THE EXPERT’S VOICE® IN OPEN SOURCE

Pro

Active
Record

Databases with Ruby and Rails

Develop expert-level database applications
in Ruby and Ruby on Rails

Kevin Marshall,
Chad Pytel, and Jon Yurek

Apress

Pro Active Record
Databases with Ruby and Rails

Kevin Marshall, Chad Pytel, Jon Yurek

Apress-

Pro Active Record for Ruby: Databases with Ruby and Rails
Copyright © 2007 by Kevin Marshall, Chad Pytel, Jon Yurek

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-847-4
ISBN-10 (pbk): 1-59059-847-4
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick

Technical Reviewer: Adam Stein

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,
Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Production Director and Project Manager: Grace Wong

Copy Editor: Heather Lang

Associate Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor and Artist: Kinetic Publishing Services, LLC

Proofreader: Nancy Sixsmith

Indexer: Broccoli Information Management

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section. You will need to answer questions pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

To my wife, Catherine, I love you . .. more.
—KM
To my wife, Rachel, I love you all the way to the moon, and back.
—CP
To my fiancée, Karen, for making everything fun and for making me happy.

Contents at a Glance

ConMtentS. ... vii
AboUt the AUTNOrS XV
About the Technical Reviewer. XVii
ACKNOWIBdgmMENTS Xix
INrOdUCHION. . .. XXi
CHAPTER 1 Introducing Active Record. 1
CHAPTER 2 ActiveRecordand SQL... 25
CHAPTER 3 SettingUpYourDatabase...................................... 43
CHAPTER 4 Core Features of Active Record. 59
CHAPTERS5 BonusFeatures.................. 91
CHAPTER 6 Active Record Testing and Debugging 125
CHAPTER 7 Working with Legacy Schema................................. 161
CHAPTER 8 Active Record and the RealWorld 187
APPENDIX Active Record Methods in Detail 215

Contents

Aboutthe AUthOrS o XV
About the Technical Reviewer. e Xvii
ACKNOWIBAGMENTSo Xix
INtrodUCHION. xxi
CHAPTER 1 Introducing ActiveRecord. 1
The Story Behind Active Recordooii. 2

Active Record Mostly Adheres to the ORM Pattern 2

Active Record Is a Different Kindof ORM 3

Active Record Is One Part of the MVC Concept 4

Active Record Is Primarily Used for CRUD Database Transactions....... 4

The Active Record Library IsRuby Code 5

From Active Record Objects to Database Records and Back Again 5

Creating an Active Record Object.............................. 6

Manipulating or Accessing the Attributes of the Object 6

Saving the Attributes as a Record in the Database 6

Why Active Record Isa Smart Choice 7

Installing and Configuring Active Record. 8

Installing the Active Record Gem 8

Installing Any Additional Required Librariesor Gems 9

Supplying the Adapter-Specific Information.................... 10

Learning More i 16

Building Your First Active Record Program 18

YourFirstExample.........l 18

Active Record Assumptions and Conventions. 19

Overriding the Assumptions. 20

Retrieving Objects from the Database 21

Exploring Active Record Relationships......................... 22

Them’sthe Basics! 24

CONTENTS

CHAPTER 2

CHAPTER 3

CHAPTER 4

Active Recordand SQL 25
CreatingaRecord ..., 25
ReadingaRecord i 27
conditions. 28
dnclude .o 29
0] (01 31
Select ... 31
Dynamic Finders ... 33
UpdatingaRecord. i 34
DeletingaRecordco i 35
Completely Nondynamic Findersooo... 37
Transactions. i 38
LOCKING . ..o 40
Optimistic Locking.cooi i 41
Pessimistic Locking.............. 42
CRUD Isn't Cruddy.o 42
Setting Up Your Database 43
Designing Active Record—Friendly Tables 43
Traditional Database Management. 44
Common Problems with the Traditional Approach.................... 45
Managing Your Database with Migrations........................... 46
Howthe DSLWorks. ...t 46
Using Migrationsooo i 47
Executing Migration Seripts................l 48
The Anatomy of a Migration File 50
Migrations inAction. i 50
Migrations Are Easier Than They Sound 57
Core Features of ActiveRecord 59
Callbacks 59
Implementing Callbacks..........................oiial 60
Callback Macros.covvii e 61
Specific Types of Callbacks 63
One Down, TWOt0 GO ...t 69

CONTENTS

ASSOCIAtiONS 69
Farmers, Cows, Milk, and How They Relate 69
AsSOCiation TYPESo 70
Association Modifiers 76
Two Core Features Down,OnetoGo 80

Validations ... 80
Why Bother with Validations? 80
Implementing Validations 81
Convenience Functions. ...l 83

YourCore ISStrong 89

CHAPTER5 BonusFeatures.. 91

Active Record Observers i 91

Canned Functionality 92
Actingasalist............. 93
ActingasaTree ...t 97
ActingasNested Sets................... i, 101

Aggregations 105
Step 1: Calling the composed_of Method 106
Step 2: Defining Your Value Object 107
Putting It All Together: Using Aggregations 108

Extending Active Record. ... 109
Extending Active Record the EasyWay 109
Writing Code That WritesCode 110
Meet method_missing ... 112
What Column Did You Want, Again? 116
But What Aboutthe Farmer? 117
Adding Class Methodsooiiiiintt, 120

Don’t Shoot Yourself inthe Foot 123

CHAPTER 6 Active Record Testing and Debugging.................... 125

UnitTesting. 125
Why Write Unit Tests?, 126
How to Write Good UnitTests.ot 127
ASSEItIONS 129
FIXEUIES .. 139
Fixture Formats 142

Wrapping RAILUp ... 144

CONTENTS

CHAPTER 7

Active Record Errors and Exceptions.............................. 144
Active Record Error Methods................................ 144
Preparing for Problems................. 153

Debugging Tipsand Tricks ..., 153
Active Recordand Loggingoo L. 153
Active Record Benchmarking................................ 159
TestingIsFun! 160

Working with Legacy Schema............................. 161

GiveandTaKe. 162
How Much Do You Want to Do in Active Record?............... 162
Who’s Responsible? 163
How Do Things GetDone?........................oointt. 163
Is There an Easier or More EfficientWay?..................... 163

Configuration Options for Active Record 164
primary_key_prefix_type...........l 164
table_name_prefix 165
fable_name_suffix........ 166
pluralize_table_names.................o .. 166
colorize_logging. ... 167
default_timezone........... 167
alloW_CONCUITENCY\ttt e 168
generate_read_methods 169
schema_format............ 169
set_table_name............l 170
set_primary Key 171
set_Inheritance_column. 171
set_sequence_name. ...t 172

Making the Complex Easier.............. 173
CRUD Operations and Complex SQL Statements............... 175
Improving Performance and Cutting Out the Middle Man. 177
Stored Procedures, Custom Functions, and Sequences.. 179

DataTypes ... 181

CHAPTER 8

CONTENTS

Importing and Exporting.................o 181
Exporting XML 182
Importing XML 183
ExportingYAML 184
Importing YAML 184
Exporting GSV. o 185
Importing CSV. 185

You’re on Your Way to Becomingalegend......................... 186

Active Record and the RealWorld 187

Exploring Active Record Source Code 187
Findingthe Code i, 188
Following the Code Trailcoiiiints. 188
Putting It All Back Together 191

The Future of Active Recordl 192
The Keys to the Enterprise............. 192
Little by Little, Big Things Will Happen........................ 193
Two Steps Forward, One StepBack 193
AWorld of ReSourcescoiiiiiii ... 194
Active RecordonltsOwn il.l. 195
Adding Your OwnTwo Centsooa... 195

Alternatives to Active Record. L 196
DBl .. 196
00, o 197
ActiveRelation. 199
Database-Specific Libraries. 199
ActiveResource.................o i 200
Even More Alternatives................... 201

Common Active Record Questions and Answers.................... 201
How Do | Use Multiple Databases with Active Record?.......... 201
How Do | Handle Internationalization and Localization?......... 204
How Do | Use Composite Primary Keys? 205
How Do | Use GUID/UUID Primary Keys? 205
Can | Use Active Record in a Multithreaded Program? 206
How Do | Ensure Proper Handling of Decimal Numbers?........ 206
What Database Locking Mechanisms Does Active

Record Support?. 206

x

APPENDIX

Does Active Record Support Prepared Statements? 207
How Do | Select a Random Record from the Database?. 207
How Do | Model X with Active Record? 208
What Support Does Active Record Have for Database
Foreign Keys? ... 210
How Do | Properly Use find_by_sql? 210
How Do | Ensure that All My Records Are Valid? 211
Can | Use the Same Name for a Database Column
and an Active Record Model?............................. 212
Does Active Record Support enum Column Types?............. 213
Does Active Record Support Adding Security to Individual
Models or Columns? ... 213
What Is the Difference Between has_one and belongs_to?... ... 213
How Can You Paginate Active Record Results? 213
Where Can | Get More Active Record Help? 214
Active Record Methods in Detail.......................... 215
ActiveRecord::Base............... .. 215
Public Class Methods 215
Protected Class Methods 224
Public Instance Methods. 225
ActiveRecord::Calculations::ClassMethods. 231
Public Instance Methods. 231
ActiveRecord::Callbacks. 233
Public Instance Methods. 233
ActiveRecord::ConnectionAdapters::AbstractAdapter. 235
Public Instance Methods. 235
Protected Instance Methods 236
ActiveRecord::ConnectionAdapters::Column 236
Public Class Methods 236
Public Instance Methods. 237
ActiveRecord::ConnectionAdapters::DatabaseStatement. 238
Public Instance Methods.l 238
Protected Instance Methods 240
ActiveRecord::ConnectionAdapters::Quoting 240
Public Instance Methods.l 240
ActiveRecord::ConnectionAdapters::SchemaStatements............. 241
Public Instance Methods. 241

Protected Instance Methods 245

CONTENTS

ActiveRecord::ConnectionAdapters::TableDefinition 245
Public Class Methods 245
Public Instance Methods. 245

ActiveRecord::Errors 246
Public Instance Methods. 246

ActiveRecord::Migration.............. ... 249
Public Class Methods, 249

ActiveRecord::0bserver 250
Public Class Methodsoooiiints. 250
Protected Instance Methods 250

ActiveRecord::0Observing::ClassMethods. 250
Public Instance Methods. 250
Protected Instance Methods 251

ActiveRecord::Reflection::ClassMethods........................... 251
Public Instance Methods. 251

ActiveRecord::Reflection::MacroReflection......................... 252
Public Class Methods 252

ActiveRecord::Schemac i 252
Public Class Methods, 252

ActiveRecord::Transactions::ClassMethods 253
Public Instance Methods. 253

ActiveRecord::Validations. L. 254
Public Instance Methods. 254
Protected Instance Methods 255

ActiveRecord::Validations::ClassMethods 255
Public Instance Methods. 255

About the Authors

KEVIN MARSHALL is a software developer at heart. He is a consultant to a number of companies
and currently runs a number of sites on his own—many of which are now happily taking advan-
tage of Active Record with the Ruby on Rails framework, including the popular Draftwizard.com.
As a technology writer, Kevin has published a short article, “Web Services with Rails,” contributed
a few recipes to the Ruby Cookbook (Lucas Carlson and Leonard Richardson. O’Reilly, 2006), and
contributed a number of articles to the Association of Computing Machinery’s periodical, Com-
puting Reviews (available online at http://www.reviews.com).

Kevin is also a member of the Pro Football Writers Association, the Fantasy Sports Trade
Association, and the Fantasy Sports Writers Association. When he’s not deep into coding,
building content, or talking football, he’s generally off playing with his two sons or spending
time with his amazing wife Catherine. To learn more about what he’s up to right now, you can
visit his company site, http://falicon.com, or just drop him a note at info@falicon.com.

CHAD PYTEL is president of thoughtbot, inc., a software development consulting firm located
in Boston and New York that specializes in agile, test-driven web application development using
the Ruby on Rails framework. With a history in Java and EJB development, thoughtbot switched
to Ruby on Rails as its primary development platform in 2005. Chad is a firm believer in the
model-view-controller design pattern and realistic software development, and those philoso-
phies, combined with Ruby and Ruby on Rails, represent a new, exciting, and better way to
develop software.

Chad lives with his wife in Ambler, PA. When not managing projects and writing code, Chad
enjoys acting in and producing theater, film, and improv comedy. To follow along with Chad and
the rest of the thoughtbot team’s ideas on business, design, development, and technology, visit
their blog at http://giantrobots.thoughtbot.com.

JON YUREK is the chief technical officer at thoughtbot, inc. Born a programmer, Jon has been
developing software professionally since 1999. After seeing the elegant and expressive power
of Ruby, Jon quickly moved all new development at thoughtbot away from Java and Perl to
using Ruby and Rails.

Jon is a graduate of Worcester Polytechnic Institute and currently lives in Somerville, MA.

Xv

http://www.reviews.com
http://falicon.com
mailto:info@falicon.com
http://giantrobots.thoughtbot.com
http://www.reviews.com

About the Technical Reviewer

ADAM STEIN is a software engineer and has been working in Java and ColdFusion for the past
eight years. He has always been curious about Ruby, and toying with Active Record was his
first venture into the Ruby world. Adam is most proud of his wonderful wife, Marcy, and their
three great children: Thomas, Joseph, and Julia.

Xvii

Acknowledgments

We would like to give special thanks to Yukihiro “Matz” Matsumoto for getting the ball rolling
by creating the Ruby language. We would also like to thank David Heinemeier Hanson and the
many other contributors to the Ruby on Rails framework, especially for their work on the Active
Record library. Without their innovation and selfless dedication to creating something as special
as Active Record, this book would not have been possible.

KM, CP JY

I would like to thank my wife Catherine for sharing life’s adventures with me; my coauthors
Chad and Jon and the entire thoughtbot staff for making this book ten times better than I could
have done on my own; Anthony Molinaro for being a good friend and inspiring me to do more
than just code; Keith Nordberg for always listening (and encouraging) my crazy ideas and plans;
Mike Cole for being the good person I can only strive to be; my half-brother Mike for sharing
his wisdom, life experience, and wonderful family with me; my mother Barbra Taylor, my sis-
ter Kim, my aunt K.T., and my grandmother Nancy for raising me; Bruce Antelman and the
Reviews.com staff as well as the various clients I've worked for over the years for giving me
exciting challenges and a reason to always keep learning; and finally, thank you to both my
sons Timothy and Brady for making every day a fun day.

KM

Thank you to everyone at thoughtbot for your hard work, determination, and commitment to
excellence and to my awesome wife Rachel for her love and support. Additionally, thank you
to all the friends, clients, colleagues, and teachers—good and bad—who have shaped the
way that I think about life, programming, and business.

CP

Thanks to the guys at thoughtbot for challenging me every day and to anyone who ever had
a kind word or a harsh one about anything I've done; the praise kept me going, and the criti-
cism made me better.

JY

Xix

Introduction

When we first shared the idea for this book with some of our peers in the Ruby community,
they all had the same initial question, “Is there really enough to talk about in Active Record to
fill a whole book?”

Our answer, then and now, is, “Yes and no.”

You see, at the time of this writing, Active Record has primarily been covered as a subsec-
tion, or maybe as a chapter or two, within a larger scoped book generally about the Ruby on
Rails (RoR) framework. And almost all of those books actually do a great job of introducing
you to the basics of Active Record; they go a long way toward getting you started with the library.
However, because they are addressing a larger scope, all of the existing books also fall short in
exposing the hidden features and benefits of using the Active Record library, and almost none
even mention the fact that you can get many of the same advantages in your Ruby programs
outside of the Rails framework.

If all we were going to do was get you enough knowledge to use the basics of Active Record as
you build new Ruby on Rails projects, then no, there would not be enough to fill an entire book.
Within this book however, we go much deeper into the library than any other source has to date.
We explore the raw source code for the Active Record library. We help to explain the concepts, the
rules, and the goals for the Active Record library—and we show you how to bend and break the
library as you see fit for your own applications. We do this with lots and lots of examples, so you
can try it all for yourself and learn by doing.

Our motivation for writing this book goes back to our beginnings using the Ruby on Rails
framework. When first introduced to Ruby on Rails, we really liked what we were seeing. Clearly,
Ruby on Rails was a powerful and intuitive framework that would make us more productive in
our daily work. In our enthusiasm for the newfound tool, we began applying Ruby on Rails to
many of our existing projects—and those words, “existing projects,” are key here. They are at
the root of our motivation to write this book.

Active Record can be deceptively simple to use in an environment that you develop around
Ruby on Rails from the very beginning. But sooner or later, you'll run into a database that’s
been designed without Active Record in mind, or you'll need to design a database yourself that
doesn’t conform to all of Active Record’s defaults. And that’s where this book comes in. Many,
if not all of the books about Ruby on Rails that we have read assume that you will only be build-
ing a stand-alone Rails application from scratch. But this isn't the case for us! It probably won’t
be the case for you either. We saw a clear need for a book to help developers take full advantage
of the Ruby on Rails framework while continuing to use legacy databases that their other busi-
ness applications depend on.

Among the three of us, we have a pretty fair bit of experience in applying Active Record
to the problem of legacy databases. In our work with clients, we often find ourselves writing
ad-hoc Ruby scripts using Active Record to manage various client databases or to perform
various incidental tasks. Whether it’s pulling data from an Oracle database for a Ferret indexing

XXi

XXii

INTRODUCTION

script for Reviews.com, pulling and pushing content from an MS SQL Server database for
the SportsXchange, or doing simple data manipulation and calculations in a local MySQL
instance, we can now do it all in Ruby with the Active Record library.

However, the steps it took us to get to this comfort level opened our eyes to the fact that
there is no real, centralized source of Active Record information. We had to piece together
what’s in this book over time by collecting tips, playing with code, using trial and error, and
digging through all the source code line by line. While we didn’t mind the work (and we got
lots of help from the Ruby community), we thought it would be selfish not to share our new-
found experience and knowledge with everyone else and hopefully save a few of you some
time. Maybe we’ll even convert a few new people over to Ruby who've been using the “I can’t
work with my legacy schema” argument as a reason for not trying it.

So, long story short, if you are looking to know more about Active Record than the basics
covered in other books, if you want to know how your Ruby on Rails applications really do all
that magic communication with your database (and how to improve it for your specific situa-
tion), if you want to work with Active Record but have a legacy schema you need to deal with,
or if you simply want an easy way to create ad-hoc database-driven Ruby scripts, then this
book was written just for you. The combination of Ruby on Rails and Active Record can be just
as powerful against legacy databases as against databases that you build with Active Record to
begin with. The magic is there. We want to show it to you. We hope that we’ve succeeded.

CHAPTER 1

Introducing Active Record

One of the first jobs Kevin had as a teenager was as a dishwasher at a local diner. For those of
you who aren’t familiar with the job, dishwashers are generally at the bottom of the totem pole
in most kitchens. If there’s a job nobody wants to do, like digging through the trash for a retainer
someone left on a plate, the dishwasher is the one who ends up having to do it. As you can
imagine, he hated that job. Stil], he did learn a lot of good life lessons, and he learned to be
a jack-of-all-trades at an early age.

As a developer, you can probably relate to the jack-of-all-trades situation (though we hope
you don't have to dig through the trash like Kevin did!). Developers are expected to know every-
thing there is to know about our language of choice, our development and production platforms,
our database software, and, of course, our business logic. In reality, that’s a lot of stuff, and just
completing a simple task often requires changing hats from a developer to a database administra-
tor to a designer to an end-user. Active Record helps free our brains up a little bit by combining
some of these roles into one simple skill set—that of Active Record developer.

Since this entire book covers the niche topic of Active Record for Ruby, it’s probably safe
to assume that you already know at least the very basics of what the Ruby Active Record library
is. That is, you've heard that it’s an object relational mapping (ORM) library that is the model
part of the Rails model, view, controller (MVC) framework and primarily allows for create,
read, update, and delete (CRUD) database operations. If nothing else, you got that much
information from the back cover of this book!

But maybe you skipped the back cover and just flipped to this section to see if this book is
worth buying (it is, and we recommend two copies; we hear it makes a great gift!), or maybe
you're like us and hate acronyms, or your eyes just glaze over when you hear many technical
terms in a row like that. Whatever the case, we don'’t feel like this explanation helps people to
understand what Active Record really is or what can actually be done with it. So here’s our lay-
man’s explanation, which we hope is a bit more direct and easier to digest:

Active Record is a Ruby library that allows your Ruby programs to transmit data and
commands to and from various data stores, which are usually relational databases.

In even more basic terms, you might say:

Active Record allows Ruby to work with databases.

CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

Admittedly, there’s a lot more to Active Record than just this basic explanation, but hope-
fully, this gives you the core idea of what the Active Record library was designed to accomplish.
Throughout the rest of this book, we’ll dig into a lot of little tips, tricks, and features that will
turn you into a master of Active Record for Ruby. But before we get too deep into the guts of it
all, let’s lay a little groundwork and cover some of the background of the Active Record library
and the concepts it incorporates, just so we're all on the same page at the start.

The Story Behind Active Record

Active Record is actually a design pattern originally published by Martin Fowler in his book
Patterns of Enterprise Application Architecture (Addison-Wesley Professional, 2002). The
now-famous creator of Rails, David Heinemeier Hansson (commonly referred to online and
throughout the rest of this book as simply DHH), took the concepts laid out by Mr. Fowler
and implemented them as a Ruby library that he also called Active Record.

Note Since both the design pattern and the Ruby library are called Active Record, it can quickly become
confusing which we’re referring to throughout this book. Since the majority of this book is specifically written
for and about the Active Record library for Ruby, when we refer to something as simply “Active Record,”
we mean the Active Record library for Ruby. Therefore, when we refer to the Active Record design pattern,
we will use the full label “Active Record design pattern.”

When DHH released the Rails framework to the public, Active Record was part of the core
bundle, and it’s now also available as its own Ruby gem.

As is often the case with open source projects, once the initial library was out there, a number
of Ruby and Rails contributors took it upon themselves to take the next step so that the library
could be used with almost all of the popular database applications. They did this by develop-
ing various database-specific adapters for Active Record. Active Record adapters are basically
custom implementations of various parts of the Active Record library that abstract the propri-
etary bits of each database system, such as connection details, so that the Active Record library
pretty much works the same regardless of the backend database system you are using. The most
popular and widely used of these adapters are now also directly included as part of the library
(we’ll mention many of the contributors and developers later in this chapter when we cover
the specifics of each database adapter for Active Record).

Active Record Mostly Adheres to the ORM Pattern

The core concept of Active Record and other object relational mapping (ORM) libraries is that
relational databases can be represented reasonably in object-based code if you simply think of
database tables as classes, table rows as objects, and table fields as object attributes. Looking
at a quick example will help to explain this concept best, so assume we had something like the
following accounts table in some type of database:

CHAPTER 1 " INTRODUCING ACTIVE RECORD

Accounts table
ID field (integer; auto-incremented; primary key)
Username field (text type field)
Password field (text type field)

Our Active Record Account class, or model as it’s commonly referred to, would look some-
thing like this:

Class Account < ActiveRecord::Base
end

And finally, throughout our Ruby or Rails code, we would create instances of account
objects like this:

creates a new account object in memory and a new account record in our database
newacc = Account.new

newacc.Username = "Kevin"

newacc.Password = "Marshall"

newacc.save

creates an Account object in memory from data in Account table with ID of 1
(equivalent to the ANSI SQL statement of "select * from accounts where ID = 1")
findacc = Account.find(1)

deletes records from database that have username of "Kevin"
Account.delete("username = 'Kevin'")

Don’t worry if all this sort of seems like magic at this point—right now, we’re simply trying
to show you the ORM concept without any clutter. We'll dive into the details of all this stuff and
explain all the ins and outs of Active Record syntax in later chapters.

Active Record Is a Different Kind of ORM

Active Record differs from other ORM libraries, such as Java’s Hibernate, mostly in the way it’s
configured or, rather, in the general lack of initial configuration it requires. Out of the box,
Active Record makes a number of configuration assumptions, without requiring any outside
XML configuration files or mapping details, so nearly everything just works as DHH believed
most would expect or want it to—in fact, our previous example showed this was the case and
took full advantage of Active Record assumptions. We weren’t required to do any additional
configuration or set up any special files or instructions. We just opened a text program and
typed a few short lines of code, and before you knew it, we had a fully functional Active Record
program.

In fact, the lack of configuration and taking advantage of the default assumptions
Active Record makes on our behalf is most likely why the previous example felt like magic.
Later in the book, we’ll go into more detail about configuration and the default assumptions
Active Record makes, as well as how to override any of those assumptions whenever you need.

CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

Active Record Is One Part of the MVC Concept

Active Record is probably most famous as being an important part of the Ruby on Rails frame-
work. And if we had to pick one single thing about the Rails framework that we think makes it
successful, it would be the fact that it adheres to the MVC design. The concept of MVC is to
break code into logical groupings and programs into logical functional groupings. Traditionally,
the model section is where the majority of your business logic code would be; the view is where
your user interface code would be, and the controller code primarily deals with the communi-
cation between the model and view. Rails MVC implementation is a little bit different. With Rails,
the model section is generally your Active Record classes and other data-descriptive or data-
communication code. The view section remains primarily for the user interface, which tends
to be a heavy dose of HTML in most Rails applications. The controller also handles the com-
munication between the models and the views; however, it also tends to host a larger part of
the business logic than traditional MVC systems might.

Since we are focusing on Active Record and not Rails throughout this book, we won't spend
too much time on MVC concepts or details. From strictly an Active Record developer’s point of
view, it doesn't really matter where our code is located or how it’s sectioned off. But the MVC
design is worth knowing about when you plan to build programs of any serious size. And it’s
especially important to understand where Active Record fits into the picture of the MVC frame-
work when you are building Rails applications.

Active Record Is Primarily Used for CRUD
Database Transactions

There are four general tasks you perform when working with databases: creating (C), reading
(R), updating (U), and deleting (D) rows of data. As a group, these actions are often referred to
as CRUD. Almost all modern applications perform CRUD operations, and Active Record was
specifically designed to make CRUD operations easy to write and understand. The following
examples display the four basic CRUD operations as you would see them in most Active Record
programs:

newacc = Account.new(:username => "Kevin")
newacc.save #=> creates the new record in the account table

temp = Account.find(1)

=> selects the record associated with id of 1 from the account table
temp.username = 'Kevin' # => assigns a value to the username attribute of the object
temp.save #=> does the actual update statement applying the changes we just stated.

Account.destroy all(1) #=> deletes the record in the account table with id of 1

Of course, there are a lot more options and ways to do things than the preceding examples
show, but these are the most generic, and probably most common, ones you'll see in Active Record
applications. In the next chapter, we'll talk about the Active Record CRUD operations and their
various options in detail.

CHAPTER 1 " INTRODUCING ACTIVE RECORD

The Active Record Library Is Ruby Code

Probably the most important thing to remember when working with Active Record is that in
the end, it’s all really just Ruby code. This means anything you can do with Ruby objects, such
as inheritance, overriding of methods, metaprogramming, and more, also can be done with
Active Record objects. True, the object attributes are generally populated with data pulled from
a database through SQL statements, and in most cases, the object attribute values are eventu-
ally written out to a database through SQL statements. But outside of those two important
processes, everything else you do with or to Active Record objects is really done just like you
are working with any other Ruby object.

Though the whole idea is to represent database records as objects, it’s important to remem-
ber that they really are two separate things: Ruby objects and database records. As such, you can
(and will) sometimes have your database record in a different state or with a different value than
its corresponding Active Record object and its attributes. This is probably most obvious when
you are dealing with data validations. When a data validation fails during an attempt to save,
your Active Record object attribute will still have the value assigned by your application (which
fails validation), but your database record will not have been updated. We talk more about this
issue, and data validation in detail, in Chapter 4.

From Active Record Objects to Database Records
and Back Again

Even though Active Record objects are really just Ruby objects, when packaged as the Active Record
library, they do go through a number of built-in steps or methods each time they are created,
accessed, updated, or deleted. Whether you are saving new records, updating existing ones, or
simply accessing data with Active Record, there are three general steps to follow:

1. Create an Active Record object.
2. Manipulate or access the attributes of the object.
3. Save the attributes as a record in the database.

As mentioned previously, updating data can be done using the previous steps or with
a special update call shown in the following example:

Account.update(1, "Username = Kevin")

Deleting data from a database, on the other hand, is a little bit of a special situation, since
you often want your database records to exist long after your Active Record objects have been
destroyed or gone out of scope. If we tied the deletion of data from the database to the life cycle
of our objects, every time our code was finished executing, our objects would be removed from
memory and our data deleted from our database. That would be a very bad thing. Therefore,
deleting data is done by special destroy or delete statements—not by simply removing the object
from memory. The following example shows one way of deleting the record with a primary
key of 1:

Account.delete(1)

CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

If it seems like we are glossing over the details of all this, don’t worry; we’ll break down the
specifics of each of these steps throughout different parts of this book. For now, let’s just take
a peek at the basics of these three steps, so you have a base understanding of how things work.

Creating an Active Record Object

Most often, you create your Active Record objects with a call to the create or new method. Both
of these methods also allow you to set the values of your object’s attributes directly, as shown
in the following example:

example = Account.new(:Account Name => "Kevin Marshall",
:Account_Username => "Falicon")

The other common way to create an Active Record object is to use one of the various find
methods. All of these methods populate the object’s attributes from records in the database
that matched the search criteria. The following example creates an object that is populated
with the data of the record with a primary key of 1:

example = Account.find(1)

Again, we will cover all the various details and options of create, new, update, delete, and
find methods throughout the following chapters.

Manipulating or Accessing the Attributes of the Object

Once you have an Active Record object, you have the ability to set or get all of its attributes.
The attributes are usually directly mapped from the fields of your database table. So for exam-

ple, if our Account table had an Account_Username field, then our Account Active Record objects
would have a corresponding Account_Username attribute. The following example shows one way
of directly setting an attribute’s value as well as how to access the value of a given attribute:

example.Account Username = "Falicon"
puts "Your username is now #{example.Account Username}"

Saving the Attributes as a Record in the Database

It's important to remember that when you are working with an Active Record object you are
really only setting and accessing the attributes of a Ruby object. Your changes are not reflected
within your database until you make a call to the ActiveRecord: :Base.save method.

The save method is where most of the real action and power of the Active Record library
takes place:

Example.save

It’s this method that has built-in support for things like callbacks, data validations, and
many of the other features explained throughout the remainder of this book.

CHAPTER 1 " INTRODUCING ACTIVE RECORD

Why Active Record Is a Smart Choice

Active Record is easy to install, simple to write and read, and full-featured object-based code.
Out of the box, it comes with support for most all modern database systems, is platform inde-
pendent, and goes a long way in abstracting the messy details of dealing with various database
implementations. All this means that you, as a developer, can focus on learning just one thing,
Active Record, to deal with storing and retrieving data from your database. You don’t have to worry
about learning all the ins and outs of your specific database software, the unique version of
SQL it supports, or the related tips and tricks for massaging data in and out of the database.
That leaves you more time and energy for coding your real applications.

If you've been reading through this chapter in hopes of deciding if Active Record is worth
learning more about, we hope that you are now anxious to dive into the details with us. However,
if you aren't yet quite sold on working through the rest of the book, consider the following list
of added benefits to the Active Record approach, each of which we will cover in detail through-
out the remainder of this book:

» Simplified configuration and default assumptions

* Automated mapping between tables and classes and between columns and attributes
* Associations among objects

* Aggregation of value objects

 Data validations

* Ability to make data records act like lists or trees

» Callbacks

* Observers for the life cycle of Active Record objects

* Inheritance hierarchies

» Transaction support on both the object and database level

¢ Automatic reflection on columns, associations, and aggregations

* Direct manipulation of data as well as schema objects

¢ Database abstraction through adapters and a shared connector

* Logging support

¢ Migration support

* Active Record as an important part of the Ruby on Rails framework

* Active Record as it’s integrated in other emerging frameworks like Merb and Camping

This is just a small list of the features of Active Record, but I hope it gives you an idea of just
how powerful Active Record can be. Still, before you can take advantage of anything Active Record
has to offer, you must first get it installed and configured, so let’s get started with that step now.

CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

Installing and Configuring Active Record

One of the primary design goals of Active Record (and Rails for that matter) was to favor, as DHH
puts it, “convention over configuration.” This means, from a developer’s point of view, it should
be very quick and simple to install and start to use. A developer should not have to spend hours
setting up and learning about all the various configuration options and files before even starting
to do some real coding. As you can imagine, this is a lofty goal for any library designer, but it’s
one that DHH was actually able to achieve! In fact, it'’s probably the single biggest reason that
Active Record (and Rails) is being so quickly adapted by developers around the world. In this
chapter, we’ll walk you through the very simple three-step process to get Active Record installed
for your specific situation.

Since Active Record is really just a collection of Ruby code, it stands to reason that you
must first have Ruby correctly installed on your machine. And since Active Record is primarily
distributed as a gem, it should be no surprise that you must also have the Ruby Gem system
correctly installed on your machine. There are many good books and resources that cover the
installation of these requirements, so we won't go into the details of these here and will instead
assume that you already have them installed.

Note If you are looking for more information on installing Ruby or the Ruby Gem system, two good web
sites full of Ruby resources are http://www.rubycentral.comand http://www.rubyforge.com.

Assuming that you do, in fact, have Ruby and the Ruby Gem system installed correctly on
your machine, installing Active Record requires just three simple steps:

1. Install the Active Record gem.
2. Depending on the database adapter you intend to use, install the required files or libraries.
3. Supply the adapter-specific connection information to make a connection to the database.

Let’s look at each of these steps in a little more detail. When we're finished with this
chapter, you'll have Active Record fully installed, and you'll be ready to dive into coding!

Installing the Active Record Gem

You are probably already familiar with the idea of Ruby Gems—a simple system for packaging,
distributing, and installing various Ruby libraries. You're probably also already aware that
www . Tubyforge.com is the default remote gem distribution site. So it should be no surprise to
learn that Active Record is, in fact, a gem available through the RubyForge.com system and
that the most basic command to install the Active Record gem is to simply type gem install
activerecord at a command line. The gem system should then walk you through any addi-
tional steps that are required for installing the library, including installing the Active Support
library, which is a Ruby requirement for Active Record.

http://www.rubycentral.com
http://www.rubyforge.com
http://www.rubyforge.com

CHAPTER 1 " INTRODUCING ACTIVE RECORD

Note If you prefer, you can download the Active Record library for local installation from www. rubyforge.com.
However, it's generally easier and, therefore, recommended that you simply use the remote gem installation
procedure described in this section.

Installing Any Additional Required Libraries or Gems

Active Record handles communication between your code and the database through the use
of database-specific adapters. Because each of these adapters is unique and specific to the
database that it communicates with, each adapter also has unique and varying underlying
requirements in addition to those required by the general Active Record library.

Since Active Record is really just Ruby code, you can view the source code at any time. The
source code for each Active Record adapter can be found in your Ruby installation directory
under the 1ib/ruby/gems/1.8/gems/activerecord-1.15.1/1ib/active record/connection_
adapters directory. Looking directly at the source code is the best possible way to get familiar
with the real ins and outs of what each adapter actually does and supports. If you're serious
about becoming an Active Record expert, I highly recommend taking a peek at the inner work-
ings of each. It’s also a great way to see high-level Ruby programming and design in action.

Out of the box, Active Record comes with adapters for connecting to the most popular
and commonly used databases currently on the market: DB2, Firebird, FrontBase, MySQL, Open-
Base, Oracle, PostgreSQL, SQLite, SQL Server, and Sybase. Let’s take a little more detailed look
at the specific dependencies of each database adapter:

DB2: The DB2 adapter was written and is currently maintained by Maik Schmidt. The
adapter requires the ruby-db2 driver or Ruby DBI with DB2 support to be installed on the
machine as well. You can obtain the ruby-db2 library or the Ruby DBI files from www.
rubyforge.org/projects/ruby-dbi.

Firebird: The Firebird adapter was written and is currently maintained by Ken Kunz. The
adapter requires the FireRuby library to be installed on the machine as well. You can install
the FireRuby library via the gem command gem install fireruby.

FrontBase: The FrontBase adapter does not currently have any author or maintenance
information in its source code. The adapter requires the ruby-frontbase library to be
installed on the machine as well. You can obtain the ruby-frontbase library via the gem
command gem install ruby-frontbase.

MySQL: The MySQL adapter does not currently have any author or maintenance informa-
tion in its source code. The adapter requires the MySQL library to be installed on the machine
as well. You can obtain the MySQL library via the gem command gem install mysql.

OpenBase: The OpenBase adapter does not currently have any author or maintenance
information it in its source code. The adapter requires the OpenBase library to also be
installed on the machine. You can obtain the OpenBase library via the gem command
gem install openbase.

http://www.rubyforge.com
http://www.rubyforge.org/projects/ruby-dbi
http://www.rubyforge.org/projects/ruby-dbi

10 CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

Oracle: The Oracle adapter was originally written by Graham Jenkins and is currently
maintained by Michael Schoen. The adapter requires the ruby-oci8 library, which itself
requires that the OCI8 API be installed on your machine. The OCI8 API can be installed as
part of the Oracle client available via waw.oracle.com, and the ruby-oci8 library files can
be obtained from www.rubyforge.org/projects/ruby-ocis.

PostgreSQL: The PostgreSQL adapter does not currently have any author or maintenance
information in its source code. The adapter requires the ruby-postgres library to be installed
on the machine as well. You can obtain the ruby-postgres library via the gem command
gem install ruby-postgres.

SQLite: The SQLite adapter was originally written by Luke Holden and was updated
for SQLite3 support by Jamis Buck. The adapter requires the sqlite-ruby library for
SQLite2 support and the sqlite3-ruby library for SQLite3 support. You can obtain the
sqlite-ruby library via the gem command gem install sqlite-ruby.You can obtain
the sqlite3-ruby library via the gem command gem install sqlite3-ruby.

SQLServer: The SQLServer adapter was written by Joey Gibson with updates provided by
DeLynn Berry, Mark Imbriaco, Tom Ward, and Ryan Tomayko. The adapter is currently
maintained by Tom Ward. The adapter requires the Ruby DBI library and support for either
ADO or ODBC drivers be installed on the machine. You can obtain the DBI library from
www.Tubyforge.org/projects/ruby-dbi. If you intend to use the ADO drivers, included in
the DBI download should be the file bdi-0.1.0/1ib/dbd/ADO.rb. Once the DBI library is
installed, this ADO. rb file should be copied to your-ruby-install-directory/1lib/ruby/
site_ruby/1.8/DBD/ADO/ directory. ODBC driver support varies for each operating system
and is outside of the scope of this book. Please refer to your specific operating system’s doc-
umentation for details on properly setting up ODBC driver support.

Note You will probably need to manually create the ADO directory within the DBD directory before placing
the ADO. rb file in it.

Sybase: The Sybase adapter was written and is maintained by John R. Sheets. The adapter
requires the Sybase-ctlib library to be installed on the machine as well. You can obtain the
Sybase library via http://raa.ruby-lang.org/project/sybase-ctlib/.

Supplying the Adapter-Specific Information

The final step before you can start to actually use Active Record is to establish a connection to
your specific database. If you are connecting to Active Record through a Rails application, you
generally provide these details in a database.yml file in your applications config directory. You
supply these connection details in YAML format. However, the YAML approach is really just Rails
syntactic shorthand for calling the ActiveRecord: :Base.establish connection method. Since
this is a book about Active Record (and not Rails), throughout our examples, we will generally
call the establish _connection method rather than use the YAML file option.

The establish _connection method expects parameters to be passed as hash values, and
each adapter has its own set of acceptable parameters. Let’s take a look at each situation in

http://www.oracle.com
http://www.rubyforge.org/projects/ruby-oci8
http://www.rubyforge.org/projects/ruby-dbi
http://raa.ruby-lang.org/project/sybase-ctlib

CHAPTER 1 " INTRODUCING ACTIVE RECORD

detail. We will also provide an example call of the establish _connection method for each
adapter.

DB2 Parameters

The minimum DB2 requirements are the adapter and database parameters. Here is the complete
list of parameters to consider:

adapter: Specifies that this is connection information for a DB2 database. The value can
be either db2 or ibm-db2 for the IBM adapter.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database. The default value is nothing.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text. The default value is nothing.

schema: Optional parameter containing the initial database schema to be set.
The following example shows how to open an Active Record database connection for DB2:

ActiveRecord: :Base.establish_connection(:adapter => "db2",
:database => "artest", :username => "kevin", :password => "test")

Firebird Parameters
The minimum Firebird requirements are the adapter and database parameters. Here is the

complete list of parameters to consider:

adapter: Specifies that this is connection information for a Firebird database. The value
should be firebird.

database: The name of the database that you are attempting to connect to. This value can
be either an alias of the Firebird database, the full path of the database file, or a full Firebird
connection string.

Note If you provide a full Firebird connection string in the database parameter, you should not specify the
host, service, or port parameters separately.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database. If this value is not provided, the underlying operating system
user credentials are used (on supporting platforms).

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text. This parameter is required if
the username parameter is supplied but should be omitted if the username is not provided.

11

12

CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

host: Optional parameter containing the domain name of the machine that hosts your
database. You should not provide this parameter if you are providing the full connection
information in the database parameter. Some platforms require that you set this to localhost
when connecting to a local Firebird instance through a database alias.

port: Optional parameter containing the port on which the database is available for connec-
tions. This parameter is required only if the database is only available on a nonstandard port
and the service parameter is not provided. If the service parameter is provided, this value
will not be used.

service: Optional parameter containing the service name. This parameter is required only
if the host parameter is set and you are connecting to a nonstandard service.

charset: Optional parameter containing the character set that should be used for this con-
nection. You should refer to your Firebird documentation for the valid values that can be
used with this parameter.

The following example shows how to open an Active Record database connection for Firebird:

ActiveRecord::Base.establish connection(:adapter => "firebird",
:database => "test", :host => "www.yourdbserver.com",
:username => "kevin", :password => "test")

FrontBase Parameters

The minimum FrontBase requirements are the adapter, database, and port parameters. Here
is the complete list of parameters to consider:

adapter: Specifies that this is connection information for a FrontBase database. The value
should be frontbase.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

host: Optional parameter containing the domain name of the machine that hosts your
database.

The following example shows how to open an Active Record database connection for
FrontBase:

ActiveRecord: :Base.establish_connection(:adapter => "frontbase",
:database => "test", :host => "www.yourdbserver.com")

MySQL Parameters

The minimum MySQL requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

http://www.yourdbserver.com
http://www.yourdbserver.com

CHAPTER 1 " INTRODUCING ACTIVE RECORD

adapter: Specifies that this is connection information for a MySQL database. The value
should be mysql.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

socket: Optional parameter that contains the socket that should be used to communicate
with the MySQL database. If this parameter is omitted, the adapter assumes a value of
/tmp/mysql.sock.

port: Optional parameter containing the port on which the database is available for
connections.

sslkey: Required parameter if you are connecting to a MySQL database via SSL.
sslcert: Required parameter if you are connecting to a MySQL database via SSL.
sslca: Required parameter if you are connecting to a MySQL database via SSL.
sslcapath: Required parameter if you are connecting to a MySQL database via SSL.
sslcipher: Required parameter if you are connecting to a MySQL database via SSL.

The following example shows how to open an Active Record database connection for
MySQL:

ActiveRecord::Base.establish connection(:adapter => "mysql", :database => "test",
:username => "kevin", :password => "test")

OpenBase Parameters

The minimum OpenBase requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for an OpenBase database. The
value should be openbase.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

host: Optional parameter containing the domain name of the machine that hosts your
database.

13

14

CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

The following example shows how to open an Active Record database connection for
OpenBase:

ActiveRecord::Base.establish connection(:adapter => "openbase",
:database => "test", :host => www.yourdbserver.com,
:username => "kevin", :password => "test")

Oracle Parameters

The minimum Oracle requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for an Oracle database. The value
should be oracle.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

The following example shows how to open an Active Record database connection for Oracle:

ActiveRecord::Base.establish connection(:adapter => "oracle",
:database => "test", :username => "kevin", :password => "test")

PostgreSQL Parameters

The minimum PostgreSQL requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for a PostgreSQL database. The value
should be postgresql.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

port: Optional parameter containing the port that the database is available for connections.

host: Optional parameter containing the domain name of the machine that hosts your
database.

min_messages: Optional parameter that allows you to set the min_message value within
your database for this connection.

schema_search_path: Optional parameter containing a comma-separated list of schema
names to use in the schema search path for the connection.

http://www.yourdbserver.com

CHAPTER 1 " INTRODUCING ACTIVE RECORD 15

allow_concurrency: Optional parameter that contains either the value true or false. If the
value is set to true, the connection uses asynchronous query methods, which will help
prevent the Ruby threads from deadlocking. The default value is false, which uses blocking
query methods.

encoding: Optional parameter that allows you to specify the encoding to use.

The following example shows how to open an Active Record database connection for
PostgreSQL:

ActiveRecord: :Base.establish_connection(:adapter => "postgresql”,
:database => "test", :username => "kevin", :password => "test")

SQLite Parameters

The minimum SQLite requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for a SQLite database. The value
should be sqlite.

database: The name of the database that you are attempting to connect to.

The following example shows how to open an Active Record database connection for
SQLite:

ActiveRecord: :Base.establish_connection(:adapter => "sqlite", :database => "test")

SQL Server Parameters

The minimum SQL Server requirements are the adapter and the database parameters. Here is
the complete list of parameters to consider:

adapter: Specifies that this is connection information for a Microsoft SQL Server database.
The value should be sqlserver.

mode: Optional parameter containing the mode in which you wish to make the connec-
tion. Valid values are ado or odbc. If this parameter is omitted, the adapter defaults to the
ADO mode.

database: The name of the database that you are attempting to connect to.

host: Optional parameter containing the domain name of the machine that hosts your
database.

dsn: Required parameter if the mode is odbc. This parameter references the name of your
data source set up in your ODBC settings.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

16

CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

port: Optional parameter containing the port on which the database is available for
connections.

autocommit: Optional parameter to turn the autocommit feature of SQL Server on or off.
Valid values are true and false. If this parameter is omitted, the adapter defaults to true.

The following example shows how to open an Active Record database connection for SQL
Server:

ActiveRecord::Base.establish connection(:adapter => "sqlserver",
:database => "test", :username => "kevin", :password => "test",
thost => "www.yourdbserver.com")

Sybase Parameters

The minimum Sybase requirements are the adapter and the database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for a Sybase database. The value
should be sybase.

database: The name of the database that you are attempting to connect to.

host: Optional parameter containing the domain name of the machine that hosts your
database.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

The following example shows how to open an Active Record database connection for
Sybase:

ActiveRecord: :Base.establish connection(:adapter => "sybase",
:database => "test", :host => "www.yourdbserver.com",
:usrname => "kevin", :password => "test")

Learning More

By design, Active Record abstracts many of the details of each database, leaving the developer
free to focus on the details of coding the application. Switching from one backend database to
another, from an Active Record view, generally requires little more than changing your connec-
tion information. For the most part, Active Record developers are shielded from having to learn
the specifics of any one database implementation—or even most of ANSI SQL for that matter.
Still, each database is fundamentally different and will provide varying levels of support
for features and data types. Some will readily support triggers, sequences, and stored proce-
dures; others will not. Some will have elegant ways of dealing with CLOB and BLOB data types;
others will not. Each ActiveRecord adapter does its best to create a common denominator for

http://www.yourdbserver.com
http://www.yourdbserver.com
http://www.yourdbserver.com
http://www.yourdbserver.com

CHAPTER 1 " INTRODUCING ACTIVE RECORD

each of these issues, so that nearly all Active Record methods, techniques, and data types are
available for each type of database. But as you can imagine, this is a difficult goal to achieve.
Databases, like any software application, continue to grow more and more complex and add
new features all the time.

With all this in mind, I recommend that you become as familiar as you can with the spe-
cific database application you intend to use. I also highly recommend that you learn at least
the basics of ANSI SQL. These two chores will help you tremendously throughout your career
in debugging and developing even the most advanced Active Record programs. The following
list is a rundown of the most common databases available today and some good starting points
for learning more about each:

DbB2: DB2 has been around for a very long time, and some even consider it to be the first
database product to use SQL. DB2 is a commercial product provided by IBM and comes
in a variety of forms for a variety of platforms. For more information about DB2 you should
visit www-306.ibm.com/software/data/db2.

Firebird: Firebird is a free-of-charge relational database that runs on Linux, Windows,
and a variety of Unix platforms. It is based on the source code released by Inprise Cor-
poration on July 25, 2000. For more information and to download Firebird, you should
visit www. firebirdsql.org.

FrontBase: FrontBase is a relational database primarily designed for Mac OS X. Licenses
for FrontBase are now free. For more information, you should visit waw.frontbase. com.

MySQL: MySQL is an open source relational database developed and primarily maintained
by MySQL AB. There are MySQL versions for most all platforms. For more information, you
should visit www.mysql.com.

OpenBase: OpenBase is a commercial relational database that has been around since
1991. It is provided by OpenBase International and is available for a variety of platforms
including Max OS X, Linux, and Microsoft Windows. For more information on OpenBase,
you should visit www.openbase.com.

Oracle: Oracle is a commercial relational database provided by Oracle Corporation.
There are Oracle versions for most all platforms. For more information, you should visit
www.oracle.com.

PostgreSQL: PostgreSQL is an open source, object-relational database. PostgreSQL is avail-
able for various platforms. For more information, you should visit www.postgresql.org.

SQLite: SQLite is a public domain C library that implements a SQL database engine. You
can run SQLite on most platforms. For more information, you should visit waw.sqlite.org.

SQL Server: SQL Server is a commercial relational database provided by Microsoft. SQL
Server is primarily designed for the Microsoft platform. For more information, you should
visit www.microsoft.com/sql.

Sybase: Sybase is a commercial relational database provided by Sybase Corporation. Sybase
versions are available for a variety of platforms. For more information, you should visit
www . sybase. com.

17

http://www.firebirdsql.org
http://www.frontbase.com
http://www.mysql.com
http://www.openbase.com
http://www.oracle.com
http://www.postgresql.org
http://www.sqlite.org
http://www.microsoft.com/sql
http://www.sybase.com

18

CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

Building Your First Active Record Program

This section will walk you through writing your first Active Record program. It will explain the
core concepts of Active Record, including the assumptions it makes in order to dramatically
simplify development. Finally, we’ll begin to explore the ways you can change these assump-
tions (a topic which we’ll dig deeper into later on in the book).

As previously mentioned, Active Record is an ORM library. ORM is a way of persisting
objects to and from relational databases. Recall that, with ORM, an object is analogous to
a database table, and individual instances of that object are represented as rows in the table.
Finally, the individual member variables of an object are represented as columns in the table.

The elements of a standard Active Record program follow:

1. Include or require the Active Record gem.

2. Establish a connection to your database using the appropriate adapter.

3. Define your Active Record classes by extending the ActiveRecord: :Base class.
4. CRUD away.

Recall the accounts table from earlier in this chapter:

Accounts table
id field (integer; auto-incremented; primary key)
username field (text type field)
password field (text type field)

We'll use this accounts table in our examples throughout the rest of this chapter.

Your First Example

Below is the source code for your first Ruby program that uses the Active Record library. The
program simply establishes a connection, creates an account object, and stores the attributes
of that account object in the database as a new record:

require "rubygems"”
require gem "activerecord"

ActiveRecord: :Base.establish connection(
:adapter => "mysql",
:host => "localhost",
:username => "project"”,
:database => "project development")

class Account < ActiveRecord::Base
end

account = Account.new
account.username = "cpytel”
account.save

CHAPTER 1 " INTRODUCING ACTIVE RECORD 19

This simple Active Record program includes the Active Record gem, which you installed
previously. It establishes a connection to the project _development database with username
project.

Next, the Account class is defined. Notice that there is nothing in the class. Our Active Record
objects will eventually have stuff in them, but for now, its important to note that no configura-
tion is needed to get up and running with basic functionality. We've merely supplied the database
connection parameters.

Finally, we instantiate a new Account object, set the username member variable, and save
the instance of the object back to the database.

It’s possible to merely connect to the database and be up and running because of the
assumptions that Active Record is making and because Active Record gets the rest of its con-
figuration from the database itself.

Active Record Assumptions and Conventions

Our first Active Record program example makes full use of Active Record assumptions and coding
conventions. This speeds our development, eases our typing workload, and makes our example
seem almost magical. Active Record makes the following assumptions:

¢ Itinfers database table names based on class names.
¢ It assumes the existence of certain database columns.

The first assumption of an Active Record class is the table name. In the case of our Account
class, the table Active Record assumes is accounts. It makes this assumption based on the fol-
lowing guidelines:

¢ The name of the table within the database is the pluralized name of the class defined in
your Active Record program. In our experience, this assumption turns out to be one of
the large productivity boosts you'll recognize with Active Record once you get used to it,
because it enables the developer to gloss over the naming conventions and instead
concentrate on the programming aspects.

¢ The table name is in lowercase. This is important to note because each database may
support case in a variety of ways. Since Ruby variables start with lowercase characters and
constants start with uppercase characters, Active Record prefers to force all table and col-
umn names to lowercase (via a downcase method call). In many of the database systems,
case does not really matter when referring to a table or column, so the Active Record
downcasing should not cause a problem. For the select few in which case is important,
Active Record jumps through as many hoops for you as it can to keep its lowercase prefer-
ence in line with the specific adapter code for that database.

¢ If the class name includes multiple words that begin with capital letters, the words will
be separated by underscores in the table name.

Table 3-1 lists some examples of assumptions Active Record would make based on the
guidelines we've just outlined.

20

CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

Table 3-1. Examples of Active Record Table Pluralization

Class Name Table Name
Account accounts
Person people
UserImage user_images
Address addresses
Currency currencies
Mouse mice

As you can see from the Table 3-1, Active Record is intelligent about pluralizing the class
names. In addition, Active Record also assumes that each table has an automatically incremented
integer primary key column named id.

When an Active Record class is instantiated and any data is accessed within the class,
Active Record reads the columns of the table and maps these to the class’s attributes. While
there aren’t formal conventions for the naming of columns, since Active Record only creates
an attribute in the Active Record class that matches the name of the column, many of the
Ruby and Rails naming conventions are seen in a typical Active Record table, including the
liberal doses of underscores.

When Active Record reads the columns of the database table and creates the attribute
mappings, it also reads the data types of those columns and makes sensible mappings among
the attribute types and the database column types, as you might expect. However, the boolean
attribute type is a little different for two reasons. First, a boolean type is not supported in all
databases supported by Active Record. Second, in Ruby only the false constant and the value nil
are considered false. As a workaround, Active Record attribute methods expand the values
considered false to include an empty string, 0, "0", "false", and "f". Conversely, the val-
ues 1, "1", "true", and "t" are considered true.

These few assumptions, coupled with the dynamic language features provided by Ruby
(such as duck typing), provide a foundation that makes it possible to provide an incredibly
powerful, yet straightforward, feature set.

Note Duck typing is a form of dynamic typing in which the type of an object is not determined strictly by
its class but by its capabilities. This term comes from the idea that if it walks like a duck, and quacks like
a duck, it must be a duck. You can read more about duck typing at http://en.wikipedia.org/wiki/
Duck_typing.

Overriding the Assumptions

While staying true to the Active Record way of doing things can free you up to worry about
other things during application development, obviously your application may have some
constraints that require you to override some of the assumptions that Active Record is making,
particularly if you are working with a legacy database.

http://en.wikipedia.org/wiki

CHAPTER 1 " INTRODUCING ACTIVE RECORD

If you want table names to be singular instead of plural, you can set the configuration
parameter pluralize table names:

ActiveRecord: :Base.pluralize table names = false

If, instead, you need to override a table name completely, you specify this in the Active Record
class itself. For instance, if our Accounts class should persist to a table named AccountBean, we
would specify the Account class as follows:

class Account < ActiveRecord::Base
set_table _name "AccountBean"
end

Additionally, if your primary key column is not named simply id, you can override this
from within the class definition as well:

class Account < ActiveRecord::Base
set_primary key "accountId"
end

If you want to use a primary key other than an automatically incremented integer, you
must set the value of the primary key yourself, and you must still use the id attribute to do so.
Additionally, you should only use the id attribute to set the primary key. To retrieve the value
of the primary key, you must use your overridden attribute name.

For example, if we've overridden the account primary key to be account_number, and we
want to use a custom key format, our Account creation code would need to be as follows:

account = Account.new
account.id = "X5476"
account.save

And to retrieve the account_number of an account, you would use this:

puts account.account_number #=> X5476

Retrieving Objects from the Database

With the groundwork laid regarding Active Record knowledge about our database, the dynamic
nature of Ruby Active Record is able to help us work with our objects. For instance, to retrieve
objects from the database we have a core method find. If we know the value of the primary
key that we want, for instance 1, we can simply call it:

Account.find(1)

In addition, it is possible to use a feature of Active Record called dynamic finders. These
allow you to easily find records by their attribute values. For example, if you wish to find the
account with the username equal to cpytel you can simply write:

Account.find by username("cpytel")

While dynamic finders are fun magic, let’s be sure not to get ahead of ourselves. Using the
normal find method, the following code would return the same result as the dynamic finder:

Account.find(:all, :conditions => ["username = ?", "cpytel"])

21

22

CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

Note A lot of Active Record magic, such as dynamic finders, is made possible by using the Ruby’s
method_missing function; method_missing allows you to handle situations when a message is sent to an
object for which it doesn’t have a method. The method find_by username doesn’t exist in the code anywhere,
so it is being handled by method missing.

Once we've retrieved an Active Record object, say with
account = Account.find by username("cpytel")
we can delete the associated record from the database by calling this method:
account.destroy

When you use the destroy method listed here, you are really only executing a SQL delete
statement within your database. The record will no longer be available within your database,
but your Active Record object, whose attributes were populated with data from that record,
will still be available to you as a read-only instance of the object. This object will persist until
it goes out of scope within your application or you specifically delete that instance. This turns
out to be a handy feature when you want to report on the deletion of data, as the following code
snippet shows:

account = Account.find(1)

do a variety of things within your application...

account.destroy

puts "we just deleted the record with id of #{account.id} from the database"

We go into more detail on the various CRUD actions you can perform with Active Record
in Chapter 2.

Exploring Active Record Relationships

Relationships among objects, that is, when one or more objects are associated with one
another, are not only an incredibly important part of the functionality of the Active Record
library, but also of any real-world application. There are several types of relationships, and
we'll cover them all in detail in Chapter 4.

All configuration options for a relationship occur within the Active Record class definitions
themselves. For our Account class, we want to add a relationship to a Role object, so we can tell
what type of account we have on our hands. We start off by manually defining our roles table
within our database:

Roles table
id field (integer; auto-incremented; primary key)
name field (text type field)
description field (text type field)

We want our account class to hold the reference to the account’s role, and we want the
foreign key (the column in one table that points to the ID of a row in another) to be in the accounts
table. So we define this relationship of roles to accounts in our account model with the belongs to
method. First, we add our Role class definition:

CHAPTER 1 " INTRODUCING ACTIVE RECORD

class Role < ActiveRecord::Base
end

Next, we modify our definition of the Account class as follows:

class Account < ActiveRecord::Base
belongs to :role
end

With those new class definitions we now have a unidirectional relationship between
Account and Role. This relationship is unidirectional, because Account knows what role it has,
but Role does not know what Account class instances have it.

With this relationship in place, we now have an attribute for the role relationship of our
account objects. However, we first need to make sure that we have a role to work with.

Along with the dynamic finder methods we've already seen, Active Record also has
a find_or_create_by * dynamic finder. This finder works just like the normal find_by *
method, but if a matching object is not found, one will be created for you. We’ll use this
method to make sure that our desired role exists:

admin_role = Role.find or create by name("Administrator")
We can then assign our administrator role to our account:
account.role = admin_role

Putting the pieces together, we can now show a more complete and realistic example
of an Active Record program. Here we set up our connection, define two models that have
a one-to-many relationship, and perform a number of basic CRUD operations:

require "rubygems"
require gem "activerecord"

ActiveRecord: :Base.establish connection(
:adapter => "mysql”,
thost => "localhost”,
:username => "project”,
:database => "project development")

class Role < ActiveRecord::Base
end

class Account < ActiveRecord::Base
belongs to :role
end

admin role = Role.find or create by name("Administrator")

account = Account.new
account.username = "cpytel”
account.role = admin_role
account.save

23

24

CHAPTER 1 ©" INTRODUCING ACTIVE RECORD

puts "#{account.username} (#{account.id}) is a(n) #{account.role.name}
cpytel (1) is a(n) Administrator

comment out the following line to avoid deleting the created account
account.destroy
puts "We have just deleted the #{account.username} account!"

Them’s the Basics!

Believe it or not, in just one chapter, we've introduced you to Active Record and walked you
completely through installing and configuration; plus, we've built and explained complete
working programs showing the basic CRUD operations. It really is amazing how little you need
to do to get started with Active Record!

Of course, there’s a lot more to Active Record than just the basics we've covered here
(otherwise, this would be a very short book!). In the next few chapters, we’ll dig into the guts of
Active Record and show you how to take full advantage of the Active Record feature set. Before
you know it, you'll go beyond building simple CRUD programs and start building full-featured
applications with complex business logic seamlessly integrated with your database via
Active Record!

CHAPTER 2

Active Record and SQL

Active Record interacts with SQL primarily on a CRUD (create, read, update, delete) basis.
Those are the only actions that happen to model objects, and there are a number of ways that
Active Record makes their use much easier on programmers. In this chapter, we're going to go
over how each of these actions translates to the SQL you would normally use to accomplish
the same tasks. Then, we’ll show you how you can accomplish other common SQL functions,
such as locking and transactions.

Creating a Record

Creating an object inserts it into its table in the database. In SQL, this would happen with an
INSERT statement. With Active Record, this happens with the save method. From this angle,
both creating and updating a record look the same. The save method will create new records
and update old ones with equal ease and transparency.

Recall the example from the previous chapter:

account = Account.new
account.username = "cpytel”
account.password = "secret"
account.save

Assuming that you are saving a new object, the foregoing code would translate into the
following SQL:

INSERT INTO accounts ('username', 'password') VALUES ('cpytel', 'secret')

Note The id column is not specified in the INSERT preceding statement. Active Record knows the pri-
mary key column is special and leaves it out. Normally, you would make the id automatically increment in
a manner that’s appropriate to your database, which keeps the rows individually accessible.

If the creation of the object is successful, the values will be inserted into the database.
However, if the save is unsuccessful, the save method will return false. Then too, there is an
alternative save method called save!. The save! method will raise a RecordNotSaved exception
if the save was not successful.

25

26

CHAPTER 2 = ACTIVE RECORD AND SQL

It’s also possible to create objects in one swift stroke using the create method. This
method works almost exactly like new plus save. If it is possible for Active Record to save the
object with the attributes you've passed in, it will. If it can't, it won't. In either case, the object
is returned and ready for normal use. This is useful if you have an object that can easily be
instantiated in one line, for example:

bookmark = Bookmark.create(:url => "http://www.apress.com", :name => "Apress")

There are also some dynamic methods for creating objects, but we’ll discuss those when
we get to the finder methods.

Note When Active Record translates the value of an attribute into the data that will be used in the SQL
query, the value is given to the connection-specific adapter for translation into the format that the database
expects. For example, giving a date or time field a Ruby Time object will convert the value into YYYYMMDD
hh:mm: ss format when used with a MySQL database. Each type of value is converted in the same way. The
values are also escaped by the adapter so that errant quotation marks or comment sections do not acciden-
tally trip up the database and cause it to do something it wasn’'t meant to do.

Active Record also allows you to create multiple objects across associations. For example,
if you had the following object

class Person < ActiveRecord::Base

belongs to :parent, :class name => "Person"

has_many :children, :class name => "Person", :foreign key => :parent id
end

you could perform the following actions to create a parent and its children all at once:

person_1 = Person.new :first name => 'Bonnie', :last_name => 'Pytel’
person 2 = Person.new :first name => 'Chad', :last_name => 'Pytel’
person_1.children << person_2

person_1.save

The preceding code will result in the following SQL statements, assuming that the first
record inserted will be given the id of 1:

INSERT
INTO people ("first name™, “last name™)
VALUES ("Bonnie™, Pytel™);
INSERT
INTO people ("first name™, “last name™, “parent id")
VALUES ("Chad, “Pytel™, 1);

http://www.apress.com

CHAPTER 2 = ACTIVE RECORD AND SQL

Reading a Record

Once you've saved your records to the database, you're going to need a way to get them back.
In SQL, this would happen with the SELECT statement, and with Active Record, you use the
find method. The definition of the find method is rather ambiguous, so looking at the names
of the arguments isn’t going to help. As it turns out, find has a few different ways of getting
your data back to you.

It’s probably best if we deal with find as acting like two different methods: one that will
retrieve objects with the specified IDs (which is simple) and one that will find objects with
amore complicated set of criteria. The first form of the find method takes a list of one or more
integers:

book = Book.find 5

This invocation of find will query the database for the row that has an ID column equal to
5. Specifically, it is equivalent to

SELECT* FROM books WHERE (id = 5)

Similarly, you can give an array of integers to this form of find, and it will return all of the
corresponding rows. For example, the following invocation of find

books = Book.find 1, 3, 5, 7, 9
will generate the equivalent of the following SQL statement:
SELECT * FROM books WHERE (id IN (1, 3, 5, 7, 9))

The find method possesses quite a lot more power than simply fetching a list of IDs. We
have a whole relational database at our disposal, so we'd better use it for something more than
a glorified hash table, right? As it turns out, find’s other syntax has a much longer list of avail-
able options.

This second version of find takes two arguments. The first controls how many results will
be returned. It can be either : first or :all. Using : first is the same as tacking LIMIT 1 to the
end of the equivalent SQL. Using :all does what you'd expect; it selects over the entire table;
an example follows:

Account.find :all

SELECT * FROM accounts
Account.find :first

SELECT * FROM accounts LIMIT 1

The last argument to find can be a hash of options; this is where the real fun happens.
The list contains a number of possible options, each of which roughly correspond to some
part of a normal SQL SELECT statement. The valid keys for the options hash are :conditions,
:include, :order, :select, :group, : joins, :from, :1imit, :offset, :readonly, and :1lock. Each
of the following sections will present these different values, and offer instructions for their use.

27

28

CHAPTER 2 = ACTIVE RECORD AND SQL

:conditions

The :conditions options supplied to the find method will be converted into the WHERE clause
of the SQL statement. Like the find method itself, there are a number of ways you can prop-
erly pass it in. You can pass a string or a hash of column names and values, or you can specify
a more complex string of SQL along with values to interpolate inside an array, as follows:

[Nl

Account.find :all, :conditions => "keyword = 'ruby
Account.find :all, :conditions => { :keyword => 'ruby' }
Account.find :all, :conditions => ["keyword = ?", 'ruby']

These statements will all generate the following WHERE clause:
SELECT * FROM accounts WHERE keyword = 'ruby'

You can also do more interesting things like find all accounts named John Doe who have
no favorite band:

Account.find :all, :conditions => { :first name => @first name,
:last_name => @last_name,
:favorite band_id => nil }

which would result in the following SQL query:

SELECT *
FROM accounts
WHERE
first name = 'John'
AND last name = 'Doe’
AND favorite band id IS NULL

You can also have full control over the content of the WHERE clause, because in the Array
form of the conditions parameter, you can specify full SQL instead of having it generated for
you. This SQL is grouped inside parentheses in the final query, so you don’t have to worry
about a stray OR statement ruining your results. In the following example, the Array form of the
conditions parameter is used in a query to find the records that have been recently updated,
or those in the included set of IDs:

Account.find :all, :conditions => ["updated on > ? OR id IN (?)",
@last_update,
[2,3,5 7, 11]]

It will result in the following SQL:

SELECT *
FROM accounts
WHERE
updated on > '20061214 15:29:12'
OR id IN (2, 3, 5, 7, 11)

As mentioned earlier, Active Record will interpolate the values supplied as conditions for
you, making sure that they are quoted properly to avoid any potential issues, both accidental

CHAPTER 2 = ACTIVE RECORD AND SQL

and intentional. It will also make sure to properly convert data types, like the date used in the
previous example, into whatever format your database expects.

:include

Here, we have the FROM clause in your SQL statement. The : include parameter will take a (poten-
tially very) nested hash of symbols that corresponds to the names of relationships you've defined
for your model, and add them as joining conditions. For example, assume that, in your social
network, you have the following classes:

class Person < ActiveRecord::Base
has_many :favorites
end

class Favorite < ActiveRecord::Base
belongs to :person
belongs to :band

end

class Band < ActiveRecord::Base
belongs to :location
end

class Location < ActiveRecord::Base
end

If you wish to find people who like bands that are based in a particular city, you can use
the :include hash as follows:

city = 'Boston'
Person.find :all, :include => { :favorites => { :bands => { :location => {} } } },
:conditions => ["locations.city = ?", city]

The generated SQL would be

SELECT *

FROM people
LEFT OUTER JOIN favorites

ON people.id=favorites.person_id
LEFT OUTER JOIN bands

ON favorites.band_id=bands.id
LEFT OUTER JOIN locations

ON bands.location_id=locations.id
WHERE locations.city = “Boston”

The SQL will look like the preceding statement under most circumstances. However, if the
tables included loop back on themselves, the table names will need to be relabeled. Therefore,
if we had the following class

29

30

CHAPTER 2 = ACTIVE RECORD AND SQL

class Person < ActiveRecord::Base

belongs to :parent, :class _name => "Person"

has_many :children, :class name => "Person", :foreign key => :parent id
end

we would need to use the following statement to find people who have a child with a particu-
lar name:

Person.find :all, :include => {:children => {}},
:conditions => ["children people.name = ?", name]

If Active Record finds that it’s trying to join back to a table it has already included, it will
change the name of the table to eliminate ambiguity. It does this using a breadth-first search
of all the keys in the hash table, so in the rather contrived example of

:include => { :parent => { :parent => {}}, :children => {}}

the parent can be referenced via parents_people, but the parent’s parent must be referenced
via parents_people_2.The full method call for obtaining all the people whose grandparents
have a specific name is

Person.find :all, :include => { :parent => { :parent => {} },
:conditions => ["parents people 2.name = ?", name]

This would generate the following SQL clause:

SELECT *
FROM people
LEFT OUTER JOIN people AS parents people
ON parents people.id = people.person id
LEFT OUTER JOIN people AS parents people 2
ON parents people 2.id = parents people.person_id

When there are no includes specified—so there is only one table involved in the query—
the SELECT clause is an asterisk (*) for simplicity. However, once you include other models into
your find call, the columns become specified and are aliased so Active Record can tell them
apart. For example, the actual SELECT clause from the preceding query looks like this:

SELECT
people. id” AS t0_ro,
people. person_id™ AS t0 r1,
people. name”™ AS t0 12,
parents_people. id” AS t1_ro0,
parents_people. person_id™ AS t1 r1,
parents_people. name™ AS t1 12,
parents people 2.7 id" AS t2_r0,
parents_people 2. person_id™ AS t2 ri1,
parents_people 2. name” AS t2 r2
FROM

CHAPTER 2 = ACTIVE RECORD AND SQL

This way, all of the fields can be differentiated and placed into their proper objects before
being given back to you.

:order
The :order parameter is where you define the sorting order that would normally appear in the
ORDER clause.

Account.find :all, :order => "created on DESC, last name, first name"

As you can see this example, the format for the order string is the same as the ORDER BY
clause in SQL. Therefore, the SQL generated from the preceding example is

SELECT * FROM accounts ORDER BY created on DESC, last name, first name

When you specify the :order option, you are literally specifying a snippet of the SQL
statement that will be sent to your database server. Therefore, the naming rules described in
the previous section, which come as a result of using the : include option, apply to the columns
specified in the :order parameter as well.

:select

You can use the :select option to specify some extra columns in the SELECT clause. Any extra
columns will be added as additional attributes on the returned objects. However, because
Active Record doesn’t know how to save these extra attributes, the objects it returns will auto-
matically be marked as read only, so they cannot be saved.

The :select option is most often used together with the :group or : joins options, both of
which are described in the following subsections. For now, let’s do something simple and add
an extra string to our returned objects, as shown in the following SQL statement:

SELECT accounts.*, "extra data" FROM accounts
The Active Record equivalent would be

Account.find "all", :select => "accounts.*, 'extra data

:group

Much like the :order option described earlier, what you specify in the :group option directly
translates to a portion of the SQL query to be performed. In this case, it is the GROUP BY clause
of the SQL statement. The Active Record find call

Account.find :all, :group => "last name"
will result in the following SQL:
SELECT * FROM accounts GROUP BY last name

It will most often be the case that you will use the : group option in concert with the
:select option to define some additional grouped parameters. For instance, if you wanted to
find the number of people who have the same last name, you could do the following

Account.find :all, :select => "COUNT(last name) AS total, *", :group => "last name"

31

32

CHAPTER 2 = ACTIVE RECORD AND SQL

which would result in the following SQL:

SELECT COUNT(last name) AS total, * FROM accounts GROUP BY last name

;joins
While the join parameter is similar in function to the :include option, it works on a lower level
in the resulting SQL statement. The value given to the : joins option is a string that will get
added to the FROM clause of the SQL statement. You can use this to perform a join on tables to
which you don’t have a defined Active Record relationship. While such a join may not be some-
thing that you will use on a normal basis, it can be very powerful in the situations where you
do need it.

For example, if you have a legacy table named visits that does not have a defined rela-
tionship to your Active Record model’s table and you need to join against and select out of
visits, your code might look something like the following:

Account.find :all,
:joins => "LEFT JOIN visits ON accounts.id=visits.account"

The result will be the following SQL query:
SELECT * FROM accounts LEFT JOIN visits ON accounts.id=visits.account id

Asyou can see, the value given to the :joins option is appended to the FROM portion of the
SQL; it does not replace it. Therefore, your model’s table, in this case accounts, will always be
included in the FROM clause. If you don’t want your model’s table to be included, you can use
the : from option, described next—but, in that case, you also should probably consider just
querying the database directly, using either the find by sql or execute methods, described
later in this chapter.

:from

Whereas the :joins option will let you specify extra tables to join to in the FROM clause, the
:from option allows you to specify the entire contents of the FROM clause of the SQL statement.
For example, given the same visits table mentioned in the : joins example, we can reverse
the query to stem from visits:

Account.find :all,
:from =>

'visits LEFT JOIN accounts ON visits.account=accounts.id"
And the following SQL query will result:

SELECT * FROM visits LEFT JOIN accounts ON visits.account=accounts.id

:limit and :offset

The :1imit and :offset options both take an integer and correspond directly with the LIMIT
and OFFSET clauses in SQL. For example, the following statement:

Account.find :all, :limit => 10, :offset => 20

CHAPTER 2 = ACTIVE RECORD AND SQL

will find you the twenty-first to thirtieth people in the people database, using the following
SQL query:

SELECT * FROM accounts LIMIT 10 OFFSET 20

:readonly

As previously mentioned, when a query returns data columns that don’t correspond to
columns in a table, for example, manually added joins using the : joins option or grouped
columns using :select and :group, Active Record will mark the each record returned as read
only, as it won’t know what to do with those columns. You can override that behavior by pass-
ing :readonly => false as an option.

Likewise, sometimes you just don’t want your data to be changed. For security purposes,
you can add :readonly => true to your options, and you won't be able to save the records that
come out of that particular find call.

:lock

You can use the :1lock option to have the database lock the selected rows. The value given for
the lock option is either the Boolean true or an SQL fragment like LOCK IN SHARE MODE. If you
pass in true, Active Record will use the default locking syntax for your connection. For a com-
plete discussion of the locking features of Active Record, see the “Locking” section later in this
chapter.

Dynamic Finders

It just wouldn'’t be Ruby if we didn’t have a cleaner, easier way to access data. The normal find
method works well, but it can get unwieldy if you're not careful. Thankfully, Active Record pro-
vides dynamic finders that can find your data while still looking clean.

You can use these dynamic finders by starting a method call with find by or find _all by
and adding in the columns you want to search on, as shown in the following example:

Person.find by username @username
You can also search on multiple columns by separating them with and _:
Song.find all by artist id and genre @artist.id, @genre
These uses of the dynamic finder methods are the same as the detailed find calls:

Person.find :first, :conditions => { :username => @username }
Song.find :all, :conditions => { :artist id => @artist.id, :genre => @genre }

Like all of the different find variations, the dynamic finders also take an options parame-
ter as their last argument, so you can :1imit, :order, :group, :lock, and so on, just as you
would with the normal syntax.

Additionally, if you find yourself in a scenario where you want to search for an object and
create it if it does not exists, you can use the dynamic finder find or create by , which works
justlike the find_by method but with one exception: instead of returning nil if a matching
object is not found, that object will be created. find_or create_ by can come in handy during
legacy data importing, for instance, if you have a list of categories to which a product could

33

mailto:@artist.id
mailto:@artist.id

34

CHAPTER 2 = ACTIVE RECORD AND SQL

belong. Assume you're given a text file that tells you the product and to which category it
belongs, as shown here:

HTW2, Dairy
HTZ3, Meat
HTW3, Dairy
HTH9, Product

In this example data set, you know each product is unique, and therefore, you could loop
through each line of the file, creating the product. However, you know that the categories can
be repeated, as shown with the Dairy category above. You wouldn’t want to create the Dairy
category twice. This is an ideal scenario for find_or create by , as follows:

p = Product.new(:number => @product number)
p.category = Category.find or create by name(@category name)
p.save

This code will appear inside a loop and assumes that the product number and category
name have been placed inside the @product_number and @category name, respectively. The cat-
egory on the product can safely be set, without fear of duplication, because that category has
either been found or was created based on the category name.

Updating a Record

Updating a record looks a lot like creating a record, at least with save. Like creating, though,
there are a few other methods for updating one or more attributes besides the normal save
method. For example, the use of the save, update_attribute, and update_attributes methods
will all generate the same SQL statement in the end:

song.name = "Ruby Dear"
song.save
song.update attribute :name, "Ruby Dear"
song.update attributes :name => "Ruby Dear"
The resulting update statement would look as follows:

UPDATE songs SET “name” = 'Ruby Dear', “artist™ = 'Talking Heads' WHERE id = 2

The update_attribute method only works on a single attribute. It takes two parameters,
the name of the column and the new value to save. The update_attributes method takes in
only one parameter, a hash containing the pairings of names and values that should be saved.

Note When you call update_attributes (and update attribute), Active Record basically sets the
attributes you specify and calls save, so any other changes you’ve made to attributes will be saved along
with the arguments to update_attributes.

CHAPTER 2 = ACTIVE RECORD AND SQL

It’s important to note that when a record is saved because of update_attributes, that save
is not subject to validation checks. If you have an invalid record for whatever reason, the
attributes will be updated anyway. This is important to know, because if you're ever in a situa-
tion in which you have an invalid object but still need to toggle a flag or set a status, you can.

While creation of related objects will occur when your object is created, as described in
the “Creating a Record” section earlier, it is important to note that associated objects do not
behave similarly when updates are performed. For example, in the following code, the modifi-
cation to the Category model will not be saved:

p = Product.find 1
p.category.name = "Changed"
p.save

Therefore, you must explicitly call save on associated objects, for example:

p = Product.find 1
p.category.name = "Changed"
p.category.save

That being said, it is not necessarily commonplace to perform the type of operation illus-
trated here, especially in a web-based application.

Deleting a Record

Sometimes, data has to go away. We know, it’s not always a pleasant thought, but not all data is
useful all the time. Sometimes the user makes a mistake; sometimes data is past its prime and
needs to get put out to pasture. Regardless of the reason, Active Record is capable of handling
the deletion of rows from the database using several different methods: destroy, destroy all,
delete, and delete_all.

Calling destroy on an object will delete it from the database keyed on its primary key. For
example, the following call

song = Song.find(3)
song.destroy

would be the same as this one:
DELETE FROM songs WHERE id = 3

Similarly, you can use the destroy class method like you can use find and pass in one or more
IDs, which will be instantiated and then have the destroy method called on them. For example

Song.destroy(10, 11, 20)
would be the same as
DELETE FROM songs WHERE id IN (10,11,20)

Calling destroy (and also passing an ID to the class’s destroy method) means that any
deletion-triggered callbacks that the model might have instantiated, such as a cascading
delete or a cascading nullify on its relationships, will be called. If you would prefer to delete
something without calling all the callbacks or instantiating the objects, you can call delete. It
works exactly the same way as destroy but does not call the callbacks.

35

36

CHAPTER 2 = ACTIVE RECORD AND SQL

You can also delete_all and destroy all. These two methods work the same way as the
destroy and delete methods do, except they delete all of the records of the Active Record class
on which they are called. Additionally, they optionally take a hash of options that will be used
to construct the WHERE clause of the SQL statement as a parameter. This options hash works in
exactly the same way as the :conditions option does for the find method. The following
example

Song.destroy all :artist => "Garth Brooks"
is the same as this:
DELETE FROM songs WHERE artist = "Garth Brooks"

When you have associated models that should not exist without each other being present,
such as the person models used previously in the chapter, you may want to ensure that when
one object is deleted, the others are deleted as well. You can accomplish that using the
:dependent option on the relationship definition, as shown here:

class Person < ActiveRecord::Base
belongs to :parent, :class_name => "Person"
has_many :children,
:class_name => "Person",
:foreign key => :parent id,
:dependent => :destroy
end

With the :dependent => :destroy option on the :children association, if the object is
deleted, then the associated children objects will also be deleted, for example:

bm = Person.new(:first name => "Bob", :last name => "McCracken")
pm = Person.new(:first name => "Pam", :last name => "McCracken")
jm = Person.new(:first name => "Joey", :last name => "McCracken")

bm.children << pm
bm.children << jm
bm.save

This code executes the corresponding SQL statements:

BEGIN;
INSERT
INTO people (“first name™, “last name™, “parent id")
VALUES ('Bob', 'McCracken', 0);
INSERT
INTO people (“first name™, “last name™, “parent id")
VALUES ('Pam', 'McCracken', 1);
INSERT
INTO people (“first name™, “last name™, “parent id")
VALUES ('Joey', 'McCracken', 1);
COMMIT;

CHAPTER 2 = ACTIVE RECORD AND SQL

Afterward, the people table would have the following entries:

oo . I —— +
| id | parent _id | first name | last name |
oo . I —— +
1]o	Bob	McCracken	
2	1	Pam	McCracken
3	1	Joey	McCracken
oo . I —— +

Now, if you subsequently execute the following code

bm = People.find_by first name_and_last_name("Bob", "McCracken")
bm.destroy

it will result in the following SQL statements being executed:

SELECT * FROM people WHERE (people.parent id = 1)
BEGIN
SELECT * FROM people WHERE (people.parent id
DELETE FROM people WHERE “id™ = 2
SELECT * FROM people WHERE (people.parent id = 3)
DELETE FROM people WHERE “id™ = 3
DELETE FROM people WHERE “id™ = 1
COMMIT

2)

As you can see in these SQL statements, each of the children is loaded and deleted, and
then the parent object is deleted as well. Each of the objects is loaded because each is literally
having destroy called on it, which means that all of the callbacks are called as with a normal
destroy call. If you do not wish for all of the callbacks on the children to be called, you can
change :dependent => :destroy to :dependent => :delete_all.If you do this, the call to
bm.destroy will result in the following SQL statements being called:

BEGIN

DELETE FROM people WHERE (parent id = 1)
DELETE FROM people WHERE “id™ = 1
COMMIT

You can see from this SQL that when :dependent => :delete_all is used on the children’s
relationship, the children are not loaded. Rather, a normal delete_all is performed. This means
that any destroy callbacks on the children will not be executed.

Completely Nondynamic Finders

It should be mentioned that Active Record, in the end, works by passing an SQL string to the
database through an adapter. Since Active Record doesn’t deny its roots, you are also able to
access the database in a more direct fashion. To this end, Active Record supplies a find_by sql
method as well as the execute method.

You can use the find_by sql method to pass in a string of SQL and obtain an object that
contains the attributes you specify in the SELECT clause. The useful thing about find_by_sgl is

37

38

CHAPTER 2 = ACTIVE RECORD AND SQL

that Active Record will still return an array of objects, saving you the tedium of having to parse
through everything yourself. The type of object that gets returned is the same as the class that
find_by sql was called on. That this means if you call

Song.find by sql("SELECT users.* FROM users")

you’ll have an array of Song objects that contain User data. So be careful about what data
you're expecting to return.

Because the find_by sql method will create objects from the return value of the SQL, you
cannot use it to execute any bit of arbitrary SQL. Therefore, if you are seeking to execute truly
custom SQL statements, including INSERT and UPDATE statements, the execute method is what
you'd want to use. You can do anything with the database that you'd need to (except, of course,
return fields) through this function.

Transactions

Many databases support the idea of transactions, that is, if there is an error performing
a statement, which occurs within a specified block, the database will be rolled back to the
state it was in before the block of statements.

A simple example for transactions is when you need to perform two actions, the second of
which should not occur if there is a problem performing the first. The classic example is a bank
account transfer. In SQL, an account transfer would be performed in the following manner:

UPDATE accounts SET balance=balance-300.00 WHERE id=3;
UPDATE accounts SET balance=balance+300.00 WHERE id=4

In this example, $300.00 is being transferred from account number 3 to account number 4.
If something were to go wrong with removing the $300.00 from account number 3, the addi-
tion of $300.00 to account number 4 would still occur. While that might make account holders
happy, it certainly doesn’t make the bank happy. The solution to the problem is to wrap the
SQL statements in a transaction. With most databases that support transactions, you demar-
cate a transaction using the BEGIN and COMMIT (or ROLLBACK) statements, as follows:

BEGIN
UPDATE accounts SET balance=balance-300.00 WHERE id=3
UPDATE accounts SET balance=balance+300.00 WHERE id=4
COMMIT

With the BEGIN and COMMIT (or ROLLBACK) statements now enclosing the SQL commands, if
something goes wrong, the database will be returned to the state it was in before the opera-
tions were performed. In other words, any failure will cause the database to be rolled back to
before the transaction began.

Fortunately, Active Record fully supports transactions. In fact, all save and destroy method
calls are wrapped in transactions by default, to ensure that all save and destroy procedures,
including the callbacks, are atomic.

However, the transactions in Active Record really just result in the BEGIN, COMMIT, and
ROLLBACK statements being used (or the corresponding statements specific to the database you
are using). Therefore, if your underlying database does not support transactions (such as the
MyISAM table format in MySQL), then the transaction code will have no effect. Fortunately,

CHAPTER 2 = ACTIVE RECORD AND SQL

you can use the transaction code without error on databases that don't support transactions,
but this may result in a false sense of security.

Our simple update statements for transferring the money, like the previous SQL state-
ments, follow:

my account.update attribute(:balance, my account.balance-300.00)
your account.update attribute(:balance, your account.balance+300.00)

To wrap this code in a transaction, you use the transaction class-level method on the
Active Record model, which would look like the following:

my_account = Account.find 3
your_account = Account.find 4
Account.transaction do
my account.update_attribute(:balance, my account.balance-300.00)
your_account.update attribute(:balance, your account.balance+300.00)
end

The SQL generated from these statements will be very similar to the SQL statements that
added and subtracted from the account balance previously, but the computation of the new
balance was performed in Ruby (i.e., my_account. .balance-300.00). The resulting SQL statements
from the Active Record preceding update_attributes calls are shown following:

SELECT * FROM accounts WHERE id=3;
SELECT * FROM accounts WHERE id=4;
BEGIN;
UPDATE accounts SET balance=20.00 WHERE id=3;
UPDATE accounts SET balance=340.00 WHERE id=4;
COMMIT;

It’s important to note that a transaction will not only be rolled back if something wrong
occurs at just the database level. When using an Active Record transaction, if any exception is
raised, the transaction will automatically be rolled back by Active Record. To take advantage of
this rollback, the preceding Ruby code that modifies the account balances can be refactored
to ensure that no account will contain less than $0.00. Because additional code will be added,
the existing Account model will be refactored to have withdraw and deposit methods, as follows:

class Account < ActiveRecord: :Base
def withdraw amount
update attribute(:balance, balance-amount)
if balance < 0
raise
end
end

def deposit amount
update attribute(:balance, balance+amount)
end
end

39

40

CHAPTER 2 = ACTIVE RECORD AND SQL

Now, given the preceding Account class, you can perform the following actions:

my_account = Account.find 3
your_account = Account.find 4
Account.transaction do
my_account.withdraw(300.00)
your account.update attribute(300.00)
end

If subtracting $300.00 from my account will result in a negative balance, an exception will
be raised, and the transactions will be rolled back. In the preceding scenario, if the beginning
balance of account number 3 is only $20.00, which would result in a negative balance, then
the SQL for the Ruby code would actually look like this:

SELECT * FROM accounts WHERE id=3;
SELECT * FROM accounts WHERE id=4;
BEGIN;
UPDATE accounts SET balance=-280.00 WHERE id=3;
ROLLBACK;

Because the balance of the account is negative, COMMIT is not called at the end of the
transaction block; rather, the ROLLBACK statement is called.

Note If you need to do transactions across multiple databases, you can nest transactions. For an example
of how to do this, see the “Common Active Record Questions” section in Chapter 5.

It is important to note that the value of my_account.balance at the end of the previous
actions will still be -$190.00. Because the transaction rollback occurs at the database level, not
at the object level, the objects themselves will not be returned to their original state. Currently,
Active Record does support object-level transactions, but they are deprecated. They are not
commonly needed and will be removed from the release of Active Record included in Rails 2.0;
therefore, they will not be covered here. If you do, in fact, need this functionality, it is available
in the object_transactions plug-in from Jeremy Kemper (also known as bitsweat) at http://
code.bitsweat.net/svn/object transactions.

Locking

Active Record supports two forms of locking, optimistic and pessimistic. In Active Record,
optimistic locking means that the database records are versioned, and before an objects is
actually saved back to the database record, the version you are saving is checked against the
version in the database to make sure the model was not otherwise modified while you were
working on it. If it was modified, an exception is raised. The other type of locking in Active Record,
pessimistic locking, is simply row-level locking, as supported by the database.

http://code.bitsweat.net/svn/object_transactions
http://code.bitsweat.net/svn/object_transactions

CHAPTER 2 = ACTIVE RECORD AND SQL

Optimistic Locking
As previously mentioned, optimistic locking in Active Record is accomplished by keeping track

of which version of a model you are working with. The use of optimistic locking is triggered
simply by adding a column named lock version to your model’s database table.

Tip You are responsible for ensuring that the database schema defaults the lock_version column to 0.
Additionally, you can use a different column name by calling the set_locking column method in your model.

If the version of the object you are working on is out of date, when you attempt to save
your object, an ActiveRecord: : StaleObjectError exception will be raised. It is your responsi-
bility to handle this error by either rolling back or providing the logic needed to resolve the
possible conflict. Because of this, it is very common to use transactions along with locking.

To further illustrate optimistic locking, it can be used to ensure that the Account records
are not modified by multiple processes, thereby ensuring that your account data remains con-
sistent. Here’s our trusty Account model, repeated here for your reference:

class Account < ActiveRecord: :Base
def withdraw amount
update attribute(:balance, balance-amount)
if balance < 0
raise
end
end

def deposit amount
update attribute(:balance, balance+amount)
end
end

If optimistic locking is enabled on the Account model by including a lock_version column
in your accounts table, the following code will cause an ActiveRecord: : StaleObjectError to
be raised:

my_accountl = Account.find 3
my_account2 = Account.find 3

my_accountl.withdraw 20
my_accountil.save

my_account2.withdraw 40
my_account2.save # This line raises an ActiveRecord::StaleObjectError

The exception was raised, because the object was previously modified. This example is
somewhat contrived, but hopefully, you can envision that the modification of the Account
object might take place in another process or web request, and in that case, knowing that your
underlying record has changed before attempting to save it would be very important.

41

42

CHAPTER 2 = ACTIVE RECORD AND SQL

Pessimistic Locking

The second form of locking that Active Record is capable of is pessimistic locking. Active
Record’s implementation of pessimistic locking is simply row-level locking as supported by
your database. Therefore, if your underlying database does not support locking, neither will
Active Record.

There are two different ways to invoke a row-level lock on your data. The first is by using
the :1lock option of the find method. As described when we introduced the find method, the
:lock option to find takes either the Boolean true or a string that is a database-specific lock-
ing statement. If you give the option the Boolean true, the locking statement will default to
FOR UPDATE. For example, the following statement

Account.find 3, :lock => true
will result in this SQL statement, with the row for the account with an ID of 3 locked for updating:
SELECT * FROM accounts WHERE id=3 FOR UPDATE
And this Active Record code
Account.find 3, :lock => "LOCK IN SHARE MODE"

will result in the following SQL statement, with the row for the account with the ID of 3 locked
in share mode:

SELECT * FROM accounts WHERE id=3 LOCK IN SHARE MODE

You can also use the instance method lock!, which will reload your row with locking for
just that row. For example, the following method call

my_account = Account.find 3
my_account.lock!

results in the following SQL statements:

SELECT * FROM accounts WHERE id=3
SELECT * FROM accounts WHERE id=3 FOR UPDATE

CRUD Isn’t Cruddy

Now that you've explored how Active Record relates to the underlying SQL statements it cre-
ates, you have a better appreciation for the power of Active Record, as well a more complete
understanding of what Active Record does and how it works. In addition, hopefully you've
begun to understand how to think about the basic Active Record operations in the context of
the four basic CRUD operations. If you're using Active Record in the context of Ruby on Rails,
thinking about Active Record this way will be especially helpful.

You may have also started to notice recurring patterns in the way names of Active Record
classes and attributes relate to the generated SQL. In the next chapter, we’ll explain how to set
up and maintain your database using standard Active Record naming conventions and tools.
And of course, we'll show you how to break these conventions for your own twisted uses.

CHAPTER 3

Setting Up Your Database

If you've been reading through this book from the start, you should now be pretty comfort-

able with the basic idea of Active Record and how to write create, update, read, and delete

operations. So you're just about ready to start digging into all the juicy details and extras that
Active Record brings to the table. There is just one last detail to get out of the way, and that’s

the process of actually setting up our database.

Designing Active Record-Friendly Tables

Later in this chapter, you will be introduced to Active Record migrations, a powerful way to set
up and maintain your database schema with nothing more than simple Ruby code. Before we

get into that though, let’s take a quick minute to review the things you should keep in mind
when designing tables for use with Active Record. Most of these things were covered in Chapter 1

when we talked about Active Record assumptions, but as these assumptions are especially

important to keep in mind when you are designing your tables, they’re worth a quick review
here as well. Ready?

Every table should have an automatically incrementing primary key called id. If you chose
not to follow this rule, you will have to specifically define your primary keys within your
models with the set_primary key method and specifically define your foreign keys for
each of your associations.

Table names should be plural. If you choose not to follow this rule, you will have to specifi-
cally define your table names from within your models with the set_table name method.

Tables and fields should stick to lowercase letters. Ruby is a case-sensitive language, so it
stands to reason that Active Record objects are also case sensitive. For example, assume
you have an account table with a field labeled account_username. From within your Ruby
code, you would be able to access the data from an Active Record object (account in this
example) as account.account_username but not as account.Account_Username or any other
case variation (this would throw a method_missing error). We will revisit this issue when
we talk about legacy systems and especially the find_by sql method in Chapter 7.

43

44

CHAPTER 3 " SETTING UP YOUR DATABASE

To track record additions and updates, tables should have fields called created on or
created at and updated on orupdated at. If these fields exist within your table, Active
Record will automatically populate them with the timestamp when records are created
for the created onor created at field or when records are updated for the updated on or
updated_at field. If you prefer to use another field name for either of these, you can just
use callbacks to keep these fields properly updated. We cover the details of callbacks in
Chapter 4.

Foreign keys should be of the structure tablename_id. If you choose not to follow this rule,
you will have to specifically define what field to use for each of your associations.

Active Record treats 0, "0", "false", and "f" as false for Boolean field types, whereas in
general Ruby syntax, all those values evaluate to true. Each database implements Boolean
data types a little bit differently, and some don’t support them at all. As an attempt to work
properly in as many cases as possible, Active Record will convert values to Ruby true or
false values for most Boolean field types. Just keep in mind that this conversion to Boolean
types is done by Active Record magic to work around a Ruby design issue. If you find that
you are having problems with Booleans in your Active Record programs, you should check
how the specific adaptor for your database implements Boolean types. We talk more about
Booleans and other data types in Chapter 7.

Active Record assigns values to all fields within a table. When you save a new Active Record
object or do an update on an Active Record object, Active Record actually assigns a value
to every field within the table in the database. If you haven'’t set a value for a given field,
the field will be set to nil. This is important to remember, because it means default values
set up within your database (like a timestamp) will most likely not be triggered since
a specific value is provided (nil) for the field. We covered this issue in Chapter 2 with cre-
ate and update statements and will speak about it again in Chapter 7, when we deal with
legacy database systems.

The items in this list are the key things you should keep in mind when designing your
database tables. You can ignore each as you see fit for your specific needs, but doing so gener-
ally means more typing and more work for you as a developer. So, all things being equal, we
believe you're better off making your database conform to the way that Active Record is designed
to work.

Traditional Database Management

Now that you recall the basic naming conventions and design rules we should follow when
defining our tables, it’s finally time to start building our real tables. If you are coming from
a development background in another language such as Java, PHP, Perl, or Active Server Pages
(ASP), it’s likely that you've been building database-driven applications in the traditional man-
ner. That is, every time you build an application, you go through steps like these:

5.

CHAPTER 3 " SETTING UP YOUR DATABASE

. Define and design your tables in a database management program such as SQL Server

Enterprise Manager, TOAD for Oracle, MySQL Administrator, or even in something like
batch SQL scripts.

Configure your development environment to work with the database details you have
just defined and set up, generally with configuration files (XML, properties, or simply
text files).

Start writing your application logic.

Load data into your testing database manually with your database administration pro-
gram, through some batch SQL scripts, or through a custom-built web or application
administration tool.

Test, release, repeat.

While your specific situation may vary from project to project, the previous steps are the
common and general things we programmers do when we build an application. And while
they are a proven and tested approach, there are some common problems that most of us
have just learned to accept.

Common Problems with the Traditional Approach

Admittedly building database-dependent web sites and applications with the traditional
approach is not too complex of a process. We've all been using that same process for years,
and many successful projects have been built using it. Still, if you take a minute to think about
the process itself, there are a few common problems that come into focus:

You need to do a lot of jumping back and forth between your database application and
your code environment. This means a slower development time and a higher potential
for error. Each environment also comes with its own set of knowledge requirements,

and that means you have to learn a lot to do even the simplest of projects.

You need to know how to work within your specific database environment, which often
includes having to know the ins and outs of the specific SQL syntax your database engine
supports. Dealing with the various SQL syntax gets worse if you intend to develop against
one database backend but release to production on another

Note Switching from one database backend to another is common in Rails development, because it’s
usually easier to work locally with a database like MySQL, but many people prefer the higher performance of
an Oracle or SQL Server for production environments.

¢ Asyou make updates and changes to your database, you must maintain those changes

across all of your environments—and often there is no easy way of rolling back or
undoing those changes if errors occur.

45

46

CHAPTER 3 " SETTING UP YOUR DATABASE

While none of these problems are show stoppers on their own, it certainly seems like
there should be an easier way to do things. And, as you probably guessed by now, Active
Record does have another option for you—migrations.

Managing Your Database with Migrations

Before we get into the details of using Active Record migrations and show you some example
code, we need to get a few key definitions out of the way. First, just what are Active Record
migrations? The following is our plain English base definition: Active Record migrations offer
a pure Ruby solution to managing the creation and evolution of database schema.

From a more technical point of view, migrations come in the form of a Domain Specific
Language (DSL) that is expressly created for abstracting out the differences in database defini-
tions and managing changes of the database and its tables. In case you are not familiar with
what a DSL is, Wikipedia defines DSL as “a programming language designed for, and intended
to be used for, a specific kind of task” (see http://en.wikipedia.org/wiki/Domain_Specific_
Language for more Wikipedia information on DSL).

We think that’s a pretty clear definition, but we'll take it a few steps further to be specific
within our realm. As Active Record developers, our migration DSL is a set of Ruby instructions
or modules that allow us to create more Ruby programs that we use to build and manage our
database schema. The migration DSL is like a language within a language. It is how we interact
with our database without having to actually learn everything about our database environment
and without having to do anything directly within our database application.

For us, the key to working with our migration DSL is to learn the keywords and their
related actions. The rest is all Ruby syntax (which you already know) and database design the-
ory (we covered the basic rules for this at the start of this chapter and have hopefully defined it
in more detail as part of our application specifications before we sat down and started to write
any code).

How the DSL Works

The DSL essentially enables us to map our database schema to an Active Record schema. The
documentation for Active Record Schema states this:

Active Record Schema allows programmers to programmatically define a schema in
a portable DSL. This means you can define tables, indexes, etc. without using SQL
directly, so your applications can more easily support multiple databases.

What this really means is that the ActiveRecord: : Schema class is where all the real action
of your database schema definitions and maintenance happens. As we build our migrations,
we will be continuously switching between our database schema and our Active Record schema.
While this switching back and forth between database and Active Record schema will often be
transparent to you, the developer, it nonetheless occurs quite often and is accomplished pri-
marily through the ActiveRecord: : SchemaDumper class.

http://en.wikipedia.org/wiki/Domain_Specific_

CHAPTER 3 " SETTING UP YOUR DATABASE

Note We’ll use ActiveRecord: :SchemaDumper at various points in our examples later in the chapter to
show just in what state our database schema is at a given time.

Finally, we have the actual migration wrapper class. This is where all the parts we've talked
about previously come together and our scripts come to life.

The important thing to remember is that migrations involve a DSL and act as a wrapper,
or glue, for the other pieces of our database to set up the code and DSL we've mentioned pre-
viously. We should also mention that, because migrations abstract the details of working with
your specific database, they rely heavily on each database adapter to perform many of the
database-specific functions (that is, to do the actual conversion from the migration DSL to the
database-specific SQL that will be executed against the database). If you find that you are hav-
ing trouble with a specific migration situation, you will likely want to refer to your adapter code
and documentation first.

It’s also important to remember that with migrations you're actually just working with
Ruby code. Migrations can perform calculations, manipulate data, and do anything that you'd
normally be able to do within Ruby. Because of this, migrations can prove to be a very, very
powerful tool in the Ruby programmer’s arsenal.

In the end, using migrations means that, as a developer, you can work strictly in Ruby
code to set up and manage your database. And you can more easily switch among database
backends as you like, because all of the database SQL specifics have been abstracted for you!

Migrations are also an important part of making sure you and your development team
keep your databases in sync from revision to revision and to make sure that everything goes as
planned when you'’re deploying your applications to a different database or machine. That
sounds pretty exciting, doesn’t it? And, believe it or not, migrations are not even all that hard
to learn or use!

Using Migrations
We've mentioned the traditional steps that programmers go through when building database

applications. Now, let’s compare that process to the steps that a programmer goes through
using Active Record migrations:

1. Create a connection for your Active Record program to your database. This is generally
done through a YAML configuration file or through the ActiveRecord: :Base.establish
connection method.

2. Create and execute Ruby scripts using the Active Record migration DSL syntax and rules.
3. Start writing your application logic.

4, Load data into your testing database manually with your database administration
program, through some batch SQL scripts, through custom-built web or application
administration tool, or via fixtures with your migration scripts.

5. Test, release, repeat.

47

48 CHAPTER 3 " SETTING UP YOUR DATABASE

At first glance, this process may not seem that much different than the traditional approach.
However, after closer examination, you will see the following key differences and that those
differences directly address the common problems with the traditional approach:

¢ Everything is done from within Ruby scripts. There is no switching among environments
or wasting time learning the ins and outs of multiple environments.

e The migration DSL abstracts the database-specific details for you, so you no longer
need to know the ins and outs of your specific database. Oftentimes, you don’t even
need to know anything about the specific SQL that your database engine supports. You
can now switch among database engines with almost no extra effort (as long as the
Active Record database adapter supports migrations).

* Since all of your database schema changes are now stored in migration scripts (which
should be versioned), you now have an audit trail of all your actions. The biggest advan-
tage to this is that you can rebuild your database from scratch regardless of the database
backend by simply running your migration scripts in sequential version order! If your
database supports the related database management SQL syntax, such as rollback state-
ments, you can also roll back from a given state to any previous state by simply executing
your migration scripts in reverse version number order.

If you aren'’t excited by now about working with Active Record migrations, then you're
either in the wrong profession or you just haven't suffered through the traditional approach
enough yet (build a few more midsized Java applications and then come check out Ruby and
Active Record)! For the rest of us who can't wait any longer, let’s get into the details of actually
using migrations—and what better place to start then with how to execute your migration
scripts.

Executing Migration Scripts

Migrations, like Active Record itself, evolved out of the Rails framework, so migrations are still
somewhat tightly coupled with the Ruby on Rails framework. If you want to run migrations
outside of the Rails framework, it’s very feasible, but you will need to do just a little bit more
work than if you want to run migrations within your Rails framework. To be thorough, we’ll
explain how to execute migrations in both situations, starting with the Ruby on Rails framework.

Executing Migrations Within Ruby on Rails

Within a Ruby on Rails project, migrations are stored in the db/migrations folder and are named
by prepending numbers, in sequential order, to the script name. When you run script/generate
migration from your Rails root and give it a name, it will generate a file using the next number
available. For example, executing the command script/generate migration create users_
table will make a file in db/migrate called 001_create_users table.rb.

Running the migrations to apply the Active Record schema to your database schema
within the Rails framework is done with a Ruby on Rails rake task and can move the migration
version up or down to any specific revision using a command like rake db:migrate [VERSION=X].

CHAPTER 3 " SETTING UP YOUR DATABASE

Note If you leave off the VERSION parameter, it will attempt to migrate the database as high as it can go
by adding one to the highest version number found in the schema_in+o table.

Executing Migrations Outside of Ruby on Rails

The rake method for generating and running migrations described previously is only valid if
you are working from within the Ruby on Rails framework. As we mentioned, though, you can
still use migrations outside of the Rails framework, you will just need to create your own script
to run the migrations. Lucky for you, we're going to get you started on that task.

The following script assumes that you will be storing your database configuration details
in aYAML file called database.yml. For simplicity, the following script, the YAML file, and your
migrations are assumed to all be located in the same directory.

require 'rubygems'
require_gem 'activerecord'

if ARGV[0] =~ /VERSION=\d+/

version = ARGV[0].split('=")[1].to i
else

version = nil
end

@logger = Logger.new $stderr
ActiveRecord: :Base.logger = @logger
ActiveRecord::Base.colorize logging = false

@config = YAML.load file(File.join(File.dirname(FILE), 'database.yml'))
ActiveRecord: :Base.establish connection(@config["development"])
ActiveRecord: :Migrator.migrate("", version)

Assuming you place the preceding script in a file called migrate.rb, you can run your
sequentially numbered migrations with the command ruby migrate.zrb.

Note This script does not generate the migration files. You'll still need to create and populate the files by
hand (or write another script to generate them).

Finally, executing a migration will create (or update depending on the project life cycle)
a table in your database called schema_info that contains the number of the latest run migra-
tion file. The schema_info table is used to determine which migration script to start with the
next time you run a migration process as well as what number to prepend to any new migra-
tion scripts.

49

50

CHAPTER 3 " SETTING UP YOUR DATABASE

Note You should always be able to run your migrations back and forth from version zero to wherever you
are at any time. It’s not mandatory to be able to do that, but it's sound migration practice, because it lets you
make sure your database is in a sane state at all times. If you can’t bring your database from migration zero
to your latest state, then migrations really haven't allowed you to automate or simplify the management of
your database schema. Therefore, you should avoid using model class names inside migration files, because
if you remove one of those classes later on, you won't be able to do a clean migration from zero forward.
Stepping through your scripts will, instead, throw an error when older versions of your script can’t find the
referenced class.

The Anatomy of a Migration File

Regardless of how you create your migration scripts (either via the Rails generate command or
simply by hand), they all should start out with a basic structure that looks something like the
following:

class CreateUsersTable < ActiveRecord::Migration
def self.up
end

def self.down
end
end

In this structure, the up method will get called when you're migrating up to the latest ver-
sion (i.e., when you are releasing new code and updates) and down will get called when you're
migrating down to a previous version (i.e., when you are rolling back because of unexpected
errors or problems).

The up and down methods are each run inside of a transaction. This means that if an
exception occurs during migration execution, the transaction will be rolled back, and the
schema_info version number will not be updated.

Caution At the time of this writing, MySQL could not successfully roll back ALTER TABLE statements, so
despite the fact that a migration is run in a transaction, if an exception occurs, the MySQL database will
likely be left in the state just prior to the occurrence of the exception. This situation is a good reason to get
very comfortable with the ActiveRecord: : SchemaDumper class, as it will allow us to check just what state
our database is in at any given time (and act accordingly). We’ll show the SchemaDumper in action within our
example code in a minute.

Migrations in Action

Because the concept of migrations is somewhat of a paradigm shift for most of us traditional
developer types (those of us coming from a background other than Ruby or Ruby on Rails),

CHAPTER 3 " SETTING UP YOUR DATABASE

we've found that some examples can make learning migrations easier. Examples go a long way
in helping to point out the specific details and situations involved in implementing migrations.

Let’s pretend that we need to build an application that is going to track information about
milk production. We’ll have information about farmers, cows, milk, and various other milk
production issues (some of which we will recognize and retrofit as needed). The overall basic
concept of our example will be to report on how much a given farmer sells milk to various
stores for.

With all of this in mind, we are finally ready to start coding our migrations! Throughout
the rest of this chapter, we’ll walk you through the various CRUD operations as they relate to
migrations, and where possible, we’ll compare and contrast the migration approach to that of
the traditional database development approach.

Creating Tables

The first thing you’re going to want to do when you start using migrations is create the tables
that you're going to be using for your application.

Since this is our first migration and we want to move forward with our development
process, we'll be using the up method. And since we want to create our first table, we'll be
using the create_table method to give the table its definition. In the following code we create
a cows table:

Script to create the first version of a cows table
def self.up
create table :cows do |t|
t.column :name, :string
t.column :breed, :string
t.column :born_on, :datetime
t.column :milkable, :boolean
end
end

Before the code is run, your application database should be empty. Here’s how to check
on that:

mysql> show tables;
Empty set (0.12 sec)

The migration code is run when you run rake db:migrate, resulting in the cows table
being created with the following columns:

mysql> describe cows;

e e FIR— T R — e +
| Field | Type | Null | Key | Default | Extra |
e e FIR— T R — e +
id	int(11)	NO	PRI	NULL	auto_increment
name	varchar(255)	YES		NULL	
breed	varchar(255)	YES		NULL	
born on	datetime	YES		NULL	
milkable	tinyint(1)	YES		NULL	
e e FIR— T R — e +

51

52

CHAPTER 3 " SETTING UP YOUR DATABASE

Additionally, if you now list the tables in your database, you can see that not only has the
cows table been created but an additional table as well:

mysql> show tables;

e +
| Tables in test2 development |
e +
| cows |
| schema_info

e +

The schema_info table is a table used internally by the Active Record migrator. It has a sin-
gle integer column named version that is updated with the number of the migration that was
last run. If migrations are run and this table does not yet exist, the Active Record migration
process we are executing will create it. If you select from the table, you can see that there is
a single row, and the value of the version column is 1.

mysql> select * from schema_info;

T — +
| version |
T — +
| 1]
T — +

1 row in set (0.00 sec)

Referring to the original migration code, you can see the create_table method takes the
block form endemic to most DSLs. You can pass a few different options to the create table
method itself to change the way the table works. You can specify the name of the primary key
column with the :primary_ key option. You can turn off a default primary key completely by
adding :id => false; this is most useful when you’re creating a join table for HABTM relation-
ships, which don’t typically have a normal id column. Supplying :temporary => true will
create a temporary table. The :options option will add a free-form string after the definition,
allowing you to specify things like the charset or the database engine in MySQL. Finally, if you
want the table to be created regardless of its current existence, you should use : force => true.

The column method also has a nonblock counterpart, add_column. The difference between
the two is that add_column takes the name of the table it operates on. Aside from that, they're the
same. Both methods take the name of the column you want to create and the data type.
The possible data types are :primary key, :string, :text, :integer, :float, :decimal, :datetime,
:timestamp, :time, :date, :binary, and :boolean, and each corresponds to its database-specific
counterpart when the table is generated. Additionally, the add_column and column methods
take a third argument that is a hash of options that define column configuration. The available
options are :1imit, :default, :null, :precision, and :scale. For more information on the
add_column and column methods and their arguments, including database-specific considera-
tion regarding of each of the configuration options, see TableDefinition#column in Appendix A.

Now that you've provided the self.up method, it will be executed when we run rake
db:migrate from the command line. But what happens if you run rake db:migrate VERSION=0?
If you did that right now, the cows table would still be in the database, which isn’t the state you
might expect it to be in. You might expect, naturally, that version zero of the database is com-
pletely empty. That is what the self.down method is for. The self.down method should always
reverse the action performed in self.up.

CHAPTER 3 " SETTING UP YOUR DATABASE

Of course, there will be times where a destructive action will have consequences that you
cannot reverse, such as the deletion of data. However, it’s still best to think of migrations as
primarily maintaining the structure of the application’s database, and therefore, self.down
should do its best to maintain structure both in forward and reverse. In this case, you need to
remove the table in the self.down method.

You can remove a table with the predictably named drop_table method. This method
actually takes an options hash, but it doesn’t use anything in there as of this writing. Simply
pass it the name of the table you want to drop, and it’s dropped.

def self.down
drop_table :cows
end

It’s that simple. Now, migrating from zero to the most current schema, as defined by our
most recent migration script, and back will keep our database in a consistent state, as shown
following:

mysql> show tables;

R e LT +
| Tables in test2 development |
R e LT +
| schema_info |
R e LT +

Adding, Removing, and Changing Database Columns

There’s more to migrations than simply creating and dropping tables. They let you deal with
any part of database management in an abstract way. If you look at our previous cows table,
you may notice that we forgot to add the farmer _id column. Since a Cow belongs to a Farmer,
the foreign key farmer_id is an important field. What’s more, we've already committed the
migration to source control, so we should assume that someone else has already run it.

Note Once you've committed a migration file, you need to assume that someone else on your project has
obtained the file and run it. This means that you cannot make changes to that file, since the migrator will
assume that the file has already been run and completely ignore your changes, making the database incon-
sistent with the code. It's completely acceptable to have a lot of little migration files that make small changes,
because it keeps everyone working together and unconfused. Migration errors and consistency problems are
some of the most annoying to clean up.

Since we need to add the farmer_id column to the table, we create another migration with
script/generate migration add farmer id column. This command will make the file db/migrate/
002_add_farmer_id_column.

To add a single column, we use the add_column method, as we described previously. It works
just the same as the column method in create_table’s block form, only now you must supply
the name of the table you're working on:

53

54

CHAPTER 3 " SETTING UP YOUR DATABASE

def self.up
add_column :cows, :farmer id, :integer
end

And for reversibility we define the following down method:

def self.down
remove_column :cows, :farmer id
end

Note that the method is remove_column, which may be different from what you'd expect
from the command your DBMS would use.

Now that your migration to add the farmer_id column is finished, you should run rake
db:migrate to make sure that our Cows can see our Farmers. If you go into the mysql console,
you can see that the changes are immediate:

mysql> describe cows;

Hmmmmmm e Hmmmmmm e Hmmmm Hmmm o oo Hmmmmm e +
| Field | Type | Null | Key | Default | Extra

Hmmmmmm e Hmmmmmm e Hmmmm Hmmm o oo Hmmmmm e +
| id | int(11) | NO | PRI | NULL | auto_increment |
| name | varchar(255) | YES | | NULL |

| breed | varchar(255) | YES | | NULL |

| born_on | datetime | YES | | NULL |

| milkable | tinyint(1) | YES | | NULL |

| farmer id | int(11) | YES | | NULL |

Hmmmmmm e Hmmmmmm e Hmmmm Hmmm o oo Hmmmmm e +

You can also rename columns using the rename_column method, which takes as arguments
the table name and the old and new names of the column you want to rename:

rename_column :cows, :born_on, :created on

Finally, you can also change columns with the change_column method. The change column
method works just like the add_column method, except that it works on existing columns and
will change their data types instead of creating a new column. Most database engines will pre-
serve the existing data in a column, if it’s possible.

change_column :address, :postal code, :string

Indexing Columns

One of the important things that developers often forget to do is create indexes on their tables.
Indexes can dramatically decrease query times and should always be in place on often-queried
columns or groups of columns. Especially important are indexes on foreign keys, join tables,
type columns, and compound keys from polymorphic associations. They often go overlooked,
which adds a great deal of overhead to traversing relationships.

You can add an index with the add_index method. Indexes are placed on a table over one
or more columns. The add_index method takes a table name and either a column name or an
array of column names.

CHAPTER 3 " SETTING UP YOUR DATABASE

add_index :cows, :farmer id, :name => "index on_cows_for farmers"
add_index :ownerships, [:farmer id, :tractor id], :unique => true

Notice the :unique => true option. This makes the index a unique index, which will allow
only one instance of any combination of tractor_id and farmer_id.

By default, the name of the index is tablename_allcolumnnames_index. If you didn’t want
the index on the cows table to be named cows_farmer_id index, you could specify the :name
option (as has been done in the preceding example). However, since Active Record doesn’t
really care about the name of the index, it’s not terribly important to have a nice name on it.

The syntax for removing the index depends on how it was named in the first place. If you
let the standard Active Record index naming take place, then you do not need to specify the
index name, as it will be assumed:

remove_index :ownerships, :column => [:farmer id, :tractor id]

However, if you did not take the standard Active Record name, you will need to explicitly
specify the index name in order to successfully remove it:

remove_index :cows, :name => "index_on_cows_for farmers"

You should note that if you're going to remove an index and a table at the same time, it's
important to remove the index first.

Managing Application Data

As mentioned previously, you can use any Ruby code within your migrations. Additionally,
when working within the Ruby on Rails framework, you're migrations will have full access to
all your models (and anything else in the base environment).

When the need arises to manipulate data in your application, such as the need to prepop-
ulate a new column with computed date (e.g., a column called total on a model Order that
holds the precomputed total of all of Order’s LineItems), your first instinct may be to use your
models directly within the migrations to populate this new column. However, it is strongly
recommended that you not use your models directly inside your migrations. This is because
migrations are all about mitigating the problems that come from the differences among data-
bases, developers, and even the times in the same project.

Strictly speaking, you don’t know when you’ll need to change your models, so referencing
them in your migrations, while it could work out perfectly, may end up breaking the migration
process. The ways that your models can change are many, from renaming a method to removing
an entire model altogether. You may not notice that a change has made it impossible to migrate
from migration zero to the latest one (e.g., if your database is at revision thirty and you changed
the model back around revision eight or nine), but you will notice when it comes time to deploy
to the production environment and an empty database.

As we mentioned, you might be inclined to create a migration like the following one to
populate the total column for our Orders model:

def self.up

add_column :orders, :total, :decimal

orders = Order.find(:all)
orders.each do |order|

55

56

CHAPTER 3 " SETTING UP YOUR DATABASE

subtotal = 0
order.line items.each do |line item|
subtotal += line item.quantity * line item.price
end
order.total = subtotal
end
end

def self.down
remove_column :orders, :total
end

While this migration will work just fine, it is brittle. If the relationship between the Order
and LineItem models were to change or the quantity or price methods were to be removed,
the migration would not run. Therefore, rather than using models directly in your migrations,
it is recommended that you use the execute method and ANSI-compliant SQL to perform
manipulations on the data directly, as shown in the following migration code:

def self.up
add_column :orders, :total, :decimal
ActiveRecord.execute("UPDATE orders LEFT OUTER JOIN line items
SET orders.total=SUM(1line items.quantity * line items.price) ON
orders.id=1ine_items.order id")
end

def self.down
remove_column :orders, :total
end

Additionally, if your data manipulations rely on logic contained within your model, you
might go so far as to copy this logic directly into the migration file as a separate method. This
is because you cannot guarantee that that same code will still be present within the model the
next time that migration is run.

Note At the start of this chapter, we talked about migrations being a great, database-independent Active
Record feature, but here we seem to be going against that statement by including raw SQL into our migra-
tion scripts. The difference is that, in our current example, we are using migrations not only to manage our
schema but also to populate various tables within our schema. When you use migrations in this dual-purpose
way, it is better to give up some of the abstraction by using direct SQL rather than give up the ability to move
from one version to another because of the use of models within your scripts.

Another common scenario where you may be tempted to reference your models within
migrations is when you need to load static data into the database. It is much better to use
YAML files (i.e., fixtures within Rails) to perform load operations. Fortunately, Ruby on Rails
has a rake task specifically for data loading chores, available at db:bootstrap. Again, if you are

CHAPTER 3 " SETTING UP YOUR DATABASE

working outside of Ruby on Rails, we still recommend writing a script to load YAML files or
another data format to store and load your basic set of application data into your database,
rather than using migrations.

Migrations Are Easier Than They Sound

Migrations are one of the hardest concepts for new Active Record programmers to truly grasp,
because the concept goes somewhat against the SQL-heavy traditional development process
most of us have been successfully using for years. But if you take a second to step back and
think about what migrations really provide by abstracting much of the database-specific SQL
and adding a sense of version control, you'll see the true advantages of speed and simplicity of
development.

By learning the simple migration DSL and using normal Ruby syntax, Active Record migra-
tions allow you to spend less time thinking about how to create or manage your schema and
more time actually doing it.

57

CHAPTER 4

Core Features of Active Record

Kevin’s a strange bird. Outside of technical books like this one, the books he likes to read
most are marketing- and sales-related. He always tells us that after you've read a few of those
types of books, you'll notice a strong theme of advice that basically boils down to one simple,
golden rule: Get to the core of what you've got and focus relentlessly on it. As it turns out, it’s
great advice for more than just marketing, so without further ado, let’s get to the core of what
really makes Active Record a “wow” library. If you aren’t impressed with what Active Record
provides after this chapter, you're just not passionate enough about coding!

There are three main features of Active Record that are at the real core: callbacks, associa-
tions, and validations. Callbacks are hooks into various logic points of the Active Record life
cycle. Associations provide a means to handle SQL and link together your Active Record models,
and validations allow you to do some basic checks and balances on your data via code. Through-
out this chapter, we'll take a deeper look at each of these features, and since callbacks directly
relate to the life cycle of Active Record objects, we'll start by focusing on them and cover valida-
tions and associations later in this chapter.

Callbacks

When initially trying to learn Ruby and Active Record, we all found the term “callbacks” con-
fusing. The documentation’s definition of callbacks didn’t really help much, and we needed to
play around with real code a while before we felt like we really got the concept. Still, we need
a definition to build from, so here’s a plain English explanation of callbacks:

Active Record objects can perform a large number of methods or actions throughout
their existence; callbacks allow you to insert your business logic before or after many of
these actions.

59

60 CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

As we've mentioned previously, some plain English examples of tasks accomplished by
callbacks may also help you to visualize the concept:

» Before you save an update to the Account table, set the last updated field to the current
time.

* Before you delete a record from the Account table, make sure you delete records from
the contact table that have the deleted record’s account_id.

* After you find a promotional code record, calculate the current subscription cost.

As these examples show, callbacks are really just a nice and simple way to add some poten-
tially complex business logic right into the process of communicating with your database. From
a developer’s point of view, you can implement callbacks by either manually overwriting the call-
back method or by using a callback macro. There are a few subtle differences to each approach,
so let’s look a quick example to explain each.

Implementing Callbacks

The easiest way to implement a callback is to just overwrite the method within your model:

class Account < ActiveRecord::Base
def before save
self.Account_Updated = Time.now
end
end

This approach works great for situations like the preceding example, where you want to
set values for fields programmatically or when you want each descendant of an inheritance
hierarchy to decide if it wants to call the super command and trigger the inherited callbacks—
which points out the biggest disadvantage to the overwriting approach: your callbacks are not
executed through an inheritance hierarchy. This is probably most important, and obvious,
when using callbacks to delete associated records from other tables. Consider this example
from the Active Record documentation:

class Topic < ActiveRecord::Base
def before destroy()
destroy author
end
end
class Reply < Topic
def before destroy()
destroy readers
end
end

Basically, with this approach, when you delete a reply, the destroy readers method is
called, but the destroy_author method is not. If you want to use this approach and make sure
destroy author is called, you need to update your Reply model to take advantage of the super
command:

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD

class Reply < Topic
def before destroy()
destroy readers
super.destroy author
end
end

Callback Macros

Of course, there’s an easier way to that ensure your callbacks are kept intact down through the
inheritance hierarchy—callback macros. Continuing with our example from the Active Record
documentation, you could rewrite the example using macros:

class Topic < ActiveRecord::Base
before destroy :destroy author
end
class Reply < Topic
before destroy :destroy readers
end

Now, when you delete a reply, both the destroy readers and destroy author methods are
called.

Note If you intend to use callback macros to ensure your callbacks are kept intact down through your
inheritance hierarchy, it’s important that you define your callback macros in your model before you specify
your associations. Otherwise, you risk loading your children records before their parent callback, and there-
fore, the parent callback would not be applied to the children.

As you probably guessed, in most cases, callback macros are the way to go. Because of the
inheritance hierarchy, callback macros probably operate like you would intend in most cases,
and they give you the most options for implementation. Actually, four types of callbacks are
accepted by callback macros: method references, callback objects, inline methods, and inline
eval methods (though inline eval methods are now deprecated).

Probably the easiest, and most common, approach you will see is the method reference.
You simply define a protected or private method in your model:

class Account < ActiveRecord::Base
before_save :setupdate
private
def setupdate
self.Account_Update = Time.now
end
end

Sometimes, you might need to perform a large number of tasks with a callback that you
don’t want to clutter up you model with or perhaps share some functionality for callbacks

61

62 CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

across multiple models. These situations are a good times to use objects. There are a couple of
steps required to use this approach to creating callbacks:

1. Specify the object you want called by your callback:

class Account < ActiveRecord::Base
before_save AccountChecks.new
end

2. Define a method within your object that has the name of the callback and accepts your
data record as a parameter:

class AccountCheck
def before save(record)
record.Account_Update = Time.now
end
end

The third, and somewhat less common, approach is to use an inline method. To do this,
you simply put your code into a single-quoted string:

class Account < ActiveRecord: :Base
before save 'self.Account Update = Time.now'
end

You use single quotation marks so that you can include double-quoted strings inside your
inline method; values enclosed in double quotation marks won't be evaluated until the call-
back is actually triggered:

class Account < ActiveRecord::Base
before save 'self.Account Update = "Updated at #{Time.now}"'
end

Though the code for this appears to be shorter, it could also be said that it’s more obscure
and difficult to understand. For this reason, we recommend that, in most cases, you use either
the method or object approach when possible.

It should also be mentioned that in all of the cases mentioned, you may assign multiple
methods, objects, or inline methods to your callbacks:

class Account < ActiveRecord::Base
before save :setupdate, :setloggedin
private
def setupdate
self.Account_Updated = Time.now
end
def setloggedin
self.Account_LoggedIn = Time.now
end
end

CHAPTER 4 ©' CORE FEATURES OF ACTIVE RECORD

Here’s the same example using the inline method approach we outlined previously:

class Account < ActiveRecord::Base
before save 'self.Account Update = Time.now', 'self.Account LoggedIn = Time.now'
end

Specific Types of Callbacks

Now that you understand what callbacks are and the basics of implementing them, let’s look
at the 16 specific types of callbacks we can use. As we mentioned before, we all needed to
digest some code with callbacks before we really felt like we understood them, so we’ll also
examine a working example for each.

after_find

As you would expect, the after find method is initiated after an ActiveRecord: :Base.find
operation.

Note To use the after_ find method, you must define it as a method in your ActiveRecord class; there
is no callback macro for this specific method. The lack of a callback macro for the after find method is built
into the design of Active Record to help improve performance when you use after_ find. The method is
called once for every record that the find method returns, so executing the method via a macro would be
very expensive for your processing resources.

The following example adds a fullname attribute to the account records that are found.
Because we are adding an attribute that is not directly derived from the database table, we
must use the class attribute accessor method (cattr_accessor) as well. We discuss the details
of cattr_accessor in other chapters.

class Account < ActiveRecord::Base
cattr_accessor :Account fullname
def after find
self.Account _fullname = self.Account firstname +
end

+ self.Account_lastname

end

With this example, the following code would trigger the after find method, so each record
within the results would now have an Account_fullname attribute, even though your database
table does not have that specific field or collection of data:

useraccount = Account.find(1)
puts "Found account for #{useraccount.Account fullname}"
#=> Found account for Kevin Marshall

63

64

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

after_initialize

The after_initialize method is executed after an ActiveRecord: :Base.new or ActiveRecord: :
Base.create call. It's important to note that this method is executed before a corresponding
record in the database exists for this object.

Note Touse after _initialize, you must define the method in your ActiveRecord ; there is no callback
macro for after_initialize.This is built into the design to improve performance.

class Account < ActiveRecord::Base
cattr_accessor :Account_initialized
def after_initialize
self.Account_initialized = Time.now
end
end

With this example, Account objects will now have an Account_initialized attribute through-
out the object’s existence; the attribute contains a time stamp noting when the object was
initialized. The following code shows this in action:

useraccount = Account.new
puts "Account object created #{useraccount.Account initialized}"
#=> Account object created Sun Jul 9 10:09:32 Eastern Standard Time 2006

hefore_save

This method is executed before an ActiveRecord: :Base. save call; it will be executed before
creating and saving records with the ActiveRecord: :Base.save statement:

class Account < ActiveRecord::Base
def before save
self.Account_updated = Time.now
end
end

This example ensures that the account_updated field always contains the time that the
record was last saved (this callback value would overwrite any value that may have been set
within your code for the Account_updated attribute).

after_save

The after_save method is executed after an ActiveRecord: :Base.save statement for both new
records (inserts) and record updates:

class Account < ActiveRecord::Base
cattr accessor :Account lastsaved
def after save
self.Account lastsaved = Time.now

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD

end
end

This example populates the Account_lastsaved attribute with the time just after the
record was saved to the database. Again, the following example shows the callback we just
defined in action:

example = Account.new(:Account Name => "Kevin")
example.save

puts Account.Account lastsaved

Sun Oct 15 21:41:39 Eastern Standard Time 2006

before_create

This method is executed before an ActiveRecord: :Base. save statement when the object does
not already have a corresponding record in the database:

class Account < ActiveRecord::Base
def before create
self.Account_updated = Time.now
end
end

This example populates the Account_updated attribute with the time immediately before
an Account object is created. The following code shows an example use of this callback:

Example = Account.new(:Account Name => "Kevin")
puts Account_updated # Sun Oct 15 21:41:39 Eastern Standard Time 2006

after_create

This method is executed after an ActiveRecord: :Base. save statement when the object does
not have a corresponding record already in the database.

class Account < ActiveRecord::Base
def after create
logger.info("Account was created at #{Time.now}")
end
end

This example assumes that we have a logger object to which we are recording certain
actions. Here, we log the fact that a new account object was created and the time. Remember
that this example logs the object’s creation even if a database record is not created (because of,
say, failed validations or the lack of an ActiveRecord: :Base.save call).

before_update

You would execute the before_update method before an ActiveRecord: :Base.save or an
ActiveRecord: :Base.update statement when the object already has a corresponding record in
the database.

65

66

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

class Account < ActiveRecord::Base
def before update
self.Account_updated = Time.now
end
end

This example ensures that the Account_updated field always has the current time before
arecord is updated. The following code will use the before update callback to update the
account_updated field within our database:

Account.update(1,{:Account_Name => "Kevin Nelson"})
Account_updated would now have the current time

after_update

after_update is executed after an ActiveRecord: :Base.save or an ActiveRecord: :Base.update
statement when the object already has a corresponding record in the database.

class Account < ActiveRecord::Base
def after update
logger.info("Account was updated at #{Time.now}")
end
end

This example assumes that we have a logger object to which we are recording certain
actions; we log the fact that an account record is updated and the update time:

Account.update(1,{:Account _Name => "Kevin Nelson"})
Logger now has a record and time of our update

before_validation

This method is executed before an ActiveRecord: :Validations.validate statement (which is
itself executed from within an ActiveRecord: :Base.save statement).

class Account < ActiveRecord::Base
def before validation
logger.info("Account data about to be validated")
end
end

This example also assumes that we have a logger object to which we are recording certain
actions. Here, we log the fact that our attribute data is about to be submitted to our validation
methods.

after_validation

The after_validation method is executed after an ActiveRecord::Validations.validate
statement (which is itself executed from within an ActiveRecord: :Base.save statement).

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD

class Account < ActiveRecord::Base
def after validation
logger.info("data passed all validations")
end
end

This example assumes that we have a logger object to which we are recording certain
actions, and this time, we log the fact that our attribute data has just returned from our valida-
tion methods.

before_validation_on_create

This method is executed before an ActiveRecord::Validations.validate_on_create or an
ActiveRecord::Validations.validate statement is initiated from an ActiveRecord::Base.save
statement on an object that does not yet have a corresponding record in the database.

class Account < ActiveRecord::Base
def before validation on_create
logger.info("Account data about to be validated for new record")
end
end

This example assumes that we have a logger object to which we are recording certain
actions. Here, we log the fact that our data is about to be passed to our validation methods
before a new database record is created (the new record would be created only if all the valida-
tions are passed successfully).

after_validation_on_create

The after validation on_create method is executed after an ActiveRecord: :Validations.
validate on create statement or an ActiveRecord::Validations.validate statement is
initiated from an ActiveRecord: :Base.save statement on an object that does not yet have
a corresponding record in the database.

class Account < ActiveRecord::Base
def after validation on create
logger.info("Account data passed all validations for a new record")
end
end

This example again assumes that we have a logger object to which we are recording certain
actions. Here, we log the fact that our data just passed through all of our validation methods.

before_validation_on_update

This method is executed before an ActiveRecord: :Validations.validate _on_update statement
or an ActiveRecord: :Validations.validate statement is initiated from an ActiveRecord: :Base.
save or ActiveRecord: :Base.update statement on an object that already has a corresponding
record in the database.

67

68

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

class Account < ActiveRecord::Base
def before validation on_update
logger.info("Account data about to be validated for existing record")
end
end

This example assumes that we have a logger object to which we are recording certain
actions; we are logging the fact that our data is about to be passed to our validation methods
before executing a SQL update statement.

after_validation_on_update

This method is executed after an ActiveRecord: :Validations.validate on_update statement
or an ActiveRecord::Validations.validate statement is initiated from an ActiveRecord::
Base.save or ActiveRecord: :Base.update statement on an object that already has a correspon-
ding record in the database.

class Account < ActiveRecord::Base
def after validation_on_update
logger.info("Account data passed all validations for existing record")
end
end

This example assumes that we have a logger object to which we are recording certain actions.
Here, we log the fact that our data passed through all of our validation methods before executing
a SQL update statement.

before_destroy

before destroy is executed before an ActiveRecord: :Base.destroy,
ActiveRecord: :Base.destroy all, ActiveRecord: :Base.delete, or
ActiveRecord: :Base.delete all statement is executed.

class Account < ActiveRecord::Base
def before destroy
Contacts.delete all(["Account ID = ?", self.Account ID])
end
end

With this example, we are making sure that we delete all contact records that were associ-
ated with an account record before we delete the actual account record. This would produce
similar results to performing a cascading delete within a database.

after_destroy

This method is executed after an ActiveRecord: :Base.destroy, ActiveRecord: :Base.destroy
all, ActiveRecord: :Base.delete, or ActiveRecord: :Base.delete_all statement is executed.

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD

class Account < ActiveRecord::Base
def after destroy
logger.info("Account record was deleted")
end
end

This example assumes that we have a logger object to which we are recording certain actions;
we are logging the fact that an account record was deleted from the database.

One Down, Two to Go

You should now be an expert on Active Record callbacks, or at least well on your way. As we
mentioned at the start of this chapter, it sometimes takes a little bit of playing around with real
code before you can truly understand callbacks, so we do encourage you to try it. We promise
that it can only improve your understanding.

Let’s now shift our focus to the second of the three core features we introduced at the start
of this chapter, Active Record associations.

Associations

Up until this point, we've pretty much been talking about Active Record objects as stand-
alone objects—they’re tied to a table in the database, and they can update some records in
that table. That’s fine, but relational databases can provide so much more than a simple
place to mark down some values. One of their strong points is right out in front as part of
their name: relationships.

As it you probably guessed, Active Record makes it easy to maintain relationships between
your models. You do this by associating each of your Active Record models to one another through
various association methods. We'll cover each of these methods in the next section, but first,
let’s take a minute to talk a little about the idea of associations.

For some reason, associations—or joins, as SQL refers to them—cause a lot of confusion
for many developers. The basic idea is actually quite simple. You have two or more tables, and
each contains a set of data that is logically associated in some way. You want to grab a collection
or subset of that data and treat it as one set of data. Seems simple enough, right?

The confusion generally comes when you start to describe these connections as inner joins,
outer joins, left outer joins, and so forth. Oftentimes, expressing what you want to in plain English
is easy enough, “Give me a list of cows owned by farmers who live in Ohio.” Somehow, though,
translating that into proper SQL statement to return the correct set of data gets mucked up.
We know we want to join the cow and farmer tables, but do we want to do an inner or outer
join on the tables? Should it be a left or full join? How do we know if it’s really returning just
the data we want without having to manually check all the results?

Farmers, Cows, Milk, and How They Relate

In an attempt to clear things up and to explain how Active Record tackles associations between
models, let’s take an example to talk about and break down each specific situation. For the remain-
der of this section, let’s say we're writing an application to maintain the books for a cooperative
of farmers who raise cattle.

69

70

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

Every farmer needs to keep track of a lot of cows, and all farmers sell their cows’ milk to vari-
ous resellers at their own unique prices. Finally, each reseller and farmer has an address, because
the reseller needs to know where to send the checks, and the farmer needs to know where to send
the milk. The basics of the tables are laid out as follows (we are using basic migrations for these
definitions, for more on migrations refer to the previous chapter):

create table :cows do |t|
t.column :name, :string
t.column :farmer id, :integer

end

create table :farmer do |t|
t.column :name, :string

t.column :address, :string

end

create table :reseller do |t
t.column :name, :string
t.column :address, :string

end

create table :farmers resellers do |t|
t.column :resller id, :integer
t.column :farmer id, :integer

end

create table :distributors do |t]
t.column :reseller id, :integer
t.column :farmer id, :integer
t.column :milk price, :float

end

This should now give us a good starting point to break down each type of association.

Association Types

Active Record actually has support for a wide variety of different association types. These asso-
ciation types include belongs to, has_many, has_one, has_and_belongs to many, and has_many
:through. Along with these association types, there are also a handful of association modifiers
that give you full control of your Active Record models.

belongs_to

belongs_to is the most straightforward of the relationships. When you say your model belongs
to another model, it just means that only one object will be on the other side of the association.
The ID of that association is stored directly in this model. In our example, each cow belongs to
just one farmer, so the Cow model would look like the following:

class Cow < ActiveRecord::Base
belongs to :farmer
end

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD

Referring to the cow table, you can see that one cow will only ever belong to one farmer at
atime, because the table definition for the cows contains the foreign key of the farmer to whom
it belongs. In the world of SQL, the cow table foreign key is the “one” side of a one-to-one or
one-to-many relationship. With this association defined, we can fulfill the following real-world
requirement: get the farmer who owns a given cow.

Here, we are starting with the cow table, and we know which cow we want. We need to join
the farmer table based on farmer_id so that we can see the name of the farmer who owns the
cow. This means we want to do a left join (we want all the data from the cow table for this cow
and we want the farmer’s name from the farmer table). With SQL, our join query would look
something like the following:

this is the T-SQL version (MS SQL Server uses T-SQL)

cow = Cow.find by sql("Select farmer.name as farmername from
cow inner join farmer on cow.farmer id = farmer.farmer id")

puts cow[0].farmername # => "Farmer Fred"

The Active Record equivalent should look something like the following (regardless of which
version of SQL your database supports!):

cow = Cow.find(:first)
cow.farmer.name # => "Farmer Fred"

Asyou can see, with this simple association, you automatically have access to all the attributes
of the associated table (farmer).

Note /nner joins return only records that have a match in both tables (we would not get results if we tried
to find a cow that didn’t have an owner). Left joins return all the records from the left table, even if there is no
matching record in the right table (in this case, we would get the cow information even though it belonged to
no farmer). Inner joins are generally denoted by the use of the keyword AND in their plain English representation.

has_many

On the other end of belongs_to, there is has_many. It’s pretty easy to think of where this can be
applied: A farmer owns many cows. A blog has many posts, which may have many comments.
A customer has many orders, each of which has many products, and a product has many images.
A site has many pages. We could go on all day.

This association, like has_one, does not keep track of its own foreign key (looking at our
farmer table, you see that there are no foreign keys defined within that table). This means that
any number of other objects can be associated with this one, and the database can still keep
anormalized form (that is, without excess duplication of data). This becomes more clear with
our example, so let’s define our farmer model and show the association in action:

class Farmer < ActiveRecord::Base
has_many :cows
end

7

72

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

The has_many association returns an array of objects from the table containing the match-
ing foreign key from the table specified. Again, walking through a plain English version makes
this easier to understand, so let’s use this association as follows: get a list of the cows a given
farmer owns.

Here, we are starting with the farmer table—we know the farmer we want information about,
and we want to get a list of cows that this farmer owns. This is really a lot like our belongs to
example, in that we just want to join the two tables together based on farmer_id. However,
this time, we are starting in the farmer table with just the farmer ID. With SQL, our inner join
would look like the following:

this is the T-SQL version (MS SQL Server uses T-SQL)

cowlist = Farmer.find by sql(["Select cows.name as cowname from
farmer inner join cows on farmer.farmer id = cows.farmer id
where farmer id = ?",1])

cows.each do |rec|
print rec.cowname + ", "

end

=> Bessie, Spotty,

The Active Record equivalent should look something like the following (again, regardless
of which version of SQL your database supports):

fred = Farmer.find(1)
fred.cows each do |cow|

print cow.name + ", "
end

=> Bessie, Spotty,

As you can see, with this simple association, you automatically get the collection of asso-
ciated records from the associated table (cow) and have access to all the attributes of those
records (like the cows’ names).

has_one

Sometimes, you don’t have a collection of items to associate; sometimes, you have just one.
In this case, has_one is what you need. Basically, has_one is the same as has_many, but Active
Record will return only one object instead of all of them.

To be honest with you, it should be a rare case that you find yourself using the has_one
association, because you would more likely just add the fields to one master table rather than
split them across two tables and create a one-to-one relationship. Still it does happen, so let’s
take a look at one possible example. First, here’s the migration for the extra table we are going
to use for this example:

create table :tractors do |t
t.column :name, :string
t.column :farmer id, :integer
end

And we would then update the Farmer model to the following for this example:

CHAPTER 4 ©' CORE FEATURES OF ACTIVE RECORD

class Farmer < ActiveRecord::Base
has_many :cows
has_one :tractors

end

Note This is actually bad table design, in our opinion, because each tractor can be owned by only one
farmer, and because of our has_one association, each farmer can own only one tractor. In real life, we would
more likely just add the tractor name field to the farmer table or make this a many-to-many relationship so
that each farmer could own multiple types tractors, and each type of tractor could be owned by more than
one farmer. Still, this example lets us quickly demonstrate the use of has_one.

With the model defined, we can now achieve the following real-world requirement: get
the tractor a farmer owns.

Again, we are starting with the farmer table, and we know which farmer we want informa-
tion about; we just want to get the name of the tractor that this farmer owns. The SQL query
for this example would look something like the following:

this is the T-SQL version (MS SQL Server uses T-SQL)

tractor = Farmer.find by sql(["Select tractor.name as tractorname from
farmer inner join tractors on farmer.farmer id = tractors.farmer id
where farmer id = ?",1])

tractors.each do |rec|
print rec.cowname

end

=> Big Red

The Active Record equivalent should look something like the following (regardless of
which version of SQL your database supports):

tractor = Farmer.find(1)

tractor.tractors each do |tractor]|
print tractor.name

end

=> Big Red

As you can see, the code is identical to the has_many code; it’s really only the results that
are limited.

Note The difference, basically, between has_many and has_one is the same as the difference between
find(:all) and find(:first).

73

74

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

has_and_belongs_to_many

Our tractor example showed a serious design flaw in that each tractor type could only be
owned by one farmer and each farmer could only own one tractor at a time. That is probably
unrealistic. It's more likely that a given farmer would own one or more tractor types and each
tractor type would be owned by one or more farmers. That is, this would have been better
implemented as a many-to-many relationship.

In theory, a many-to-many relationship is the same thing as two has_many relationships
tacked back to back. However, in a normal has_many relationship, one of the tables is supposed
to hold the foreign key of the other table. Doing that would only allow one of the tables to be
associated to many records in the other (it would only be a many-to-one relationship). In order
to keep the database normalized, a has_and_belongs to_many (habtm) association uses an extra
table, generally referred to as a join table, which is nothing more than a pair of foreign keys for
each associated model.

Going back to our original example, let’s say we wanted our farmer to be able to distribute
the milk from his cows. He would need to have resellers. And a reseller should be able to sell
the milk of many farmers. Clearly, a farmer has_and_belongs to_many resellers, and a reseller
has_and_belongs to_many farmers.

As we've mentioned throughout this book, Active Record is part of an opinionated frame-
work. As such, it has some default assumptions about the naming convention for join tables:

1. Take the names of the two tables.
2. Alphabetize them.
3. Join them with an underscore.

With these rules in mind, the table that would be used to join our farmers with their resellers
would be named farmers_resellers (refer to our table definitions at the start of this section).
Since this is nothing more than a join table storing the association between farmers and resellers,
only one column for each side of the association is needed in this table: reseller id and
farmer_id. Our models would be updated to look like the following:

class Reseller < ActiveRecord::Base
has_and_belongs_to _many :farmers
end
class Farmer < ActiveRecord::Base
has_many :cows
has_one :tractors
has_and_belongs_to _many :resellers
end

Now that we have our associations defined, let’s look at another plain English requirement:
get a list of resellers for a given farmer.

With this example, we are starting with the farmer table, we know the specific farmer about
whom we want information, and we want to get a list of resellers associated with the given
farmer. Our SQL version would look something like the following:

this is the T-SQL version (MS SQL Server uses T-SQL)
resellerlist = Farmer.find by sql(["Select resellers.name as resellername from
farmer, farmer reseller, reseller where

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD

farmer.farmer id = farmer reseller.farmer id and

farmer reseller.reseller id = reseller.reseller id and farmer.farmer id = ?",1])
resellerlist.each do |rec|

print rec.resllername + ", "
end

=> Dairy Barn, McDonalds,

The Active Record equivalent should look something like the following (regardless of
which version of SQL your database supports):

fred = Farmer.find(1)
fred.resellers each do |rec|

print rec.name + ", "
end

=> Dairy Barn, McDonalds,

Note When you're using the has_and_belongs to_many association, it works just like a has_many
association: you can push new records onto it; you can iterate over it with each, and you can do basically
anything else you could with a has_many association. The difference is that both sides of the association
can do the same things.

has_many :through

Many-to-many associations can be very powerful, but sometimes, you need to add more to
the many-to-many relationship than just a direct tie between the two tables. Let’s say you want
to know the price of milk that a given farmer will sell milk to a given reseller for. Ideally, our
application should allow each farmer to sell milk to each reseller at a unique price. This design
means that we can’t store the price of milk in the farmer table (because it differs for each reseller
each farmer deals with), and we can’t store the price in the reseller table (because resellers buy
it at different prices depending on the farmer). What we really want to do is store the price of
milk in the join table that associates each farmer to each reseller. By adding attributes like this
to the join table, we are molding it into something more than just a join table; we're making it
ajoin model.

In Active Record, we call this type of model and association a has_many :through relationship.
Asyou saw in our has_and_belongs to_many example, Active Record glosses over the existence
of a join table, generally, because from a code point of view, it's not important to know it’s there.
The join model, on the other hand, is like a join table, in that it has two foreign keys, but because
there is a model attached, it allows the intermediate table to have attributes that can more fully
describe the relationship than a simple join table.

Let’s define our new table and refactor our models so we can use this type of association:

class Reseller < ActiveRecord::Base

has_many :distributions

has_many :farmers, :through => :distributions
end
class Distributions < ActiveRecord::Base

75

76

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

belongs to :reseller

belongs to :farmer
end
class Farmer < ActiveRecord::Base

has_many :distributions

has_many :resellers, :through => :distributions
end

Going back to our example, let’s use this type of association. Here’s our question: at what
price does a given farmer sell milk to a given reseller?

We know which farmer and which reseller we want information about; we just need to get
the price of milk to which these two have agreed. In SQL, this would look something like the
following:

this is the T-SQL version (MS SQL Server uses T-SQL)
milkprice = Farmer.find by sql(["Select farmers.name as farmer,
resellers.name as reseller, distributors.milk price as price from farmer,
distributors, reseller where farmer.farmer id = distributors.farmer id and
distributors.reseller id = reseller.reseller id and farmer.farmer id = ?",1])
milkprice.each do |rec|
puts "#{rec.farmer} sells to #{rec.reseller} for $#{rec.price} per gallon"
end
Fred sells to Mary's Market for $0.50 per gallon
Fred sells to Sam's Shop for $0.65 per gallon

The Active Record equivalent should look something like the following (regardless of which
version of SQL your database supports):

fred = Farmer.find(:first)

fred.distributions.each do |distribution]
puts "#{distribution.farmer.name} sells to #{distribution.reseller.name} for
$#{distribution.price} per gallon"

end

sells to Mary's Market for $0.50 per gallon

sells to Sam's Shop for $0.65 per gallon

As you can see, the resellers association also works as a has_many association would work.
The only difference is in getting the two models association with each other. It is no longer the
case that you can add a reseller with fred.resellers << new_reseller. Now, you must create
the join model and add that to the association:

puts fred.resellers.size # => 2
Distribution.create(:farmer => fred, :reseller => sallys store)
puts fred.resellers(true).size # => 3

Association Modifiers

Now that we've covered all the types of associations that Active Record supports, we can dig
even deeper and talk about all the various association modifiers. As you've seen throughout
this book, Active Record makes a lot of assumptions about the structure of your database to

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD 7

keep things simple, so you can imagine that associations are no exception. For example, the
standard foreign key is the class’s table name plus _id (e.g., farmers_id).

But what if your tables weren’t designed with Active Record in mind or you just don’'t want
to use the default assumptions for some reason? Do you lose your power to use Active Record
associations? Luckily, no. You can set various attributes of all of the Active Record associations
at definition to override any of the defaults. Let’s take a look at all of these options in detail now.

Finder Options

All of the options that can be applied to finders can also be applied to associations. When
used, they scope the results. This means you can use :conditions, :order, :group, :1imit, and
:offset exactly like you would in a finder.

The following example would limit the association of cows to only farmers with the name
of Fred:

class Farmer < ActiveRecord::Base
has_many :cows, :conditions => "farmer.name = 'Fred'"
end

:class_name

The class name attribute is for when your association’s name doesn't match up with the class’s
name. For example, let’s say we have a class defined as comment, and we also want to refer to
the association as comment (not the plural label of comments as the default assumption wants us to).
We could specify this as such:

class Account < ActiveRecord::Base
has_many :comment, :class name => "comment"
End
class Comment < ActiveRecord::Base
end

Now, when you reference your association collection, you would use the comment label as
well, since that is now our collection name (again instead of comments, which was the default):

Temp = Account.find(:all)
Temp.each do |rec|

Puts rec.comment.collect {|c| c.subject}

=> Note we used comment instead of comments.
end

:foreign_key

Sometimes, Active Record will not be able to directly infer the foreign_key name, most often
when the class_name option is not enough to specify the relationship in the database. In this
case, you can specify the foreign key specifically. Again, this option is also useful if the column
is named differently from the normal conventions:

class Person < ActiveRecord::Base
has_many :children, :class name => "Person", :foreign key => "parent id"
end

78

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

:through

The :through option is used to define through associations as described previously. You'll pass
in the name of a has_many or has_one association already defined in the model, and Active Record
will use that association as the join model.

:polymorphic and :as

Our examples so far have covered normal associations, which are between two models. In the
real world, however, there are times when you will want to have your class implement an
association with multiple models using just one key. For example, both our farmers and
resellers should have an association to addresses, and since all addresses contain the same
basic data types we want this to be just one table. This is called a polymorphic association,
and Active Record supports it quite nicely.

Technically, polymorphic associations use a technique similar to single-table inheritance,
where a type column is used to specify the associated model. But it’s not as hard as it sounds.
Let’s walk through our farmers example to prove it. First, we need to define the address table
via our migration scripts:

create table :addresses do |t
t.column :street, :string
t.column :city, :string
t.column :addressable id, :integer
t.column :addressable type, :string
end

Next, since it is on the model that contains the primary key, the polymorphic option is
really on the belongs_to method. The name of the relationship is the name that’s used for the
:as option when specifying the other sides of the relationship. This means our models would
look something like the following:

class Address < ActiveRecord::Base
belongs to :addressable, :polymorphic => true
end
class Farmer < ActiveRecord::Base
has_one :address, :as => :addressable
end
class Reseller < ActiveRecord::Base
has_one :address, :as => :addressable
end

Now, we have a polymorphic association that allows us to reference address data for both
farmers and resellers, all stored in one address table, as the following example demonstrates:

Example = Reseller.find(:first)

Puts example.address.city # => Edinboro
Example = Farmer.find(:first)

Puts example.address.city # => Somerville

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD

By convention, the fields required by a polymorphic join are the association name plus
_idand type. For the preceding example, the important fields in the address table were
addressable_id and addressable type.

;join_table

In a has_and_belongs_to_many relationship, this modifier specifies the name of the join table. It
is required only if you choose to ignore the naming rules outlined earlier, which said to take the
names of the two tables, alphabetize them, and join them with an underscore.

For example, if you wanted to use the distributors table in your has_and_belongs_to_
many relationship, you could do so like the following:

class Farmers < ActiveRecord::Base

has_and_belongs_to many :resellers, :join_table "distributors”
end
class Resellers < ActiveRecord::Base

has_and_belongs_to many :farmers, :join_table "distributors"
end

:association_foriegn_key

Inahas_and belongs to_many relationship, the association foreign key is the association on
the other side of the relationship and is only required if you go against the default naming
conventions for your foreign keys (which is tablename_id):

class Farmer < AR::Base
has_and belongs to many :shared tractors,
:association foreign key => "tractor id"
end

:dependent

The :dependent attribute allows the associated model to depend on the existence of the model
referenced. If you set it to :destroy, all associated objects are instantiated and have their destroy
methods called. In that case, it's semantically equivalent to the before_destroy callback.

def before destroy
association.each {|each| each.destroy }
end

You can also pass :delete_all as an option, which will, as it says, delete all associated
objects from the database, but Active Record won't instantiate them or call the destroy method
on any of them.

Finally, you can also pass :nullify to set the foreign ID of the associated object to NULL in
the database. This lets you keep the associated record without worrying about RecordNotFound
exceptions, because the association is cleared.

79

80

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

Two Core Features Down, One to Go

We don’t know about you, but all this talk of cows and milk has gotten us in the mood for a nice
cup of milk and a warm chocolate chip cookie! But don't take too long for a snack break, because
we've still got a lot more to tell you about Active Record. To be honest, at this point, if you did-
n't bother to read another page, you should have enough knowledge to build quite powerful
and full-featured Active Record programs. But don’t put this book down just yet, because we
are far from finished. Active Record still has a lot more to offer, including one more core fea-
ture—data validations.

Validations

Data validations within Active Record are simply code-based rules applied to data. They ensure
that the data is of a certain format, type, length, or value. Some plain English examples of data
validation rules would be

¢ Account usernames must be seven characters long to be saved into the database.

¢ Promotional codes must be one of our predefined values or reset to “none” before being
saved into the database.

* Phone numbers must contain only numbers to be saved into the database.

Active Record validations are actually just specialized callbacks. Within the life cycle of an
Active Record object, validations occur on attribute values before your data is saved into the
database—that is, before a SQL insert or update clause is actually executed.

From a technical point of view, all Active Record objects have an associated ActiveRecord: :
Error object associated with them. Data is only mapped to the database, via SQL insert or
update calls, when this object is empty. So when applying validation code, you simply need to
add data to the ActiveRecord: :Error object when a validation rule fails, and this will prevent
the SQL insert or update clause from being executed.

Why Bother with Validations?

Data validation with Active Record is really a pretty simple concept and very easy to implement.
Still, there are a few questions you might have, and some quick tips that will hopefully make
things even easier for you, so let’s address those now.

Why do you need to validate data in the first place? Well, believe it or not, there are a lot
times when it comes in handy:

* Data validations are a handy way to ensure that your data is always in a clean and expected
format before it gets into your database. From a programmer’s point of view, if you know
your data is cleaned and scrubbed, you won't need to write as many checks and balances
or deal with as many potential error-handling procedures (though you probably should
still have that code in place just in case future programs bypass your data validations).
From a database administrator’s (DBA) point of view, it also means there is less need for
database checks and procedures to ensure data integrity. From a user’s point of view, it
usually means a more intuitive experience where typos and common errors are auto-
matically caught and dealt with.

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD

* Many times, business logic is applied to specific data values or types; validations make
for more accurate results and expected execution in these situations.

¢ Validations make your database more secure; potentially harmful data or scripts can be
prevented from getting into your database.

* Validations help save on bandwidth and processing; rejecting data and throwing an error
as early as possible within the life cycle of your Active Record object saves on resources.
There is no need to involve the expensive call to the database until the data is really
ready to be stored.

Asyou can see, there can be lots of reasons to do data validations, and hopefully, by now,
you've decided that data validations really are useful. But how do Active Record validations
actually work?

Implementing Validations

What are the options for implementing data validations? As you probably guessed, there are
a couple of approaches you can take:

¢ You can use Active Record validations in your models and Active Record class files. Since
this is a book about Active Record, you can probably guess that this is our suggested
route. By putting your data validation code into your Active Record models, you get all
the benefits outlined in this chapter with very little downside (however, there is a little
bit of a downside, and we'll cover the pros and cons in a minute).

* You can use custom code throughout your applications (generally in your controller meth-
ods and client-side code such as JavaScript). In some situations, this will meet your needs
just fine; for example, perhaps you want to check that a field contains a certain data value
only in certain situations within your controller, or you're just developing a quick and dirty
unit test. However, outside of the most trivial situations, it makes more sense to centralize
the validation code into your model so that any instance of the Active Record object can
take advantage of it. This isn’t to say that you can’t use multiple approaches together, and
in fact, it’s often a good idea to use some level of validations in your controllers and
JavaScript to make a better environment for your users and to double-check that those
validations are properly enforced within your models.

* You can use database constraints, triggers, and stored procedures. As a Ruby developer,
this option probably doesn't appeal to you, because it means taking the control out of
your hands and giving it to your DBA (if you're also the DBA, at a minimum, it still means
taking off your Ruby hat and putting on your DBA hat). The other big downside to this
approach is that your validations would be database- and schema-specific, which makes
migrations or switching to another database backend more difficult down the road. Still,
if you've got more than one application accessing your database, especially if they aren't
all using Active Record to do so, you'll probably want to move—or at least duplicate—
your critical validations directly inside of the database. This way all applications are
dealing with the same rules and can reasonably expect the data to be in the same format
regardless of its originating source.

81

82

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

This last implementation option really shines a light on the main design decision you
have to make when thinking about implementing data validations—do you implement them
in Ruby or directly in your database? Before you make your choice, consider these pros and
cons of Active Record validations:

* Pros: The good news is that because Active Record objects are really just Ruby objects,
Active Record validations are database independent. You don’t need to know any spe-
cial syntax or language such as TSQL or PL/SQL; you just write Ruby methods with
Ruby code. Additionally, the validations occur on the object before data gets mapped
to the database via SQL calls, which means that you save expensive (in terms of band-
width and processing) database calls for just those times that you really want them.

e Cons: The bad news is that Active Record validations are only applied within your Ruby
code. If other applications or programs, such as Java programs, access your database,
they would need to do their own data validations.

In the end, it’s up to you, the developer, to choose where and how to implement your data
validations. My personal recommendation is that you centralize your validations within your
database via constraints and other database-specific features when more than one application
or program will be directly accessing your database—especially if they all won't be written in
Ruby. But I also recommend adding Active Record validations to your models in all your Ruby
applications. It won't hurt your program and can only help to ensure that at least your Ruby appli-
cations and programs are inserting and dealing with clean data.

OK, enough theory and design, let’s get into the details of how Active Record validations
work and how to implement them within your models. Implementing Active Record data vali-
dations is a very simple two-step process:

1. Add a protected validate method to your model.

2. Within that validate method, simply add items to the ActiveRecord: :Error object
when your validation rules are not met.

Using these steps will ensure that data will be saved to the database only when your valida-
tion rules are adhered to. Let’s look at a quick example where we only want to save new accounts
or update accounts that have a value for the Account_Name field and that value must be "Kevin":

Class account < ActiveRecord::Base
protected
def validate
if self.Account Name == nil
errors.add(":Account Name", "You must supply an account name")
elsif self.Account Name != "Kevin"
errors.add(":Account Name", "Account name must be Kevin!")
end
end
end

There are also validate_on_create and validate_on_update methods, which, as expected,
allow you to implement custom validations only on record creation or record updates, respec-
tively. As you can see in the following examples, from a developer’s view, everything is the same
as in our previous example except the method name:

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD

Class account < ActiveRecord::Base
protected
def validate on_create
if self.Account Name == nil
errors.add(":Account Name", "You must supply an account name")
elsif self.Account Name != "Kevin"
errors.add(":Account Name", "Account name must be Kevin!")
end
end
end
Class account < ActiveRecord::Base
protected
def validate on_update
if self.Account Name == nil
errors.add(":Account Name", "You must supply an account name")
elsif self.Account Name != "Kevin"
errors.add(":Account _Name", "Account name must be Kevin!")
end
end
end

That'’s basically all you need to know to happily implement data validations in Active
Record.

Convenience Functions

Active Record was initially developed to be used with Rails. In typical Rails fashion, there are
anumber of convenience methods (currently 11 to be exact) built into Active Record that make
the common case validations even simpler to implement. Keep in mind that Rails is a web-based
framework, so many of these validations are specific to applying validations to data submitted via
HTML forms. Let’s take a quick look at each one of these convenience methods in a little more
detail.

validates_each

The validates_each method evaluates each listed attribute against the associated block. The

current record, the attribute to be evaluated, and the current value associated with the attrib-
ute are passed as parameters to the block. The following example uses validates each to
ensure that the submitted account_name value is "Kevin":

Class Account < ActiveRecord::Base
validates each :Account Name do |rec, attr, val|
if val != "Kevin"
rec.errors.add(":Account _Name", "Account name must be Kevin!")
end
end
end

83

84

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

You can also specify a few options with validates each, :on, :allow_nil, and :if.The :on
option allows you to specify if the validation should occur :on => :save, :on => :create, oron
=> :update. Here’s our example again, but limited to just updates:

Class Account < ActiveRecord::Base
Validates each :Account Name, :on => :update do |rec, attr, val|
If val != "Kevin"
Rec.errors.add(":Account Name", "Account name must be Kevin!")
end
end
end

The :allow nil option (:allow nil => trueor :allow nil => false) lets you perform the
validation block for those attributes listed that do or do not have nil values. The :if option
evaluates a specified method, proc, or string and execute the associated block only if the return
value from the call was true (remember that Ruby returns true by default in most situations).
Here’s our example one more time, now limited to executing only when the associated ID
attribute is at a value of 1:

Class account < ActiveRecord::Base
Validates each :Account name, :if => :checked do |rec, attr, val|
If val != "Kevin"
Rec.errors.add(":Account Name",
"Account name must be Kevin for this record!")
end
end
private
def checked
return false if self.ID != 1
end
end

validates_confirmation_of

The convenience method validates _confirmation of is designed to simplify the process of
confirming two HTML form field values—a common practice for things like password fields.
Your table has one field associated with an attribute, and your HTML form has two fields that
are similar except that one of them has _confirmation appended to its name. An example
explains this best:

1. In your HTML form, you need to have something like this (it's more common to use
the Rails helper methods for this, but I'm going to use straight HTML to keep the focus
on just Active Record specifics):

<input type="password" name="password">
<input type="password" name="password confirmation">

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD

2. Now, when the data is submitted to your model, the validates confirmation of method
will check that the values in these two fields match as part of the validation process. If
they do match, the data from the password field would be mapped to the password field
in your account table. The duplicate password _confirmation value would not map to
anything in the database and would quietly be ignored beyond the validation steps.

Class Account < ActiveRecord::Base
validates confirmation of :password
end

Again there are a few options that you can use with this method: :message => "" allows
you to specify a custom error message when the values don't match. :on => :create, :on =>
:save, and :on => :update limit the validation check to just those types of actions, and :if
operates just as explained in the validates _each method.

validates_acceptance_of

The convenience method validates_acceptance_of is designed to simplify the process of
ensuring that an HTML check box was checked when data was submitted. This HTML field
does not map to any field in your database. Again, an example explains this best:

1. In your HTML form, you need to have something like this:
<input type="checkbox" name="terms" >

2. Now when your data is submitted, the following code will make sure that the user did,
in fact, select the check box:

Class Account < ActiveRecord::Base
validates acceptance of :terms
end

The options you can add to this method are :message, :on, and :1if, as explained for the
previous methods, as well as an :accept option. The :accept option allows you to define what
value the check box needs to pass in order for the value to be accepted. The default value of
:accept is 1, which is generally the default value submitted by HTML check boxes. Here is
a custom example:

<input type="checkbox" name="terms" value="accepted">
class Account < ActiveRecord::Base

validates_acceptance of :terms, :accept => "accepted"
end

validates_presence_of

The validates presence of method ensures that the values of specified attributes are not blank
by applying the Ruby Object.blank? method:

Class Account < ActiveRecord::Base
validates presence of :Account Name
end

85

86

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

The options for this method are :message, :on, and :if, which all operate as explained in
the previous methods.

Note It's important to remember that the validates presence of method is for confirming the pres-
ence of attributes and their values, not for confirming the presence or value of the associated object. If you
attempt to confirm the presence of the object, you’ll get errors when both the parent and child objects are new.

validates_length_of

The method validates length of allows you to check that the values of specified attributes
are of a certain length or within a certain range of lengths. The following example requires that
the submitted Account_Name is five characters long:

Class Account < ActiveRecord::Base
validates length of :Account Name, :is => 5
end

The options for this method include :message, :on, :allow_nil, and :if, as explained in
other methods. You can also specify :minimum and/or :maximum, which allow you to state what
the minimum or maximum length of the attribute can be. The :1is option, like we used in the
preceding example, allows you to specify the specific length an attribute must be, while the
:within and :in options allow you to specify a range of values that the attribute’s length may
fall within (you can use a combination of the :minimum and :maximum options to achieve the
same results). Additionally, you can use the :too_long, :too_short, or :wrong_length options
to specify custom error messages for those specific situations.

validates_uniqueness_of

validates_uniqueness_of ensures that the value of the specified attribute is unique within the
field of the database. Again, an example helps to make this most clear. In the following exam-
ple, every submitted account_username will be checked to ensure that no other records already
have the submitted value (on updates, it excludes its own record):

Class Account < ActiveRecord::Base
validates uniqueness of :Account Username
end

The :message and : if options explained in the previous methods are available. Additionally,
you can use the :scope option, which allows you to limit your uniqueness check to specific
groupings of fields. Here’s an example that will ensure that a user can answer a question only
once:

Class Answer < ActiveRecord::Base
Validates uniqueness of :account id, :scope => [:question_id]
end

The :scope option can be an array of fields to limit by.

CHAPTER 4 © CORE FEATURES OF ACTIVE RECORD

validates_format_of

Use validates_format_of to ensure that the value of the specified attribute adheres to a regu-
lar expression. The following example ensures that the account_name contains only uppercase
or only lowercase letters:

Class Account < ActiveRecord::Base
validates format _of :Account Name, :with => /[a-zA-z]+/
end

The :with option is required and must contain a regular expression.

validates_inclusion_of

Use validates _inclusion_of to ensure that the value of the specified attribute is within a sup-
plied enumerable object, such as an array. The following example once again checks that the
submitted account_name is "Kevin":

Class Account < ActiveRecord::Base
validates inclusion of :Account Name, :in => ["Kevin"]
end

The :in option allows you to specify the enumerable object that is searched and used for
the comparison. The other options available to this method are :message, :allow_nil, and :if,
which operate as explained in previous methods.

validates_exclusion_of

The validate_exclusion method ensures that the value of the specified attribute is not within
a supplied enumerable object, such as an array. The following example checks that the sub-
mitted account_name is not "Marshall":

class Account < ActiveRecord::Base
validates_exclusion_of :Account_Name, :in => ["Marshall"]
end

The :in option allows you to specify the enumerable object that is searched and used for
the comparison. The other options available to this method are :message, :allow_nil, and :if,
each of which operates as explained in previous validation methods.

validates_associated

validates_associated ensures that the associated objects are all valid themselves. We talk
more about associations in their own chapter, but for now, consider the following example,
which ensures accounts are associated with accountrights:

class Account < ActiveRecord::Base
has_many :accountrights
validates associated :accountrights

end

class Accountright < ActiveRecord::Base
belongs to :account

end

87

88

CHAPTER 4 = CORE FEATURES OF ACTIVE RECORD

There are two important things to remember when doing this type of validation:

* You should only put the validates associated method on one side of the association. If
you place it on b