
Virtualisation: The KVM 
Way

Amit Shah
amit.shah@qumranet.com

foss.in/2007



Copyright © 2007 Qumranet, Inc. All rights reserved.2

Virtualisation

Simulation of computer system in software
Components

Processor Management: register state, instructions, exceptions
Memory Management: paging, protection, TLB
IO Management: storage, human interface

Essentials:
Performance
Fidelity



Copyright © 2007 Qumranet, Inc. All rights reserved.

Uses

Server consolidation
Testing, R&D
Virtual Desktops



Copyright © 2007 Qumranet, Inc. All rights reserved.4

Virtualisation Basics

Trap changes to privileged state
Guest cannot access hardware

Hide privileged state
Guest cannot detect that the host is changing things behind its 
back

Example: interrupt enable flag



Copyright © 2007 Qumranet, Inc. All rights reserved.

A Look Back

“Native” Hypervisors
Have a runtime
Need a “primary” guest OS
Examples: Xen, VMWare ESX Server, IBM mainframes

Containers
Different namespaces for different guests
Run on host kernel
Userland can be different from host
Examples: OpenVZ, FreeVPS, Linux-Vserver

Paravirtualisation
Emulation

Examples: qemu, pearpc



Copyright © 2007 Qumranet, Inc. All rights reserved.6

Virtualisation

Simulation of computer system in software
Components

Processor Management: register state, instructions, exceptions
Memory Management: paging, protection, TLB
IO Management: storage, human interface

Essentials:
Performance
Fidelity



Copyright © 2007 Qumranet, Inc. All rights reserved.

The KVM Approach

We had most of the hypervisor ready: Linux
Reuse code as much as possible
Focus on virtualisation, leave other things to respective 
developers
Integrate well into existing infrastructure, codebase 
and mindset
Linux

Add capability to run a guest

qemu
IO virtualisation

Difference from emulation is emphasis on near-native 
performance



Copyright © 2007 Qumranet, Inc. All rights reserved.8

KVM Process Model

kernel

task task guest task task guest



Copyright © 2007 Qumranet, Inc. All rights reserved.9

KVM Process Model (cont'd)

Guests are scheduled as regular processes
kill(1), top(1) work as expected
Guest physical memory is mapped into the task's 
virtual memory space
Virtual processors in one VM are threads



Copyright © 2007 Qumranet, Inc. All rights reserved.10

KVM Execution Model

Native Guest
Execution

Kernel
Exit Handler

Userspace
Exit Handler

Switch to
Guest Mode

ioctl()

Userspace Kernel Guest

Lightweight 
Exit

Heavyweight 
Exit



Copyright © 2007 Qumranet, Inc. All rights reserved.

X86 Hardware Extensions

'guest mode' in addition to user and kernel modes
Raise a trap for all privileged instructions
Virtualised registers
Processor

Intel-VT (VMX)
AMD-V (SVM)

MM
EPT (Intel)
NPT (AMD)

IO
VT-d (Intel)
IOMMU (AMD)



Copyright © 2007 Qumranet, Inc. All rights reserved.12

What's handled in the kernel?

CPU virtualisation (special instructions)
MMU virtualisation
Local APIC, PIC, and IOAPIC
(planned) paravirtualised network and block device
(planned) paravirtualised guest kernel support 
code



Copyright © 2007 Qumranet, Inc. All rights reserved.13

Flow Example: Memory Access

Guest accesses an unmapped memory location
Hardware traps into kernel mode
kvm walks the guest page table, determines guest 
physical address
kvm performs guest physical -> host physical 
translation
kvm installs shadow page table entry containing guest 
virtual -> host physical translation
Processor restarts execution of faulting instruction



Copyright © 2007 Qumranet, Inc. All rights reserved.14

KVM on other architectures

s390
IBM mainframes: hypervisor is a must
WIP

IA-64
Patches ready for review

x86
kvm-lite

Embedded PowerPC
Architecture support for hypervisor
WIP



Copyright © 2007 Qumranet, Inc. All rights reserved.

Paravirtualisation

Modifying guest OS for performance
Virtio

Common drivers for all hypervisors
Hypervisor-specific backend
KVM backend in progress
Faster performance
Efficient block, net drivers

PV DMA
Pass through Ethernet devices



Copyright © 2007 Qumranet, Inc. All rights reserved.

Distro / Industry interest

libvirt
Managing various guests under a hypervisor
Support for Xen, KVM
APIs between UI, middle layer and virtualisation backend

Distributions
Debian
Ubuntu
RedHat EL
SLES

Also ported to FreeBSD



Copyright © 2007 Qumranet, Inc. All rights reserved.

KVM Pros

Leverages Linux scheduler, memory management, I/O
No scheduler involvement for I/O
Uses existing Linux security model (can run VM as 
ordinary user)
Uses existing management tools
Power management
Guest memory swapping
Real-time scheduling
Leverages Linux development momentum



Copyright © 2007 Qumranet, Inc. All rights reserved.

Release Philosophy

Development snapshots every 1-2 weeks
Release early and often
Features introduces quickly
Bugs fixed quickly
Bugs added quickly
Allows developers and users to track and test the latest 
and greatest

Stable releases part of Linux 2.6.x
With bugfixes going into Linux 2.6.x.y



Copyright © 2007 Qumranet, Inc. All rights reserved.

KVM is Developer-friendly

No need to reboot (usually)
Netconsole, oprofile, all the tools work
Small codebase
Friendly community



Copyright © 2007 Qumranet, Inc. All rights reserved.

Future

Consolidate various virtualisation solutions existing in 
the kernel
More architecture support
More hardware features support
More paravirtualisation support
Improve guest scaling
Support for management layers like libvirt



Copyright © 2007 Qumranet, Inc. All rights reserved.

Do Read

drivers/kvm/*
KvmForum2007 wiki page on http://kvm.qumranet.com
kvm-devel@lists.sourceforge.net
virtualization@lists.osdl.org

http://kvm.qumranet.com/kvmwiki/KvmForum2007
http://kvm.qumranet.com/


Thank You


