

Dominic Spill
dominicgs@gmail.com

Bluetooth Packet Sniffing Using
Project Ubertooth

mailto:dominicgs@gmail.com

Dominic Spill

● Bluesniff: Eve meets Alice
and Bluetooth
– Usenix WOOT 07

● Building a Bluetooth monitor
– Shmoo/Defcon/Toorcamp 09

– With Michael Ossmann

● Lead on project Ubertooth

Disclosure

● Not an employee of GSG

● I receive some funding

● Not here to sell Ubertooths

Warning

● If you wish to remain anonymous:
– Remove your name from Bluetooth device names

– Or turn off Bluetooth devices now

● Live demos at a con may not work
– Especially when using 2.4GHz

Ubertooth

Ubertooth

● Designed by Michael Ossmann
● 2.4GHz experimentation platform
● Bluetooth 1.x, Low energy, 802.11 FHSS
● Hardware

– CC2400 (+CC2591 frontend)

– NXP LPC1756

– USB device (2.0)

● Open source software and hardware
– http://ubertooth.sourceforge.net

Spot the difference?

Bluetooth

“Bluetooth” is a registered trademark of Bluetooth SIG, Inc

Bluetooth

● 2.4GHz ISM band
● Variable data rates

– Basic Rate – 1Mb/s

– Enhanced Data Rate – 3Mb/s

– High Speed - Alternate MAC/PHY – 24Mb/s

– LE (Smart) – 200Kb/s

● FHSS @ 1600Hz
– 79 channels

Bluetooth

● Bluetooth SIG
– 17,000 members

– Free to join

● Bluetooth devices
– 7 billion devices sold to end 2011

– Will ship 2 billion devices this year

– 20 billion expected in use by 2017

http://www.bluetooth.com/Pages/sig-membership.aspx

Bluetooth - Terminology
● Bluetooth device address / MAC / BD_ADDR

– Three parts, not all present in packets
● LAP - Lower – lowest 24 bits
● UAP - Upper – next 8 bits
● NAP - Non-significant – top 16 bits

● CLKN
– 27bit 3200Hz internal clock

– Increments twice per time slot

Bluetooth - Terminology
● Access code

– Derived from LAP

● Packet Header
– Error check based on UAP

● Payload
– Possibly encrypted

– CRC also based on UAP

Bluetooth - Terminology

● Non-Discoverable mode
– Does not respond to inquiry scans

– Still responds to page scans

– Some newer devices ignore unknown page scans

● Data whitening
– Packets XOR'd with pseudo-random sequence

Bluetooth sniffing is hard

● No “monitor mode”
– Fixed correlator – not promiscuous

● Frequency hopping
– 1600 hops/s

– 625us/packet

– Pattern based on MAC and CLKN

● Data whitening
– PRNG initialised with CLK1-6

Bluetooth sniffing is profitable
(apparently)

● Known connection LE only - $250
● Known connection BR only - $10,000
● All channel BR/EDR/LE - $25,000

Finding Packets – Old method

● Find access code
– Treat 64bit chunks as possible access codes

– LAP stored in bits 34-57

● Check access code
– Check trailer (2 errors)

– Generate access code from LAP

– Compare access code to 64bit chunk (6 errors)

Packets!

000010111110101110101010101010101010101010101010101
010101010101010101011011111001100001011011001100110
011111100110100101100011110010101011111111100000011
100000000000000000000011111111100000011110000111100
001111000011110000111100001111000011110000111100001
111000011110000111100001111000011110000111100001111
000011110000111100001111000011110000111100001111000
011110000111100001111000011110000111100001111000000
001000011111000101010011100011101101110011101101001
101000100001000101010

Flaws

● Slow on desktop CPU
● Unworkable on low power devices
● No errors allowed in LAP
● No error correction

Error Correction

Error Correction

● (64, 30) expurgated block code
– Based on BCH (63, 30) code

– Calculate syndromes to find error vectors

● Supposed to correct up to 6 bit errors
– Too many false positive results

– In practice correct <4 bit errors

Error Correction

● Manufacturers don't implement it

– Known access code loaded into correlator
– Compared to received bits
– Up to 6 bit errors

● This is what we do for a known address

Finding Packets – New Method

● Pre-calculate syndromes for n-bit errors
– Use known access code

– XOR with all possible n-bit error vectors

– Generate syndrome for each error

– Store in hash (uthash rules!)

● For each 64bit block
– Calculate syndrome

– Check hash for error vector

– Correct error

Finding Packets – New Method

Demo

Ubertooth-scan

● Finding non-discoverable devices

● Wright's Law
– Security will not get better until tools for practical

exploration of the attack surface are made
available.

Frequency Hopping

Frequency Hopping – Local Device

● Ubertooth-follow
– Follow a local Bluetooth device

– Use bluez to extract CLKN

– Push to Ubertooth

– Start hopping

● Demo

Frequency Hopping – Local Device

● Pros
– Reliable

– Potentially sniff pairing

● Cons
– Requires local BT device

– No AFH support
● Expected soon

– Clock drift causes problems
● This is fixable

Frequency Hopping – Any Device

● Derive CLKN from received packets
– Calculate hopping pattern for known address

– Sniff single channel or hop randomly

– Observe packets, timing and channel

– Place packets in hopping pattern

– Yields unique CLKN

● Calculate clock offset from CLKN → Ubertooth
● Send to Ubertooth
● Follow hopping piconet

Frequency Hopping – Any Device

● Ubertooth-hop
– Follow a remote piconet

– Given LAP and UAP

– Finds clock offset and hops

● Demo

Kismet Plugin

● Plugin for current and upcoming Kismet
– Only survey mode – static or sweep

● Demo

Wireshark Plugin

Demo

Bluetooth Smart

● AKA
– Bluetooth Low Energy

– Bluetooth 4.0

– Wibree

● Much simpler protocol
● Mike Ryan has just started working on this

– Sniffing connection phase

– Sniffing some data

– AES Encryption – possible flaws in key exchange

Future Work

● Adaptive Frequency Hopping
● Encryption / Pairing
● Transmit – packet injection
● Full LE stack
● Follow in Kismet
● Storage
● Embedded platforms

Thanks to...

● Michael Ossmann
● Jared Boone
● Mike Kershaw (dragorn)
● “Will Code”
● Mike Ryan
● Zero Chaos

Questions?

dominicgs@gmail.com
Twitter: dominicgs

Slides: dominicspill.com/ruxcon/slides.pdf

mailto:dominicgs@gmail.com

	Bluetooth Packet Sniffing
	Intro - Dominic Spill
	Disclosure
	Warning
	Ubertooth
	Ubertooth - hardware
	Spectrum Analyser
	Bluetooth
	Bluetooth Overview
	Bluetooth SIG
	Bluetooth Address and Clock
	Bluetooth Packet Format
	Bluetooth Discoverability
	Bluetooth sniffing is hard
	Bluetooth sniffing is profitable
	Finding packets - old method
	Packet Illustration
	finding packets - Flaws
	Error Correction
	Error Correction - Details
	Error Correction - implementations
	Finding packets - new method
	Demo
	Ubertooth scan
	Frequency Hopping
	Ubertooth follow - local device
	Ubertooth follow - discussion
	Deriving the clock
	Ubertooth hop + demo
	Kismet Plugin
	Wireshark Demo
	Bluetooth Smart
	Future Work
	Thanks
	Questions

