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Synesthesia
Background

» This idea percolated in my mind for four years.

» | was too busy to try it out.

» Meanwhile, YICES implemented a specialized solver for the
types of equations | needed.

» 73 and CVC4 also have suitable, but less specialized, solvers.

» This talk summarizes the results of my experiments.

» Mathematically, the problem is more-or-less solved.
» Practically, there are important limitations at present:

1. Scalability issues with current solvers.
2. A remediable deficiency regarding memory accesses.
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Synesthesia

Greetings everybody, and thanks for coming to my talk. The idea is
about automatically creating machine code programs in the situation
where the code must obey encoding restrictions. This is an idea that
popped into my head about four years ago. | was largely too busy to act
on it except for jotting down some thoughts in a notebook from time to
time. In the meantime, YICES implemented a solver for the types of
equations | needed to solve. | finally got the chance to give it a try
recently. The problem is basically solved mathematically, but the current
implementation suffers from some limitations of modern-day SMT solvers.
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Classical Memory-Corruption Exploitation

Program Execution

Malici
atcious Process Accepts Input
Input
s Invalid
Input Validated ————— Inputs
Discarded
Input Transformed
Vulnerability Triggered
_ Shellcode

Input Executed
Executes
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To briefly review the context of this research, this is an outline of our
classical memory corruption exploitation scenario. First, the program
accepts input from some outside source. Next, the program may validate
the input somehow, for example, ensuring that its input is alphanumeric.
As the program executes, the input may be transformed from its original
representation. At some point, the input triggers the execution of a
vulnerability, and finally, the input is treated as machine code and
executed. Of course, exploit mitigations like NX may complicate the
situation.



Synesthesia

Restrictions on the Shellcode

Input is restricted by ...

Restriction placed on shellcode

Passed to strcpy()
Passed to strupr()

Used as a format string
Bytes passed to isprint()
Bytes passed to isalnum()

No NULL bytes allowed

All ASCII letters become uppercase
Use of ’%° character dicey

Bytes must be printable

Bytes must be alphanumeric

Restrictions are arbitrary and vary per vulnerability.
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Restriction placed on shellcode
No RULL bytes allowed.
Al ASCH etters become.
Use icey

Synesthesia

The program may place restrictions on the input. For example, it may
verify that the input consists of printable characters only, or alphanumeric
characters only, or really, any arbitrary restriction. Some common ones
are listed on this slide.
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Restrictions on the Shellcode

XOR
Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib

SEG=SS AAA
rAX, Iz (Prefix)

SEG=GS Operand Address
Gv, Ma (Prefix) (Prefix) Size Size
(Prefix) (Prefix)
Jec, Jb - Short-displacement jump on condition
B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A
| 4

Example: restricted to lower-case alphanumeric bytes.
» Can’t use any of the red opcodes.

» Situation is even more dire than this slide indicates.

[m]

=

» Not only opcode bytes restricted, but also operand bytes.
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The effect of these restrictions limits which machine code instructions
may be used as part of the shellcode. This slide shows one of the Intel
manuals opcode maps, and indicates which opcodes are disallowed by a
restriction to lower-case alphanumeric bytes. The situation is even worse
than it appears on the slide, since it is not only the opcodes that are
restricted, but also the bytes that correspond to the operands of a
machine code instruction.
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Practical Effects of Shellcode Restrictions

Various Ways to Set eax to Oh

No NULL bytes

B8 00 00 OO0 00 mov eax, O
» 33 CO X0or eax, eax
» F8 clc
» 1E CO sbb eax, eax
» 25 56 34 42 24 and eax, 24423456h
» 25 28 48 21 42 and eax, 42214828h
» 6A 30 push 30h
» 58 pop eax
» 34 30 xor al, 30h
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Practical Effects of Shellcode Restrictions

Various Ways to Set eax to Oh

» B8 00 00 00 00 mov eax, O

» 33 CO X0or eax, eax

» F8 clc

» 1E CO sbb eax, eax
25 56 34 42 24 and eax, 24423456h
25 28 48 21 42 and eax, 42214828h

» 6A 30 push 30h

» 58 pop eax

» 34 30 xor al, 30h

No ’%’ (25) bytes
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Practical Effects of Shellcode Restrictions

Various Ways to Set eax to Oh

All bytes are printable

B8 00 00 OO0 00 mov eax, O

33 CO X0or eax, eax

F8 clc

1E CO sbb eax, eax
» 25 56 34 42 24 and eax, 24423456h
» 25 28 48 21 42 and eax, 42214828h
» 6A 30 push 30h
» 58 pop eax
» 34 30 xor al, 30h



Synesthesia

Practical Effects of Shellcode Restrictions

Various Ways to Set eax to Oh

» B8 00 00 00 00 mov eax, O
» 33 CO X0or eax, eax
» F8 clc
» 1E CO sbb eax, eax
» 25 56 34 42 24 and eax, 24423456h
» 25 28 48 21 42 and eax, 42214828h
6A 30 push 30h
58 pop eax
34 30 xor al, 30h

All bytes that are ASCII letters are uppercase
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Practical Effects of Shellcode Restrictions

Various Ways to Set eax to Oh

B8 00 00 OO0 00 mov eax, O
33 CO X0or eax, eax
F8 clc
1E CO sbb eax, eax
25 66 34 42 24 and eax, 24423456h
25 28 48 21 42 and eax, 42214828h
» 6A 30 push 30h
» 58 pop eax
» 34 30 xor al, 30h

All bytes are alphanumeric
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Al bytes are alphanumeric

Given that shellcode is ultimately just a program, it has to do similar
things to any machine code program. It has to set registers to values,
read and write to memory, invoke API functions, etc. And given that we
are talking about input restrictions, in order to accomplish those tasks,
we need to do those things using only machine code instructions that fit
within the input restriction. This slide shows examples of different ways
to set the eax register to 0, under a variety of encoding restrictions.
Some examples are suitable for a given restriction, and some are not. So
if we were precluded from using NULL bytes, we could use any of the
highlighted sequences.
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oy to St o

53 00 00 00 00
N

v

Synesthesia

v

Al bytes are alphanumeric

And if were were prohibited from using percentage characters, we could
use the highlighted solutions.
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And if all bytes had to be printable, we could use these.

vy

oy to St o

53 00 00 00 00
N

Al bytes are alphanumeric
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And if all bytes must be ASCII, we could use these.

vy

oy to St o

53 00 00 00 00
EENE)

Al bytes are alphanumeric
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Al bytes are alphanumeric

And if all bytes had to be alphanumeric, we could use these. So in
general, any given snippet may be useful under some encoding
restrictions, and useless under others.



Overview

Existing Solution: Shellcode Encoders

F7 44 A7 OF C6 B5E
43 AD BA 38 81 27
F7 3F 10 EF 67 11
7B F3 EB Bl 8A 16
A4 5F 41 D3 53 (9
ED A6 2B 82 T7A A7

> Begin with unencoded shellcode.
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Existing Solution: Shellcode Encoders

50 48 45 45 4B 48
4A 50 4D 47 46 4F
45 44 4B 4E 4C 4B
50 48 44 50 45 4C
4F 50 47 48 42 42
4F 50 47 48 42 42

> Begin with unencoded shellcode.

» Produce encoded shellcode (within encoding restriction).



Overview

Existing Solution: Shellcode Encoders

50
4A
45
50
4F
4F

> Begin with unencoded shellcode.

48
50
44
48
50
50

45
4D
4B
44
47
a7

45
47
4E
50
48
48

4B
46
4C
45
42
42

48
4F
4B
4C
42
42

53
51
53
55
53
46
56
44

push ebx
push ecx
push ebx
push ebp
push ebx
inc esi

push esi
inc esp

)

» Produce encoded shellcode (within encoding restriction).

» Produce decoder (within encoding restriction).
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» Begin with unencoded shelcod
> Produce encoded shellcode (s
» Produce decoder (within

One of the major ideas in this area is that, given that it is onerous to

a8

r

P
P
s
P
53 push ebx

56 push st
44 inc esp

encoding retrction)

write an entire shellcode within a restriction, that we can take an existing

shellcode, encode it to lie within a given restriction, and then create a
decoder whose machine code lies within the restriction. This way, we

reduce the amount of code that we need to write within the restriction.
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Pros and Cons of Shellcode Encoders

Pros:

» [t often works

» Can handle common cases automatically

Cons:

v

Can expand the size of the shellcode, perhaps fatally

v

Requires manual work to support new encodings

» Not guaranteed to work for an arbitrary encoding

v

Generated code often has common sequences that can be
detected by IDS signatures

v

Encoder framework code is usually nasty
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Encoders often work, and they can handle some of the common cases
automatically. But they operate at the cost of expanding the shellcode
size and potentially introducing pattern sequences that can be detected
by IDS or HIPS products. Also, they require manual analysis of the
instruction set to produce an encoder/decoder generator, they are not
guaranteed to work, and the code is usually very ugly.
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Synesthesia: Compiler Mode

Desired Functionality‘ ’ Encoding Restriction

N\ e

SYNESTHESIA
Compiler
Mode
!

Encoding-Conformant Program

» Synesthesia can act like a compiler that also inputs an
encoding restriction.
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This work introduces Synesthesia, my take on the encoding-restriction
problem. Synesthesia can work in several different ways. One of them is
like a compiler, where you instruct Synesthesia what the desired code
needs to do, and also provide it with a description of legal encodings for
the shellcode.
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Synesthesia: Re-Compiler Mode

Existing Shellcode‘ ’ Encoding Restriction

N\ e

SYNESTHESIA
Re-Compiler
Mode
)

Encoding-Conformant, Equivalent Program

» Synesthesia can input an existing code fragment, and find an
equivalent version that also satisfies an encoding restriction.
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Another thing that Synesthesia can do is take some existing shellcode
fragment, and find an equivalent sequence for it that lies within the legal
encodings.



Overview
Synesthesia: Encoder Mode

Existing SheIIcode‘ ’ Encoding Restriction

NI

SYNESTHESIA
Encoder Mode
1

Encoding-Conformant Decoder and
Encoding-Conformant Encoded Shellcode

» Synesthesia can take existing binary shellcode blobs, and
automatically encode them (and generate a decoder) to lie
within the specified encoding restriction.
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More experimentally, Synesthesia can try to encode an existing shellcode
automatically, as well as generate a decoder for it.
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Synesthesia: Theoretical Properties

1.
2.

Fully automated, no manual analysis required
Static analysis, no dynamic analysis
» Don’t need access to a processor for the architecture

Flexible

» Supports arbitrary encoding restrictions

> Idea can be adapted to any processor
Exhaustive

» Guaranteed to find a solution within the encoding if one exists

» Can find all possible solutions

» Encompassing those instructions that are modelled

Optimal

» Can find the shortest solution (by # bytes or # instructions)
Metamorphic

» Can potentially produce self-modifying code

» May produce a different output every time
» Doesn't use patterns or templates

» Hence no common byte sequences for IDS to catch
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Synesthesia has some nice properties that are unique to tools in this
category. It is fully automated and does not require any manual analysis
to determine how to perform a given operation within a given restriction.
It is also based on static analysis, meaning that it does not run
instructions on the processor. It is flexible: it can try to find solutions to
any encoding restriction that can be specified as a first-order predicate,
and the idea is not specific to any given processor. It is exhaustive: it
searches a space of all legal programs to find a solution among all
modelled instructions, and it can even find all possible solutions within a
given restriction. It is optimal; you can find the shortest solution within a
given restriction. It is metamorphic: it does not use pre-generated
patterns, and it may produce a different output every time. It can
potentially produce self-modifying code, although that idea is not
explored further in this presentation.
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Synesthesia: Limitations

Synesthesia is still a research idea with practical limitations.
» Can be very expensive, especially for complex tasks.
» Tends to work reasonably quickly for simple problems.

» Present implementation has limited support for synthesis of
memory operations.

» Discussed more thoroughly later.

» More research, and better SMT solvers are needed.
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It's important to note that Synesthesia is research. It works well for
short, simple sequences, but it can exhibit long runtimes for more
complicated sequences. Also, there are some practical limitations, some
of which are the standard ones for anything relying on an SMT solver, and
some of which are specific to my particular research implementation.
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Motivating Example and Step #1: Enumerate Potential Solutions

Question: is it possible to create the function x+1 by using:

1. Two statements, where:
2. Each statement has one operator, and:
3. Each operator is ~ (not) or - (neg)?

We began by enumerating all possible programs:

y: X; y:—X;

~ ~

z="y; | z="y;
y = NX; y = -X;
z=-y; | z=-y;
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Synesthesia is based on symbolic program synthesis, so we'll give a basic
walkthrough of that using an example I've given before. We'll show how
to adapt this idea from C-like programs into assembly programs.

So here's our example. Let's say | want to synthesize a program that
increments a 32-bit integer, that the program is two lines long, and that
each of the lines contains a single application of either the not or neg
operation. For clarity, the slide lists all possible programs matching this
description.




Symbolic Program Synthesis

Step #2: Encapsulate Variation into Components

We encapsulate all variation in the candidate programs using data
items, called components.

Yy TR | Y OFERS
Z =~y =~
y =|jX; =[-]x;
z =[=lys ==y
COMPONENTS = (bool bopt, bool bop2)

> bool bopil: is first operation ~, or -7
> bool bop2: is second operation -, or -7

N

<

N
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ComroNERTS

We note that each line performs one of two operations, not or neg.
Since there are only two possibilities, we can use a bool value to
represent which operation is performed on each line. These values are
called the components of our symbolic program.



Symbolic Program Synthesis

Step #3: Create Symbolic Representation in terms of Components
Describe all solutions with a symbolic program (using the components).

bool bopl; <«
bool bop2; <«

int f(int x)

{
int y = bopl 7 -x : "x; <«
int z = bop2 7 -y : Ty; <«
return 2z;

}

Function £ takes one input: int x.

m = <int x>

Question is now: can we set bop1 and bop2 so that f£(x) == x+1 for all x?
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Queston is now: can we set bopt and bop2 50 that £ == x+1 for all 37

Now, we can write a bit of C code that represents all of our possible
programs, and which behaves like any of the candidate programs based
upon the value of the components. This here is the main trick behind
symbolic program synthesis. We represent all possible programs and use
data items to specify a single one. Now, the question becomes: is there a
way to set the data items such that the symbolic program has the
behavior that we desire?



Symbolic Program Synthesis

Step #4: Create Synthesis Formula

» We need to rephrase the question mathematically:

English Mathematics

Are there values of bopi, bop2
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Step #4: Create Synthesis Formula

» We need to rephrase the question mathematically:

English Mathematics

Are there values of bopi, bop2 I bopi, bop2 € Bool -



Symbolic Program Synthesis

Step #4: Create Synthesis Formula

» We need to rephrase the question mathematically:

English Mathematics

Are there values of bopi, bop2 I bopi, bop2 € Bool -

Such that, for all values of x
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Step #4: Create Synthesis Formula

» We need to rephrase the question mathematically:

English Mathematics

Are there values of bopi, bop2 I bopi, bop2 € Bool -

Such that, for all values of x ¥V x € BV[32] -
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Step #4: Create Synthesis Formula

» We need to rephrase the question mathematically:

English Mathematics

Are there values of bopi, bop2 I bopi, bop2 € Bool -

Such that, for all values of x ¥V x € BV[32] -

In the code
y = bopl ? -x : 7x; let y = bopl ? -x : "x in
z = bop2 ? -y : 7y; let z = bop2 ? -y : ~y in



Symbolic Program Synthesis
Step #4: Create Synthesis Formula

» We need to rephrase the question mathematically:

English Mathematics

Are there values of bopi, bop2 I bopi, bop2 € Bool -

Such that, for all values of x ¥V x € BV[32] -

In the code
y = bopl ? -x : 7x; let y = bopl ? -x : "x in
z = bop2 ? -y : 7y; let z = bop2 ? -y : ~y in

z == x+1 IS always true? z == x+1
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Next we need to phrase the question mathematically. In English, our
question is: can we find values for the components
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The mathematical reification of this part of the question uses something
called an existential quantifier, the backwards “E”, pronounced there
exists. There exists values of bop1 and bop2, both bool values
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Now we specify the behavior of the program. Our choices for the
components need to work for all values of the 32-bit integer x.
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To represent this mathematically, we use something called a universal
quantifier, the upside-down “A”, pronounced for all. So, for all values
of the 32-bit integer x ...
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Thanks to SMT solvers, we have a language to describe the ordinary
operations used within programs. We can pretty much just translate it
line-for-line from C into SMT.
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Finally, we specify the desired behavior of our symbolic program. We
want the output, the variable z, to be the incremented version of the
input x. And that's our entire formula.




Symbolic Program Synthesis
Step #4: Create Synthesis Formula

Create a synthesis formula consisting of four elements.

Symbol Description Contents
JCOMPONENTS Exists components 3 bop1, bop2 € Bool -
VINPUTS For all inputs vV x € BV[32] -
PProgram Program constraint let y = bopt ? -x : “x in

let z = bop2 ? -y : ~yin
@Functionality Functionality constraint z == x+1
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To recap, we had four elements to our synthesis formula. We are looking
for values for our components — exists components — such that, for all
inputs — for all inputs — the symbolic program (represented by the third
term) has the behavior that we desire (represented by the final term).



Symbolic Program Synthesis
Step #5: Solve Synthesis Formula

Solve the synthesis formula with an SMT solver.

3 bop1, bop2 € Bool -
Vx e BV[32] -
“x in )

SMT ( let y = bopt ? -x :

let z = bop2 ? -y : ~y in
p y y

z == x+1

bopl +> false ‘ bop2 > true‘

Solution for COMPONENT%

If the formula is unsolvable, the solver returns UNSAT.
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Now we just feed the formula to an SMT solver and ask for a solution. If
it's successful, it's going to give us values for the components that invoke
the desired behavior. We can see the solution on the slide here. It may
be impossible to cause the desired behavior, in which case the SMT solver
will tell us that.



Symbolic Program Synthesis

Step #6: Interpret Synthesis Formula Solution

Plug the solution for COMPONENTS into the symbolic program ...

bool bopl; «
bool bop2; <«

int f(int x) Solution for COMPONENTS
{
int y = bopl ? -x : "x; d

bopl +> false <«
bop2 +— true <«

int z = bop2 7 -y : “7y; «

return z;



Symbolic Program Synthesis

Step #6: Interpret Synthesis Formula Solution
Plug the solution for COMPONENTS into the symbolic program ...
int f(int x) Solution for COMPONENTS

{
int y = "x; «

bopl +> false <«
bop2 +— true <«

int z = -y; «

return z;

. to obtain the desired program.
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Symbolic Program Synthesis

to obtain the desired program.

Once we have a solution for the components, we just plug them into our
symbolic program ...
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Symbolic Program Synthesis

to obtain the desired program.

And then we get the program that causes our desired behavior.
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More on Synthesis Formulas

Each formula in this presentation has roughly the same structure.

Symbol ‘ Description
JCOMPONENTS Exists components
Vm For all inputs
®Program Program constraint
@Functionality Functionality constraint

This formula structure has several names in the literature:

v

Exists/forall

» One quantifier alternation

v

Effectively propositional

v

Bernays-Schonfinkel
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A quick note before we move on. If you end up doing any research in this
area, you should be aware that this formula structure has a few names in
the literature. I've listed them on this slide in order of increasing
formality. This slide is also known as, “why is there an umlaut in the title
of your presentation?”



Symbolic Program Synthesis

Extending the Framework: More Operator Types

We can extend the idea to use

char opl; <«
int f(int x)

{
y = opl ==
opl ==

return y;

}

more than two operator types:
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Before we move on, we'll note two extensions to the basic idea of
symbolic program synthesis. First, in our previous example, there were
only two possiblities per line, and so we could use a bool value to
represent them. Of course, if we had more than two operators, we would
need more than a single bool to represent them. This slide shows an
example using three operators, and an 8-bit value to choose between
them. Pretty simple.



Symbolic Program Synthesis

Extending the Framework: Unspecified Constants

We can extend the idea to incorporate unspecified constants:

bool op;
char c; <«

int f(char x)
{

op ?

+ c : <
S oc; <«

<
]

Mo

return y;

}



Symbolic Program Synthesis

Extending the Framework: Unspecified Constants

We can extend the idea to incorporate unspecified constants:

Let's synthesize £(x) == ~x.
bool op; I(op € Bool,»c € BV[8]«)-
char ¢; < Vx € BV[8]-
int f(char x) lety=op?x+cd:x"c<in
{ = ~x
y = op ?
x + c : <4
x T c; <

return y;

}




Symbolic Program Synthesis

Extending the Framework: Unspecified Constants

We can extend the idea to incorporate unspecified constants:

Let's synthesize £(x) == ~x.
bool op; I(op € Bool,»c € BV[8]«)-
char ¢ < vx € BV[8]-
int f(char x) lety=op?x+cd:x"c<in
{ y == "x
y =op? .
« + ¢ : « | Constants are components, so solutions must
x ~ c¢; <« | include values for the constants.

, return y; Solution: op + false, B c > OxFF <.

l.e. £(x) isx ~ P OxFF «.
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Symbolic Program Synthesis

Secondly, a slightly more complicated extension to the idea. This
example relies upon an integer whose value is not specified. So,
depending on the value of op, it either ADDs or XORs the input with the
value of the constant c. c is a component, so the SMT solver will have to
provide a value for ¢ for any given synthesis formula.



2016-11-08

Symbolic Program Synthesis
G

Synesthesia: A Modern Approach to Shellcode Generation

te unspecified constants:

LSymboIic Program Synthesis
ool, »< & BV([8]«)-

Synthesizing c-Like Programs
Symbolic Program Synthesis

So, for example, if we wanted to use this template to generate the logical
not function, here would be our SMT formula. Simple, really; the only
thing to note is that c is a component in the first line.
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And then, if we were to solve this, the solution would be operator XOR,
constant value OFFh. The solution gives a value for the unspecified
constant c.



Symbolic Program Synthesis

Synthesizing Assembly Programs



Synthesizing Assembly Programs

Plan for This Section

Roadmap for transitioning from C synthesis to ASM synthesis:

1. We define a simple assembly language, called SIMPLE.

» Synesthesia also works for real assembly languages like X86.
» However, X86 is more complex, and would not fit in an hour.
» See source code for complete details on adapting to X86.

2. We devise a C representation for SIMPLE.

» An enumeration for SIMPLE opcodes
» A data structure for SIMPLE instructions
» A data structure for SIMPLE machine states

3. We write a simulator for SIMPLE.

» A function to update SIMPLE machine states
» A function to simulate SIMPLE operations
» A function to simulate SIMPLE instructions

4. We synthesize SIMPLE programs.
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Moving on, we're going to adapt the idea to synthesizing assembly
language programs. Most of this presentation will use examples in a
language | made up called SIMPLE. | have provided an X86
implementation as well, but X86 is too detailed to describe in an hour.
See the source code for full details.

So the first thing we're going to do is describe SIMPLE, and write a C
implementation of it as a language, and a simulator for it. Then we can
just use the techniques from the previous section to synthesize SIMPLE
programs in terms of its C representation.



Synthesizing Assembly Programs

Transitioning from Synthesizing C Programs

Synthesizing C Programs Synthesizing ASM Programs
bool bopl; =« Instruction il; <«
bool bop2; <« Instruction i2; <«
int f(int x) <« state *f(state *in) <«
{ {
int y = bopl ? -x : “x; state *sl1 = EmulateOne(in,il);
int z = bop2 7 -y : “y; state *s2 = EmulateOne(sl1,i2);
return z; <« return s2; <«
} }

Differences in synthesizing ASM programs versus C:

» Components € become assembly language instructions.
> Inputs and outputs « become machine states.

» Register and flag values, and/or memory contents.



2016-11-08

Synesthesia: A Modern Approach to Shellcode Generation
LSymboIic Program Synthesis
Synthesizing Assembly Programs
Synthesizing Assembly Programs

Synthesizing Assembly Programs

ASM programs versus C:

> Components « ssembly language instructions

And, just so you have an idea of where we're going with all of this, here's
what our synthesis formulas for SIMPLE are going to look like. On the left
is the example from the previous section: two bool components; the
synthesis function takes as input a 32-bit integer x, performs two

operations, and returns a 32-bit integer value.

On the right, we have our synthesis formula for SIMPLE. It has two

components as well, except the components are Instruction structures.

Its synthesis function takes as input something called a state, a machine

state. It performs two operations — two instructions — and returns the

transformed machine state.



Synthesizing Assembly Programs
SIMPLE Assembly Language

» SIMPLE has 8 32-bit registers, rO to r7.
» Instructions are below; they work like you would expect.

» rX and rY stand for any of the 32-bit registers.
» imm32 stands for any 32-bit constant value.

xor rX, rY add rX, rY mov rX, rY
inc rX dec rX neg rX not rX
add rX, imm32 xor rX, imm32 and rX, imm32 or rX, imm32
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SIMPLE is a simple language. It just has eight 32-bit registers, and 11
opcodes. It has binary XOR, ADD, and MOV. It has unary INC, DEC, NEG,
and NOT. Finally, it has binary ADD with a constant, XOR, AND, and OR.
They work exactly like you'd expect, no tricks up my sleve.




Synthesizing Assembly Programs

SIMPLE Assembly Language, Symbolic Representation of Opcodes

enum Simple {
XorRegReg,
AddRegReg,
MovRegReg,
IncReg,
DecReg,
NegReg,
NotReg,
AddRegImm,
XorRegImm,
AndRegImm,
OrRegImm,

};

We define an enumeration with one entry per instruction type.
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To represent SIMPLE in C, we'll define an enumeration, with one entry for
each opcode.



Synthesizing Assembly Programs

SIMPLE Assembly Language, Symbolic Representation of Instructions

struct Instruction {
Simple op;
int lhsRegNum;
int rhsRegNum;
uint32 imm32;

I

We define a structure to represent instructions.
> op: mnemonic.

> lhsReghum: left-hand-side register number.

> rhsRegNum: right-hand-side register number (if applicable).
» imm32: 32-bit constant value (if applicable).
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Next, we define an Instruction structure. Each instruction has an
opcode and a left-hand register number. Some instructions have a
right-hand register number, and some instructions have a right-hand
32-bit constant value.




Synthesizing Assembly Programs
SIMPLE Assembly Language, Machine State

We model the machine state as an array. E.g., state[4] is r4, etc.

typedef state uint32[8];

’r0|r1|r2|r3|r4|r5|r6|r7‘

Machine State

For more complex assembly languages, we'll need (at least) flags and memory.
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To model SIMPLE machine states, since it only has 8 registers, we'll just
use an array with 8 32-bit integers. For more complex assembly
languages, we'll need to model flags and memory also.



Synthesizing Assembly Programs
SIMPLE Assembly Language, Updating the Machine State

The function Update(state *state, int regNum, uint32 value):

1. Copies an existing state;
2. Updates the value of register regium to value;

3. Returns the new state.

Action of Update(state, 3, 0)

’r0|r1|r2|r3|r4|r5|r6|r7‘

’r0|r1|r2|00|r4|r5|r6|r7‘

New Output State (Input State Copied, r3 Updated)
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Next, we write a little function to update a state. You give it an existing
state, a register number, and a new value for that register. It copies the
state and modifies the specified register to the specified value. Note that
it creates new states rather than modifying existing ones.



Synthesizing Assembly Programs
SIMPLE Assembly Language, Updating the Machine State

state *Update(state *state, int regNum, uint32 value)

state *out = new state;
memcpy (out,state,sizeof (*state));
out [regNum] = value;

return out;
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Skip this slide; it's only for completeness.

Synthesizing Assembly Programs
SHPLE Ay tachine St




Synthesizing Assembly Programs

SIMPLE Assembly Language, Emulation

uint32 PerformOne(Simple op, uint32 1, uint32 r, uint32 i)

switch(op)

case XorRegReg: return 1 ~ r; case AddRegReg: return 1 + r;
case MovRegReg: return r;

" case IncReg:  return 1 + 1; case DecReg:  return 1 - 1;
case NegReg: return -1; case NotReg: return "1;

case AddRegImm: return 1 + i; case XorRegImm: return 1 ~ i;

case AndRegImm: return 1 & i; case OrRegImm: return 1 | i;

» Emulating SIMPLE is very easy.
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> Emulating SIVPLE is very easy.

SIMPLE is, well, simple to simulate. This function just performs some
specified SIMPLE operation. You give it an opcode, a value for the
left-hand and right-hand registers, and a 32-bit value, and it performs the
desired operation. For example, if the operation is XOR two registers, it
XORs them and returns the value. If the operation is ADD a register and
an immediate, it ADDs them and returns the value. Simple.



Synthesizing Assembly Programs

SIMPLE Assembly Language, Emulation

state *EmulateOne(state *state, Instruction *i)

uint32 1 = state[i->1hsRegNum];

uint32 r = state[i->rhsRegNum];

uint32 v = PerformOne(i->op,l,r,i->imm32);

return Update(state, i->1hsRegNum, v);

The function EmulateOne:

1. Fetches the inputs from the state;
2. Performs the operation specified by instruction i;

3. Returns an updated state with the results of the instruction.
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And finally, this is the last piece of our simulator. This function,
EmulateOne, takes in a state and an Instruction, fetches the operand
values from the state, calls the function from the previous slide to return
the value, and then returns a new state that is updated with the results
of the instruction.



Synthesizing Assembly Programs

Comparison with Synthesizing C Programs

Synthesizing C Programs Synthesizing ASM Programs
bool bopl; =« Instruction il; <«
bool bop2; <« Instruction i2; <«
int f(int x) <« state *f(state *in) <«
{ {
int y = bopl 7 -x : “x; state *sl1 = EmulateOne(in,il);
int z = bop2 7 -y : “y; state *s2 = EmulateOne(s1,i2);
return z; <« return s2; <«
} }

Slide is duplicated from before. Now it should make sense.
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Side is duplicated from before. Now it should make sense.

Now we have everything we need to synthesize SIMPLE programs. This is
the same slide from before, but now it should make sense. Our
components are two SIMPLE instructions. The synthesis function takes as
input a machine state. Each line of the synthesis function transforms a
state based upon the respective SIMPLE instruction, and then it returns
the final transformed state.



Synthesizing Assembly Programs

Functionality Constraints

To synthesize SIMPLE programs, we need to specify functionality
constraints (input/output relationships) in terms of states:

¢FunctionaIity—Increment-rO

s2[0] == in[0]+1 &&

s2[1] == in[1] &&
s2[2] == in[2] &&
s2[3] == in[3] &&
s2[4] == in[4] &&
s2[5] == in[5] &&

s2[6] == in[6] &&
s2[7] == in[7]

This constraint specifies: r0 increments; other registers unchanged.
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To synthesize programs, we're going to need to specify the desired
functionality in terms of SIMPLE machine states. This slide shows an
example where we want the first register rO to be incremented, and all
other registers to be preserved.



Synthesizing Assembly Programs
All Together

Our synthesis formula is:

(i1 € Instruction, i2 € Instruction)-
Vin € State-

let s1 = EmulateOne(in,il) in

let s2 = EmulateOne(s1,i2) in

¢Functiona|ity—|ncrement—rO



Synthesizing Assembly Programs
All Together

. . Solution:
Our synthesis formula is:
i1+ {AddRegImm, 0, 0, 1}

(i1 € Instruction, i2 € Instruction)-
i2 + {OrRegImm, O, O, O}

Vin € State-
let s1 = EmulateOne(in,il1) in

Ay le.:
let s2 = EmulateOne(s1,i2) in

¢Functiona|it -Increment-r0
Y ’ add r0, 1

or rO, O
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Now, a complete synthesis example. Our formula has two instructions as
components, takes a machine state as input, performs two operations,
and then specifies the desired behavior — the increment behavior
described previously.
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So if we solve this, we'll get a solution in terms of the component
instructions. By interpreting the Instruction structures as actual
instructions, we get the solution we see at bottom right. And it makes
sense; that program clearly increments rO on the first line, and the
second line is just a nop.




Synthesizing Assembly Programs

Obtaining Alternative Solutions

Let's say we want a solution different from:

add r0, 1
or rO, O

Existing synthesis formula:

3(i1 € Instruction, i2 € Instruction)-
Vin € State:

let s1 = EmulateOne(in,il) in

let s2 = EmulateOne(s1,i2) in

¢Functiona|ity—Increment—rO



Synthesizing Assembly Programs

Obtaining Alternative Solutions

Let's say we want a solution different from:

add r0, 1
or rO, O

Existing synthesis formula:

3(i1 € Instruction, i2 € Instruction)-
Vin € State:

let s1 = EmulateOne(in,il) in

let s2 = EmulateOne(s1,i2) in

¢Functiona|ity—Increment—rO

il.op != AddRegImm || il.lhsRegNum '= O || il.imm32 !'= 1 ||
i2.0p != OrRegImm || i2.1hsRegNum != O || i2.imm32 != 0
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Two more tricks before we move on to synthesizing machine code
programs. First, let's say we wanted to find a different solution from the
one we were just given. This slide shows the same synthesis formula for
the last slide.
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Let’s just add some new terms onto the formula. We say, not only must
the solution satisfy the functionality constraint, but also, one of the
instructions must be different. So either the first opcode is not “add reg,
immediate”, or the left-hand register is not r0, or the first immediate is
not 1, and so on. So if we solve this formula, we'll get a different solution
than the one just given.



Synthesizing Assembly Programs

First Eight Solutions for rO0 = r0 + 1

The first 8 solutions with 2 instructions for rO0 =

add r0, 1 mov r2, r2

or rO, O inc r0

dec rO xor r0, O

add r0, 2 add r0, 1

not r0 mov rO, rO

neg r0 inc r0

inc r0 add r0, 20D910C5h
mov rO, rO | add r0O, ODF26EF3Ch

r0 + 1:

Some solutions have NOP instructions in them.
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Some solutons have 0P instructions in them,

And indeed, here are the first 8 solutions that we get. Many of them
contain NOP instructions in red. We also see: subtract one, then add two;
the same not/neg trick from before; and add two values that add up to 1.



Synthesizing Assembly Programs

Variable-Length Programs

Instruction il, i2, i3, i4, i5; <«

int numlInstrs;

state *f(state *in) {
*s1 = EmulateOne(in,il);

state
state
state
state

state

*s2

*s3

*s4

*sb

return numInstrs

numInstrs
numInstrs

numInstrs

W N

sl

s2 :
s3 :
s4d

sb;

A A A A A

<

EmulateOne(s1,i2);
EmulateOne(s2,i3);
EmulateOne(s3,i4);
EmulateOne(s4,i5);

So far, our formulas used a
fixed number of instructions.

We can easily extend to “up
to” a fixed number, as shown.

The value of numInstrs <« in
the solution tells us how many
instructions were used.

We could revert to the prior
behavior by adding a
constraint: numInstrs ==

Or, a range of lengths:

2 <= numInstrs <= 4.
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And, one more extension before moving on. All of our synthesis formulas
so far used a fixed number of instructions. We can easily extend the idea
to support a variable number of instructions. This example shows up to
five instructions, where the number of instructions in the solution is
controlled by a variable called numInstrs. This construction is more
flexible than what's shown previously. We can add extra constraints to fix
the number of instructions, like what we were doing previously, or we can
specify a range of lengths.



Symbolic Program Synthesis

Synthesizing Machine-Code Programs



Synthesizing Machine-Code Programs

Plan for This Section

Roadmap for transitioning from ASM synthesis to machine code:
1. Define a machine code encoding for SIMPLE: SIMPLEMC.
2. Write a disassembler for SIMPLEMC into Instruction objects.

» A function to decode SIMPLE opcodes from SIMPLEMC
» A function to decode whole SIMPLE instructions

3. Use the existing SIMPLE machinery to synthesize SIMPLEMC.



2016-11-08

Synthesizing Machine-Code Programs
P o T Secion

Synesthesia: A Modern Approach to Shellcode Generation
LSymboIic Program Synthesis
Synthesizing Machine-Code Programs

Synthesizing Machine-Code Programs

Now let's move on to synthesizing machine code programs. First, we're
going to define a machine code encoding for SIMPLE. Next, we'll write a
disassembler for SIMPLE instructions. And then, we can just use the same
ideas as before to synthesize machine code programs.



Synthesizing Machine-Code Programs

Transitioning from Synthesizing ASM Programs

Synthesizing SIMPLE Programs Synthesizing SIMPLEMC Programs
Instruction il, i2; <« char mc[256]; <«
state *f(state *in) state *f(state *in)
{ {
int 11, 12; «

Instruction il, i2; <«
Decode(mc, 0, &l1, &il); <«
Decode (mc, 11, &12, &i2); «

state *sl=EmulateOne(in,il); state *sl=EmulateOne(in,il);
state *s2=EmulateOne(sl1,i2); state *s2=EmulateOne(sl1,i2);
return s2; return s2;

} }

Differences in synthesizing ASM programs versus machine code:

» Components € become machine code bytes.
» Machine-code formula must decode instructions «.
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As before, here's what our machine-code synthesis formulas are going to
look like. For SIMPLE, we just had two components, which were
Instruction structures. The synthesis function took as input a machine
state, performed two instructions, and then returned the transformed
state.

For machine code, our components are an array of machine code bytes.
Inside of the synthesis function, the first four lines decode two instructios
from the machine code array. The rest of the synthesis function is
identical; it takes a state as input, performs two instruction operations,
and returns the final transformed state.



Synthesizing Machine-Code Programs
SIMPLE Machine Language

Machine-code encoding for binary reg/reg SIMPLE instructions.

01 01 xor r0, ri
~—~—
Instruction 00
00 000 001
~— M~~~
Opcode Reg/Op Reg
53 53 add r2, r3
~—
Instruction 00
01 010 011
—~— =~
Opcode Reg/Op Reg
A5 A5 mov r4, r5
~—~—
Instruction 00
10 100 101
N =~
Opcode Reg/Op Reg

Opcode is 00: xor; 01: add; 10: mov. Register #s. in lower fields.
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nov. Register #3 in lower feds.

The next few slides just overview the machine code encoding. This is just
the easiest way | could think of to encode the instructions. You don't
need to pay much attention, and we'll go quickly. Basically we divide the
opcode bytes into three fields. For the instructions with two registers, we
just use the top field to specifiy the operation, and the other fields to
specify the register numbers.



Synthesizing Machine-Code Programs

SIMPLE Machine Language

Machine-code encoding for unary reg SIMPLE instructions.

C4 C4 inc r4 CD CD dec rb5
—~— ~—
Instruction 00 Instruction 00
11 000 100 11 001 101
~— —~~ ~— —~~
Opcode Reg/Op Reg Opcode Reg/Op Reg
D6 D6 neg r6 DF DF not r7
Instruition 00 Instrug‘ﬂon 00
11 010 110 “11 011 111
N M~ N M~

Opcode Reg/Op Reg

Opcode Reg/Op Reg

Opcode field is 11.
Middle 3 are 000: inc; 001: dec; 010: neg; 011: not.

Register number in lowest field.
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For the unary instructions, we only need one field to specify the register
number. So we fix the top fields to 11, use the low field for the register
number, and the middle field for the operation.



Synthesizing Machine-Code Programs
SIMPLE Machine Language

Machine-code encoding for binary reg/imm32 SIMPLE instructions.

EO EO 78 56 34 12 add r0O, 12345678h
—~—
Instruction 00
11 100 000
~—
Opcode Reg/Op Reg
E9 E9 12 34 56 78 xor rl, 78563412h
~—~—
Instruction 00
11 101 001
N
Opcode Reg/Op Reg

Opcode field is 11.
Middle 3 are 100: add; 101: xor; 110: and; 111: or.

Register number in lowest field. Constant follows opcode byte.
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hine-Code Programs

oding for binary reg/1ns32 SIMPLE instructions.

E0 78 56 34 12 add 10, 12345678k

5 12 39 56 78 xor 71, 78631

Opeode fied i 11
Wil 3 are 100: add; 101: xor; 110: and; 111: or.

Register number in lowest el Constant follows opeode byte

For the binary instructions with constants, it's the same as the unary

case, except a 32-bit constant follows the opcode byte. Easy.



Synthesizing Machine-Code Programs
SIMPLE Machine Language, Decoding Opcodes

Simple DecodeOpcode(int firstByte)

int topTwo = (firstByte>>6) & 3;
int midThree = (firstByte>>3) & 7;

if (topTwo != Obll)

return XorRegReg + topTwo;

return IncReg + midThree;

This function decodes the opcode from a SIMPLEMC byte.
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“This function decodes the opcode from 3 SIMPLEMC byte

And that's it. This function looks at an opcode byte and returns the
associated enumeration element. It's easy, and the details aren't very
important.



Synthesizing Machine-Code Programs

SIMPLE Machine Language, Decoding Instructions

void Decode(char *bytes, int eip, int *length, Instruction *ins)

» ins->op = DecodeOpcode(bytes[eip]);
*length = ins->op < AddRegImm 7 1 : 5;
ins->1lhsRegNum = (firstByte>>3) & 7;
ins->rhsRegNum = firstByte & 7;
if (ins->op > MovRegReg)

ins->1hsRegNum = ins->rhsRegNum;
ins->imm32 = *(uint32 *) (&bytes[eip+1]);

VVVYyVYYVYY

This function decodes an instruction from SIMPLEMC bytes.

1. Fetch the opcode «.

Determine the instruction’s length «.
Extract the register numbers «.
Extract the 32-bit constant «.

N
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The disassembler function is a bit uglier. It gets the opcode, calculates
the length of the instruction, figures out the register numbers, and
decodes the 32-bit constant. The details aren’t important.



Synthesizing Machine-Code Programs

Comparison with Synthesizing ASM Programs

Synthesizing SIMPLE Programs

Instruction i1, i2; <«
state *f(state *in)

{

state *sl=EmulateOne(in,il);
state *s2=EmulateOne(sl1,i2);
return s2;

}

Synthesizing SIMPLEMC Programs

char mc[256]; <«

state *f(state *in)

{
int 11, 12; «
Instruction il, i2; <«
Decode(mc, 0, &l1, &il); <«
Decode(mc, 11, &12, &i2); <«

state *sl=EmulateOne(in,il);
state *s2=EmulateOne(sl1,i2);
return s2;

Slide is duplicated from before. Now it should make sense.
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And now we can synthesize machine code programs. This is the same
slide from before; now it should make sense. We just use an array of
machine code bytes as our components, decode two instructions, let
them act on the state, and return the final state. Now we can synthesize
machine code programs. Rather than give an example immediately, let's
just jump to encoding restrictions.
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Encoding Restrictions

Overview

Recall from before that our formulas have roughly this structure.

Symbol Description Contents
JCOMPONENTS Exists components Jmc € Array[BV[8] — BVI[8]]

VINPUTS For all inputs V in € State

®Program Program constraint

@Functionality Functionality constraint



Encoding Restrictions

Overview

Recall from before that our formulas have roughly this structure.

Symbol Description Contents
JCOMPONENTS Exists components Juc € Array[BV[8] — BV][8]]
VINPUTS For all inputs V in € State
®Program Program constraint
®Functionality Functionality constraint
" OEncoding  Encoding constraint ~ Shown next

We begin by adding encoding restrictions; say, no NULL bytes.
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I—Encoding Restrictions

From before, all of our synthesis formulas have this

Recal rom before that our formulas have roughly this structure.

Symbol Des Contents
Scouronens B = 3 £ Amay[BV[S] - BVIR]]
NPT ¥ ¢ State

Program consraint
Functionality constaint
Encoding constraint

Shown it

We begin by adding encoding restrictions; say, 1o NULL bytes

same structure.
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I—Encoding Restrictions

Now let's add encoding constraints to the picture.

Recal rom before that our formulas have roughly this structure.

Symbol Contents
Scouronens B = 3 £ Amay[BV[S] - BVIR]]
3 F ¥ ¢ State

ara int
Functionality constaint
codog | Encoding constraint Shown it

We begin by adding encoding restrictions; say, 1o NULL bytes
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Example: No NULL Bytes

> Let's say we don’'t want any NULL bytes in our machine code.

> We need to phrase that property mathematically:

English Mathematics
For all array indices i
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Example: No NULL Bytes

> Let's say we don’'t want any NULL bytes in our machine code.

> We need to phrase that property mathematically:

English Mathematics

For all array indices i Vi € BV[8]:
Within our synthesized machine code
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Example: No NULL Bytes

> Let's say we don’'t want any NULL bytes in our machine code.

> We need to phrase that property mathematically:

English Mathematics

For all array indices i Vi € BV[8]
Within our synthesized machine code i < leni+len2 =




Encoding Restrictions
Example: No NULL Bytes

> Let's say we don’'t want any NULL bytes in our machine code.

> We need to phrase that property mathematically:

English Mathematics
For all array indices i Vi € BV[8]
Within our synthesized machine code i < leni+len2 =
Machine code byte #i is not 0x00




Encoding Restrictions
Example: No NULL Bytes

> Let's say we don’'t want any NULL bytes in our machine code.

> We need to phrase that property mathematically:

English Mathematics
For all array indices i Vi € BV[8]
Within our synthesized machine code i < leni+len2 =
Machine code byte #i is not 0x00 mc[i] # 0x00

PNon-nuLL ‘= [Vi : BV[8] i < lenl + len2 = mc[i] # OXOO]
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» We need to phrase that property mathe:

Encoding Restrictions

LEncoding Restrictions

Onomnn = (¥4 BV[B] £ < e + 2002 = mels] # 0x00]

Now we show how to specify an encoding restriction. Let's say we don't
want any NULL bytes in our solution. Here's how to write that
mathematically. We say that, for any array index i
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As before, we use a universal quantifier “for all”

Encoding Restrictions
Exampie No ML Bytes

> Let's say we don't want any NULL bytes in our machine code.
> We need to phrase that property mathematicaly

Mathematics

Onomnn = (¥4 BV[B] £ < e + 2002 = mels] # 0x00]
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If the array index is within our machine code

Encoding Restrictions
Exampie No ML Bytes

> Let's say we don't want any NULL bytes in our machine code.
> We need to phrase that property mathematicaly

Mathematics

Onomnn = (¥4 BV[B] £ < e + 2002 = mels] # 0x00]
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> We need to phrase that property mathematicaly

Mathematics

Encoding Restrictions

LEncoding Restrictions

Onomnn = (¥4 BV[B] £ < e + 2002 = mels] # 0x00]

That is, between the beginning of the array and the end of the last
instruction
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> We need to phrase that property mathematicaly

Encoding Restrictions s

I—Encoding Restrictions C T

Onomnn = (¥4 BV[B] £ < e + 2002 = mels] # 0x00]

Then, the byte at that position is not zero
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> We need to phrase that property mathematicaly

Encoding Restrictions s

I—Encoding Restrictions C T

Onomnn = (¥4 BV[B] £ < e + 2002 = mels] # 0x00]

And then the total formula is shown at the bottom of the slide.



Encoding Restrictions

More Examples

These examples are all [Vi : BV[8] - i < lent + 1len2 = ¢pyre],

where ¢yre is - -+

Encoding Restriction

¢B yte

No NULL Bytes

No ’%’ Bytes

All ASCII are Uppercase
All Bytes Printable

All Bytes Alphanumeric

mc[i] # 0x00

mc[i] # 0x25

—|(mc [i] > 0x61 Amc[i] < 0X7A)
(mc[i] > 0x21 A mc[i] < 0x7F)
(mc[i] > 0x30 Amcl[i] < 0x39)V
(mc[i] > 0x41 Amc[i] < 0x5A)V
(mc[i] > 0x61 Amc[i] < 0x7A)
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LEncoding Restrictions

Now, it's easy to formalize the other examples we gave at the beginning
of the presentation. Those ones all have roughly the same structure as
the “non-NULL"” example we just saw. Except they exclude other values,
or specify ranges of legal values. So we have non-NULL, no percentage
character, no lowercase ASCII letters, all bytes are printable, all bytes are
alphanumeric. Simple!

e all [ : BV[B] -+ < tont + 1652
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More Complex Examples: Bytes Must Increase

Let’s say our shellcode bytes must monotonically increase.
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More Complex Examples: Bytes Must Increase

Let’s say our shellcode bytes must monotonically increase.

[Vi:BVI[8]-i < lenl + len2 — 1 = (mc[i] <= mc[i+1])]



Encoding Restrictions

More Complex Examples: Bytes Must Increase

Let’s say our shellcode bytes must monotonically increase.
[Vi:BVI[8]-i < lenl + len2 — 1 = (mc[i] <= mc[i+1])]

Let's say our shellcode bytes must strictly increase.



Encoding Restrictions

More Complex Examples: Bytes Must Increase

Let’s say our shellcode bytes must monotonically increase.
[Vi:BVI[8]-i < lenl + len2 — 1 = (mc[i] <= mc[i+1])]
Let's say our shellcode bytes must strictly increase.

[Vi:BV[8]-i < lent + len2 — 1 = (mc[il < mc[i+1])]
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Let's say our shelcode bytes must sticly increase.

LEncoding Restrictions e )

Now let's show some more exotic examples. Let's say the bytes must
monotonically increase. That means each byte is less than or equal to the
following byte.
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Mo Cor

Let'ssay ourshelcode bytes must monotonically incress.
[ BVIB] 4 < ont 4 em2 = 1 = Gacl) <= nctso)]
Letssay our shellcode bytes must srcly increase,

¥4 BB < ent + 1052~ 1 = (acl8 < sclio1D]

This is easy to formalize; just use a less-than-or-equal-to operator to

compare adjacent bytes.
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Let' say our shellcode bytes must montonicaly increase.

Encoding Restrictions T P
LEncodmg Restrictions e )

Or if we wanted strictly increasing bytes; no adjacent duplicates.



2016-11-08

Synesthesia: A Modern Approach to Shellcode Generation
I—Extensions
Encoding Restrictions

I—Encoding Restrictions

Easy; just use less-than.

Let'ssay ourshelcode bytes must monotonically incress.
[ BVIB] 4 < ont 4 em2 = 1 = Gacl) <= nctso)]
Letssay our shellcode bytes must srcly increase,

¥4 BB < ent + 1052~ 1 = (acl8 < sclio1D]



Encoding Restrictions
More Complex Examples: No Duplicate Bytes

Let's say we don't want any repeated bytes in our shellcode.
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LEncoding Restrictions

Let’s say all the bytes in our shellcode must differ.Use two “forall”
quantifiers over array indices, and say that the values at each of the array
indices must differ. Basically, every byte must differ from every byte
before it.



Encoding Restrictions
More Complex Examples: No Duplicate Bytes

Let's say we don't want any repeated bytes in our shellcode.

[Vi: BV[8],j: BV[8]-i < leni+1len2—1Aj<i = (mc[j] != mc[il)]
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v BV[8] 5 : BV[B] =

LEncoding Restrictions

Let’s say all the bytes in our shellcode must differ.Use two “forall”
quantifiers over array indices, and say that the values at each of the array
indices must differ. Basically, every byte must differ from every byte
before it.
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More Complex Examples: Alternating Even/Odd

Let's say our shellcode must alternate between even and odd bytes.
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Let's say our shellcode must alternate between even and odd bytes.

[Vi:BV[32] i < lent 4 len2 — 1 = (mc[il "mc[i+1])&1 == 1]
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More Complex Examples: Alternating Even/Odd

Let's say our shellcode must alternate between even and odd bytes.
[Vi:BV[32] i < lent 4 len2 — 1 = (mc[il "mc[i+1])&1 == 1]

. and, additionally, the first byte is even:



Encoding Restrictions
More Complex Examples: Alternating Even/Odd

Let's say our shellcode must alternate between even and odd bytes.
[Vi:BV[32] i < lent 4 len2 — 1 = (mc[il "mc[i+1])&1 == 1]
. and, additionally, the first byte is even:

mc[0]&1 == 0
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If we wanted our bytes to alternate between even and odd:

Mo Cor

Let's say our shellcode must ahternate between even and odd bytes.
[¥4: BV[32] 5 < tent + 1an2 — 1 = acl) neCiotDis == 1]
and, aditionally, the first byte i even:

nclo == 0
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LEncoding Restrictions

We just say that the lowest bits of adjacent bytes differ.

Encoding Restrictions
Mare Cor ples: Avemating

Evn/00d
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And, if we needed our first byte to be even

Let's say our shellcode must ahternate between even and odd bytes.
[¥4: BV[32] 5 < tent + 1an2 — 1 = acl) neCiotDis == 1]
and, aditionally, the first byte i even:

nclo == 0
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LEncoding Restrictions

We just specify that as a constraint on the lowest bit of the first byte.




Encoding Restrictions

More Complex Examples: All words are Prime Numbers

A word w is prime if only 1 and w divides evenly into it. l.e.:

Va:BV[16]- 2 <=d & d<w) =w%d!=0
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 Prime Numbers

VaiBV[I6]- G - akkd <o v ha o

LEncoding Restrictions

We can do crazier things than that; we can specify that the words of our
shellcode must be prime numbers. We can express primality by saying
only one and the number itself divide into a given word leaving no
remainder.



Encoding Restrictions

Solutions

Interesting solutions to eax == 0x0

OD CA 01 4B FE or eax, OFE4BO1CAh
1D CA 16 B3 5A sbb eax, 5AB316CAh
19 CO sbb eax, eax

Interesting solutions to eax == 0x12345678

B8 7B 56 35 7A mov eax, [(A35567Bh
25 FC F7 34 17 and eax, 1734F7FCh

81 C8 7D 56 B5 92 or eax, 92B5567Dh
81 EO 7D 56 FD 92 and eax, 92FD567Dh
25 78 57 36 13 and eax, 13365778h
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Here are a couple of interesting examples | came up with while playing
with input restrictions. The one at the top sets eax to 0, with some
onerous character restrictions. Since it can’t use the sub instruction, it
uses the sbb instruction instead. But performing an sbb of a register
with itself will either result in a value of 0 or -1 depending on the carry
flag. So first, it ORs eax with some large value, and then subtracts some
smaller value. By doing this, it's able to guarantee that the carry flag will
always be clear by the time the sbb eax, eax instruction executes. |
might not have come up with that myself. Note that this is fully
automated; the system has not been programmed to know this trick in
advance.

The second examples set eax to 12345678h using alternating even and
odd bytes. | chose that constant since each byte is even. It sets eax to a
value that alternates between even and odd bytes, and then ANDs with a
constant whose bytes alternate in the opposite order. The second
example does something similar, but needs two and instructions.



Encoding Restrictions

In General

» This scheme is compatible with absolutely any encoding
restriction that can be expressed as a first-order formula.

» This does imply that we know what the encoding restrictions
are and can express them as a formula.

» Later, we'll see we can automatically determine this and not
explicitly model it.
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patible with absolutely any cr

LEncoding Restrictions " iy o

So you should get the picture that we can model a lot of exotic encoding
restrictions using this technique. Anything that can be modelled using a
first-order formula can be represented. And, in fact, if we collect an
execution trace of the program, it implicitly contains the restrictions and
transformations without us having to model them — but that method
does have some limitations with completeness.

ing
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Synthesis of Equivalent Snippets

Conceptually

» Suppose we already have machine code that does what we
want, but it doesn't satisfy the encoding restrictions.

» Simply express the input/output behavior of that code, and
use that as the functional constraint.
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We can also use this technique to find equivalent sequences to
machine-code snippets that we already have. We do this using functional
constraints: we express the input/output behavior of our existing
sequence, and use that to specify the behavior of the thing we want to
synthesize.




Synthesis of Equivalent Snippets
Step #1: Assemble the Code

mov eax, 1
mov ebx, 2
mov ecx, 3

X86 Assembler

B8 01 00 00 00
BB 02 00 00 00
B9 03 00 00 00

First, assemble the code you wish to replace.
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LSynthesis of Equivalent Snippets 5501 00 0 00

BB 02 00 00 00
B9 03 00 00 00

First, assemble the code you vish to replace

We begin by simply assembling the X86 instructions into machine code
bytes.



Synthesis of Equivalent Snippets

Step #2: Synthesize Replacement

B8 01 00 00 00 ﬁ
JCOMPONENT

BB 02 00 00 00 e
B9 03 00 00 00 Encoding

VINPUT%

OUTPUTL OUTPUT%

OUTPUTI(eax) = UTPUT%(eax) &
OUTPUT1i(ecx) = OUTPUT2(ecx) &&

OUTPUTi(zf) = OUTPUT2(zf) &
OUTPUTi(cf) = OUTPUT2(cf) &

Next, synthesize equivalent code within the encoding.

If desired, omit irrelevant registers or flags from the functionality constraint.
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Synthesis of Equivalent Snippets
St #2: Stz Repiscemene
B8 01 00 00 00

BB 02 00 00 00
B9 03 00 00 00

SComPoNENTa

This slide shows visually what | just said: we take existing machine code,

express its input/output behavior, and use that as the functional

constraint in synthesizing machine code under the encoding restriction. If

we want, we can loosen the restriction a bit by saying that not all flags

must match, or that it is allowed to overwrite the values of certain

registers, etc.
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Finding the Shortest Program

Conceptually

» Write Good(COMPONENT%) if the program defined by
COMPONENTS satisfies all functional and encoding constraints.

» Now our question is: what is the shortest good program?

English Mathematics

Is there a best program IBEST
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Which is good, and Good(BESi)
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Finding the Shortest Program

Conceptually

» Write Good(COMPONENT%) if the program defined by
COMPONENTS satisfies all functional and encoding constraints.

» Now our question is: what is the shortest good program?

English Mathematics
Is there a best program IBEST
Which is good, and Good(BEST)
For all other programs VOTHER

If the other program is good Good(OTHER)



Finding the Shortest Program

Conceptually

» Write Good(COMPONENT%) if the program defined by
COMPONENTS satisfies all functional and encoding constraints.

» Now our question is: what is the shortest good program?

English Mathematics
Is there a best program IBEST
Which is good, and Good(BEST)
For all other programs VOTHER

If the other program is good Good(OTHER)
The other is at least as long = Length(BEST) < Length(OTHE&)

» Here we quantify over all solutions.
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If the other program is good  Good(OTHER)
The other is at least as long = Length(BEST) < Length(GTHER)

> Here we quantify over all solutions.

OK, let's say we want the shortest solution to a given synthesis problem.
To be brief, let's just say that a program is good if it satisfies the
synthesis constraints. Now, we are looking for the shortest good program.
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. » Wite Good(COMPONENTS) if the program defined by
Extensions COMFORENTS s s ocliont s avoding corscaints

> Now our queston is: what is the shotest good program?

Finding the Shortest Program

Englsh Mathematics

o Vo sttt o)
Finding the Shortest Program or s pogans voreE
If the other program is good  Good!(GTHER)
The other is at least as long = Length(BEST) < Length(GTHER)

> Here we quantify over all solutions.

So first, we have “exists best”. This is our shortest program.
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Of course, “best” must satisfy the synthesis constraints,

is good" .

ing the Shortest Program
waly

> Wite Good(COMPONERTS) if the program defined by
COMPONENTS satisies al functonal and encading constrants,
> Now our queston is: what is the shotest good program?

Engisn Mathemtics
T here s bt progem BT

Which s good, and Good EESH)

For al ot programs YoTER

If the other program is good  Good!(GTHER)
The other is at least as long = Length(BEST) < Length(OTHER)

> Here we quantify over all solutions.

so we say, “best
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. » Wite Good(COMPONENTS) if the program defined by
Extensions COMFORENTS s s ocliont s avoding corscaints

> Now our queston is: what is the shotest good program?

Finding the Shortest Program

Englsh Mathematics

o Vo sttt o)
Finding the Shortest Program or s oams VoS
If the other program is good  Good!(GTHER)
The other is at least as long = Length(BEST) < Length(GTHER)

> Here we quantify over all solutions.

Now, for every other program — we use a “for all" quantifier to quantify
over all other programs.
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If the other program is good

Finding the Shortest Program

Concapualy

> Wite Good(COMPONERTS) if the program defined by
COMPONENTS satisies al functonal and encading constrants,
> Now our queston is: what is the shotest good program?

Engisn Mathemtics
T here s bt progem BT

Which s good, and Good EESH)

For al ot programs YoTER

I the other program s good  Good (GTFE)
‘The other is at least as long = Length(BEST) < Length(THER)

> Here we quantify over all solutions.
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If the other program is good  Good(OTHER)
The other is at least as long = Length(BEST) < Length(OTHER)

> Here we quantify over all solutions.

Then the length of the best program is less than or equal to the other
program. So, succinctly, out of all the good programs, this formula finds

the shortest one.



Finding the Shortest Program

Conceptually

Here is a shortest solution to @Functionality-Increment-ro:

AD mov rb5, r5
CO inc 10



Finding the Shortest Program

Conceptually

Here is a shortest solution to @Functionality-Increment-ro:

AD mov rb5, r5
CO inc 10

If we wanted a longest solution, we could change our condition to
Length(BEsiZ) > Length(OTHER).

DO 01 00 00 00 add r0, 1
F8 00 00 00 00 or r0, O
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1F we wanted a longest s iton t

- Finding the Shortest Program e e e

D0 010000 00 add x0, 1
F8.000000 00 or 70, 0

So if we applied that idea to the increment-r0 functionality constraint,
the shortest two-instruction program would be two bytes. That makes
sense; each instruction is at least one byte, and we specified that our
solution consists of two instructions.
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1F we wanted a longest s iton t

- Finding the Shortest Program e e e

D0 010000 00 add x0, 1
F8.000000 00 or 70, 0

We could also tweak the constraint a bit to target the longest program:
this one says, for all good programs, the best solution is at least as long.
So now we get a ten-byte solution; two instructions, five bytes apiece.
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Synthesizing Decoders

Overview on Loops

We shall now automate synthesis of decoder loops.

; Initialize counter
@loop:

; Get encoded byte

; Decode encoded byte

; Store decoded byte

; Decrement counter

; Loop if counter non-zero

How do we specify functional constraints for a loop?

> Loop invariants: the “work” done by an iteration.

» Loop variants: proving that the loop terminates.
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We shall now automate synthesi of decader loops.

Synthesizing Decoders

> Loop variants: proving that the loop terminates.

Now let's get a little more ambitious. Let's try to automatically encode,
and automatically generate a decoder, for a given blob of instructions. In
order to do that, we're going to need a loop. So first, we'll review how to
deal with loops when using logic-based methods like SMT solvers.

We're going to need two ingredients: a loop invariant, which specifies
how the loop behaves; and a loop variant, which proves that the loop
terminates.



Synthesizing Decoders

Crash Course on Treating Loops Formally

» Let's review loop invariants and variants with an example.

» We show that max terminates with the greatest element of arr.

int max(int *arr, int len)
{
assert(len > 0);

int m = arr[0];
for(int i=1;i<len;++i)
if(arr[i] > m)

m = arr[i];

return m;

Validate input length.
Set m to first element.

Loop through array:
Is current element bigger?

If so, save it.

Return largest element.
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We'll talk about loop invariants and loop variants in terms of this simple
example. This function max finds the greatest value in a given array. It's
probably pretty easy to convince yourself of that just by looking at it, but
we'll be formal about it.

The function starts by taking the first element of the array into the
variable m, then for every iteration, if the current value is bigger than the
biggest one we've seen so far, it updates m to contain that value, and
returns the final value of m.
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Loop Invariants

» A loop invariant says that:

» |If, before an iteration, some statement is true
» Then, after the iteration, the statement is still true.
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Loop Invariants

» A loop invariant says that:

» |If, before an iteration, some statement is true
» Then, after the iteration, the statement is still true.

for(int i=1;i<len;++i)
if(arr[i] > m)

m = arr[i];

» Our loop invariant is that:
> If, before iteration #j, m = MAX(arr,0,j-1), then:

Iteration j—1: m=max(arr)




Synthesizing Decoders

Loop Invariants

» A loop invariant says that:

» |If, before an iteration, some statement is true

» Then, after the iteration, the statement is still true

for(int i=1;i<len;++i)
if(arr[i] > m)

m=

= arr[il;

» Our loop invariant is that:

> If, before iteration #j, m = MAX(arr,0,j-1), then:
> After iteration #j, m = MAX(arr,0,j).

Iteration j: m=MAXx(arr)

len-1
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A loop invariant contains two parts: it says that, if some property is true
before a loop iteration, then the property is still true after the iteration.
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So, specifically, we want to say that: if the value of m contains the
greatest value of the sub-array before an iteration (i.e., if m contains the
greatest value from the blue shaded region before the iteration)
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Then, after the iteration, m contains the greatest value from the region
that is one bigger, i.e., the greatest value from the red shaded region.



Synthesizing Decoders
Loop Invariants
» Qur loop invariant is that:

> If, before iteration #j, m = MAX(arr,0,j-1), then:
> After iteration #j, m = MAX(arr,0,j).

for(int i=1;i<len;++i)
if(arr[i] > m)

m = arr[i];

» The loop invariant is true because:



Synthesizing Decoders

Loop Invariants

» Qur loop invariant is that:

> If, before iteration #j, m = MAX(arr,0,j-1), then:
> After iteration #j, m = MAX(arr,0,j).

for(int i=1;i<len;++i)
if (arr[i] > m) |

m = arr[i];

» The loop invariant is true because:
» If arr[j] <= m, then:

> arr[j] is not greater than some previous element (m).
> Thus the existing m = MAX(arr,0,j-1) = MAX(arr,0,j).
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Loop Invariants

» Qur loop invariant is that:

> If, before iteration #j, m = MAX(arr,0,j-1), then:
> After iteration #j, m = MAX(arr,0,j).

for(int i=1;i<len;++i)
if(arr[i] > m)

m = arr[i]; |

» The loop invariant is true because:
» If arr[j] <= m, then:
> arr[j] is not greater than some previous element (m).
> Thus the existing m = MAX(arr,0,j-1) = MAX(arr,0,j).
» If arr[j] > m, then:

» arr[j] is greater than all previous elements.
» Thus arr[j] is MAX(arr,0,j), and m becomes arr[j].
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So this slide begins by repeating the loop invariant from the last slide.
We can show that the loop invariant is true, because: if, before the
iteration, m contains the largest value from the first i values of the array,
then, one of two things is going to happen in the loop body.
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5.8 = MAX(arz.0,-1), then
i, MAX(aer.05).

Synthesizing Decoders T i s e e

e i P ——

Either the value of the array at the current position is not bigger than the
previous maximum value, in which case the previous maximum value is
still the maximum
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ing Decoders

5.8 = MAX(arz.0,-1), then
i, MAX(aer.05).

> The loog is true because:

e i P ——

Or, the current value is bigger than the previous maximum, meaning it is

the maximum value up to that point, and in which case we update m to

contain that value.



Synthesizing Decoders

Loop Invariants

int m = arr[0];
for(int i=1;i<len;++i)
if(arr[i] > m)

m = arr[i];

gl W N

return m;

» Because of line #1, before iteration #1, m = MAX(arr,0,0).
» After every iteration #j, m = MAX(arr,0,j).

» Specifically, after iteration #len-1, m = MAX(arr).
» Thus the code above correctly computes the array maximum.

» “Partially correct” because we have not yet proved termination.
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So, before the loop executes, m contains the maximum value from the
sub-array of length 1. Then, after each iteration j, m contains the
maximum value from the sub-array of length j+1. Therefore, after
iteration len-1, m contains the maximum value of the entire array. So the
code correctly computes the maximum value. We call that “partially
correct”: if it terminates, it does so with the correct value. But we also
need to show that the loop terminates when it reaches the end of the
array.



Synthesizing Decoders

Loop Variants

> A loop variant says that:

» If, before an iteration, the “amount of work remaining” is n
» Then, after the iteration, “amount of work remaining” is <n.
» The “amount of work remaining” cannot decrease forever.

» The variant function gives the amount of work remaining.
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Now we move on to loop variants. Loop variants describe the amount of
work left to compute, and show that the amount of work always
decreases, and can’t decrease forever.
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Loop Variants

» Define a variant v(i) = len-i (number of iterations left).

| Code i | v
for(int i=1;i<len;++i) | 1 9
if (arr[i] > m)

#
1
2
3 m = arr[i];

Assuming len = 10
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| Code i | v
for(int i=1;i<len;++i) | 2 8
if (arr[i] > m)

#
1
2
3 m = arr[i];

Assuming len = 10
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Loop Variants

» Define a variant v(i) = len-i (number of iterations left).

| Code i | v
for(int i=1;i<len;++i) | 9 1
if (arr[i] > m)

#
1
2
3 m = arr[i];

Assuming len = 10
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Loop Variants

» Define a variant v(i) = len-i (number of iterations left).

# | Code EREES
1 for(int i=1;i<len;++i) | 10 0
2
3

if(arr[i] > m)

m = arr([i];

Assuming len = 10

» When i=len (v(i)=0), the loop terminates.
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We specify loop variants in terms of a variant function. In this case, the
variant function is len-i, the number of iterations remaining. Let's
assume that len is 10. On the first iteration, there are 9 iterations
remaining.
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On the second iteration, there are 8 iterations remaining.

ing Decoders

ber of iteations lef).

> When s=ten (s(11=0), the loop terminates.
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On the ninth iteration, there is one iteration remaining.

ing Decoders

ber of iteations lef).

> When s=ten (s(11=0), the loop terminates.
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And, finally, on the 10th iteration, there are no iterations
loop test i<len is false; and so the loop terminates.

Synthesizing Decoders

> Define 3 varant +(3) = 1ea-3 (nur

remaining. The



Synthesizing Decoders

Loop Variants

1 for(int i=1;i<len;++i)
2 if(arr[i] > m)

3 m = arr[i];

» Properties of variant v(i) = len-i:

» For every iteration, v(i) >= 0 (non-negative, minimum 0).
» For each iteration #i, v(i+1) < v(i) (it decreases).

> Because i increases on line #1.

» v(i) can only decrease len-1 times (descent is finite).

» When v(i) becomes 0, the loop terminates.
» Therefore, the loop executes a finite number of times (1en-1).
» Therefore, the loop terminates.

» “Total correctness”: partial correctness plus termination.
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The fact that the loop has a variant function allows us to prove that it
terminates. We can establish these properties pretty easily: the variant is
always non-negative (greater than or equal to zero); it decreases on each
iteration; it cannot decrease an infinite number of times; and the loop
terminates when the variant reaches zero. Taken together, we have just
proven that the loop executions len-1 times, which means that it always
terminates. So now we know our code is “totally correct”, meaning, it
does what we expect it to do, and it also terminates.



Synthesizing Decoders

Decoder Loop Invariants and Variants

If we synthesize code with the properties below, it is guaranteed to
be a terminating loop that decodes the shellcode. As a bonus, it
encodes the shellcode automatically.

Loop variant: v(i) = len-i.

» Also, before iteration #0, some register rC is set to 1en=v(0).

Loop invariant:
» If, before iteration i, bytes 0..i-1 are decoded,
» Then after iteration i:

1. Bytes 0..i are decoded.
2. rC has decreased by one.
3. The new eip is either:
> The beginning of the loop (if rC != 0)
> The instruction after the loop (if £C == 0)



2016-11-08

Synesthesia: A Modern Approach to Shellcode Generation
LExtensions
Synthesizing Decoders

Synthesizing Decoders

So, if we want to synthesize code that has loops in it, we need to specify
what the loop bodies are going to do, and also that the loops terminate.
So we'll specify the synthesis behavior of our loop in terms of an
invariant and a variant, and if we can synthesize code with those
properties, then it's guaranteed to be a terminating loop that decrypts
our shellcode. As a bonus, it'll encrypt the shellcode for free.



Synthesizing Decoders
Changes to SIMPLE's Machine State

New SIMPLE Machine State

Registers |eip |She||code: Bytes sc | Pointer scptr

The new machine state model contains:

[

. The registers r0...r7, as before;
2. The program counter, eip;

3. The current shellcode contents sc;
4

. The current shellcode pointer scptr.
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We'll need to make some changes to SIMPLE to accommodate our
demands. First, we'll need to model the shellcode as part of the machine
state. We'll have an array called sc and a pointer into it called scptr.
We'll also model the current eip.



Synthesizing Decoders
Changes to SIMPLE

Instructions Added to SIMPLE:

getscbyte rX rX = sclscptr]
putscbyte rX sclscptr++] = rX
jnz rX, imm8 If rX # O, jump to eip-imm8

» Added instructions to get and set shellcode bytes.

> Added a jnz instruction.

Instructions Removed from SIMPLE:
inc rX dec rX or rX, imm32

» Removed a few arithmetic instructions.

» They didn't fit in the instruction set anymore.
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Then we'll add some instructions to get and set shellcode bytes, and a
jump-if-not-zero instruction for the end of our loop. The instruction that
gets the current shellcode byte consults the shellcode pointer scptr; the
instruction that sets the shellcode byte also uses the shellcode pointer,
and also increments it after it executes.Since we're adding three
instructions, we'll also need to get rid of three instructions; | chose a few
of them more or less at random.



Synthesizing Decoders

Decoder Skeleton

We synthesize two programs simultaneously:

1. Initialization

1 > Sets some register to the shellcode length

Loop Body 2. The loop body

» Decrypts a shellcode byte
Leaves all other shellcode bytes in tact

>
» Decreases the counter
>

Branches back to the top of the loop if
counter non-zero




2016-11-08

Synesthesia: A Modern Approach to Shellcode Generation

L Extensions
Synthesizing Decoders

Synthesizing Decoders o]

Now our synthesis problem is really two related problems. We'll
synthesize some code that executes before the loop, and the loop body.
The code before the loop has to set some register to the length of the
shellcode. The loop has to decrypt a byte of the shellcode, keep all of the
other shellcode bytes the way they were, decrement that register
containing the length, and then either branch back to the top of the loop
or exit the loop if the counter has reached zero.



Synthesizing Decoders

Decoder Skeleton: Initialization

Synthesis formula for initialization block:

Initialize

English Mathematics
Loop Body Some register rC 3 ctr € BV[3]
Contains the length of stateafter [regs[ctr]] == len

the shellcode
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The synthesis formula for the initialization is easy. We'll say, some
register has to contain the length of the shellcode — and we don't care
which register it is; let's call the register number ctr for counter.



Synthesizing Decoders

Decoder Skeleton: Loop Body
Synthesis formula for loop body:

If, before iteration:

scptr is within sc scptr < len-1 &&
sc[0...scptr-1] Vi € BV[32]'
is decoded i < scptr =

scl[i] == origsc[il

Then, after iteration:

] rC decrements rCafter == rC-1
LoopBody|| " Z--=-~-~-- - -~~~ --"—-“~“-- "~~~ -~ -~~~ —*
_scptr increments  scptTafrer== scptr+l
4 l sc[0...scptr] Vi € BV[32]-
is decoded i <= scptr =
8 sCAfter [1] == origscli]
If xC 1= eipafrer == TCAfter '= 0 7
Loop again @loop_body :

Otherwise terminate  @done
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The loop body formula is more complicated. Remember, our loop
invariants and variants consist of two parts: some statement about the
machine state before the loop executes, and a statement about the
machine state after the loop executes. So, before an iteration, if we
haven't reached the end of the shellcode array, and if all of the shellcode
bytes so far have been decrypted...

Then, after the iteration, the counter register has decremented, the
shellcode pointer has incremented, an extra byte has been decoded, and
eip is either the beginning of the loop again, or it's the address after the
loop ends.



Synthesizing Decoders

Decoder Skeleton

l‘

Fetch byte(s)

’ Decrement counter‘

v

’ Loop if non—zero‘

To make the problem more tractable,
we can break the body up into blocks,
and specify their functional constraints
individually.

This excludes solutions where parts
are interleaved.
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With the construction that we just showed, we specified the behavior for
the entire loop body. This means that the solver can generate solutions
where the counter decrement is before or in the middle of the decoding.
It gives the solver more freedom to come up with a solution, but it also
makes the formula harder to solve. We can make it easier by breaking the
loop’s responsibilities down into parts, and specify how the individual
parts are supposed to behave. This does exclude solutions where the
parts are mixed together with one another.



Synthesizing Decoders

Synthesized Decoder: No Encoding Restrictions

F3 40 00 00 00 mov r3, 40h

Qhere:

E3 FF FF FF FF add r3, OFFFFFFFFh
Co getscbyte r0

C8 putscbyte r0

FB F7 jnz r3, Ghere

> Here is a decoder synthesized with no encoding restrictions.

» Not very interesting.
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So here’s a basic decoder that | synthesized without specifying any
restrictions on the shellcode bytes. Because our loop iterations must
increase the shellcode pointer, and the only way to do that is with the
putscbyte instruction, the loop has to have a putscbyte instruction in
it. Since putscbyte overwrites a byte of the shellcode, the code has to
getscbyte to get the current value. The rest of the instructions relate
to establishing the counter before the loop, decrementing it within the
loop, and performing a conditional jump as the last instruction. It isn't
very interesting, because | didn't specify any encoding constraints.



Synthesizing Decoders

Synthesized Decoder: Some Bytes Randomly Disallowed

F5 40 00 00 00 mov r5, 40h

Qhere:

C3 getscbyte r3

E5 FF FF FF FF add r5, OFFFFFFFFh
D3 neg r3

CB putscbyte r3

FB FD jnz r5, Chere

» Some bytes in the shellcode were randomly disallowed.

» Applying neg to each byte bypassed the restriction.
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With this example, | took 64 random bytes, and then specified in the
encoding constraint that some bytes were illegal. So this example does
have to encode and decode the shellcode. We can see the neg r3
instruction in the middle of the loop; it turns out that that was enough
to bypass the restrictions that | put in place.



Synthesizing Decoders

Synthesized Decoder: Encode to Printable Characters

This example encodes each byte using two printable bytes.

mov r7, 40h

Qhere:
xor r5, 000000A4h
getscbyte r0 Decoded/Encoded
mov r2, 80008081h 20 | 50 28
getscbyte ril sc | ap 21
add ri1, ri 1c | 32 75
add r0, ri 29 | 3p 76

putscbyte r0
add r7, OFFFFFFFFh
jnz r7, Qhere

NOP instructions are in red.



2016-11-08

Synesthesia: A Modern Approach to Shellcode Generation
LExtensions
Synthesizing Decoders

e using two printable bytes.

Decoded)Encoded
10|50 28
ac | an 21
1|32
29|30 76

Synthesizing Decoders

This example allows uses two encoded bytes to represent one decoded
byte, where both encoded bytes are restricted to being printable. We can
see two NOP instructions in red. The encoding method and decoder that
it came up with are kind of unusual; | had to sort of reverse engineer it to
figure out what it was doing. | leave that as an exercise for the reader.



Synthesizing Decoders
Synthesized Decoder: Encode to ASCII Alphanumeric

This example encodes each byte using two alphanumeric bytes.

mov r6, 40h

Q@here:
getscbyte r4
add r4, 43D087B6h Decoded /Encoded
mov r2, r4 20 | 30 6cC
add r2, r2 sc | 38 50

getscbyte r0

xor r2, r0
putscbyte r2

add r6, OFFFFFFFFh
jnz r6, Qhere

1C | 7?7 77
29 | 7?77

NOP instructions are in red.
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This example allows uses two encoded bytes to represent one decoded
byte, where both encoded bytes are restricted to being alphanumeric. We
can see one NOP instructions in red — we don't actually need the register
r4 in this example. The encoding method and decoder that it came up
with are really weird. They actually do not work for every possible input
byte. There are 10 bytes that can't be encoded using this method — but
none of those bytes were in my input, so it doesn't matter. Again, | leave
it to the reader to figure out how this works.



Extensions

Input State Preconditions



Input State Preconditions
Conceptually

call $+5

pop ebx

; ebx contains this address
; ... Test of shellcode

> It may be impossible to implement something critical within a
given encoding.

» Many shellcodes must locate themselves in memory.

> GETPC: retrieve the current instruction pointer.

» What happens if we can't encode GETPC?
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Now, another extension of the idea. Sometimes, there is something
specific that the shellcode needs to do, such as retrieve its own address in
memory. It might be the case that none of the methods to do this can be
encoded within a given encoding restriction.



Input State Preconditions
Conceptually

» What if, by virtue of our exploit scenario, we know that
[esi+4] contains a pointer into the shellcode?

» We can avoid the need for a generic GETPC (that we can't
encode) by synthesizing a shellcode that only works under
that assumption.

» This is just an implication based on the input state.

3JCOMPON ENT%
VINPUT%

¢Program
INPUT%[mem [esi+4]]== &shellcode = ¢Functionality <

» This formula synthesizes a program that is only valid under
the assumption that mem[esi+4] == &shellcode.
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It might be the case that we know something special about the state of
the machine at the time when our shellcode executes. For example, if we
know that some register points to the shellcode, or that some memory
location contains the address of the shellcode, that we can use that in
place of a generic GETPC operation. We can take advantage of this
information very naturally: essentially we just encode within the formula
that the register or memory location contains the necessary address, and
then any shellcode that we generate will be able to take advantage of
that information automatically. So in this case, it gives us a way to
implement GETPC that is specialized to our situation, whereas we
otherwise would not be able to encode it.



Extensions

Integration with Exploit Generation



Integration with Exploit Generation

input = recv();
if (!validate(input)) return;
trans = transform(input);

vuln_exec(trans);

v

Model the execution path from recv to vuln_exec.

v

Synthesize shellcode at the point where vuln_exec runs.

v

This implicitly models all validation and transformation.

v

No need to specify encoding constraints explicitly.
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One more extension before we finish up. Basically, automated exploit
generation systems collect an execution trace from the point where the
input enters the process, until the point where the vulnerability is
triggered, and then it tries to generate an input that triggers the
vulnerability. We can piggyback on existing automated exploit generation
systems to also specify the behavior of the shellcode we wish to execute,
to cause it to not only generate an input, but also shellcode. There are
some limitations to this idea: basically, the constraints generated in this
fashion are very rigidly tailored to an execution trace, so it may restrict
shellcode generation more than what the program will actually tolerate.



Discussion
Limitations
Evaluation
Future Work
Source Release



Limitations
Constraints Can Be Hard

output = cryptohash(input);
vulnerability(output) ;

» Constraints can be difficult to solve.

> In this example, we need to invert cryptohash to generate
qualifying shellcode.

» Second preimage problem.

» Automated exploit generation has the same problem.
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Now we'll discuss limitations of the idea. First, as with anything that
uses an SMT solver, the queries can be hard to solve. On this slide, | am
supposing that the output of some cryptographic hash function is used to
trigger a vulnerability. For us to generate inputs that have specific
properties, we need to invert the hash function. Obviously, that is very
difficult, and we shouldn't expect to be able to solve those constraints in
a reasonable amount of time.



Limitations
Can't Quantify Over Arrays

d mc[256]: char Array - <«

» Problem: YICES won't let us quantify over arrays.



Limitations
Can't Quantify Over Arrays

d mc[256]: char Array - <« J mc00: char, mcO1: char - - -

char get_byte(char idx) {
switch(idx) {
case 0x00: return mc00;

case 0x01: return mcO1l;

» Problem: YICES won't let us quantify over arrays.
» Solution: Quantify over bytes; simulate array access.

> Not a very serious limitation for synthesizing arrays.
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Now for the second restriction, which is also a big deal. | used the SMT
solver YICES to implement the prototype, since it has a special solver for
the types of formulas that we generate. However, YICES doesn't let us
use arrays in quantifiers. So throughout the presentation, | used “exists
machine code array” to specify that our components in machine code
synthesis were an array of bytes. However, it turns out that we can't
actually do that, because we can't use arrays in quantifiers.
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However, this is not a very serious problem. Instead, | can just have 256

bytes worth of machine code, and use the function get_byte to simulate

array access during instruction encoding. This solves the problem with no
serious effects.



Limitations
Can't Quantify Over Arrays

d mc[256]: char Array -
V in: state - <

v

Problem: YICES won't let us quantify over arrays.

v

This means we can't use arrays as part of our state.

» No big deal for registers/flags.
» However, SMT-based analyses use arrays for memory accesses.

> Therefore, can't represent memory as part of the state.
» Therefore, can't model instructions that manipulate memory.

v

An implementation limitation, not a mathematical one.

v

A serious limitation, but not necessarily a permanent one.

» If any solver supports array quantification, we can use it.
> | didn't check whether z3 was suitable.
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But there is a second dimension to this limitation which is more serious.
Since we can't quantify over arrays, we can't use arrays as part of our
machine state. This is no big deal for the registers and flags, but it is a
killer for memory accesses, since we use arrays to model memory. So my
formulas can't synthesize any instructions that access memory. Note that
this problem is not a mathematical problem, but rather, a shortcoming in
the current implementation. It is possible that YICES will support this in
the future; it's possible that z3 or some other solver already supports it.
In other words, while this is a major limitation, it's also one that can be
overcome.



Limitations

Theoretical Limitations

» Can only synthesize “up to N"” instructions.
» Can't synthesize “an arbitrarily-long program”.
» Decoder variant/invariant templates are hard-coded.

» Other iteration orders are possible.
» We leave generalization to future work.
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And on the theoretical side, one permanent limitation is that we will
never be able to synthesize something that has an unspecified number of
instructions in it — we can only synthesize programs that are a specific
length, or "“up to" a specific length. Also, when synthesizing decoders,
my loop invariants and variants are very rigid, and discard a large number
of possible decoder loops. These problems can be addressed theoretically
— I've already begun working on them. Nevertheless, for now, only one
loop schema is supported.



Limitations
Current Capabilities

Capability SIMPLEMC | X86
Straight-line, No Memory
Straight-line, Memory Xs Xs

Equivalent Snippets

Shortest Solution

Decoder Synthesis Xs
Input Preconditions
Exploit Generation Xp Xg
Legend:
> /. support is present.

» Xg: not supported due to solver limitations.
» Xg: not supported due to external requirements.

» Xp: not supported due to pointlessness.
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So here's a summary of the current implementations and their limitations.

We can synthesize straight-line programs without memory accesses for
both SIMPLE and X86. We can synthesize equivalent programs for both

of

those languages, and find the shortest solutions. Decoder synthesis only

works for SIMPLE, since there was no point in modifying the X86

instruction set for the sake of a contrived implementation. We can deal
with input preconditions for both languages. Integration with automated

exploit generation is not supported, as that relies on external tools.



Evaluation

Task Time (s)

SIMPLEMC 2-line rO = 0 0.0

SIMPLEMC shortest 2-liner0O = 0 | 6

SIMPLEMC longest 2-liner0 = 0 | 0.0

SIMPLEMC empty decoder 127

SIMPLEMC exclude bytes decoder | 153

X86 3-line eax = 12345678h 0.6
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| tried to be very clear throughout the presentation that this can be slow.
If you weren't convinced then, you should be convinced now. Basically,
small sequences of code with loose restrictions can usually be generated
quickly. When the sequences get large, or the restrictions become
onerous, Synesthesia begins to take a long time and consume a lot of
memory.



Future Work

» Stochastic superoptimization
» Perhaps a generative model for mutations?
» Specialize YICES EXISTS/FORALL solver

» Profile for obvious bottlenecks with the general solver
» Custom implicant generalization heuristic?
» Custom SMT theory for X867
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Here are some ideas for making things faster. First, stochastic
superoptimization is a program synthesis technique based on genetic
algorithms. | think it would be particularly suitable in this case. Perhaps
you could integrate some sort of grammar-based mutation framework
based upon a specification of the encoding restrictions. Next, we could
try to specialize our SMT solver for this particular problem. It might make
sense to profile YICES as it's running to see if there are any obvious
inefficiencies in its search procedure. The EXISTS/FORALL solver uses a
special algorithm based on generalizing implicants; that could maybe be
specialized to this particular problem. And finally, maybe there are
improvements to be gained from explicitly creating a SMT theory for X86
instruction synthesis.



Discussion

Source Release

» Source release includes many YICES scripts that demonstrate
the features shown in this presentation.

» Both X86 and the SIMPLEMC language.

» Soon I'll announce the URL on my twitter account,
ORolfRolles.
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any VICES scripts that demonstrate

Discussion

| haven't uploaded the code to the Internet just yet. I'm going to do that
once | get back and have a chance to clean it up again. Follow me on
twitter for the URL, which I'll tweet in the near future.



New Course Offering

Support Weird Computer Security Research

New training course offering on SMT-based binary program analysis.

>

>

>

Written for low-level people comfortable programming in
Python; no particular math or CS background required.

Learn what SMT solvers are and how to use them.
Lecture material vividly illustrated like these slides.

Students construct a minimal, yet fully functional SMT-based
program analysis framework in Python.

» Dozens of small, guided programming exercises.

» Dozens of exercises using SMT solvers.

» Exercises applying SMT to binary analysis.

» Code an SMT solver, X86 — IR translator, ROP compiler?.

Available now for private offerings!
See website for public classes (January, Maryland, USA).

'ROP compiler application subject to potential replacement pending
forthcoming regulation of the computer security industry
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If you liked my presentation, or want to learn more about SMT solvers, |
teach training classes on this subject. | don't assume you know much
about math or academic computer science. Basically we code a complete
binary analysis platform in Python and use it to approach reverse
engineering problems. The class is available publicly — there is an offering
in January in Maryland — and also privately. Please see my website for
more details.



Conclusion

Any Questions?

v

This work broke the ground on automated shellcode synthesis
with arbitrary encoding restrictions.

v

Works decently for small sequences with simple restrictions.

v

More work is necessary for scalability and memory operations.

v

YICES source code is available for further experimentation.
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Any Questions?

ted shellcode synthesis

LConclusion

So that's it. This is to my knowledge the first approach at generic
shellcode construction under arbitrary restrictions. Right now it's works
alright for smaller sequences with simpler encodings, but it's still too slow
for some of the crazier extensions | discussed in the presentation. Feel
free to take a look at the code and play with it. And now I'll take any
questions.
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