
6 • VIRUS BULLETIN MARCH 2003

VIRUS BULLETIN ©2003 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2003/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

VIRUS ANALYSIS 2

Slamdunk
Péter Ször and Frédéric Perriot
Symantec Security Response, USA

The Slammer worm targets versions of Microsoft SQL
Server 2000 products, as well as MSDE 2000 and related
packages. The outbreak began on 25 January 2003 (GMT).
According to early reports, the worm had a very significant
presence around the world in less than one hour, and the
peak time of the worm lasted for about three hours. During
the worm’s initial outbreak, Internet users experienced large
percentage packet drops that developed into a large-scale
DoS attack.

The worm exploits a stack-based overflow that occurs in
a DLL implementing the SQL Server Resolution Service.
This DLL (ssnetlib.dll) is used by the SQL Server service
process called SQLSERVR.EXE. The vulnerability
had been reported to Microsoft by David Litchfield
(NGSSoftware), along with a few others. Furthermore,
exploit code was made available at a BlackHat conference
in 2002 and it is clear that this code was used as a
base from which to develop the worm.

Exploit Setup

The SQL Server process listens on TCP as well as UDP
ports. The worm targets UDP port 1434, sending a special
request (0x04) specified as the first character of the pay-
load. In the datagram this is followed by a specially crafted
‘string’ that contains the worm code. The worm code is
extremely small – 376 bytes, which is the shortest binary
worm known today. (376 bytes is the length of the UDP
datagram without the protocol headers.)

Since the worm can use a UDP packet for the attack, it is
probable that the source IP address of the original attacker
was spoofed. The worm spreads to randomly generated IP
addresses and, as a result, it is very difficult to determine
from which country the attack originated.

The vulnerable function in ssnetlib.dll (as implemented in
SQL Server 2000) is nested two levels deep inside a thread
associated with the incoming request. The function is
supposed to build a string for a Registry access by
concatenating three strings into a 128-byte buffer. This
string will be built on the stack and there are no input
validations for the size of the middle string parameter.
Strings 1 and 3 are constant and located in the ssnetlib.dll.

(String 1) ‘SOFTWARE\Microsoft\Microsoft SQL Server\’

(String 2) String passed in the datagram (starts after the
0x04 type field)

(String 3) ‘\MSSQLServer\CurrentVersion’

As a result, whenever a string that is too long is passed to
the function, the stack is corrupted (smashed). String 2 is an
SQL Server instance name. According to the Microsoft
Knowledge Base this string should be 16 characters long at
most. However, this is neither enforced in the server, nor
even in some of the common clients.

The worm has been crafted carefully. Its code is not only
compact but it contains no zeros. This is because the buffer
is used as a string parameter to an sprintf() library function
call. As a result of the overflow a concatenated string will
build on the stack where string 2 is the worm body itself.

Getting Control

Since the worm cannot contain zeros the author uses a lot of
01 filler bytes. Furthermore, attempts are made to use
addresses that do not contain any zeros and, in some cases,
the code uses XOR to mask zero bytes, which is a known
shell code technique.

The worm starts with a header posing as local variables of
the buggy function. A new return address (0x42B0C9DC)
follows these filler bytes. This address is a pointer to a JMP
ESP instruction inside SQLSORT.DLL, another module of
the SQL Server process.

To make sure the vulnerable function will give control to
the worm body, the header section of the worm also uses
dummy (‘crash test dummies’) values (0x42AE7001) to
replace function arguments on the stack. It is necessary to
do this because these arguments are used after the call to
sprintf() triggering the overflow. Failure to replace these
arguments would cause an exception and thus the function
would not return normally. When the function returns,
control flows to the JMP ESP instruction which jumps on
the stack to the location immediately after the hijacked
return address. The first instruction will be a short jump
around fake function arguments to the main worm code.

Initialization

The local variables within the worm header section could
change during the time between the actual faulty sprintf()
and the function return to the worm body, which means that
the worm’s header could become corrupted. Thus the worm
will rebuild this area first to make sure that its header
section remains constant for the next attack. Since the query
type field (0x04) is missing from the top of the worm on the
stack it is also rebuilt by pushing a 0x04000000 DWORD
whose high byte is referenced by the replication code later.

Now the worm needs only a few functions to call. Follow-
ing the original exploit code the worm’s author uses the
import address directory of SQLSORT.DLL to make calls
to LoadLibraryA() and GetProcAddress() function calls.

VIRUS BULLETIN MARCH 2003 • 7

VIRUS BULLETIN ©2003 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. http://www.virusbtn.com/. /2003/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

This routine is compatible with different Service Pack
releases and patches of SQL Server. Therefore
GetProcAddress()’s code is checked first to be sure that
it is the proper function entry point.

Then the worm gets access to the handles (base addresses)
of WS2_32.DLL and KERNEL32.DLL. Next it gets the
addresses of socket(), sendto() and GetTickCount() APIs,
which is all it needs to replicate.

Replication

The replication method is extremely simple. The worm
sends 376 bytes to UDP port 1434 to randomly generated IP
addresses in an endless loop. This will cause the server
CPU usage to increase and thousands of packets will be
sent, effectively causing a DoS attack and at the same time
compromising a large number of new systems around the
world. The random number used to generate IP addresses is
a variant of the Microsoft Basic random number generator.
It uses the same multiplier. This results in sufficient
randomness in the distribution of targeted systems.

Conclusion

A patch had been available for six months to cover both this
vulnerability and others related to it (see Microsoft Security
Bulletins MS02-039 and MS02-061). Patches would block
the worm’s attack effectively if applied properly, but they
are often too costly to deploy in large corporations. It
should also be noted that the patching process was not an
easy one, due to the large number of Microsoft and third-
party products that include SQL Server as a component.

Although SQL Server would offer various user rights for the
installation of the server process, such a server process
often enjoys system context or admin privileges. This will
provide attackers with access to any resources on the
system, since the hijacked thread will run with significant
privileges to do further damage on the system.

It appears that modern behaviour-blocking countermeasures
will need to take place at host-level to provide a last line of
defence to mitigate attacks like these. Such host-based
products might be the key to slowing down similar attacks
in the future.

Slammer

Size: 376 bytes (worm does not exist as a
file on the system).

Aliases: W32.SQLExp.Worm, SQL Slammer
Worm, DDOS.SQLP1434.A,
W32/SQLSlammer, Sapphire,
W32/SQLSlam-A.

Payload: None. Large-scale DoS attacks
occur as a side-effect of replication.

