
Chapter 2

Spring Live

Spring Quick Start Tutorial

Developing Your First Spring Web Application

The following chapter is a sample from SourceBeat’s Spring Live book by Matt Raible. Please visit
www.sourcebeat.com to access the book.

This chapter is a tutorial on how to write a simple Spring web application using the Struts MVC framework for
the front end, Spring for the middle-tier glue, and Hibernate for the back end. In Chapter 4, this application will
be refactored to use the Spring MVC framework.

This chapter covers the following topics:

• Writing tests to verify functionality.

• Configuring Hibernate and Transactions.

• Loading Spring’s applicationContext.xml file.

• Setting up dependencies between business delegates and DAOs.

• Wiring Spring into the Struts application.

http://www.sourcebeat.com

Spring Live

Overview 14

Overview

You will create a simple application for user management that does basic CRUD (Create, Retrieve, Update and
Delete). This application is called MyUsers, which will be the sample application throughout the book. It’s a 3-
tiered webapp, with an Action that calls a business delegate, which in turn calls a Data Access Object (DAO).
The diagram below shows a brief overview of how the MyUsers application will work when you finish this
tutorial. The numbers below indicate the order of flow – from the web (UserAction) to the middle tier,
(UserManager), to the data layer (UserDAO) – and back again.

Figure 2.1: MyUsers application flow

This application uses Struts as the MVC framework because most readers are familiar with Struts. The real
power of Spring lies in its declarative transactions, dependency binding and persistence support (for example
Hibernate and iBATIS). Chapter 4 refactors this application to use Spring’s MVC framework.

Spring Live

Overview 15

Below are the ordered steps you will perform:

1. Download Struts and Spring.

2. Create project directories and an Ant build file.

3. Create a unit test for the persistence layer.

4. Configure Hibernate and Spring.

5. Create Hibernate DAO implementation.

6. Run the unit test and verify CRUD with DAO.

7. Create a Manager and Declare Transactions.

8. Create a unit test for the Struts Action.

9. Create an Action and model (DynaActionForm) for the web layer.

10. Run the unit test and verify CRUD with Action.

11. Create JSPs to allow CRUD through a web browser.

12. Verify the JSPs’ functionality through your browser.

13. Replace the JSPs with Velocity templates.

14. Add Validation using Commons Validator.

Spring Live

Download Struts and Spring 16

Download Struts and Spring1

1. Download and install the following components:

• JDK 1.4.2 (or above)

• Tomcat 5.0+

• Ant 1.6.1+

2. Set up the following environment variables:

• JAVA_HOME

• ANT_HOME

• CATALINA_HOME

3. Add the following to your PATH environment variable:

• JAVA_HOME/bin

• ANT_HOME/bin

• CATALINA_HOME/bin

To develop a Java-based web application, developers download JARs, create a directory structure, and create an
Ant build file. For a Struts-only application, simplify this by using the struts-blank.war, which is part of the
standard Struts distribution. For a webapp using Spring’s MVC framework, use the webapp-minimal application
that ships with Spring. Both of these are nice starting points, but neither simplifies the Struts-Spring integration
nor takes into account unit testing. Therefore, I have made available to my readers Equinox.

Equinox is a bare-bones starter application for creating a Struts-Spring web application. It has a pre-defined
directory structure, an Ant build file (for compiling, deploying and testing), and all the JARs you will need for a
Struts, Spring and Hibernate-based webapp. Much of the directory structure and build file in Equinox is taken
from my open-source AppFuse application. Therefore, Equinox is really just an “AppFuse Light” that allows
rapid webapp development with minimal setup. Because it is derived from AppFuse, you will see many
references to it in package names, database names and other areas. This is done purposefully so you can migrate
from an Equinox-based application to a more robust AppFuse-based application.

In order to start MyUsers, download Equinox from http://sourcebeat.com/downloads and extract it to an
appropriate location.

1. You can learn more about how I set up my development environment on Windows at http://raibledesigns.com/wiki/
Wiki.jsp?page=DevelopmentEnvironment.

http://raibledesigns.com/wiki/Wiki.jsp?page=DevelopmentEnvironment
http://raibledesigns.com/wiki/Wiki.jsp?page=DevelopmentEnvironment
https://appfuse.dev.java.net
http://sourcebeat.com/downloads

Spring Live

Create Project Directories and an Ant Build File 17

Create Project Directories and an Ant Build File

To set up your initial directory structure and Ant build file, extract the Equinox download onto your hard drive. I
recommend putting projects in C:\Source on Windows and ~/dev on Unix or Linux. For Windows users, now
is a good time set your HOME environment variable to C:\Source. The easiest way to get started with Equinox
is to extract it to your preferred “source” location, cd into the equinox directory and run ant new -
Dapp.name=myusers from the command line.

Tip: I use Cygwin (www.cygwin.org) on Windows, which allows me to type forward-slashes, just like
Unix/Linux. Because of this, all the paths I present in this book will have forward slashes. Please adjust for
your environment accordingly (that is, use backslashes (\) for Windows’ command prompt).

At this point, you should have the following directory structure for the MyUsers webapp:

Figure 2.2: MyUsers application directory structure

http://www.cygwin.org

Spring Live

Create Project Directories and an Ant Build File 18

Equinox contains a simple but powerful build.xml file to deploy, compile and test using Ant. For all the ant
targets available, type “ant” in the MyUsers directory. The return should look like the following:

[echo] Available targets are:

[echo] compile --> Compile all Java files
[echo] war --> Package as WAR file
[echo] deploy --> Deploy application as directory
[echo] deploywar --> Deploy application as a WAR file

[echo] install --> Install application in Tomcat
[echo] remove --> Remove application from Tomcat
[echo] reload --> Reload application in Tomcat
[echo] start --> Start Tomcat application
[echo] stop --> Stop Tomcat application
[echo] list --> List Tomcat applications

[echo] clean --> Deletes compiled classes and WAR
[echo] new --> Creates a new project

Equinox supports Tomcat’s Ant tasks. These tasks are already integrated into Equinox, but showing you how
they were integrated will help you understand how they work.

Tomcat and Ant

Tomcat ships with a number of Ant tasks that allow you to install, remove and reload webapps using its Manager
application. The easiest way to declare and use these tasks is to create a properties file that contains all the
definitions. In Equinox, a tomcatTasks.properties file is in the base directory with the following contents:

deploy=org.apache.catalina.ant.DeployTask
undeploy=org.apache.catalina.ant.UndeployTask
remove=org.apache.catalina.ant.RemoveTask
reload=org.apache.catalina.ant.ReloadTask
start=org.apache.catalina.ant.StartTask
stop=org.apache.catalina.ant.StopTask
list=org.apache.catalina.ant.ListTask

Spring Live

Create Project Directories and an Ant Build File 19

A number of targets are in build.xml for installing, removing and reloading the application:

<!-- Tomcat Ant Tasks -->
<taskdef file="tomcatTasks.properties">
 <classpath>
 <pathelement
 path="${tomcat.home}/server/lib/catalina-ant.jar"/>
 </classpath>
</taskdef>

<target name="install" description="Install application in Tomcat"
 depends="war">
 <deploy url="${tomcat.manager.url}"
 username="${tomcat.manager.username}"
 password="${tomcat.manager.password}"
 path="/${webapp.name}"
 war="file:${dist.dir}/${webapp.name}.war"/>
</target>

<target name="remove" description="Remove application from Tomcat">
 <undeploy url="${tomcat.manager.url}"
 username="${tomcat.manager.username}"
 password="${tomcat.manager.password}"
 path="/${webapp.name}"/>
</target>

<target name="reload" description="Reload application in Tomcat">
 <reload url="${tomcat.manager.url}"
 username="${tomcat.manager.username}"
 password="${tomcat.manager.password}"
 path="/${webapp.name}"/>
</target>

<target name="start" description="Start Tomcat application">
 <start url="${tomcat.manager.url}"
 username="${tomcat.manager.username}"
 password="${tomcat.manager.password}"
 path="/${webapp.name}"/>
</target>

<target name="stop" description="Stop Tomcat application">
 <stop url="${tomcat.manager.url}"
 username="${tomcat.manager.username}"
 password="${tomcat.manager.password}"
 path="/${webapp.name}"/>
</target>

<target name="list" description="List Tomcat applications">
 <list url="${tomcat.manager.url}"

Spring Live

Create Project Directories and an Ant Build File 20

 username="${tomcat.manager.username}"
 password="${tomcat.manager.password}"/>
</target>

In the targets listed above, several ${tomcat.*} variables need to be defined. These are in the build.properties
file in the base directory. By default, they are defined as follows:

Properties for Tomcat Server
tomcat.manager.url=http://localhost:8080/manager
tomcat.manager.username=admin
tomcat.manager.password=admin

To make sure the “admin” user is able to access the Manager application, open the $CATALINA_HOME/conf/
tomcat-users.xml file and verify that the following line exists. If it does not exist, you must create it. Note that the
“roles” attribute may contain a comma-delimited list of roles.

<user username="admin" password="admin" roles="manager"/>

To test these changes, save all your files and start Tomcat. Then navigate to the “myusers” directory from the
command line and try running “ant list.” You should see a list of currently running applications on your Tomcat
server.

Figure 2.3: Results of the ant list command

Spring Live

Create Project Directories and an Ant Build File 21

Now you can install MyUsers by running ant deploy. Open your browser and go to http://localhost:8080/
myusers. The “Welcome to Equinox” screen displays, as shown in Figure 2.4:

Figure 2.4: Equinox Welcome page

In the next few sections, you will develop a User object and a Hibernate DAO to persist that object. You will use
Spring to manage the DAO and its dependencies. Lastly, you will write a business delegate to use AOP and
declarative transactions.

http://localhost:8080/myusers
http://localhost:8080/myusers

Spring Live

Create Unit Test for Persistence Layer 22

Create Unit Test for Persistence Layer

In the MyUsers app, you will use Hibernate for your persistence layer. Hibernate is an Object/Relational (O/R)
framework that relates Java Objects to database tables. It allows you to very easily perform CRUD (Create,
Retrieve, Update, Delete) on these objects. Spring makes working with Hibernate even easier. Switching from
Hibernate to Spring+Hibernate reduces code by about 75%. This code reduction is sponsored by the removal of
the ServiceLocator class, a couple of DAOFactory classes, and using Spring’s runtime exceptions instead of
Hibernate’s checked exceptions.

Writing a unit test will help you formulate your UserDAO interface. To create a JUnit test for your UserDAO,
complete the steps below:

1. Create a UserDAOTest.java class in the test/org/appfuse/dao directory. This class should extend
BaseDAOTestCase, which already exists in this package. This parent class initializes Spring's
ApplicationContext from the web/WEB-INF/applicationContext.xml file. Below is the code you
will need for a minimal JUnit test:

package org.appfuse.dao;

// use your IDE to handle imports

public class UserDAOTest extends BaseDAOTestCase {
 private User user = null;
 private UserDAO dao = null;

 protected void setUp() throws Exception {
 log = LogFactory.getLog(UserDAOTest.class);
 dao = (UserDAO) ctx.getBean("userDAO");
 }

 protected void tearDown() throws Exception {
 dao = null;
 }

 public static void main(String[] args) {
 junit.textui.TestRunner.run(UserDAOTest.class);
 }
}

This class won’t compile yet because you haven’t created your UserDAO interface. Before you do
that, write a couple of tests to verify CRUD works on the User object.

Spring Live

Create Unit Test for Persistence Layer 23

2. Add the testSave and testAddAndRemove methods to the UserDAOTest class, as shown below:

public void testSaveUser() throws Exception {
 user = new User();
 user.setFirstName("Rod");
 user.setLastName("Johnson");

 dao.saveUser(user);
 assertTrue("primary key assigned", user.getId() != null);
 log.info(user);
 assertTrue(user.getFirstName() != null);
}

public void testAddAndRemoveUser() throws Exception {
 user = new User();
 user.setFirstName("Bill");
 user.setLastName("Joy");

 dao.saveUser(user);

 assertTrue(user.getId() != null);
 assertTrue(user.getFirstName().equals("Bill"));

 if (log.isDebugEnabled()) {
 log.debug("removing user...");
 }

 dao.removeUser(user.getId());

 assertNull(dao.getUser(user.getId()));
}

From these test methods, you can see that you need to create a UserDAO with the following methods:

• saveUser(User)

• removeUser(Long)

• getUser(Long)

• getUsers() (to return all the users in the database)

Spring Live

Create Unit Test for Persistence Layer 24

3. Create a UserDAO.java file in the src/org/appfuse/dao directory and populate it with the code
below:
Tip: If you are using an IDE like Eclipse or IDEA, a “lightbulb” icon will appear to the left of a non-
existent class and allow you to create it on-the-fly.

package org.appfuse.dao;
// use your IDE to handle imports
public interface UserDAO extends DAO {
 public List getUsers();
 public User getUser(Long userId);
 public void saveUser(User user);
 public void removeUser(Long userId);
}

Finally, in order for the UserDAOTest and UserDAO to compile, create a User object to persists.

4. Create a User.java class in the src/org/appfuse/model directory and add “id,” “firstName” and
“lastName” as member variables, as shown below:

package org.appfuse.model;
public class User extends BaseObject {
 private Long id;
 private String firstName;
 private String lastName;

 /*
 Generate your getters and setters using your favorite IDE:
 In Eclipse:
 Right-click -> Source -> Generate Getters and Setters
 */
}

Notice that you’re extending a BaseObject class. It has the following useful methods:
toString(), equals() and hashCode(). The latter two are required by Hibernate. After creating
the User object, open the UserDAO anda UserDAOTest classes and organize imports with your IDE.

Spring Live

Configure Hibernate and Spring 25

Configure Hibernate and Spring

Now that you have the Plain Old Java Object (POJO), create a mapping file so Hibernate can persist it.

1. In the src/org/appfuse/model directory, create a file named User.hbm.xml with the following
contents:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 2.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
 <class name="org.appfuse.model.User" table="app_user">

 <id name="id" column="id" unsaved-value="0">
 <generator class="increment" />
 </id>
 <property name="firstName" column="first_name"
 not-null="true"/>
 <property name="lastName" column="last_name" not-null="true"/>

 </class>
</hibernate-mapping>

2. Add this mapping to Spring’s applicationContext.xml file in the web/WEB-INF directory. Open this
file and look for <property name=”mappingResources”> and change it to the following:

<property name="mappingResources">
 <list>
 <value>org/appfuse/model/User.hbm.xml</value>
 </list>
</property>

In the applicationContext.xml file, you can see how the database is set up and Hibernate is configured
to work with Spring. Equinox is designed to work with an HSQL database named “db/appfuse.” It
will be created in your Ant “db” directory. Details of this configuration will be covered in the “How
Spring Is Configured in Equinox” section.

Spring Live

Configure Hibernate and Spring 26

3. Run ant deploy reload (with Tomcat running) and see the database tables being creating as part
of Tomcat’s console log:

INFO - SchemaExport.execute(98) | Running hbm2ddl schema export
INFO - SchemaExport.execute(117) | exporting generated schema to database
INFO - ConnectionProviderFactory.newConnectionProvider(53) | Initializing
connection provider:
org.springframework.orm.hibernate.LocalDataSourceConnectionProvider
INFO - DriverManagerDataSource.getConnectionFromDriverManager(140) |
Creating new JDBC connection to [jdbc:hsqldb:db/appfuse]
INFO - SchemaExport.execute(160) | schema export complete

Tip: If you’d like to see more (or less) logging, change the log4j settings in the web/WEB-INF/
classes/log4j.xml file

4. To verify that the “app_user” table was actually created in the database, run ant browse to bring up
a HSQL console. You should see the HSQL Database Manager as shown below:

Figure 2.5: HSQL Database Manager

Spring Live

Configure Hibernate and Spring 27

How Spring Is Configured in Equinox

It is very easy to configure any J2EE-based web application to use Spring. At the very least, you can simply add
Spring’s ContextLoaderListener to your web.xml file:

<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

This is a ServletContextListener that initializes when your webapp starts up. By default, it looks for
Spring’s configuration file at WEB-INF/applicationContext.xml. You can change this default value by specifying
a <context-param> element named “contextConfigLocation.” An example is provided below:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/sampleContext.xml</param-value>
</context-param>

The <param-value> element can contain a space or comma-delimited set of paths. In Equinox, Spring is
configured using this Listener and its default “contextConfigLocation.”

So, how does Spring know about Hibernate? This is the beauty of Spring: it makes it very simple to bind
dependencies together. Look at the full contents of your applicationContext.xml file:

Spring Live

Configure Hibernate and Spring 28

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
 "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName">
 <value>org.hsqldb.jdbcDriver</value>
 </property>
 <property name="url">
 <value>jdbc:hsqldb:db/appfuse</value>
 </property>
 <property name="username"><value>sa</value></property>
 <property name="password"><value></value></property>
 </bean>

 <!-- Hibernate SessionFactory -->
<bean id="sessionFactory"
 class="org.springframework.orm.hibernate.LocalSessionFactoryBean">
 <property name="dataSource">
 <ref local="dataSource"/>
 </property>
 <property name="mappingResources">
 <list>
 <value>org/appfuse/model/User.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">
 net.sf.hibernate.dialect.HSQLDialect
 </prop>
 <prop key="hibernate.hbm2ddl.auto">create</prop>
 </props>
 </property>
 </bean>

 <!-- Transaction manager for a single Hibernate SessionFactory
(alternative to JTA) -->
<bean id="transactionManager"
 class="org.springframework.orm.hibernate.HibernateTransactionManager">
 <property name="sessionFactory">
 <ref local="sessionFactory"/>
 </property>
 </bean>
</beans>

Spring Live

Configure Hibernate and Spring 29

The first bean (dataSource) represents an HSQL database, and the second bean (sessionFactory) has a
dependency on that bean. Spring just calls setDataSource(DataSource) on the
LocalSessionFactoryBean to make this work. If you wanted to use a JNDI DataSource instead, you could
easily change this bean’s definition to something similar to the following:

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/jdbc/appfuse</value>
 </property>
</bean>

Also note the “hibernate.hbm2ddl.auto” property in the “sessionFactory” definition. This property creates the
database tables automatically when the application starts. Other possible values are update and create-drop.

The last bean configured is the “transactionManager” (and nothing is stopping you from using a JTA transaction
manager), which is necessary to perform distributed transactions across two databases. If you want to use a JTA
transaction manager, simply change this bean’s “class” attribute to
org.springframework.transaction.jta.JtaTransactionManager.

Now you can implement the UserDAO with Hibernate.

Spring Live

Implement UserDAO with Hibernate 30

Implement UserDAO with Hibernate

To create a Hibernate implementation of the UserDAO, complete the following steps:

1. Create a UserDAOHibernate.java class in src/org/appfuse/dao/hibernate (you will need to create
this directory/package). This file extends Spring's HibernateDaoSupport and implements
UserDAO.

package org.appfuse.dao.hibernate;
// use your IDE to handle imports

public class UserDAOHibernate extends HibernateDaoSupport implements
UserDAO {
 private Log log = LogFactory.getLog(UserDAOHibernate.class);
 public List getUsers() {
 return getHibernateTemplate().find("from User");
 }

 public User getUser(Long id) {
 return (User) getHibernateTemplate().get(User.class, id);
 }

 public void saveUser(User user) {
 getHibernateTemplate().saveOrUpdate(user);

 if (log.isDebugEnabled()) {
 log.debug(“userId set to: “ + user.getID());
 }
 }

 public void removeUser(Long id) {
 Object user = getHibernateTemplate().load(User.class, id);
 getHibernateTemplate().delete(user);
 }
}

Spring’s HibernateDaoSupport class is a convenient super class for Hibernate DAOs. It has
handy methods you can call to get a Hibernate Session, or a SessionFactory. The most
convenient method is getHibernateTemplate(), which returns a HibernateTemplate. This
template wraps Hibernate checked exceptions with runtime exceptions, allowing your DAO
interfaces to be Hibernate exception-free.

Nothing is in your application to bind UserDAO to UserDAOHibernate, so you must create that relationship.

Spring Live

Implement UserDAO with Hibernate 31

2. With Spring, add the following lines to the web/WEB-INF/applicationContext.xml file.

<bean id="userDAO"
 class="org.appfuse.dao.hibernate.UserDAOHibernate">
 <property name="sessionFactory">
 <ref local="sessionFactory"/>
 </property>
</bean>

This sets a Hibernate SessionFactory on your UserDAOHibernate (which inherits
setSessionFactory() from HibernateDaoSupport). Spring detects if a Session already
exists (that is, it was opened in the web tier), and it uses that one instead of creating a new one. This
allows you to use Hibernate’s popular “Open Session in View” pattern for lazy loading collections.

Spring Live

Run Unit Test and Verify CRUD with DAO 32

Run Unit Test and Verify CRUD with DAO

Before you run this first test, tune down your default logging from informational messages to warnings.

1. Change <level value="INFO"/> to <level value="WARN"/> in the log4j.xml file (in web/
WEB-INF/classes).

2. Run UserDAOTest using ant test. If this wasn’t your only test, you could use ant test -
Dtestcase=UserDAO to isolate which tests are run. After running this, your console should have a
couple of log messages from your tests, as shown below:

Figure 2.6: Results of the ant test -Dtestcase=UserDAO command

Spring Live

Create Manager and Declare Transactions 33

Create Manager and Declare Transactions

A recommended practice in J2EE development is to keep your layers separated. That is to say, the data layer
(DAOs) shouldn’t be bound to the web layer (servlets). Using Spring, it’s easy to separate them, but it’s useful to
further separate these tiers using the business delegate2 pattern.

The main reasons for using the business delegate pattern are:

• Most presentation tier components execute a unit of business logic. It’s best to put this logic in a non-
web class so a web-service or rich platform client can use the same API as a servlet.

• Most business logic can take place in one method, possibly using more than one DAO. Using a
business delegate allows you to use Spring’s declarative transactions feature at a higher “business
logic” level.

The UserManager interface in the MyUsers application has the same methods as the UserDAO. The main
difference is the Manager is more web-friendly; it accepts Strings where the UserDAO accepts Longs, and it
returns a User object in the saveUser() method. This is convenient after inserting a new user (for example, to
get its primary key). The Manager (or business delegate) is also a good place to put any business logic that your
application requires.

2. Read more about this Core J2EE Pattern at http://java.sun.com/blueprints/corej2eepatterns/Patterns/BusinessDelegate.html.

http://java.sun.com/blueprints/corej2eepatterns/Patterns/BusinessDelegate.html

Spring Live

Create Manager and Declare Transactions 34

1. Start the “services” layer by first creating a UserManagerTest class in test/org/appfuse/service
(you have to create this directory). This class extends JUnit’s TestCase and contains the following
code:

package org.appfuse.service;
// use your IDE to handle imports

public class UserManagerTest extends TestCase {
 private static Log log = LogFactory.getLog(UserManagerTest.class);
 private ApplicationContext ctx;
 private User user;
 private UserManager mgr;
protected void setUp() throws Exception {
 String[] paths = {"/WEB-INF/applicationContext.xml"};
 ctx = new ClassPathXmlApplicationContext(paths);
 mgr = (UserManager) ctx.getBean("userManager");
 }

 protected void tearDown() throws Exception {
 user = null;
 mgr = null;
 }
 // add testXXX methods here

 public static void main(String[] args) {
 junit.textui.TestRunner.run(UserDAOTest.class);
 }
}

In the setUp() method above, you are loading your applicationContext.xml file into the
ApplicationContext variable using ClassPathXmlApplicationContext. Several methods
are available for loading the ApplicationContext: from the classpath, the file system or within a
web application. These methods will be covered in the Chapter 3: The BeanFactory and How It
Works.

Spring Live

Create Manager and Declare Transactions 35

2. Code the first test method to verify that adding and removing a User object with the UserManager
completes successfully:

public void testAddAndRemoveUser() throws Exception {
 user = new User();
 user.setFirstName("Easter");
 user.setLastName("Bunny");

 user = mgr.saveUser(user);

 assertTrue(user.getId() != null);
 if (log.isDebugEnabled()) {
 log.debug("removing user...");
 }

 String userId = user.getId().toString();
 mgr.removeUser(userId);

 user = mgr.getUser(userId);
 if (user != null) {
 fail("User object found in database!");
 }
}

This test is really an integration test rather than a unit test because it uses all the real components it
depends on. To be more like a unit test, you would use EasyMock or a similar tool to “fake” the DAO.
Using this, you could even get away from loading Spring’s ApplicationContext and depending
on any of Spring’s APIs. I recommend the test we created because it tests all the internals that our
project depends on (Spring, Hibernate, our classes), including the database. Chapter 9 discusses
refactoring the UserManagerTest to use mocks for its DAO dependency.

3. To compile the UserManagerTest, create the UserManager interface in the src/org/appfuse/service
directory. Use the code below to create this class in the org.appfuse.service package:

package org.appfuse.service;
// use your IDE to handle imports

public interface UserManager {
 public List getUsers();
 public User getUser(String userId);
 public User saveUser(User user);
 public void removeUser(String userId);
}

Spring Live

Create Manager and Declare Transactions 36

4. Now create a new sub-package called org.appfuse.service.impl and create an implementation
class of the UserManager interface.

package org.appfuse.service.impl;
// use your IDE to handle imports

public class UserManagerImpl implements UserManager {
 private static Log log = LogFactory.getLog(UserManagerImpl.class);
 private UserDAO dao;
 public void setUserDAO(UserDAO dao) {
 this.dao = dao;
 }

 public List getUsers() {
 return dao.getUsers();
 }

 public User getUser(String userId) {
 User user = dao.getUser(Long.valueOf(userId));

 if (user == null) {
 log.warn("UserId '" + userId + "' not found in database.");
 }

 return user;
 }

 public User saveUser(User user) {
 dao.saveUser(user);

 return user;
 }

 public void removeUser(String userId) {
 dao.removeUser(Long.valueOf(userId));
 }
}

This class has no indication that you’re using Hibernate. This is important if you ever want to switch
your persistence layer to use a different technology.

This class has a private dao member variable, as well as a setUserDAO() method. This allows
Spring to perform its “dependency binding” magic and wire the objects together. Later, when you
refactor this class to use a mock for its DAO, you’ll need to add the setUserDAO() method to the
UserManager interface.

Spring Live

Create Manager and Declare Transactions 37

5. Before running this test, configure Spring so getBean(“userManager”) returns the
UserManagerImpl class. In web/WEB-INF/applicationContext.xml, add the following lines:

<bean id="userManager"
 class="org.appfuse.service.UserManagerImpl">
 <property name="userDAO"><ref local="userDAO"/></property>
</bean>

The only problem with this is you’re not leveraging Spring’s AOP and, specifically, declarative
transactions.

6. To do this, change the “userManager” bean to use a ProxyFactoryBean. A ProxyFactoryBean creates
different implementations of a class, so that AOP can intercept and override method calls. For
transactions, use TransactionProxyFactoryBean in place of the UserManagerImpl class. Add
the following bean definition to the context file:

<bean id="userManager"
 class="org.springframework.transaction.interceptor.TransactionProxy
 FactoryBean">
 <property name="transactionManager">
 <ref local="transactionManager"/>
 </property>
 <property name="target">
 <ref local="userManagerTarget"/>
 </property>
 <property name="transactionAttributes">
 <props>
 <prop key="save*">PROPAGATION_REQUIRED</prop>
 <prop key="remove*">PROPAGATION_REQUIRED</prop>
 <prop key="*">PROPAGATION_REQUIRED,readOnly</prop>
 </props>
 </property>
</bean>

You can see from this XML fragment that the TransactionProxyFactoryBean must have a
“transactionManager” property set, and “transactionAttributes” defined.

Spring Live

Create Manager and Declare Transactions 38

7. Tell this Transaction Proxy the object you’re mimicking: userManagerTarget. As part of this new
bean, change the old “userManager” bean to have an id of “userManagerTarget.”

<bean id="userManagerTarget"
 class="org.appfuse.service.impl.UserManagerImpl">
 <property name="userDAO"><ref local="userDAO"/></property>
</bean>

After editing applicationContext.xml to add definitions for “userManager” and “userManagerTarget,”
run ant test -Dtestcase=UserManager to see the following console output:

Figure 2.7: Results of the ant test -Dtestcase=UserManager command

8. If you’d like to see the transactions execute and commit, add the XML below to the log4j.xml file:

<logger name="org.springframework.transaction">
 <level value="DEBUG"/> <!-- INFO does nothing -->
</logger>

Running the test again will give you a plethora of Spring log messages as it binds objects, creates
transactions, and then commits them. You’ll probably want to remove the above logger after running
the test.

Congratulations! You’ve just implemented a Spring/Hibernate solution for the backend of a web application.
You’ve also configured a business delegate to use AOP and declarative transactions. This is no small feat; give
yourself a pat on the back!

Spring Live

Create Unit Test for Struts Action 39

Create Unit Test for Struts Action

The business delegate and DAO are now functional, so let’s slap an MVC framework on top of this sucker!
Whoa, there – not just yet. You can do the C (Controller), but not the V (View). Continue your Test-Driven
Development path by creating a Struts Action for managing users.

The Equinox application is configured for Struts. Configuring Struts requires putting some settings in web.xml
and defining a struts-config.xml file in the web/WEB-INF directory. Since there is a large audience of Struts
developers, this chapter deals with Struts way first. Chapter 4 deals with the Spring way. If you’d prefer to skip
this section and learn the Spring MVC way, please refer to Chapter 4: Spring’s MVC Framework.

To develop your first Struts Action unit test, create a UserActionTest.java class in test/org/appfuse/web.
This file should have the following contents:

package org.appfuse.web;
// use your IDE to handle imports

public class UserActionTest extends MockStrutsTestCase {

 public UserActionTest(String testName) {
 super(testName);
 }

 public void testExecute() {
 setRequestPathInfo("/user");
 addRequestParameter("id", "1");
 actionPerform();
 verifyForward("success");
 verifyNoActionErrors();
 }
}

Spring Live

Create Action and Model (DynaActionForm) for Web Layer 40

Create Action and Model (DynaActionForm) for Web Layer

1. Create a UserAction.java class in src/org/appfuse/web. This class extends DispatchAction,
which you will use in a few minutes to dispatch to the different CRUD methods of this class.

package org.appfuse.web;
// use your IDE to handle imports

public class UserAction extends DispatchAction {
 private static Log log = LogFactory.getLog(UserAction.class);

 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 request.getSession().setAttribute("test", "succeeded!");

 log.debug("looking up userId: " + request.getParameter("id"));

 return mapping.findForward("success");
 }
}

2. To configure Struts so that the “/user” request path means something, add an action-mapping to web/
WEB-INF/struts-config.xml. Open this file and add the following as an action-mapping:

<action path="/user" type="org.appfuse.web.UserAction">
 <forward name="success" path="/index.jsp"/>
</action>

3. Execute ant test -Dtestcase=UserAction and you should get the lovely “BUILD
SUCCESSFUL” message.

Spring Live

Create Action and Model (DynaActionForm) for Web Layer 41

4. Add a form-bean definition to the struts-config.xml file (in the <form-beans> section). For the
Struts ActionForm, use a DynaActionForm, which is a JavaBean that gets created dynamically
from an XML definition.

<form-bean name="userForm"
 type="org.apache.struts.action.DynaActionForm">
 <form-property name="user" type="org.appfuse.model.User"/>
</form-bean>

You’re using this instead of a concrete ActionForm because you only need a thin wrapper around
the User object. Ideally, you could use the User object, but you’d lose the ability to validate
properties and reset checkboxes in a Struts environment. Later, I’ll show you how Spring makes this
easier and allows you to use the User object in your web tier.

5. Modify your <action> definition to use this form and put it in the request:

<action path="/user" type="org.appfuse.web.UserAction"
 name="userForm" scope="request">
 <forward name="success" path="/index.jsp"/>
</action>

6. Modify your UserActionTest to test the different CRUD methods in your Action, as shown below:

public class UserActionTest extends MockStrutsTestCase {
 public UserActionTest(String testName) {
 super(testName);
 }

 // Adding a new user is required between tests because HSQL creates
 // an in-memory database that goes away during tests.
 public void addUser() {
 setRequestPathInfo("/user");
 addRequestParameter("method", "save");
 addRequestParameter("user.firstName", "Juergen");
 addRequestParameter("user.lastName", "Hoeller");
 actionPerform();
 verifyForward("list");
 verifyNoActionErrors();
 }

 public void testAddAndEdit() {
 addUser();

 // edit newly added user
 addRequestParameter("method", "edit");
 addRequestParameter("id", "1");
 actionPerform();

Spring Live

Create Action and Model (DynaActionForm) for Web Layer 42

 verifyForward("edit");
 verifyNoActionErrors();
 }

 public void testAddAndDelete() {
 addUser();

 // delete new user
 setRequestPathInfo("/user");
 addRequestParameter("method", "delete");
 addRequestParameter("user.id", "1");
 actionPerform();
 verifyForward("list");
 verifyNoActionErrors();
 }

 public void testList() {
 addUser();
 setRequestPathInfo("/user");
 addRequestParameter("method", "list");
 actionPerform();
 verifyForward("list");
 verifyNoActionErrors();

 List users = (List) getRequest().getAttribute("users");
 assertNotNull(users);
 assertTrue(users.size() == 1);
 }
}

7. Modify the UserAction so your tests will pass and it can handle CRUD requests. The easiest way to
do this is to write edit, save and delete methods. Be sure to remove the existing “execute” method
first. Below is the modified UserAction.java:

public class UserAction extends DispatchAction {
 private static Log log = LogFactory.getLog(UserAction.class);
 private UserManager mgr = null;
 public void setUserManager(UserManager userManager) {
 this.mgr = userManager;
 }

 public ActionForward delete(ActionMapping mapping, ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 if (log.isDebugEnabled()) {
 log.debug("entering 'delete' method...");
 }

Spring Live

Create Action and Model (DynaActionForm) for Web Layer 43

 mgr.removeUser(request.getParameter("user.id"));

 ActionMessages messages = new ActionMessages();
 messages.add(ActionMessages.GLOBAL_MESSAGE,
 new ActionMessage("user.deleted"));
 saveMessages(request, messages);

 return list(mapping, form, request, response);
 }

 public ActionForward edit(ActionMapping mapping, ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 if (log.isDebugEnabled()) {
 log.debug("entering 'edit' method...");
 }

 DynaActionForm userForm = (DynaActionForm) form;
 String userId = request.getParameter("id");

 // null userId indicates an add
 if (userId != null) {
 User user = mgr.getUser(userId);

 if (user == null) {
 ActionMessages errors = new ActionMessages();
 errors.add(ActionMessages.GLOBAL_MESSAGE,
 new ActionMessage("user.missing"));
 saveErrors(request, errors);

 return mapping.findForward("list");
 }

 userForm.set("user", user);
 }

 return mapping.findForward("edit");
 }

 public ActionForward list(ActionMapping mapping, ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 if (log.isDebugEnabled()) {
 log.debug("entering 'list' method...");
 }

Spring Live

Create Action and Model (DynaActionForm) for Web Layer 44

 request.setAttribute("users", mgr.getUsers());

 return mapping.findForward("list");
 }

 public ActionForward save(ActionMapping mapping, ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 if (log.isDebugEnabled()) {
 log.debug("entering 'save' method...");
 }

 DynaActionForm userForm = (DynaActionForm) form;
 mgr.saveUser((User)userForm.get("user"));

 ActionMessages messages = new ActionMessages();
 messages.add(ActionMessages.GLOBAL_MESSAGE,
 new ActionMessage("user.saved"));
 saveMessages(request, messages);

 return list(mapping, form, request, response);
 }
}

Spring Live

Create Action and Model (DynaActionForm) for Web Layer 45

Now that you’ve modified this class for CRUD, perform the following steps:

8. Modify struts-config.xml to use the ContextLoaderPlugin and configure Spring to set the
UserManager. To configure the ContextLoaderPlugin, simply add the following to your struts-
config.xml file:

<plug-in
 className=”org.springframework.web.struts.ContextLoaderPlugIn”>
 <set-property property=”contextConfigLocation”
 value=”/WEB-INF/applicationContext.xml,
 /WEB-INF/action-servlet.xml”/>
</plug-in>

This plug-in will load the action-servlet.xml file by default. Since you want your Test Actions to
know about your Managers, you must configure the plug-in to load applicationContext.xml as well.

9. For each action that uses Spring, define the action mapping to
type=”org.springframework.web.struts.DelegatingActionProxy” and declare a
matching Spring bean for the actual Struts action. Therefore, modify your action mapping to use this
new class.

10. Modify your action mapping to work with DispatchAction.

In order for the DispatchAction to work, add parameter=”method” to the mapping. This
indicates (in a URL or hidden field) which method should be called. At the same time, add forwards
for the “edit” and “list” forwards that are referenced in your CRUD-enabled UserAction class:

<action path="/user"
 type="org.springframework.web.struts.DelegatingActionProxy"
 name="userForm" scope="request" parameter="method">
 <forward name="list" path="/userList.jsp"/>
 <forward name="edit" path="/userForm.jsp"/>
 </action>

Be sure to create the userList.jsp and userForm.jsp files in the “web” directory of MyUsers. You
don’t need to put anything in them at this time.

11. As part of this plug-in, configure Spring to recognize the “/user” bean and to set the UserManager
on it. Add the following bean definition to web/WEB-INF/action-servlet.xml:

<bean name="/user" class="org.appfuse.web.UserAction"
 singleton="false">
 <property name="userManager">
 <ref bean="userManager"/>
 </property>
</bean>

Spring Live

Create Action and Model (DynaActionForm) for Web Layer 46

In this definition you’re using singleton=”false”. This creates new Actions for every request,
alleviating the need for thread-safe Actions. Since neither your Manager nor your DAO contain
member variables, this should work without this attribute (defaults to singleton=”true”).

12. Configure messages in the messages.properties ResourceBundle.

In the UserAction class are a few references to success and error messages that will appear after
operations are performed. These references are keys to messages that should exist in the
ResourceBundle (or messages.properties file) for this application. Specifically, they are:

• user.saved

• user.missing

• user.deleted

Add these keys to the messages.properties file in web/WEB-INF/classes, as in the example below:

user.saved=User has been saved successfully.
user.missing=No user found with this id.
user.deleted=User successfully deleted.

This file is loaded and made available to Struts via the <message-resources> element in struts-
config.xml:

<message-resources parameter="messages"/>

Spring Live

Run Unit Test and Verify CRUD with Action 47

Run Unit Test and Verify CRUD with Action

Run the ant test -Dtestcase=UserAction. It should result in the following output:

Figure 2.8: Results of the ant test -Dtestcase=UserAction command

Spring Live

Complete JSPs to Allow CRUD through a Web Browser 48

Complete JSPs to Allow CRUD through a Web Browser

1. Add code to your JSPs (userForm.jsp and userList.jsp) so that they can render the results of your
actions. If you haven’t already done so, create a userList.jsp file in the web directory. Now add some
code so you can see the all the users in the database. In the code below, the first line includes a
taglibs.jsp file. This file contains all the JSP Tag Library declarations for this application, mostly for
Struts Tags, JSTL and SiteMesh (which is used to “pretty up” the JSPs).

<%@ include file="/taglibs.jsp"%>

<title>MyUsers ~ User List</title>

<button onclick="location.href='user.do?method=edit'">Add User</button>
<table class="list">
<thead>
<tr>
 <th>User Id</th>
 <th>First Name</th>
 <th>Last Name</th>
</tr>
</thead>
<tbody>
<c:forEach var="user" items="${users}" varStatus="status">
<c:choose>
 <c:when test="${status.count % 2 == 0}"><tr class="even"></c:when>
 <c:otherwise><tr class="odd"></c:otherwise>
</c:choose>
 <td>${user.id}</
td>
 <td>${user.firstName}</td>
 <td>${user.lastName}</td>
</tr>
</c:forEach>
</tbody>
</table>

You can see a row of headings (in the <thead>). JSTL’s <c:forEach> tag iterates through the
results and displays the users.

Spring Live

Complete JSPs to Allow CRUD through a Web Browser 49

2. Populate the database so you can see some actual users. You have a choice: you can do it by hand,
using ant browse, or you can add the following target to your build.xml file:

<target name="populate">
 <echo message="Loading sample data..."/>
 <sql driver="org.hsqldb.jdbcDriver"
 url="jdbc:hsqldb:db/appfuse"
 userid="sa" password="">
 <classpath refid="classpath"/>

 INSERT INTO app_user (id, first_name, last_name)
 values (5, 'Julie', 'Raible');
 INSERT INTO app_user (id, first_name, last_name)
 values (6, 'Abbie', 'Raible');

 </sql>
</target>

Warning! In order for the in-memory HSQLDB to work correctly with MyUsers, start Tomcat from the
same directory from which you run Ant. Type “$CATALINA_HOME/bin/startup.sh” on Unix/Linux and
“%CATALINA_HOME%\bin\startup.bat” on Windows.

Spring Live

Verify JSP’s Functionality through Your Browser 50

Verify JSP’s Functionality through Your Browser

1. With this JSP and sample data in place, view this JSP in your browser. Run ant deploy reload,
then go to http://localhost:8080/myusers/user.do?method=list. The following screen displays:

Figure 2.9: Results of ant deploy reload command

2. This example doesn’t have an internationalized page title or column headings. Do this by adding
some keys to the messages.properties file in web/WEB-INF/classes.

user.id=User Id
user.firstName=First Name
user.lastName=Last Name

The modified, i18n-ized header should now resemble the following:

<thead>
<tr>
 <th><bean:message key=”user.id”/></th>
 <th><bean:message key=”user.firstName”/></th>
 <th><bean:message key=”user.lastName”/></th>
</tr>
</thead>

http://localhost:8080/myusers/user.do?method=list

Spring Live

Verify JSP’s Functionality through Your Browser 51

Note that JSTL’s <fmt:message key=”...”> tag could also be used. If you wanted to add sorting
and paging to this table, use the Display Tag (http://displaytag.sf.net). Below is an example of using
this JSP tag:

<display:table name="users" pagesize="10" styleClass="list"
 requestURI="user.do?method=list">
 <display:column property="id" paramId="id" paramProperty="id"
 href="user.do?method=edit" sort="true"/>
 <display:column property="firstName" sort="true"/>
 <display:column property="lastName" sort="true"/>
</display:table>

Please refer to the display tag’s documentation for internationalization of column headings.

3. Now that you’ve created your list, create the form where you can add/edit data. If you haven’t already
done so, create a userForm.jsp file in the web directory of MyUsers. Below is the code to add to this
JSP to allow data entry:

<%@ include file="/taglibs.jsp"%>

<title>MyUsers ~ User Details</title>
<p>Please fill in user's information below:</p>
<html:form action="/user" focus="user.firstName">
<input type="hidden" name="method" value="save"/>
<html:hidden property="user.id"/>
<table>
<tr>
 <th><bean:message key="user.firstName"/>: </th>
 <td><html:text property="user.firstName"/></td>
</tr>
<tr>
 <th><bean:message key="user.lastName"/>: </th>
 <td><html:text property="user.lastName"/></td>
</tr>
<tr>
 <td></td>
 <td>
 <html:submit styleClass="button">Save</html:submit>
 <c:if test="${not empty param.id}">
 <html:submit styleClass="button"

 onclick="this.form.method.value='delete'">
 Delete</html:submit>
 </c:if>
 </td>
</table>
</html:form>

http://displaytag.sf.net

Spring Live

Verify JSP’s Functionality through Your Browser 52

Note: If you’re developing an application with internationalization (i18n), replace the informational
message (at the top) and the button labels with <bean:message> or <fmt:message> tags. This is a
good exercise for you. For informational messages, I recommend key names like pageName.message
(such as, “userForm.message”), and button names like button.name (such as “button.save”).

4. Run ant deploy and perform CRUD on a user from your browser.

The last thing that most webapps need is validation. In the next section, you’ll configure Struts’ Validator to
make the user’s last name a required field.

Spring Live

Adding Validation Using Commons Validator 53

Adding Validation Using Commons Validator

In order to enable validation in Struts, perform the following steps:

1. Add the ValidatorPlugIn to struts-config.xml.

2. Create a validation.xml file that specifies that lastName is a required field.

3. Change the DynaActionForm to be a DynaValidatorForm.

4. Configure validation for the save() method, but not for others.

5. Add validation errors to messages.properties.

Add the Validator Plug-in to struts-config.xml

Configure the Validator plug-in by adding the following XML fragment to your struts-config.xml file (right after
the Spring plug-in):

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property
 property="pathnames" value="/WEB-INF/validator-rules.xml,
 /WEB-INF/validation.xml"/>
</plug-in>

From this you can see that the Validator is going to look for two files in the WEB-INF directory: validator-
rules.xml and validation.xml. The first file, validator-rules.xml, is a standard file that’s distributed as part of
Struts. It defines all the available validators, as well as their client-side JavaScript functions. The second file,
validation.xml, contains the validation rules for each form.

Spring Live

Adding Validation Using Commons Validator 54

Edit the validation.xml File to Specify That lastName Is a Required
Field

The validation.xml file has a number of standard elements to match its Document Type Definition (DTD), but
you only need the <form> and <field> elements you see below. Please refer to the Validator’s documentation
for more information. Add the following <formset> between the <form-validation> tags in web/WEB-
INF/validation.xml:

 <formset>
 <form name="userForm">
 <field property="user.lastName" depends="required">
 <arg0 key="user.lastName"/>
 </field>
 </form>
 </formset>

Change the DynaActionForm to DynaValidatorForm
Now change the DynaActionForm to a DynaValidatorForm in struts-config.xml.

<form-bean name="userForm"
 type="org.apache.struts.validator.DynaValidatorForm">
...

Spring Live

Adding Validation Using Commons Validator 55

Configure Validation for save() Method, But Not for Others

One unfortunate side effect of using Struts’ DispatchAction is that validation is turned on at the mapping
level. In order to turn validation off for the list and edit screen, you could create a separate mapping with
validate=”false”. For example, AppFuse’s UserAction has two mappings: “/editUser” and “/saveUser”.
However, there’s an easier way that requires less XML, and only slightly more Java.

1. In the mapping for “/user”, add validate=”false”.

2. In UserAction.java, modify the save() method to call form.validate() and return to the edit
screen if any errors are found.

if (log.isDebugEnabled()) {
 log.debug("entering 'save' method...");
}

// run validation rules on this form
ActionMessages errors = form.validate(mapping, request);
if (!errors.isEmpty()) {
 saveErrors(request, errors);
return mapping.findForward("edit");
}

DynaActionForm userForm = (DynaActionForm) form;

When working with DispatchAction, this is cleaner than having two mappings with one measly
attribute changed. However, the two mappings approach has some advantages:

• It allows you to specify an “input” attribute that indicates where to go when validation fails.

• You can declare a “roles” attribute on your mapping to specify who can access that mapping.
For instance, anyone can see the “edit” screen, but only administrators can save it.

Spring Live

Adding Validation Using Commons Validator 56

3. Run ant deploy reload and try to add a new user without a last name. You will see a validation
error indicating that last name is a required field, as in the example below:

Figure 2.10: Result of the ant deploy command

Another nice feature of the Struts Validator is client-side validation.

4. To enable this quickly, add an “onsubmit” attribute to the <form> tag (in web/userForm.jsp), and a
<html:javascript> tag at the bottom of the form.

<html:form action="/user" focus="user.firstName"
 onsubmit="return validateUserForm(this)">
...
</html:form>
<html:javascript formName="userForm"/>

Now if you run ant deploy and try to save a user with a blank last name, you will get a JavaScript
alert stating that “Last Name is required.” The one issue with the short-form of the
<html:javascript> tag is that it puts all of the Validator’s JavaScript functions into your page.
There is a better way: include the JavaScript from an outside page (which is itself generated). How to
do this will be covered in Chapter 5.

Congratulations! You’ve just developed a webapp that talks to a database, implements validation and even
displays success and error messages. In Chapter 4, you will convert this application to use Spring’s MVC
framework. In Chapter 5, you will add exception handling, file uploading and e-mailing features. Chapter 6 will
explore alternatives to JSP, and in Chapter 7 you’ll add alternative DAO implementations using iBATIS, JDO
and Spring’s JDBC.

Spring Live

Summary 57

Summary

Spring is a great framework for reducing the amount of code you have to write. If you look at the number of steps
in this tutorial, most of them involved setting up or writing code for Struts. Spring made the DAO and Manager
implementations easy. It also reduced most Hibernate calls to one line and allowed you to remove any Exception
handling that can sometimes be tedious. In fact, most of the time I spent writing this chapter (and the MyUsers
app) involved configuring Struts.

I have two reasons for writing this chapter with Struts as the MVC Framework. The first is because I think that’s
the framework most folks are familiar with, and it’s easier to explain a Struts-to-Spring migration than a JSP/
Servlet-to-Spring migration. Secondly, I wanted to show you how writing your MVC layer with Struts can be a
bit cumbersome. In Chapter 4, you’ll refactor the web layer to use Spring’s MVC Framework. I think you’ll find
it a bit refreshing to see how much easier and more intuitive it is.

	Spring Quick Start Tutorial
	Overview
	Download Struts and Spring
	Create Project Directories and an Ant Build File
	Tomcat and Ant

	Create Unit Test for Persistence Layer
	Configure Hibernate and Spring
	How Spring Is Configured in Equinox

	Implement UserDAO with Hibernate
	Run Unit Test and Verify CRUD with DAO
	Create Manager and Declare Transactions
	Create Unit Test for Struts Action
	Create Action and Model (DynaActionForm) for Web Layer
	Run Unit Test and Verify CRUD with Action
	Complete JSPs to Allow CRUD through a Web Browser
	Verify JSP’s Functionality through Your Browser
	Adding Validation Using Commons Validator
	Add the Validator Plug-in to struts-config.xml
	Edit the validation.xml File to Specify That lastName Is a Required Field
	Change the DynaActionForm to DynaValidatorForm
	Configure Validation for save() Method, But Not for Others

	Summary

