Secure Programming
with GCC and GLibc

Marcel Holtmann

CanSecWest 2008, Vancouver

Introduction

« Working for the Open Source Technology
Center at Intel

« Used to work for the Red Hat Security
Response Team

» Have been to CanSecWest once or twice ;-)

e Secure programming in general

« Welcome to 21 century
» Tips and tricks

Secure programming

« Understand the limits and flaws of your
programming language

« Understand your own code
» Expect the unexpected

Do code reviews

o Listen to your compiler

Programming languages

« C and C++ are not secure languages
« Go for Java, C# or similar languages

« But ask yourself which language has been used
to write JVM for example

* There Is always a weakest link

Something to keep in mind

« You have to know what you are doing

 Programming is art

* Nothing | gonna tell you in the next 30 minutes
IS going to change this

 However it might make your life easier

The threats

« Format string attacks

» Buffer overflows

« Heap overflows and double free
« Stack overwrites

 ELF section overwrites

* Fixed address space layout

The protection

* The Linux kernel (if you use Linux)
« GCC compile time options
« GLibc runtime options

* And of course the developer

Linux kernel options

» Address space layout randomization (ASLR)

« mmap, Stack, vDSO as of 2.6.18
« Heap/executable as of 2.6.24
* Requirement for -pie

« ExecShield
 NX emulation (Red Hat and Fedora only)
o Stack Protector

GCC options

e gcc -fstack-protector

e |d -z relro

* |d -pie / gcc -fPIE
e gcc -D_FORTIFY_SOURCE=2 -0O2
» gcc -Wformat -Wformat-security

GLibc options

* Heap protection
* Double free checking
* Pointer encryption

» Enabled by default

Distributions

» Every major Linux distribution will try to enable
most of these “security” features

« Some patch the default options of GCC

 Normally they never contribute back to the
upstream project

« Have options for these features and make the
distributions use them

Format strings

e -Wformat

» Check format types and conversations
« Safe to use and part of -Wall

« -Wformat-security

« Check potential security risks within printf and scanf
* Non string literals or missing format arguments

 Listen to compiler warnings

Buffer checks

« -D FORTIFY_SOURCE=2 -O2

» During compilation most buffer length are known
* Include compile time checks and also runtime checks

* The source must be compiled with -O2
« Format strings in writable memory with %n are blocked

* No negative impact has been reported

« Usage in upstream projects is almost zero

Heap protection

« GLibc includes heap protection
* Double free attempts will be detected

» Always enabled when using GLibc

* No negative impact known

Stack protection

 Mainline GCC feature

* Also known as stack smashing protection or
stack canaries

* Missing support for ia64 and alpha systems

« Helps to reduce stack overflows, but a 100%
protection can not be expected

Randomization

» Position Independent Executable (PIE)
« Requires ASLR support in the kernel

« GCC and linker option (-fPIE and -pie)
« Doesn't work on hppa and m68k systems

« Randomization is limited and only good for
protecting against remote vulnerabilities

Pointer encryption

* Protection of pointer in writable memory

e It is hard, but in theory the randomization can
be overcome

« Store only mangled function pointer and XOR
with a random number

* Encryption is considered faster than canaries
and as secure

ELF protection

 Linker option (-z relro)

« Mark various ELF memory sections read-only
before handing over the program execution

« Also known as ELF hardening or protection
against GOT overwrite attacks

* No problem reported so far

Red Hat Enterprise Linux
___E-_____E-_
3Nov[2004May|2 2007 May |2 :

emulation using segment limits
default

Address Randomization (ASLR) for
Stack/mmap by default®

ASLR for wDSO vDS0O enabled
Restricted access to kernel memory by
aefault

MNX for supported processors/ kernels by
default

Support for SELIinux [

SELinux enabled with targeted policy by
default

glibc heapy memory checks by default
Support for FORTIFY SOURCE, used on
selected packages

All packages compiled using
FORTIFY _SOURCE

ELF DataHardening | | | |

All paq.h:agen complled with s

Secure Programming with GCC and GLibc

Debian and Ubuntu security

* Install the Hardening wrapper
* apt-get install hardening-wrapper
e Set an environment variable to activate it

. export DEB_BUILD HARDENING=1
. export DEB_BUILD HARDENING _[feature]=0

« Ubuntu has stack protector by default

A trivial example

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>

int main(int argc, char *argv([])

{
char buf[16];

if (argec > 1) {
strepy (buf, argv[1]);

printf ("Your first argument was: ");
printf (buf);
printf ("\n");
} else {
fprintf (stderr, "Usage: %s ARG\n", argv[0]);
exit(1l);

}

return O;

Using the wrapper

DEB_BUILD_HARDENING=1 make trivial

cc trivial.c —-o trivial

trivial.c: In function ‘main’:

trivial.c:16: warning: format not a string literal and no format arguments

./trivial $(perl —-e 'print "A"x100')
Your first argument was:

AAAAAAAAAAAAAAAAAAAAAAA
*** stack smashing detected ***: . /trivial terminated
Segmentation fault (core dumped)

Other useful tools

« Statical analysis
e The Linux kernel sparse

« User/kernel pointer checks
 Endian conversion checks

* The memory checker valgrind

e Listen to its warnings

Conclusion

« Use the security features that are available and
make them mandatory

 Listen to your compiler and understand the
warnings — fix the cause, not the warning

 You still have to write good and secure code,
but listen to your tools when they try to tell you
something ...

Thanks for your attention

marcel@holtmann.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

