Advanced Malware Analysis Training Series

Reversing Automation

‘Harsimran Walia/Amit Malik

www.SecurityXploded.com

Disclaimer

The Content, Demonstration, Source Code and Programs presented here is "AS IS" without
any warranty or conditions of any kind. Also the views/ideas/knowledge expressed here are

solely of the trainer’s only and nothing to do with the company or the organization in which
the trainer 1s currently working.

However in no circumstances neither the Trainer nor SecurityXploded is responsible for any
damage or loss caused due to use or misuse of the information presented here.

/

www.SecurityXploded.com

Acknowledgement

= Special thanks to Null community for their extended support and co-operation.
= Special thanks to ThoughtWorks for the beautiful venue.

= Thanks to all the trainers who have devoted their precious time and countless hours to make it

happen.

/

www.SecurityXploded.com

Advanced Malware Analysis Training

This presentation is part of our Advanced Malware Analysis Training program. Currently it

1s delivered only during our local meets for FREE of cost.

For complete details of this course, visit our Security Trainil\,q/oa/

www.SecurityXploded.com

Who am 1?

Harsimran Walia
= Member, SecurityXploded
= Research Scientist, McAfee Labs
= Reversing, Malware Analysis, Exploit Analysis/Development etc.
= Personal site: http://harsimranwalia.info

= E-mail: walia.harsimran@gmail.com
= Twitter: b44nz0r

/

www.SecurityXploded.com

Content

© Automation
¢ Python scripts
¢ Use of modules
© Tools/Modules discussed
* PEfile
* PyDbg
¢ IDAPython

www.SecurityXploded.com

PEfile

Python module to read and work with Portable Executable (PE) files
pefile requires understanding of the layout of a PE file (already covered)

Tasks that pefile makes possible are:

Modifying and writing back to the PE image
Header Inspection

Sections analysis

Retrieving data

Warnings for suspicious and malformed values
Packer detection with PEiD’s signatures

www.SecurityXploded.com

import pefile
pe = pefile.PE(r'C:\calc.exe')

.OPTIONAL HEADER. AddressOfEntryPoint
.OPTIONAL HEADER. ImageBase
.FILE HEADER.NuwberOfSections

.OPTIONAL_ HEADER. AddressOfEntryPoint = Oxdeadbeef
.writetfilename=r'C:\calc_modified.exe']

Pefile (hands-on)

PE sections — fetching detail about sections

section pe.sections:
print (section.Name, hex|
hex (section.Misc Virtuals)

’ .text\xB0\x80\x08’ , *Bx16806°, ’*6x126h6’,. ’Bx12808°>
’ .data\xB0\xB0\x80’ ., ’Bx146808° ., ’‘0Bx181ic’. ’BxaBh’>
’ .rsrc\xBB\xB0\x80’ , ’Bx16608°, ’'Bx8968°’. ’Bx8aBB’>

File Info
fileinfo p
fileinfo.K

L | g rights reserved.
w’ InternalName’ . u’CﬂLC‘)

w’ FileUersion’, w’5.1.2680.8 (xpclient.B10817-1148>’)>

w’ CompanyName’ ., uw’Microsoft Corporation’>

w’ ProductName’ , w’ Microsofti\xae Windows\xae Operating System’>
u’ ProductUersion’,. u’5.1.26080.8°)

uw’FileDescription’, uw’Windows Calculator application file’>

w’ OriginalFilename’, uw’ CALC.EXE’>

www.SecurityXploded.com

def file type(pe):
if pe.is_dll{):
return "dll"
=lif pe.is_exe():
return "exe"
£lif pe.is_driver():
return "driver"

print file typeipe]

for entry in pe.DIRECTORY ENTRY IMPORT:
print entry.dll
for imp in entry.imports:
print 'S t', hex(imp.address), inmp.name

Imported DLLs

Pydbg

Open Source Python debugger
Developed by Pedram Amini as the main component of PaiMei framework
It uses user-defined callback functions

These functions can implement actions to take on hitting a breakpoint, exception

etc

Upon execution of the callback function the control is passed back to pydbg to

execute the program normally

www.SecurityXploded.com

Pydbg installation

Download or git clone: https://github.com/OpenRCE /pydbg

Pre-reqs

Python 2.7

c-types python library
Copy the pydbg files to Python-2.7\Lib\site-packages\pydbg
pydasm.pyd is compiled for Python 2.6, lets fix this!

Open pydasm.pyd in any hex-editor(010 etc) and search python
Change python26.dll to python27.dll
Save and replace with original

www.SecurityXploded.com

om pydbg importc ¥
from pydbg.defines import *
Lport struct

dby = pydbg()
process = "notepad.exe"
found process = False

fl=f handler CreateFilel (dbg):
file_ptr = dbg.read process_memory(dbg.context.Esp + O0x4,
file_ptr = struct.unpack("<L",file_ptr) [0]
file nawe = dbg.swart_dereference (file_ptr, True)
if file_name.find{".txt") != -1:
print "CreateFilel -> %3" $file name
return DBG_CONTINUE

handler_ CreateFileWidbg) :
file ptr = dbg.read process_memory(dbg.context.Esp + O0x4,
file ptr = struct.unpack("<L",file ptr) [0]
file name = dbg.smwart_dereference(file_ ptr, True)
if file_name.find{".txt") != -1:
print "CreateFilel -> %3" %file_ name
return DBG_CONTINUE

(pid, name) in dbg.enumerate_processes():

if nawe.lower () == process:
found_ process = True
print "Found %s and now attaching debugger” %process
dbg.attach(pid)

CreateFiled addr = dbg.func_resolve_debuggee ("kernel3iz.dll"”, "CreateFilel")
CreateFilel addr dbg. func_resolve_debuggee ("kernel3zZ.dll”, "CreateFilell™)

dbg.bp_set (CreateFiled addr, description="CreateFilel”, handler=handler CreateFilel)
dbg.bp_set (CreateFileW_addr, description="CreateFilell”, handler=handler_CreateFilelW)
dbg.runi)

if not found process: S itvXploded
print "%s is not running” %process www.securityXploded.com

IDA Python

An IDA Pro plugin
Integrates Python, allowing scripts to run in IDA Pro

IDAPython Scripts have access to

IDA Plugin AP],

IDC and all modules available for Python

www.SecurityXploded.com

Installation

Download the plugin from https://code.google.com/p/idapython
Match the IDAPro and python version before downloading

Copy the "python" directory from the extracted plugin to the IDA Pro install
directory (%IDADIR%)

Copy the plugin executable to "%IDADIR%\plugins\"

www.SecurityXploded.com

Hands-on

Utility functions
ScreenEA()

Obtains the address of where your cursor is currently positioned on the IDA screen.

GetinputFileMD5()
Returns the MD5 hash of the binary loaded in IDA, which is useful for tracking changes in the binary

Functions
Functions(long StartAddress, long EndAddress)

Returns a list of all function start addresses contained between StartAddress and EndAddress.
LocByName(string FunctionName)

Returns the address of a function based on its name.

GetFunctionName(long Address)
Given an address, returns the name of the function the address belongs to.

www.SecurityXploded.com

from idaapi import *
danger funcs = ["stropy"”,"sprintf”,"strncpy"]

for func in danger funcs:
addr = LocByNawe | func)
1T addr '= BADADDR: <
Grab the cross-references to this address

Get function address from name

Get calls to function addr

cross_refs = CodeRefsTo(addr, 0)
print "Cross References to 33" % func

for ref in cross_refs:
print "%08x" % ref
Color the call RED
SetColor(ref, CIC_ITEN, Ox0000ff)

Demo..

ExeScan

http://www.securityxploded.com/exe-scan.php

Malpimp

http://www.securityxploded.com/malpimp.php

www.SecurityXploded.com

Reference

Complete Reference Guide for Advanced Malware Analysis Trainin
[Include links for all the Demos & Tools]

www.SecurityXploded.com

Thank You !

www.SecurityXploded.com

www.SecurityXploded.com

