
Smashing the stack for fun

and … fun

By Karim Hossen && Guillaume Touron

10/06/2011

Plan

 Presentation
 Program

 File format, execution, stack and heap

 Exploitation
 Stack-based overflow
 Security mechanisms & bypass

 Cookie
 SafeSEH
 Non executable page
 Address randomization

 Conclusion
 Discussion

Presentation

 Karim Hossen

 PhD student at Grenoble INP

 Working on model inference for security in VASCO

 Interested in cryptography and reverse engineering

 Proud to be an XP SP3 user

 C programming fan

3

Presentation

 Guillaume Touron
 2nd year Ensimag – Information Systems

 Also XP SP3 user

 In C I trust

 Low-level programming

 ReactOS source code reader

4

Quote

“Know thy self, know thy enemy. A thousand
battles, a thousand victories.” Sun Tzu

5

Program

 More than 600 programming languages,
but only one used by the machine.

6

Program

 Executable file ?

COFF

(Common Object
File Format)

PE
(Portable

Executable)

ELF
(Executable and
Linking Format)

7

Program

 Common Object File Format
 Introduced in AT&T's UNIX System V (1983)

 For executable, object code and shared library

 On Unix systems

 Replaced the previously used “a.out” format

 Too limited and incompletely specified
 Unable to support real world languages like C

 Replaced by ELF in Unix since SVR4

 Replaced by PE since Windows NT 3.1

8

Program

 Executable and Linking Format

 For executable, object code, shared library and
core dumps

 Flexible and extensible

 Used in almost all Unix systems, Playstation …

 Not bound to the architecture

 AMD64, IAxx, ARM, MIPS, PowerPC …

 Tools : readelf, objdump, file

9

Program

 ELF Layout

 Program header table,
describing (segments)*

 Section header table,
describing (sections)*

 Data referred to by
entries in the program
HT or section HT.

10

Program

 Portable Executable

 Developed by

 Windows NT was able to support other
Architecture « Portable »

 Used by all windows platform

 For binaries, drivers, .ocx, .dll, .cpl

 Useful to do reverse engineering

11

An In-Depth Look into the Win32 Portable Executable File Format

http://msdn.microsoft.com/en-us/magazine/cc301808.aspx

Program

 PE Layout

 DOS stub

 MS-DOS 2.0 compatible executable

 Output an error message such as
"this program needs windows NT".

 Any PE file are valid MS-DOS exe.

12

Program

 PE Layout

 File Header

 Machine

 NumberOfSections

 Timestamp

 Characteristics

 PointerToSymbolTable

 NumberOfSymbols

13

Program

 PE Layout

 Optional Header

 AddressOfEntryPoint

 ImageBaseSubsystem

 MajorSubSystemVersion

 MinorSubSystemVersion

 Subsystem

 DataDirectory
 IAT (Imports Address Table)

14

Program

 PE Layout
 Section Header

 Name
 VirtualAddress
 SizeOfRawData
 PointerToRawData
 Characteristics

 Permissions
Shareable, executable, readable,
writable

 Type of code
executable/initialised/uninitialised code

15

Program

 PE Layout

 Common sections

 text : executable code (Read only)

 data : global variables

 Rdata : readonly data, strings, constants

 Bss : uninitialized data, static variables

16

Program

 Execution

17

Application
start

PE Check
Mapping in

memory

Import,
Relocations,

…

Go to
EntryPoint

and Execute
instruction

Virtual
memory

Process
Environment

Block

Thread
Environment

Block

Program

 Execution

 Virtual memory

 Flat memory model

 In a 32 bit process, the address ranges from
0×00000000 to 0xFFFFFFFF

 0×00000000 to 0x7FFFFFFF is assigned to "user-land“

 0×80000000 to 0xFFFFFFFF is assigned to "kernel land“

 Kernel land memory is only accessible by the OS.

18

Program

 Memory mapping

19

Security Mechanisms - DEP

 Virtual Memory

20

Security Mechanisms - DEP

 Page Table Entry

21

Program

 Execution

 PEB (Process Environment Block)

 FS:[30] from userland

 Contains all user land parameters of the process
 Location of the main executable

 Pointer to loader data (can be used to list all dll’s / modules
that are/can be loaded into the process)

 Useful for generic shellcode !

 Pointer to information about the heap

 Whether the process is being debugged

22

Program

 Execution

 PEB (Process Environment Block)

 Used in malware to find kernel32 address
 xor ebx, ebx

 mov ebx, fs:[0x30]
 mov ebx, [ebx + 0x0C]
 mov ebx, [ebx + 0x14]
 mov ebx, [ebx]
 mov ebx, [ebx]
 mov ebx, [ebx + 0x10]

23

Program

 Execution

 TEB (Thread Environment Block)

 FS:[0] from Userland

 Describes the state of a thread
 location of the PEB in memory

 location of the stack for the thread it belongs to

 pointer to the first entry in the SEH chain

 ProcessId / ThreadId

 Current SEH frame (FS:[0] chain)

 Stack pointers

24

Program

25

Program

 Execution
– CPU registers (Intel, x86) are :

• EAX : accumulator : calculations, return values
• EBX : base (does not have anything to do with base pointer). Can

be used to store data.
• ECX : counter : used for iterations
• EDX : data : this is an extension of the EAX register
• ESP : stack pointer
• EBP : base pointer
• ESI : source index : holds location of input data
• EDI : destination index : points to location of where result of data

operation is stored
• EIP : instruction pointer

26

Program

 Execution

– Segment registers

• CS: code segment

• DS : data segment

• SS : stack segment

• ES : Extra segment

• FS : Extra segment too (E -> F)

• GS : Extra segment again (F -> G)

27

Program

 Stack

– Data structure that works LIFO (last in first out)

– Allocated by the OS

– Pretty fast but limited in size

– Contains local variables, function call, temp data

– Grows to a lower address

– One stack frame by function

28

Program

 Stack

 Exemple

29

…

------ ESP ------ EBP

State : Before func call

Program

 Stack

 Exemple

30

3

…

State : Push 3

------ ESP ------ EBP

Program

 Stack

 Exemple

31

2

3

…

State : Push 2

------ ESP ------ EBP

Program

 Stack

 Exemple

32

1

2

3

…

State : Push 1

------ ESP ------ EBP

Program

 Stack

 Exemple

33

eip

1

2

3

…

State : Push @Instr after func

------ ESP ------ EBP

Program

 Stack

 Exemple

34

ebp

eip

1

2

3

…

State : In func. Save ebp

------ ESP ------ EBP

Program

 Stack

 Exemple

35

Lvar1…

ebp

eip

1

2

3

…

State : New place for func.

------ ESP ------ EBP

Program

 Stack

 Exemple

36

State : End of func. Restore esp, pop esp

eip

1

2

3

…

------ ESP ------ EBP

Program

 Stack

 Exemple

37

State : Return to caller (ret 0C)

1

2

3

…

------ ESP ------ EBP

Program

 Stack

 Exemple

38

State : After main another leave …

…

------ ESP ------ EBP

Program

 Let’s pwned bofMe !

39

Quote

“Low-level programming is good for the
programmer’s soul.” John Carmack

40

Exploitation

41

 Simple buffer overflow

 Example source code

 1. Get the first argument
2. Call vuln
3. Allocate 200 bytes on

the stack
4. Copy argument to

buffer using strcpy
5. Print buffer content
6. return

Exploitation

42

 Simple buffer overflow
 strcpy

 Copy user input to buffer

 Can overflow and overwrite
ebp, eip …

 We control eip

 We control the program flow

 What address should I
put in eip ?

Buffer (200 bytes)

ebp

eip

1

2

3

…

Exploitation

43

 Simple buffer overflow
 strcpy

 Our shellcode starts at Buffer

 Esp points to Buffer

 We need an address to
« jmp esp » instruction !
(ret overwrite)

 Find it in the current program
or in the other executables
modules

Buffer

ebp

eip

1

2

3

…

Exploitation

44

 Simple buffer overflow
 strcpy

 At the function end

 Program will jump to the
top of the stack (esp)

 And execute the malicious
code.

 Even if ebp is invalid, code
have been executed

 Pwned

Junk

Junk

@jmp esp

Nop

Shellcode

Nop

…

Exploitation

45

 Security mechanisms we’ll see:

 Cookie to detect BoF

 Use non-executable stack

 Randomized base addresses
 for stack and library

Security Mechanisms

 Cookie
 Also called (GS flag, canary, -fstack-protector)

 Method
 Choose a random value when the program starts

 Add this value above ebp

 Check cookie’s value in each function’s epilogue

 If the check failed, program is terminated

 [buffer][][saved EBP][saved EIP]

46

/GS (Buffer Security Check)

http://msdn.microsoft.com/en-us/library/8dbf701c%28v=vs.80%29.aspx

Security Mechanisms

 Cookie Bypass (1)
 Reduce the effective entropy of the cookies

 Calculating entropy sources from
 System Time

 Process and Thread Identifier

 Tick Count

 Performance Counter

 Frame Pointer

 Need local access to the machine

 Reduce the entropy to 15 bits

47

Security Mechanisms

 Cookie Bypass (2)

 Overwrite stack data in functions up the stack

 Need pointer to objects or structures in the stack of
their caller

 Overwrite object and vtable pointer

 Point it to a fake vtable

 Redirect the virtual function call

 Execute the evil code

48

Security Mechanisms

 Cookie Bypass (3)

 Use unprotected buffer

 Cookie is used :
 When “string” buffers exists

 More than 4 bytes are allocated

 Overwrite is still possible for arrays of integer or pointer

49

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 Exception Handler ?
 Piece of code to deal with exception throws by application

 A typical EH looks like this :

50

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

51

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 In each stack frame

 Windows has a default SEH

 Stored in linked list of exception structure

 Catch unhandled exception

52

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

53

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 Method
 Overwrite pointer to SE Handler by @pop pop ret

Use pvefindaddr to scan all non-safeSEH modules

 Force the application to throw an exception

 OS will move to the next SEH

 Overwrite pointer to nextSEH with a small jump
to the shellcode

54

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

55

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 SafeSEH
 Introduced in Windows XP SP3, Server 2003

 Compiler switch (/safeSEH) for all executable modules

 IMAGE_DLLCHARACTERISTICS_NO_SEH flag

 SEH exploitation need to rewrite next SEH -> break the chain

 Prevent SEH based exploitation by checking pointer range and
registered exception handler addresses

56

Security Mechanisms

 Cookie Bypass (4)
 Use SEH (Structured Exception Handler)

 SafeSEH bypass
 Use addresses in non-safeSEH module

 !Pvefindaddr –j –n

 !Pvefindaddr modules

 OllySSEH

 Use instruction out of the scope for verification chain

 !Pvefindaddr –jseh

 Use an address from the heap

57

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 Demonstration on sehMe program

58

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 SEHOP (SEH Overwrite Protection)
 Check the exception handler chain

 Chain must be never corrupted

 New final handler must be correct

(after default (kernel32!_except_handler*))

 Windows Server 2008 (default enabled)

 >Vista Sp1 (default disable)

59

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 SEHOP Bypass
 Create fake exception handler chain

 Use valid addresses on stack

 But SEHOP is often used with DEP + ASLR

 Need

60

A Crash Course on the Depths of Win32™ Structured Exception Handling

http://www.microsoft.com/msj/0197/exception/exception.aspx

Security Mechanisms

 DEP (Data Prevention Execution)

61

Data Execution Prevention

http://msdn.microsoft.com/en-us/library/aa366553%28v=vs.85%29.aspx

Security Mechanisms

 DEP Hardware
 Possible rights: Read/Write for Ring3/Ring0

 No execution flag?

 NX (Non eXecutable)/XD(eXecutable Disable) bit
 Introduced in Windows XP SP2 and Windows

Server 2003 SP1

 Need compatible processor

 Vmware >4.0

 Use the 64th bit of the page table
 Need Physical Address Extension

62

Security Mechanisms

 DEP Hardware
 PAE is loaded automatically (Windows)

 Permanent DEP
 Use SetProcessDEPPolicy(PROCESS_DEP_ENABLE)

 Since Vista, Permanent DEP is set automatically for
/NXCOMPACT linked binary

 Basic exploitation with shellcode in stack
 Doesn’t work anymore

 Raised an CPU exception caught by DEP
 STATUS_ACCESS_VIOLATION (0xc0000005)

63

Security Mechanisms

 DEP Software

 Windows only

 Limited version for incompatible CPUs

 Is it really a DEP ?

 NO !

 Memory page still be executable

 DEP Software is only safeSEH

64

Security Mechanisms

 Bypass DEP: ROP-FU (1)
 Return Oriented Programming
 Use pieces of Asm code from loaded libraries

 Gadgets
 Play with stack and RET instruction to assemble your code

 Lego®

 Allow to build your own payload
 Doesn’t require code on non-executable pages

 Turing-complete language
 Code whatever you want! (or not)

65

Chaining DEP with ROP – the Rubik’s[TM]

http://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-
dep-with-rop-the-rubikstm-cube/

Security Mechanisms

 Bypass DEP: ROP-FU (2)

 Write EIP with first gadget

 Gadget1 does something…
 Can eventually modify stack -_-

 Last instruction: RET

 RET pops fake saved EIP
 Goes on second gadget

 And so on…

66

EBP

EIP (= @Gadget1)

Fake saved EIP
(@Gadget 2)

@Gadget3

…

…

Security Mechanisms

 Bypass DEP: ROP-FU (2)

 Write EIP with first gadget

 Gadget1 does something…
 Can eventually modify stack -_-

 Last instruction: RET

 RET pops fake saved EIP
 Goes on second gadget

 And so on…

67

Fake saved EIP
(@Gadget 2)

@Gadget3

…

Security Mechanisms

 Bypass DEP: ROP-FU (2)

 Write EIP with first gadget

 Gadget1 does something…
 Can eventually modify stack -_-

 Last instruction: RET

 RET pops fake saved EIP
 Goes on second gadget

 And so on…

68

@Gadget3

…

Security Mechanism

 Bypass DEP: ROP-FU (3)
 Some API allow DEP disabling

 VirtualProtect
 VirtualAlloc
 HeapAlloc
 …

 Standard exploitation
 Put your shellcode on stack
 DEP disabling by ROP-FU
 Jump onto your code

69

Security Mechanisms

 Bypass DEP: ROP-FU (4)

 Choose your tools

 ImmunityDbg with pvefindaddr
 pvefinaddr:

 Find ROP gadgets (DEMO)

 List modules with their properties (SafeSEH, ASLR…)

 And many other options…

 Write your own Python tools

70

Pvefinaddr

http://redmine.corelan.be:8800/projects/pvefindaddr

Security Mechanisms

 Bypass DEP: ROP-FU (5)

 Demonstration on PwnMe program

71

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Randomize base addresses of

 Executable

 Stack (for each thread)

 Heap (for each thread)

 Library

 Need Vista (jan 07), 2008 server, Seven

72

Security Mechanisms

 ASLR (Address Space Layout Randomization)
 Enabled by default for system images

 Non system images with /DYNAMICBASE (>VS2005sp1)

 Or set DllCharacteristics to 0×40 in the PE Header

 Registry hack possible to enable it for all images
 HKLM\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management\MoveImages = -1

 ASLR should be used with DEP in order to be effective

73

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Bypass : Partial EIP Overwrite

 Well known for Animated Cursor Handling Vulnerability

 Bypass /GS too, use structures -> no cookie

 Principe
 Only the high order bytes are randomized (0xFFFF0000)

 If we can find instruction (e.g. jmp esp) in the scope

 -> \o/

74

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Bypass : Partial EIP Overwrite

75

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Bypass : Partial EIP Overwrite

76

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Bypass : Use an non-ASLR enabled module

 Similar to safeSEH bypass method

 !pvefindaddr noaslr/modules

77

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Bypass : Bruteforce + nop slide

 On 32 bits architecture
 Windows : 16 random bits

 Linux : 24 random bits

 For a 4096 bytes buffer, the chance is about one to
 2^24 / 4096 = 4096 to hit a working address

 Require only 2048 attempts on average

78

Security Mechanisms

 ASLR (Address Space Layout Randomization)
 Demonstration on aslrMe program

79

Quote

“Little and insignificant issues can lead to find
more interesting issues.” Cesar Cerrudo (BHus10)

80

Conclusion

81

Casting

 Immunity Debugger (ImmunityInc)

 Pvefindaddr (Corelan)

 PEiD (www.peid.info)

 Windows XP SP3

 Macbook and Dell

82

If you like Windows or not…

 Some references:

 Ivanlef0u’s blog

 ReactOS project

 Reimplementation of NT kernel

 C source code available
 Very near of Windows code

 Nice to understand some stuffs

 And blow up your mind

83

Nuit du Hack 2011

84

Some links

85

 Corelan, www.corelan.be

 Exploit database, www.exploit-db.com

 Windows Internals 5th, Microsoft learning

 The Portable Executable, MSDN

 Smashing the stack for fun and profit,
Phrack.org

http://www.corelan.be/
http://www.exploit-db.com/
http://www.exploit-db.com/
http://www.exploit-db.com/
http://www.microsoft.com/learning/en/us/book.aspx?ID=12069
http://www.microsoft.com/learning/en/us/book.aspx?ID=12069
http://msdn2.microsoft.com/en-us/library/ms809762.aspx
http://www.phrack.org/issues.html?issue=49&id=14

Questions ?

86

