
Random Number Generators: what do you need one for? 
Random Number Generators are a vital part of all modern operating systems. Being computers a 
deterministic system, random numbers are used where a non-deterministic input is required. An 
obvious use is virtual dice rolling for gambling systems, but if you don’t plan on running an 
online casino, what do you need one for? 

Random numbers are utilized in many different areas, ranging from cryptography (in general) to 
source port and process ID randomization in some operating systems. Some of their uses in 
various Operating Systems are: 

• Creation of keypairs (SSH, SSL, IPSec, etc.) 
• Random DNS query ID’s; 
• Random dynamic TCP/UDP source port allocation; 
• Random dynamic Process ID allocation; 
• Random salts for password algorithms; 
• Etc. 

 

So what is exactly a Random Number Generator? 

Random number generators are just a source for random numbers. In their most basic form, they 
are functions that return a random number within a range. 
 
There are two types of random number generators: 

• True Random Number Generators (RNG), 
• Pseudo Random Number Generators (PRNG). 

 

True Random Number Generators (also known as non-deterministic RNG, or simply RNG) use a 
source of entropy to generate random numbers. Entropy is a measure of the “disorder” of a 
system or, in other words, its degree of randomness. As computer algorithms are always 
predictable, an external source must be used to introduce the entropy. Some of the most common 
sources of entropy are the keyboard and mouse inputs, the interrupts, the hard disk access 
latency, etc. The more random the source is, the larger the entropy, and the more unpredictable 
(random) the output will be. 



 

Pseudo Random Number Generators (also known as deterministic RNG, as their next output can 
be theoretically determined) are algorithms that generate a large sequence of numbers, apparently 
random in nature, but that could be predicted. Normally, PRNG’s are seeded before using them 
(some could be regularly re-seeded for additional disturbance). The seed sets the PRNG to a point 
in the sequence: if your attacker knows the seed and the algorithm, he can predict the sequence of 
numbers that will be generated. Without entering into excessive details, lets say that there are two 
families of PRNG’s: linear and non-linear (the latter being the best). 

Sources of entropy are usually scarce in a computer system, and the few ones available are 
typically not as good as you would expect. Most of the information obtained from the traditional 
sources of entropy must be discarded during the filtering, unbiasing and conditioning process 
(which may include hashing with a cryptographically strong algorithm), so true random numbers 
may not be readily available all the time. 

One of the easiest way to test the amount of entropy and the randomness present in a byte stream, 
is to use the widely known Ent pseudo-random number sequence test program (another 
possibility is to use the diehard set of tests). Ent takes a file containing presumably random data 
and executes a battery of tests to determine how random that data is. Ent helps determine how 
good a Random Number Generator is, by performing several statistical tests that verify that the 
ouptput is unbiased and random in nature. 

A sample output from Ent for a not so good set of random numbers would be: 

Entropy = 7.683349 bits per byte. 
 
Optimum compression would reduce the size 
of this 12216 byte file by 3 percent. 
 
Chi square distribution for 12216 samples is 25053.58, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 116.7150 (127.5 = random). 
Monte Carlo value for Pi is 3.282907662 (error 4.50 percent). 
Serial correlation coefficient is - 0.008462 (totally uncorrelated = 0.0). 

A better set of random numbers: 

Entropy = 7.994824 bits per byte. 
 
Optimum compression would reduce the size 
of this 33984 byte file by 0 percent. 
 
Chi square distribution for 33984 samples is 243.19, and randomly 
would exceed this value 50.00 percent of the times. 
 
Arithmetic mean value of data bytes is 126.5938 (127.5 = random). 
Monte Carlo value for Pi is 3.180790960 (error 1.25 percent). 
Serial correlation coefficient is 0.002392 (totally uncorrelated = 0.0). 



 

Linux (and other Unix Operating Systems as well) offers two devices for random numbers: 

• /dev/random: True RNG that collects entropy from the system and makes it available to 
applications. It can be depleted and, if that happens, it just blocks until more entropy is 
available; 

 

• /dev/urandom: PRNG that utilizes entropy if available, but if there is not enough entropy 
it defaults to a traditional PRNG. You shouldn’t rely on this device if you have strong 
cryptographic needs, but it may be the only one that can cope with the load. 

 

So you will probably tend to use /dev/random for everything, but the keyword is that the amount 
of entropy is limited, so /dev/random, at best, can generate a few thousand random bytes per 
minute: not a whole lot if there are several applications consuming them. And remember that, as 
soon as the amount of entropy in /dev/random gets too low, the device will block, so applications 
using it will block as well (not good at all if one of the applications is waiting for the re-keying of 
an encrypted tunnel). 

Of course, if you have an strong need for random numbers you can use additional entropy 
sources, or just a hardware based RNG. A true RNG is included with some chipsets (like the late 
Intel i810), CPU’s (like the VIA Padlock enabled Nehemiah based C3 CPU’s), and can also be 
added as an external piece of hardware (not cheap, but not too expensive either). Additional 
entropy sources that can be used to seed the internal PRNG are the soundcard (see Audio Entropy 
Daemon), a webcam (see Video Entropy Daemon), a modified camera (see LavaRnd), etc. Even 
SGI sponsored a project where Lava Lamps were used as entropy sources for random number 
generation, a few years ago. 

Basically, any chaotic system is good as a source of entropy, either by itself or combined with 
others, as long as you make sure that it’s not biased, and that it keeps producing random 
information consistently. Of course, there are some limitations. One of the main limitations is that 
you shouldn’t use any system that could be externally controlled or biased: if your attacker knows 
how to influence the next output of your RNG, then there is little point to cryptography. So radio 
or tv tuners are not good sources of entropy; neither the network activity alone. Electric noise (if 
properly shielded) or quantum noise in semiconductors are good sources of entropy. 

Many users may not need a Random Number Generator yet, but the the ever growing amount of 
cybercrime and the increasing demand for strong security, are making true RNG’s a requirement 
for any cryptographically serious implementation. 

 


