
VIRUS BULLETIN APRIL 2003 • 5

VIRUS BULLETIN ©2003 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. http://www.virusbtn.com/. /2003/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Sleep-Inducing
Peter Ferrie
Symantec Security Response, Australia

W32/Serot@mm is another creation from Benny the virus-
writer. Its name is derived from the word ‘serotonin’, which
is a chemical found in the brain that has been linked to the
onset of sleep, among other things. If anyone is wondering
whether, this time, Benny has released a bug-free virus …
the answer is no. Serot is plagued by programming errors
that almost disable it, however some of its capabilities are
worth describing, in case another virus appears with these
bugs fixed.

Serot uses a ‘plug-in’ architecture – which was very
successful in W95/Hybris. However, the plug-ins in Serot
are almost completely self-contained, even carrying their
own buffers if the buffers are ‘small’ enough, resulting in an
enormous collection, and much redundancy in the code.

Buggy Benny

Serot is designed for Windows NT and later operating
systems. The virus checks explicitly for Windows 9x/Me,
and will exit if it is run on any of them. In addition, the
virus checks whether NTDLL is accessible using the
GetModuleHandleA() API (i.e. that it is resident in memory
already), which could affect emulators.

The virus assumes that PSAPI.DLL is present on the
system – which is not always the case – and the code will
crash if the file does not exist. Serot contains some anti-
debugging code which is supposed to cause the virus to exit
gracefully if a debugger is detected – due to a bug, however,
Serot will usually crash instead.

Attack of the Clones

Next the virus checks whether Serot is running on the
system already. It attempts to open a mutex called
‘$serotonin@’, but there is no branch to exit if the open is
successful. This results in multiple copies of the virus
running at the same time.

Serot contains some variables whose contents are increased
or decreased by small random values. However, since there
are no bounds checks on the alterations, the contents can
become negative values – with disastrous consequences.
Serot also relies on the result of several APIs being a certain
fixed value, even though they are defined as returning either
zero or non-zero. If Microsoft should ever change this
value, Serot will not work at all.

Serot enumerates processes, looking for the Explorer.exe
process, which it uses to remain memory-resident. If the

process is found, Serot injects some code into the process,
and runs that code.

The injection technique has been used several times by
viruses since the first time it was demonstrated, in the
W32/Dengue virus, in the year 2000. Previous viruses
hooked an API in order to gain control and run the code, for
compatibility with Windows 9x/Me. Since Serot is specific
to Windows NT and later operating systems, it has no need
to hook an API, and can use the CreateRemoteThread() API
to run the code.

The Cat that ate the Rat that …

The injected code waits for 10 minutes before executing its
main routines. This gives the launch process time to
terminate, as well as providing an anti-heuristic device.
After the time has elapsed, Serot will attempt to delete the
file that was used to launch the code, and the registry key
that might have been used to launch the file.

At this point, Serot calls a member of the first group of its
plug-ins. The plug-ins are in groups based on type. For
example, the first group terminates anti-virus and firewall
software, based on the window title; the second group
gathers email addresses from the ‘mailto:’ string in files,
from the MAPI Address Lists if Outlook is running, or from
the Windows Address Book; the fourth group sends the
virus by email; the seventh group converts .NET files into
droppers of the virus.

For groups that contain more than one member, the routine
that calls the plug-ins will call a single random member
from within that group.

After the first plug-in has returned, Serot generates a
keypair for use in encrypted communication with other
infected machines, then calls the plug-in that gathers email
addresses. If that plug-in returns a failure, then a bug in the
code results in the loss of the keypair, and a leakage of the
cryptographic context.

Let’s Swap

Serot carries a list of IP addresses of known infected
machines, and looks for other infected machines by
attempting to connect on port 194 to IP addresses found in
the registry key ‘HKCU\Software\Microsoft\Ftp\Accounts’.
There is another routine that attempts to connect to random
IP addresses – however, as the result of a bug, this routine is
never called.

Port 194 is a well-known port, reserved for the Internet
Relay Chat (IRC) protocol, so traffic on this port is not
unusual. If a machine is found to be listening on this
port, Serot will verify that the machine is infected, by

VIRUS ANALYSIS 1

6 • VIRUS BULLETIN APRIL 2003

VIRUS BULLETIN ©2003 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2003/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

attempting to establish a communication with it using a
private protocol. This protocol contains data encrypted
using public key cryptography, in order to avoid packet
sniffing.

The protocol is established by Serot on the local machine
by sending its public key to the server on the remote
machine, and examining what is returned. If a valid public
key is returned from the remote machine, then the copy of
Serot on the local machine will send its current configura-
tion to the remote machine, encrypted with the public key
that was returned by the copy of the virus on the remote
machine. In return, the copy of the virus on the remote
machine will send its current configuration to the local
machine, encrypted with the public key that was returned
by the copy of Serot on the local machine. Thus, the two
copies of the virus are able to exchange behavioural
characteristics and their plug-ins.

Several bugs exist in this code, resulting in a number of
allocated memory buffers that are never freed.

A New Way to Express It

If no other infected machines are found, Serot will attempt
to send itself by email. Yet another bug exists in this code,
resulting in the occasional failure to send messages.

The email message uses a ‘feature’ of Outlook Express
which involves the UTF-7 encoding of plain-text messages.
Using UTF-7 encoding, it is possible to encode HTML
message bodies that contain scripts, which are run without
user interaction. If the Internet Explorer security settings
allow Active scripting, and the scripting of ActiveX
controls that are not marked as safe, then the script will
run without prompts, regardless of the zone in which it
is executing.

Additionally, the email message contains no attachments,
because Serot creates a message body that contains the
virus in an encoded text form.

The function of the script is to decode the virus body and
drop it as a file called ‘c:\setup.exe’. After the file has been
dropped, the registry value ‘HKCU\Software\Microsoft\
Windows\CurrentVersion\Run\Serotonin’ is created so
that Windows will execute the file whenever the current
user logs on. This could also be considered a bug, since if
there are multiple users, only the current user will spread
the virus.

Dot Dot Dot Net

Once all of the other actions have been performed, Serot
begins listening on port 194, and runs the final plug-in. The
current version of this plug-in will convert .NET executable
files into droppers of Serot.

The plug-in begins by searching in every subdirectory on
drive C: for files whose name ends in ‘exe’. Even the name
matching is buggy – not checking for the ‘.’ to indicate a

suffix results in the matching of names such as ‘SerotRexe’.
For every file that is found, the virus checks whether it is a
.NET file that does not contain resources or relocations, and
is not protected by a Strong Name hash. If this check
passes, then Serot will attempt to infect the file.

The Compiler at Your Service

Serot infects files by using the Compiler Services methods
that are exposed by the .NET framework. Using these
methods, it is possible to decompile an existing file, add
new methods and variables, and recompile the file, without
requiring any understanding of the underlying structures.

The recompilation is achieved using just a few method calls
in .NET, requiring far less effort than the manual recon-
struction of standard Portable Executable files that was
implemented in W95/ZMist (see VB, March 2001, p.6).

A virus using the manual reconstruction technique seems
unlikely, since the underlying structures in .NET are
extremely complex and contain many interdependencies.
For example, an entry in the method table contains refer-
ences to the #Strings stream and the #Blob stream. The
entry in the #Blob stream contains references into the
TypeRefs table. The TypeRefs table contains references into
the #Strings stream, and also coded index references into
the AssemblyRefs table. The AssemblyRefs table also
contains references into the #Strings stream and the
#Blob stream. It would take a long time for someone to find
out what all of the links are, and work out how to update
them manually.

After creating the new code that will drop and run a copy of
the virus, Serot attempts to access the file that contains the
data that will be dropped. However, errors in the control
flow mean that the file the virus attempts to access might
not have been created at all.

If the file does exist, Serot will reserve 64Mb of memory
for itself, but never free it, resulting in the eventual exhaus-
tion of system resources, since this allocation occurs for
every .NET file on a machine.

More memory is not freed if a particular .NET DLL cannot
be loaded, and because of another bug, that dll usually
cannot be loaded. Serot also assumes that the infection will
always succeed, and uses the MoveFile() API to replace the
original file, resulting in deletion of the original file if an
error occurred.

Conclusion

Despite its potential, this very buggy creation of Benny’s
snatches defeat from the jaws of victory. However, it
demonstrates the Compiler Services, which seem likely to
form the basis for future .NET file infectors. A recompiling
virus like W95/Anxiety, but without needing the source
code, combined with an inserting virus like W95/ZMist,
but without rebuilding the file manually … The beast is
unleashed, and its full power is unknown.

