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Abstract

By abusing the unintended use of virtualisation extensions in modern proces-
sors from Intel and AMD an attacker is able virtualise a running operating
system without needing a restart, placing itself as the hypervisor between
the operating system and the hardware. This thesis presents the design and
implementation of one such piece of software and discusses the prevention /
detection issues that are unique to these types of malware.
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Chapter 1

Introduction

Virtualisation is an increasingly growing industry with it being deployed
much more widely than ever before. With processor speed being able to deal
with having multiple virtualised hosts on a single machine it has allowed
even desktop machines to be accessible to this technology. Virtualisation has
become so important that CPU vendors such as Intel and AMD have added
in extensions to their processors that assist in writing and using hypervisors.
This has been done through an extended instruction set which allows for
the loading and unloading of guest virtual machines all controlled from a
hypervisor.

Rootkits have existed for a long time and are an important area of security
that should be studied. Detection and prevention of rootkits is essential as
another line of defence against attackers and to prevent any more harm from
occurring. They are used to help an attacker keep control over a system once
they have left, by hiding files/processes/connections and granting root access
when the attacker returns. Once this was only an tool that skilled attackers
would use against compromised hosts but rootkit techniques are now being
used by other malicious programmers such in commercial botnet programs
like the Storm Worm [1].

This paper shall be exploring recent research into rootkit design that
utilises these new virtualisation extensions to assist the rootkit in staying
hidden. Essentially they have taken on the role of a Virtual Machine Monitor,
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which sits outside of the operating system, making it extremely difficult for
the guest to discover that they are indeed in a virtual environment. One of
the principal developers of this new rootkit type has even gone so far to say
that it would be ‘100% undetectable’ [2, 30]. An introduction into rootkits
and their history shall also be presented to further show how this new type
differs from previous designs. There is a detailed account of known attacks
to defeat these types of rootkits, and how the rootkit can thwart these very
attacks. Finally I present my own incarnation of this type of rootkit and
protective hypervisor.

‘Know your enemy and know yourself, find naught in fear for 100
battles. Know yourself but not your enemy, find level of loss and
victory. Know thy enemy but not yourself, wallow in defeat every
time.’

– Sun Tzu
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Chapter 2

Literature Review

Since my topic has its background in two previously disparate fields, virtual-
isation and rootkits, this literary revue will cover both of them as individuals
and then in how they are now more recently intertwined. There is quite a no-
ticeable difference in the literature for the two, with virtualisation being quite
well documented by large companies who pioneered it such as IBM who were
the first to coin the term virtual machine with the M44/44X [3]. Compare
this to rootkits where a lot of the best references come from ’underground’
magazines such as Phrack [4].

2.1 Virtualisation

Virtualisation is a well documented field tracing its lineage back to the old
time share computers of the 60’s, the most notable of this era being IBM’s
CPCMS [5] Operating System (OS) which later became the base for VM370.
These OS’s were able to produce stand alone copies, or virtual machines, of
the computer itself each with their own operating system [6]. The type
of virtualisation used by these specific examples is particularly relevant in
that they were hypervisors [7] or Virtual Machine Monitors (VMM) using
full virtualisation. Full virtualisation is a technique used to implement a
virtual environment in which it has a complete simulation of the underlying
hardware. This means that all software that can normally be run on the
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unvirtualised hardware can now run in the VM without any modification of
the guest OS or the software [8].

There are two types of hypervisors, the type described above where the
virtualised software runs directly on the physical hardware and the second
that runs within an operating environment [9]. The focus shall be on type
I.

Since these beginnings virtualisation has become commonplace in many
fields with its uses such as for having multiple servers on one physical machine
[10], malware analysis in an environment that can be sandboxed and reset
[11], and efficient access to multiple operating systems for testing software
[12]. This has pushed hardware developers such as AMD and Intel to add vir-
tualisation extensions to the x86 architecture that helps negate performance
loss due to the virtualised state. The extensions are called Pacifica/AMD-V
[13] and IVT [14] respectfully. With antivirus labs using virtual machines as
a place to examine and analyse potentially malicious code and servers being
run as virtual machines the security of virtualisation is under scrutiny. The
idea that an attacker on one guest (virtualised OS) could attack another guest
on the same machine is a potential problem [15]. Malware have the potential
to add checks in their code to see if they are in a virtualised host and then
take actions against this [16]. These actions could be destroying themselves
or even go as far as trying to break out of the VM into the real system. A pa-
per released recently from Symantec researcher Peter Ferrie went into depth
describing how to detect if you’re in a VMware or VirtualPC sandbox, two
popular virtual machine emulators, and included assembly sourecode proof
of concepts [17]. It is interesting to note that AMD and Intel are in a mar-
keting and feature based war at the moment [18], which is one reason for
these virtualisation extensions. For the first time it’s no longer just about
the gigahertz that a processor runs at but rather the features of the CPU too.
This is important because with every new feature there is the possibility of
bugs being introduced into an instruction set that has been reasonably static
for a number of years. The fact that they’re competing to get out as many
features as possible also implies that testing is not as thorough as possible
meaning a higher chance of bugs or other errata.
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2.2 Rootkits

Rootkits first started to appear in 1994 on SunOS [19] and linux in 1996
[20]. These types of rootkits were basically backdoored daemons and com-
mand line utilities that allowed an attacker back into the system when they
wanted to. It usually came bundled with a modified version of tcpdump spe-
cialising in password sniffing. A computer would be compromised through
a vulnerability or a known password stolen from another system, the com-
puter rooted through another local vulnerability and then the kit installed.
The sniffer would be left on collecting passwords while the attacker cracked
the passwords from other accounts on the system. This would be then re-
peated on a new computer using the new passwords garnered from the current
host. Since then they have become much more complex with the introduc-
tion of abusing Loadable Kernel Modules to help avoid detection, which was
first proposed in Phrack 50 in 1997 [21]. The presented techniques such as
syscall redirection would become the basis of later rootkits such as SuckIT
(released in 2001) [22]. Despite the publication of these new techniques more
primative rootkits were still being widely used at the time such as T0rn [23].

Because of the nature of rootkits it’s very hard to have any statistical
data on how many were infected because they have to be found first. In 2004
a vulnerability in CVS was reported that allowed attackers to have arbitrary
code executed on a host running a vulnerable CVS server. The proof of
concept exploit was very unstable and only worked with one distribution. An
anonymous email a day later posted a full working exploit for any Linux /
FreeBDS / Solaris box, stating that they had known about this vulnerability
for years and had compromised all the cvs machines out there loading up
SuckIT onto many. This list included names like apache.org, perl.org and
kernel.org [24]. This showed that even in high security servers rootkits can
persist for many years undetected. Rootkits became more widely known with
Sony employing it’s own rootkit to help stop copyright infringement in 2005
[25]. They included Extended Copy Protection (XCP) and MediaMac CD-3
software on a number of music CD’s that when played in a computer installed
the software automatically, even before the End User License Agreement was
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presented. A researcher discovered this rootkit while running antirootkit
software [26] and reported this to the media with a full technical rundown of
the rootkit. Sony eventually recalled the CD’s and offered a DRM free version
and had a number of class actions brought against them [27]. Rootkits and
other malware such as worms started to use Sony’s rootkit as another method
of staying undetected, and have been detected in the wild [28]. Microsoft
released statistics stating that it had treated over 530,000 machines with the
Sony DRM rootkit on it [29].

2.3 Future Trends - Rootkits and Virtualisa-

tion

Experimental rootkits have started appearing in research groups that use
these new virtualisation extensions to hide completely outside of an operat-
ing system as a malicious virtual machine monitor that has claimed to be
‘100% undetectable’ [2, 30]. This obviously has created quite a lot of contro-
versy mainly targeted at the researcher Joanna Rutkowska who created this
rootkit code named ’Blue Pill’. It has prompted AMD [31] and a senior Xen
developer [32] to come out with statements trying to ’debunk’ her claims.
Unfortunately reading through these statements shows a reasonable lack of
understanding of what Blue Pill does. This could be partially attributed to
when it first came into the limelight it was used to bypass protective mech-
anisms in Windows Vista with the press misreporting that it was akin to a
root exploit [33]. Since then another researcher, Dino Dai Zovi, has written
a similar rootkit but for Mac OSX first demonstrated at BlackHat Briefings
06’ [34]. Rutkowska gave a 2 day course on understanding stealth malware
at Blackhat Briefings ’07 [35] where she dicussed currently rootkit techniques
and released the sourcecode to the new version of Blue Pill.
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Chapter 3

Malware and Rootkit Analysis

3.1 Type 0

The simplest type of rootkit, a userland rootkit, is more akin to a backdoor
than anything resembling a rootkit but for completeness it shall be listed
here. This is usually a backdoored commonly used executable, most often
suid root, that is either replaced or changed by the attacker in some way
through patches, hooks or injected code into the running process (such as
a daemon) that will allow them access to the system when executed in a
certain way. Common executable targets like this include passwd, login,
su, sudo, and can be any executable with suid privileges. These are often
bundled with other modified software that might aid the attacker in staying
undetected. An example of this would be an attackers ls binary that would
have a range of functions such as hiding the attackers files and displaying
modified access dates/times. These were the first sorts of rootkits to be
created and eventually found in the wild, but also the easiest to detect. The
best way to detect these sorts of rootkits is with software like Tripwire [36],
which in essence records the size of all the executables on the system and
will alert you when these change.

This type of rootkit is quite basic and reasonably uninteresting from a
current research standpoint. Current infection and hiding techniques are all
seem to use documented API’s making them not only easy to write but also
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easy to detect.

3.2 Type I

The next type of rootkit is much more advanced than the previously described
rootkit and starts to subvert the actual operating system instead of userland
applications. Rutkowska’s taxonomy [37] groups this type of rootkit into
two distinction areas; malware that modify relatively constant parts of an
OS and those that modify parts that are changing all the time. An example
of the former would be modifying parts of the kernel such as an interrupt
handler to use the rootkits syscall table, giving our rootkit control in the
kernel or even changing the syscall table itself. An example of the latter type
would be modifying data sections of running processes and the kernel. These
two types are called Type I and II malware respectively.

Type I malware is easily the most common type of rootkit that would
be found on a linux system if it was compromised by an attacker. They
are generally installed using one of two techniques. The simplest and most
common is just inserting a Loadable Kernel Module (LKM) into the running
kernel using insmod. This is a extremely easy way to get code running in
the kernel without much effort, but can be easily defeated by turning off the
ability to insert modules which can be done while compiling the kernel. The
most widely known rootkit that does this is adore written by Team Teso’s
’stealth’.

The second method of getting rootkit code to run in the kernel is to use
runtime kernel patching of /dev/kmem. This is not as widely used because
it’s technically more advanced and not usually needed as security isn’t often
that much of a concern to remove the ability to insert a LKM. This technique
was known to be theoretically possible for a long time but never actually
implemented until Silvio Cesare published his paper [38] in 1998. The first
documented rootkit that used this technique is SucKIT presented in Phrack
3 years later [22].

One technique that can be used to detect this sort of malware that is
similar to Tripwires technique is to take hashes or signatures of parts of the
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kernel that are often changed, but shouldn’t be. A difference in the hash
would indicate that a rootkit has modified part of the kernel that should
never be changed under normal circumstances. But for this to happen we
do need to have a original untainted hash in which to compare with, which
would have to be kept secure.

3.3 Type II

Type II malware is different from Type I in that it modifies only dynamic
resources to get its code run, such as function pointers in the kernel. The
benefit of this is that it these changes are hard to distinguish from legitimate
changes that occur in normal operation. This makes it much more difficult
to automatically verify a system’s integrity as described previously by taking
hashes since this data is changing all the time. Not nearly as much research
has gone into detection of this type of rootkit as we still don’t have any sort
of reliable way to detect type I rootkits.

A novel example is prrf [39] that is reasonably outdated now as it was
initially publicly released in 2002 but still an interesting example. It shows
how it is possible to backdoor a kernel through modification of the proc
file system without changing any system calls. This rootkit was able to do
everything a normal rootkit could do such as process/file/connection hiding
and giving root access to certain processes all through manipulation of proc
entries.

3.4 Type III

Type III malware is something entirely different to the previously described
types of rootkits and is closely related to the growing field of hardware as-
sisted hypervisors. This type of malware shall be the focus for the rest of
this document. While the other types of malware either live in user or kernel
land, type III malware lives completely outside of the operating system and
does not change any visible registers or memory of the running OS. This is all

10



achieved through new hardware assisted virtualisation additions on most of
the newer CPUs such as the Core 2 Duo’s from Intel with their virtualisation
technology VT-x and AMD’s SVM.

Hypervisor

Hardware

Guest VM Guest VM

Intended use case

Hypervisor

Hardware

Native OS

Rootkit use case

Image based from presentation from Lawson, Goldsmith and
Ptacek at Blackhat Briefings 07’ [49]

Through the addition of new opcodes that allow the setup, modification
and launch of Virtual Machines (VMs) an operating system can be put in
a virtualised state with a malicious hypervisor running in a protection level
that is above ring 0 with the normal ring 0 becoming the VMX non-root
state. This is the essence of the new additions in that it carves out a new
protection level called VMX root, which has been dubbed ring -1 by some,
where the Virtual Machine Monitor (VMM) resides. The VMM is generally
not very intrusive and only executes in response to certain instructions and
events in the VMX non-root operation. A VM-Exit is when the execution is
given to the VMM because of an event in the VM, and similarly a VM-Entry
is when a VMM gives back control to a VM. When setting up a VM certain
fields in the Virtual Machine Control Structure (VMCS), which is used to
set up the environment for a VM about to be launched/resumed, can be set
which allows VM exits to occur under different circumstances than normal
[40].
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The VMCS is extremely important as it manages the transition in and
out of VMX non-root operating as well as how the processor behaves in VMX
non-root operation. From Intel’s Software Development Manual 3B:

The VMCS data are organized into six logical groups:

• Guest-state area. Processor state is saved into the guest-state area
on VM exits and loaded from there on VM entries.

• Host-state area. Processor state is loaded from the host-state area
on VM exits.

• VM-execution control fields. These fields control processor be-
haviour in VMX non-root operation. They determine in part the causes
of VM exits.

• VM-exit control fields. These fields control VM exits.

• VM-entry control fields. These fields control VM entries.

• VM-exit information fields. These fields receive information on
VM exits and describe the cause and the nature of VM exits. They are
read-only.

The most important part of what is described above is that there is no
real change in the way the OS executes as far as it can tell. There is no
hooking, patching, or modification of any part of the OS as the rootkits
code is completely disconnected from the systems own code. While it is still
resident in physical memory somewhere it is not particularly obvious, but we
shall further expand on that point later in this document. In addition to this
a host can be virtualised on the fly without need of a restart.

From the Intel VT-x specification, ‘There is no software-visible bit whose
setting indicates whether a logical processor is in VMX non-root operation.
This fact may allow a VMM to prevent guest software from determining that
it is running in a virtual machine.’. One of the goals of Intel and AMD
with these new additions is to make being inside a VM as undetectable as
possible. Type III rootkits are not exploiting a bug but instead abusing
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a feature and features are rarely ever removed unlike bugs, which can be
fixed. In addition Intel or AMD would never have a hypothetical CHECK
instruction that would return true or false depending on whether you are in
a VM or not since this would defeat one of their main aims of not being able
to detect if you’re virtualised or not.

This is an ever-changing subject with researchers discovering detection
methods and attackers patching against them. It’s a traditional arms race.
What is interesting is how the tables are turned once the attacker gets inside
a machine. Usually all an attacker has to do is find one weak link in the
fence and they are in, but if they want to cover their tracks they have to
put up their own fences to stop an admin discovering the malware, an ironic
reversal on system security.

3.5 Public Implementations of Type III

This section will be for discussing known VM rootkits that will be quite brief;
with the rest focusing on currently known public attacks on these types of
malware. There is very little literature outside of blog posts and PowerPoint
presentations discussing these types of malware which is representative of
how new and closed off this research has been so far. There are some public
implementations of type III malware as mentioned before with the two high-
est profile implementations being Blue Pill 1/2 written by Joanna Rutkowska
and Alex Tereshkin for Windows Vista, and Vitriol for Mac OSX written by
Dino Dai Zovi. The source code for Blue Pill has been publicly released.

3.6 Weaknesses and current known attacks

3.6.1 Nested VMs

One of the first questions that come to mind with these VM rootkits is
‘can they be nested’, as in can multiple instances of them be run on the
same box living inside each other. The answer is yes, a VM rootkit can be
programmed to fully emulate VMX instructions allowing VM within a VM
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ad infinitum. But any VM malware that isn’t programmed to emulate these
new instructions can be potentially detected by trying to load up a simple
VM that will do some benign instructions. Failures would imply the host
may be within a VM.

Blue Pill is an example of a VMM that can emulate these instructions
and can have multiple copies of itself running on the same host while still
maintaining integrity ‘how many Blue Pills inside each other can you run
and still be able to play your favorite 3D game smoothly?’ [41].

3.6.2 Latency

Another basic attack is real world timing of events that would potentially
cause a VM exit, such as the CPUID instruction. If this was called repeatedly
over and over in loop timing the overall instructions with RDTSC, with a
log of the result kept, it could be used much like a low tech tripwire setup
to baseline the known good host to the future potentially compromised self.
The time difference would come because the trapped instruction would cause
a VM exit every time it’s called, in this case causing the CPUID return value
being changed, adding on only a very tiny time slice to the whole instruction
but is more noticeable when added together over time.

This was forseen since 1974 by Popek and Goldberg’s paper on formal
requirements for virtualisable architectures [42]. Both Intel and AMD have
included the ‘TSC Delta’ field in the Virtual Machine Control Structure
(VMCS) designed to offset the TSC results given to the guest. This was
essentially created to stop the described attack above. While the TSC field
is the easiest way to see how many clock cycles have occured between two
different instructions, processors have many more counters beyond the simple
TSC field that could be used to betray interference by a hypervisor. These
include HPET counters, performance counters, ACPI timers and MSRS that
can indicate timing and latency [49].

Another type of latency attack that is effective in detecting virtualisation
is to exploit the different cores that are in most modern processors. Assigning
two concurrent threads to two separate cores, the first executing a instruction
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that would cause a VM exit such as CPUID and the second incrementing a
counter until the first thread finishes. If the first thread takes longer than
it should as shown by the seconds threads counter then that would be an
indication that a hypervisor is present.

To give an indication of how much an impact having a hypervisor, even
a thin one, can on a sensitive instruction data from Ptacek and Goldsmiths
blackhat talk is presented below.

• 1. RDTSC

• 2. CPUID is executed 1,000,000 times

• 3. RDTSC

On a clean computer this series of instructions typically takes approxi-
mately 200 cycles. On an infected computer it took approximately 40,000
cycles. [49]

3.6.3 TLB and CPUID

The CPUID opcode can be used to determine processor type and certain
features such as checking for VMX support, and is a instruction that would be
trapped by a hypervisor if it was being run inside a VM. What is particularly
interesting about this instruction is that other than causing a VM exit it is not
destructive to the TLB cache. This makes it perfect for an attack described
in Ferrier’s paper [17], taking advantage of cache timing in the TLB.

If the TLBs are all flushed then the time it takes to access a new page can
be recorded by reading the TSC before and after the access. This value can
then be averaged out across all the TLBs, which are then filled with random
data. The reading process is then repeated, yielding the average time it takes
to read a cached page, which is again averaged out across all TLBs. Armed
with these two averages we can attempt to see if we are inside a VM.

Then the CPUID opcode is executed, causing a VM exit switching to
the hypervisor. This switch will flush out some of the TLBs, which the
hypervisor could not possibly stop as it happens before the hypervisor gains
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control. When the control is returned back to the VM the TLBs are all
reread and timed. If any of the access times matches that of reading a newly
paged piece of memory instead of what should be there, a cached page, then
a VM exit must have occurred meaning the host is a VM.

AMD’s SVM differs from Intels VT-x in this regard because they have a
system called Address Space ID (ASID) [43]. This prevents a TLB flush from
occurring when there is a context switch between a VM and its hypervisor.
This was actually designed to help performance but has the extra feature
that it avoids detection by this technique. Intel will most likely follow suit
and bring in something similar to this for the VT-x platform.

3.6.4 Direct Memory Access (DMA)

DMA can be potentially used to completely dump out the physical memory of
the computer without the intervention of the CPU as the hardware interfaces
directly to the memory controller. The simplest way to do this is over the
firewire bus, first brought into the limelight at Cansec West [44] then at
Ruxcon where it was shown this technique also applies to Microsoft Windows
[45]. This could potentially be used to pull a VM hypervisor out of physical
memory for analysis without the VMM being able to stop or know about it.

Unfortunately AMD64 PCI/HyperTransport Northbridge (the interface
between the CPU, memory controller, and PCI) has control/status registers
(CSRs) ‘that map physical address ranges to I/O address space (that is, the
range of memory addresses that are serviced by peripherals, not DRAM).
This mapping is implemented in between the bus and the memory controller,
and not mediated by the CPU. Which is to say, you can program the AMD64
Northbridge to remap physical addresses for devices on the PCI bus. In
particular, you can map any physical address back to I/O space, so that
when your Firewire OHCI controller tries to read it, the Northbridge bounces
the request back out to the PCI bus.’ [46] This was originaly presented at
Blackhat [47].

Input/output Memory Management Units (MMU) are MMU’s that con-
nects DMA a capable I/O bus to the primary storage memory and maps
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virtual addresses to physical addresses in the RAM [50]. Intel, AMD, Sun
and IBM have all published specifications on their implementations that will
be shipping on future processors. Abusing IOMMU would make DMA from
a device like Firewire impossible which has similar implications as described
above. Once IOMMU’s are on processors there will be no true DMA avail-
able anymore potentially making it more difficult for forensics teams to get
an unobtrusive snapshot of a system.

3.6.5 External Hardware Timing

There is little a VMM can do to stop people outside the computer hooking
up a piece of hardware that records the number of CPU cycles or how long
it takes to do a single instruction and check that against a previously taken
baseline. The fact is that while it is vulnerable to this attack, it’s not very
feasible to do on large scale, such as in an enterprise situation, or in most
users homes and will not be covered past this point.
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Chapter 4

Design and Implementation

This section presents the design and implementation of my own Type III
malware the Flying Spaghetii Hypervisor (FSH), including the reasons chosen
for such design decisions. FSH is both a rootkit and a protective hypervisor
(a Supervisor) with both modes of operation discussed.

4.1 Conceptual Design

One of the goals of FSH is to ‘Keep It Simple, Stupid’ or KISS. As FSH is
a Proof Of Concept (POC) it is not designed to have any advanced features
that a real rootkit might have such as the ability to hide itself in memory. It
only has a basic ability to virtualise the running OS, grant specific process’s
root privileges and if needed unload itself to allow another hypervisor to be
loaded up.

To have the ability to run a number of privileged instructions needed to
successfully virtualise a running computer it is necessary to be at kernel level
or ring 0. As such FSH is designed as a Loadable Kernel Module (LKM) that
is loaded into the kernel through the command ‘insmod’. Another potential
approach considered was using the rootkit technique of runtime kernel patch-
ing through /dev/kmem (or /dev/mem which is all memory including kernel
memory) but instead opted for writing a LKM which is the simplest way to
get in this privileged mode. In a real rootkit it would most like use the latter
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technique, as not allowing loadable kernel modules is prevalent in hardened
systems.

FSH is only memory resident and does not have any infection techniques
that would allow it to survive a reboot. This can be an advantage to malware
as there are no files in the file-system that have to be hidden. In addition
it becomes harder to get a copy of the rootkit once it has been installed
as it is in control of the host OS. This coupled with anti-DMA techniques
discussed previously makes it nigh impossible to examine even in a controlled
circumstance if installed previously. During the development phase this was
a boon as the development machine was a clean slate upon every reboot.

Most of the design of FSH is already laid out by Intel as it is mostly
launching a virtual machine described in their software manuals, the fact
that it is the running OS is irrelevant.

4.2 Implementation

FSH has gone through two iterations with the first being discarded because
of too much complexity. It was originally based off Xen, an open source
hypervisor, but because of the way that Xen had structured its code as a
high-level production hypervisor FSH’s complexity started to grow. The
code was much more complex than it needed to be as a POC and as such the
development on that code was scrapped. This was because Xen is designed
to support multiple VM’s and CPU’s, neither of which FSH was going to
and a large array of other features [51]. Basing the original code off Xen
allowed me to understand in greater depth how larger hypervisors work but
ultimately was not the route that should have been taken. The second, and
current, iteration is based heavily off ‘mobydefrags’ VMM framework [52]
designed for the Windows OS and small select parts of Xen.

Currently the code is only designed for a single core system to simplify
development as this means there is no chance of the other core doing any
actions during particularly sensitive times when the hypervisor thinks that
it is atomic. It has been tested on Linux kernel 2.6.22. This is especially
important in keeping the state of the virtualised OS in the same state between
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VM Exits/Entries and the initial setup of the VMCS. Windows, Mac OSX
and Linux have the option to configure the number of running cores on the
fly.

FSH is quite simple in that it only had two logical parts; the setup phase
and the VMM handler code.

4.2.1 VM Setup

The initial step is to allocate a number of areas of memory for the VMXON
and VMCS regions. A VMCS is needed for each VM while the VMXON
region is required for the VMM to run. The VMCS region is created in non-
pageable memory by the VMM of the size reported by the MSR IA32_VMX_BASIC.
The first 32 bits of the VMCS is then initialised to the VMCS revision iden-
tifier. From this point FSH can enter VMX root operation by executing a
VMXON with the address of the VMXON region.

The VMCS region is cleared with the VMCLEAR instruction supplied
with the guest’s VMCS address. This initialises the VMCS region in mem-
ory and sets the launch state of the VMCS to ‘clear’. Before issuing any
VMWRITES a VMPTRLD instruction is used to set the active VMCS to
our VMCS.

At this stage the VMM can start to fill the VMCS structure with data
gleamed from the running operating system that will control the execution
of the VM once it is running. A short list of items needed to be loaded into
the VMCS is

• Control registers (CR0, CR3 and CR4)

• Selector fields for the segment registers (CS, SS, DS, ES, FS, GS and
TR)

• Base address fields (for FS, GS, TR, GDTR and IDTR; RSP, RIP and
the MSRs that control fast sytem calls)

• VM-exit control fields

• VM-entry control fields
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• VM-execution control fields

Most values can be read directly from MSRS and written with little to
no modification.

rdmsrl(MSR_IA32_SYSENTER_ESP, msrVar64);

printk("HOST_IA32_SYSENTER_ESP %lx, msrVar64);

__vmwrite(HOST_IA32_SYSENTER_ESP, msrVar64);

Reading from a MSR and writing to the VMCS

Inline assembly is used throughout the code to move values from and
to specific registers and other instructions that are not accessible through
normal C code.

asm("mov %%fs, %0\n\t" : "=r"(sr));

printk("HOST_FS_SELECTOR %x\n", sr);

__vmwrite(HOST_FS_SELECTOR, sr);

//Store Task Register

asm("str %0\n\t" : "=r"(sr));

printk("HOST_TR_SELECTOR %x\n", sr);

__vmwrite(HOST_TR_SELECTOR, sr);

Example inline assembly usage

Once this structure is filled and set up properly a VM launch can occur
allowing the hardware to successfully virtualise the OS described within the
VMCS.

The VMM entry code is invoked whenever the active VM does an action
that the VMM is trapping or needs to know about. This allows the hyper-
visor to step in and tweak anything that it might need. FSH tries to trap
on the least amount of actions possible to have the smallest impact on the
running VM.
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VMXON

VM Entry

VM Exit VM Exit

VM Entry VMXOFF

Non-VMX
Operation

VMX Root
Operation

VMX Non-Root
     Operation

VMX Operation and VMX Transitions

The reason for the VMM to start executing (in the VMX root operation)
is stored as a field inside the VMCS as the ‘exit reason’. If the read exit
reason is valid the exit-qualification field provides more details on the VM-
exit. Depending on this other information other information is read from the
VMCS relevant to the exit reason and qualification.

Below is a table giving an outline of what FSH traps on and how it handles
them.

• VM* Instructions - If FSH was going to support nested hypervi-
sors such as multiple versions of itself running inside each other, this is
where the command emulation would be handled. Currently this isn’t
supported so all the VMX commands except for VMCALL are ignored.
These instructions effectively do nothing other than cause a VM exit
and subsequent entry. These include VMCLEAR, VMLAUNCH, VM-
RESUME, VMPTRLD, VMPTRST, VMREAD, VMWRITE, VMX-
OFF and VMXON.

• VMCALL - See Supervisor Mode section.
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• INVD (Invalidate Internal Caches) - The INVD instruction is
trapped but not tweaked.

• ReadMSR - ReadMSR instruction is trapped but not tweaked.

• WriteMSR - WriteMSR instruction is trapped but not tweaked.

• CPUID - CPUID instruction is tweaked by entering in dummy values
into EBX, ECX and EDX unless the EAX register is not 0x0. This is
done to allow us put any value in there before doing a CPUID that will
show us the non-tampered values.

• MOV to/from CR3 - This is a more complex operation that has to
be trapped as VMM has to find whether CR3 is being written to or
read from and into which register the value should be returned to. The
final CR3 value is not changed.

Finally after the reason for the VM-exit is handled, interrupts are turned
back on through an ‘STI’ instruction and the guest resumes execution. If
there are any problems handling the exit, such as an unhandled VM-exit
reason, VMX operation is turned off and the guest returns to normal opera-
tion non-virtualised.

Initially FSH was envisioned separate from the protective hypervisor or
‘Supervisor’ as they were both had opposite jobs and having them as separate
spin offs from a shared code base was logical. During development it became
clearer that this would not have to be the case because of that exact logical
reason - they both did opposite jobs. It is enough to have a simple if-then-else
statement in two parts of FSH to separate the distinct roles each play as the
Supervisor ignores all requests for a root UID and FSH ignores all the VMX
instructions. The differences in execution of the two are described here.

Rootkit Mode

One of the main features of a rootkit is to give root priveledges to a non-root
account through a backdoor. There are a large number of different ways
this could be accomplished such as manipulating /proc entries or scanning

23



through memory to change a processes UID to 0. The simplest method
to implement a backdoor in the kernel is through syscall hooking which is a
tried and true technique. The syscall table has to be found in kernel memory,
as it is not exported in 2.6.* kernels, and then patched to call the hooking
function instead of the original. FSH hooks ‘setuid’ and when a magic UID
is requested, such as 1337 in this case, it gives the process root privileges
instead of the requested UID.

int

main(void) {

setuid(1337);

system("/bin/sh");

return 0;

}

Example userland program using the backdoor

Since this modifies the kernel in a basic way it would be simple to spot
by most rootkit detection code as the syscall table should not be modified
in normal operation. If this were a non-POC a stealthier technique could be
used. One example of this is would be finding the process’s task_info struct
in memory and changing it’s UID to 0.

Supervisor Mode

The Supervisor is meant to be the chief hypervisor allowing other hypervisors
to be loaded up inside it. The supervisor only lets authorised software access
to the VMX instructions through signed VMs or passwords. But emulating
all the VMX instructions completely is beyond the scope of this code. FSH
in this mode instead removes itself from the kernel and unvirtualises the
OS allowing a new hypervisor to replace it. This is achieved by passing a
password established at compile time to FSH through a VMCALL, with the
password being loaded into the EBX register.

This would stop any other rootkit like FSH for working while FSH in
supervisor mode is currently loaded.
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int

main(void) {

asm( "mov $0x13371337, %ebx\n\t"

".byte 0x0f,0x01,0xc1" //vmcall

);

return 0;

}

Example userland program using VMCALL to trigger a backdoor
with the magic number 0x13371337
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Chapter 5

Discussion

This section contains a brief discourse on virtualisation security and issues.

5.1 Hypervisors in Operating Systems

I do not believe this is the direction that next generation malware and rootkits
are going to take. While it can have a number of advantages over a traditional
kernel rootkit it is not necessary to go to these lengths to still achieve around
the same level of stealth. The current size of the Microsoft Windows, Linux
and Mac OSX kernels means there a huge array of different places a rootkit
can potentially hide. While it may be prudent to include the ability to
‘hyperjack’ a running OS within a normal kernel rootkit this will not be the
norm for a long time as it isn’t really necessary. Examining the history of
rootkits again shows rootkit authors took a number of years to start using
techniques such as runtime kernel patching after they had been publicly
known.

What is happening though is the proliferation of hypervisors included
inside operating systems for not only server architectures but desktops as
well. Sun Solaris has had Logical Domains, their hypervisor, since 2001.
The Linux kernel has Kernel-based Virtual Machine (KVM) as of 2.6.20.
Microsoft has released Windows Server 2008 RC0 to TAP customers [53],
which features their Viridian hypervisor in a server role. Mac OSX has no
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plans to include any virtualisation built into it rather opting for 3rd party
solutions such as Parallels [54]. The future of the hypervisor rootkits is, in
my opinion, the hijacking of already running VMM’s or infecting the loading
scheme allowing a malicious hypervisor to be loaded instead of the correct
one.

Hypervisors have been used for security in the past such as for the Xbox
360. Their hypervisor was designed to only allow code signed by Microsoft’s
private key allowing them control on what ran on their hardware. But their
software was not without problems. In early 2007 an ‘anonymous hacker’
posted details for a privilege escalation vulnerability to hypervisor level in
the Xbox 360. This coupled with another method to inject data into non-
privileged memory areas allows arbitrary code to be run, such as another
operating system, with the full privileges and hardware access.

While this vulnerability wasn’t a security risk as such for an end user
it did demonstrate that an attacker could subvert a hardened close source
hypervisor in a difficult environment. In recent months there have been a
number of high profile security bugs found in different virtualisation software,
most notably VMware [55]. With hypervisors starting to be shipped in
operating systems by default they too will come under scrutiny for security
flaws similar to the Xbox 360 hack. A flaw could potentially allow an attacker
to inject their own code into a running hypervisor or ‘hop’ to the host OS /
other VM’s running along side the compromised one. Exploits for a VMM
such as VMWare might be even more worthwhile to an attacker than a kernel
bug in the future.

‘You are absolutely deluded, if not stupid, if you think that a
worldwide collection of software engineers who can’t write op-
erating systems or applications without security holes, can then
turn around and suddenly write virtualization layers without se-
curity holes.’

Theo de Raadt in an October 24th, 2007 message on the
OpenBSD -misc mailing list.
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5.2 Detection Issues

In the past year there has been a lot of research by different parties into
seeing if an operating system can find out that it is actually inside a virtual
machine. A number of new techniques have been developed, some of which
are discussed earlier in this paper, which would make it very difficult for a
hypervisor to continue to fool the operating system. At the end of the day
the hypervisor must be taking some resources away from the host computer,
no matter how small that might be, it is still having an impact which can be
detected. This is no longer being argued by anyone. But one of Rutkowska’s
main points in her talk at Blackhat 07’ was on the ubiquitous nature of
virtualisation detecting that something is virtualised will soon be expected.

‘As hardware virtualization technology gets more and more widespread,
many machines will be running with virtualization mode enabled,
no matter whether blue pilled or not. In that case blue pill-like
malware doesn’t need to cheat that virtualization is not enabled,
as it’s actually expected that virtualization is being used for some
legitimate purposes. In that case using a ‘blue pill detector’, that
in fact is just a generic virtualization detector is completely point-
less.’

Joanna Rutkowska [56]

Displaying that there is virtualisation occuring does not immediately im-
ply that there is a malicious hypervisor. This coupled with infecting an
already running hypervisor makes for an extremely difficult detection arms
race for the defenders. A number of the detection methods put forward
by researchers have been ‘hacks’ and exploiting errata, neither of which are
reliable in the long run and may even differ from different generations of
the same processor. I share Rutkowska’s opinion that the security industry
should not be based on such unreliable techniques. If we have to use such
things as this then the computer industry is in a bad state for the future.
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5.3 Hypervisor Shims

When trying to detect a rootkit the winner of the battle is the one that can
get in ‘lowest and first’. That is the closer the software is to the hardware, the
harder it is to detect. This is because the detection software is still relying
on parts of the operating system to give it information and tell the truth,
which can be altered by malicious software. For example it is hard for a
userland program to check the kernel as it is relying on infomation from the
compromised kernel.

Having a small hypervisor shim, that would have only a small impact
on the performance of the computer, is the easiest way to defend against
another hypervisor rootkit. This is exactly what my Supervisor is. A simple
Supervisor would only allow verified VMs or hypervisors to be loaded up in
its place through either passwords or through code signing. The Supervisor
could then be thoroughly checked for any vulnerabilities more effectively than
it’s larger cousins because of its small size. Unfortunately no VMM has any
support for this sort of protection and could potentially load up FSH without
any complaints. This has not being tested though, but Blue Pill is reported
to work within VirtualPC.

As mentioned earlier in this chapter most operating systems are shipping
their own hypervisors built into the kernel itself. It is not infeasible for them
to have a ‘shim’ mode where they would act as I described above. I believe
it is an easy solution to malware getting in ‘lowest and first’.
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Chapter 6

Conclusion

This thesis has addressed the issues around type III malware and virtualisa-
tion in general. I have presented the first public hypervisor rootkit/supervisor,
the Flying Spaghetti Hypervisor, designed for the Linux kernel. The source
code to which will be publicly accessible under the GPL.

In addition to this virtualisation techniques and prevention have been
discussed with the idea of a pre-installed hypervisor shim.
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