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"Not everything that is counted counts, and not everything that counts can be 
counted."  

Albert Einstein  

". . . yes, a game where people throw ducks at balloons, and nothing is what it 
seems. . . "  

Homer J. Simpson  

   

   

Abstract 

All currently available network intrusion detection (ID) systems rely upon a 
mechanism of data collection---passive protocol analysis---which is 
fundamentally flawed. In passive protocol analysis, the intrusion detection 
system (IDS) unobtrusively watches all traffic on the network, and scrutinizes 
it for patterns of suspicious activity. We outline in this paper two basic 
problems with the reliability of passive protocol analysis: (1) there isn't enough 
information on the wire on which to base conclusions about what is actually 
happening on networked machines, and (2) the fact that the system is passive 
makes it inherently "failopen," meaning that a compromise in the availability 
of the IDS doesn't compromise the availability of the network. We define 
three classes of attacks which exploit these fundamental problems---insertion, 
evasion, and denial of service attacks --- and describe how to apply these three 
types of attacks to IP and TCP protocol analysis. We present the results of 
tests of the efficacy of our attacks against four of the most popular network 
intrusion detection systems on the market. All of the ID systems tested were 
found to be vulnerable to each of our attacks. This indicates that network ID 
systems cannot be fully trusted until they are fundamentally redesigned.  
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1 Introduction 
Intrusion detection is a security technology that attempts to identify and isolate 
``intrusions'' against computer systems. Different ID systems have differing classifications 
of ``intrusion''; a system attempting to detect attacks against web servers might consider 
only malicious HTTP requests, while a system intended to monitor dynamic routing 
protocols might only consider RIP spoofing. Regardless, all ID systems share a general 
definition of ``intrusion'' as an unauthorized usage of or misuse of a computer system. 

Intrusion detection is an important component of a security system, and it complements 
other security technologies. By providing information to site administration, ID allows not 
only for the detection of attacks explicitly addressed by other security components (such as 
firewalls and service wrappers), but also attempts to provide notification of new attacks 
unforeseen by other components. Intrusion detection systems also provide forensic 
information that potentially allow organizations to discover the origins of an attack. In this 
manner, ID systems attempt to make attackers more accountable for their actions, and, to 
some extent, act as a deterrent to future attacks.  

1.1 The CIDF Model of Intrusion Detection Systems 
There are many different ID systems deployed world-wide, and almost as many different 
designs for them. Because there are so many different ID systems, it helps to have a model 
within which to consider all of them. The Common Intrusion Detection Framework 
(CIDF)[1] defines a set of components that together define an intrusion detection system. 
These components include event generators (``E-boxes''), analysis engines (``A-boxes''), 
storage mechanisms (``D-boxes''), and even countermeasures (``C-boxes''). A CIDF 
component can be a software package in and of itself, or part of a larger system. Figure 1 
shows the manner in which each of these components relate. 

The purpose of an E-box is to provide information about events to the rest of the system. 
An ``event'' can be complex, or it can be a low-level network protocol occurrence. It need 
not be evidence of an intrusion in and of itself. E-boxes are the sensory organs of a 
complete IDS--- without E-box inputs, an intrusion detection system has no information 
from which to make conclusions about security events.  

A-boxes analyze input from event generators. A large portion of intrusion detection 
research goes into creating new ways to analyze event streams to extract relevant 
information, and a number of different approaches have been studied. Event analysis 
techniques based on statistical anomaly detection[2], graph analysis[3], and even biological 
immune system models[4] have been proposed.  

E-boxes and A-boxes can produce large quantities of data. This information must be made 
available to the system's operators if it is to be of any use. The D-box component of an 
IDS defines the means used to store security information and make it available at a later 
time.  
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Figure 1: CIDF component relationships  

Many ID systems are designed only as alarms. However, most commercially available ID 
systems are equipped with some form of countermeasure (C-box) capability, ranging from 
shutting down TCP connections to modifying router filter lists. This allows an IDS to try to 
prevent further attacks from occurring after initial attacks are detected. Even systems that 
don't provide C-box capabilities can be hooked into home-brewed response programs to 
achieve a similar effect.  

1.2 Network Intrusion Detection and Passive Analysis 
Many ID systems are driven off of audit logs provided by the operating system, detecting 
attacks by watching for suspicious patterns of activity on a single computer system. This 
type of IDS is good at discerning attacks that are initiated by local users, and which involve 
misuse of the capabilities of one system. However, these ``host based'' (and multi-host) 
intrusion detection systems have a major shortcoming: they are insulated from network 
events that occur on a low level (because they only interpret high-level logging 
information). Network intrusion detection systems are driven off of interpretation of raw 
network traffic. They attempt to detect attacks by watching for patterns of suspicious 
activity in this traffic. Network ID systems are good at discerning attacks that involve low-
level manipulation of the network, and can easily correlate attacks against multiple 
machines on a network. 

It's important to understand that while network ID has advantages over host-based ID, it 
also has some distinct disadvantages. Network ID systems are bad at determining exactly 
what's occurring on a computer system; hostbased ID systems are kept informed by the 
operating system as to exactly what's happening. It is probably impossible to accurately 
reconstruct what is happening on a system by watching ``shell'', ``login'', and ``telnet'' 
sessions. Network ID systems work by examining the contents of actual packets 
transmitted on the network. These systems parse packets, analyzing the protocols used on 
the network, and extract relevant information from them. This is typically accomplished by 
watching the network passively and capturing copies of packets that are transmitted by 
other machines.  
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Figure 2: An example network topology using a passive monitor  

Passive network monitors take advantage of ``promiscuous mode'' access. A promiscuous 
network device, or ``sniffer'', obtains copies of packets directly from the network media, 
regardless of their destination (normal devices only read packets addressed to them). Figure 
2 shows a simplified network topology in which a passive network monitor has been 
deployed.  

Passive protocol analysis is useful because it is unobtrusive and, at the lowest levels of 
network operation, extremely difficult to evade. The installation of a sniffer does not cause 
any disruption to the network or degradation to network performance. Individual machines 
on the network can be (and usually are) ignorant to the presence of sniffer. Because the 
network media provides a reliable way for a sniffer to obtain copies of raw network traffic, 
there's no obvious way to transmit a packet on a monitored network without it being seen.  

1.3 Signature Analysis 
The question of what information is relevant to an IDS depends upon what it is trying to 
detect. For a system that is monitoring DNS traffic, the names of the hosts being queried 
for (and the responses to these queries) might be relevant. For a system attempting to 
detect attacks against FTP servers, the contents of all TCP connections to the FTP port 
would be interesting. 

Some attacks can be discerned simply by parsing IP packets; an attempt to circumvent a 
packet filter using IP fragments is clearly observable simply by examining the fragment 
offset fields of individual IP fragments. Other attacks occur over multiple packets, or must 
be interpreted outside the context of the actual protocol (for instance, a DNS query might 
only be relevant if it involves a certain host).  
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Figure 3: CIDF model of a network IDS  

Most ID systems identify such attacks using a technique called ``signature analysis'' (also 
called ``misuse detection''). Signature analysis simply refers to the fact that the ID system is 
programmed to interpret a certain series of packets, or a certain piece of data contained in 
those packets, as an attack. For example, an IDS that watches web servers might be 
programmed to look for the string ``phf'' as an indicator of a CGI program attack.  

Most signature analysis systems are based off of simple pattern matching algorithms. In 
most cases, the IDS simply looks for a substring within a stream of data carried by network 
packets. When it finds this substring (for example, the ``phf'' in ``GET /cgi-bin/phf?''), it 
identifies those network packets as vehicles of an attack.  

Signature analysis and passive protocol analysis together define the event generation and 
analysis techniques used by the majority of commercially available ID systems. Figure 3 
shows how these components fit into the CIDF model. For simplicity's sake, the remainder 
of this paper refers to systems that work like this as ``network ID systems.''  

1.4 The Need for Reliable Intrusion Detection 
Because of its importance within a security system, it is critical that intrusion detection 
systems function as expected by the organizations deploying them. In order to be useful, 
site administration needs to be able to rely on the information provided by the system; 
flawed systems not only provide less information, but also a dangerously false sense of 
security. Moreover, the forensic value of information from faulty systems is not only 
negated, but potentially misleading. 

Given the implications of the failure of an ID component, it is reasonable to assume that 
ID systems are themselves logical targets for attack. A smart intruder who realizes that an 
IDS has been deployed on a network she is attacking will likely attack the IDS first, 
disabling it or forcing it to provide false information (distracting security personnel from 
the actual attack in progress, or framing someone else for the attack).  

In order for a software component to resist attack, it must be designed and implemented 
with an understanding of the specific means by which it can be attacked. Unfortunately, 
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very little information is publicly available to IDS designers to document the traps and 
pitfalls of implementing such a system. Furthermore, the majority of commercially available 
ID systems have proprietary, secret designs, and are not available with source code. This 
makes independent third-party analysis of such software for security problems difficult.  

The most obvious aspect of an IDS to attack is its ``accuracy''. The ``accuracy'' of an IDS is 
compromised when something occurs that causes the system to incorrectly identify an 
intrusion when none has occurred (a ``false positive'' output), or when something occurs 
that causes the IDS to incorrectly fail to identify an intrusion when one has in fact occurred 
(a ``false negative''). Some researchers[5] discuss IDS failures in terms of deficiencies in 
``accuracy'' and ``completeness'', where ``accuracy'' reflects the number of false positives 
and ``completeness'' reflects the number of false negatives.  

Other attacks might seek to disable the entire system, preventing it from functioning 
effectively at all. We say that these attacks attempt to compromise the ``availability'' of the 
system.  

1.5 Points of Vulnerability in ID Systems 
Each component identified by the CIDF model has unique security implications, and can 
be attacked for different reasons. 

As the only inputs of raw data into the system, E-boxes act as the eyes and ears of an IDS. 
An attack against the event generation capabilities of an IDS blinds it to what's actually 
happening in the system it's monitoring. For example, an attack against the E-box of a 
network IDS could prevent it from obtaining packets off the network, or from 
appropriately decoding these packets.  

Some intrusion detection systems rely on sophisticated analyses to provide security 
information. In such systems, the reliability of the A-box components used is important 
because an attacker that knows how to fool them can evade detection --- and complicated 
analytical techniques may provide many avenues of attack. On the other hand, overly 
simplistic systems may fail to detect attackers that intentionally mask their attacks with 
complex, coordinated system interactions from multiple hosts[6].  

The need for reliable data storage is obvious. An attacker that can subvert the D-box 
components of an IDS can prevent it from recording the details of her attack; poorly 
implemented data storage techniques can even allow sophisticated attackers to alter 
recorded information after an attack has been detected, eliminating its forensic value.  

The C-box capability can also be attacked. If a network relies on these countermeasures for 
protection, an attacker who knows how to thwart the C-box can continue attacking the 
network, immune to the safety measures employed by the system. More importantly, 
countermeasure capabilities can be fooled into reacting against legitimate usage of the 
network --- in this case, the IDS can actually be turned against the network using it (often 
un-detectably).  

It is apparent that there are many different points at which an intrusion detection system 
can be attacked. A comprehensive treatment of all potential vulnerabilities is far outside the 
scope of this paper. Rather than attempting to document general problems common to all 
ID systems, we focus on a specific class of attacks against certain types of intrusion 
detection systems.  
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There exist several serious problems with the use of passive protocol analysis as an event-
generation source for signature-analysis intrusion detection systems. This paper documents 
these problems, presents several attacks that exploit them to allow an attacker to evade 
detection by ID systems, and verifies their applicability to the most popular commercial ID 
systems on the market.  

2 Problems with Network ID Systems 
Our work defines two general problems with network intrusion detection: first, that there is 
insufficient information available in packets read off the wire to correctly reconstruct what 
is occurring inside complex protocol transactions, and next, that ID systems are inherently 
vulnerable to denial of service attacks. The first of these problems reduces the accuracy of 
the system, and the second jeopardizes its availability. 

2.1 Insufficiency of Information on the Wire 
A network IDS captures packets off the wire in order to determine what is happening on 
the machines it's watching. A packet, by itself, is not as significant to the system as the 
manner in which the machine receiving that packet behaves after processing it. Network ID 
systems work by predicting the behavior of networked machines based on the packets they 
exchange. 

The problem with this technique is that a passive network monitor cannot accurately 
predict whether a given machine on the network is even going to see a packet, let alone 
process it in the expected manner. A number of issues exist which make the actual meaning 
of a packet captured by an IDS ambiguous.  

A network IDS is typically on an entirely different machine from the systems it's watching. 
Often, the IDS is at a completely different point on the network. The basic problem facing 
a network IDS is that these differences cause inconsistencies between the ID system and 
the machines it watches. Some of these discrepancies are the results of basic physical 
differences, others stem from different network driver implementations.  

For example, consider an IDS and an end-system located at different places on a network. 
The two systems will receive any given packet at different points in time. This difference in 
time is important; during the lag, something can happen on the end-system that might 
prevent it from accepting the packet. The IDS, however, has already processed the packet--
-thinking that it will be dealt with normally at the end-system.  

Consider an IP packet with a bad UDP checksum. Most operating systems will not accept 
such a packet. Some older systems might. The IDS needs to know whether every system it 
watches will accept such a packet, or it can end up with an inaccurate reconstruction of 
what happened on those machines.  

Some operating systems might accept a packet that is obviously bad. A poor 
implementation might, for example, allow an IP packet to have an incorrect checksum. If 
the IDS doesn't know this, it will discard packets that the endsystem accepts, again reducing 
the accuracy of the system.  

Even if the IDS knows what operating system every machine on the network runs, it still 
might not be able to tell just by looking at a packet whether a given machine will accept it. 
A machine that runs out of memory will discard incoming packets. The IDS has no easy 
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way to determine whether this is the case on the end-system, and thus will assume that the 
end-system has accepted the packet. CPU exhaustion and network saturation at the end-
system can cause the same problem.  

Together, all these problems result in a situation where the IDS often simply can't 
determine the implications of a packet merely by examining it; it needs to know a great deal 
about the networking behavior of the end-systems that it's watching, as well as the traffic 
conditions of their network segments. Unfortunately, a network IDS doesn't have any 
simple way of informing itself about this; it obtains all its information from packet capture.  

2.2 Vulnerability to Denial of Service 
A ``denial of service'' (DOS) attack is one that is intended to compromise the availability of 
a computing resource. Common DOS attacks include ping floods and mail bombs --- both 
intended to consume disproportionate amounts of resources, starving legitimate processes. 
Other attacks are targeted at bugs in software, and are intended to crash the system. The 
infamous ``ping of death'' and ``teardrop'' attacks are examples of these. 

Denial of service attacks can be leveraged to subvert systems (thus compromising more 
than availability) as well as to disable them. When discussing the relevance of DOS attacks 
to a security system, the question of whether the system is ``fail-open'' arises. A ``fail-open'' 
system ceases to provide protection when it is disabled by a DOS attack. A ``fail-closed'' 
system, on the other hand, leaves the network protected when it is forcibly disabled.  

The terms ``fail-open'' and ``fail-closed'' are most often heard within the context of 
firewalls, which are access-control devices for networks. A fail-open firewall stops 
controlling access to the network when it crashes, but leaves the network available. An 
attacker that can crash a fail-open firewall can bypass it entirely. Good firewalls are 
designed to ``fail-closed'', leaving the network completely inaccessible (and thus protected) 
if they crash.  

Network ID systems are passive. They do not control the network or maintain its 
connectivity in any way. As such, a network IDS is inherently fail-open. If an attacker can 
crash the IDS or starve it of resources, she can attack the rest of the network as if the IDS 
wasn't even there. Because of the obvious susceptibility to DOS attacks that network ID 
systems have, it's important that they be fortified against them.  

Unfortunately, denial of service attacks are extremely difficult to defend against. The 
resource starvation problem is not easily solvable, and there are many different points at 
which the resources of an IDS can be consumed. Attacks that crash the IDS itself are easily 
fixed, but finding all such vulnerabilities is not easily done.  

3 Attacks 
We discuss in this paper three different types of attacks against sniffer-based network ID 
systems. Two of them attempt to subtly thwart protocol analysis, preventing the signature-
recognition system from obtaining adequate information from which to draw conclusions. 
The third leverages simple resource-starvation attacks to disrupt or disable the entire 
system. 

All of our attacks involve an attacker that is specifically manipulating her 
network usage to create abnormal, or even pathological, streams of traffic. 

1 Vern Paxson of 
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In most cases, they require low-level packet forgery. However, unlike 
normal ``spoofing'' attacks, these techniques are simplified by the fact that 
the attacker is manipulating her own sessions, not attempting to disrupt 
those of other users. Two of our attacks are new1, and specific to traffic 
analysis systems (though not necessarily to intrusion detection). Both are 
mechanisms by which an attacker can fool a protocol analyzer into 
thinking that something is (or is not) happening on the network. The first 
of these, which we call ``insertion'', involves an attacker stuffing the system with subtly 
invalid packets; the second, ``evasion'', involves exploiting inconsistencies between the 
analyzer and an end system in order to slip packets past the analyzer.  

3.1 Insertion 
An IDS can accept a packet that an end-system rejects. An IDS that does this makes the 
mistake of believing that the end-system has accepted and processed the packet when it 
actually hasn't. An attacker can exploit this condition by sending packets to an end-system 
that it will reject, but that the IDS will think are valid. In doing this, the attacker is 
``inserting'' data into the IDS --- no other system on the network cares about the bad 
packets. 

We call this an ``insertion'' attack, and conditions that lend themselves to insertion attacks 
are the most prevalent vulnerabilities in the intrusion detection systems we tested. An 
attacker can use insertion attacks to defeat signature analysis, allowing her to slip attacks 
past an IDS.  

To understand why insertion attacks foil signature analysis, it's important to understand 
how the technique is employed in real ID systems. For the most part, ``signature analysis'' 
uses pattern-matching algorithms to detect a certain string within a stream of data. For 
instance, an IDS that tries to detect a PHF attack will look for the string ``phf'' within an 
HTTP ``GET'' request, which is itself a longer string that might look something like 
``GET /cgi-bin/phf?''.  

The IDS can easily detect the string ``phf'' in that HTTP request using a simple substring 
search. However, the problem becomes much more difficult to solve when the attacker can 
send the same request to a webserver, but force the IDS to see a different string, such as 
``GET /cgi-bin/pleasedontdetecttthisforme?''. The attacker has used an insertion attack to 
add ``leasedontdetectt'', ``is'', and ``orme'' to the original stream. The IDS can no longer 
pick out the string ``phf'' from the stream of data it observes.  

Figure 4 gives a simple example of the same attack. An attacker confronts the IDS with a 
stream of 1-character packets (the attacker-originated data stream), in which one of the 
characters (the letter `X') will be accepted only by the IDS. As a result, the IDS and the end 
system reconstruct two different strings. In general, insertion attacks occur whenever an 
IDS is less strict in processing a packet than an end-system. An obvious reaction to this 
problem might be to make the IDS as strict as possible in processing packets read off the 
wire; this would minimize insertion attacks. However, another severe problem (``evasion'' 
attacks) occurs when this design approach is taken.  

LBNL presented 
a paper 
describing several 
of the same 
attacks as we do 
at roughly the 
same time.[17] 

Seite 9 von 52Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection

28.05.2002http://www.robertgraham.com/mirror/Ptacek-Newsham-Evasion-98.html



 
Figure 4: Insertion of the letter 'X'  

3.2 Evasion 
An end-system can accept a packet that an IDS rejects. An IDS that mistakenly rejects such 
a packet misses its contents entirely. This condition can also be exploited, this time by 
slipping crucial information past the IDS in packets that the IDS is too strict about 
processing. These packets are ``evading'' the scrutiny of the IDS. 

We call these ``evasion'' attacks, and they are the easiest to exploit and most devastating to 
the accuracy of an IDS. Entire sessions can be carried forth in packets that evade an IDS, 
and blatantly obvious attacks couched in such sessions will happen right under the nose of 
even the most sophisticated analysis engine.  

Evasion attacks foil pattern matching in a manner quite similar to insertion attacks. Again, 
the attacker causes the IDS to see a different stream of data than the end-system --- this 
time, however, the end-system sees more than the IDS, and the information that the IDS 
misses is critical to the detection of an attack.  

In the insertion attack we mentioned above, the attacker sends an HTTP request, but 
muddies its contents on the IDS with additional data that make the request seem 
innocuous. In an evasion attack, the attacker sends portions of the same request in packets 
that the IDS mistakenly rejects, allowing her to remove parts of the stream from the ID 
system's view. For example, the original request could become ``GET /gin/f'', which 
would have no meaning to most ID systems. Figure 5 shows the same type of attack.  

 
Figure 5: Evasion of the letter 'A'  
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3.3 Real World Insertion and Evasion 
In reality, insertion and evasion attacks are not this easy to exploit. An attacker usually does 
not have the luxury of injecting arbitrary characters into a stream. However, these attacks 
can come into play well before pattern matching becomes a consideration. One example of 
a place in which insertion attacks can be leveraged at a very low level is stream reassembly. 
To understand how insertion and evasion play into reassembly, we'll first explain what we 
mean by the term. 

Many network protocols are simple and easy to analyze. They involve one system sending a 
single request to another, and waiting for that system to respond. For example, a network 
monitor can easily determine the purpose of a single UDP DNS query by looking at one 
packet.  

Other protocols are more complex, and require consideration of many individual packets 
before a determination can be made about the actual transaction they represent. In order 
for a network monitor to analyze them, it must statefully monitor an entire stream of 
packets, tracking information inside each of them. For example, in order to discover what is 
happening inside of a TCP connection, the monitor must attempt to reconstruct the 
streams of data being exchanged over the connection.  

Protocols like TCP allow any amount of data (within the limits of the IP protocol's 
maximum packet size) to be contained in each discrete packet. A collection of data can be 
transmitted in one packet, or in a group of them. Because they can arrive at their 
destination out of order, even when transmitted in order, each packet is given a number 
that indicates its place within the intended order of the stream. This is commonly referred 
to as a ``sequence number'', and we call collections of packets marked with sequence 
numbers ``sequenced''.  

 
Figure 6: Sequenced reassembly  

The recipient of a stream of TCP packets has the responsibility of re-ordering and 

Seite 11 von 52Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection

28.05.2002http://www.robertgraham.com/mirror/Ptacek-Newsham-Evasion-98.html



extracting the information contained in each of them, reconstructing the original collection 
of data that the sender transmitted. The process of taking a collection of unordered, 
sequenced packets and reconstructing the stream of data they contain is termed 
``reassembly''. Figure 6 shows an example of how a stream of data tagged with sequence 
numbers might be reassembled.  

Reassembly issues manifest themselves at the IP layer, as well; IP defines a mechanism, 
called ``fragmentation'', that allows machines to break individual packets into smaller ones. 
Each individual fragment bears a marker that denotes where it belongs in the context of the 
original packet; this field is called the ``offset''. IP implementations must be able to accept a 
stream of packet fragments and, using their offsets, reassemble them into the original 
packet.  

Insertion attacks disrupt stream reassembly by adding packets to the stream that would 
cause it to be reassembled differently on the end-system---if the end system accepted the 
disruptive packets. The inserted packets could change the sequencing of the stream 
(consuming hundreds of sequence numbers), preventing the IDS from dealing properly 
with the valid packets that follow it. Packets can be inserted that overlap old data, rewriting 
the stream on the IDS. And, in some situations, packets can be inserted that simply add 
content to the stream which changes its meaning.  

Evasion attacks disrupt stream reassembly by causing the IDS to miss parts of it. The 
packets lost by the IDS might be vital for the sequencing of the stream; the IDS might not 
know what to do with the packets it sees after the evasion attacks. In many situations, it's 
fairly simple for the attacker to create an entire stream that eludes the IDS.  

3.4 Ambiguities 
In many cases, defending against insertion and evasion attacks is easy. The behavior that an 
attacker is exploiting to insert packets into the IDS is, in these cases, simply wrong. The 
IDS might not be verifying a checksum or examining a header field correctly; fixing the 
problem merely involves modifying the IDS to check these things. 

Section Info Needed Ambiguity

Section 
4.1.1

Network Topology IP TTL field may not be large enough for the 
number of hops to the destination

Section 
4.1.1

Network Topology Packet may be too large for a downstream link 
to handle without fragmentation

Section 
4.1.2

Destination 
Configuration

Destination may be configured to drop source-
routed packets

Section 
4.3.1

Destionation OS Destination may time partially received 
fragments out differently depending on its OS

Section 
4.3.3

Destination OS Destination may reassemble overlapping 
fragments differently depending on its OS

Section 
5.2.2

Destination OS Destination host may not accept TCP packets 
bearing certain options

Section 
5.2.2

Destination OS Destination may implement PAWS and silently 
drop packets with old timestamps

Section Destination OS Destination may resolve conflicting TCP 
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Figure 7: Ambiguities identified in this paper 

In some cases, however, fixing the problem is not easy. There are situations in which a 
network monitor cannot determine by looking at a packet whether it will be accepted. This 
can be due to varying end-system behavior (one operating system might process a packet 
differently from another). Basic network ambiguities can also cause problems. In some 
cases, unless the IDS knows exactly what path the packet is going to take to get to its 
destination, it won't know whether it will actually arrive there.  

Attacks that exploit these kinds of problems cannot easily be defended against unless the 
IDS has a source of information that resolves the ambiguity. If the IDS knows what 
operating system is running on the destination system, it may be able to discern whether a 
packet is acceptable to that system. If the IDS can reliably track the topology of the 
network, it may be be able to determine whether or not a packet will ever be received by an 
end-system. In general, we say a traffic analysis problem is ``ambiguous'' if an important 
conclusion about a packet cannot be made without a secondary source of information.  

Figure 7 shows the ambiguities this paper identifies. Each ambiguity can potentially be 
resolved if the IDS has certain information (either a reliable view of the topology of the 
network, the configuration of the end-systems it's watching, or the OS and version of those 
systems). This is, of course, not an exhaustive list.  

The next two sections of this paper provide examples of how insertion and evasion attacks 
affect protocol analysis at the network (IP) and transport (TCP) layers. These sections 
provide real-world examples of attacks on IP network ID systems in great detail, working 
from the basic attacks we've defined here.  

4 NetworkLayer Problems 
We begin our discussion of specific, observable problems in network intrusion detection 
systems at the IP layer. An insertion or evasion problem occurring within the IP processing 
of an IDS affects all higher levels of processing as well; a problem that allows an attacker to 
insert an arbitrary IP packet allows that attacker, by extension, to insert an arbitrary (well-
formed) UDP or ICMP packet. It is thus extremely important that an ID system be 
immune to insertion or evasion attacks on this level. 

5.4.3 segments differently depending on its OS

Section 
5.5.1

Destination OS Destination may not check sequence numbers 
on RST messages

Line Description

229 No IP addresses set yet

232 Received packet is too short to be an IP datagram.

240 Received packet is too short to be an IP datagram.

247 IP version isn't `4'

253 IP ``header length'' field too small

257 IP ``header length'' is set larger than the entire packet

269 Bad header checksum
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Figure 8: FreeBSD 2.2 ip input() packet discard points (netinet/ip input.c) 

4.1 Simple Insertion Attacks 
There are many ways that an attacker can send an IP packet that only an IDS will accept. 
We collected candidate methods by examining the IP driver source code of the 4.4BSD 
operating system. Any condition that causes 4.4BSD to drop a received packet must be 
accounted for in an intrusion detection system. An inconsistency between 4.4BSD and an 
IDS represents a potential insertion or evasion attack against that IDS. Figure 8 lists all the 
points in FreeBSD 2.2's ``ip input'' routine that discard received datagrams. 

4.1.1 Bad Header Fields 

The easiest way for an IP datagram to be discarded by an endpoint is for it to have an 
invalid header field. The header fields of an IP packet are described in RFC731[7]. 

One problem with attempting to use packets with bad header fields for insertion attacks is 
that doing so often prevents the packet from being forwarded by Internet routers. This 
makes it difficult to use such packets for an attack, unless the IDS is situated on the same 
LAN as the attacker (in which case the attacker can already manipulate the IDS via packet 
forgery). A good example is the ``version'' field; assigning a value other than 4 to this field 
will prevent the packet from being routed.  

Another problem with using bad header fields is the fact that some of them need to be 
correct for the packet to be parsed correctly (``correctly'' here meaning ``in the manner 
intended by the attacker''). For instance, incorrectly specifying the size of the IP packet 
itself, or the size of its header, may prevent the IDS from locating the transport layer of the 
packet.  

One IP header field that is easy to neglect is the checksum. It may seem unnecessary for an 
IDS to verify the accuracy of the checksum on each captured IP packet; however, a 
datagram with a bad checksum will not be processed by most IP implementations. An IDS 
that does not reject packets with bad checksums is thus vulnerable to a very simple 
insertion attack.  

A harder problem to solve is the TTL field. The TTL (time to live) field of an IP packet 
dictates how many ``hops'' a packet can traverse on its way to its destination. Every time a 
router forwards a packet, it decrements the TTL. When the TTL runs out, the packet is 
dropped. If the IDS is not on the same network segment as the systems it watches, it is 
possible to send packets that only the IDS will see by setting the TTL just long enough for 
the packet to reach the IDS, but too short for the packet to actually arrive at its destination.
[17]  

A similar problem occurs in relation to the ``Don't Fragment'' (DF) flag in the IP header. 
The DF flag tells forwarding devices not to split a packet up into fragments when the 
packet is too large to be forwarded, but instead to simply drop the packet. If the maximum 
packet size of the network the IDS is on is larger than that of the systems it watches, an 

278 IP ``total length'' field is shorter than ``header length''

348 Packet has IP options and ip dooptions() returns an error

437 Not addressed to this host

450 Too small to be a fragment
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attacker can insert packets by making them too large for the destination network and 
setting the DF bit.[17]  

Both of these problems can lead to ambiguities that are only solveable if the IDS has an 
intimate knowledge of the topology of the network it is monitoring.  

4.1.2 IP Options 

The IP checksum problem is fairly simple to solve; an IDS can reasonably assume that if 
the checksum is wrong, the datagram will not be accepted by the endsystem it's addressed 
to. A trickier problem is that of parsing IP options. This is more likely to vary between 
hosts, and the interpretation of options requires specialized processing. 

For example, most end-systems will drop a packet that is ``strict source routed''[9] when 
the host's own address is not in the specified source route. It is reasonable for an IDS to 
drop such packets, avoiding an insertion attack.  

However, many operating systems can be configured to automatically reject source routed 
packets. Unless the IDS knows whether a source-routed packet's destination rejects such 
packets, the correct action to take is ambiguous.  

Examination of source route options on IP packets may seem like an obvious requirement 
for a security program. However, there are other options that must be accounted for that 
are less obviously relevant. For instance, the ``timestamp'' option requests that certain 
recipients of the datagram place a timestamp within the packet. The code that processes the 
timestamp option can be forced to discard the packet (if the option is malformed). If the 
sniffer does not validate the timestamp option in the same manner as the end systems it 
watches, the inconsistency can be exploited. Figure 9 lists all the places in which FreeBSD  

Figure 9: FreeBSD 2.2 ip dooptions() packet discard points 

2.2's option processing code discards incoming 

Line Option Description

837 Any Bad option length

858 Source Route Option offset is less than `4'

866 Strict Source Route This host is not one of the listed hops

886 Source Route This host is configured to drop source routed packets

911 Source Route No route to next hop in route

927 Record Route Option offset is less than `4'

943 Record Route No route to next hop

957 Timestamp Option length is too short

960 Timestamp Timestamp recording space is full and the overflow counter 
has wrapped back to zero

971 Timestamp Not enough record space to hold timestamp and IP address

985 Timestamp Not enough record space to hold timestamp and IP address

995 Timestamp Bad timestamp type given
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datagrams. 
Most IP option processing problems in the 4.4BSD option processing code results in the 
transmission of an ICMP error message, notifying the sender of the errant datagram of the 
problem. An IDS could potentially listen for such messages to determine whether an oddly-
specified option is correct. This is not always reliable; some operating systems (Sun Solaris, 
for instance) will rate-limit ICMP, suppressing the error messages. Furthermore, tracking 
ICMP responses to datagrams bearing options requires the IDS to keep state for each IP 
packet; this will consume resources and potentially allow an attacker an avenue for a denial 
of service attack. 

4.2 MAC Addresses 
Although obviously not an IP problem per se, the same implications for insertion attacks 
exist due to link-layer addressing. An attacker on the same LAN as a network monitor can 
direct link-layer frames to the IDS, without ever allowing the host specified as the IP 
destination to see the packet. 

If the attacker knows the link-layer address of the IDS, she can simply address her fake 
packet to the IDS. No other system on the LAN will process the packet, but, if the IDS 
doesn't check the MAC address on the received packet, it won't know this. Figure 10 shows 
an example of an attacker that inserts a character in the IDS by directing a packet to the 
IDS via the Ethernet link-layer.  

 
Figure 10: Insertion Attacks at the Link Layer  

Even if the attacker doesn't know the link-layer address of the network monitor, she can 
exploit the fact that the network monitor is operating in promiscuous mode by addressing 
the frame to a fake address. Again, unless the IDS verifies the destination address in the IP 
header against the correct link-layer address (and can do so reliably), it can be fooled by 
falsely-addressed link-layer frames.  

4.3 IP Fragmentation 
IP packets can be broken into smaller packets, and reassembled at the destination. This is 

Seite 16 von 52Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection

28.05.2002http://www.robertgraham.com/mirror/Ptacek-Newsham-Evasion-98.html



termed ``fragmentation'', and is an integral part of the IP protocol. IP fragmentation allows 
the same information to travel over different types of network media (which may have 
different packet size limits) without limiting the entire protocol to an arbitrary small 
maximum packet size. A detailed explanation of IP fragmentation can be found in Stevens
[8], or in RFC791[9]. 

Because end-systems will reassemble a stream of IP fragments, it is important that a 
network monitor correctly reassemble fragments as well. An IDS that does not correctly 
reassemble fragments can be attacked simply by ensuring that all data is exchanged between 
machines using artificially fragmented packets.  

4.3.1 Basic Reassembly Problems 

Streams of IP fragments usually arrive in order. The last fragment in a stream is clearly 
marked (the IP header contains a flag that specifies whether more fragments follow a given 
packet). However, even though it rarely happens, the protocol allows fragments to arrive in 
any arbitrary order. An end system must be able to reassemble a datagram from fragments 
that arrive out of order. 

Because fragments usually arrive in order, it's easy to make the mistake of assuming that 
they always will. An IDS that does not properly handle outof-order fragments is vulnerable; 
an attacker can intentionally scramble her fragment streams to elude the IDS. It's also 
important that the IDS not attempt to reconstruct packets until all fragments have been 
seen. Another easily made mistake is to attempt to reassemble as soon as the marked final 
fragment arrives.  

Another significant problem is the fact that received fragments must be stored until the 
stream of fragments can be reassembled into an entire IP datagram. An IDS can be 
attacked by flooding the network with partial, fragmented datagrams, which will never be 
completed. A naive IDS will run out of memory as it attempts to cache each fragment, 
since the fragmented packets are never completed.  

End-systems must deal with this problem as well. Many systems drop fragments based on 
their TTL, to avoid running out of memory due to over-full fragment queues. An IDS that 
eventually drops old, incomplete fragment streams must do so in a manner consistent with 
the machines it's watching, or it will be vulnerable to insertion (due to accepting fragment 
streams that end-systems have dropped already) or evasion (due to dropping fragments that 
end-systems have not yet discarded) attacks.  

4.3.2 Overlapping Fragments 

It has long been known that there are serious security implications arising from interactions 
between fragmentation and network access control devices (like packet filters). Two well-
known attacks involving fragmentation allow attackers to potentially evade packet filters by 
employing pathological fragment streams. The first of these attacks involves simply sending 
data using the smallest fragments possible; the individual fragments will not contain enough 
data to filter on. 

The second problem is far more relevant to ID systems. It involves fragmentation overlap, 
which occurs when fragments of differing sizes arrive out of order and in overlapping 
positions. If a fragment arriving at an end-station contains data that has already arrived in a 
different fragment, it is possible that the newly arrived data may overwrite some of the old 
data.  
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This presents problems for an IDS. If the IDS does not handle overlapping fragments in a 
manner consistant with the systems it watches, it may, given a stream of fragments, 
reassemble a completely different packet than an endsystem in receipt of the same 
fragments. An attacker that understands the specific inconsistency between an end-system 
and an IDS can obscure her attack by couching data inside of overlapping fragment streams 
that will be reassembled differently on the two systems.  

Overlap resolution is further complicated by the fact that data from conflicting fragments is 
used differently depending on their positions. In some situations, conflicts are resolved in 
favor of the new data. In others, the old data is preferred and the new data is discarded. An 
IDS that does this incorrectly is vulnerable to evasion attacks. Figure 11 shows the different 
scenarios involved in fragmentation overlap.  

 
Figure 11: Forward and Reverse Overlap  

Figure 12: IP fragment overlap behavior for various OS's 

4.3.3 Effects of EndSystem Fragmentation Bugs 

ID systems aren't the only IP implementations that can incorrectly handle overlapping 
fragments. The IP drivers in end-systems can have bugs as well. The complexity of IP 
fragment reassembly makes the existence of incorrect implementations quite likely. Unless 
the IDS knows exactly which systems have nonstandard drivers, it is incapable of accurately 
reconstructing what's happening on them. 

For example, Windows NT resolves overlapping fragments consistently in favor of the old 

Operating System Overlap Behavior

Windows NT 4.0 Always Favors Old Data 

4.4BSD Favors New Data for Forward Overlap Linux Favors New Data for 
Forward Overlap 

Solaris 2.6 Always Favors Old Data 

HP-UX 9.01 Favors New Data for Forward Overlap 

Irix 5.3 Favors New Data for Forward Overlap 
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data (we were unable to create a fragment stream that forced Window NT to rewrite a 
previously received fragment). This differs from 4.4BSD, which resolves conflicts as 
suggested by the standard (in favor of the new data in cases of forward overlap)[10]. Figure 
12 gives examples of how several popular operating systems resolve overlap.  

The end result is that fragmentation reassembly is different on the endsystem depending on 
the operating system. Unless the IDS knows which OS the system is running, it will have 
absolutely no way of knowing what form of conflict resolution was performed, and thus no 
conclusive evidence of what was actually reassembled.  

4.3.4 IP Options in Fragment Streams 

IP packets can bear options. When an IP packet is fragmented, the question arises as to 
whether the options from the original packet should be carried on all the fragments. 
RFC791[9] dictates that certain IP options are to be present in every fragment of a 
datagram (for example, the ``security'' option), and others must appear only in the first 
fragment. 

A strict implementation of IP could discard fragments that incorrectly present options. 
Many implementations do not. If the IDS doesn't behave exactly like the machines it's 
watching in this respect, it will be vulnerable to insertion and evasion attacks.  

4.4 Forensic Information from IP Packets 
It is an unfortunate fact that the IP version 4 protocol is in no way authenticated. This 
poses some problems to ID systems attempting to collect evidence based on information 
seen in IP headers; anyone can forge an IP packet appearing to come from some arbitrary 
host. 

This problem is particularly severe with connectionless protocols. In connection-oriented 
protocols, a weak conclusion can be drawn as to the origin of a session based on whether a 
valid connection is created; the sequence numbers employed by protocols like TCP provide 
at least cursory assurance that the attack is originating at the address it appears to come 
from. An IDS can observe that a connection uses consistantly correct sequence numbers 
and have a reasonable assurance that it's not being blindly spoofed.  

Unfortunately, no such assurance exists with connectionless protocols; an attack against the 
DNS, for instance, could be sourced from any address on the net. It is important that 
operators of ID systems be aware of the questionable validity of the addressing information 
they're given by their system.  

5 TCP TransportLayer Problems 
A large portion of the attacks detected by ID systems occur over TCP connections. This 
imposes the requirement that an IDS be able to reconstruct the flow of data passing 
through a stream of TCP packets. If the IDS can't do this in a manner consistent with end 
systems it's watching, it is vulnerable to attack. 

For normal TCP connections, initiated by innocuous network applications like ``telnet'', 
this is not difficult. Against an attacker, who is stretching the TCP protocol to its limits 
(and, in exploiting OS bugs, beyond those limits) to avoid detection, the problem is far 
more difficult.  
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There are many different ways to implement a TCP connection monitor. Each has its 
advantages, and each has serious flaws. The lack of a canonical ``Right Way'' to process a 
captured stream of TCP packets is a major problem with network ID systems.  

5.1 Definition of Terms 
TCP connection monitoring is a complicated subject. In order to simplify our discussion, 
we define several terms describing information used by the monitor to track and record 
information flowing through a TCP session. For the most part, these terms are 
synonymous with those used by the BSD TCP implementation. 

Every TCP connection has four identifiers (two for the client, two for the server) which 
distinguish it from any other connection on the network. These are the client (or source) 
and server (or destination) IP addresses, and the client and server TCP port numbers. Two 
connections cannot exist on the network that share these identifiers. We'll refer to this 
information as the ``connection parameters''.  

The TCP protocol specification (RFC793[12]) defines several ``states'' that any given 
connection can be in. In this paper, we refer only to states observable by an IDS (those 
involving the actual exchange of data between two hosts).  

The vast majority of all possible connections exist in the ``CLOSED'' state, meaning that 
no connection currently exists using those parameters. An active, established connection is 
said to be in ``ESTABLISHED'' state. We'll introduce other states when they become 
relevant to our discussion.  

TCP implements a reliable, sequenced stream protocol. By ``reliable'', we mean that each 
end of a connection can determine whether data it has sent was successfully received, and 
can do something to remedy the situation when it isn't. TCP is ``sequenced'' because it 
employs ``sequence numbers'' to determine where any piece of data represented in a packet 
belongs within a stream.  

In order for an IDS to reconstruct the information flowing through a TCP connection, it 
must figure out what sequence numbers are being used. We call the process that an IDS 
goes through to determine the current valid sequence numbers for a connection 
``synchronization''. A scenario in which the IDS becomes confused about the current 
sequence numbers is termed ``desynchronization''.  

When an IDS is desynchronized from a connection, it cannot accurately reconstruct the 
data being passed through the connection. In many cases, ID systems become completely 
blinded (not reconstructing any data from the connection) when this occurs. Thus, a major 
goal of an attacker is to desynchronize the IDS from her connections.  

Along with sequence numbers, TCP tracks several other pieces of information about a 
connection. TCP defines a flow-control mechanism that prevents one side of a connection 
from sending too much data for the other side to process; this is tracked through each 
side's ``window''. TCP also allows for out-of-band data to be sent in a stream, using the 
``urgent pointer''.  

This collection of state information can be represented internally on an endsystem in any 
manner. We refer to the abstract concept of the block of information that an 
implementation must manage to follow a single connection as a ``TCP control block'', or 
``TCB''. A network IDS must maintain a TCB for every connection that it watches.  
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5.1.1 IDS State Transition 

TCBs are only useful for connections that are not (in fact) in CLOSED state. Because it 
would be infeasible for an IDS to maintain a TCB for every possible connection, any 
network IDS defines a mechanism by which TCBs can be created for newly detected 
connections, and destroyed for connections that are no longer relevant. 

In our discussion of IDS TCP problems, we isolate three different points at which the 
processing of a connection by an IDS can be subverted. These are TCB creation (the point 
at which an IDS decides to instantiate a new TCB for a detected connection), stream 
reassembly (the process an IDS uses to reconstruct a stream associated with an open TCB), 
and TCB teardown (the point at which the IDS decides to retire a TCB).  

Contributing to attacks against each of these three points are data insertion attacks, which 
can allow an attacker to confuse the IDS as to what data is actually arriving at the end-
system. In some cases, such as within the context of stream reassembly, data insertion 
attacks make the reliable monitoring of a TCP session practically impossible; it is thus 
important the the IDS not be vulnerable to insertion attacks. This is not an easy goal to 
achieve.  

5.2 Simple Insertion Attacks 
As with the IP protocol, there are several different ways in which a single packet can be 
inserted into an IDS. TCP input processing is complex, and there are many different cases 
that can cause a received packet to be dropped. As always, if an IDS doesn't process TCP 
packets in the same manner as the end-systems it's monitoring, it is potentially vulnerable to 
insertion attacks. 

As with our analysis of IP monitoring, we used the source code to the 4.4BSD kernel to 
obtain candidate cases for potential insertion attacks. Again, any point in 4.4BSD's tcp 
input() function that causes a received packet to be dropped without complete processing 
was identified as a possible problem. Figure 13 lists points in FreeBSD 2.2's tcp input() 
code where incoming segments are dropped.  

A TCP segment is acknowledged if the receiving system generates a message in response to 
the segment; when this occurs, we indicate whether this is via an RST or ACK message. 
The transmission of a message in response to a bad segment is significant because an IDS 
could potentially detect invalid segments by examining the manner in which they are 
acknowledged, though this is complicated both by resource and efficiency issues, as well as 
the potential for inconsistant behavior across different operating systems.  

5.2.1 Malformed Header Fields 

Data from a TCP packet can be extracted and used in reassembly without looking at many 
of the header fields. This makes it dangerously easy to design a TCP session monitor that is 
vulnerable to packet insertion; it is important to validate the header fields of a TCP packet 
before considering its data. 

One very easily overlooked field is the ``CODE'', which determines the type of message 
being sent in a given TCP segment. The TCP code is specified as a series of binary flags. 
Certain combinations of these flags are invalid, and should result in a discarded packet. 
Additionally, many TCP implementations will not accept data in a packet that does not 
have the ``acknowledge'' (``ACK'') flag set.  
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According to the TCP specification, TCP implementations are required to accept data 
contained in a SYN packet. Because this is a subtle and obscure point, some 
implementations may not handle this correctly. If an IDS doesn't consider data in a SYN 
packet, it is vulnerable to a trivial evasion attack; if it does, it may be vulnerable to insertion 
attacks involving incorrect end-system implementations.  

Another often overlooked TCP input processing issue is checksum computation. All TCP 
implementations are required to validate incoming packets with the Internet checksum. 
Many ID systems fail to perform this check; packets can be inserted into these systems 
simply by sending TCP segments with intentionally corrupt checksums.  

5.2.2 TCP Options 

As in IP, it is important that the IDS process TCP options correctly. Unfortunately, 
processing of TCP options is significantly trickier than processing IP options. One reason 
for this is the fact that several TCP options have only recently been created (timestamp and 
window scale, for instance). Another is the fact that TCP specifies rules for when a TCP 
option can appear within the context of a connection. Certain options can be invalid in 
certain connection states. 

RFC1323[13] introduces two new TCP options designed to increase the reliability and 
performance of TCP in high-speed environments. With these new options came the 
possibility that TCP options could appear on packets that were not SYN segments, a 
departure from the previous convention. RFC1323 dictates that options can only appear in 
non-SYN segments if the option has been specified and accepted previously in that 
connection.  

Line Acknowledged? Condition
295 No Actual received packet too short

312 No Bad checksum

323 No Offset too Short (into TCP header) or too long

331 No Actual received packet too short

369 RST No listening process

382 RST No listening process

384 No Connection is in CLOSED state

404 No Packet other than SYN received in LISTEN state

409 RST ACK packet received in LISTEN state

423 No Can't track new connections

628 No Received RST packet in LISTEN state

630 RST ACK packet received in LISTEN state

632 No Any packet without SYN received in LISTEN state

639 No Broadcast or Multicast SYN received

643 No Out of resources

655 No in pcbconnect() failure

662 No Out of resources
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Figure 13: FreeBSD 2.2 tcp input() packet drop points (netinet/tcp input.c) 

Because certain TCP implementations may reject non-SYN segments containing options 
not previously seen, it's important that the IDS not blindly accept such a packet. On the 
other hand, some end-systems may simply ignore the bad options, but continue to process 
the packet; if the IDS doesn't correctly determine what the end-system has done, it will 
either be vulnerable to an insertion attack or another trivial packet evasion attack.  

Another concept defined by RFC1323 is PAWS, or ``protection against wrapped sequence 
numbers''. Systems implementing PAWS track timestamps on segments; if a segment is 
received that contains a timestamp echo that is older than some threshold time, it is 
dropped. An attacker can trivially create a TCP segment with an artificially low timestamp, 
which will cause PAWS-compliant TCP stacks to drop the packet without further 
processing.  

Not only does the IDS need to know whether the end-system supports PAWS, but it also 
needs to know what the end-system's threshold value for timestamps is. Without this 
information, an IDS may erroneously process invalid TCP segments, or, even worse, make 
an incorrect guess as to the validity of a segment and enable evasion attacks.  

5.3 TCB Creation 
The first point at which TCP session monitoring can be subverted is in TCB creation. The 
TCB creation policies of an IDS determine the point at which it begins recording data for a 
given connection, as well as the initial state (sequence numbers, etc) used to synchronize 
the monitoring with the actual session. 

TCB creation is a troublesome issue. There are many different methods that can be 
employed to determine when to open a TCB, and none of the straightforward methods is 
without problems. Some techniques are obviously inferior to others, however, and it's 
important to indicate which these are. TCB creation establishes the initial state of a 
connection, including its sequence numbers; the ability to forge fake TCBs on the IDS can 
allow an attacker to desynchronize future connections that use the same parameters as the 

773 No ACK packet, bad sequence numbers

789 No In SYN SENT state, received packet other than SYN

796 No In SYN SENT state, received packet has bad CC.ECHO

936 No In TIME WAIT state, packet has bad CC option

945 No Any other packet received in TIME WAIT state

979 ACK Bad timestamp (too old)

993 No In T/TCP, no CC or bad CC on nonRST packet

1048 RST Listening user process has terminated

1087 ACK Packet is out of receive window

1156 No ACK bit not set on nonSYN data packet

1175 RST ACK packet, bad sequence numbers

1234 No Duplicate ACK

1300 ACK ACK packet sent out of window

1443 ACK In TIME WAIT state, received ACK

Seite 23 von 52Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection

28.05.2002http://www.robertgraham.com/mirror/Ptacek-Newsham-Evasion-98.html



forged connection.  

TCB creation as a concept revolves around the TCP three-way handshake (or ``3WH''), 
which is an exchange of TCP packets between a client (the ``active opener'' of a 
connection) and server (the ``passive opener''). The 3WH establishes the initial sequence 
numbers used for that connection, along with any other parameters (the use of running 
timestamps, for instance) that may be important.  

There are very few options available to an end-system in implementing TCB creation; a 
TCB cannot be completely opened until a three-way handshake is completed successfully. 
Without the 3WH, the two ends of a connection have no agreed-upon sequence numbers 
to use, and will be unable to exchange data.  

An IDS, on the other hand, has many options. ID systems can attempt to determine the 
sequence numbers being used simply by looking at the sequence numbers appearing in TCP 
data packets (we refer to this as ``synching on data''), or it can rely entirely on the 3WH. 
Compromises can be made to either approach; information from a 3WH can be used, but 
not relied upon, by the IDS, and the  

IDS does not necessarily need to wait for an entire 3WH before opening a TCB. We 
attempt to outline all the straightforward mechanisms for establishing TCBs on an IDS 
here. This is by no means a complete list of all the ways this task can be accomplished, but 
these are the techniques that we expect to see utilized in typical ID systems.  

5.3.1 Requiring ThreeWay Handshake 

The first decision for IDS designers to make is whether or not to rely completely on the 
three-way handshake for TCB initiation. An IDS that relies on the 3WH will not record 
data in a connection for which it did not observe a handshake. 

This has a few distinct disadvantages. The first and most obvious is the fact that the IDS 
will miss entirely any TCP connection for which it does not see the 3WH. This obviously 
presents problems at program initialization time (the IDS will only be able to see 
connections that start after it does), but also presents a serious opportunity for connection 
evasion by an attacker who can prevent the IDS from seeing the 3WH.  

Another problem occurs in combination with TCP reassembly. If an IDS uses the 3WH to 
determine the initial sequence numbers of a connection, and then validates data against 
those sequence numbers, it can potentially be tricked into desynchronization by an attacker 
who forges a realistic-looking (but fake) handshake. If the IDS records the sequence 
numbers from the handshake, a real connection, using different sequence numbers but the 
same parameters, will be undetectable as long as the attacker-created TCB is open.  

TCP options compound this problem. In order to correctly deal with TCP extensions such 
as PAWS, the IDS must see the three-way handshake (the handshake determines whether 
the use of certain options is legitimate with the connection). If the IDS fails to detect this, it 
will be vulnerable to insertion attacks against some operating systems (notably 4.4BSD).  

The Effects of Filtering on Handshake Detection Many security-conscious networks 
have network filtering in place that makes it difficult for a remote attacker to send packets 
to the network that have source addresses of machines behind the filter. This technique, 
which is referred to as ``inside-outside'' filtering or ``spoof-protection'', makes some attacks 
against TCB creation harder; the attacker, trying to trick the IDS into opening or 
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desynchronizing a TCB, cannot easily forge server response packets.  

An IDS can take advantage of this by trusting packets that appear to originate from 
machines behind such filters (the IDS assumes that the presence of these filters makes 
forging such packets impossible). Trusted packets can be used as a reliable indicator of 
connection state.  

It's important to base the decision on whether to ``trust'' a packet off the source address on 
the packet, and not on the type of TCP message it contains. An IDS that ``trusts'' 
SYN+ACK packets, assuming that they are server response messages and thus protected 
by packet filters, cannot accurately detect attacks against network clients (in which the 
filtered addresses are the clients, not the servers).  

Of course, the IDS must be configured to know which addresses are trustworthy and 
which aren't. An IDS which blindly relies on the fact that addresses on its own LAN are 
spoof-protected will be completely vulnerable if no actual spoof protection exists. The 
configuration of the IDS must be consistent with that of the actual packet filters.  

Requiring Full Handshake An IDS that requires a full 3WH will not record data for a 
connection until it sees and accepts all 3 packets in the three-way handshake. Two of these 
packets are sent by the client (and thus, for server attacks, can be considered under the 
complete control of an attacker), and 1 of them is sent by the server. In TCP terminology, 
this means that the IDS doesn't start recording until the connection enters 
ESTABLISHED state.  

As mentioned previously, requiring a complete handshake makes it dangerously easy to 
miss connections (due to packet evasion techniques, simple performance problems on the 
TCP monitor that cause it to miss packets, or even attacker-induced performance 
problems).  

Allowing Partial Handshake An IDS that requires at least a partial 3WH will not record 
data for a connection until it sees some portion of the handshake occur. Evidence of a 
three-way handshake validates TCB initiation (we'll see that there are problems with blindly 
creating TCBs to synch up to data streams), and potentially reduces the ability of an 
attacker to trick the system into creating false TCBs. Requiring only partial handshakes also 
decreases the probability that a connection will be missed due to packet drops under load.  

The question that then arises is ``what portion of the three-way handshake needs to be seen 
by the IDS before a TCB is created?''. An IDS can create a TCB when it sees the initial 
connection solicitation (the client SYN), or when it sees the server return a positive 
response (the server SYN+ACK). In the presence of inside-outside filtering, it can be 
difficult for an attacker to spoof the server response; server SYN+ACK responses are thus 
a more reliable indication that a connection is occurring. If an attacker cannot spoof the 
server response, the SYN+ACK also contains the valid sequence numbers for the 
connection, allowing the IDS to more accurately initialize the TCB.  

In either case, it's important to note that until the handshake is completed, a connection 
doesn't actually exist. The only indication an IDS has that a connection isn't being spoofed 
is when then the client responds to the server SYN+ACK with an ACK confirming the 
server's initial sequence number. If an IDS uses partial handshakes to open TCBs, it can be 
tricked into opening TCBs for nonexistent connections.  

5.3.2 Data Synchronization 
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The alternative to requiring a three-way handshake to open a TCB is to deduce the initial 
state of a connection by looking at data packets, presumably after a connection has been 
opened. Since the IDS is not an active participant in the connection, it doesn't necessarily 
even have to consider 3WH packets; it is entirely feasible to track normal connections 
simply by looking at ACK packets (packets containing data). 

The primary advantage of this technique, which we refer to as ``synching on data'', is that 
the sniffer picks up more data than systems that require handshakes. The system can 
recover from the loss of an important 3WH packet, and can detect connection that began 
before the program was started. Unfortunately, synching on data creates the possibility that 
the sniffer will accept data that doesn't correspond to any open connection.  

Worse still, ID systems that synch on data and are strict about sequence number checking 
can be desynchronized by an attacker who pollutes the observable connection state with 
forged data before initiating her attack.  

Using SYN Packets A potential antidote to this problem is to allow the IDS to synch on 
data, but have it pay attention to 3WH packets that occur sometime after it starts recording 
data. These systems will initialize connection state from the first observed data packets, but 
will re-initialize themselves if they see evidence that a real 3WH is being performed (the 
3WH is then presumed to set the real state, and previous state and data recorded should be 
regarded as intentionally faked).  

It is important that this technique be implemented reliably. Because the process of 
combining data synchronization with handshake synchronization necessarily allows the 
monitor to resynchronize the connection based on some packet input, poor 
implementations can result in TCP session monitors that can be desynchronized (due to 
falsely injected 3WH packets) at will by an attacker.  

One poor implementation strategy relies solely on client SYN packets to resynchronize the 
connection. If a SYN packet is received sometime after the TCB is opened, the IDS resets 
the appropriate sequence number to match that of the newly received SYN packet. An 
attacker can inject fake SYN packets at will; all she needs to do is send a SYN packet with a 
completely invalid sequence number, and the IDS will be desynchronized. Legitimate data 
being exchanged on the connection will no longer (as far as the IDS is concerned) have 
valid sequence numbers, and the IDS, discarding the valid data, will be blinded.  

One simple way to address this problem is to only accept the first SYN packet seen on a 
connection. Presumably, this will be the legitimate three-way handshake packet, and not a 
forged desynch attempt.  

This does not work. There are three major problems with this approach: the IDS remains 
vulnerable to desynch attacks on connections that start before the program does (it never 
examines the original 3WH, so no legitimate SYN will ever appear on the connection), the 
IDS has no reliable way to determine whether any given SYN is in fact the first SYN to 
appear on the connection (packet drops complicate this), and, most importantly, an attacker 
can permanently desynchronize the connection by inserting an invalid SYN packet before 
the legitimate connection starts.  

A better approach is to rely on SYN+ACK packets to resynchronize. As long as the 
attacker can't forge a valid looking SYN+ACK packet from the server, the IDS can make 
the assumption that SYN+ACKs from the server are legitimate and represent real 
connection handshakes.  
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There are problems associated with this too. If the IDS is observing a stream of data, for 
which it has not yet detected a three-way handshake, it does not necessarily know which 
host is the client and which is the server. The observation of a 3WH determines which end 
is the client and which is the server. An attacker can forge a SYN+ACK packet that makes 
it appear like her end of the connection is the server; if the IDS cannot determine correctly 
whether that is the case, it will be desynchronized.  

Ignoring SYN Packets A TCP monitor need not resynchronize on 3WH packets; SYN 
packets can be ignored entirely, and data be used as the basis for sequence number 
initialization. If this is implemented in a naive fashion, any forged data packet can 
potentially desynchronize the connection. A smarter implementation might only consider 
(for synchronization purposes) data packets that originate from local hosts, assuming that 
the attacker cannot forge packets appearing to come from these hosts.  

5.4 TCP Stream Reassembly 
The most difficult task for a network intrusion detection system to accomplish is the 
accurate reconstruction of the actual data being exchanged over a TCP connection. TCP 
provides enough information for an end-system to determine whether any piece of data is 
valid, and where that data belongs in the context of the connection. Even so, the 4.4BSD 
code to manage this process is over 2000 lines long, and is some of the most involved in 
the entire TCP/IP protocol implementation. 

The end-points of a connection have a distinct advantage over an observing monitor --- if 
they miss data, the other side of the connection will automatically retransmit it after some 
period of time. Both participants of the connection can actively manipulate the other, to 
ensure that their data is exchanged correctly.  

The TCP session monitor does not have this luxury. If it misses a packet, it cannot 
(practically) request retransmission --- moreover, it cannot easily detect whether a missing 
piece of data is due to out-of-order packet arrival or a dropped packet. Because the IDS is 
strictly a passive participant in the connection, it is quite easy for it to miss data.  

This problem is made even more acute by the fact that proper reassembly of a stream of 
TCP packets requires accurate sequence number tracking. If an IDS misses enough packets, 
it can potentially lose track of the sequence numbers. Without some recovery mechanism, 
this can permanently desynchronize the connection. The techniques used by an IDS to 
recover from packet loss (and resynchronize with the connection) can also be attacked.  

5.4.1 Basic Reassembly Problems 

Some ID systems do not use sequence numbers at all. Instead, they insert data into the 
``reassembled'' stream in the order it is received. These systems do not work. An attacker 
can blind such a system simply by accompanying her connection with a constant stream of 
garbage data; the output of the monitor's TCP driver will be meaningless. 

These systems do not work even on normal TCP streams. The arrival of TCP segments out 
of order is a normal occurrence (happening whenever the route between TCP endpoints 
changes and reduces the latency of the path between them)[18]. Unfortunately, when this 
happens, the ID system does not correctly re-order the packets. The output of the system is 
again inaccurate. Of course, an attacker could also send her stream of data out of order; the 
end-system will correctly reassemble, and the effectively crippled IDS will see meaningless 
data.  
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5.4.2 Challenges To Reassembly 

Even if the system does check sequence numbers, there is no assurance that a given 
segment (even with correct sequence numbers) will be accepted by the endsystem to which 
it is addressed. Several issues can cause a TCP implementation to drop properly sequenced 
data. The simplest of these are the IP and TCP insertion problems, but other, higher-level 
issues present problems as well. 

One major problem the IDS must cope with is each end-system's advertised window. The 
``window'' of a connection represents the number of bytes of data it will accept, preventing 
the other end of the connection from sending too much data for it to buffer. Data sent past 
the window is discarded. In addition, the time at which the IDS detects the change in the 
window is different from the time at which the end-system detects the change and reacts to 
it. Packets that arrive within the period of time that the IDS and the end-system are 
inconsistent can cause problems. An IDS that does not account for this in some manner is 
potentially vulnerable to an insertion attack.  

The information available to the IDS from captured packets provides one useful indication 
of end-system state --- the acknowledgment sequence number. The acknowledgment 
number represents the next sequence number an end-system expects to see. Presumably 
(end-system TCP bugs can break this assumption), any valid piece of data will eventually be 
acknowledged by an ACK message.  

It may be apparent at this point that an IDS can reliably monitor a stream simply by waiting 
for acknowledgment before acting on a piece of data. This is not as easy at it may seem. 
The acknowledgment number is cumulative; it represents the next expected piece of data 
within the context of the entire connection. Every segment sent is not necessarily directly 
acknowledged --- even though an acknowledgment is generated in response to it. Several 
segments worth of data can be acknowledged by one ACK; an IDS cannot simply wait for 
an acknowledgement to each individual packet it sees.  

Figure 14: TCP Overlap Behavior in Various Operating Systems 

Another great problem in IDS stream reassembly is the fact that an attacker can send 
several identically sequenced packets with varying data. The header information will not 
change from packet-to-packet (except the checksum), and each packet will alter end-system 
state in exactly the same manner, but only one of the packets will actually be processed by 
the destination host. Unfortunately, only the end-system knows which one was actually 
processed. There is not enough information exchanged on the wire for a IDS to determine 
which packet was valid.  

Worse still, an insertion attack against an IDS coupled with this ambiguity can allow an 

Operating System TCP Overlap Behavior

Irix 5.3 Favors New Data for Forward Overlap 

HP-UX 9.01 Favors New Data for Forward Overlap 

Linux Favors New Data for Forward Overlap 

AIX 3.25 Favors New Data for Forward Overlap 

Solaris 2.6 Favors New Data for Forward Overlap 

FreeBSD 2.2 Favors New Data for Forward Overlap 

Windows NT 4.0 Always Favors Old Data 
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attacker to determine which packets will be accepted by the IDS, by sending segments that 
the end-system will reject without acknowledging, and then sending valid packets after 
some brief delay. The IDS will most likely accept the bad data and move the sequence 
space forward, causing it to ignore the valid data and potentially desynchronizing the IDS 
from the actual connection. This is very similar to the TCP hijacking attack described by 
Laurent Joncheray[14].  

5.4.3 Overlap 

Like IP fragments, TCP segments can arrive out of order and in varying sizes. As in IP 
fragmentation, this can cause new data to overlap old data. As always, if the IDS does not 
resolve this problem in a manner consistent with the hosts it's watching, it will not 
accurately reassemble the stream of data. The rules for handling TCP segment overlap are 
quite similar to those of reassembling fragmented IP datagrams. In some cases, end-systems 
will resolve the conflict in favor of the old data; in others, the conflict is resolved in favor 
of the new data. There is, again, a great potential for bugs here, and, as in IP reassembly, a 
bug on either the end-system or the IDS is exploitable by the attacker. Figure 14 details the 
overlap resolution behavior of various operating systems. 

Using overlapping TCP segments, it is possible for an attacker to create a stream of packets 
that will assemble to a completely innocuous string if sent alone, or to an attack signature if 
it's accompanied by a single overlapping segment. Playing with segment overlap allows the 
attacker to literally rewrite the packet stream on the destination host, and, unless the IDS 
resolves overlap in exactly the same manner as the end-system, it will not see the attack.  

5.4.4 Endpoint TCP Overlap Bugs 

As in IP fragmentation overlap resolution, there is a large potential for inconsistency of 
implementation between vendors in TCP reassembly code. As an example, Windows NT 
resolves conflicts in out-of-order TCP segments consistently in favor of the old data, and 
4.4BSD resolves conflicts as indicated in the RFC, occasionally in favor of the new data. As 
with fragmentation reassembly, unless the IDS knows how each system on the network 
reassembles streams containing conflicting segments, it will be unable to accurately monitor 
certain types of end-systems. 

5.4.5 Summary of Reassembly Issues 

These issues do not present a great problem for most connections; most of the TCP 
segments in a normal connection arrive in-order, and there aren't any fake TCP segments 
injected into the stream specifically to confuse the IDS. However, in the real world, an 
attacker trying to evade an IDS will attempt to make the TCP stream as hard to monitor as 
possible, and will stretch the limits of the protocol to do this. 

Vulnerabilities in IDS TCP reassembly code are insidious because they are not immediately 
obvious; a specific problem may manifest itself only when the IDS is given some 
pathological sequence of inputs. The majority of the time, the IDS may appear to be 
reassembling TCP streams perfectly. Testing IDS TCP implementations for problems is 
time consuming and expensive; it's easy for a vendor to skip this testing almost entirely.  

5.5 TCB Teardown 
The TCB teardown policies of an IDS determine the point at which the system ceases 
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recording data from a connection. TCB teardown is necessary because the state information 
required to track a connection consumes resources; when a connection ceases to exist, it no 
longer makes sense to dedicate resources to tracking it. A system that did not destroy old 
TCBs at some point would be trivially defeatable, simply by flooding it with meaningless 
connections until it ran out of resources to track future connections. 

In TCP, connections close after they're explicitly requested to do so. Two TCP messages 
(RST and FIN) exist specifically to terminate a connection. Barring sudden crashes on both 
endpoints, TCP connections are only terminated by the exchange of these messages. 
Because TCP explicitly provides notification of terminated connections, it may be logical to 
design an IDS that uses these messages to decide when to close a connection TCB.  

This is not enough to adequately manage the per-connection resource problem. TCP 
connections do not implicitly ``time out''. A connection can be alive without the exchange 
of any data indefinitely. TCP provides a mechanism to ensure that both hosts are alive, by 
periodically exchanging messages, but this mechanism is not commonly used and takes far 
too long to recognize dormant connections to be of practical use. Without some method to 
time out arbitrary dormant connections, the IDS remains attackable simply by flooding it 
with connections that do not explicitly terminate.  

The problem with TCB teardown is that an IDS can be tricked into tearing down a 
connection that is still active, and thereby force the system to lose state. Within the context 
of a pattern matching engine, this means that the stream of input abruptly terminates. An 
attacker that can induce the incorrect termination of the TCB tracking her can prevent 
pattern matching from working by abruptly halting pattern matching before the complete 
attack signature passes across the network.  

On the other hand, an IDS that fails to tear down a TCB for a connection that really has 
closed is also vulnerable; as soon as the connection is legitimately closed, its parameters can 
be re-used for a new connection with completely different sequence numbers (technically, 
the systems must wait for a period of time before reusing connection parameters [12] --- 
not all operating systems enforce this). In the absence of synchronization recovery 
techniques, this can completely blind the IDS to entire connections.  

Because an ID system's TCB teardown policies can be attacked, their design is relevant to 
our discussion. We've identified a few options that can contribute to how an IDS ceases to 
track connections, and will discuss their ramifications here. This is by no means an 
exhaustive summary of all the possible options.  

5.5.1 Using TCP Connection Teardown Messages 

One possible way for an IDS to determine when to stop tracking a connection is to listen 
for TCP control messages that indicate the connection is being shut down. Doing so allows 
an IDS to quickly recover resources for connections that have actually terminated, and also 
prevents desynchronization for new connections using the same parameters. Unfortunately, 
because some connection termination request messages may be under the control of an 
attacker, there is significant risk involved in trusting these messages. 

TCP provides two connection teardown messages. The first message allows for ``orderly'' 
connection teardown, where both sides of the connection acknowledge the end of the 
connection and ensure that their data is completely sent before the connection closes. The 
second message abruptly terminates a connection due to error.  
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FIN Processing TCP provides orderly teardown via the FIN message. A system sending a 
FIN message is indicating that it has finished sending data, and is ready to close the 
connection. FIN messages are acknowledged, and each side of the connection sends a 
message to shut it down.  

In the presence of inside-outside filtering, FIN messages are reliable indicators of 
terminated connections. A connection is not completely terminated until both sides send a 
FIN message, and acknowledge the other side's message. An attacker cannot fake the FIN 
shutdown of a connection without forging packets that appear to come from the server.  

RST Processing It's not enough for an IDS to rely on FIN messages to terminate 
connection TCBs. TCP provides a method to abruptly notify the other end of a connection 
that the connection has been closed, using the Reset (RST) message. RST segments are not 
acknowledged; the only way to know if an RST message has been accepted by an end-
system is to see if it continues sending data on the connection. The only way to do this 
practically within an IDS is to time the connection out after seeing an RST; however, this 
means that an IDS can potentially mistakenly shut down a connection that is alive but 
dormant.  

The RST problem is more severe due to end-system TCP bugs. Technically, an RST 
message is only valid if it is correctly sequenced --- RST messages with spurious sequence 
numbers (which can be created by an attacker in an effort to illicitly tear down connections) 
should be ignored. Not all operating systems check the sequence number on RST messages.  

5.5.2 Relying on Timeouts for TCB Teardown 

An alternative to using TCP connection teardown messages is to simply time connections 
out when they become dormant for some threshold time period. This prevents the IDS 
from being fooled by false TCP teardown messages, and potentially simplifies the IDS TCP 
code. 

There is a cost to this simplicity --- systems that rely on timeouts for TCB teardown can 
easily be circumvented. In what has been termed the ``Sneakers'' attack (after the famous 
suspense movie, where Robert Redford evades a sophisticated alarm system by employing a 
similar technique), the attacker renders the sum of her movements undetectable to the IDS 
by waiting for the IDS to time out between packets.  

The Sneakers attack is particularly troublesome because, as we noted previously, the IDS 
must employ some form of connection timeout TCB teardown, as dormant TCP 
connections can remain established for far longer than the IDS can devote resources to 
track them. If an attacker can induce this timeout, either by waiting long enough or by 
filling the IDS with enough interesting (but meaningless) connections that it is forced to 
garbage-collect older connections, she can potentially evade the IDS by causing it to lose 
state. Additionally, systems which completely ignore TCP teardown messages can be 
desynchronized when the connection is legitimately closed. Even though the connection 
has ceased to exist, the IDS maintains a TCB for it until it times out. If a new connection 
occurs using the same parameters before the connection times out on the IDS, the system 
will be desynchronized, due to the use of different sequence numbers on the new 
connection.  

This attack can be carried out without any specialized code; an attacker simply uses ``telnet'' 
to create a connection, closes the connection, and re-opens it. If the sequence numbers on 
her machine change enough between the two connections, a vulnerable IDS will not be 
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able to track the second connection.  

6 Denial of Service Attacks 
Denial of service attacks against ID systems are severe because, by their very nature, passive 
ID systems ``fail open'' --- unlike a good firewall, access to the network isn't cut when a 
monitor system becomes unresponsive. A basic goal, then, for an attacker is to cause the 
IDS to fail without losing access to the machines being attacked. 

Some denial of service attacks exist due to buggy software. An IDS that crashes when it 
receives a certain bad packet, or a series of bad control messages, or anything else that can 
be cued by a remote attacker, can be defeated instantly. Fortunately, these kinds of bugs are 
quickly and easily fixed by vendors. Unfortunately, finding all such bugs requires 
painstaking software audits. It is also interesting that some ID systems can themselves be 
used to launch denial of service attacks on other systems. An ID system that includes a 
countermeasure capability, such as the ability to set packet filters in reaction to an attack, 
can be fooled via false positives (due to forged attacks) to react to attacks that haven't 
actually occurred.  

6.1 Resource Exhaustion 
There are many different types of denial of service attacks that are valid against ID systems. 
The attacks we'll discuss here all involve resource exhaustion --- the attacker identifies some 
point of network processing that requires the allocation of some sort of resource, and 
causes a condition to occur that consumes all of that resource. Resources that can be 
exhausted by an attacker include CPU cycles, memory, disk space, and network bandwidth. 

The CPU processing capabilities of an IDS can be exhausted because the IDS spends CPU 
cycles reading packets, determining what they are, and matching them to some location in 
saved network state (for example, an IP fragment needs to be matched to the other 
fragments of the datagram it represents). An attacker can determine what the most 
computationally expensive network processing operations are, and force the IDS to spend 
all its time doing useless work.  

ID systems require memory for a variety of things. TCP connection state needs to be saved, 
reassembly queues need to be maintained, and buffers of data need to be created for 
pattern matching. The system requires memory simply to read packets in the first place. As 
the system runs, it allocates memory as needed to perform network processing operations 
(for example, the receipt of an IP fragment means that the ID system will need to obtain 
memory to create and maintain an IP fragment queue for that packet). An attacker can 
determine which processing operations require the ID system to allocate memory, and 
force the IDS to allocate all its memory for meaningless information.  

At some point, most ID systems will need to store logs of activity on disk. Each event 
stored consumes some amount of disk space, and all computers have a finite amount of 
disk space available. An attacker can create a stream of less events and, by having them 
continually stored, eventually exhaust all disk space on the IDS, which will then be unable 
to store real events.  

Finally, network ID systems track activity on the networks they monitor. For the most part, 
they are capable of doing this only because networks are very rarely used to their full 
capacity; few monitor systems can keep up with an extremely busy network. The ID 
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system, unlike the end-systems, must read everyone's packets, not just those sent 
specifically to it. An attacker can overload the network with meaningless information and 
prevent the ID system from keeping up with what's actually happening on the network.  

Other resources exist as well, depending on the design of the system. For instance, in 
systems that set router filters in response to attacks, we must consider the fact that the 
router has a limited capacity for storing filter entries; at some point, the router's filter 
storage will be completely consumed, and the system will be unable to add new entries. An 
ID system that doesn't take this into account can be defeated by forcing it to spend the 
router's filter storage on reactions to fake attacks.  

The basic problem with resource consumption on an IDS is that the system must simulate 
the operation of all the machines it's watching, in order to track what's actually occurring on 
them. The end-systems themselves only need to concern themselves with network traffic 
that directly involves them. The IDS, which is spending more resources coping with the 
network than any other system on the network, is thus inherently more prone to resource 
starvation attacks than the end-systems.  

This problem is exacerbated by the fact that most network ID systems operate in 
``promiscuous'' mode, reading all traffic off the wire, regardless of its destination. 
Resources can be consumed on the IDS by the processing of traffic that isn't even destined 
for a real machine; apart from the network bandwidth consumed by this traffic, no other 
system on the network will be affected by this. Again, performance on the IDS is degraded 
to an greater extent than on the end-systems it's trying to track, making it more difficult for 
the IDS to keep up and giving the attacker an edge.  

6.1.1 Exhausting CPU Resources 

An attacker's goal in exhausting an ID system's computational capability is to prevent it 
from keeping up the network. A CPU-starved IDS will not process captured packets 
quickly enough and, as these packets fill the buffering capacity of the operating system, 
captured data starts being dropped. 

An example of why this occurs is useful. On 4.4BSD Unix, packet capture is accomplished 
through the ``Berkeley Packet Filter'' (BPF) device. BPF interacts directly with low level 
network drivers (such as the Ethernet interface driver), taking snapshots of packets before 
they're handed up to the IP layer for processing. As packets are captured by BPF, they are 
stored in a kernel buffer, where they stay until an application reads them out.  

If an application doesn't read data out of the buffer faster than the buffer is filled up by 
newly captured packets, space for queuing up captured packets runs out. When this 
happens, captured packets are necessarily dropped before the application ever has a chance 
to examine them.  

An attacker can prevent an ID system from keeping up with packet capture by forcing it to 
spend too much time doing useless work. In order to do this, the attacker must identify 
operations that she can force the IDS to perform that consume large amounts of 
processing time.  

In many ID systems, this is easy; inefficient algorithms are used to process, save, and look 
up state about network traffic. The attacker can cause the system to process information 
that forces these algorithms to work in their worst-case conditions.  
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A concrete example of this is IP fragmentation. As IP fragments arrive, they must be 
stored, until all the related fragments arrive. To facilitate reassembly, most systems store 
fragments in the order that their data will appear in the final packet. This means that, as 
each fragment arrives, the system needs to locate the correct fragment storage area, and 
then find the right place in that area to store that specific fragment.  

Many systems use a simple ordered list to store incoming fragments. As new fragments 
arrive, the system must locate the correct list for that packet, and then do a full linear 
lookup to determine whether the new fragment was already received and, if not, where in 
the list the fragment should go. As new fragments arrive, this list gets longer, and the time 
required to look up fragments in the list increases. An attacker can force this process to 
operate in its worst case by sending large amounts of traffic using the smallest possible 
fragments --- large amounts of CPU cycles will be consumed tracking tiny IP fragments.  

Some protocol parsing can be expensive by itself. An IDS that needs to somehow analyze 
encrypted traffic may spend a large amount of time simply decrypting packets (encryption 
and decryption can be extremely expensive operations). While the demand for this kind of 
processing is not now very great, it will increase as technologies such as IP-sec[11] are 
deployed.  

6.1.2 Exhausting Memory 

ID systems require memory to operate. Different types of protocol processing have 
differing memory requirements. An attacker that can force an IDS to consume all available 
memory resources can render the system nonfunctional; the system may simply quit 
abruptly when it runs out of memory, or it may thrash trying to squeeze more space out of 
slow virtual memory systems, causing the same effects as CPU exhaustion. 

An attacker trying to exhaust memory on an IDS examines the system, trying to determine 
the points at which the system allocates memory. The attacker attempts to isolate network 
processing events that cause the system to allocate memory for a long duration of time; the 
attacker then induces this processing by sending packets that the IDS will be forced to 
process in that manner. After being flooded with such packets for some time, the IDS will 
run out of memory to process the incoming packets.  

Some ID systems employ ``garbage collection'' to automatically reclaim memory that is not 
being actively used. Unfortunately, used incorrectly, garbage collection can present its own 
problems. A garbage collection system that isn't aggressive enough in reclaiming memory 
will not be able to keep up with demand, and will only slow down memory exhaustion 
attacks. A garbage collection system that is too aggressive will consume memory that is 
needed for real processing, causing the system to incorrectly process network traffic.  

Examples of attackable memory allocations include TCP TCB creation (the attacker creates 
a flurry of connections to various hosts on the ID system's network, or, using packet 
forgery, creates a flood of entirely fake connection) and TCP reassembly (the attacker sends 
large amounts of traffic in streams of out-of-order data that will need to be reassembled, 
forcing the system to consume memory not only for the data but also for reassembly 
queues).  

6.1.3 Exhausting Network Bandwidth 

Perhaps the simplest way to starve an IDS of resources is simply to create too much raw 
network traffic for the system's low-level network interface to keep up with. As each packet 
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arrives, the interface must copy the packet off the wire and into a buffer, interrupt the 
system, and cause the system to copy the packet into the kernel. The interface is capable of 
handling only a limited amount of traffic before it is overwhelmed by the load and starts 
dropping incoming packets. 

Although modern network interfaces operate efficiently enough to keep up with drastically 
high network loads, older hardware cannot do so. The point at which old ISA-bus based 
network interfaces become saturated is drastically lower than the point at which the 
network media itself becomes saturated. If an attacker creates enough traffic, she can 
prevent such interfaces from keeping up without saturating the network itself.  

Targeted packet floods can also work in some circumstances. On switched networks, it's 
possible to create large amounts of traffic that will only be seen by certain systems. If an 
attacker can create a flood of packets that will only be switched to the IDS, she can flood 
the IDS while maintaining the ability to communicate with the machines she's attacking.  

This type of attack is closely related to CPU exhaustion, and, indeed, many times the system 
will run out of CPU cycles long before the network interface is saturated. Regardless of 
which component of the system fails first, the effect is the same for the attacker; the IDS 
cannot keep up with the network, and misses significant packets.  

6.2 Abusing Reactive ID Systems 
In some circumstances, the IDS itself can become an instrument of denial of service 
attacks. If the IDS has a ``reactive'' countermeasure capability, and is vulnerable to attacks 
that create false positives, it can be forced to react to attacks that don't actually exist. The 
countermeasures employed can be subverted to completely block access for legitimate 
traffic, or to shut down valid connections. In these cases, the reactive capabilities of 
network ID systems are actually doing more harm than good. 

The most basic problem with reacting to attacks discovered by monitoring IP traffic is that 
the IP addresses are not always trustworthy. An attacker can forge traffic appearing to 
come from almost any IP address, and, if this traffic appears to contain an attack, the ID 
system may react to it. In some circumstances, this is very easy to do.  

For example, many attacks occur over ``connectionless'' protocols, for which the attacker 
doesn't need to see the responses to her packets. Instead, she simply creates and blindly 
sends forged packets, and the IDS is fooled into believing that the attack is coming from 
somewhere that it isn't. Good examples of this include ICMP ping floods, SYN floods, 
``death'' packets (such as the ping-ofdeath attack involving large ICMP echo requests), and 
UDP packet storms.  

Even attacks that involve TCP connections can be faked if the IDS doesn't correctly 
identify the three-way handshake. If the IDS doesn't require a handshake at all before 
recording data, TCP attacks can be faked as easily as ping floods; even if it does, the 
specific manner in which it tracks handshakes can be attacked for the same effect.  

The essential issue here is that the attacker can trigger alarms about events occurring from 
fake addresses. The IDS, which has no idea what the ``real'' source of the attack was, reacts 
falsely to the forged events by restricting connectivity to the faked addresses. The addresses 
used by the attacker can be specifically chosen to maximally affect overall connectivity (for 
example, the attacker can cut off access to all the network's DNS servers).  
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The amount of damage that can be caused by such attacks depends on the manner in which 
the IDS reacts to attacks in general. Some ID systems limit themselves to shutting down 
TCP connections that appear to be vehicles of attack; these systems can be abused to shut 
down legitimate connections (by forging traffic that makes it appear that an attack is being 
performed using those connections), but cannot easily be abused to impact overall 
connectivity, unless specific TCP connections are vital for the network's connectivity (for 
instance, BGP4 routing).  

Other systems have more effective ways to react to attacks; they modify router filters on 
the fly to cut all traffic from sites that appear to be originating attacks. These systems pay 
for that extra power by being vulnerable to more damaging denial-of-service subversions; 
an attacker that can cause the IDS to recognize false attacks can cut all access of to critical 
network resources by strategically forging addresses.  

Regardless of what countermeasures are actually employed, it is important to realize that 
such facilities are dangerous as long as an attacker can forge attacks. Some types of attacks 
may never be a legitimate basis for deployment of countermeasures, simply due to the fact 
that they can be performed blindly using forged addresses. Other attacks can only be safely 
reacted to if the IDS has a rock-solid network processing implementation.  

7 Methodology 
We support our assertions regarding vulnerabilities in ID systems with the results of 
extensive tests against actual, commercially available intrusion detection systems. The 
purposes of these tests were to ascertain characteristics of each subject' s TCP/IP 
implementation, and to provide concrete examples of actual attacks that could be 
performed against them. Our tests were designed to be easily repeatable, and to illustrate in 
the most obvious possible manner the deficiencies of each tested system. 

7.1 Overview 
Each of our tests involve injecting packets onto a test network, on which the subject ID 
system was running. By tracking the subject's administrative console output, we were able 
to observe many characteristics of the system's underlying TCP/IP implementation. To this 
extent, all of our tests involved consideration of the subject as a ``black box''. All our tests 
involved the TCP protocol. In most cases, the tests involved interactions between our 
injected packets and a third host, representing a hypothetical ``target'' of attack. In each 
test, this target host was the explicit addressee of all of our packets. The presence of the 
target host allowed us to easily create ``real'' TCP connections for the subject IDS to 
monitor. 

In addition, the target host also acted as a ``control'' for our experiments. The target's 
reactions to our injected packets allowed us to observe empirically the behavior of a ``real'' 
TCP/IP implementation, and contrast that behavior to the deduced behavior of the subject 
IDS.  

All of our tests involved mimicking a ``PHF'' webserver attack. The PHF attack exploits a 
specific Unix CGI script (``phf'') to attempt to gain access to a webserver. We used PHF 
because the attack is detected by all our subject ID systems, and because the attack is easily 
reproduced using standard TCP network tools (like ``telnet''). In order to reproduce a PHF 
attack, we sent the string ``GET /cgi-bin/phf?'' to the target host.  
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In each test, we created network conditions that could make it appear as if a PHF attack 
was being attempted. In each test, the specific packets injected into the network differed 
subtly. The subject ID system reacted to each test by either reporting or not reporting a 
PHF attack. By considering the ID system's output and the specific types of packets used 
for the test, we were able to deduce significant characteristics of the subject IDS.  

Before conducting complicated or subtle tests against the subject, we conducted a series of 
``baseline'' tests. The purpose of these tests was to ensure that the subject IDS was 
configured properly and was functioning at the time our tests were conducted, and that the 
IDS did in fact detect a PHF attack based on our PHF reproduction string.  

In almost all test cases, a process on the target host ran which accepted incoming TCP 
connections on the HTTP port and printed any input obtained from the machine's TCP 
stack. By examining the output of this process, we were able to deduce whether the subject 
IDS should have detected the attack based on the network conditions we created.  

7.2 Tools Used 
The primary tool we employed in our tests was CASL, a specialized scripting language 
developed at Secure Networks, Inc. that allows for programmable generation and capture 
of raw packets. Each of our tests used a CASL script to inject packets onto the network, 
and, in most cases, read and parse the responses. A more detailed overview of CASL is 
provided in [15]. 

Our target host ran FreeBSD 2.2, an implementation of 4.4BSD. The 4.4BSD TCP/IP 
stack is one of the best documented and most easily obtainable IP implementations 
available, and FreeBSD is by far the most popular BSD implementation. FreeBSD 2.2 was, 
at the time of our testing, the most recent ``stable'' release of the operating system.  

For each test, we used Hobbit's ``netcat'' tool[16] to listen on TCP port 80 and print the 
input from the target host's TCP stack. Hobbit's tool is an all-purpose, bare-bones 
diagnostic program that is widely available, popular, and documented; in its ``listening'' 
mode, the tool simply accepts an incoming connection, and prints each character of data 
the TCP driver presents to it.  

As we ran each test, we observed the specific packets being transmitted on the network 
using LBL ``tcpdump''[19]. Tcpdump is a low-level network diagnostic tool that passively 
monitors networks in promiscuous mode, and prints summaries of each captured packet. 
We ran the ``tcpdump'' tool from the test platform on the first execution of each specific 
test script. Tcpdump provided us with IP-level packet traces to accompany our test results, 
which made it easier to discern exactly what was happening on the network during each of 
our tests.  

Our test network was non-switched 10BaseT Ethernet. The hosts on the network included 
the IDS, the target host, and the test platform. The network was dormant at the time we 
conducted our tests.  

7.3 Test Execution 
Each of our tests involved a CASL script, run from an interpreter on the test platform, 
which generated and injected packets addressed to the target host. We define each of these 
tests in terms of the script's name, its specific network interactions, the IDS characteristic it 
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attempts to ascertain, and its validity to the 4.4BSD TCP/IP driver (that is, whether our 
target host completely and accurately reconstructed the PHF string our test attempted to 
send). 

A test that was not ``valid'' to 4.4BSD should not have resulted in the detection of a PHF 
attack by the subject IDS. We suggest that the subject IDS should not detect attacks in 
``invalid'' tests, and should reliably detect attacks within the valid ones.  

In cases where the IDS failed to detect an attack in either type of test, we re-initialized the 
IDS and re-ran the test multiple times. Before concluding that a subject IDS was not 
detecting our attack signatures, we re-ran the baseline test to confirm its operational 
integrity, and immediately ran the considered test.  

7.4 Test Definitions 

Name baseline-1 
Operation Complete a TCP handshake, send the test string in a single TCP data segment. 

Behavior 
Tested

Is the IDS configured properly, and does our test string adequately reproduce 
a PHF attack to the subject? 

Target Validity Valid 

Name baseline-2 
Operation Complete a TCP handshake, send the test string in a series of ordered, 1-

character TCP data segments. 

Behavior 
Tested

Is the IDS configured properly, and does our test string adequately reproduce 
a PHF attack to the subject? 

Target Validity Valid 

Name frag-1 
Operation Complete a TCP handshake, send the test string in a single TCP data segment 

which is broken into 8-byte IP fragments and sent in order. 

Behavior 
Tested

Does the subject IDS perform IP fragment reassembly at all? 

Target Validity Valid 

Name frag-2 
Operation Complete a TCP handshake, send the test string in a single TCP data segment 

which is broken into 24byte IP fragments and sent in order. 

Behavior 
Tested

Does the subject IDS perform IP fragment reassembly at all? 

Target Validity Valid 

Name frag-3 
Operation Complete a TCP handshake, send the test string in a single TCP data segment 

which is broken into 8byte fragments, with one of those fragments sent out of 
order. 

Behavior Can the subject IDS handle basic out-of-order IP fragmentation reassembly? 
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Tested
Target Validity Valid 

Name frag-4 
Operation Complete a TCP handshake, send the test string in a single TCP data segment 

which is broken into 8-byte fragments, with one of those fragments sent 
twice. 

Behavior 
Tested

Can the subject IDS handle reassembly when fragments are completely 
duplicated? 

Target Validity Valid 

Name frag-5 
Operation Complete a TCP handshake, send the test string in a single TCP data segment 

broken into 8-byte fragments, sent completely out of order and with an 
arbitrary duplicated fragment. 

Behavior 
Tested

Can the subject IDS handle reassembly in pathological (but correct) cases? 

Target Validity Valid 

Name frag-6 
Operation Complete a TCP handshake, send the test string in a single TCP data segment 

which is broken into 8-byte fragments, sending the marked last fragment 
before any of the others. 

Behavior 
Tested

Does the subject IDS correctly wait for all fragments to arrive before 
attempting reassembly? 

Target Validity Valid 

Name frag-7 
Operation Complete a TCP handshake, send a stream of fragments containing the 

signature string with the word ``GET'' replaced with the string ``SNI''. Send a 
forward-overlapping fragment rewriting the ``SNI'' back to ``GET'' on the 
target host. 

Behavior 
Tested

Does the subject IDS correctly handle forward overlap in IP fragments? 

Target Validity Valid 

Name tcp-1 
Operation Complete a TCP handshake, simulate the disconnection of the target host 

from the network, and send the target string in a series of 1-byte TCP data 
segments. 

Behavior 
Tested

Does the subject IDS wait for TCP acknowledgment from the target before 
acting on data from captured packets? 

Target Validity Inapplicable 

Name tcp-2 
Operation Complete a TCP handshake, send the test string in a stream of 1-byte TCP 

data segments where the sequence number wraps back to zero. 
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Behavior 
Tested

Does the IDS correctly deal with wrapped sequence numbers? 

Target Validity Valid 

Name tcp-3 
Operation Complete a TCP handshake, send the test string in a stream of 1-byte TCP 

data segments, duplicating entirely one of those segments. 

Behavior 
Tested

Does the IDS correctly handle completely duplicate TCP segments? 

Target Validity Valid 

Name tcp-4 
Operation Complete a TCP handshake, send the test string in a stream of 1-byte TCP 

data segments, sending an additional 1-byte TCP segment which overlaps a 
previous segment completely but contains a different character. 

Behavior 
Tested

Does the subject IDS correctly handle duplicate TCP segments? 

Target Validity Valid 

Name tcp-5 
Operation Complete a TCP handshake, send the test string, with the letter `c' replaced 

with the letter `X', in a series of 1-byte TCP data segments. Immediately send 
a 2-byte TCP data segment that overlaps (forward) the modified letter, 
rewriting it back to `c' on the target host. 

Behavior 
Tested

Can the subject IDS handle overlap in out-of-order TCP streams? 

Target Validity Valid 

Name tcp-6 
Operation Complete a TCP handshake, send the test string in a series of 1-byte TCP data 

segments, and increase the sequence number by 1000 midway through the 
stream. 

Behavior 
Tested

Does the IDS ``recover'' from sudden changes in the sequence number? 

Target Validity Invalid 

Name tcp-7 
Operation Complete a TCP handshake, send the test string in a series of 1-byte TCP data 

segments, interleaved with a stream of 1-byte data segments for the same 
connection but with drastically different sequence numbers. 

Behavior 
Tested

Does the subject IDS check sequence numbers during reassembly? 

Target Validity Valid 

Name tcp-8 
Operation Complete a TCP handshake, send the test string in a series of 1-byte TCP data 

segments, with one of those segments sent out of order. 
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Behavior 
Tested

Can the subject IDS handle basic out-of-order TCP reassembly? 

Target Validity Valid 

Name tcp-9 
Operation Complete a TCP handshake, send the test string in a series of 1-byte TCP data 

segments, sent in random order. 

Behavior 
Tested

Can the IDS handle pathological out-of-order TCP reassembly? 

Target Validity Valid 

Name tcbc-1 
Operation Do not complete a TCP handshake, but send the test string in a series of 1-

byte TCP data segments as if a handshake had occurred for some arbitrary 
sequence number. 

Behavior 
Tested

Does the IDS require a handshake before it will start recording data from a 
connection? 

Target Validity Invalid 

Name tcbc-2 
Operation Complete a TCP handshake, send the test string in a series of 1-byte TCP 

segments, interleaved with SYN packets for the same connection parameters. 

Behavior 
Tested

Does the IDS resynchronize on a SYN packet received after a complete TCP 
handshake? 

Target Validity Valid 

Name tcbc-3 
Operation Do not complete a TCP handshake, but send a stream of arbitrary data at a 

random sequence number as if one had occurred. Use the same connection 
parameters to connect with ``netcat'' and type the test string in manually. 

Behavior 
Tested

Can the IDS be desynchronized due to badly sequenced fake data prior to a 
real connection initiation? 

Target Validity Valid 

Name tcbt-1 
Operation Complete a TCP handshake and immediately shut the connection down with 

an RST. Re-connect over the same parameters, with drastically different 
sequence numbers, and send the test string in a series of 1-byte TCP data 
segments. 

Behavior 
Tested

Does the IDS correctly resynchronize after a connection is legitimately torn 
down with an RST? 

Target Validity Valid 

Name tcbt-2 
Operation Complete a TCP handshake and send the test string in a series of 1-byte TCP 

data segments. Midway through the stream, tear the connection down with an 
RST (but continue to send the rest of the data segments). 
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7.5 Summary 
Because our tests are scripted, they are well-defined, easily repeated, and fast. After defining 
and perfecting the test suite, we were able to completely test new ID systems in a matter of 
minutes. The majority of our testing time was spent defining new tests. Running the 
individual tests against ID systems took negligible time. 

We are in the process of releasing the scripting tool that we used for the tests to the public. 
When this process has completed, we intend to make the suite of IDS test scripts we've 
developed available to the public as well. It is our hope that our work can define a 
framework within which arbitrary network ID systems can quickly be evaluated.  

Our test suite is by no means complete; we provide these test results to support the points 
in our paper, not to define a complete evaluation process for ID systems. With the tools to 
conduct these tests in the hands of the community, we hope that our tests can be extended 
to define a more complete test suite.  

Behavior 
Tested

Does the IDS stop recording data when it sees an RST? 

Target Validity Invalid 

Name insert-1 
Operation Complete a TCP handshake and send the test string in a series of 1-byte TCP 

data segments, each with a bad IP checksum. 

Behavior 
Tested

Does the IDS verify the IP checksum on received packets? 

Target Validity Invalid 

Name insert-2 
Operation Complete a TCP handshake and send the test string in a series of 1-byte TCP 

data segments, each with a bad TCP checksum. 

Behavior 
Tested

Does the IDS verify the TCP checksum on received segments? 

Target Validity Invalid 

Name insert-3 
Operation Complete a TCP handshake and send the test string in a series of 1-byte TCP 

data segments, none of which have the ACK bit set. 

Behavior 
Tested

Does the IDS accept TCP data in segments without the ACK bit? 

Target Validity Invalid 

Name evade-1 
Operation Complete a TCP handshake, include the test string in the initial SYN packet. 

Behavior 
Tested

Does the IDS accept data in a SYN packet? 

Target Validity Valid 
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8 Results 
We applied our tests to four of the most popular network intrusion detection systems on 
the market. In each case, our tests identified serious, exploitable problems in the manner 
that the IDS reconstructed data transmitted on the network. The results of our tests are not 
surprising, and we believe that they support the basic points we make in this paper. 

In many cases, the ID systems we tested had general problems that precluded them from 
passing entire collections of specific tests. For example, none of the systems we tested 
correctly handled IP fragmentation; thus, the systems incorrectly handled all the specific 
fragmentation tests. We ran every test we could against each ID system.  

One of the systems we tested, WheelGroup's NetRanger system, is available only with its 
associated hardware. We were unable to test this system on our own network, but rather 
had to obtain the cooperation of an organization already using the product. This prevented 
us from running many of our tests against this product; NetRanger was the second system 
we tested, and we added many tests after our first (and only) exposure to the system. One 
of our tests (``tcp-1'') also required us to have access to the local network the test machine 
was on --- we did not have this access for NetRanger.  

Another system we test, Network Flight Recorder's NFR system, is not an intrusion 
detection system per se, but rather a network monitoring engine that can be used to build 
an intrusion detection system (among many other things). Our results are significant to the 
usage of NFR as an automated network IDS, but not necessarily to the product as a whole.  

It's important to note that the number of ``failed'' tests each product has is not necessarily 
an indication of the relative quality of the product. The number of tests each IDS passes is 
biased heavily based on the presence of specific bugs. Our test suite was not designed to 
provide a ``score'' for each product, but rather to highlight specific characteristics about 
them.  

8.1 Specific Results 
The systems we tested were Internet Security Systems' ``RealSecure'' (version 1.0.97.224 for 
Windows NT), WheelGroup Corporation's ``NetRanger'' (version 1.2.2), AbirNet's 
``SessionWall3'' (version 1, release 2, build v1.2.0.26 for Windows NT), and Network Flight 
Recorder's ``NFR'' (version beta-2). We present the overall results from our tests for every 
IDS in Figure 15. Each individual IDS is described after the table, along with an 
interpretation of the results. 

For each test, a plus sign (`+') indicates that the IDS saw a PHF attack as a result of the 
packets our test injected. A minus sign (`-') indicates that the IDS reported no attack after 
we ran our test. A question-mark (`?') indicates that we were unable to perform the test on 
that product.  

 Test Name  Expected Result  RealSecure  NetRanger  SessionWall  NFR   
 baseline-1 + + + + + 
 baseline-2 + + + + + 
 frag-1 + - - - - 
 frag-2 + - - - - 
 frag-3 + - - - - 
 frag-4 + - - - - 
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Figure 15: IDS Test Suite Results 

8.2 Overviews of Specific ID Systems 

8.2.1 ISS RealSecure 

ISS RealSecure is an automated network intrusion detection system. We performed our 
tests on the Windows NT version of the product, although it is available for Unix platforms 
as well. 

RealSecure appears to have two independent network monitor components. The first of 
these handles signature recognition within captured packets; the second provides a 
``realtime playback'' capability that allows administrators to watch the information being 
exchanged in a TCP connection in real-time.  

We found significant differences between the playback facility and the signature recognition 
facility. Unlike RealSecure's signature recognition engine, the playback system does not 
appear to sanity check TCP packets before presenting their contents to the user. No 
sequence number checking was performed in session playback, and out-of-order packets 
were displayed out of order. An attacker can trivially obscure her actions in RealSecure 
session playback simply by accompanying her connection with a stream of meaningless, 
unsequenced TCP packets for the connection; she can also confuse administrators by 
sending all her packets out of order.  

The most significant problem with RealSecure, as with all the other systems we tested, was 
that it did not handle IP fragmentation reassembly at all. An attacker can completely evade 
RealSecure by fragmenting every packet she sends across the network.  

RealSecure also appeared to have serious problems with TCP reassembly when duplicate 
segments appeared on the network. RealSecure never detected an attack in any of the tests 
we ran that involved sending multiple TCP segments with the same sequence number, even 
though those tests resulted in valid reassembly of the test string on the target host.  
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 tcp-3 + + + + + 
 tcp-4 + + + + + 
 tcp-5 + + + + + 
 tcp-6 - - + + + 
 tcp-7 + - + + + 
 tcp-8 + - - - + 
 tcp-9 + - ? - - 
 tcbc-1 - + - - + 
 tcbc-2 + + ? - - 
 tcbc-3 + - - + + 
 tcbt-1 + - ? + + 
 tcbt-2 - + ? - + 
 insert-1 - + - - + 
 insert-2 - + + - + 
 insert-3 - + ? - + 
 evade-1 + + - - + 
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RealSecure does not appear to pay attention to TCP RST messages. We were able to 
desynchronize RealSecure by closing a connection with a client RST message, and then 
immediately reconnecting using the same parameters.  

RealSecure recognized attacks in streams even after their connection was reset. RealSecure 
also does not appear to pay attention to TCP SYN messages; we were able to 
desynchronize RealSecure from our connections by preceding them with arbitrary data 
segments with random sequence numbers.  

Finally, RealSecure was vulnerable to all of our insertion attacks. It did not appear to check 
IP or TCP checksums, nor did it verify that the ACK bit was set on TCP data segments.  

8.2.2 WheelGroup NetRanger 

NetRanger is an automated network intrusion detection system by WheelGroup 
Corporation. NetRanger interfaces a passive network monitor with a packet filtering router, 
creating a ``reactive'' IDS; the ability to respond in realtime to attacks by ``shunning'' 
addresses (filtering them at the router) is a major feature of the system. 

We had very limited access to the NetRanger system. The hardware requirement (and price) 
of this system made it impractical for us to obtain our own copy for testing; rather, we 
relied on the cooperation of an organization already using the product. Because of this, our 
tests were performed over the global Internet, and we were only able to perform certain 
tests (due to timing issues). Our test results for NetRanger still showed major problems.  

Like all the systems we reviewed, NetRanger (in the version we tested) is completely unable 
to handle fragmented IP packets. An attacker can evade NetRanger completely by 
fragmenting all her packets.  

We were able to evade NetRanger by injecting duplicate sequenced segments with different 
data into our connection stream (the ``tcp-8'' test). NetRanger did not detect data in a SYN 
packet, so an attacker can evade many of NetRanger's checks by putting crucial data in her 
initial SYN packet.  

We were able to desynchronize NetRanger from our connections by preceding the 
connection with fake, randomly sequenced data. NetRanger failed to detect attacks in a 
connection, using the same parameters, that followed this.  

Finally, NetRanger was vulnerable to one of our insertion attacks (it doesn't appear to 
validate TCP checksums). NetRanger did appear to reliably verify IP checksums.  

Many of our tests were not performed against NetRanger. We can't conjecture as to 
whether NetRanger is vulnerable to the attacks those tests measure. Hopefully, these tests 
can be run against NetRanger in the future.  

8.2.3 AbirNet SessionWall3 

SessionWall is an automated network intrusion detection system by AbirNet. We tested the 
Windows NT version of AbirNet SessionWall-3. Although AbirNet appears to have 
realtime connection playback capabilities, we were unable to get it working in the evaluation 
copy we used for our tests. 

Of all the ID systems we tested, AbirNet appeared have the most strict network monitoring 
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system. SessionWall-3 did not record data for connections that weren't marked by a three-
way handshake. It stopped recording when a connection was torn down with an RST 
packet. This prevented our TCB desynchronization tests from disrupting the system; 
however, the strictness of SessionWall's implementation may be attackable as well (insertion 
of RST packets, for instance, could be used for evasion attacks).  

SessionWall validated IP and TCP checksums, and did not accept data without the ACK bit 
set. It did not appear to wait for acknowledgment before accepting data, however.  

We were able to desynchronize SessionWall-3 from our connections by injecting fake SYN 
packets into our stream; the SYNs were ignored by the endpoint, but SessionWall 
apparently resynchronized to them and lost pattern matching state. Like NetRanger, 
SessionWall-3 also failed to detect data in SYN packets. SessionWall did not reassemble 
overlapping TCP segments in a manner consistant with 4.4BSD, and is thus vulnerable to 
an evasion attack.  

Like all the systems we reviewed, SessionWall-3 is completely unable to handle fragmented 
IP packets. An attacker can evade SessionWall-3 by fragmenting all her packets.  

8.2.4 Network Flight Recorder 

NFR is a network monitoring engine by Network Flight Recorder. Unlike the other systems 
we tested, NFR is not an automated network intrusion detection system; rather, NFR 
provides a network monitoring component that can be used in a variety of applications. 
NFR is user-programmable and extensible, and available in source code. 

We reviewed NFR because its engine could be used as an automated network intrusion 
detection system. This is not the intent of the product, and our results do not have 
significant bearing on NFR's non-security uses. Additionally, because NFR is completely 
programmable (the product is really an interpreter for a network programming language), it 
is possible for users of the product to address many of the concerns we bring up in our 
paper without modifying the underlying engine.  

NFR was able to handle IP fragmentation; we verified this in an independent testing 
process that confirmed NFR's ability to reassemble a fragmented UDP packet (we were 
able to perform this test because of NFR's available source code). Unfortunately, NFR was 
unable to handle pattern matching in a TCP stream that was sent in fragmented IP packets; 
it therefore ``failed'' all of our fragmentation tests.  

NFR, in version beta-2, was vulnerable to all our insertion attack tests. It did not verify IP 
or TCP checksums, and accepted data without the ACK bit set. NFR detects data in SYN 
packets.  

NFR does not immediately tear down a connection TCB when an RST is seen. We were 
able to desynchronize NFR by sending spurious SYN packets in our connections, but were 
unable to successfully desynchronize it with any of our other tests. NFR did not reassemble 
overlapping TCP segments consistantly with 4.4BSD, and is thus vulnerable to an evasion 
attack.  

9 Discussion 
Our tests revealed serious flaws in each system we examined. Every IDS we examined 
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could be completely eluded by a savvy attacker. We have no reason to believe that skilled 
attackers on the Internet don't already know and aren't already exploiting this fact. Many of 
the problems we tested for were minor, and easily fixed. The very presence of such 
vulnerabilities leads us to believe that ID systems have not adequately been tested. 

The ability to forge packets, and the ability to ``insert'' packets into ID systems, makes it 
fairly trivial for an attacker to forge ``attacks'' from arbitrary addresses. The ability to react 
to attacks by reconfiguring packet filters was a major advertised feature of many of the 
systems we tested. Our work shows that this capability can be leveraged against the system 
operators by an attacker; these facilities may do more harm than good.  

Several of the problems we outline in this paper have no obvious solution. Without adding 
a secondary source of information for the IDS, allowing it to conclusively identify which 
packets have been accepted by an end-system, there appear to be ways to create 
connections that cannot be tracked by passive ID systems. Since the network conditions an 
attacker needs to induce to elude an IDS are abnormal, an IDS may be able to detect that 
an attack is occurring; unfortunately, this will be all that an IDS will be able to say.  

Regardless of whether a problem is obviously solvable or not, its presence is significant to 
both IDS users and designers. Users need to understand that the manner they configure the 
IDS (and their network) has a very real impact on the security of the system, and on the 
availability of their network. Designers need to understand the basic problems we identify 
with packet capture, and must begin testing their systems more rigorously.  

Finally, the security community (buyers of network ID systems, designers of such systems, 
as well as interested third parties like us) as a whole can do much to enhance the reliability 
and security of intrusion detection systems. Additional, independent third-party analysis and 
testing of ID systems will, to a large extent, define how secure these systems will be in the 
future.  

9.1 Implications to Operators 
There are several things that can be done by IDS operators to enhance the overall security 
of the system as a whole. Additionally, IDS operators need to understand that the outputs 
of their systems must be read critically; ``session playback'' data may not represent what's 
actually occurring in a session, and the source addresses of attacks may not be valid at all. 

One critically important step that must be taken before an IDS can be effectively used is to 
set up ``spoof protection'' filters, which prevent attackers on the Internet from injecting 
packets with addresses forged to look like ``internal'' systems into the network. 
Bidirectional packet forgery can completely confuse network intrusion detection systems.  

It's important to understand that an attacker that successfully breaks into an IDS-protected 
network probably controls the IDS. An attacker with direct access to the network she's 
attacking can forge valid-looking responses from systems she's attacking. These forged 
packets can prevent the IDS from obtaining any coherent picture of what's happening on 
the network. As soon as an IDS records a ``successful'' attack on the network, 
administrators should assume that all bets are off, and further attacks are occurring without 
the knowledge of the IDS.  

An attacker can fool ``session playback'' facilities into playing arbitrary data back to the 
operators. Session playback may not accurately represent what's happening inside of a 
connection. Real-time connection monitoring (when based on an ID system's 
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reconstruction of what's happening in a TCP stream, rather than on printing and recording 
every packet on the wire) should not be trusted.  

Finally, it's of critical importance that ID system operators do not configure their system to 
``react'' to arbitrary attacks. An attacker can easily deny service to the entire network by 
triggering these reactions with faked packets; ID systems that reconfigure router filters are 
particularly vulnerable to this, as an attacker can forge attacks that appear to come from 
important sites (like DNS servers), and cause the IDS to cut off connectivity to these sites. 
One possible step that can be taken to mitigate the risk of countermeasure subversion is to 
allow the system to be configured never to react to certain hosts.  

None of the systems we tested appeared to allow this type of configuration. Of course, if 
an attacker can spoof connections from the ``untouchable'' hosts, she can exploit this to 
evade countermeasures entirely.  

Attacks that can be trivially forged (ping floods, UDP-based attacks, etc.) should not be 
reacted to; an attacker can, simply by forging packets, cause countermeasures to be 
deployed that might disrupt the network. Systems that aren't strict about reconstructing 
TCP sessions (ie, that don't wait for threeway handshakes before recording data) present 
the same vulnerability for TCP connections as well.  

9.2 Implications to Designers 
This paper has particularly great relevance to designers of intrusion detection systems, as it 
outlines in detail many attacks that such systems need to be resistant to. In that sense, this 
entire paper presents conclusions relevant to IDS designers. However, there are some 
overall issues that need to be addressed by IDS vendors. 

Most of the problems we outline in this paper occur only when very abnormal series of 
packets are injected onto the network. Overlapping IP fragments or TCP segments are not 
common; connections consisting entirely of overlapping segments are almost certainly 
attacks. Even if it's not possible to reliably reconstruct information contained in such 
streams, it is possible to alert administrators to the presence of the abnormal packets.  

Of course, this doesn't work as a design strategy; the value of an IDS is drastically reduced 
when all it can tell an administrator is ``I've detected an attack against this host, but can't 
tell you specifically what it is.'' Nevertheless, some information is better than the complete 
lack of information available now.  

The most important issue that vendors need to address is testing. Some of the problems we 
discovered were so basic (the conditions leading to these problems occur frequently even in 
normal traffic) that it appeared as if no indepth testing had been performed at all. We found 
severe flaws in systems that attempted to address problems --- for instance, a program that 
reassembled fragments, but could not perform signature recognition in packets that had 
been fragmented.  

Testing network intrusion detection systems is not simple. In order to test a network IDS, 
carefully coordinated streams of forged packets need to be injected onto a network; tools 
that are capable of doing this in a manner flexible enough to test ID systems are products 
in and of themselves. Our work defines the beginning of a framework within which ID 
systems can be tested, and, hopefully, the availability of our tools will increase the ability of 
vendors to test their systems.  
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9.3 Implications to the Community 
The number of attacks against network ID systems, and the relative simplicity of the 
problems that were actually demonstrated to be exploitable on the commercial systems we 
tested, indicates to us that network intrusion detection is not a mature technology. More 
research and testing needs to occur before network intrusion detection can be looked to as 
a reliable component in a security system. 

Much of this research must be done independently of the vendors. No credible public 
evaluations of network intrusion detection systems currently exist. The trade press evaluates 
security products by their features and ease of use, not by their security. Because network 
intrusion detection is so fragile, it's important that they receive more scrutiny from the 
community.  

Our paper defines methods by which network intrusion detection systems can be tested. It 
is obvious that our tests can be extended, and that our methodology can be improved. 
Everyone stands to benefit from such work, and it is hoped that our work can serve as a 
catalyst for it.  

One issue that drastically impacted our ability to test ID systems was the availability of 
source code. Only one product we reviewed made source code available. Because intrusion 
detection is so susceptible to attack, we think it's wise to demand source code from all 
vendors. Products with freely available source code will obtain more peer review than 
products with secret source code. If our work makes anything clear, it's that marketing 
claims cannot be a trusted source of information about ID systems.  
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Finally, this paper would not have been possible without the assistance of Jennifer Myers at 
EnterAct, L.L.C., who effectively rewrote our technical results into a coherant document.  

About CASL 
Our tests were made possible by the development of a security tool called CASL. CASL is a 
network protocol exploration tool designed to allow security auditors to quickly and easily 
simulate network events at a very low level. With a minimal amount of effort, CASL can 
effectively be used to forge any kind of IP packet. With slight programming ability, CASL 
can be used to perform complex protocol interactions with other networked hosts.  

CASL was inspired by tools like Darren Reed's well-known ``ipsend'' utility, which allowed 
experimenters to forge a large number of IP packets. However, CASL expands significantly 
on these types of tools. Some of the benefits of CASL over its predecessors include:  

A complete programming language, with most typical high-level language control 
constructs (e.g., ``if'', ``while'', and ``for'' statements), and designed to be as easy to 
learn and use as shell-script languages, but with network programming functionality 
rivaling that of ``C'' code. 

The ability to create arbitrary packets --- not just the ones we thought up as we 
designed the program! Unlike some tools, which allow users to to create arbitrary 
packets by including ``raw'' data (presumably built with some other tool), CASL 
allows users to lay out the format of new packet types with an expressive and simple 
``record'' syntax, allowing protocol header fields to be laid out bit-by-bit and byte-by-
byte. 

The ability to input packets, reading promiscuously off the wire, and quickly extract 
information from them. Network reads use familiar ``tcpdump'' expressions to select 
packets, and any number of packets can be read in and examined simultaneously.  

CASL is a self-contained, free-standing program that doesn't depend on other network or 
programming tools to operate. It can be installed quickly, and a CASL script will work on 
any supported platform. The tool is small, and consumes a fairly low amount of resources; 
CASL programs can easily share a system with other large applications, and don't consume 
the large amounts of memory and CPU that general-purpose languages (like Perl and Tcl) 
tend to.  

We designed this tool to meet the needs of two very different audiences: on one hand, 
CASL is expressive and powerful enough to be a useful tool for experienced, fluent ``C'' 
programmers; on the other, it's simple enough to be picked up by a nonprogrammer as 
quickly as Bourne shell scripting. A CASL script can be little more than a 5 line packet 
template for users who simply want to forge packets, or it can be tens or hundreds of lines 
of functional code, with loops, variables, conditionals, subroutines, and other high-level-
language capabilities.  

We are making CASL available for free for noncommercial use, in the hopes that it can be 
used to further the state of the art in security research. For more information about CASL, 
contact Secure Networks Inc.  

About Secure Networks, Inc. 
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Secure Networks, Inc. is a security research and development company located in Calgary, 
Alberta, Canada. In addition to extensive publically available security research results, 
Secure Networks also sells security assessment tools. You can find out more about our 
work at http://www.secnet.com. Secure Networks is reachable via email at 
``info@secnet.com'', and via telephone at 403-262-9211.  
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