
Smashing the stack for fun

and … fun

By Karim Hossen && Guillaume Touron

10/06/2011

Plan

 Presentation
 Program

 File format, execution, stack and heap

 Exploitation
 Stack-based overflow
 Security mechanisms & bypass

 Cookie
 SafeSEH
 Non executable page
 Address randomization

 Conclusion
 Discussion

Presentation

 Karim Hossen

 PhD student at Grenoble INP

 Working on model inference for security in VASCO

 Interested in cryptography and reverse engineering

 Proud to be an XP SP3 user

 C programming fan

3

Presentation

 Guillaume Touron
 2nd year Ensimag – Information Systems

 Also XP SP3 user

 In C I trust

 Low-level programming

 ReactOS source code reader

4

Quote

“Know thy self, know thy enemy. A thousand
battles, a thousand victories.” Sun Tzu

5

Program

 More than 600 programming languages,
but only one used by the machine.

6

Program

 Executable file ?

COFF

(Common Object
File Format)

PE
(Portable

Executable)

ELF
(Executable and
Linking Format)

7

Program

 Common Object File Format
 Introduced in AT&T's UNIX System V (1983)

 For executable, object code and shared library

 On Unix systems

 Replaced the previously used “a.out” format

 Too limited and incompletely specified
 Unable to support real world languages like C

 Replaced by ELF in Unix since SVR4

 Replaced by PE since Windows NT 3.1

8

Program

 Executable and Linking Format

 For executable, object code, shared library and
core dumps

 Flexible and extensible

 Used in almost all Unix systems, Playstation …

 Not bound to the architecture

 AMD64, IAxx, ARM, MIPS, PowerPC …

 Tools : readelf, objdump, file

9

Program

 ELF Layout

 Program header table,
describing (segments)*

 Section header table,
describing (sections)*

 Data referred to by
entries in the program
HT or section HT.

10

Program

 Portable Executable

 Developed by

 Windows NT was able to support other
Architecture « Portable »

 Used by all windows platform

 For binaries, drivers, .ocx, .dll, .cpl

 Useful to do reverse engineering

11

An In-Depth Look into the Win32 Portable Executable File Format

http://msdn.microsoft.com/en-us/magazine/cc301808.aspx

Program

 PE Layout

 DOS stub

 MS-DOS 2.0 compatible executable

 Output an error message such as
"this program needs windows NT".

 Any PE file are valid MS-DOS exe.

12

Program

 PE Layout

 File Header

 Machine

 NumberOfSections

 Timestamp

 Characteristics

 PointerToSymbolTable

 NumberOfSymbols

13

Program

 PE Layout

 Optional Header

 AddressOfEntryPoint

 ImageBaseSubsystem

 MajorSubSystemVersion

 MinorSubSystemVersion

 Subsystem

 DataDirectory
 IAT (Imports Address Table)

14

Program

 PE Layout
 Section Header

 Name
 VirtualAddress
 SizeOfRawData
 PointerToRawData
 Characteristics

 Permissions
Shareable, executable, readable,
writable

 Type of code
executable/initialised/uninitialised code

15

Program

 PE Layout

 Common sections

 text : executable code (Read only)

 data : global variables

 Rdata : readonly data, strings, constants

 Bss : uninitialized data, static variables

16

Program

 Execution

17

Application
start

PE Check
Mapping in

memory

Import,
Relocations,

…

Go to
EntryPoint

and Execute
instruction

Virtual
memory

Process
Environment

Block

Thread
Environment

Block

Program

 Execution

 Virtual memory

 Flat memory model

 In a 32 bit process, the address ranges from
0×00000000 to 0xFFFFFFFF

 0×00000000 to 0x7FFFFFFF is assigned to "user-land“

 0×80000000 to 0xFFFFFFFF is assigned to "kernel land“

 Kernel land memory is only accessible by the OS.

18

Program

 Memory mapping

19

Security Mechanisms - DEP

 Virtual Memory

20

Security Mechanisms - DEP

 Page Table Entry

21

Program

 Execution

 PEB (Process Environment Block)

 FS:[30] from userland

 Contains all user land parameters of the process
 Location of the main executable

 Pointer to loader data (can be used to list all dll’s / modules
that are/can be loaded into the process)

 Useful for generic shellcode !

 Pointer to information about the heap

 Whether the process is being debugged

22

Program

 Execution

 PEB (Process Environment Block)

 Used in malware to find kernel32 address
 xor ebx, ebx

 mov ebx, fs:[0x30]
 mov ebx, [ebx + 0x0C]
 mov ebx, [ebx + 0x14]
 mov ebx, [ebx]
 mov ebx, [ebx]
 mov ebx, [ebx + 0x10]

23

Program

 Execution

 TEB (Thread Environment Block)

 FS:[0] from Userland

 Describes the state of a thread
 location of the PEB in memory

 location of the stack for the thread it belongs to

 pointer to the first entry in the SEH chain

 ProcessId / ThreadId

 Current SEH frame (FS:[0] chain)

 Stack pointers

24

Program

25

Program

 Execution
– CPU registers (Intel, x86) are :

• EAX : accumulator : calculations, return values
• EBX : base (does not have anything to do with base pointer). Can

be used to store data.
• ECX : counter : used for iterations
• EDX : data : this is an extension of the EAX register
• ESP : stack pointer
• EBP : base pointer
• ESI : source index : holds location of input data
• EDI : destination index : points to location of where result of data

operation is stored
• EIP : instruction pointer

26

Program

 Execution

– Segment registers

• CS: code segment

• DS : data segment

• SS : stack segment

• ES : Extra segment

• FS : Extra segment too (E -> F)

• GS : Extra segment again (F -> G)

27

Program

 Stack

– Data structure that works LIFO (last in first out)

– Allocated by the OS

– Pretty fast but limited in size

– Contains local variables, function call, temp data

– Grows to a lower address

– One stack frame by function

28

Program

 Stack

 Exemple

29

…

------ ESP ------ EBP

State : Before func call

Program

 Stack

 Exemple

30

3

…

State : Push 3

------ ESP ------ EBP

Program

 Stack

 Exemple

31

2

3

…

State : Push 2

------ ESP ------ EBP

Program

 Stack

 Exemple

32

1

2

3

…

State : Push 1

------ ESP ------ EBP

Program

 Stack

 Exemple

33

eip

1

2

3

…

State : Push @Instr after func

------ ESP ------ EBP

Program

 Stack

 Exemple

34

ebp

eip

1

2

3

…

State : In func. Save ebp

------ ESP ------ EBP

Program

 Stack

 Exemple

35

Lvar1…

ebp

eip

1

2

3

…

State : New place for func.

------ ESP ------ EBP

Program

 Stack

 Exemple

36

State : End of func. Restore esp, pop esp

eip

1

2

3

…

------ ESP ------ EBP

Program

 Stack

 Exemple

37

State : Return to caller (ret 0C)

1

2

3

…

------ ESP ------ EBP

Program

 Stack

 Exemple

38

State : After main another leave …

…

------ ESP ------ EBP

Program

 Let’s pwned bofMe !

39

Quote

“Low-level programming is good for the
programmer’s soul.” John Carmack

40

Exploitation

41

 Simple buffer overflow

 Example source code

 1. Get the first argument
2. Call vuln
3. Allocate 200 bytes on

the stack
4. Copy argument to

buffer using strcpy
5. Print buffer content
6. return

Exploitation

42

 Simple buffer overflow
 strcpy

 Copy user input to buffer

 Can overflow and overwrite
ebp, eip …

 We control eip

 We control the program flow

 What address should I
put in eip ?

Buffer (200 bytes)

ebp

eip

1

2

3

…

Exploitation

43

 Simple buffer overflow
 strcpy

 Our shellcode starts at Buffer

 Esp points to Buffer

 We need an address to
« jmp esp » instruction !
(ret overwrite)

 Find it in the current program
or in the other executables
modules

Buffer

ebp

eip

1

2

3

…

Exploitation

44

 Simple buffer overflow
 strcpy

 At the function end

 Program will jump to the
top of the stack (esp)

 And execute the malicious
code.

 Even if ebp is invalid, code
have been executed

 Pwned 

Junk

Junk

@jmp esp

Nop

Shellcode

Nop

…

Exploitation

45

 Security mechanisms we’ll see:

 Cookie to detect BoF

 Use non-executable stack

 Randomized base addresses
 for stack and library

Security Mechanisms

 Cookie
 Also called (GS flag, canary, -fstack-protector)

 Method
 Choose a random value when the program starts

 Add this value above ebp

 Check cookie’s value in each function’s epilogue

 If the check failed, program is terminated

 [buffer][][saved EBP][saved EIP]

46

/GS (Buffer Security Check)

http://msdn.microsoft.com/en-us/library/8dbf701c%28v=vs.80%29.aspx

Security Mechanisms

 Cookie Bypass (1)
 Reduce the effective entropy of the cookies

 Calculating entropy sources from
 System Time

 Process and Thread Identifier

 Tick Count

 Performance Counter

 Frame Pointer

 Need local access to the machine

 Reduce the entropy to 15 bits

47

Security Mechanisms

 Cookie Bypass (2)

 Overwrite stack data in functions up the stack

 Need pointer to objects or structures in the stack of
their caller

 Overwrite object and vtable pointer

 Point it to a fake vtable

 Redirect the virtual function call

 Execute the evil code 

48

Security Mechanisms

 Cookie Bypass (3)

 Use unprotected buffer

 Cookie is used :
 When “string” buffers exists

 More than 4 bytes are allocated

 Overwrite is still possible for arrays of integer or pointer

49

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 Exception Handler ?
 Piece of code to deal with exception throws by application

 A typical EH looks like this :

50

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

51

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 In each stack frame

 Windows has a default SEH

 Stored in linked list of exception structure

 Catch unhandled exception

52

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

53

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 Method
 Overwrite pointer to SE Handler by @pop pop ret

Use pvefindaddr to scan all non-safeSEH modules

 Force the application to throw an exception

 OS will move to the next SEH

 Overwrite pointer to nextSEH with a small jump
to the shellcode

54

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

55

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 SafeSEH
 Introduced in Windows XP SP3, Server 2003

 Compiler switch (/safeSEH) for all executable modules

 IMAGE_DLLCHARACTERISTICS_NO_SEH flag

 SEH exploitation need to rewrite next SEH -> break the chain

 Prevent SEH based exploitation by checking pointer range and
registered exception handler addresses

56

Security Mechanisms

 Cookie Bypass (4)
 Use SEH (Structured Exception Handler)

 SafeSEH bypass
 Use addresses in non-safeSEH module

 !Pvefindaddr –j –n

 !Pvefindaddr modules

 OllySSEH

 Use instruction out of the scope for verification chain

 !Pvefindaddr –jseh

 Use an address from the heap

57

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 Demonstration on sehMe program

58

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 SEHOP (SEH Overwrite Protection)
 Check the exception handler chain

 Chain must be never corrupted

 New final handler must be correct

(after default (kernel32!_except_handler*))

 Windows Server 2008 (default enabled)

 >Vista Sp1 (default disable)

59

Security Mechanisms

 Cookie Bypass (4)

 Use SEH (Structured Exception Handler)

 SEHOP Bypass
 Create fake exception handler chain

 Use valid addresses on stack

 But SEHOP is often used with DEP + ASLR

 Need

60

A Crash Course on the Depths of Win32™ Structured Exception Handling

http://www.microsoft.com/msj/0197/exception/exception.aspx

Security Mechanisms

 DEP (Data Prevention Execution)

61

Data Execution Prevention

http://msdn.microsoft.com/en-us/library/aa366553%28v=vs.85%29.aspx

Security Mechanisms

 DEP Hardware
 Possible rights: Read/Write for Ring3/Ring0

 No execution flag?

 NX (Non eXecutable)/XD(eXecutable Disable) bit
 Introduced in Windows XP SP2 and Windows

Server 2003 SP1

 Need compatible processor

 Vmware >4.0

 Use the 64th bit of the page table
 Need Physical Address Extension

62

Security Mechanisms

 DEP Hardware
 PAE is loaded automatically (Windows)

 Permanent DEP
 Use SetProcessDEPPolicy(PROCESS_DEP_ENABLE)

 Since Vista, Permanent DEP is set automatically for
/NXCOMPACT linked binary

 Basic exploitation with shellcode in stack
 Doesn’t work anymore

 Raised an CPU exception caught by DEP
 STATUS_ACCESS_VIOLATION (0xc0000005)

63

Security Mechanisms

 DEP Software

 Windows only

 Limited version for incompatible CPUs

 Is it really a DEP ?

 NO !

 Memory page still be executable

 DEP Software is only safeSEH

64

Security Mechanisms

 Bypass DEP: ROP-FU (1)
 Return Oriented Programming
 Use pieces of Asm code from loaded libraries

 Gadgets
 Play with stack and RET instruction to assemble your code

 Lego®

 Allow to build your own payload
 Doesn’t require code on non-executable pages

 Turing-complete language
 Code whatever you want! (or not)

65

Chaining DEP with ROP – the Rubik’s[TM]

http://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-
dep-with-rop-the-rubikstm-cube/

Security Mechanisms

 Bypass DEP: ROP-FU (2)

 Write EIP with first gadget

 Gadget1 does something…
 Can eventually modify stack -_-

 Last instruction: RET

 RET pops fake saved EIP
 Goes on second gadget

 And so on…

66

EBP

EIP (= @Gadget1)

Fake saved EIP
(@Gadget 2)

@Gadget3

…

…

Security Mechanisms

 Bypass DEP: ROP-FU (2)

 Write EIP with first gadget

 Gadget1 does something…
 Can eventually modify stack -_-

 Last instruction: RET

 RET pops fake saved EIP
 Goes on second gadget

 And so on…

67

Fake saved EIP
(@Gadget 2)

@Gadget3

…

Security Mechanisms

 Bypass DEP: ROP-FU (2)

 Write EIP with first gadget

 Gadget1 does something…
 Can eventually modify stack -_-

 Last instruction: RET

 RET pops fake saved EIP
 Goes on second gadget

 And so on…

68

@Gadget3

…

Security Mechanism

 Bypass DEP: ROP-FU (3)
 Some API allow DEP disabling

 VirtualProtect
 VirtualAlloc
 HeapAlloc
 …

 Standard exploitation
 Put your shellcode on stack
 DEP disabling by ROP-FU
 Jump onto your code

69

Security Mechanisms

 Bypass DEP: ROP-FU (4)

 Choose your tools

 ImmunityDbg with pvefindaddr
 pvefinaddr:

 Find ROP gadgets (DEMO)

 List modules with their properties (SafeSEH, ASLR…)

 And many other options…

 Write your own Python tools

70

Pvefinaddr

http://redmine.corelan.be:8800/projects/pvefindaddr

Security Mechanisms

 Bypass DEP: ROP-FU (5)

 Demonstration on PwnMe program

71

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Randomize base addresses of

 Executable

 Stack (for each thread)

 Heap (for each thread)

 Library

 Need Vista (jan 07), 2008 server, Seven

72

Security Mechanisms

 ASLR (Address Space Layout Randomization)
 Enabled by default for system images

 Non system images with /DYNAMICBASE (>VS2005sp1)

 Or set DllCharacteristics to 0×40 in the PE Header

 Registry hack possible to enable it for all images
 HKLM\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management\MoveImages = -1

 ASLR should be used with DEP in order to be effective

73

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Bypass : Partial EIP Overwrite

 Well known for Animated Cursor Handling Vulnerability

 Bypass /GS too, use structures -> no cookie 

 Principe
 Only the high order bytes are randomized (0xFFFF0000)

 If we can find instruction (e.g. jmp esp) in the scope

 -> \o/

74

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Bypass : Partial EIP Overwrite

75

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Bypass : Partial EIP Overwrite

76

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Bypass : Use an non-ASLR enabled module

 Similar to safeSEH bypass method

 !pvefindaddr noaslr/modules

77

Security Mechanisms

 ASLR (Address Space Layout Randomization)

 Bypass : Bruteforce + nop slide

 On 32 bits architecture
 Windows : 16 random bits

 Linux : 24 random bits

 For a 4096 bytes buffer, the chance is about one to
 2^24 / 4096 = 4096 to hit a working address

 Require only 2048 attempts on average

78

Security Mechanisms

 ASLR (Address Space Layout Randomization)
 Demonstration on aslrMe program

79

Quote

“Little and insignificant issues can lead to find
more interesting issues.” Cesar Cerrudo (BHus10)

80

Conclusion

81

Casting

 Immunity Debugger (ImmunityInc)

 Pvefindaddr (Corelan)

 PEiD (www.peid.info)

 Windows XP SP3 

 Macbook and Dell

82

If you like Windows or not…

 Some references:

 Ivanlef0u’s blog

 ReactOS project

 Reimplementation of NT kernel

 C source code available
 Very near of Windows code

 Nice to understand some stuffs

 And blow up your mind

83

Nuit du Hack 2011

84

Some links 

85

 Corelan, www.corelan.be

 Exploit database, www.exploit-db.com

 Windows Internals 5th, Microsoft learning

 The Portable Executable, MSDN

 Smashing the stack for fun and profit,
Phrack.org

http://www.corelan.be/
http://www.exploit-db.com/
http://www.exploit-db.com/
http://www.exploit-db.com/
http://www.microsoft.com/learning/en/us/book.aspx?ID=12069
http://www.microsoft.com/learning/en/us/book.aspx?ID=12069
http://msdn2.microsoft.com/en-us/library/ms809762.aspx
http://www.phrack.org/issues.html?issue=49&id=14

Questions ?

86

