&age=23';

var request = new Request({
 url: 'http://foo.com/comment/',
 method: 'post',
 async: true
});

Unlike the native XMLHttpRequest API, the Request API doesn’t have a separate open method to
initialize the request. Instead, we pass the values that we’d normally pass to open as values in our options
argument. In this snippet, for example, we passed three options: url, which is the URL of the location
we’re requesting; method, which is the HTTP method to use for the request; and async, which tells the
Request class that we want to use the asynchronous mode for this request.

You’ll notice that the method option isn’t in uppercase, and that’s okay. The Request class allows any
case for the method option: we could have used 'POST', 'Post' and even 'PoST'. It’s common, however,
to use the lowercase style with Request class instances.

Another thing we need to know is that most of the options for Request have default values. For
instance, the method option is 'POST' by default, and the async option is true by default. If the default
values of these options are already set to what we need, we can simply omit them from our options
object:

var data = 'name=Mark&age=23';

var request = new Request({
 url: 'http://foo.com/comment/'
});

This snippet is the same as the previous one, even if we didn’t include values for the method and
async options.

When we create a new instance of Request, the constructor automatically creates a native XHR
object that will be used for the request. As I mentioned, the Request class is a wrapper object, like the
Event type: it doesn’t create a new object type of its own but only creates an abstraction for the native
object. We can access this wrapped XHR object by accessing the xhr property of our request object:

http://foo.com/comment
http://foo.com/comment
http://foo.com/comment

CHAPTER 11 ■ REQUEST

321

var data = 'name=Mark&age=23';

var request = new Request({
 url: 'http://foo.com/comment/'
});

console.log(typeOf(request.xhr)); // 'object'

Adding Request Headers
Now that we have our request object, we need to add the headers, and we do this using the setHeader
method. This method takes two arguments, name and value, which correspond to the header name and
value:

var data = 'name=Mark&age=23';

var request = new Request({
 url: 'http://foo.com/comment/'
});

request.setHeader('Accept', 'text/html');
request.setHeader('Content-Type', 'application/x-www-form-urlencoded');
request.setHeader('Content-Length', data.length);

Here we set three headers for our request: Accept, Content-Type, and Content-Length. You’ll notice
that the setHeader method is very similar to the setRequestHeader method from the native API, and they
actually are somewhat similar in style.

One nice feature, though, is that we can actually pass these headers to the Request options. This
saves us three function invocations:

var data = 'name=Mark&age=23';

var request = new Request({
 url: 'http://foo.com/comment/',
 headers: {
 'Accept': 'text/html',
 'Content-Type': 'application/x-www-form-urlencoded',
 'Content-Length': data.length
 }
});

Instead of calling setHeader separately, we just pass a headers option to the Request constructor.
This option should have an object value, with the keys of the object corresponding to the name of the
header, and the value corresponding to the header value. This cleans up our code considerably, and
makes the Request declaration more expressive.

All request objects have a default Accept header with the value 'text/javascript, text/html,
application/xml, text/xml, */*'. This means we can remove the Accept header declaration in our
code:

var data = 'name=Mark&age=23';

var request = new Request({
 url: 'http://foo.com/comment/',
 headers: {

http://foo.com/comment
http://foo.com/comment
http://foo.com/comment
http://foo.com/comment

CHAPTER 11 ■ REQUEST

322

 'Content-Type': 'application/x-www-form-urlencoded',
 'Content-Length': data.length
 }
});

Another feature of MooTools is the special urlEncoded option, which automatically encodes our
data into the application/x-www-form-urlencoded type. It also automatically adds a Content-Type and
Content-Length header to our request if the method used is POST. We can therefore remove those two
headers and use the urlEncoded option instead:

var data = 'name=Mark&age=23';

var request = new Request({
 url: 'http://foo.com/comment/',
 urlEncoded: true
});

By default, the urlEncoded option of a request object is set to true, which means we don’t even need
to explicitly add it. So, we can go back to our original request code once more:

var data = 'name=Mark&age=23';

var request = new Request({
 url: 'http://foo.com/comment/'
});

Sending Data
At this point, we’ve replaced about half of our original native code with this simple code block. Now we
need to consider the data to be sent. In the native model, we passed the data to the send method of the
XHR object. In MooTools, we can do the same using its send method:

var data = 'name=Mark&age=23';

var request = new Request({
 url: 'http://foo.com/comment/'
});

request.send(data);

Like the native send method, the Request send method can be invoked with an argument to send
data to the server. Here we send the value of the data variable to the server by passing it the send
method.

However, we don’t need to use the send method to pass data to the request; we can also declare the
data to be sent using the Request options:

var data = 'name=Mark&age=23';

var request = new Request({
 url: 'http://foo.com/comment/',
 data: data
});

http://foo.com/comment
http://foo.com/comment
http://foo.com/comment
http://foo.com/comment

CHAPTER 11 ■ REQUEST

323

Here we added a new option called data to the options object. This option is used to declare the data
that will be sent to the server, and in our case, we declared the value of this option to be the string value
of our data variable.

We aren’t limited to using strings as data values in the Request class though. MooTools allows us to
send other values, such as objects:

var request = new Request({
 url: 'http://foo.com/comment/',
 data: {
 'name': 'Mark',
 'age': 23
 }
});

In this example, we declared the value of the data option to be an object with two properties. When
we send this request, MooTools automatically turns the object into a string that’s readable by the server.
The Request class is able to process different kinds of objects like this: plain objects, arrays, and even
form elements. This gives us flexibility in our code and enables us to transparently send complex
JavaScript objects to the server.

Attaching Event Handlers
The next thing we have to deal with is events. With native XHRs, we needed to attach a readystatechange
event handler and check the readyState property, and then put our processing code inside the handler.
For our example, we had a readystatechange event handler that looked like this:

 xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if (xhr.status >= 200 && xhr.status < 300){
 notify.set('html', xhr.responseText);
 } else {
 notify.set('html', 'Request failed, please try again.');
 }
 }
 };

The MooTools Request class, on the other hand, lessens the complexity of the readystatechange
event by providing not one but five main events:

• The request event is dispatched right after the request is sent.

• The complete event is dispatched when the request has finished.

• The success event is dispatched for a successful request.

• The failure event is dispatched for an unsuccessful request.

• The cancel event is dispatched when a running request is stopped.

You can manage event handlers for these events to your request object using the MooTools event
methods such as addEvent or removeEvent.

http://foo.com/comment

CHAPTER 11 ■ REQUEST

324

The request Event
The first event, request, is dispatched right after the request is sent. It is useful for displaying notification
messages or loading images in your interface to tell the user that something is happening. In our native
example, we logged a message right after the request was sent. This is a good candidate for use with our
request event:

var notify = $('notify');

var request = new Request({
 url: 'http://foo.com/comment/',
 data: {
 'name': 'Mark',
 'age': 23
 }
});

request.addEvents({

 'request': function(){
 notify.set('html', 'Request sent, please wait.');
 }

});

When our request object is sent in this example, the request event will be dispatched, which in turn
invokes the event handler we attached. The HTML source of our notify element will then be updated,
informing our users that an action is taking place.

The complete Event
The next event, complete, is dispatched when the request has been completed. This event, however, does
not tell us whether the request was successful or not—it simply tells us that the request has been done.
Therefore, this event shouldn’t be used for data processing event handlers. Instead, it should be used for
“cleanup” purposes, such as removing elements you’ve added during the request event.

var spinner = new Element('img', {src: 'spinner.gif'});

var request = new Request({
 method: 'get',
 url: 'http://foo.com/index.html'
});

request.addEvents({

 'request': function(){
 spinner.inject(document.body, 'top');
 },

 'complete': function(){
 spinner.destroy();
 }

});

http://foo.com/comment
http://foo.com/index.html

CHAPTER 11 ■ REQUEST

325

In this separate example, we attached event handlers for the request and complete events. For the
request event, we displayed a spinner image in our interface to tell the user that we’re loading
something. We then removed this spinner during the complete event to signify that we finished loading
the data. Since we’re not doing anything like this in our original native example, we didn’t attach a
complete handler in the earlier example.

The isSuccess Function
The next two events, success and failure, are the two most important events when it comes to requests,
since these events are dispatched right after the complete event to inform us whether our request was
successful or not. To determine whether an event was successful, the Request class uses a function
named isSuccess. When the request is completed, the request object will invoke this function to check
whether the request was successful. If the function returns true, then the request is successful and the
request object will dispatch the success event. If the function returns false, the request is considered
unsuccessful and the request object will dispatch the failure event.

The default isSuccess function looks like this:

isSuccess: function(){
 var status = this.status;
 return (status >= 200 && status < 300);
}

As you can see, the criteria used in the isSuccess method are the same as those we used in the
native example: if the status of the response is greater than or equal to 200 and is less than 300, the
request was successful.

There are times, though, when the default isSuccess criteria doesn’t suffice for your applications.
Thankfully, the Request class allows you to define your own isSuccess function by passing it using the
options object:

var request = new Request({
 method: 'get',
 url: 'http://foo.com/index.html',
 isSuccess: function(){
 return this.status == 200;
 }
});

Here we define a different isSuccess method by passing it as an option in our Request declaration.
The criterion used by our isSuccess function in this case is stricter than the default one: only responses
with the status code of 200 will be considered successful.

The success Event
After consulting the isSuccess function, the request will fire one of two events. The first event, success, is
dispatched when the request is successful:

var notify = $('notify');

var request = new Request({
 url: 'http://foo.com/comment/',
 data: {
 'name': 'Mark',
 'age': 23

http://foo.com/index.html
http://foo.com/comment

CHAPTER 11 ■ REQUEST

326

 }
});

request.addEvents({

 'request': function(){
 notify.set('html', 'Request sent, please wait.');
 },

 'success': function(text, xml){
 notify.set('html', text);
 }

});

The event handler for a request’s success event receives two arguments when invoked: text and xml.
The second argument, xml, is simply the value of the responseXML property of the wrapped native XHR
object. The text argument, on the other hand, is a stripped version of the responseText property value:
all scripts tags are removed from the original responseText value. For example, say we received the
following response data:

<div>Hello World</div>
<script>
 alert('Hello World');
</script>

The request object will parse this response data and strip out the script tag. The text argument that
our success event handler receives will therefore look like this:

'<div>Hello World</div>
'

The script tag was removed, leaving us with only the HTML source for the div.
MooTools strips out scripts for security reasons to prevent malicious scripts from being injected

directly into the page. However, there are instances when you’d want to use those scripts and evaluate
them in your application. The Request class, therefore, provides a special option called evalScripts. If
you pass this option with the value of true, the Request object will automatically evaluate your scripts
after stripping them.

■ Note The evalScripts option, however, only works for <script> tags with bodies, such as
<script>alert('Hello World');</script>. Tags that are implemented with the src attribute, such as <script

src="hello.js"></script>, will not be automatically loaded or evaluated, but will still be stripped.

Another option related to evalScripts is evalResponse. If you set this option to true in your request
declaration, MooTools will automatically evaluate the whole body of the response as a script. MooTools
will also automatically evaluate the value of the response body if the Content-Type of your response
contains the words ecmascript or javascript.

Of course, there are cases where the automatic script stripping will not be what you want to do. In
such cases, you can access the raw responseText and responseXML values using the response object
property of your request object, which stores the unprocessed response data from the server:

CHAPTER 11 ■ REQUEST

327

var notify = $('notify');

var request = new Request({
 url: 'http://foo.com/comment/',
 data: {
 'name': 'Mark',
 'age': 23
 }
});

request.addEvents({

 'request': function(){
 notify.set('html', 'Request sent, please wait.');
 },

 'success': function(){
 notify.set('html', this.response.text);
 }

});

In this snippet, we removed the formal parameters for our success event handler, and instead
accessed the raw response body using the response object property of the request.

The failure Event
In contrast to the success event, the failure event’s handler functions receive only one argument: the
wrapped native XHR object. MooTools passes the native XHR object so we can handle the failure
ourselves. Take note, though, that even if we’re not passed the response text and response xml values,
we can still access them using the response property object in our failure event handler.

var notify = $('notify');

var request = new Request({
 url: 'http://foo.com/comment/',
 data: {
 'name': 'Mark',
 'age': 23
 }
});

request.addEvents({

 'request': function(){
 notify.set('html', 'Request sent, please wait.');
 },

 'success': function(){
 notify.set('html', this.response.text);
 },

 'failure': function(){

http://foo.com/comment
http://foo.com/comment

CHAPTER 11 ■ REQUEST

328

 notify.set('html', 'Request failed, please try again.');
 }

});

We didn’t need any fancy error handling in our original native example, so we just attached a basic
failure event handler.

Timeouts
The next thing we need to do is to add a timeout. In our native example, we used the abort method of the
XHR object together with a setTimeout call to cancel the request after a specific amount of time. The
Request class has a method called cancel that is equivalent to abort, and we can use that here:

var notify = $('notify');

var request = new Request({
 url: 'http://foo.com/comment/',
 data: {
 'name': 'Mark',
 'age': 23
 }
});

request.addEvents({

 'request': function(){
 notify.set('html', 'Request sent, please wait.');
 },

 'success': function(){
 notify.set('html', this.response.text);
 },

 'failure': function(){
 notify.set('html', 'Request failed, please try again.');
 }

});

setTimeout(function(){
 request.cancel();
 notify.set('html', 'Request timeout, please try again.');
}, 5000);

You’ll notice that after we canceled our request, we updated our notify element to show that our

request has timed out. Instead of putting this directly in our setTimeout function, we can also implement
this as an event handler.

var notify = $('notify');

var request = new Request({

http://foo.com/comment

CHAPTER 11 ■ REQUEST

329

 url: 'http://foo.com/comment/',
 data: {
 'name': 'Mark',
 'age': 23
 }
});

request.addEvents({

 'request': function(){
 notify.set('html', 'Request sent, please wait.');
 },

 'success': function(){
 notify.set('html', this.response.text);
 },

 'failure': function(){
 notify.set('html', 'Request failed, please try again.');
 },

 'cancel': function(){
 notify.set('html', 'Request timeout, please try again.');
 }

});

setTimeout(function(){
 request.cancel();
}, 5000);

Request objects dispatch the cancel event every time a running request is cancelled. In this

example, our cancel event handler will be dispatched when our request times out after 5 seconds.
While our snippet looks good right now, we can actually make it cleaner. The MooTools Request

class actually adds support for timeouts using the timeout option. So instead of writing our request code
as we did above, we can modify it to look like this:

var notify = $('notify');

var request = new Request({
 url: 'http://foo.com/comment/',
 data: {
 'name': 'Mark',
 'age': 23
 },
 timeout: 5000
});

request.addEvents({

 'request': function(){
 notify.set('html', 'Request sent, please wait.');

http://foo.com/comment
http://foo.com/comment

CHAPTER 11 ■ REQUEST

330

 },

 'success': function(){
 notify.set('html', this.response.text);
 },

 'failure': function(){
 notify.set('html', 'Request failed, please try again.');
 },

 'timeout': function(){
 notify.set('html', 'Request timeout, please try again.');
 }

});

Instead of using the cancel method with setTimeout, we simply added a timeout option to our
Request declaration. The request class will automatically handle the timeout for us, and dispatch a
timeout event when the request times out. You’ll notice that we also changed our cancel event handler
to a timeout event handler since we’re no longer handling the cancel event.

Event Handler Declarations
At this point our code is almost complete, and we can now add the send invocation to finish it. Before we
do that, however, we need to check out one more feature of the request declaration. Instead of attaching
event handlers using addEvent or addEvents, we can actually include them in the request declaration by
using the “on” prefix form:

var notify = $('notify');

var request = new Request({

 url: 'http://foo.com/comment/',

 data: {
 'name': 'Mark',
 'age': 23
 },

 timeout: 5000,

 onRequest: function(){
 notify.set('html', 'Request sent, please wait.');
 },

 onSuccess: function(){
 notify.set('html', this.response.text);
 },

 onFailure: function(){
 notify.set('html', 'Request failed, please try again.');
 },

http://foo.com/comment

CHAPTER 11 ■ REQUEST

331

 onTimeout: function(){
 notify.set('html', 'Request timeout, please try again.');
 }

});

We moved the event handlers from a separate addEvent call to the actual Request declaration by
capitalizing their names then attaching an “on” prefix to them. This declaration form is similar to the
one above, but it’s cleaner and tighter and therefore used more often in development.

Sending the Request
This brings us finally to the part where we send the request. To complete our code, we simply have to
send the request by invoking the send method:

var notify = $('notify');

var request = new Request({

 url: 'http://foo.com/comment/',

 data: {
 'name': 'Mark',
 'age': 23
 },

 timeout: 5000,

 onRequest: function(){
 notify.set('html', 'Request sent, please wait.');
 },

 onSuccess: function(){
 notify.set('html', this.response.text);
 },

 onFailure: function(){
 notify.set('html', 'Request failed, please try again.');
 },

 onTimeout: function(){
 notify.set('html', 'Request timeout, please try again.');
 }

});

request.send();

You already saw the send method a few sections back when we discussed how to factor in the data
being sent to the request. The MooTools send method looks very similar to the native send method for
XHR objects: we can pass the string data to be sent by making it an argument to the send method.

However, the send method will only use the argument as the data for the request if the argument is a
string or an element. If you pass an object to the send method, for example, it won’t be sent to the server.
Thus, something like request.send({name: 'Mark'}) won’t work.

http://foo.com/comment

CHAPTER 11 ■ REQUEST

332

This is because the send method’s argument isn’t actually called data—it’s called options. This
options object is similar to the options object you pass to the Request constructor, but it understands
only three options: url, method, and data.

When you pass a string or element argument to send, the method actually transforms it into the data
property of an options object. Thus, send('name=Mark') is the same as doing send({data: 'Mark'}). If we
want to send an actual object using the send method, we have to use a real options object, like
send({data: {name: 'Mark'}}).

Passing an options object to send makes it possible to create reusable request objects.

var request = new Request({
 link: 'chain',
 onSuccess: function(){
 console.log(this.response.text);
 }
});

request.send({url: '/index.html', method: 'get'});
request.send({url: '/comments', method: 'post', data: {name: 'Mark'}});

Here we created a single request object, then used options objects with the send method so that we
can send different requests using a single request object. Note that passing in different values for the
options to send does not change the actual option values of the request object. This means that even if
we used a different url value in our send options, the actual url of the request object won’t be changed—
it will still be a blank string, which is the default value.

Request Sending Modes
You’ll notice from our last example that we added a new option to the request declaration called link.
This option is used to set the behavior of the request object if a send call is issued while a request is still
running.

By default, the value of this option is 'ignore'. In this mode, the request object will ignore
additional calls to send while it is running.

var request = new Request({
 link: 'ignore',
 onRequest: function(){
 console.log(this.response.text);
 }
});

request.send({url: '/index.html', method: 'get'});
request.send({url: '/comments', method: 'post', data: {name: 'Mark'}});

In this snippet, only the first request—the GET request to /index.html—will be honored. Because we
called send immediately after sending the first request, the second request will be ignored. This is
because the second time we invoked send, our original request was still running. By default, all request
objects use the ignore mode.

The second possible value for link is 'cancel'. In this mode, subsequent calls to the send method
will cancel the current running request.

var request = new Request({
 link: 'cancel',
 onRequest: function(){
 console.log(this.response.text);

CHAPTER 11 ■ REQUEST

333

 }
});

request.send({url: '/index.html', method: 'get'});
request.send({url: '/comments', method: 'post', data: {name: 'Mark'}});

In this example, the second send call will cancel the previous one. Therefore, the POST request to
/comments will be the one honored by the request object and the first GET request will be canceled.

The last possible value for link is 'chain'. In this mode, requests will be “chained”: if the send
method of the request object is called while it is running, the request will wait for the currently running
request to finish before sending the new one.

var request = new Request({
 link: 'chain',
 onRequest: function(){
 console.log(this.response.text);
 }
});

request.send({url: '/index.html', method: 'get'});
request.send({url: '/comments', method: 'post', data: {name: 'Mark'}});

Both requests will be sent in this example. First, the GET request will be sent, and the second POST
request will be added to the request chain. When the GET request is finished, the request object will
automatically send the POST request.

Our Final Code
This brings us finally to the part where we send the request. To complete our code, we simply have to
send the request itself by invoking the send method:

window.addEvent('domready', function(){

 var notify = $('notify');

 new Request({

 url: 'http://foo.com/comment/',

 data: {
 'name': 'Mark',
 'age': 23
 },

 timeout: 5000,

 onRequest: function(){
 notify.set('html', 'Request sent, please wait.');
 },

 onSuccess: function(){
 notify.set('html', this.response.text);
 },

http://foo.com/comment

CHAPTER 11 ■ REQUEST

334

 onFailure: function(){
 notify.set('html', 'Request failed, please try again.');
 },

 onTimeout: function(){
 notify.set('html', 'Request timeout, please try again.');
 }

 }).send();

});

You’ll notice that the original request variable assignment was removed from this snippet. Since we
don’t need to store the request, we can simply do away with the assignment and send the new instance
directly. We also wrapped the whole snippet in a domready event handler, as in our original example.

Let’s take another look at the original native request code:

window.addEvent('domready', function(){

 var notify = $('notify'),
 data = "name=Mark&age=23";

 var xhr = new XMLHttpRequest();
 xhr.open('POST', 'http://foo.com/comment/', true);

 xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if (xhr.status >= 200 && xhr.status < 300){
 notify.set('html', xhr.responseText);
 } else {
 notify.set('html', 'Request failed, please try again.');
 }
 }
 };

 xhr.setRequestHeader('Accept', 'text/html');
 xhr.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded');
 xhr.setRequestHeader('Content-Length', data.length);

 xhr.send(data);
 notify.set('html', 'Request sent, please wait.');

 // timeout
 setTimeout(function(){
 xhr.abort();
 notify.set('html', 'Request timeout, please try again.');
 }, 5000);

});

I think we will all agree about which code is better. Our Request-based code is cleaner, easier to
read, and more modular, and it fits the MooTools style perfectly.

http://foo.com/comment

CHAPTER 11 ■ REQUEST

335

Subclassing Request
A great thing about Request is that it’s implemented as a class rather than a type object. This gives us the
opportunity to create subclasses that extend the functionality of Request.

Request Internals
To understand how Request subclassing works, we must first get a feel for the internals of the MooTools
Request class. Request is a very simple class. It uses all of the three mixin classes we discussed in Chapter
5: Options, Events, and Chain. We use the Options mixin for the initialize method, which is how we’re
able to pass an options object when we create a new object. We use the Events mixin to enable the
request object to use event handlers and dispatch events. And we use the Chain mixin to power the
“chain” mode of request sending.

When a new Request instance is created, the initialize method does two things. First, it creates the
internal XHR object that will be used to send the requests and stores it in the xhr property of the
instance. Second, it takes the options object argument and merges it with the default options using the
setOptions method from the Options class. Remember that this method enables us to define event
handlers using the onEventName format, which is how we’re able to combine the event handler
declaration with the other options in our request object instantiation.

At this point, the Request instance contains a non-initialized native XHR object. Request doesn’t
actually call the open method of the XHR until later in the process. Rather, all processes at this point are
“buffered” internally. For example, when we add new request headers using the setHeader method, the
Request instance doesn’t actually add them immediately to the XHR object using setRequestHeader.
Instead, it stores the headers first in the internal headers property. This makes the class flexible enough
so that changes can be easily made without having to reset the XHR instance.

The send Method
The bulk of the Request processes happens in the send method. When called, it first sets the current
request as “running,” so that subsequent calls to it will be controlled. The method then prepares the
internal options: it combines the options object passed to it (if there is one) to the option values defined
during the creation of the request object.

The send method then prepares the data for sending. If our data is a simple string, it does no further
parsing. If our data is an element, it will first call the toQueryString method of Element to turn form
elements into a query string value. And if our data is an object, it’ll use the Object.toQueryString generic
to turn the object into a proper query string. Thus, no matter what kind of data we pass to Request, it
always turns it into a string.

The next step the method takes is to initialize the native XHR object by calling its open method. It
uses the prepared values from the options to perform this task: an uppercase version of options.method
for the method argument, options.url for the url, and options.async for the async argument. It then
attaches the readystatechange handler for the XHR object: a method called onStateChange, which we’ll
discuss in a second. Next, it adds the appropriate headers to the XHR object by looping through the
internal header property and adding them using setRequestHeader. Finally, it dispatches the request
event before sending the native XHR object.

The onStateChange Method
The send method, however, is only half of the puzzle. The other half is the readystatechange event
handler method, onStateChange. After the send method sends the request, control of the request goes

CHAPTER 11 ■ REQUEST

336

over to the onStateChange method, which waits for the wrapper XHR object to reach the ready state of 4.
When this happens, onStateChange prepares the response object property of the request, setting the raw
responseText value for response.text and raw responseXML value for response.xml.

The onStateChange method then calls the isSuccess function to check whether the request was
successful. If the request was successful, the method calls the success method, which parses and
prepares the response.text value to strip out script tags. This success method then passes this new
formatted value to the onSuccess method, which dispatches the complete and success events.

Unsuccessful requests, in contrast, will make the onStateChange method invoke the failure method,
whose main job is to invoke the onFailure method that dispatches the complete and failure events.

These four methods—success, onSuccess, failure, and onFailure—are the usual points for
subclassing. Most Request subclasses will override these four methods in order to create a specialized
version of the class.

Success Overriding
The most basic kinds of Request subclasses add additional options and use a different parsing method
for the responseText value. Because it is the job of the success method to parse the response data before
passing it to success event handlers, most subclasses override only this method for their purposes.

For example, let’s take one of the Request subclasses included in MooTools Core: Request.JSON. This
is a specialized request class used for JSON requests that automatically turns the response data into a
JavaScript object. Normally, if we want to include a JSON request using the Request class, we do this:

var request = new Request({
 url: 'myfile.json',
 method: 'get',
 headers: {
 'Accept': 'application/json'
 },
 onSuccess: function(text){
 var obj = JSON.decode(text);
 if (obj){
 console.log(obj.name);
 } else {
 console.log('Improper JSON response!');
 }
 }
}).send();

Here we requested a JSON file from the server. We made sure that the server will only send us JSON
back by attaching an Accept header that has the value of the JSON mimetype. In our success event
handler, we then parse the text response from the server using JSON.decode to turn it into a JSON object.
If the parsing is successful, we’ll get an object result, the name property of which we output to the
console. If the parsing fails, we log an error message.

Request.JSON automates this process, and handles the parsing process using JSON.decode internally.

var request = new Request.JSON({
 url: 'myfile.json',
 method: 'get',
 onSuccess: function(obj){
 console.log(obj.name);
 },
 onFailure: function(){
 console.log('Improper JSON response!');

CHAPTER 11 ■ REQUEST

337

 }
}).send();

Instead of passing a string to the success event handler, Request.JSON passes an object that is the
parsed value of the JSON response. This saves us from having to call JSON.decode ourselves.
Request.JSON also automatically dispatches the failure event in the case of the response failing the
JSON.decode parsing.

The source itself of Request.JSON is very simple:

Request.JSON = new Class({

 Extends: Request,

 options: {
 secure: true
 },

 initialize: function(options){
 this.parent(options);
 Object.append(this.headers, {
 'Accept': 'application/json',
 'X-Request': 'JSON'
 });
 },

 success: function(text){
 var secure = this.options.secure;
 var json = this.response.json = Function.attempt(function(){
 return JSON.decode(text, secure);
 });

 if (json == null) this.onFailure();
 else this.onSuccess(json, text);
 }

});

The Request.JSON class is a direct subclass of Request. It overrides the original initialize method in
order to add the appropriate headers to the request instance, but it also retains the original initialize
process from Request using this.parent(). You’ll see that the success method is the only real method
that’s overridden. The Request.JSON version of the success method first tries to turn the response data
into a proper JSON object using JSON.decode. If the process fails, it calls the onFailure method, which
dispatches the failure event. If the process succeeds, it calls the onSuccess method, passing in the newly
parsed object. The onSuccess method will then dispatch the event handlers for the success event,
passing the parsed object.

As this example shows, subclassing the Request object is a very simple affair. The flexibility of the
original Request class itself makes the process really simple, and gives Request the ability to be
subclassed into new and more useful classes.

The Wrap-Up
In this chapter we learned all about the HTTP request-response cycle and how it affects the design of our
applications. We also found out about asynchronous requests, and how the native XMLHttpRequest object

CHAPTER 11 ■ REQUEST

338

enables us to issue requests from inside our code to create more powerful and dynamic applications.
Finally, we talked about the MooTools Request class, and how it provides a nice abstraction of the native
XHR API.

In the next chapter, we’ll learn about another fancy technique for improving our interfaces:
animation. We’ll talk about how animation is done in JavaScript, as well as how the Fx classes give us a
very powerful framework for complex animations.

So if you’re ready, follow my lead and jump into the magic of animation.

C H A P T E R 12

■ ■ ■

339

Animation

In the previous chapter, we talked about the Request class, which is the old new thing in the recent
JavaScript revolution. Now we’ll talk about an “old old thing:” animation.

In this chapter, we’ll learn about the basic theory of animation and how objects are actually
animated from one state to another. We’ll then explore the elements that come together to create these
animations in JavaScript, before finally diving into the MooTools Fx classes, the pinnacle of JavaScript
animation today.

Getting Animated
When we hear the word animation, what generally comes to mind is motion—the movement of an
object with regard to its original horizontal or vertical position. Animation tasks such as moving a square
from left to right or bouncing a ball up and down are good examples. When animating the square, we
might move it from its original position to another position to the right of the original, thus relocating
the object horizontally. The bouncing ball animation, on the other hand, requires us to shift the ball
vertically, first moving it up from its original position, then moving it back from the new position to the
original.

These two examples give us an idea of some of the basic elements of animation. First we have the
object to be animated, called the subject. In our examples, the subjects are the square and the ball. Then
we have the particular property of the object that we need to change, which in our examples is the
vertical or horizontal position of the square and ball subjects. And, finally, we have the value of that
property itself.

Motion occurs when the original value of the property—which we designate as the initial value—
changes. So when our square, which was originally 10 pixels to the left of the screen, moves 20 pixels to
the right, we have apparent motion.

This changing of the initial value happens over time, which is another element of animation. When
we start, our square will be 10 pixels to the left of the screen; then, after a second, it moves to a new
position 20 pixels to the right of the initial position. The time it takes for the initial value to change to the
new value is the duration of the animation.

Each change of the initial value is called a frame. In our square example, for instance, we might have
two frames: our first frame would show the square 10 pixels from the left of the screen, while the second
frame would show the square 30 pixels from the left. Our first frame therefore represents the initial value
of the property, while the second frame represents the change of the initial value equal to 20 pixels to the
right of the initial value.

If our animation’s duration is 1 second, we’ll see our first frame, followed by the second frame after
a second. We’ll see the motion, of course, but it’s a very jumpy sort of motion. It will seem that our
square suddenly jumped 20 pixels to the right without any smooth movement in between. This happens
because our eyes detect the abruptness of the movement: the change is so big that our eyes notice it
immediately.

CHAPTER 12 ■ ANIMATION

340

In order to make the animation smoother, we must be able to trick our eyes so they don’t notice the
abruptness of the movement. We can do this by making the change in the properties value smaller. In
our example, this means that instead of simply changing the value of the square’s position from 10 pixels
left to 30 pixels, we must slowly increase the original 10 pixel value over time until it reaches 30 pixels
from the left of the screen.

The way to do this is to add more frames. We could add, for example, another frame that will go in
between the first and last frames. The first frame will show the square at 10 pixels to the left, the second
will show it at 20 pixels and the last at 30 pixels. We then divide the duration—which is one second—
accordingly, which means that frame 1 will be shown first, frame 2 will be shown half a second later, and
frame 3 is shown after a full second. When done like this, the animation still won’t look smooth, but it
won’t look so jumpy either. Because the amount of change was spread through the duration of the
animation, our eyes won’t complain as much.

But in order to make the animation really smooth, the number of frames should be sufficient that
the change in each frame is small enough to go undetected by our eyes. The number of frames to use in
an animation is called the frame rate and is measured in frames per second, or fps. The frame rate of an
animation is simply the number of frames to be displayed each second of the animation’s duration. If
you have a two-second animation at a 24fps frame rate, for example, it means that 48 frames will be
displayed during the span of two seconds. In our first frame example, we had a 1fps frame rate, while our
second example had a 2fps frame rate.

■ Note The first frame, which shows the initial state of the subject prior to any changes, isn’t included in the

framerate.

The frame rate of an animation is also used to determine the amount of change per frame. We do
this by dividing the amount of change we want by the number of frames we’ll have. In our square
example, we want to change the value of the square’s horizontal position from 10 pixels from the left to
30 pixels from the left, which means that the amount of change is 20 pixels. If our animation runs for 1
second at the frame rate of 1fps, then the amount of change per frame will be 20 pixels. On the other
hand, if our animation runs for 1 second at the frame rate of 24fps, then the amount of change per frame
will be around 0.8 pixels, which means that the horizontal position of our square will change 0.8 pixels
for each frame until it reaches the final frame.

At this point we can formulate a good definition: animation is the process of gradually changing the
value of a property over a specific period of time. Take note that while we’ve discussed animation here
using the concept of motion (the change in the value of the horizontal or vertical position property),
animation isn’t limited to motion, especially when we’re animating in JavaScript. For example, if we
change an element’s height or width through animation, the object remains in the same position—yet
this is still considered animation. This is also true for animating things such as opacity or color, which
have nothing to do with motion.

So now that we have a basic understanding of the concepts involved in animation, we can turn our
attention to the implementation details. But before we actually animate anything in JavaScript, we must
first understand how the animation concepts of property and time apply.

Being Stylish
The most common properties that are animated in JavaScript are the visual properties of elements, such
as positions, dimensions, and colors. And these visual properties are controlled by CSS styles.

CHAPTER 12 ■ ANIMATION

341

CSS Styles
At a global level, CSS styles are added to the page using style sheets, which contain style declarations:

div.post {
 color: #CCCCC;
 display: inline-block;
 height: 20px;
}

This is an example style declaration, which should be familiar to you by now, since we saw
something like this in Chapter 9, on Slick. At the start of the declaration is the selector, which defines
which elements to apply the style to, followed by the style rules that are surrounded by the curly braces.

Each of these style rules defines the value of a particular visual property of the elements to which the
rules apply. This declaration, for example, tells us that all div elements with the class post will have a
font color of light gray (color: #CCCCCC), a visual display that makes it both an inline and a block element
(display: inline-block), and a vertical dimension of 20 pixels (height: 20px).

A style rule—and therefore a visual property of an element—is usually one of four types:

• Numeric rules are rules whose possible values are numbers, such as font-size,
line-height, or opacity.

• Color rules are rules whose possible values are colors defined using either
hexadecimal notation, such as #CCCCCC or #09FA0C, or a color function, such as
rgb(255,0,51) or hsl(120,100%,75%).

• String rules are rules whose possible values are strings (i.e., a sequence of
characters), such as font-family or display.

• Mixed rules are rules whose possible values can be a number, a color, a string, or
combinations of these. Examples are shortcut rules like background and font, or
rules like height or margin, which can accept both numbers and strings. Strictly
speaking, all rules are mixed rules, since you can assign string values to them, such
as auto and inherit.

All these rule types can be animated in one way or another, and we’ll see how each of them is
handled later on. An important thing to know right now, though, is that some rules—particularly color
and numeric rules—are easier to animate than others.

We use style sheets to define these rules on a global level: style declarations in a style sheet are
applied to all elements on a page that satisfy the selectors. But specific elements can also have their own
set of styles that are defined using inline styles, which are style rules that are defined only for a specific
element.

An inline style can be defined in HTML using the style attribute:

<div class="post" style="color: #000; display: inline;"></div>

Here we have a div element with a style attribute that defines its inline style. For this element, the
color rule is given the #000 value, while the display rule is given the inline string value.

If this element appeared in the same document with a style sheet that includes the style declaration
we have above, what would be the color and display visual property values of the div be? Would they be
#CCCCCC and inline-block respectively, or #000 and inline? The answer, of course, is the latter. Inline
styles take precedence over global styles, which means that if an element has an inline style rule
declared, it will override any global styles for the same rule—except global rules declared with
!important.

This precedence of inline styles over global styles is important because animation happens using
inline rather than global styles. As we’ll see later, it is the value of these inline styles that change rather

CHAPTER 12 ■ ANIMATION

342

than the global styles. This is because animation needs to be localized: if we change the value of an inline
rule, it affects only the element where the inline rule is declared.

Explicit, Implicit, and Computed
The global styles and inline styles that we define for our documents are called explicit styles, because we
explicitly define them using style rules in style sheets or inline styles. We can find out the explicit styles
in our documents in two ways.

For global style rules, we can inspect the document.styleSheets object, which is a node collection
containing all the style sheet objects in a page. Inspecting this object can sometimes be complicated,
though, because it uses multiple interfaces and objects.

Inline styles, on the other hand, are available directly by accessing the style object property of an
element. For our div example, for instance, we can get the value of its color style by accessing
div.style.color, which should give us the hex string ‘#000’. For CSS rule names that are hyphenated,
such as background-color, the style object will use a camelcase variation of the name, like
backgroundColor. If an element doesn’t have an inline style defined, the value of the property will be an
empty string, which means that accessing div.style.background in our example will yield ““.

Explicit styles are only one piece of the puzzle, though. All style rules have, in fact, a default value.
For example, the default value of the height rule is auto, which means that the item’s height depends on
its content. When creating style sheets or inline styles, we usually don’t write down the values for all
rules, but only for the rules whose default values are different from the ones we want. Styles whose
values are not defined directly in the style sheet are said to be implicit styles. Included in the implicit
styles category are styles that are inherited by an element from an ancestor or parent, such as color.

When it comes to styles, explicit styles trump implicit styles. Inline explicit styles are honored more
than global explicit styles, and both inline and global explicit styles come before implicit styles. When
you combine both the explicit and implicit styles that apply to an element, you get the complete set of
styles for an element, and thus you get the element’s computed styles.

Computed styles represent the final style that’s applied to an element. For our div snippet, for
example, the computed style for the color of the div will be #000, which is equal to the definition in the
inline style, while the computed style for the height of the div will be 20px, which is equal to the
definition in the global style sheet. And since there was no definition for it, the computed background-
color style of the div will be transparent—the default implicit value for the style.

When dealing with computed styles, it’s important to note that values such as auto don’t exist
because computed styles have concrete values. An auto value usually represents a value that
automatically changes depending on the state of an element, like height based on the content of the
element. When computed styles come into play, these auto values are turned into actual pixel values—so
an element with a height set to auto in a declaration will have a height value equal to X pixels in
computed styles.

This concreteness of computed styles is important because we need to deal with real values in
animation. If we want to animate the height of a div by adding 20 pixels to it, for example, we need to be
able to get the initial pixel value of the element’s height so that we can increment it per frame. We can’t
do this using ambiguous values like auto—we need the actual, concrete numeric value.

Revisiting Style Methods
In Chapter 8, when we talked about the Element type, we learned about the basic style methods such as
getStyle and setStyle. We said that these methods are used to return and set the specific styles of the
elements, and in part that’s true. But since we now know more about CSS styles in general, we need to
expand our discussion a bit.

The getStyle and setStyle methods can be considered “unified” methods: both can be used as
interfaces to other related functions. The setStyle method, for instance, is mainly a wrapper for

CHAPTER 12 ■ ANIMATION

343

assigning properties to an element’s style object. This means that doing something like
el.setStyle('height', 'auto') is the same as doing el.style.height = 'auto'. Well, almost the same:
aside from this simple style object assignment, setStyle can also handle things like setting opacity,
which is really done using set('opacity'). Thus, we go back to the original premise: setStyle is a single
interface to several different operations.

Like setStyle, getStyle is largely concerned with the style object. When we try to access an
element’s style value using getStyle, the method first checks the style object of the element to see if
the specific rule is present. If it is, the value of this rule is simply parsed into a usable form and returned.
However, if this rule isn’t present in the style object, getStyle will call another method:
getComputedStyle.

The getComputedStyle method has the same API as getStyle, but it checks the computed style of an
element directly rather than checking the style object first. When we retrieve an element’s style rule
value using getComputedStyle, we actually access the final style value that’s applied to the element. This
means that all rules—both explicit and implicit—are available using getComputedStyle, which makes it
very valuable.

One typical question about getStyle and getComputedStyle goes like this: “If getComputedStyle can
give us the final value for any element style rule whatsoever, then why doesn’t getStyle simply use
getComputedStyle for everything?” This is a valid question. The truth is that for most cases, getStyle does
use getComputedStyle for everything, since most elements won’t have inline styles, which means they’ll
have blank style object properties. But on the other hand, MooTools does check the style object as
much as it can for two reasons: because it’s faster and because the value of the rule in the style object is
actually the same as the value of the element’s computed style, since inline styles have the highest
precedence order.

Time for Some Action
Now that we’ve seen how properties come into play, let’s take a look at the other piece of the animation
puzzle: timers.

Timers
The existence of a main loop lets browsers provide special functions called timers. A timer is a function
that enables us to execute a function at a particular time. There are two timer functions in JavaScript:
setTimeout and setInterval.

The setTimeout function takes two arguments: func, which is the function to run, and delay, which
is a number representing the amount of time to wait before executing the function.

setTimeout(function(){
 console.log('Hello World!');
}, 1000);

Here’s an example of setTimeout that executes a function after a second. You’ll notice that the delay
number is in milliseconds, where one thousand milliseconds is equal to a second. When this snippet is
run in the browser, the JavaScript interpreter will wait one second before invoking the function.

The other timer function, setInterval, also takes two arguments: func, which is the function to run,
and interval, which is a number representing the amount of time to wait before executing the function.
This function works similarly to setTimeout, but instead of simply delaying the execution of the function,
it invokes the function at regular intervals.

setInterval(function(){
 console.log('Hello World!');
}, 1000);

CHAPTER 12 ■ ANIMATION

344

In this snippet we use the same arguments as we did for the setTimeout function. And as with

setTimeout, the JavaScript interpreter will again wait one second before invoking the function. Unlike
setTimeout, though, which invokes the function only once, setInterval will continue invoking the
function regularly for an indefinite period of time. So after the first invocation, the interpreter will wait
another second before invoking the function again, and then repeat this wait-invoke process
indefinitely.

■ Note The setTimeout and setInterval functions aren’t actually limited to functions, but can also be passed
strings representing code to be evaluated using the eval function. This form is discouraged, however, because of
the limited scope of the eval function and also because it can lead to some security issues regarding unescaped

user input.

One important thing to know about these functions is that they’re scheduling functions, not
blocking ones. What this means is that when the interpreter sees an invocation of setTimeout or
setInterval, it does not stop further execution in order to wait for these functions to finish. Instead, it
takes the function arguments and the delay or interval value and stores them in a stack in order to access
them later before continuing the execution. For example:

console.log('A');
setTimeout(function(){
 console.log('B');
}, 1000);
console.log('C');

In this example we have a setTimeout call surrounded by two console.log invocations. When we run
this on the browser, we get the following console output:

A
C
B

You’ll notice that the order of the log is different from the order of console.log invocations in the
snippet. This is because the interpreter doesn’t wait for the function argument to be executed, but
instead stores that function first. So what happened here is that the first log output, A, was logged first,
then the interpreter saw the call to setTimeout. It then stored the function argument to setTimeout in a
stack before proceeding to the next line to output C. When the delay period specified for setTimeout
passed, the interpreter finally called the function argument, so the B value is logged.

Both setTimeout and setInterval return a number value, called a timer identifier. This number is
used if we need to disable the timer, which is especially useful for setInterval. Disabling a timer is called
“clearing,” and can be done using two functions: clearTimeout and clearInterval.

The clearTimeout function takes a single argument, id, and disables a setTimeout timer associated
with that id:

var id = setTimeout(function(){
 console.log('Hello World!');
}, 1000);

clearTimeout(id);

CHAPTER 12 ■ ANIMATION

345

In this snippet, we first stored the identifier of the timer in a variable called id. We then immediately
called on clearTimeout, passing the identifier we stored. This means that the function will never be
called, because we disable the execution of the timer function immediately.

As you might guess, clearInterval is used to disable a setInterval timer. Like clearTimeout, it also
takes a single id argument:

var count = 0;

var id = setInterval(function(){
 console.log('Hello');
 count++;
 if (count === 3) clearInterval(id);
}, 1000);

Here we have an example of a self-disabling interval function. We first set up a counter that
increments for each invocation of the function argument. We then set the function argument to run
every one second using the setInterval function. When the function argument has been invoked three
times, we call clearInterval to disable the timer, stopping our function from further executing.

Since the setTimeout and setInterval functions are mostly concerned with executing function
arguments, MooTools implements two Function methods that employ these two timer functions, delay
and periodical, which we’ve already seen in Chapter 2. Like setTimeout and setInterval, these two
function methods return a timer identifier that can be used with the clearTimeout and clearInterval
functions.

Timer Execution
JavaScript’s single-threaded nature has a very interesting effect on timers. Remember that the global
scope and function scopes have separate execution contexts, which the interpreter “enters” and “exits”
during the course of a program. Because JavaScript is single-threaded, only a single execution context
can be active at any point in the program’s lifetime.

This one-context-at-a-time design affects timers immensely because timers are run in a separate
execution context. For instance, take a look at the following example:

var fn1 = function(){
 setTimeout(function fn2(){
 console.log('fn2');
 }, 0);
 console.log('fn1');
};

fn1();

In this snippet we created a new function called fn1. Inside this function, we created a new delayed
function called fn2 using setTimeout. What’s different about this delayed function is that we set the delay
amount to 0—which is like saying we don’t want any delay in execution. So, we would likely assume that
since there is no delay, fn2 will be executed immediately and our output will be ‘fn2’ and then ‘fn1’. But
when we run this, we see the following output:

fn1
fn2

Even though our fn2 function had a delay of 0, it wasn’t executed immediately. Instead, the
interpreter finished executing fn1 first before invoking fn2.

CHAPTER 12 ■ ANIMATION

346

This is an important point to consider when working with timers. Because JavaScript is single-
threaded, only a single execution context can be active at a time. In our example, fn2 can’t be executed
immediately even if the delay is 0 because at the point the timer went off, the interpreter was still busy
interpreting fn1.

But timers aren’t only competing with regular functions for execution, they are also competing with
other timers. If a function delayed using a timer is executing, other timers that are set off during that
time won’t be able to execute as well, which means they’ll be queued for later execution.

It is imperative that you remember this because it shows us a “flaw” in the timer system: most of the
time, we can’t trust timers to execute at exactly the time we specified. If there are no functions currently
being executed, our timers will probably execute with a delay that’s equal to what we specified. But if our
application is busy with other things, we can’t expect the timer to be really on time.

A Basic JavaScript Animation
At this point we have all the elements we need to get started working with JavaScript animation. We
know the basics of animation theory, we know about styles, and we know about timers. So let’s go ahead
and try implementing a simple animation with JavaScript.

For our purposes, we’ll reuse the square example: a square that is 10 pixels from the left of the
screen needs to be moved 20 pixels to the right until it reaches a position of 30 pixels from the left of the
screen. For this attempt, we’ll make everything really simple so that we can focus on the animation itself.

First, here’s our element:

<div id="square" style="
 background: #000;
 height: 20px;
 width: 20px;
 position: absolute;
 left: 10px">
</div>

The element we’re animating is a basic div element. To keep things simple, we’ve defined the
dimensions and position of the element using an inline style. This makes it easier for us to get these
dimensions in our code using the style property.

Now that we have our element, it’s time to start writing our animation code. The first thing we need
is to declare a few variables:

// the element
var square = $('square');

// time/frames variables
var duration = 1000;
var rate = 50;
var frames = duration / 1000 * rate;

// property variables
var amount = 20;
var increment = amount / frames;

The first variable, square, is a reference to the element we’re animating. The next three variables are
our time and frames variables: duration tells us the length of the animation in milliseconds, rate tells us
the frame rate or number of frames per second, and frames tells us the total number of frames for the
whole animation sequence. Finally, we have the property values: amount, which tells us the total amount
of change for the element’s property, and increment, which is the amount to change per frame.

CHAPTER 12 ■ ANIMATION

347

Now we need to create the step function. This function will be the one called to update the value of
the div’s property. There are many ways to do this, but we can simply code it like this:

var step = function(){
 // get the current value
 var left = parseFloat(square.style.left);

 // increment the value
 left += increment;

 // set the new value
 square.style.left = left + 'px';
};

The first thing the step function does is to get the current value of the property being animated,
which it stores in the left variable. It then increments this original value with the amount we calculated
by dividing the total change amount by the number of frames for the animation. Finally, the function
sets this new value as the value of the left property of the element—thereby visibly moving the object
on the screen.

We’re almost done with this animation example. The last thing we need to do is to add the timer.
Since we’ll need to call the step function at regular intervals, we’ll use the setInterval function:

var stepInterval = setInterval(step, Math.round(duration / frames));

Here we used setInterval to get the interpreter to run our step function at a regular rate. The speed
of our interval function is defined as Math.round(duration / frames), which gives us a nice whole
number to work with, since timer functions aren’t that good with floating points.

Now we have everything in place. Let’s take a look at our complete code:

// the element
var square = $('square');

// time/frames variables
var duration = 1000;
var rate = 50;
var frames = duration / 1000 * rate;

// property variables
var amount = 20;
var increment = amount / frames;

var step = function(){
 // get the current value
 var left = parseFloat(square.style.left);

 // increment the value
 left += increment;

 // set the new value
 square.style.left = left + 'px';
};

var stepInterval = setInterval(step, Math.round(duration / frames));

CHAPTER 12 ■ ANIMATION

348

The first time the step function is called by the interpreter’s timer, the square will be moved a little
bit to the right, and will continue moving for each subsequent invocation. The result is a nice animation
sequence.

There’s a problem with our implementation though: we didn’t add anything that will make it stop! If
we run this on the browser, the square will continue moving right indefinitely. Remember that we only
want to move the square a few pixels to the right—20 pixels to be exact—but our previous example
moves the square way past that amount.

// the element
var square = $('square');

// time/frames variables
var duration = 1000;
var rate = 50;
var frames = duration / 1000 * rate;

// property variables
var initial = parseFloat(square.style.left);
var amount = 20;
var increment = amount / frames;

var step = function(){
 // get the current value
 var left = parseFloat(square.style.left);

 if (left < (initial + amount)){
 // increment the value
 left += increment;

 // set the new value
 square.style.left = left + 'px';
 } else {
 // stop the timer
 clearInterval(stepInterval);
 }
};

var stepInterval = setInterval(step, Math.round(duration / frames));

Here we added a new variable called initial, which stores the initial value of the property we’re
animating. We also modified our step function to check the value of the element’s left property each
time it’s called. If the value is less than the sum of the initial value and the total change amount, then our
animation isn’t done yet, so we can continue incrementing the value. If it’s not smaller, however, it
means that the target amount of change has been satisfied, so we can stop the animation by clearing the
timer.

Our example is pretty easy to understand, and the whole implementation is straightforward enough.
As it shows, basic animation isn’t that complicated: you only need to declare some basic variables with
simple mathematical formulas, and employ a single function that will be repeated using a timer. Even
with this simple code, the result is still quite exciting.

CHAPTER 12 ■ ANIMATION

349

MooTools Fx Classes
While our animation example is great for showing the elements of animation in action, it has flaws that
make it unsuitable for real-world use.

The first problem is the hard-coded property change. We’re animating a single property in our
example, but what if we need to add more properties to animate? Or what if we need to change this
property? All the property-related elements in our example are hard-coded as variables, and the change
process itself defines our property explicitly.

Another issue is reusability. What if we want to animate other things on our page? Do we copy the
same function and just change it? That would be wasteful, not to mention impractical. In order to make
animations really practical, we need a reusable way of adding animations to our page.

If we want to fully take advantage of animation in our applications, we need a better solution.
Animation was one of the most common uses of JavaScript in the early days of the language—the other
being validation—and even today, animation plays a big role in browser-based JavaScript applications,
not only for the purpose of “eye-candy” but also to provide visual clues about UI changes to users.

The usefulness of animation was apparent to many early framework developers, and almost all
frameworks include some animation facilities in their APIs—and MooTools is no exception. Most of
these animation APIs address the two issues I noted, as well as other implementation details that might
not be apparent to most of us.

The MooTools animation system—which is embodied by the Fx class and subclasses—is one of the
oldest APIs in MooTools. As we learned in Chapter 1, MooTools started out as Moo.Fx, an animation
framework for another JavaScript library. What we know now as MooTools evolved from these original
Moo.Fx animation classes, which should give you an idea of just how important these APIs are.

Animation Objects
Unlike our native animation example, which uses variables and functions, the MooTools Fx system uses
animation objects to perform the same set of tasks. An animation object is an instance of an Fx subclass
like Fx.Tween or Fx.Morph that encapsulates the basic elements of the process, like timers and calculation
functions, and controls the whole progression of the animation sequence.

var square = $('square');

var tween = new Fx.Tween(square, {
 duration: 1000,
 fps: 50
});

tween.start('left', 30);

Here we reimplemented our previous native animation example using an animation object that is
an Fx.Tween instance. Unlike our native example, we didn’t need to write a whole bunch of variables and
functions, but instead simply instantiated a new animation object. Our tween object in this case
contains all the necessary elements for performing the animation, and we triggered this by simply
calling the start method.

Notice that the style property we’re animating, left, and the value we want this item to take, 30, are
passed as arguments to the start method rather than passed as options to the constructor. This is
because all animation objects are generic by default: they don’t describe the actual properties being
animated, only the duration and speed of the animation itself. This makes animation objects reusable in
a way that a single animation object can be used to animate different properties by changing the
arguments to the start method.

CHAPTER 12 ■ ANIMATION

350

tween.start('height', 30);
tween.start('width', 30);

However, this doesn’t mean that it’ll work as we’d expect. After our first call to start, the animation
object will be in a working state, which means that it’ll be busy performing the necessary actions to
animate the height of the element.

If we call start again while the animation is in this state, the animation object will behave according
to the value of its link option. If the link option has the value 'ignore', it will simply ignore the second
call.

var square = $('square');

var tween = new Fx.Tween(square, {
 duration: 1000,
 fps: 50,
 link: 'ignore'
});

tween.start('height', 30);
tween.start('width', 30);

In this snippet we passed a link option with the value 'ignore' to our constructor. This tells the
animation object to ignore any subsequent calls to start while the animation object is still busy with the
previous call. Note that all Fx classes use 'ignore' as the default value for the link options, which means
we don’t need to include it explicitly:

var square = $('square');

var tween = new Fx.Tween(square, {
 duration: 1000,
 fps: 50
});

tween.start('height', 30);
tween.start('width', 30);

This example is the same as the previous one even if we didn’t include the link option, because all
animation objects have 'ignore' as their default link value if the option isn’t specified.

Another possible value for the link option is 'cancel'. This tells the animation object that if the
start method is called while it is in a working state, the new call should cancel the previous one and
replace it:

var square = $('square');

var tween = new Fx.Tween(square, {
 duration: 1000,
 fps: 50,
 link: 'cancel'
});

tween.start('height', 30);
tween.start('width', 30);

CHAPTER 12 ■ ANIMATION

351

In this snippet the second call to start will cancel the previous call, and then replace it. This means
that the animation sequence that’s changing the height property of the element will be stopped and the
animation object will proceed with animating the width property.

Finally, animation objects can have the link option of 'chain', which stores subsequent calls to
start for later processing.

var square = $('square');

var tween = new Fx.Tween(square, {
 duration: 1000,
 fps: 50,
 link: 'chain'
});

tween.start('height', 30);
tween.start('width', 30);

Here our animation object will store the second call to start in a queue. After the first animation
sequence has finished, the animation object will then call the next one in the chain, making it possible to
chain several animation sequences in order. We’ll see how to combine animation sequences when we
look at Fx.Morph later in the chapter.

Tween and Morph
Tween and Morph are the two main Fx classes are used for animation in MooTools. These classes have very
similar APIs, with the exception of having different signatures for their start methods. Because they’re
inherently similar, we’ll take a look first at their differences before discussing the common methods of
their APIs.

Fx.Tween
We’ve already seen Fx.Tween. This class is used to animated single CSS properties. The Fx.Tween
constructor takes two arguments, element, which is the element to animate, and options, which is an
optional object that can be used to set various internal properties.

var square = $('square');

var tween = new Fx.Tween(square, {
 duration: 1000,
 fps: 50
});

Here we created a new Fx.Tween instance called tween. We passed the value of our square variable,
which is an element, to the constructor to tell it that we’re animating that element. We also passed an
options object argument containing two options: duration, which sets the length of time for our
animation, and fps, which sets the number of frames per second to display.

Internally, the Fx.Tween constructor passes the value of the element argument to document.id, which
means we can either pass a real Element instance or simply the id of the element we’re animating. The
following snippet is the same as the one above:

var tween = new Fx.Tween('square', {
 duration: 1000,

CHAPTER 12 ■ ANIMATION

352

 fps: 50
});

At this point, we have our generic tween animation object. In order to activate the animation
sequence, we need to call the start method. This method takes two arguments: property, which is a
string denoting the CSS style property to animate, and value, which is the target value of the CSS
property.

tween.start('height', 30);

In this snippet we’re triggering the tween object to start animating the height style property of the
element. The animation object will then take the initial value of the element’s height property and
animate it until it reaches the value of 30.

■ Note The MooTools Fx system uses pixels as its main unit for numeric values, which means any number

passed to the start method is interpreted as pixels.

However, the start method also has another form, which uses three arguments instead of two:
property, from, and to.

tween.start('height', 20, 30);

Here the second argument, from, is used to explicitly set the initial value of the property before it is
animated. In the previous form we simply used the current value of the property, but here we explicitly
tell the animation object that we want to start the animation with our element’s height property set to 20
before it’s animated to 30.

Fx.Morph
While Fx.Tween is concerned with animating single properties at a time, Fx.Morph is used to animate
several CSS properties together in the same animation sequence. This makes it useful for complex
animation sequences that change an object’s properties in several ways.

As with Fx.Tween, the Fx.Morph constructor takes two arguments: element, which is the element to
animate, and options, which is an object containing various animation related options. Also like the
Fx.Tween constructor, Fx.Morph passes the value of the element argument to document.id, so we can pass
both Element instances and string ids.

var morph = new Fx.Morph('square', {
 duration: 1000,
 fps: 50
});

The main difference between the APIs of the Fx.Tween and Fx.Morph classes is the signature of their
start methods. For Fx.Morph, start takes only a single argument, properties, which is an object. The
keys of the properties object correspond to the CSS style properties to animate, while their values
correspond to the target values for these properties:

morph.start({
 'height': 30,
 'width': 30

CHAPTER 12 ■ ANIMATION

353

});

Here we called the start method of our Fx.Morph instance, passing in a properties object with two
properties: height and width. This triggers the animation object to animate both the height and width
properties of the element at the same time.

Like Fx.Tween, Fx.Morph also allows us to set the initial value of the property. We can do this by
putting the values in our properties object arrays.

morph.start({
 'height': [20, 30],
 'width': 30
});

In this example we changed the value of the height property to an array containing two numbers.
The first number will be used as the initial value of the property before animating it, while the second
value will be the target value for the property.

Fx Methods and Events
As you’ll notice above, both Fx.Tween and Fx.Morph have almost the same APIs, except for signature
differences in the start method. These two classes actually inherit from the same base class as we’ll see
later, which gives them the same set of methods. Some of the shared methods, like start, are overridden
by these two classes, but most of them are shared.

■ Note From here on we’re just going to use Fx.Tween instances in our examples in order to avoid repeating the

code for both classes.

One of these shared methods, cancel, is the opposite of the start method and triggers the
animation to stop:

var square = $('square');

var tween = new Fx.Tween(square, {
 duration: 1000,
 fps: 50,
});

tween.start('left', 30);

tween.cancel();

Here we called the cancel method immediately after calling start, which forces the animation
sequence to halt entirely.

Of course, there are times when you don’t want to completely cancel an animation sequence, but
simply stop it for a bit and continue later. You can do this using the pause and resume methods:

var square = $('square');

var tween = new Fx.Tween(square, {
 duration: 1000,

CHAPTER 12 ■ ANIMATION

354

 fps: 50,
});

tween.start('left', 30);

tween.pause();

setTimeout(function(){
 tween.resume();
}, 500);

In this snippet we called the pause method of our object immediately after calling start, halting the
animation sequence. We then set a timer function to continue the animation using the resume method.
The result is that our animation will stop for a bit, before continuing after half a second.

Animation objects, like other MooTools classes, function as event dispatchers, which means we can
add event handlers that will get invoked at particular stages of the animation sequence. This is because
Fx implements the Events mixin internally, which gives our animation objects the necessary event APIs.

There are three main events dispatched by the Fx classes:

• start is dispatched right after the start method is called.

• cancel is dispatched when the cancel method is called.

• complete is dispatched when the animation sequence has finished.

You can add event handlers for these events using the addEvent methods we’ve already seen in
previous chapters. Another way would be to pass the event handlers using the options argument:

new Fx.Tween('square', {
 onStart: startFn,
 onCancel: cancelFn,
 onComplete: completeFn
});

All event handlers for these events are invoked with a single argument, element, which is the
element that’s being animated.

Fx Internals
Without knowing about the basic principles of animation that we’ve discussed, the MooTools animation
system might come off as overly complicated. Unlike the other internal systems we’ve seen so far, the
main Fx animation system is composed of several interconnected classes, most of which aren’t directly
used. In order to understand the system, we need to take a look at these classes separately, then connect
them at the end of our discussion.

The Fx Base Class
The Fx class is at the root of the MooTools animation system. This class defines the most basic
components required to produce animations, and all animation-related classes inherit from Fx.

The Fx class uses all of the three built-in mutators: Options to allow passing option objects during
instantiation, Events to enable animation objects to dispatch events and have event listeners, and Chain
to enable the chaining of calls to the start method.

CHAPTER 12 ■ ANIMATION

355

Initialization and Class Options
Initializing the Fx class method takes two arguments: subject and options. The method takes the first
argument, subject, and sets it as the value of the subject property of the instance, while the second
argument is passed to the setOptions method.

As we saw in the previous section, all Fx classes have three main options: duration, fps, and link.
These three options are given default values by the explicit options property declared in the Fx class
declaration, and these default values are 500, 50, and 'ignore' respectively.

Of special note is the duration option, which can actually take either a numeric value that
represents the length in milliseconds, or one of the special “duration values.” These duration values are
stored in a special object called Fx.Durations:

Fx.Durations = {'short': 250, 'normal': 500, 'long': 1000};

So instead of putting duration: 250, we can use the equivalent duration value, like duration:
'short'. And since the Fx.Durations object is public, we can augment it directly to define our own
duration values.

The step Method
If you look back at our native animation example, you’ll see the function called step, which is used to
control the animation operation. We call this function the animator function, and it’s in charge of
computing the amount of change to be applied for a particular frame as well as stopping the animation
when the desired value has been reached.

The Fx class implements the animator method that’s used by all animation objects: step. This
method is called at each frame of the animation, and like its native counterpart, it performs the
necessary calculations for each frame as well as checking whether to stop the animation when it’s done.

Unlike our native step function, which uses the actual values of the animated property, the step
method takes a different approach that uses the elapsed time. At the start of the animation sequence, the
current timestamp is stored in the time property of the object. When the duration of the animation
(which is expressed in milliseconds) is added to this timestamp value, we get another timestamp value,
which is the target time when the animation will be completed.

When the step method is called, it checks the current time to see if it’s less than the target time. If it
is, the animation should still be in progress, and should therefore continue. However, if the current time
is greater than the target time, the animation should be done and the step method will finish the
animation sequence.

This time-based technique is also used for calculating the amount of change that needs to happen
at a particular frame. In our native example, we simply divided the total amount of change by the
number of frames and incremented the property value for each frame. In contrast, the step method
computes the value based on the time elapsed using special equations called easing equations.

Timers
While the animator function is concerned with changing the value of the property per frame, the timer
function is concerned with keeping the animation sequence moving by invoking the animator function
at regular intervals.

In our native animation example, we created a single function called step, which we then ran
periodically using the setInterval function. The step function therefore acted both as the timer and as
the animator. In other words, the function that’s in charge of changing the properties is the same
function that gets called repeatedly by the setInterval function. If we were to animate multiple objects
this way, we’d end up with a different timer function for each object we’re animating. Because each
object would have its own periodical function, we could say we have multiple timers.

CHAPTER 12 ■ ANIMATION

356

MooTools, on the other hand, doesn’t merge the animator and timer. Instead, MooTools creates
private timer functions that call the step method of the animation objects. All timers are private and can
only be accessed by the Fx class. The startTimer method of the Fx class is the method used to associate
the current instance to a particular timer, while the stopTimer method is used to remove this association.
These two methods are used by the other Fx methods, and are never actually invoked outside the class.

MooTools will group animation objects using the values of their fps option. All animations that run
at 50fps, for example, will share the same timer function, and the same is true for all other animation
objects that share the same fps value. Because a single timer function can be used for multiple
animation objects, we can say that MooTools uses unified timers.

The use of unified timers gives the MooTools Fx system some great benefits. First, using unified
timers minimizes the problem of multiple timers blocking each other due to JavaScript’s single-threaded
nature. Because multiple animation objects can share a single timer, the number of timer functions
vying for execution time is lessened, which means less execution conflict.

The second—and perhaps more important—benefit of unified timers is animation synchronization.
With multiple timers, only a single timer function (and therefore a single animator function) can run at a
time, which means that multiple objects being animated won’t have synchronized animations. In
contrast, unified timers enable several animator functions to run for each pass of the interval,
synchronizing the change for all objects.

The start Method
The Fx class implements the main start method that’s used by all Fx subclasses. Some subclasses will
override this method in order to add class-specific functionality, but these overriding methods will still
call the original start method implemented by Fx.

The first thing the start method does is to check whether the animation is currently running. If it
isn’t, start proceeds to set various flag properties for the animation. These include items like the initial
value and the target value for the property being animated, as well as the easing equation to use for the
animation. The start method then calls the startTimer method of the instance, which associates the
current instance to a private timer function. The startTimer method also saves the current timestamp
that will be used by the step function for its calculations. Finally, the start method calls the onStart
method, whose job is to dispatch the start event using fireEvent.

However, if the start method is called while the animation object is still busy with a previous
sequence, it will either ignore or store this new call, or cancel the previous one and replace it with this
new call—a behavior that’s dependent on the value of the link option.

CSS Animation
As we’ve seen, the Fx base class is mostly concerned with setting up a framework for the basic elements
of animation. Fx itself is very important in the MooTools animation system, but it remains incomplete
because it does not implement the higher-level parts.

In order to make Fx usable, it has to be subclassed, and new methods that handle the actual
property computation and change need to be implemented. Fx is actually very flexible in that you can
subclass it to handle any kind of animation. Luckily, MooTools does the grunt work for us by including
an Fx subclass that handles CSS style animation—the most common animation done on the DOM—
called Fx.CSS.

The Fx.CSS class implements all the necessary methods that are used for CSS style animations.
These include basic methods like render and serve, which are concerned with the actual computation
and setting of the properties using setStyle, and more complex methods like search, which is used to
parse the document’s style sheets to find default values for CSS class declarations.

The most interesting part of Fx.CSS, though, is the set of parsers used for computing the changes for
CSS style values. There are three default parsers for Fx.CSS: String, Number and Color. These parsers,

CHAPTER 12 ■ ANIMATION

357

which are stored in Fx.CSS.Parsers, are used to parse values that will be employed in the animation
sequence, and turn them into JavaScript objects that can be used in computational operations.

Like Fx, though, Fx.CSS is still unusable on its own. The API for Fx.CSS is a bit unpolished, so
subclasses are needed to add a more refined abstraction for the class.

MooTools provides two of these abstractions: Fx.Tween and Fx.Morph. These two classes are
subclassed from the Fx.CSS class, and implement the abstractions for tweening and morphing elements.
We’ve already seen them at work, and I think we all can agree that they give us a very elegant API for
working with CSS animations.

The Wrap-Up
Animation is usually seen and not read, but we did learn a thing or two about it in this chapter. We’ve
seen what animation actually is, and what elements that come together in the animation process. We
also learned a little about CSS styles and JavaScript timers, and the roles they play in animation. Finally,
we discussed how to do JavaScript animation using native JavaScript and the MooTools Fx classes.

With this chapter, our tour of JavaScript and MooTools on the browser has ended. In the next
chapter we’ll break free from the window, from the DOM and from elements and visuals.

So put on those riding boots and mount your space horse, as we explore JavaScript beyond the
browser.

CHAPTER 12 ■ ANIMATION

358

P A R T III

Breaking from the Browser

360

C H A P T E R 13

■ ■ ■

361

JavaScript without Limits

In the first two parts of this book, we explored topics that are more or less “old stuff” in terms of
JavaScript development. The JavaScript language has been around for quite some time, and the things
we’ve learned so far have been explored and re-explored many times before. For some of us, the
previous chapters were refreshers; for others, they’re advanced information waiting to be applied.

But now we leave the comfort of the familiar and delve into a very young topic: CommonJS. Barely
two years old, CommonJS has pushed JavaScript into an area it has never been successful in before: it
has turned JavaScript into a powerful, general-purpose scripting language.

Breaking out of the Browser
JavaScript has always been a language of the browser—and will remain so for quite some time. This, of
course, is beneficial to the language: because the Internet has become a ubiquitous part of most people’s
lives, the browser—the application that helps us navigate this vast network of information—has also
established itself as one of the most important applications today. And JavaScript, as the only DOM
scripting language currently supported by all major browsers, benefits greatly from the continuous effort
browser developers put toward making their applications faster and better.

But, at the same time, this binding of JavaScript to the browser is too limiting. JavaScript is a very
powerful language that has lots of potential outside of browsers. It’s a quirky language, yes, but its quirks
don’t make it less powerful by any significant mark.

One of the potential uses of JavaScript outside the browser is as a general-purpose scripting
language. In the browser, JavaScript functions mainly as a DOM scripting language: a language for
manipulating documents. Outside the browser, though, JavaScript would be a great language for
handling a multitude of programming tasks: servers, text-processing, and file manipulation—just to
name a few.

For JavaScript to reach this potential, though, it must lose some of its parts: no more browser-based
APIs and no more DOM Trees and nodes. It needs to be lean, a language that has no other association to
anything except itself. To go back to the idea of the first part of this book, JavaScript as JavaScript.

This, of course, has been done several times already. A lot of platforms have appeared over the years
that tried taking JavaScript outside the browser and bringing it to the realm of the server, but mostly
these didn’t capture the attention of developers. This all changed in January of 2009, when for the first
time, a glimmer of hope for a general-purpose JavaScript showed itself through a movement.

CHAPTER 13 ■ JAVASCRIPT WITHOUT LIMITS

362

CommonJS
The CommonJS movement started in early 2009 with an effort by Kevin Dangoor. In an article called
“What Server Side JavaScript Needs” (www.blueskyonmars.com/2009/01/29/what-server-side-
javascript-needs/), Dangoor outlined the pitiful state of server-side JavaScript implementations at the
time. He raised several points that needed to be addressed:

• The lack of a standard set of libraries that can be used in any server-side JavaScript
implementation.

• The lack of a standard way of importing and exporting modules for use in multiple
implementations.

• The lack of a usable packaging system for server-side JavaScript.

To address these points, Dangoor created a new group called ServerJS, which included developers of
existing server-side JavaScript implementations as well as other JavaScript developers interested in the
area. The group gained quite a following, and discussions about the topics presented in the article grew
into firm plans that have affected the state of JavaScript outside the browser for good.

In August of 2009—just about six months after the initial introduction of ServerJS—the group
decided to rename the effort CommonJS to reflect the new direction they were taking. Instead of simply
defining a set of specifications that could be used in server-side implementations, the CommonJS group
wanted to make these specifications usable in any kind of JavaScript environment—the browser
included.

The name CommonJS actually refers to two things: It refers to the group itself, of course, the loose
organization that came into being via the ServerJS initiative. And it also refers to the set of technologies
that emerged from the proposals the CommonJS group created.

The CommonJS group came out with a handful of proposals for language and API extensions,
dealing with everything from modules and packages to file I/O and unit testing. As of the time of this
book’s writing, the group has approved and released several important specifications:

• Modules (1.1)

• Packages (1.0)

• System Interfaces (1.0)

• Unit Testing (1.0)

These four specifications—together with the dozen others that are currently being discussed—form
the core set of APIs that all CommonJS-compliant engines support.

In addition to the specifications themselves, the CommonJS group is responsible for another
important effect—the development of several powerful implementations that are compliant with these
specifications. There are now more than a dozen implementations available, each created using the
original open-source interpreter from popular browsers such as Mozilla’s SpiderMonkey and Rhino
engines, and Google’s v8 engine. This enables a multitude of platform possibilities for JavaScript
development outside the browser.

http://www.blueskyonmars.com/2009/01/29/what-server-side-javascript-needs
http://www.blueskyonmars.com/2009/01/29/what-server-side-javascript-needs
http://www.blueskyonmars.com/2009/01/29/what-server-side-javascript-needs

CHAPTER 13 ■ JAVASCRIPT WITHOUT LIMITS

363

Common Modules
Perhaps the most important specification to come out of CommonJS is Modules. This specification is
one of the first efforts of the group to be widely accepted, and it has gained support in all CommonJS
engines—as well as in other platforms both inside and outside the browser.

The Modules specification—the current version is 1.1—describes a working system for creating and
reusing JavaScript modules. At its center is the concept of a module, a group of related JavaScript
functionalities that can be imported into CommonJS programs for reuse.

For the most part, an implementation of the Modules specification is the only requirement a
platform needs in order to be called CommonJS-compliant. Any platform—from standalone JavaScript
engines to fully-fledged application frameworks—can therefore be considered a CommonJS engine if it
enables the use of CommonJS Modules. As such, the Modules specification plays an important role in
the CommonJS ecosystem for determining which implementations can be compatible with the
CommonJS philosophy.

Export and Require
To understand how the Modules specification—and thus the module system of all CommonJS-
compliant engines—works, we’ll have to implement a basic module. Let’s take a module composed of
some math-related functions.

var sum = function(a, b){
 return a + b;
};

var increment = function(num){
 return sum(num, 1);
};

Here we have two simple functions, sum and increment, which we’d like to turn into a CommonJS
module. In the CommonJS specification, a module is simply a file with the name of the module as the file
name, followed by the file extension .js. What we want is a math module, so we’ll name our file math.js:

// math.js

var sum = function(a, b){
 return a + b;
};

var increment = function(num){
 return sum(num, 1);
};

Now we have a file called math.js, which includes our two math functions. However, we still don’t
have a module. To create a module, we have to define the things a module provides. A module is said to
provide something if by importing the module, we can access that functionality.

In our math example, we want importers of our module to be able to access the two functions. To do
this, we have to use a special object called exports:

// math.js

var sum = function(a, b){
 return a + b;
};

CHAPTER 13 ■ JAVASCRIPT WITHOUT LIMITS

364

var increment = function(num){
 return sum(num, 1);
};

exports.sum = sum;
exports.increment = increment;

The exports object is a special global object created by a CommonJS implementation. Any
properties or methods you add to this object will be available to packages that import the module. Here
we added two lines at the end of our file that define the export of the sum and increment modules,
thereby making these two functions importable.

Now we already have a fairly simple yet usable math module. The next step is to import it into a
program that’s going to use these functions. To do this, we have to use the require function:

// program.js

var math = require('math');

console.log(math.sum(2, 3)); // 5
console.log(math.increment(303)); // 304

In this example we have a very simple program stored in a file called program.js. Since our program
needs both the sum and increment functions defined in our math module, we decided to import this
module. We did this by invoking the require function and passing in the name of the module without
the extension. This function executes the contents of the math module, and then returns the value of the
exports object. Thus, the return value of the require('math') call in our example is the exports object of
the math module, which is why we are able to access the sum and increment functions.

Modules are executed in their own context, and any local variables defined in a module are private
to that module.

// math.js

var sum = function(a, b){
 return a + b;
};

var increment = function(num){
 return sum(num, 1);
};

exports.increment = increment;

Here we only exported the increment function, which means that importers of this module won’t be
able to access the sum function. However, since modules are run in their own context, the increment
function is still able to access the local function sum, which means we can use closures for our modules.

Loosely speaking, all CommonJS programs are treated as “modules” by the engine. This means that
in our example, both math.js and program.js are modules, and thus any module-related API available to
math.js is also available to program.js. This is an important point to remember, because it tells us we’re
allowed to import modules into other modules:

// sum.js

var sum = function(a, b){
 return a + b;
};

CHAPTER 13 ■ JAVASCRIPT WITHOUT LIMITS

365

exports.sum = sum;

// increment.js

var sum = require('sum').sum;

var increment = function(num){
 return sum(num, 1);
};

exports.increment = increment;

// program.js

var increment = require('increment').increment;

console.log(increment(302)); // 303

Here we split up the math module into two modules: sum and increment. The sum module, in
sum.js, is simply a declaration of the function together with an exports declaration. In increment.js,
which is a separate module, we first import the sum module, then define the increment method that uses
the sum function we imported. Finally, we import the increment module into the program itself. Thus, we
are able to put together three separate modules into one program transparently.

Module imports using the require function are done linearly: when a module imports another
module, the engine first interprets the contents of the imported module before returning the value of the
exports object and continuing to interpret the rest of the importing module.

In our example, the engine will first interpret the program.js file and see that we’re importing the
increment module, so it will pause execution of program.js and open increment.js to start interpreting
this file. In the increment.js file, it’ll see that there’s another call to require, so it’ll again halt execution
and perform the import by opening and interpreting sum.js.

After interpreting sum.js, the engine will take the value of the sum module’s exports object and
return to the importing module, which is increment.js. The increment.js file will then continue
execution, thereby defining the increment function and exporting it. Then the engine will again take the
value of the exports object and return to the main program.js file where execution will continue.

This linear execution of modules is done in order to prevent race conditions on dependencies. In
our example, the increment module depends on the sum function from the sum module. Because of this
dependency, the engine needs to make sure that the sum function will be available before the increment
module can use it. Thus, the modules are interpreted in a linear fashion.

Module Paths
Those of you who are runners more than readers would probably have hit a snag in trying out the
examples above. In particular, you might be getting errors about modules not being found. You probably
just typed in those examples, placed them in a directory, and tried running program.js—which will lead
to an error about module locations.

This error occurs because of how require works. If you notice, we didn’t specify the exact location of
the file to the require function, only the name of the module. How then does require know where to
look for these modules?

The answer lies in a special property of the require function called paths. The require.paths
property is an array of file-system locations expressed as strings. When require is invoked, it searches for

CHAPTER 13 ■ JAVASCRIPT WITHOUT LIMITS

366

the module by looking at each of these locations starting from the one indexed at 0 and moving on until
it finds the particular module.

Each CommonJS engine will have a different set of default locations for require.paths, so there’s
not so much compatibility there. But let’s say, for example, that our require.paths array looks like this:

[
 '/home/mark/.commonjs',
 '/home/shared/commonjs',
 '/usr/local/commonjs'
]

Now suppose we called require('math'). The first thing the require function will do is to inspect its
paths property to determine which locations are to be searched. It takes the first location,
/home/mark/.commonjs, and looks for a file called math.js in that directory. If it finds the file there, it stops
the search, opens the file and interprets it. If the file doesn’t exist, it will continue searching through the
locations in require.paths until it finally finds the module. If all the locations have been exhausted
without finding the file, require will throw an error to halt the execution of the program.

All engines allow you to add your own locations to the require.paths array. This enables us to store
our modules in common locations that can be used in any CommonJS engine.

require.paths.unshift('/home/mark/.commonjs_modules');

Here we added a new location to the start of the require.paths array using the unshift method.
Since paths are inspected using their indexing order, the require function will first search for an
imported module in the new path before moving on to the other paths. If you want to add a new path to
the end of the array, you can simply use the push method instead of unshift.

In this light, require seems to be quite absolute in its searches: in order to import a module, it needs
to be stored in a location included in the require.paths array. However, this isn’t always the case. The
require function actually allows you to import modules relative to the current file.

Suppose our three files—program.js, increment.js, and sum.js—are stored in the
/home/mark/code/example directory, which is a path that’s not included in require.paths. If we run the
original example without modification, our program will terminate with an error, because our modules
can’t be resolved. What we have to do, then, is modify our examples:

// sum.js

var sum = function(a, b){
 return a + b;
};

exports.sum = sum;

// increment.js

var sum = require('./sum').sum;

var increment = function(num){
 return sum(num, 1);
};

exports.increment = increment;

// program.js

CHAPTER 13 ■ JAVASCRIPT WITHOUT LIMITS

367

var increment = require('./increment').increment;

console.log(increment(302)); // 303

Here we changed the require invocations by prefixing the module names with ./. This tells the
require function that we want to search for the modules using a path that’s relative to the location of the
importing module. Therefore, require('./increment') will look for the increment.js file in relation to
the location of the program.js file, which is at /home/mark/code/example.

Because the location is relative, we can also use the conventional directory notation. For example,
say we have the following directory structure:

/example
 /libs
 increment.js
 sum.js
 program.js

Now in order for program.js to be able to import increment.js, it needs to do
require('./libs/increment'). On the other hand, increment.js can use require('./sum') directly
because they are both in the same location.

MooTools and CommonJS
We saw in the first part of this book that, unlike other frameworks, MooTools does not limit itself to
DOM scripting. If anything, the DOM scripting functionality in MooTools is only an extension to the real
core of the framework: a powerful extension to the native JavaScript language. This makes MooTools a
very good library for use with CommonJS.

Preparing MooTools for CommonJS use is as simple as building a MooTools package without
browser-based extensions such as the Element type or the Request class. All other parts of the framework
can be used in CommonJS, and MooTools, in fact, offers a special server-side build that can be used for
CommonJS.

There is, however, a slight snag. Remember that CommonJS uses modules for much of its
functionality, and to use MooTools with CommonJS engines, MooTools needs to be turned into a proper
CommonJS module. The problem is that the current version of MooTools does not directly support the
CommonJS module specification, which means that it doesn’t use exports declarations. Instead,
MooTools “exports” all its public APIs using the implicit global object, which makes exported objects like
Class or Type inaccessible through require.

Thankfully, this isn’t such a big problem. The structure of the MooTools library actually makes it
very easy for us to add a simple importer function to make MooTools a CommonJS module. There are
several available importer functions, but this one (which I’ve written myself) is what we’ll use here:

(function(){

var $top = this,
 $exports = (typeof exports === 'object') ? exports : {};

Array.each([
 "MooTools",
 "typeOf", "instanceOf",
 "Type", "Class",
 "Events", "Options", "Chain"
], function(item){ $exports[item] = $top[item]; });

CHAPTER 13 ■ JAVASCRIPT WITHOUT LIMITS

368

$exports.into = function into(globalObj){
 if (globalObj && globalObj !== $top){
 for (var i in $exports) {
 if ($exports[i] !== into) globalObj[i] = $exports[i];
 }
 }
 return globalObj;
};

})();

To use this importer function, you have to add it to the end of the MooTools server-side build file.
This adds a new function called into, which can be used to import MooTools. To use into, you simply
have to call it directly and pass the global object of the CommonJS implementation you’re using:

require('mootools').into(global);

This example, which works in almost all major CommonJS implementations, will import MooTools
and add commonly used objects such as Class or Type to the program’s global object. Importing
MooTools this way means that all modules—regardless of whether they import MooTools or not—will
be able to use all MooTools functionality, making it easier to craft MooToolsian JavaScript programs for
CommonJS.

Meso: MooTools in the Middle
There is, however, a simpler way that doesn’t involve modifying MooTools to add an importer function:
Meso.

The Meso project, which I started with the help of members of the MooTools development team
and other MooTools community developers, is a cross-engine runner and library that aims to provide a
cross-compatible API for using MooTools with CommonJS. Instead of targeting individual CommonJS
engines, developers can target Meso to make their programs compatible with all supported
implementations.

At the time of this writing, Meso supports four major engines: NodeJS, v8cgi, Flusspferd, and
RingoJS, This means that all programs written using the Meso API will be able to run in all of these
engines, making it easier to craft programs that can run on the user’s choice of implementation.

Meso provides a simple set of classes for handling things like file system access, basic I/O, and
server requests. But perhaps the most interesting feature of Meso is the runner, which not only provides
a cross-engine way of running programs but also automatically imports MooTools.

Say we have the following CommonJS program:

var Person = new Class({

 initialize: function(name, age){
 this.name = name;
 this.age = age;
 },

 log: function(){
 return this.name + ', ' + this.age;
 }

});

CHAPTER 13 ■ JAVASCRIPT WITHOUT LIMITS

369

var cassiopeia = new Person('Cassiopeia', '21');

print(cassiopeia.log);

You’ll notice that we’re declaring a new class in this program, but we’re not importing MooTools.
Because we didn’t import MooTools here, the Class constructor won’t be available if this program is run
in a CommonJS engine, and therefore it will terminate with an error. However, if we run this on Meso,
we won’t get any errors because MooTools is automatically imported—which means all of those nice
features we saw in the first part of this book will be usable.

Because Meso makes it quite easy to work with multiple CommonJS engines, we’re going to use it
instead of a specific engine for this book. You’ll therefore need to install Meso on your system to be able
to work through the next chapter. Because there are different installation instructions for different
systems and different engines, I advise you to visit the official Meso site, http://mesojs.com, and follow
the instructions there.

The Wrap-Up
This chapter introduces JavaScript as a potential general-purpose scripting language—outside the
browser. We learned how CommonJS and the CommonJS Modules system make this possible. We also
got a glimpse of MooTools on the server side and Meso, a cross-engine toolkit for MooTools and
CommonJS.

In the next chapter, we’ll expand on some of the concepts we learned here and take a look at a real-
world example of how MooTools can be used on the server side.

So put on that astronaut suit you stashed in your closet and get ready for launch, as we explore the
space beyond the browser.

http://mesojs.com

CHAPTER 13 ■ JAVASCRIPT WITHOUT LIMITS

370

C H A P T E R 14

■ ■ ■

371

MooTools on Deck

Before CommonJS, there was ServerJS, a movement to advance the state of JavaScript on the server.
Server-side JavaScript isn’t something new: there have been several attempts to bring JavaScript to the
backend of applications, but none of them was really successful. ServerJS (eventually renamed
CommonJS) changed that.

The idea of JavaScript on the server might seem weird to some people. After all, there are already
dozens of established languages that can be used to write the backend of web applications. There’s a big
allure, however, to being able to write both parts of an application—server and client—in the same
language, and that alone is enough to warrant exploration into server-side JavaScript.

In this chapter, we’ll take a quick look at the server-side aspect of applications and how CommonJS
expands JavaScript to work on the backend. We’ll also take a look at Deck, a cross-engine server-side
JavaScript application layer written in MooTools.

Revisiting Request and Response
In Chapter 11, we learned about HTTP requests and responses in the context of the browser. We learned
that when a browser needs to load a resource, it sends a request to a server, which the server answers
with a response. The browser then parses this response to display the data or update the interface.

This side of the process should be familiar to you by now. However, we still haven’t considered the
other piece of the puzzle: the server itself. We know how to send requests and process the received
response, but we don’t know anything about how the server actually creates those responses.

Web servers come in different forms, from simple ones written in languages like Lua or Io, to much
more complex systems like the Apache HTTP Server and Nginx. All of them, however, follow a very
simple formula when it comes to the request and response cycle.

It begins, of course, with the web server software itself. As I said, web servers take a multitude of
forms, and there’s really no general engineering format that can describe them all. There is, however, a
similarity in their architecture: all web servers will have some form of listening loop that lets them listen
for incoming connections. Like the long-running programs we discussed in Chapter 10, web servers will
sit and wait for events to happen. In this case, the events are client connections and requests.

When a client, such as a browser, connects to a server and sends a request, the server performs an
inverse operation from the one we saw in Chapter 11. Say we have the following GET request:

GET /index.html HTTP/1.1
User-Agent: BrowserX/1.1
Accept: text/html
Host: example.org

The server, like the browser, understands the HTTP protocol, and therefore knows how to parse this
message. In this case, the server knows that the client is requesting to retrieve (GET) a resource named
/index.html and wants to receive files of the text/html type.

CHAPTER 14 ■ MOOTOOLS ON DECK

372

Most web servers have the capability of serving two kinds of resources: static and computed. A static
resource is simply a resource that’s stored as a file in some location on the server. For example, images
and style sheets are almost always served as static resources; they are stored directly on the server and
sent as is. For static resources, the web server only needs to locate the particular file on the server,
process its contents to get its mime-type and length, and then send the whole resource back as a
response.

If our /index.html is a static resource, for example, the web server simply looks for a file named
index.html in the site’s root directory, reads this file to get its contents and length, and then sends a
response back to the client with the contents of the file included. The process is quick and
straightforward, and there’s not much processing involved.

On the other hand, computed resources, as their name implies, are resources that are the result of
some computational process that’s generally done using scripts and programs. In this category are the
resources generated by PHP scripts, Rails or Django applications, or other dynamically created
resources.

If static resources are stored directly as files on the server, does that mean that computed resources
aren’t stored as files? The answer is it depends. What makes a resource computed isn’t actually whether
it’s stored in a file, but how the server retrieves the data associated with a resource.

Let’s take PHP scripts, for instance. A PHP script is simply a plaintext script containing code that can
be interpreted by a PHP interpreter. Say we have a PHP script file called program.php in the root of the
server. If we request GET /program.php and the server responds with the actual content of the PHP file,
then we are served a static resource. But if the server runs the PHP script file first by passing it to the PHP
interpreter and then takes the result of that execution and sends it back to us, the resource we received is
computed—the result of running a PHP script.

The decision as to whether to serve a resource as static or computed is therefore up to the server. Of
course, this decision is aided by the configuration that the server administrator sets: a user can specify
that a particular file type always be sent as static, while another file type should always be interpreted
first to yield a computed resource.

Aside from this static versus computed resource distinction, web servers also distinguish between
direct and routed resources. Remember that when we request a resource, we send a resource URI to the
server that identifies the location of the resource we want to access. The location of the resource,
therefore, determines whether the resource is direct or routed, which adds another dimension to the
web server process.

In our examples, both index.html and index.php are files that are stored in the root directory.
Therefore, the resource URIs /index.html and /index.php both correspond to the actual location of the
files on the server. Thus, these resources are said to be direct because their resource URIs directly
correspond to their locations in the file system. The resource index.html is therefore a direct static
resource, while index.php is a direct computed resource.

However, web servers also allow us to define “virtual” locations for our resources. For example, we
can set up our web server so that the resource URI /home would access the resource /index.php. The
resource URI is therefore not directly connected to the actual location of the resource, and it is up to the
web server to match the resource URI to the real resource location. Thus, this resource is said to be
routed, because the web server needs to determine the route from the resource URI to the actual
location.

Of course, all these ideas are transparent to the clients requesting resources from a server. To them,
the web server is simply a black box: send a request, get a response. However, these ideas are important
in our current discussion because we’re moving away from the client-side of the equation and moving
into the realm of the server.

CHAPTER 14 ■ MOOTOOLS ON DECK

373

JavaScript on the Server
Most simple web sites are served using direct static resources. Write a bunch of HTML pages, add in
some images and style sheets, upload to a server, and you’re done. Sometimes the resources are mapped
so that they become routed resources, which make their external URLs prettier and more accessible, yet
they still depend on static files.

Web applications, meanwhile, are built to be computed resources. Some parts of the web apps, such
as the client-facing site, are sometimes built using static resources, but the server end of a web
application is always computed. The computed parts of a web application are always written as
programs, usually using one of the popular web programming languages such as PHP, Ruby, or Python,
or more “arcane” yet interesting ones like Smalltalk or Lua.

In the early days of JavaScript, writing the computed, server-side part of a web application in
JavaScript was an almost impossible idea. The technology was there, but there wasn’t enough interest
yet to capture the attention of developers. This gradually changed through the years, and eventually led
to CommonJS. In fact, this was exactly the goal of ServerJS, the precursor to CommonJS: to provide a
viable way to create web applications with a JavaScript backend.

And that’s no longer just a pipe dream. Nowadays, lots of server-side JavaScript applications are
being launched, and more companies are starting to test the usefulness of the language for building their
next web application.

This confuses quite a lot of people, of course: why would we want to write a web application in
JavaScript when there are already a lot of other languages to choose from? The most common answer is
reuse. By using JavaScript, you can use the same language to develop both the client-side and the server-
side parts of the application. JavaScript is the de jure language of the browser, and it now has the blessed
status of being natively supported by both the client-side and the server-side—something that no other
language can claim.

JSGI
One thing that’s needed, though, to make JavaScript work on the server side is a set of language APIs that
deal with application servers. In order for it to be used on the server side, JavaScript must learn the
language of requests and responses from a server’s point of view.

The CommonJS specification that deals with web applications is called the JavaScript Gateway
Interface specification, or simply JSGI. This specification defines a model for creating JavaScript server-
side applications using a very simple flow via function decoration.

In the JSGI model, an application is a simple JavaScript function that receives an object argument
called the environment. It should then return a response object that contains the details of the response.
Here’s a very simple JSGI application:

var app = function(env){
 return {
 status: 200,
 headers: {
 'content-type': 'text/plain',
 'content-length': 12
 },
 body: ['Hello World!']
 };
};

CHAPTER 14 ■ MOOTOOLS ON DECK

374

When this application is called by the JSGI server, it’s invoked as a function and passed a single env
argument. This is the environment object that contains details about the request and the current
environment. It has the following main properties:

• method is the HTTP method of the request in an uppercase string form, such as
'GET' or 'POST'.

• pathInfo is the request URI in string form. Like in our examples, this value is
always prefixed with /.

• queryString is the query string portion of the request URI, if available.

• host and port give information about the host and port used to connect to the
server.

• scheme is the string representation of the URL scheme used to access the server,
such as 'http' or 'https'.

• headers is an object containing the request headers. Each header is defined as a
key-value pair, with the key being the lowercase equivalent of the name of the
header. For example, the HTTP header Content-Type will be available from this
object through headers['content-type'].

• input is a special stream object that can be used to read the body of the request.

• jsgi is an object that contains special JSGI model values that are used to
determine the nature of the engine’s JSGI implementation.

• env is an object to which you can add new application- or host-defined properties,
since the top-level environment object should not be augmented with new
properties.

In JSGI applications, the environment object is used to determine the nature of the request, and its
properties are inspected so we can properly serve a response. Since we’re not doing any complex
procedure in our application example, we simply ignore the environment object.

To properly respond to a request, the JSGI application needs to return a response object. This is a
basic JavaScript object with the following properties:

• status is a number property that defines the HTTP status of the response.

• headers is an object containing the response headers. Like the response property
of the environment object, each header is defined as a key-value pair with keys
being lowercase header names.

• body is a collection object that contains the response body. For simple
applications, a basic array is used as the body property, while more complex
applications can use special byte-array objects provided by the CommonJS
engine. When the response is sent to the client, the body property is either
concatenated into a single string or sent in chunks using streams depending on
the CommonJS engine.

In our example, the application sends back a simple response that will look like this to the client:

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 12

CHAPTER 14 ■ MOOTOOLS ON DECK

375

Hello World!

Because JSGI applications are simply functions, they can be extended and changed using simple
function decoration, which we discussed in Chapter 2. For example, let’s say we want to add the string
'Hi Universe' to the end of the response body. We can do this using a simple decorator:

// decorator
var decorate = function(app){
 return function(env){
 var response = app(env);
 response.body.push('/nHi Universe!');
 response.headers['content-length'] = response.body.join('').length;
 return response;
 };
};

// jsgi application
var app = function(env){
 return {
 status: 200,
 headers: {
 'content-type': 'text/plain',
 'content-length': 12
 },
 body: ['Hello World!']
 };
};

// decorate app
app = decorate(app);

Here we defined a decorator function that takes a JSGI app and returns a new decorated app. What
this decorated app does is call the original application and store its response object. It then pushes a
new value to the body of the response object before returning it. This will yield the following response:

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 26

Hello World!
Hi Universe!

Without the decoration, the original application is invoked directly by the JSGI server and passed
the environment object as an argument. When decorated, however, the application is no longer called
directly. Instead, the new decorated function is the one called by the server, and it is this new decorated
function that invokes the original application. The decorated function is therefore said to be in the
middle between the server and the application, which gives functions like this their JSGI designation of
middleware.

In JSGI, middleware is simply JSGI applications that call other JSGI applications. These applications
are stacked much as in our example, which makes it possible to create complex transformations that let
us create powerful applications. There is no limit to the amount of middleware that can be added to an
application, and middleware functions can be used to produce simple transformations, as we did above,
or more complex ones like changing the environment object itself.

CHAPTER 14 ■ MOOTOOLS ON DECK

376

JSGI and CommonJS Engines
The JSGI model is very simple to understand and, when used properly, lets us create really powerful
applications. It is the de facto model for application development in CommonJS.

However, the JSGI model isn’t supported by all CommonJS engines, often because of the different
nature of the engine implementation itself. This creates a problem when it comes to developing
applications that can run on several engines, and is therefore an interesting issue to look at.

Meso, the MooTools runner and toolkit for CommonJS that we’ll be using here, currently supports
four popular CommonJS implementations: Flusspferd, RingoJS, NodeJS, and v8cgi. In the following
sections, we’ll look at each one of these and take a peek at how they implement a web application
model.

Flusspferd
Flusspferd (http://flusspferd.org) is a CommonJS implementation first released in April 2009. It is
written in C++ and uses the Mozilla SpiderMonkey JavaScript engine, which is written in C.

Flusspferd itself doesn’t have a web application module, but one is available in the form of Zest, an
HTTP server implementation for Flusspferd written by Ash Berlin. Zest natively supports JSGI, and is
therefore compatible with the CommonJS spec.

Here’s an example of a Zest-based JSGI application:

// the application
var app = function(env){
 return {
 status: 200,
 headers: {
 'content-type': 'text/plain',
 'content-length': 12
 },
 body: ['Hello World!']
 };
};

// zest module
var Zest = require('zest').Zest;

// create a server
var server = new Zest({
 handler: app,
 port: 8081
});

server.start();

We used our original application example and then included the Zest module using the require
function. The Zest module exports a main constructor function called Zest, which is used to create an
HTTP server. In the last part of our snippet, we created a new Zest HTTP server and we passed two
options: handler is a reference to our JSGI application and port is the local port where the server will
listen for connections. Finally, we called the start method of the server object to start the HTTP server.

http://flusspferd.org

CHAPTER 14 ■ MOOTOOLS ON DECK

377

RingoJS
RingoJS (http://ringojs.org) is the successor to the Helma project, which came into being in 1998. As
such, it’s one of the older server-side JavaScript projects around, and is representative of just how far
server-side JavaScript has come.

RingoJS is written in Java and is based on the Mozilla Rhino engine, which is also written in Java.
This CommonJS implementation is meant to be a full stack implementation, and it has one of the more
extensive core libraries available. Like Flusspferd, RingoJS’s web application module is fully JSGI-
compliant.

Ringo uses Jetty—a popular Java HTTP server implementation—for its web application stack. The
Jetty parts of RingoJS, though, are abstracted into the HTTP server module of the framework. Rewriting
our previous example, we get this:

// the application
var app = function(env){
 return {
 status: 200,
 headers: {
 'content-type': 'text/plain',
 'content-length': 12
 },
 body: ['Hello World!']
 };
};

// http server module
var Server = require('ringo/httpserver').Server;

// create a server
var server = new Server({
 app: app,
 port: 8081
});

server.start();

The first part of this snippet is similar to our previous one. The main changes are with the module
import statement, which now imports the Ringo HTTPServer module. This module exports a Server
constructor that can be used to create a new HTTP server object. We used this to create a new server
instance, passing in two options similar to those in Zest, with the exception that the key for the JSGI
application is app instead of handler. We then start the server using the start method, just like with Zest.

NodeJS
NodeJS (http://nodejs.org)—or simply Node—was introduced to the world by Ryan Dahl in early 2009
and has since gained the distinction of being the most popular CommonJS engine today. It is written
largely in C and C++, and uses the Google v8 JavaScript engine, also written in C++.

Node’s main difference from other CommonJS engines is its event-based nature. Like a regular
browser environment, Node employs an event loop that enables it to have asynchronous features that
depend on event loops and JavaScript timers.

Because of this different paradigm, Node doesn’t support JSGI by default, but instead uses a
different model that can support asynchronous event-based code. Like in JSGI, a basic Node application

http://ringojs.org
http://nodejs.org)%E2%80%94

CHAPTER 14 ■ MOOTOOLS ON DECK

378

is a function. However, it does not receive a single environment argument but instead receives two
special objects called the request and the response objects.

The request object is similar to the JSGI environment object, and it has properties and methods that
can be used to determine the nature of the client request. The response object is a unique object that
corresponds to the response object from JSGI—but isn’t exactly like it. The main difference is that you
can’t recreate a response object like you do in JSGI; instead, you have to reuse the same object passed by
the node server. You also don’t need to return this response object in your application, since Node
automatically tracks and reads this object to retrieve the response.

Here’s an example Node application:

var app = function(request, response){
 response.writeHead(200, {
 'content-type': 'text/plain',
 'content-length': 12
 });
 response.write('Hello World!');
 response.end();
};

Unlike the JSGI version of this same application, this Node example uses methods to output the
response details. The writeHead method is used to prepare the status code and the headers of the
response, while the write method is used to send chunks of data to the client. Finally, the end method is
used to signal that the response is finished, and that the requesting client should be informed that no
more data will be sent.

Like Flusspferd and RingoJS, Node uses its own HTTP server implementation for its web application
stack. Node’s HTTP module is used to create servers, and here’s an example of a basic one:

var app = function(request, response){
 response.writeHead(200, {
 'content-type': 'text/plain',
 'content-length': 12
 });
 response.write('Hello World!');
 response.end();
};

var http = require('http');

var server = http.createServer(app);
server.listen(8081);

Here we used the createServer function to create a new HTTP Server object, passing in the
application function. We then used the listen method of the server to start it, passing in the number of
the port where the server will listen.

v8cgi
Of all the CommonJS engines we’ve seen so far, v8cgi (http://code.google.com/p/v8cgi/) is probably
the most unique. First released by Ondrej Zara in the middle of 2009, v8cgi was originally meant to be a
way to run JavaScript applications via a module for the Apache HTTP Server. Like Node, it is written in
C++ and also uses the Google v8 JavaScript engine.

Because of its close ties with the Apache HTTP Server, v8cgi’s paradigm is much more like PHP than
the other CommonJS implementations. Scripts that run on the v8cgi stack are simply uploaded to the

http://code.google.com/p/v8cgi

CHAPTER 14 ■ MOOTOOLS ON DECK

379

server and are handled directly by Apache, just like PHP. Thus, v8cgi does not require setting up an
HTTP server in the application itself, since the HTTP part is automatically handled by Apache.

Applications written in v8cgi do not need to be functions, and are often written in a very linear
fashion. Inside these scripts, the application handles requests and responses through the global request
and response objects. These two objects are similar to the Node objects of the same name, but are
automatically created and are globally available throughout the application.

Here’s an example of our Hello World! application for v8cgi:

response.status(200);
response.header({
 'content-type': 'text/plain',
 'content-length': 12
});
response.write('Hello World!');

You’ll notice that this script is the simplest application example we’ve seen so far. This snippet goes
in a simple file that is then uploaded to a v8cgi-enabled server. The resource will then have to be
accessed as a computed resource, and will yield the same response as all our other examples.

A Common Deck
One thing you’ve probably noticed by now is that there’s no single cross-compatible solution for
CommonJS application development. As we’ve seen, not all CommonJS implementations agree on how
to do things, and each one provides its own APIs for handling the work of application development.

This is not a big problem if we’re going to target only a single platform. Unlike with browser-based
development, we have the freedom to choose the implementation we want to support, without having to
worry about our application not being able to run on other platforms. We’re no longer bound to external
constraints like the browser preference of our target users or the different bugs in the implementations
of these browsers.

There is, however, the question of risk. The CommonJS effort is very young and the various engines
available today are mostly still under development. Targeting a particular engine is inherently risky,
since you’re locking yourself into a very particular set of APIs. This is very disconcerting once you take
into account the “bus factor” of some CommonJS projects: some of these projects need only one
developer to get hit by a bus to send the whole project into disarray (a bus factor of one).

Also worth considering are projects that are meant to be cross-platform. If you’re building open-
source discussion software or a blog engine, for example, you’ll probably want to be able to deploy the
end product to as many engines as possible. You therefore have to take into account the different APIs
involved, and write your application so it can use all those APIs.

In fact, there are a whole lot of reasons why a common application development model would be
useful, aside from those we already discussed. While the choices are no longer bound by our end users,
they are still bound by external factors.

Enter Deck
In early 2009, Jabis Sevon and I decided to create a new View-Controller application framework for the
v8cgi engine called Raccoon. After our initial development period, we successfully deployed a set of
Raccoon applications on our server, which prompted the first documented use of the MooTools
framework for server-side development.

During this time, however, the newer CommonJS engines like Node and Flusspferd started gaining
more traction, and we decided that it would be great to be able to deploy Raccoon applications on
different engines aside from v8cgi. To do this, though, we had to rewrite the internals of the Raccoon

CHAPTER 14 ■ MOOTOOLS ON DECK

380

framework to be able to take into account the various application models used in these
implementations.

This was bound to complicate the Raccoon stack, so we decided to do something different: instead
of rewriting Raccoon to be able to understand all these APIs, why not simply write a lower level
framework that Raccoon—or any other framework—can use. Thus, DeckJS was born.

DeckJS—or simply Deck—is a cross-platform server abstraction layer for CommonJS. It was created
to provide a simple way to allow application and framework developers to build cross-implementation
server-side JavaScript applications without having to worry about implementation-specific details. Deck
is written using the MooTools framework, and exposes the MooTools framework to the application as
well.

Getting Decked
You can download Deck from the official website at http://deckjs.com/, and use the instructions on the
site to install Deck on your system. There are a few ways to use Deck, but we recommend using it
together with Meso, which you saw in the previous chapter. For simplicity, we’ll assume you’re running
the following example using Meso.

var app = function(request, response){
 response.setStatus(200);
 response.setHeaders({
 'content-type': 'text/plain',
 'content-length': 12
 });
 response.write('Hello World!');
 response.finish();
};

var Deck = require('deck').Deck;

var deck = new Deck({
 app: app
});

deck.serve({port: 8000});

When we run this program and load http://localhost:8000, we’re greeted with the 'Hello World!'
message as with the other implementations.

You’ll notice that the code has elements from all the APIs we’ve seen so far. Like the previous APIs,
the application is simply a regular JavaScript function. We create a new instance using the Deck
constructor, passing in an options object with the app property to define our application. We then start
the application using the serve method, passing in an options object that defines the port to listen to.
Like in Node, application functions in Deck receive two arguments: request and response. These objects
represent the actual HTTP request and response messages, and they’re used to determine the nature of
the request and set the response appropriately.

It might not seem like a big deal right now, since we can pretty much do the same thing in other
engines—and for the most part, we’ve proven that already. However, this Deck example is unique
because it runs on all the engines we’ve seen so far: the same code can be used whether we’re using
Flusspferd, RingoJS, NodeJS, or v8cgi—and those are only the engines that have adaptors so far! This
means that with proper adaptors, we can run this same example anywhere.

It’s also interesting because underneath this single API, Deck uses the same per-engine APIs we’ve
seen above. This means that Deck is using Zest when it’s running on Flusspferd, or http.createServer
when running on Node. However, we don’t notice this because everything is done transparently.

http://deckjs.com
http://localhost:8000

CHAPTER 14 ■ MOOTOOLS ON DECK

381

Routing
Of course, Deck isn’t limited to just abstracting low-level APIs. Aside from providing an API that works
on multiple engines, Deck also has additional features that make writing applications and frameworks
easier.

One of these features is routing. In creating applications, it’s rare that we use a single request URL.
Each point of the application is usually accessed using a different URL, so applications must be able to
handle each URL differently.

Imagine we’re creating an application that changes its behavior depending on the requested path. If
our users access the /hello path, the application will respond with Hello World!, while if they request the
/hi path, it’ll respond with Hi Universe!. To achieve this, we can rewrite our previous app function to look
like this:

var app = function(request, response){
 response.setStatus(200);
 response.setHeaders({
 'content-type': 'text/plain',
 'content-length': 12
 });

 if (request.pathInfo == '/hello'){
 response.write('Hello World!');
 } else if (request.pathInfo == '/hi'){
 response.write('Hi Universe!');
 }

 response.finish();
};

var Deck = require('deck').Deck;

var deck = new Deck({
 app: app
});

deck.serve({port: 8000});

Here we add an if-else statement to our app function to check the pathInfo property of the current
request. We then serve the appropriate response body according to the requested path: 'Hello World!'
for /hello and 'Hi Universe!' for /hi, which you can check for yourself by running this example and
going to http://localhost:8000/hello or http://localhost:8000/hi.

While this style works for simple examples like the one above, it becomes hard to use once we start
working with more complex applications. As our applications become bigger, the internal logic for each
part of our application increases: our /hi path might require some database access, while /hello might
have to write some files. If we’re going to use a single application function for all our paths, our code will
very quickly become unmanageable.

To make our code easier to work with, we need to split up our monolithic application function. Deck
makes this easy by allowing you to have multiple application functions using routes. A route is a special
rule that’s checked against the request object. If the request satisfies the rule, the application associated
with that route is served. If it doesn’t, Deck will continue comparing the request object against other
routes until it finds one that matches.

We use the addRoute method of a Deck instance to add new routes. It takes two main arguments:
matcher, which is used to match the pathInfo property of the request, and app, which is the application
function to serve.

http://localhost:8000/hello
http://localhost:8000/hi

CHAPTER 14 ■ MOOTOOLS ON DECK

382

var appHello = function(request, response){
 response.setStatus(200);
 response.setHeaders({
 'content-type': 'text/plain',
 'content-length': 12
 });
 response.write('Hello World!');
 response.finish();
};

var appHi = function(request, response){
 response.setStatus(200);
 response.setHeaders({
 'content-type': 'text/plain',
 'content-length': 12
 });
 response.write('Hi Universe!');
 response.finish();
};

var Deck = require('deck').Deck;

var deck = new Deck();

deck.addRoute('/hello', appHello);
deck.addRoute('/hi', appHi);

deck.serve({port: 8000});

Here we split up the original app function into two separate functions: appHello and appHi. We also
removed the app option object from the Deck instantiation code, which tells the Deck class that we want
to use multiple routes. Finally, we added two routes using the addRoute method, one for the appHello
function and another for appHi.

Running this example, we’ll get the same behavior as with the previous one: 'Hello World!' for
http://localhost:8000/hello and 'Hi Universe!' for http://localhost:8000/hi. What happens is that
when we request these URLs, Deck automatically compares the path of the requested URL to the defined
routes. If the path is /hello, it serves the appHello function, and if it’s /hi, it serves appHi.

Middleware using Modules
I mentioned earlier that in the JSGI model, application functions can be chained together to form more
complex applications, and these decorator functions are called middleware because they sit in between
the application and the server implementation. Deck also allows for middleware, which in Deck terms
are called modules.

Like in the JSGI model, Deck modules lie between the application and the server implementation.
However, modules and application functions aren’t chained using function decoration. Instead, Deck
implements a stack-based model for using modules.

In this model, the modules and the application are placed in an array, with the application function
always sitting in the middle. Deck will call each of the functions one after the other, passing in the
request and response objects to each one. The chaining therefore occurs inside the Deck instance, and
not through explicit decoration on the part of the user.

http://localhost:8000/hello
http://localhost:8000/hi

CHAPTER 14 ■ MOOTOOLS ON DECK

383

Also unlike the JSGI model, Deck modules are actually objects and not functions. The functions that
are invoked from each module come from handlers, which are methods of the module objects.

var module = {

 preHandler: function(request, response){
 request.next();
 },

 postHandler: function(request, response){
 request.next();
 }

};

Here we have a simple Deck module object, with the two handler methods. The preHandler method
of the module object is added to the front of the application, while the postHandler method is added at
the back. This means that Deck modules can be invoked before, after, or before and after the application
function, depending on the handlers they define.

Adding a module to a Deck instance is simply a matter of calling the addModule method:

var app = function(request, response){
 response.setStatus(200);
 response.setHeaders({
 'content-type': 'text/plain',
 'content-length': 12
 });
 response.write('Hello World!');
 response.next();
};

var module = {

 preHandler: function(request, response){
 request.next();
 },

 postHandler: function(request, response){
 request.next();
 }

};

var Deck = require('deck').Deck;

var deck = new Deck({
 app: app
});

deck.addModule(module);

deck.serve({port: 8000});

CHAPTER 14 ■ MOOTOOLS ON DECK

384

Deck Internals
Deck is, in essence, an abstraction layer that sits on top of the implementation-specific HTTP server APIs
we’ve seen. Deck provides a layer of abstraction that enables us to use the same API for any application
model the engine uses. Because the underlying implementation-specific APIs are abstracted by Deck, we
are able to create projects that will run on any supported CommonJS implementation without changes,
removing any platform-specific lockdowns.

At the center of Deck is a single class called Base, which is exported as Deck. This class is a unifier
class that implements all other minor classes using mixins. There are about half a dozen classes that
make up Deck itself, each of them controlling a different aspect of the system, and we’ll look at the most
important ones in turn.

Request and Response
The bulk of Deck’s internals focus on the creation and manipulation of Request and Response objects.
For every request received by the underlying HTTP server, Deck creates an object representation of the
request and a corresponding response object. These objects are passed to the application, which then
processes and manipulates them before passing them back to the Deck instance to be sent to the
originator of the request.

The Request object contains several properties that describe the request, including the HTTP
method, the requested resource, the user-agent, and other headers. It also has several utility methods
that can be used to modify its properties, add additional headers, or change the requested resource. The
Response object represents the response to be sent back and has methods to set the HTTP status of the
response, add headers, and modify the response body.

The Request and Response objects are always created as pairs: both are created when a request is
received and both are passed to the application for access and modification. Unlike the existing
CommonJS JSGI standard that expects the application to create and return its own Response object, it is
the work of the Deck instance to create the Response object that the application modifies.

The Filtered Model
Deck implements a filtered model for server requests and responses. In a simple model, a request is
made to the server-side application by the browser and the application then sends a corresponding
response. In Deck’s filtered model, several “filters” sit before and after the application and they modify
the request or response in order to change behavior.

The filtered model can be viewed like a deck of cards (from which Deck gets its name): the
application sits in the middle of the deck and several modules are placed on top and on the bottom of
the application. The Request and Response objects are then passed to each of these items in turn, starting
from the topmost module and ending at the bottom module.

With this model, complex applications can be simplified by separating common tasks into several
modules. An example might be a Rewrite Module, which could modify the Request object’s pathInfo
property before it reaches the application, thereby changing the request. The application would then be
able to serve the appropriate response without having to do further checks on the Request object.
Another example might be a Logger Module that logs every Request and its corresponding Response.
Instead of having to do this within the application, you could simply add the module to the Deck
instance.

Deck uses a double-ended queue (or a deque, pronounced “deck”) to keep track of the application
and the modules. In the middle of the deque is the application and the modules are added either before
or after so that the application always remains in the middle. The addition of modules also follows the

CHAPTER 14 ■ MOOTOOLS ON DECK

385

deque’s two ends: the preHandler method of a module is always added in the front of the deque and the
postHandler is always added at the end of the deque.

Dispatching
After creating the Request and Response objects, the Deck instance “dispatches” the modules and the
application by invoking the first function in the deque, passing the Request and Response objects as
arguments. The Deck instance waits until it is signaled to move on to the next item in the deque, and
then repeats the process until all items have been dispatched before sending the response back.

The signal to the Deck instance to move to the next item is done by the modules and the application
themselves. The Request object has a special method called next that’s called by the modules and the
application within their function bodies to tell the Deck instance to move to the next item. All Modules
and Applications are required to call this method; otherwise, the Deck instance won’t be able to move to
the next item in the deque and the response will timeout.

Additionally, the Response object has a special method called finish that tells the Deck instance that
the response has been finalized. Calling this method will stop the dispatching of the next items on the
deque and return the response immediately.

Because the dispatching of items is done using an explicit signal, Deck is able to support
asynchronous applications natively.

The Router
Deck includes a built-in router that dynamically changes the internal module and application deque
before dispatching. Multiple routes can be set for a Deck instance, describing the rules and the
corresponding application function to dispatch for a specific request.

The base of the routing rule is a string or a regular expression describing the request’s requested
path and the HTTP request method. After the Deck instance creates the Request and Response objects, it
checks the Request object’s pathInfo property and HTTP request method to see whether it matches any
of the routing rules set for the Deck instance. If it does, it builds a new deque with the application
function described in the route rule before dispatching the deque.

Additionally, a constraint object can be passed when setting a new route that will be used to check
other rules before dispatch. The constraint object is a simple JavaScript object with keys corresponding
to the Request objects properties and values that can be strings, regular expressions, or functions that
will be used to check the info against.

The Wrap-Up
In this chapter we learned about JavaScript on the server side, and how different CommonJS engines
implement their application server APIs. We also learned about Deck, a server-side framework for
application development that’s written on top of MooTools.

Deck itself is a very complex framework, and it’s unfortunate that it will take at least another book to
discuss it in full. It is a young project, but it does offer a glimpse of how complicated JavaScript
applications and frameworks can be written on top of MooTools.

If you’re hungry for more information about Deck, I suggest you visit the official site at
http://deckjs.com. You’ll find a more extensive coverage of both the API and the framework itself on the
website, and I personally invite you to try it out and contribute to the next iterations of the framework.

http://deckjs.com

CHAPTER 14 ■ MOOTOOLS ON DECK

386

The Wrap-Up to Conquer All Wrap-Ups
Whew! It’s been quite a ride, hasn’t it? We’ve covered a lot, rested at a few pitstops and learned a trick or
two from roadblocks. We’ve explored the nooks and crannies of JavaScript and the internals of
MooTools, and we’ve seen things that will gladly go to our development arsenal.

My hope is that you’ve learned a thing or two from this book. We can’t cover everything in a single
volume, but at least now you have enough material to start your own experimentation. Remember that
learning a language doesn’t end with reading a single book. It takes experimentation, more reading and
lots of application in order to really become a great coder.

So fire up your text editor, get your fingers moving and start exploring!

A P P E N D I X

■ ■ ■

387

Resources

To help you out with your further exploration of JavaScript and MooTools, I've compiled a very short list
of resources that you can check out. The selection isn't exhaustive in any sense, but simply reflects base
points for further study and experimentation.

JavaScript
The recent resurgence of JavaScript has certainly raised the number of JavaScript related resources, both
in print and online form. The following are the ones that stand out as being essential references that are
consulted by most developers.

• ECMAScript Language Specifications. The official language specifications are, of
course, the first resources that any serious JavaScript developer should consult.
Because they are formal documents, the language specifications can be hard to get
through at times. However, it is important that you take time reading through the
specifications, since all implementations are judged by their conformance to these
documents. Since the third edition is still the most widely supported version of the
language, I recommend that you read through third Edition specification first
(http://www.ecma-international.org/publications/standards/Ecma-262-
arch.htm). Afterwards, you should read the fifth Edition specification
(http://www.ecma-international.org/publications/standards/Ecma-262.htm) to
familiarize yourself with the new features of ECMAScript 5.

• JavaScript the Definitive Guide by David Flanagan (Fifth Edition; 2006, O'Reilly).
Often called the Rhino Book because of its cover, this book is one of the best
JavaScript books in terms of scope and content. There have certainly been a lot of
changes since this book was first published, but it still remains an essential
reference for any serious JavaScript developer.

• Mozilla Developer Network (https://developer.mozilla.org/). The Mozilla
Developer Network or MDN (formerly MDC), is the official reference site for the
Mozilla Foundation. The JavaScript section of this site contains a ton of free data
regarding the language, its implementation within Mozilla, and other
development-related information. Also worthy of perusal are the DOM and CSS
sections of the site.

MooTools
Because of the large size of its community, MooTools has a fair share of developer resources. Here are
some of the recommended resources that you should explore:

http://www.ecma-international.org/publications/standards/Ecma-262-arch.htm
http://www.ecma-international.org/publications/standards/Ecma-262-arch.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://developer.mozilla.org

APPENDIX ■ RESOURCES

388

• The Official MooTools Documentation (http://mootools.net/docs/). This one
needs no further introduction. Any serious MooTools developer should have the
official documentation site bookmarked.

• The MooTools Source Repository (http://github.com/mootools/). A lot of the
material in this book wasn't discovered by reading the docs but by reading and
examining the MooTools source code. I therefore recommend that you spend
some time working with the MooTools source code itself, which is available from
the official repositories.

• The MooTools Forge (http://mootools.net/forge). The Forge is the official
MooTools community plugin and extension resource site. You'll see applications
of the information from this book in some of the plugins and extensions published
on the Forge, and I advise you to peruse the Forge and examine the published
extensions as an exercise in understanding how they use the MooTools API.

• The MooTorial (http://mootorial.com) and MooTools 1.3
(http://ryanflorence.com/issue-004/). These two online resources are geared
towards MooTools beginners. The first is a little outdated (uses MooTools 1.2), but
is still useful in understanding general MooTools development; while the second
is a new series that was created for the MooTools 1.3 release.

• MooTools Essentials by Aaron Newton (2008, Apress), and MooTools 1.2
Beginner's Guide by Jacob Gube and Garrick Cheung (2009, Packt). Like the
previous resources, these two are targeted towards MooTools beginners, but in
book form. Both are really good introductions to the framework, but they are a
little outdated since they still discuss MooTools 1.2.

http://mootools.net/docs
http://github.com/mootools
http://mootools.net/forge
http://mootorial.com
http://ryanflorence.com/issue-004

Index

■ ■ ■

389

■ Symbols and Numbers
* (asterisk symbol), 249
! (ancestor combinator), 255
!+ (previous adjacent sibling combinator), 255
!> (parent combinator), 255
!~ (previous sibling combiator), 255
+ (adjacent sibling combinator), 209–210, 251
+ (addition operator), 146
> (greater than symbol), 251
$ character, 103
$ (dollar selector) function, 200–202, 217
$$ (double dollar) function, 203–207, 217
$constructor property, 149–150
$family method, 151–152
200 status code, 308
404 status code, 308

■ A
abort method, 313
abstraction, versus fabrication, 183
Accept header, 321
accusative methods, 225
add function, 14, 19–21, 26–27, 38–39, 41, 44
addEvent method, 112, 288–306
addEventListener method, 185, 273–274,

299–300, 304
addEvents method, 289–290
addition identity operation (x + 0), 146
addListener method, 299, 302–304

addRoute method, 381–382
adjacent sibling combinator, 209–210, 251
adopt method, 225–227
Ajax, 307
alias method, 155
aliasing, 155–157
alt property, 298
altKey, 268, 284–285
ancestor combinator, 255
animation, 339–357

CSS, 356–357
CSS styles and, 341–343
definition of, 340
duration of, 339
frame rate, 340
frames, 339–340
JavaScript animation, basic, 346–348
MooTools Fx classes and, 349

animation objects, 349–351
base class, 354
CSS subclass, 356
initialization and class options, 355
methods and events, 353–354
Morph, 352–353
start method, 356
step method, 355–356
timer function, 355–356
Tween, 351–354

timers, 343–346, 355–356
animation objects, 349–351

■ INDEX

390

anonymous functions, 14, 17–19
app property, 380
apply method, 35–36, 43–44, 138
arguments, 11, 20–24

named, 23
native type, 23
undefined, 20, 23

arguments object, 21–24
Array constructor, 129, 138, 145
array literal, 138
Array.from method, 160
Array.prototype, 138–140, 151, 159, 239
Array.prototype.slice function, 23, 42, 44–45
Array.prototype.splice function, 183
array-like objects, 140–141
arrays, 23, 138–141
assign method, 181
asterisk symbol (*), 249
async parameter, 314
asynchronous requests, 314–318
attachEvent method, 265–267, 274
attribute selector, 249–250
attributes

attaching data to elements with, 241–242
modifying, 227–228
removing, 228

■ B
Base class, 384
basic object, 137–138
bind argument, 166
bind method, 43–44
binding, 43–44
block scope, 28
body argument, 311
body object, 374
<body> node, 191
Boolean types, 133, 136, 146
bracket notation, 48–49
browser history, 182
Browser object, 184–185
Browser Object Model (BOM), 178–182
Browser.Element, 236
Browser.Element.prototype, 236

browser-based JavaScript, 173–186
browsers, 173–174

Bowser Object Model (BOM), 178–182
bugs in, 182–84
cross-browser compatibility, 177–178
detection, 185
Document Object Model and, 177–178
event loops, 263
implementation fixes, 183–184
JavaScript and, 361
main loop and, 262
MooTools and, 183–186
page display by, 174–175
request and response cycle, 307–309,

371–372
scripted, 173, 176–177

bubbles property, 276
bubbling event handler, 286
bubbling model, 271, 279–280
bugs, 182
built-in (native) objects, 129, 136
button property, 268, 284

■ C
calendrical values, 142
call method, 35–36, 43, 121, 138
call property, 138, 141, 148
call queues, 106
callback function, 101, 157, 164, 166
callChain method, 108
callee property, arguments object, 22
callStart method, 112
cancel event, 329
cancel method, 330
cancelable property, 276
cancelBubble property, 269–272, 281
Cascading Style Sheets. See CSS
casting. See type casting
Chain mixin, 106–109, 335
chaining pattern, 238
CharacterData type, 190
charCode property, 285
:checked pseudo-selector function, 255
child combinator, 251, 255

■ INDEX

391

child nodes, 187
childNodes property, 190
children property, 246
children selectors, 212–215
Chrome, JavaScript console, 6
Class constructor, 74, 77–78, 129, 147–149
class identifier, 114
class macros, 99
class property, 129
class selector, 249
Class.Mutators object, 99, 102, 239
classes, 47, 71–97

callback functionality for, 109–112
creating, 74
encapsulation and, 118–125
MooTools and, 125–126
MooTools class system, 73–75

built-in mixins, 106–114
constructors and initializers, 75–76
inheritance, 83–91
members, 77–78
methods, 78–80
mixins, 91–96, 106–14
mutators, 99–106
properties, 80–83
static members, 114–118

object creation, 72
parent, 86–87
prototype chain, 83
static members, 114–118
prototypes and, 71–73, 77

classical programming languages, 65, 72, 75
clearInterval function, 345
clearTimeout function, 344
click event, 264
client object, 298
clientX, 268, 284
clientY, 268, 284
clone method, 67, 232–233
cloneEvents method, 233
closures, 31–33, 37, 44, 123
code

eval, 25, 27
function, 25, 27

global, 25, 27
code property, 298
colon, 250
color style rules, 341
combination, 41–42
combinator function, 42, 45
combinator property, 258
combinators, 209, 251

adjacent sibling, 209
descendant, 209
prefixes, 253–254
reverse, 254–255

combined selectors, 251
Comment type, 190
common constructor, 76, 85
CommonJS, 4, 361, 371, 373

application development, cross-platform,
379

Deck and, 380–385
exports object, 364
implementations, 6

Flusspferd, 376
NodeJS, 377–378
RingoJS, 377
v8cgi, 378–379

JSGI and, 376–379
Meso and, 368–369
Modules specification, 363–367
MooTools and, 367–368

communication, between browsers and
servers, 307–309

complete event, 324–325
completed DOM Tree, 192
complex objects, prototype chain and, 63–64
complex types, 59–60
composite types, 131, 135–136
computed resources, 372–373
computed styles, 342
concatenation operator, 146
condition identifier, 305
consensus features, 177
console object, 6
console.log method, 7
constraint object, 385

■ INDEX

392

constructor functions, 50–53, 75–76, 129,
144–145

constructor property, 51
Content-Length header, 308, 311
Content-Type header, 308, 311
context argument, 252–253
coordinate properties, 284
createServer function, 378
cross-browser compatibility, 178
cross-browser DOM development, 182
cross-browser implementation, 177
cross-browser JavaScript development, 182
CSS animation, 356–357
CSS declarations, 248
CSS selectors, 248

combined, 251
notation, 249–251
pseudo-selectors, 250–251
simple, 249–250

CSS style sheets, 174
CSS styles, 341–343
CSS-based selectors, 203–210
ctrl property, 298
ctrlKey, 268, 284–285
currentTarget property, 276–278
curryAdd function, 39
currying, 38–39
custom events, 305–306
custom.condition identifier, 306

■ D
Dangoor, Kevin, 362
data

attaching to elements, 241–242
sending, 322–323

Date constructor, 142, 145
Date objects, 142
Date.prototype, 142
Deck constructor, 380
DeckJS

Base class, 384
creation of, 380
dispatching, 385
downloading, 380

filtered model, 384–385
internals of, 384–385
modules (middleware), 382–383
Request and Response objects, 384–385
router, 385
routing, 381–382

decoration, 39–41
decorator functions, 375
defer attribute, 197
deliberate prototype chain, 63–65
dereferencing, 81–83
descendant combinator, 209, 251
design patterns, 126
destroy method, 235
detachEvent method, 272, 285, 304
dictionaries, 48
direct resources, 372
:disabled pseudo-selector function , 255
dispatcher, 263–264
display rule, 341
dispose method, 235
document fragments, 227
document object, 178, 185, 190
Document Object Model (DOM), 177–178.

See also DOM scripting; DOM Tree
document.all, 177
document.createElement function, 236
document.createEvent function, 287
document.createEventObject function, 286
document.getElementsByClassName function,

203
document.getElementsByTagName function,

203
document.id function, 199–202, 219, 236–238,

252
document.styleSheets object, 342
documents, 187
dollar ($) character, 102
dollar selection function ($), 200–202, 217
dollar-safe mode, 201
DOM. See Document Object Model
DOM API, 187
DOM Events, 178
DOM Level 1, 177
DOM Level 2, 178

■ INDEX

393

DOM level 2 Event model, 273
attaching events, 273–274
currentTarget property, 276–278
detaching event handlers, 285–286
dispatching events, 286–288
event objects, 275–276
event propagation phases, 278–281
event subtypes, 284–285
preventing default action, 283–284
stopping event propagation, 281–283

DOM Level 3, 178
DOM Level 3 Event model, 285
DOM scripting, 187, 191–197, 264

Element type and, 235–236
document.id, 236–238
extending, 238–239

Elements type, 239
with MooTools, 198–215

DOM Styles, 178
DOM Tree, 174, 187–192

completed, 192
creating elements, 231–234
destroying elements, 235
modifying element objects, 227–231
moving elements around, 218

adopt method, 225–227
grab method, 225
inject method, 219–222
replaces method, 222–223
wraps method, 223–224

partial, 192–193
rendered page and, 218
sequential parsing of, 191–193

DOMActivate, 284
DOMFocusIn event, 284
DOMFocusOut event, 284
DOMReady event, 196–197
DOMReady handlers, 197
dot notation, 48–49
double-dollar ($$) function, 203–207, 217
double-negation, 146
duck typing, 152, 185
duration option, 355
dynamic name property, 184

dynamic name-version property, 184
dynamic properties, 240–241

■ E
each array method, 100, 103
each function, of Elements object, 218
each method, 166
easing equations, 355
Ecma International, 3
ECMAScript, 3–4, 47, 136. See also JavaScript

creation of, 177
language specification, 387
standardization of, 177

ECMAScript 3, 6
ECMAScript 5, 4, 6
Element constructor, 233–234, 236, 238, 290
Element node, 190
Element objects, use of, 215–218
element storage, 242
Element type, 235–236, 342

document.id, 236–238
extending, 238–239

Element.Events object, 305–306
Element.NativeEvents object, 301
Element.NativeEvents object, 302–303
Element.Properties object, 230, 239–240, 290
elements, 187–243

creating, 231–234
destroying, 235
existence checks of, 215–218
generic, 236
modifying, 227

attributes, 227–228
styles, 229
with universal modificators, 230–231

moving, 218
adopt method, 225–227
grab method, 225
inject method, 219–222
replaces method, 222–223
wraps method, 223–224

returning text of, 216
setting HTML source of, 232
storage, 241

■ INDEX

394

Elements instance, 206
Elements objects, use of, 215–218
Elements type, 239
empty method, 235
empty objects, 48
empty strings, 133
:enabled pseudo-selector function, 255
encapsulation, 118–125
end method, 378
enumerable properties, 137
env argument, 374
env object, 374
environment object, 374
erase function, 239–241
erase method, 231
Error constructor, 143–145
error objects, 143
error-handling operations, 143
esponseText property, 326
eval code, 25, 27
eval execution context, 27
EvalError, 143
evalResponse option, 326
evalScripts option, 326
evenPhase property, 278–281
event bubbling, 289
Event constructor, 280, 297
event dispatcher, 110
event handler declarations, 330–331
event handler properties, 315
event handlers, 111, 264, 315–316

attaching, 265–267, 288–291, 323
detaching, 272, 285–286, 294, 304
dispatch of, 304
wrapping, 300–304

event loop, 174, 263–264, 267
event models, 265

DOM level 2, 273
attaching events, 273–274
currentTarget property, 276–278
detaching event handlers, 285–286
dispatching events, 286–288
event objects, 275–276
event propagation phases, 278–281

event subtypes, 284–285
preventing default action, 283–284
stopping event propagation, 281–283

Internet Explorer, 265
attaching event handlers, 265–267
cancelling default actions, 269
detaching event handlers, 272
dispatching events, 272–273
event propagation, 269–272
global event object, 267–268

legacy, 265
event names, 266
event object argument, 289
event objects, 263, 275–276
event propagation, 269–272

phases of, 278–281
stopping, 281–283, 292–293

event property, 297
event table, 299, 304
Event type, 284, 296–298
event types, 285–287
Event.AT_TARGET, 280
Event.BUBBLING_PHASE, 280
Event.CAPTURING_PHASE, 280
event.stopPropagation(), 282
event-based programming, 264–265
eventPhase property, 276
events, 261–306

attaching, 273–274
dispatching, 272–273, 286–288
MooTools event system, 288

attaching event handlers, 288–291
custom events, 305–306
detaching event handlers, 294
detachment and dispatch, 304
dispatching events, 295, 296
event handler wrapping, 300–304
event table, 299–300
Event type, 296–298
layers of, 299
preventing default action, 291–292
stopping event propagation, 292–293
stopping events, 293

■ INDEX

395

native, 302
user, 302
user-interface, 284–285

Events mixin, 109–112, 335
exclamation point (!), 255
executable code, 25–27
execution contexts, 25–27

scope chain and, 29–31, 33
variable instantiation and, 27–29
variable object, 27

existence checks, 215–218
existence types, 131–132
explicit dispatch, 304
explicit identifiers, 15–16
explicit styles, 342
explicit type casting, 144–146
exports object, 363–364
expression argument, 252–253
expression objects, 256
expressions array, 257
expressions property, 258
extend method, 115–118, 158–159
Extends keyword, 84–85, 99–100, 105–106
Extends mutator, 100, 117–118
extensibility, 54, 125
external scripts, 191

■ F
failure event, 325–328
failure method, 336
family methods, 151
feature detection, 185
feature sniffing, 185
fetch engine, 174
find function, 247
Firebug, 7, 8
fireEvent method, 272–273, 286, 288, 295–296,

300
Firefox browser, 178
firstChild property, 190
first-class functions, 11, 31, 38–39, 48
Flash of Unstyled Content (FOUC), 195
Flusspferd, 376
fn argument, 288

:focus pseudo-selector function, 255
foo event handler, 303
for-in statement, 137
formal parameters, 12
format method, 119–123
frame rate, 340
frames, 339–340
frames per second (fps), 340
frameworks, 182–183
from methods, 160
function binding, 43–44
function body, 12
function code, 25, 27, 31
Function constructor, 19–20, 56, 138, 145
function declaration, 12–14
function decoration, 79
function execution context, 27
function expressions, 14–17
function forms, 12

function declaration, 12–14
function expressions, 14–15
named function expressions, 15–17

function invocation operator (), 17
function keyword, 12
function literals, 12, 14
function method, 159
function objects, 19–20, 33
function subclassing, Type constructor and,

147–148
Function.from method, 160
Function.implement method, 44–45
Function.prototype, 117, 138, 158
functions, 11–46, 138

advanced techniques, 36
combination, 41–42
currying, 38–39
decoration, 39–41
limited scope, 36–38

anonymous, 14
arguments, 11, 20–24
as objects, 12
call property, 148
casting using, 145–146
closures, 31–33

e

■ INDEX

396

constructor, 50–53, 75–76
declaration, 12–14
definition of, 11
executable code and, 25–27
expressions, 14–17
extending with methods, 44–45
first-class, 11, 31, 38–39, 48
formal parameters, 12
internals of, 25–36
invoking, 11
MooTools and, 42–45
nested, 34
position of, within code, 30–31
return values, 11, 24–25
scope property, 33
scoping, 29–31
single-execution, 17–19
this keyword, 33–36
variables, 27–29

functions forms, 19–20
Fx.CSS class, 356
Fx.Morph class, 349, 352–353, 357
Fx.Tween class, 349–354, 357

■ G
general sibling combinator, 251
generate method, 124
generic elements, 236
generics, 158–160
get function, 239–241
get method, 163–164, 216–217, 231, 307
GET request, 371
getAllNext method, 211
getAllParents method, 214
getAllPrevious method, 211
getAllResponseHeaders method, 312
getBoxObjectFor method, 185
getChildren method, 212
getComputedStyle method, 343
getElement method, 208–210, 232
getElementByClassName method, 248
getElementById method, 200, 248
getElements method, 207–209, 212
getElementsByClassName metod, 203–205

getElementsByTagName method, 203–205, 248
getFirst method, 213
getInstance method, 100
getLast method, 213
getNext method, 210–211
getParent method, 213–215
getPrevious method, 210–211
getProperty method, 228
getResponseHeader method, 312
getSiblings method, 211
getStyle method, 229, 342–343
getStyles method, 229
getter methods, 37, 99–104, 163–174
GetterSetter mutator, 103–104
global code, 25, 27, 31
global event object, 267–268
global execution context, 26–30
global object, 30, 34
global observer, 264
global scope, 14–15, 20
global style rules, 342
global styles, 341
global variables, 14, 27, 31
grab method, 225
greater than symbol (>), 251

■ H
handlers, 383
hash property, 180
hash symbol, 205, 249
hashes, 48
hasKey method, 164
hasOwnProperty method, 59, 61, 118, 137
hasValue method, 164–165
<head> node, 191
header property, 335
headers, 307, 311

request, 321–322
response, 312

headers object, 374
headers property, 335
Helma project, 377
history management, 181
history object, 178, 182

■ INDEX

397

home-link element, 235
host objects, 136
host property, 180, 374
hostname property, 180
href property, 180, 269
HTML documents, tree structure, 188–191
HTML source, adding new, 231
<html> tag, 188, 191
HTMLElement, 190
HTMLHtmlElement, 190
HTMLImageElement object, 200
HTMLParagraphElement, 190
HTTP requests, 307–314, 371–372
HTTP responses, 307–309, 371–372
HTTP version identifier, 307–308, 310

■ I
ID selector, 198–202, 249
idempotent, 199
identifier resolution, 29–31
identifiers, 12
identity method, 158
idioms, 103, 145
implement class method, 153
implement method, 77–79, 94, 99–102, 115,

153–159, 163, 238, 300
dereferencing, 81–83
Extends keyword, 84

implementation fixes, 183–184
Implements keyword, 93–94, 99–101, 104–106
implicit dispatch, 304
implicit type casting, 144
implicit styles, 342
increment function, 364–354
Infinity variable, 133
inheritance, 56–62, 83–91

in classical languages, 72
in prototypal programming, 72
mixins and, 96
multiple, 91–92
prototype chain and, 63–65

init method, 72
initEvent method, 287
initialization, 76, 86

initialize method, 76–77, 89, 121–122, 335
initialized method, 86
initializers, 75–76, 85, 89
initMouseEvent method, 288
inject method, 219–222
inline styles, 341–342
inner functions, 31–33
innerHTML property, 232
input object, 374
instance checking, 148–151
instanceOf function, 149–150
instanceof operator, 51, 148–150
instances, vs. prototypes, 56–60
instantiation, 76, 86
Intermediate DOMs, 177
internal methods, 119
Internet Explorer event model, 265

attaching event handlers, 265–267
cancelling default actions, 269
detaching event handlers, 272
dispatching events, 272–273
event propagation, 269–272
global event object, 267–268

invocation, of functions, 11
invocation operator (), 12, 18, 138
Io language, 65–67
isSuccess function, 325–336
item argument, 150

■ J
JavaScript

as prototypal language, 65
Bowser Object Model (BOM), 178–182
browser-based, 173–186
browser-based end, 186
developers' toolkit, 6–9
Document Object Model (DOM), 177–178
features of, 177
as general purpose scripting language,

361–369
introduction of, 176
introduction to, 3–4
JSGI and, 373–379
as lexically-scoped language, 13, 27, 30

■ INDEX

398

libraries, 182–183
non-browser-based, 361–369
MooTools as language extension for, 5
as object-oriented language, 47–48
popularity of, 173
resources, 387
<script> tags, 175–176
server-side, 371–379
standardization of, 177
type system, 128
using multiple frameworks, 202

JavaScript console, 6–8
JavaScript Gateway Interface (JSGI), 373–375

applications, 373–377
CommonJS engines and, 376–379
middleware, 375

JavaScript interpreter (engine), 6, 27
JavaScript Lint (JSL), 9
JavaScript objects, 129
JavaScript selector engines. See selector engines
JavaScript the Definitive Guide (Flanagan), 387
JavaScriptCore, 141
Jetty, 377
join method, 139
JScript, 3, 176–177
JSGI. See JavaScript Gateway Interface
JSGI applications, 373–374

environment object, 374
function decorations with, 375
Jetty-based, 377
response object, 374
Zest-based, 376

jsgi obect, 374
JSLint, 9

■ K
key event, 298
keyboard events, 285
KeyboardEvent type, 285
KeyboardEvent.prototype, 285
keyCode property, 268, 285
keyOf method, 164–165
keys method, 165
keys property, 300

key-value pairs, 48
klass variable, 103

■ L
language extension, MooTools as, 5
lastChild property, 190
layers, 177
leaf nodes, 187
legacy event model, 265
length method, 166, 203
length property, 12

of arrays, 138–140
of Elements objects, 216

lexical scope, 13
libraries, 182–183
linear programs, 261
link option, 332
listening loops, 371
literals, 12, 133

array, 138
object, 137
regular expression, 141
string, 133

local scope, 27
local variables, 31
localizing variables, 18
location object, 178–181
log method, 6, 55, 79, 104, 158
logical OR operator (||), 23
loops, 261, 262

event, 263–264
main, 262

loops event, 267

■ M
main loop, 262
mark.log(), 79
Math object, 136
members, 48, 77–78, 138
membership methods, 164–165
Meso, 368–369, 376
message property, 143
meta property, 298
metaKey, 268, 284–285

■ INDEX

399

method argument, 310
method method, 154
method option, 320
method property, 374
methods, 34, 48, 78–80. See also specific

methods
creating, 49
family, 151
function, 44–45
overriden, 87–91

Microsoft, 3
middleware, 375, 382–383
mirror method, 156–157
mirroring, 155–157
mixed style rules, 341
mixins, 91–96

built-in, 106–114
Chain, 106–109
Events, 109–112
Options, 112–114

Mocha, 3
modificators methods, universal, 239–241
modules

CommonJS, 363–367
in Deck, 382–383
paths, 365–367

Moment of Behaviorless Interaction (MOBI),
195

Moo.Fx class, 4
MooTools, 4–5

animation, 349–351
browser and, 183–186
classes and, 125–126
CommonJS and, 367–368
DOM scripting with, 198–215
downloading, 8
functions and, 42

extending with methods, 44–45
function binding, 43–44

JavaScript and, 5
as language extension, 5
Meso and, 368–369
official documentation, 388
Request class, 319–337

resources, 387
selector engine, 252–259
source repository, 388
tutorials, 388

MooTools 1.2 Beginner's Guide (Gube and
Cheung), 388

MooTools class system
built-in mixins, 106–114
code reuse, 92–93
constructors and initializers, 75–76
inheritance, 83–91
members, 77–78
methods, 78–80
mixins, 91–96
mutators, 99–106
properties, 80–83
static members, 114–118

MooTools Core, 4
MooTools Core 1.3, 8
MooTools Essentials (Newton), 388
MooTools event system, 288

attaching event handlers, 288–291
custom events, 305–306
detaching event handlers, 294
dispatching events, 295–296
event handler detachment and dispatch,

304
event handler wrapping, 300–304
event table, 299–300
Event type, 296–298
layers of, 299
preventing default action, 291–292
stopping event propagation, 292–293
stopping events, 293

MooTools Forge, 4, 388
MooTools Fx classes

animation objects, 349–351
base class, 354
CSS subclass, 356
initialization and class options, 355
method and events, 353–354
Morph, 352–353
start method, 356
step method, 355–356

■ INDEX

400

timer function, 355–356
Tween, 351–354

MooTools More, 4
MooTools type system, 129–131, 147–152

creating new types, 160–168
instance checking, 148–151
type detection, 151–152

Morph subclass, 352–353
mouse events, 284
MouseEvent type, 284
MouseEvent.prototype object, 284
Mozilla, 178
Mozilla Developer Network (MDN), 387
Mozilla Rhino engine, 377
Mozilla SpiderMonkey JavaScript engine, 376
multiple inheritance, 91–92
mutation events, 285
mutators, 99–106

■ N
name argument, 147
name attribute, 250
name property, 12–15, 246
named arguments, 23
named function expressions, 15–17
naming conventions, 120
NaN variable, 133
native events, 302– 305
native objects, 136
native type arguments, 23
native types, 131–143

arrays, 138–141
basic objects, 137–138
composite, 135–136
Date objects, 142
error objects, 143
functions, 138
Null, 131–132
primitives, 132–135
regular expressions, 141–142
Undefined, 131–132

nativeEvent object, 297
navigator object, 178–179
navigator.userAgent, 179

ndefined value, 164
negation operator, !, 146
nested collections, 218
nested functions, 34
Netscape, 3, 173, 177
new Function() form, 31, 33
new keyword, 52, 55–58, 71, 76, 147–148, 233,

236
new Object(), 50–55, 62, 81, 145
nextSibling property, 190
Node type, 190
NodeJS, 377–378
NodeList, 203
nodes, 187–191, 245–248

child, 187
children property, 246
leaf, 187
locating, 246–248
name property, 246
parent, 187
path selection, 246
root, 187
sibling, 187
text, 189–191
top-down relationship between, 254
traversal selection, 247–248

nominative methods, 225
non-enumerable properties, 137, 138
null keyword, 131
Null type, 131–132
null value, 132
number literals, 133
Number type, 133
Number.from method, 160
Number.prototype.toString(), 146
numbers, casting objects to, 136
numeric style rules, 341

■ O
object argument, 147, 150
Object constructor, 51, 61, 137–138, 149
object instantiation, 52
object literals, 48–53, 137
Object type, 130, 135–136

■ INDEX

401

Object.create function, 67–68
Object.prototype, 137, 143, 152
object-oriented (OO) language, 47

class-based, 47
prototypal, 47

object-oriented (OO) programming, 75
objects, 47–69

accessing members of, 48–49
arguments, 21–24
array-like, 140–141
basic, 137–138
built-in, 129, 136
creating, 48, 71–72

with constructor functions, 50–53
creating new instances of, 50
Date, 142
definition of, 48
empty, 48
encapsulation of, 118–124
error, 143
function, 19–20
functions as, 12
host, 136
inheritance, 56–62, 83–91
initialization, 76, 86
instantiation, 76, 86
mutability of, 136
native, 136
primitives as, 134–135
properties, 48
prototypes and, 53–58, 61–68
traversal of, 62
type, 129–131
type casting, 143–146
types of, 72–73, 136
visibility of, 118–124
wrapper, 134–135

object-to-boolean value casting, 136
object-to-primitive casting, 136–137
observer, 263–264
offsetX, 268
offsetY, 268
onFailure method, 336–337
onreadystatechange property, 316

onStateChange method, 336
onSuccess method, 337
open method, 310, 314, 317, 320, 335
Opera, 185, 285
Options class, 335
Options mixin, 112–114, 335
options object, 332, 335
outer functions, 32–33
overloadGetter decorator, 163
overloadSetter decorator, 163
overridden methods, 87–91, 96

■ P
page object, 298
paint engine, 174
parameters, formal, 12
params, 74
parent class, 86–87
parent combinator, 255
parent method, 88–91, 95
parent nodes, 187
parent property, 87, 100
parent selector function, 213–215
parentheses (), 17
parentNode property, 190
parseFloat function, 145–146
parseInt function, 145–146
parsing engine, Slick, 256
partial application. See currying
partial DOM Tree, 192–193
path selection, 246
pathInfo property, 374
pathname property, 180
paths property, 365
period (.), 249
PHP scripts, 372
pixels, 352
plus sign, 251
port property, 180, 374
POST method, 311
postHandler method, 383–385
preHandler method, 383–385
preventDefault method, 283–284, 291, 297
previous adjacent sibling combinator, 255

■ INDEX

402

previous sibling combinator, 255
previousSibling property, 190
primitive types, 59, 131–132

as immutable, 133
as objects, 134–135
Booleans, 133
casting objects to, 136–137
numbers, 133
String, 133

private members, 119
private methods, 120–122
prompt function, 262–263
properties, 48, 80–83
property names, 48
property values, 48
protect method, 122, 154–155
protected members, 120
protected methods, 121–124
Protected mutator, 124
proto, 68
proto property, 58, 61–62, 66–67
protocol property, 180
prototypal object-oriented languages, 47, 55
prototypal programming, 65–68. See also

prototypes
inheritance in, 72
object creation, 71

prototype chain, 61–65, 83, 86, 91–92
prototype chain traversal, 65
Prototype framework, 4, 68
prototype property, 55, 61, 68, 129, 138
prototypes, 53–56, 62

classes and, 71–73, 77
complex types and, 60
inheritance and, 62
vs. instances, 56–60
linking of objects to, 58
overridden methods and, 88
properties, 129

pseudo-selectors, 250–251, 255–256
public members, 119
push method, 159
Python, naming conventions, 120

■ Q
query string, 180
querySelector function, 209
querySelectors function, 209
queryString property, 374

■ R
Raccoon applications, 379
radix value, 146
RangeError, 143
readyState property, 317, 323
readystatechange event, 315–317
readystatechange event handler, 316–317, 323
readystatechange event handler, 317, 335
recursive operations, 16
reference types, 136
ReferenceError, 143
reflow, 174
RegExp constructor, 141, 145
RegExp.prototype, 141
regular expression literal, 141
regular expressions (regexps), 141–142
relation-based selectors, 210–215
reload method, 181
remove method, 164
removeEvent method, 294, 299, 306
removeEventListener method, 285–286, 304
removeListener method, 299
removeProperty method, 228
render tree, 174
repeat method, 153
replace method, 181
replaces method, 222–223
Request class, 307, 319–332

subclassing, 335–337
Request constructor, 320
request event, 324
request headers, 321–322
request line, 307
request object, 378
request objects, 332–333, 384–385
request sending modes, 332–333
Request.JSON class, 336–337
request-response cycle, 307–309, 316–318

■ INDEX

403

requests, 307–309, 371–372
asynchronous, 314–318
cancelling, 313
creating new, 320
Request class, 307, 319–337
sending, 331–334
synchronous, 314–315
timeouts, 328–330
XMLHttpRequest object, 309–314

require function, 364–367
resource URI, 307
resources

computed, 372–373
direct, 372
routed, 372
static, 372

response headers, 312
response object, 374, 378
Response objects, 384–385
responses, 307–309, 371–372
responseText property, 313–315, 336
responseXML property, 313, 326
results array, 166
results variable, 166
return keyword, 24
return statements, 24
return values, 11, 24–25
returnValue property, 269, 283
reusability, 125
reusable request objects, 332
reverse, 254–255
Rhino JavaScript interpreter, 9
RingoJS, 377
root node, 187, 191, 245
routed resources, 372
routes, in Deck, 381
routing, with Deck, 381–382
Ruby, 128
running method, 122

■ S
Safari, JavaScript console, 6
same-origin policy, 310
scheme property, 374

scope
block, 28
global, 14–15, 20
limiting, 36–38
local, 27
variable, 27–29

scope chain, 29–33
scope property, 33
scoping, 29–31
scoping rules

for function declarations, 13
for function expressions, 14
named function declarations, 16

screenX, 284
screenY, 284
Script.aculo.us, 4
<script> tags, 175–176, 191–192

blocking behavior of, 195
defer attribute, 197

scripted browsers, 173, 176–177
search function, 258
search property, 180
:selected pseudo-selector function, 255
selection engine, Slick, 256, 258, 259
selector argument, 211, 213
selector engines, 245–259

CSS selector notation, 249–251
Slick, 252

combinatory prefixes, 253–254
element selection with, 252–253
parser engine, 256– 257
pseudo-selector functions, 255–256
reverse combinators, 254–255
selection engine, 258–259

selector functions, 198–202
selector groups, 252
selectors

children, 212–215
combined, 251
CSS-based, 203–210
parent, 213–215
pseudo-selectors, 250–251
relation-based, 210–215
sibling, 210–212

■ INDEX

404

simple, 249–250
send method, 311, 322–323, 331–335
sequential parsing, 191–193
serve method, 380
ServerJS, 362, 371
servers, request-response flow and, 307–309,

371–372
server-side JavaScript, 371–379
set method, 163, 230–231, 234, 239–241, 290
setHeader method, 321–322, 335
setInterval function, 343–347, 355
setOptions method, 112–113, 335
setProperty method, 227–228, 230
setRequestHeader method, 310, 335
setStyle method, 229–230, 342
setStyles method, 229–230
setter methods, 37, 99–104, 163–164
setTimeout function, 314, 328, 343–344
shift property, 298, 305
shiftKey, 268, 284–285
sibling combinator, 255
sibling nodes, 187
sibling selectors, 210–212
simple selector functions, 203
simple selectors, 249–250
single-execution functions, 17–19
Slick, 252

combinatory prefixes, 253–254
element selection with, 252–253
parser engine, 256–257
pseudo-selector functions, 255–256
reverse combinators, 254–255
selection engine, 258–259

Slick.find method, 252–253, 258
Slick.Finder, 258
Slick.parse method, 256
Slick.search method, 253, 258
snippet runner, 8
SpiderMonkey, 9, 141
spoofing, 185
square brackets [], 48, 138
src attribute, 176
srcElement property, 267–268
start method, 356

startTimer method, 356
static members, 114–118
static methods, 158–160
Static mutator, 117–118
static resources, 372–373
status code, 308, 313
status line, 308
status property, 312, 374
status text, 308
statusText property, 312
step method, 347–348, 355–356
stop method, 293
stopPropagation method, 281–283, 292–293,

298
stopTimer method, 356
string literals, 49, 133
String method, 155
string pattern-matching, 141
string style rules, 341
String type, 133
String.from method, 160
strings

casting objects to, 136
converting values to, 146

style attribute, 341
style declarations, 341
style definitions, 174
style methods, 342–343
style object, 174, 342
style rules, 341
style sheets, 341
styles

computed, 342
explicit, 342
implicit, 342
inline, 342
working with, 229

subclasses,85–86, 88
subclassing, 64
sub-expressions, 252
substring matchers, 250
success event, 325–327
success method, 336
superclasses, 86–89

■ INDEX

405

switchClass method, 238
synchronous requests, 314–315
SyntaxError, 143

■ T
Table constructor, 162
table type, 160–168
tables, 48
target property, 275–277, 298
test-based fixes, 183–184
text events, 285
text nodes, 189–191
Text type, 190
thenAdd method, 44
this keyword, 33–36, 50, 52, 59, 61, 103, 114, 121,

158–159, 289
this.parent() method, 90–91
tilde symbol (~), 251
timeout option, Request class, 329–330
timeouts, 314, 328–330
timers, 343–346, 355–356
toElement method, 237
toolkits, 182–183
toQueryString method, 335
toString method, 136, 138, 141–143, 146
touch events, 285
traversal, 62, 65, 166
traversal selection, 247–249
tree traversal, 247–249
trees, 187

nodes of, 187–191, 245–248
structure, 188, 245

trickling event handlers, 286, 289
trickling model, 279–281
truth value, 133
Tween subclass, 349–354
type argument, 288
type casting, 143–146

object-to-primitive, 136–137
using constructors, 144–145
using native functions and idioms, 145–146

Type constructor, 129, 147–150
type detection, 151–152
type objects, 129–131, 152–160

aliases and mirroring, 155–157
extend method, 158–159
generics, 158–160
implementing new members, 153–155

type property, 268, 275, 298
type selector, 249
type systems, 5, 127–129

classes and, 128
JavaScript, 128
MooTools, 129–131, 147–152
values and, 127–129

Type.prototype, 148, 158
type-by-class system, 128–129
type-by-specification system, 128
TypeError, 143
typeOf function, 130, 137, 151–152, 191
typeof operator, 127–128, 134, 138, 141–142,

151–152
types, 72–73, 127–169

composite, 131, 135–136
creating new, 160–168
existence, 131–132
native, 131–143

arrays, 138–141
Date objects, 142
error objects, 143
functions, 138
Null, 131–132
primitives, 132–135
regular expressions, 141–142
Undefined, 131–132

primitive, 131–132
as objects, 134–135
Boolean, 133
numbers, 133
String, 133

reference, 136
value, 127

■ U
UIEvent, 284
unary operator, 146
Undefined type, 131–132
undefined variable, 131–132

■ INDEX

406

unified timers, 356
Uniform Resource Identifier (URI), 174
universal modificators, 230–231, 239–241, 290
universal selector, 249
universal setter, 230
URIError, 143
urlEncoded option, 322
useCapture, 279, 286
user agent, 185
user agent sniffing, 185
user agent spoofing, 185
user agent string, 185
user events, 302, 305
User-Agent property, 308
userAgent property, 185
user-interface events, 284–285

■ V
v8, 142
v8cgi, 378–379
value types, 133
valueOf method, 136, 138, 142–143
values, 127–129

of native types, 131–143
types of, 127

values method, 165
values property, 300
var keyword, 14–5, 27, 29
variable declarations, 29, 132
variable definition, 132
variable instantiation, 27–29
variable objects, 27
variables, 27–29

global, 14, 27, 31
local, 31
localizing, 18
persistence of, 31
scope, 27–29
scoping, 29–31

Vim, 9
visibility, 118–124

■ W
weakmaps, 300, 304
Web applications, 373
web browsers. See browsers
Web Inspector, 6
web pages

display of, 174–175
<script> tags, 175–176

web servers, request and response cycle,
307–309, 371–372

Webkit, 142
Webkit Web Inspector, 6
wheel events, 285
wheel property, 298
where argument, 220
while loops, 262
whitespace, 190
whitespace character, 251
window object, 179
window.event.cancelBubble property, 292
window.event.srcElement, 268, 277
Wirfs-Brock, Allen, 176
World Wide Web Consortium (W3C), 177
wrapper functions, 90, 122, 300–304
wrapper objects, 134–135
wraps method, 223–224
write method, 378
writeHead method, 378

■ X, Y
XMLHttpRequest object (XHR), 307–314

asynchronous requests, 314–318
event handlers and, 315–316
ready state of, 316–318

■ Z
Zest, 376

	Prelim
	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Exploring JavaScript and MooTools
	JavaScript and MooTools
	JavaScript
	MooTools
	The Language Extension
	Your Toolkit
	The Wrap Up

	Functions
	The Function
	One Function, Multiple Forms
	Single-Execution Function
	Arguments
	Return Values
	Function Internals
	Advanced Function Techniques
	MooTools and Functions
	The Wrap Up

	Objects
	JavaScript is Prototypal(-ish)
	A Language of Objects
	The Building Blocks of Objects
	Inheritance
	The Prototype Chain
	Simplified Prototypal Programming
	The Wrap Up

	Classes
	From Prototypes to Classes
	The MooTools Class System
	Constructors and Initializers
	Rethinking Members
	Inheritance
	Mixins
	The Wrap Up

	Classes: The Extras
	Mutators
	The Built-in Mixins
	Static Members
	Encapsulation and Visibility
	MooTools and Classes
	The Wrap-Up

	Types
	Values and Type Systems
	An Alternative Type System
	Native Types and Values
	Type Casting
	The MooTools Type System
	Working with Type Objects
	Creating New Types
	The Wrap-Up

	Conquering the Client Side
	JavaScript in a Window
	A Language for Every Computer
	Life Cycle of a Page
	Pause, Script
	The Scripted Browser
	Frameworks, Libraries, and Toolkits
	MooTools and the Browser
	The Wrap-Up

	Elements
	Families and Trees
	Is My DOM Ready Yet?
	DOM Scripting with MooTools
	The Element Type
	The Elements Type
	The Universal Modificators
	Element Storage
	The Wrap Up

	Selector Engines
	What Node?
	Selecting in Style
	Slick: the MooTools Selector Engine
	Inside Slick
	The Wrap-Up

	Events
	A Loopy World
	The Event Loop
	Event-Based Programming
	The Event Models
	The MooTools Event System
	Event System Internals
	The Wrap-Up

	Request
	Requests and Responses
	The XMLHttpRequest Object
	Going Async
	The MooTools Request Class
	Subclassing Request
	The Wrap-Up

	Animation
	Getting Animated
	Being Stylish
	Time for Some Action
	A Basic JavaScript Animation
	MooTools Fx Classes
	Fx Internals
	The Wrap-Up

	Breaking from the Browser
	JavaScript without Limits
	Breaking out of the Browser
	CommonJS
	Common Modules
	MooTools and CommonJS
	Meso: MooTools in the Middle
	The Wrap-Up

	MooTools on Deck
	Revisiting Request and Response
	JavaScript on the Server
	JSGI
	Enter Deck
	Deck Internals
	The Wrap-Up
	The Wrap-Up to Conquer All Wrap-Ups

	Resources
	JavaScript
	MooTools

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

