Dissecting Windows XP Svchost Internals
[Craniology of RPC Svchost by Reverse Engineering]

Aditya K Sood aka OknOck
Security Researcher
SecNiche Security
http://www.secniche.org

Foreward

Author

This document serves to be as research layout of Sec Niche
security. The analysis holds information that is specific in the
context in which it is presented. I would like to thank Mr.
Pedram Amini [Lead Researcher, Tipping Point, OpenRCE] for
continuous discussion and support in completion of this analysis.

Contents

1] ADStract. ..o

2] Anatomy of Svchost Process...................

3] Dissecting Working Stature of Service HOSt........ccccvvviiiiiiiiiiiinnninn.
4] IDAG Cross Structural Dissection of Svchost.........c..cooiiiiiiiiiiann...

5] Disassembling Svchost Registry Paradigm
6] Calling Kernel Land Modular Functions.....

7] Disseminating Svchost Critical Section Object Usage.......................
8] Dependency Walking of a RPC Svchost Process........ccccvvvviiiiiennnn...
9] Mapping EPMapper Endpoints: RPC Svchost Inheritance.................

10] Tokens Anatomy in RPC svchost process
11] CoNClUSION...cciiiii i

Abstract

The paper solely relates to the core internals that build up the Windows XP Svchost.
The Svchost internals have not been disseminated into informative elements yet. The
anatomy of Svchost has got complexity in its own term. This pushes me to write a
specific analysis over it. The analysis provides a structural design with concept wise
dissection. The point is to understand the hidden artifacts and how it affects the
working aspect of prime service host controller.

[2] Anatomy of Service Host (svchost) Process:

Every process is disseminated into primary process and secondary process. In terms
related to operating system there is a parent process and its child. If one look at the
implementation scenario then child processes are undertaken as thread internally.
The kernel level implementation is subjugated like this. The parent process is always
termed as services. Under it number of service threads is hosted as different child
process. A unique thread Id is given to every individual There is no interdependency
between threads. Thread run as a unique entity.

In windows XP SP2 the Svchost child process and parent process mainly runs under
DEP ie Data Execution Protection. The DEP flag is always switched on. This is
because DEP marks every single memory location in a process as non executable
unless location explicitly contains executable code. It depends on processor hardware
to define the working implementation of DEP. The DEP protects the process memory
space to be exploited by malicious code insertion. The windows services and svchost
is also protected by the DEP as DEP functions work on a per-virtual memory page
basis, and DEP typically changes a bit in the page table entry (PTE) to mark the
memory page. At first point we have concluded that svchost is protected by DEP.

The Svchost is termed as Generic Host process for win32 services. The second part
we are going to analyze is the types of services are hosted under it before getting to
the core. The svchost supports mainly runs as:

1] Local Service.
2] Network Services.
3] System.

The above mentioned processes are undertaken as specific USER that are recognized
by the OS internally.lt runs under NT-Authority system. The OS provides a execution
context entity in which local, system and network services are defined.The
implementation is based on it. You can say these entities define the execution
characteristic of the hosted services. Let’s look at some of the examples:

C:\WINDOWS\System32\svchost.exe -k imgsvc [System]
C:\WINDOWS\system32\svchost -k DcomLaunch [System]
C:\WINDOWS\System32\svchost.exe -k NetworkService [Network Service]
C:\WINDOWS\system32\svchost -k rpcss [Network Service]
C:\WINDOWS\System32\svchost.exe -k LocalService [Local Service]

The hosted services are Image Service, Dcom , RPC , Network and Local Services. It
is a structural view of implementing a service in Generic Host process.

[3] Dissecting Working Stature of Svchost:

Let’'s dissect it internally. At kernel level the Service process is divided into
characteristic entities as Thread ID, State, Context Switch , Base priority and
Dynamic priority. The thread identifier is used for its identification at kernel level.
The state can be any Wait:Executive ,Wait:UserRequest etc. The Context Switching
is intra process sharing of memory when one thread is free and handle of execution
is shifted to another thread for some time. It is undertaken by a timer that sets the
context switching time. The svchost thread execution working functionality is defined
as base priority or dynamic priority. These all entities combine together to defined
the svchost mechanism. For analysis | will disseminate the rpcss Network service to
understand the Windows Svchost functionality.

svichost exe+042509

rposs.dllServicetd ain+159a3
RPCRTA4.dlIll_RpcBCacheFree+0x5bE
RPCRTA.dlIll_RpcBCacheFree+0xbbE
nkdll. dll B ueue\s ork[tem+0x 205

ntdll. dll BHD ovncazelnicodeString+0x 75
ritdll. il RHallocateH eap+0x1 8

kernel22. dllCreateT hread+0x22

kernel22. dllCreateT hread+0x22
kermel32.dilCreateT hread+0x22
AMAPEEZ dIlCryptyernifuSignaturess+0:17

This is the Starting Address structural view of RPC service hosted as svchost under
Generic Host Controller. The very first thread is main svchost executable which loads
and executes a specific service. The svchost executable provides memory to load the
RPC service for execution as a service. The next part is Service Main handle for RPC
to load it as a Network service. Firstly we will look at the stack trace of svchost.exe
to understand the kernel level structures used in it. Lets see:

[Stack Trace: svchost.exe]

nkrnlpa.exe!KiUnexpectedlnterrupt+0xfO
ntkrnlpa.exe!ZwyYieldExecution+0x1900
ntkrnlpa.exe!ZwYieldExecution+0x196¢
ntkrnlpa.exe!NtWriteFile+0x2b00
ntkrnlpa.exe!NtReadFile+0x580
ntkrnlpa.exe!KeReleaselnStackQueuedSpinLockFromDpcLevel+0xb14
ntdll.dll!KiFastSystemCallRet
ADVAPI32.dIl'SetServiceStatus+0x238
ADVAPI32.dll'SetServiceStatus+0xcc
ADVAPI32.dllI'StartServiceCtrIDispatcherW+0x8b
svchost.exe+0x2585

VI

At first the kernel process ntkrnlpa performs the execution initialization function at
kernel level. It also defines the handling of exception interrupts. The kernel has to
perform some base level functions for secondary execution of defined modules.
Afterwards the Advapi32.DLL calls certain services specific modules for checking
service status and Dispatch functions. The Control Dispatcher is used to send control
messages to service execution queue for the requests being generated. The
dispatching is always considered as call back routine for managing requests through
defined service handles.

Now we will look at the stack trace of Service Main to see the internal module calling.

ntkrnlpa.exe!KiUnexpectedInterrupt+0xfO
ntkrnlpa.exe!ZwyYieldExecution+0x1900
ntkrnlpa.exe!ZwyYieldExecution+0x196¢
ntkrnlpa.exe!KeReleaselnStackQueuedSpinLockFromDpcLevel+0xb14
ntdll.dllI!KiFastSystemCallRet

rpcss.dll!ServiceMain+0x453b
kernel32.dllI'GetModuleFileNameA+0x1b4

The above trace is the Service Main starting routine. If you see then at the end a
module from kernel32.dll is called. GetModuleFileNameA. This function retrieves
the fully qualified path for the file that contains the specified module that a current
process owns. The function is undertaken as:

DWORD GetModuleFileName(
HMODULE hModule,
LPTSTR IpFilename,
DWORD nSize

);

So this function is called mainly to load a specific module related to a specific
service. Now we will look at the service main module crafted in Microsoft APl. The
code somewhat looks like this:

void WINAPI service_main(DWORD dwArgc, LPTSTR *IpszArgv)
{

// register our service control handler:
sshStatusHandle = RegisterServiceCtrIHandler(TEXT(SZSERVICENAME),
service_ctrl);

if (!sshStatusHandle)
goto cleanup;
// SERVICE_STATUS members that don't change in example

VII

ssStatus.dwServiceType = SERVICE_WIN32_OWN_PROCESS;
ssStatus.dwServiceSpecificExitCode = 0;
// report the status to the service control manager.

if (IReportStatusToSCMgr(
SERVICE_START_PENDING, // service state
NO_ERROR, // exit code 3000)) // wait hint
goto cleanup;

ServiceStart(dwArgc, IpszArgv);
cleanup:

if (sshStatusHandle)
(VOID)ReportStatusToSCMgr(
SERVICE_STOPPED,
dweErr, 0);

return;}

This provides a structural view and implementation scenario of Service Main.We have talked
about Service control Dispatcher functions. Now lets see through APl code how the
dispatching routine is called.

void __cdecl main(int argc, char **argv)
{

char opt;

SERVICE_TABLE_ENTRY dispatchTable[] =

{
{ TEXT(SZSERVICENAME), (LPSERVICE_MAIN_FUNCTION)service_main},
{ NULL, NULL}

}: // Code

if (!StartServiceCtriDispatcher(dispatchTable))
AddToMessagelLog(TEXT("StartServiceCtrIDispatcher failed.")); }

The Service control manager plays a crucial role in service implementation. This is
because what ever the intermediate messages like controlling the services are
handle by the control manager. Killing and stopping of service have to be reported to
service control manager prior to perform that function. When ever a debugging
operation is undertaken the SC manager is notified.

Let’s look at the code:

VIl

BOOL ReportStatusToSCMgr(DWORD dwCurrentState,
DWORD dwWin32ExitCode,
DWORD dwWaitHint)

{ static DWORD dwCheckPoint = 1;

BOOL fResult = TRUE;
if ('bDebug) // when debugging we don't report to the SCM

if (dwCurrentState == SERVICE_START_PENDING)
ssStatus.dwControlsAccepted = 0;

else
ssStatus.dwControlsAccepted = SERVICE_ACCEPT_STOP;

ssStatus.dwCurrentState = dwCurrentState;
ssStatus.dwWin32ExitCode = dwWin32ExitCode;
ssStatus.dwWaitHint = dwWaitHint;

if (
(dwCurrentState == SERVICE_RUNNING) ||
(dwCurrentState == SERVICE_STOPPED))

ssStatus.dwCheckPoint = O; else
ssStatus.dwCheckPoint = dwCheckPoint++;

if (1(fResult = SetServiceStatus(sshStatusHandle, &ssStatus)))

{
AddToMessagelLog(TEXT("SetServiceStatus")
);

T
}

return fResult;

The above derived C codes are presented to understand the working realm of
SCManger and Control dispatcher.

[4] IDAG Cross Structural Dissection of Svchost.

Now the Swiss army knife IDA is undertaken. We are going to look at the work flow
of svchost.exe. The graph will provide a overall interdependency of various modules.

Let’'s have a look over it.

public starl
start proc neasr
call sub_T0e1FC
iy eii, edi
push esi
push edi
pussh affset ToplewelExceptionFilter ; IpTopleuvelExceptinnFilter
call de sZelinhandledEsceplionlilter
push 1 : uMnde
call d& 2 EntErvoe e
call a5 iGetPracessHeEap
push LEE
call sub_10eFez
il 2a%, aFfeet diserd T ASuSLR
push aFfsel CriticalSectlion ; lpCriticalZection
RY duord_ 100040, rax
R duned_TN0%AAE, rax
:alll dsiinitializetriticalfection
call ds ifetienmandl e
push ean : lpString
call saih_ 1 NeFE
T rai, eax
test esi, esi
i= short lec_18A25R5
—
|
ER ML
pursh Bei i hiey
call sub_10823CE
all suib_1ner19s
LT el , eax
Epst edi, edi
iz shork loc_ 130257
F—
puEh ®5i
all Siil_ 1082502
i
—
5
1oc IBHZL Fh: i IpHen
push [£51
call suh_10MERE
ER< pdl, edl
& shOFE Tng_1MFSES
1 C
AN
pirsh edli i IpferuiceiractTanle
calll A5 s rartSereiceCEr L0l spat herid
J ¥y
[EHLL
loc_1@B2585: : uExitCode
push n
call 5 sEdibProgess
nop
nog
nop
nap
nop
start endgp

The flow chart depicts the same structure which we have enumerated above. We are
going to enumerate some of the internal code used by the svchost executable to
monitor more over the incore internals. Step by Step we will analyze code and
relative specification of it.

[5] Disassembling Svchost Registry Paradigm.

.text:010011DE mov edi, edi
.text:010011EO push ebp ; ulOptions
.text:010011E1 mov ebp, esp
.text:010011E3 push ecx ; IpSubKey
.text:010011E4 push ecx ; hKey
.text:010011E5 push esi

.text:010011E6 mov esi, ds:__imp___RegOpenKeyEXW@20 ; RegOpenKeyExXW(X,X,X,X,X)
.text:010011EC push edi ; hKey
.text:010011ED lea eax, [ebp+hKey]
.text:010011F0 push eax ; phkResult
.text:010011F1 mov edi, 20019h
.text:010011F6 push edi ; samDesired
.text:010011F7 push O ; ulOptions

.text:010011F9 push offset SubKey ; "System\\CurrentControlSet\\Services"
.text:010011FE push 80000002h ; hKey

.text:01001203 call esi ; RegOpenKeyEXW(X,X,X,X,X) ; RegOpenKeyEXW(X,X,X,X,X)
.text:01001205 test eax, eax
.text:01001207 mov [ebp+var_4], eax
.text:0100120A jnz short loc_1001247
.text:0100120C push ebx
.text:0100120D lea eax, [ebp+phkResult]
.text:01001210 push eax ; phkResult
.text:01001211 push edi ; samDesired
.text:01001212 push 0 ; ulOptions
.text:01001214 push [ebp+phkResult] ; IpSubKey
.text:01001217 push [ebp+hKey] ; hKey

.text:0100121A call esi ; RegOpenKeyEXW(X,X,X,X,X) ; RegOpenKeyExXW (X,X,X,X,X)
.text:0100121C test eax, eax
.text:0100121E mov ebx, ds:__imp__RegCloseKey@4 ; RegCloseKey(x)
.text:01001224 mov [ebp+var_4], eax
.text:01001227 jnz short loc_1001241
.text:01001229 push [ebp+arg_4] ; phkResult
.text:0100122C push edi ; samDesired
.text:0100122D push O ; ulOptions
.text:0100122F push offset aParameters ; "Parameters”
.text:01001234 push [ebp+phkResult] ; hKey

.text:01001237 call esi ; RegOpenKeyExXW(X,X,X,X,X) ; RegOpenKeyExXW(x,X,X,X,X)
.text:01001239 push [ebp+phkResult] ; hKey
.text:0100123C mov [ebp+var_4], eax
.text:0100123F call ebx ; RegCloseKey(x) ; RegCloseKey(x)
.text:01001241

.text:01001241 loc_1001241: ; CODE XREF: OpenServiceParametersKey(x,x)+49#j
.text:01001241 push [ebp+hKey] ; hKey
.text:01001244 call ebx ; RegCloseKey(x) ; RegCloseKey(x)
.text:01001246 pop ebx

This code holds registry oriented operations. The code depicts that registry is being
queried for some sub keys. Once the sub keys are verified, the service name is
undertaken by the service controller to load that service in a system memory for
execution. You must have seen presence of rpcss , dcom etc services in the registry
sub keys. These are all represented as strings in the registry. It means the registry
possesses a direct entry of service type to be loaded in memory for execution. The
registry functions are used to check the authentic structure of these services. This is

Xl

done to check whether the operating system hold information or not. Look at the
code presented as:

.text:010011F9 push offset SubKey ; "System\\CurrentControlSet\\Services"
.text:010011FE push 80000002h ; hKey

.text:01001203 call esi ; RegOpenKeyEXW(X,X,X,X,X) ; RegOpenKeyExXW(X,X,X,X,X)
.text:01001205 test eax, eax

A registry key is opened under:
HKLM\\Software\\System\\CurrentControlSet\\Services. It is a real registry entry.
When | enumerated this entry the strings undertaken are:

1] rpcss

2] dcom

3] imgsvc

4] Local service
5] termsvc

This proves our point as the specified services are run under Generic Host Controller
with different Thread ID. The service host checks the service entries in the registry
first before starting execution. Let’s have a look at some of entries:

Type ¢ i M arme

Key HELMASYS TE M\ ControlS etD03ServicesYWinS ock2YParametershProtocol_Catalog3
LE| HEL TEMAL *aramet e
Key HELMASYS TEMAControlSet0034Servicesh T opipiLinkage

Key HELMASYSTEMAControlSet0034Servicesh T cpipiParameters

Key HELMASYS TEMAControlS et0034 S ervicest M etB TYParametersInterfaces
Key HELMASYSTEMAControlSet003 W Servicesh M etB TWParameters

Ky HECR

Key HECR

Fey HE.Lk

Ky HELMMS OF TWwW/ARE \Microzafth COM3

Fey HEL

Key HECR

Fey HEL

Ky HELMS OF TSR E Microzofth COM3

Ky HELMMWS OF TWwWARE\MicrozafthCOM3

Ky HKCRMWCLSID

Key HELCR

Ky HELMS OF T'wWASRE Microsofth COM3

Key HEL

Ky HELMS OF T'wWASRE Microsofth COM3

Ky HELMMS OF TWARE \Microzafth COM3

Ky HKCRMWCLSID

Key HELMAS OF TWARE \Microsoftswindows HTYCurrentersionsDrivers32

A simple cross check is performed by querying rpcss service through sc tool. Lets see
what the tool say:

Xl

SERVICE_NAME: rpcss

TYPE : 20 WIN32_SHARE_PROCESS

STATE : 4 RUNNING
(NOT_STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)
WIN32_EXIT_CODE : 0 (0x0)

SERVICE_EXIT_CODE : 0 (0x0)
CHECKPOINT : 0x0
WAIT_HINT : 0x0

Another Example of Dcom

C:\tools>sc query dcomlaunch

SERVICE_NAME: dcomlaunch

TYPE : 20 WIN32_SHARE_PROCESS

STATE : 4 RUNNING
(NOT_STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)
WIN32_EXIT_CODE : 0 (0x0)

SERVICE_EXIT_CODE : 0 (0x0)

CHECKPOINT : 0x0

WAIT_HINT : Ox0O

So services are categorized over same parameters as queried above. This covers our
analysis regarding registry operation used by svchost executable.

[6] Calling Kernel Land Modular Functions

.text:01001483 ; FUNCTION CHUNK AT .text:010029E2 SIZE 00000023 BYTES
.text:01001483

.text:01001483 mov edi, edi

.text:01001485 push ebp

.text:01001486 mov ebp, esp

.text:01001488 push esi

.text:01001489 mov esi, [ebp+arg_0]

.text:0100148C mov eax, [esi+8]

.text:0100148F test eax, eax

.text:01001491 jnz short loc_10014AA

.text:01001493 push 8 ; dwFlags

.text:01001495 push eax ; hFile

.text:01001496 push dword ptr [esi+0Ch] ; IpLibFileName

.text:01001499 call ds:__imp__ LoadLibraryExXW@12 ; LoadLibraryExW(x,x,X)

X1

.text:0100149F test eax, eax

.text:010014A1 jz loc_10029EF

.text:010014A7 mov [esi+8], eax

.text:010014AA

.text:010014AA loc_10014AA: ; CODE XREF: GetServiceDIIFunction(x,X,X)+E#j
.text:010014AA push edi

.text:010014AB push [ebp+IpProcName] ; IpProcName

.text:010014AE push eax ; hModule

.text:010014AF call ds:__imp__ GetProcAddress@8 ; GetProcAddress(x,X)
.text:010014B5 mov edi, eax

.text:010014B7 test edi, edi

.text:010014B9 jz short loc_10014E1

.text:010014BB

.text:010014BB loc_10014BB: ; CODE XREF: GetServiceDIlIFunction(x,x,Xx)+63#]
.text:010014BB ; GetServiceDIlIFunction(x,x,x)+1567#]

.text:010014BB mov eax, edi

.text:010014BD pop edi

.text:010014BE

.text:010014BE loc_10014BE: ; CODE XREF: GetServiceDIIFunction(X,x,x)+157D#j
.text:010014BE pop esi

.text:010014BF pop ebp

.text:010014CO0 retn OCh

.text:010014C0 _GetServiceDIlIFunction@12 endp

This code itself is very much clear because a LoadLibrary and GetProcAddress
function is used to call module addresses from remote location ie kernel level from
the user land to perform certain functions that are defined in the required DLL to be
used. This is bit easy code to understand.

[7] Disseminating Svchost Critical Section Object Usage

This part will present the working functionality of critical section. There are number
of intermodular calls that are used for the implementation of critical section. Every
single modular function provides specific functioning. Let’'s enumerate the modules:

OpenServiceParametersKey(x,x) .text 010011DE 00000072 R ...BT.
MemAlloc(x,Xx) .text 010012B1 O000001BR...BT.
GetServiceMainFunctions(x,X,X,X) .text 010012D1 00000157 R ... B ..
GetServiceDIlIFunction(x,x,x) .text 01001483 00000040 R .. .BT.
FindDII(x,x) .text 010015CA OO0O0005FR .. .BT.

AddDII(x,x,x) .text 0100162E 00000072 R ...BT.
ServiceStarter(x,x) .text 010016A5 00000176 R...B ..
SvcNetBiosOpen() .text 0100182D O000001ER

MemFree(x) .text 010018B6 O0O0O0001AR...BT.

SvcNetBiosInit() .text 01001A56 00000022 R
RpcplnitRpcServer() .text 01001A7D 00000015 R
InitializeSecurity(x,X,X,X) .text 01002717 00000056 R .. .BT.
SvcNetBiosStatusToApiStatus(x) .text 01002F38 O000007AR...B ..

XV

SetLanaFlag(x) .text 01002FB7 O0O00002AR...B ..
LanaFlaglsSet(x) .text 01002FE6 OO0O0002ER ... B ..
SvcNetBiosReset(x) .text 01003019 00000081 R .. .B ..
DelayLoadFailureHook(x,x) .text 01003197 00000006 R
Netbios(x) .text 010031BF 00000006 R T.
RpcpStopRpcServer(x) .text 010031CA O000004CR...BT.
RpcpStopRpcServerEx(x) .text 0100321B 0000004C R .. .B ..

The above stated functions use the Critical section in its implementation. The objects
are mainly created as critical section objects which are further used for
synchronization. It’s better to traverse the code first.

; FUNCTION CHUNK AT .text:0100193C SIZE 00000019 BYTES
.text:010015CA

.text:010015CA mov edi, edi

.text:010015CC push ebp

.text:010015CD mov ebp, esp

.text:010015CF push ecx

.text:010015D0 and [ebp+var_4], O

.text:010015D4 push esi ; IpString2

.text:010015D5 push edi ; IpStringl

.text:010015D6 push offset _ListLock ; IpCriticalSection
.text:010015DB call ds:__imp__EnterCriticalSection@4 ; EnterCriticalSection(x)
.text:010015E1 mov esi, _DllList.text:010015E7 mov edi, offset _DIIList
.text:010015EC cmp esi, edi

.text:010015EE jz short loc_1001615

.text:010015F0 push ebx

.text:010015F1 mov ebx, ds:__imp__IstrcmpW@8 ; IstrcmpW (X,X)
.text:010015F7

.text:010015F7 loc_10015F7: ; CODE XREF: FindDII(Xx,x)+48%#j
.text:010015F7 push [ebp+IpString2] ; IpString2

.text:010015FA mov [ebp+var_4], esi

.text:010015FD push dword ptr [esi+0Ch] ; IpStringl
.text:01001600 call ebx ; IstrcmpW(x,x) ; IstrcmpW(X,Xx)
.text:01001602 test eax, eax

.text:01001604 jz loc_100193C

.text:01001615 loc_1001615: ; CODE XREF: FindDII(X,x)+24#]
.text:01001615 push offset _ListLock ; IpCriticalSection
.text:0100161A call ds:__imp__ LeaveCriticalSection@4 ; LeaveCriticalSection(x)
.text:01001620 mov eax, [ebp+var_4]

.text:01001623 pop edi

.text:01001624 pop esi

.text:01001625 leave

.text:01001626 retn 8

.text:01001626 _FindDIll@8 endp

The critical section objects allow two or more threads to compete for a single resource.
The above stated modules are applied in this aspect.Threads that are blocked are put
into wait state by the kernel and is not released till the wait state is satisfied. The
scheduler plays a crucial role in applying the synchronization objects. So once the state
is satisfied the thread can continue its execution. The synchronization objects are
suited to specific type of data structure.

XV

A critical section is an optimized implementation of mutex. A mutex is an object that
can only be acquired by one thread at any given moment. If any thread tries to
acquire a mutex, when it is already owned by another thread will enter a wait state. To
acquire mutex the previous thread has to release mutex or terminate itself for further
control. Critical section is considered to be as logically identical to mutex. The only
difference is that it is process private and is implemented mostly in user mode. The
critical section object is managed by kernel's object manager and implemented in
kernel mode. It means the system should switch to kernel mode prior to implement
any function on these objects. As we know critical section is implemented in user mode
so system only switches to kernel mode when condition wait is applied.

The critical section objects are implemented as:

#include <windows.h>
CRITICAL_SECTION cs; /* This is the critical section object -- once initialized, it cannot
be moved in memory */

/* Initialize the critical section -- This must be done before locking */
InitializeCriticalSection(&cs);

/* Enter the critical section -- other threads are locked out */
EnterCriticalSection(&cs);

/* Do some thread-safe processing! */

/* Leave the critical section -- other threads can now EnterCriticalSection() */
LeaveCriticalSection(&cs);

/* Release system object when all finished -- usually at the end of the cleanup code */
DeleteCriticalSection(&cs);

The stated functions are used for implementation of critical section objects. As we
have already discussed earlier that svchost threads run under services process with
unique Thread ID. So a critical section object is implemented by every single svchost
thread used for rpcss, dcom, termsvc etc. The critical objects provide a faster
mechanism for mutual exclusion synchronization because the parent process is same
for all svchost threads. The critical section objects are implemented in user mode .

A critical section object can be owned by only one thread at a time, which makes it
useful for protecting a shared resource from simultaneous access. When a thread
owns a critical section, it can make additional calls to EnterCriticalSection or
TryEnterCriticalSection without blocking its execution. This prevents a thread from
deadlocking itself while waiting for a critical section that it already owns. Any thread
of the process can use the DeleteCriticalSection function to release the system
resources that are allocated when the critical section object is initialized. After this
function is called, the critical section object cannot be used for synchronization.

Let's have look at the snapshot as:

XVI

B[] services axe 956 1.43 Service: and Con... Microzoft Corporation

m [e o e T T m e BB H ozt P .. B icrozoft Corporation
[svchost exe 1212 Genernc Host Pro.. Microsoft Carporation
[evchost exe 1368 Gernerc Host Pro... Microsoft Corporation

[svchost exe 1432 Gereric Host Pra... Microzoft Corporation
[svchast exe 224 Gererc Host Pra... Microsoft Corporation
rﬂ zqlzer. exe 428 SOL Server wind... Microzoft Corporation
[svchost exe 284 Genernc Host Pro.. Microsoft Corporation

rﬂ lzazz exe 958 LSA Shell [Export ... Microzaft Corparation

This layout presents a number of svchost threads that run under services process. So
svchost with Thread ID 1212, 1368, 1432 etc implements Critical section objects.
The objects are called in a definitive module designed in particular DLL. So the
svchost uses a proper Critical Section concept. Have a look at the calling code:

// Global variable
CRITICAL_SECTION CriticalSection;
void main()
{
// Initialize the critical section one time only.
if (!InitializeCriticalSectionAndSpinCount(&CriticalSection, 0x80000400))
return;..

// Release resources used by the critical section object.
DeleteCriticalSection(&CriticalSection)

DWORD WINAPI ThreadProc(LPVOID IpParameter)

// Request ownership of the critical section.
EnterCriticalSection(&CriticalSection);
// Access the shared resource.
// Release ownership of the critical section.
LeaveCriticalSection(&CriticalSection); }

The implementations of code define the practical aspect of calling Critical Objects.

[8] Dependency Walking of RPC svchost Process

So we have dissected the basic realm of RPC svchost process. For further analysis we
will look into dependency status of the svchost process. The dependency walking
means to check various import and export functions that are used by RPC svchost.
This technique is useful in looking at entry point addresses of various modules. Also
one can look into the DLL's that are used by the process and inherited functions. The
interdependencies of modules can be analyzed easily by looking at ordinal based
import / export status. It leverages lot of information regarding svchost process.
Why Dependency Walking to be checked? The answer is to crawl along the inter
dependency of various modules and how the functionality is applied in a required

XVII

DLL. It also uncovers the inheritance aspect of RPC svchost process. If you look at
the snapshot the RPCRT4.DLL holds the reference of NTDLL.DLL, KERNEL32.DLL and
ADVAPI32.DLL

Our talk is entirely adheres to RPC svchost process. It’s necessary to look into the
functions used by this process in system context. The ordinal defines a standard
number that maintains the export table. As soon as the function is exported an entry
point is provided to it. This entry point holds the address through which that
functions is called in a process. The svchost process is using the above mentioned
Dynamic Link libraries to call certain modules. An export list of modules is provided.
The functions present in module are exported by ordinal or by name.

" Dependency Walker - [svchost.exe] [= |EI|1|
B File Edit View Window Help o ol |
| 5| o adle| BS(m] |
EE SWCHOST.EXE Ordinal I Hink I Function | Entry Poink |
-] ADvAPI3Z.DLL & nia 54 (0x0035) I_RpcMapWin3zStatus 0x77EGZ00A
EE KERMEL3Z.DLL MiA 393 (0x0189) RpcMgmtSetServerStackSize 0x77E9BDDT
T NTOLL.OLL & s 395 (0x0188) RpcMgmtStop3erverlistening 0x77ESBGS0
=] RPCRT4.0LL & Mia 396 (0x018C) RpcMgth?':itServerListen 0xF7EIBGZE
TR T WTOLLDL & Ma 418 (020142} RpcServerlisken 0x77ESBIF3
b KERNE'L32 B A 421 (0x01A5) RpcServerRegisterlf O FFEBZES
: L 3 MiA 425 (0x0149) RpcServerUnregiskerIf 0x77EAD394
‘|- ADVARIZZ.DLL MY 426 (0x0144) RpcServerUnregisterIFEx 0x77EBITEL
& Mia 435 (0x01B3) RpcServerUseProtsegEphy 0x77EALLZD
Ordinal ~ | Hint: | Function | Erkry Poink ‘_i
[B 234 (0x00EA) | 233 (0x00E9) Mdroleallacate 0x000141E5
[Bl 235 (0xO0EE) | 234 (0x00EA) MdrOleFree 0x0000B340
[236 (0xO0EC) | 235 (O0x00EE] MdroOutInit 000004397
[B 237 (0x00ED) | 236 (0x00EC) MdrPartiallgnoreClientBufferSize Dx000E5355 —d
[B 238 (0xO0EE) | 237 (O=00EDY MdrPartiallgnoreClientMarshall Ox000&SCEC
[B 239 (0x00EF) | 238 (0x00EE) MdrPartiallgnoreServerInitialize Ox00063A01
[B 240 (0x00FO) | 239 (0x00EF) MdrPartiallgnoreSererinmarshal 0=00066S19
[B 241 (0x00F1) | 240 (0x00FD) NdrPoirterBufferSize 0x0000B101
= -
W s e Iy e A
1| T
Module = Tirne Skamp Size Aktributes Machine Subsystem Debug Base File Yer Product Yer
r:_! ADVAPTSZ.DLL | 0504004 12:56a | 616,960 | A Intel %86 Win3z console | Yes 0=z77DD0O000 | 5.1.2600.2180 | 5.1.2600.21
E! KERMEL3Z.DLL | O4§16/07 5:52a | 984,576 | A Intel %86 Win3z console | Yes 0=z7C800000|5.1.2600,3119 | 5.1.2600.31
E! MTDLL.DLL 03/04/04 12:56a | 708,096 | & Intel %86 Win3z consale | Yes 0=7C900000|5.1.2600,2180 | 5.1.2600.21
E! RPCRT4.0LL 03/04/04 12:56a | 581,120 | A& Intel x86 Win3z consale | Yes 0=77E70000|5.1.2600.2180 | 5.1.2600.21
ﬁ SWCHOST.EXE | O8/04/04 12:56a| 14,336 | A Intel x86 Win32 GUI Yes 0=01000000|5.1.2600.2180 | 5.1.2600.21
| | i
For Help; press F1 =

If one

look at the tree of RPCRT4.dll

then one can find number of functions

is

imported by name with [N/A] and some are with ordinal values. The functions
present in the RPCRT4.dll are considered to be as Forwarded Functions because the
real code is present in another module. The functions is referenced directly from a
specific module.lt provides a concept of Modular Interface. It means through an
interface modules can be used in a cross reference manner between various dynamic
link libraries. The functions like RpcServerListen, RpcServerRegisterlf,
RpcServerUnregisterlf etc are imported by name and ordinal value is not applicable.

XV

Crdinal

| Hint

I Furickion
T

l Entrv Poink

54 (0x0036) | I_RpcMapWin32Status 0x7PESZD0A
393 (0x0189) | RpcMgmbsetServerstacksize 0x77EQBDDT
395 (0x0186) | RpcMomtSkopServerliskening Ox77ESEGE0
396 (001820 | RpchgmbiwaitServerlisten 0x77E9BG2E
4158 (0x01482) | RpcServerlisten 0x77ESB1F3
7T (=085 T | FpCoerverReqserlt %/ 7EYBZES
425 (0x014%) | RpcServerlnregiskerIf Ox77EAD394
426 (0x01488) | RpcServerlnregisterIfEx 0x77EBITEL
435 (0x01B3) xRpcServerUsePrDtsqupW Dx??EP.llSDJ

These functions are termed as Parent Module Functions because of direct calling
in RPCRT4.dll parent module. It sets dependency among various number of modules
and usage. The every single function listed above has been provided with an entry
point. It means the imported functions that are called by name consist of PRE
Specified Address and the parent module is bounded by BIND program. If the
entry point address is not defined, it means the address is not known until load time.
The Bind defines an entry address.

The bind program scans the Import Address Table [IAT] and stores the most
favorable entry point for each function in a module. This process is done to trigger
up the Loading process. It is because a module is loaded directly from the preferred
base address. Let’s have a look at some of the exported functions in RPCRT4.dlI.

Qrdinal I Hink I Function I Enktry Poink

(e 444 Ti0iEC) 445 (OxiiBEY | RpcServer fieid Oi04E44E

B 445| (0x01BCY 444 (0x01BC) | RpcSmallocats 0x00065093

8] 446| (0x01BE) 445 (0x01BD) | RpcSmilientFres 0x00059101

& 447((0x01BF) 446 (0x01BE) | RpcSmbDestroyClientContext 000020502
(Ox01C0) 447 (0x016F) | RpcSmbisablesllocate Dx00069159
(0x01C1) 448 (0x01C0Y | RpcSmEnablesllocate D000624F 4
(0x01C2) 449 (0x01C1) | RpcSmFree 0x00069161 |
(OOTC3T 990 (UR0TC2T | Rpcamiaet I hreadHandie 00920
(Ox01C4) 451 (0x01C3) | RpcSmSetClientallocFree Q0006927 1
(01051 452 (0x01C4) 5pcSmSetThreadHandle Q00069201

The functions listed above are exported functions by ordinal. The Entry Address
[0x0004B446] is specified for RpcServerYield function. It means address is hard
coded prior to run time process. When a loader traverse through the Export
Address Table, the base address for a RpcServerYield is already present and the
loading is done with pace. So this process is repeated with other exported modules in
RPCRT4.dll in a same manner. It enhances the functionality of address resolving and
module loading. Another point if a forwarded string is present at entry point it means
the function is forwarded to another module. The pattern of the string is
[ModuleName.FunctionName]. As such no module forwarding is done right here. This
explains the dependency status of RPC svchost process internally.

XIX

[9] Mapping EpMapper EndPoints — RPC svchost Inheritance

The system devices are represented as files. The RPC svchost process is dependent
on certain system devices. These device define the inbuilt working of RPC svchost
process related to TCP, Afd drivers etc. Let’s have a look the system devices that
RPC is using.

Type £ | [ame
File SDevicehTop
File WD evicehdfdsEndpoint
e WDevicetdfd\Endpoint
ile WDevicetMamedPipehwinsock 24C atalagChangeListener-434-0

le SDevicetdfd\Endpoint
File WDevicehTop
File SDevicehTop
ile SDevicehlp
Eile WDeviceklp |
ile SDevicehlp
File WDevicehAfdhEndpaint
File SDevicehTop
ile WDevice Bfd\Endpoint
ile “DevicetMamedPipehepmapper
ile \DevicetMamedPipelepmapper
e “Erevicerk ekt
File Coif I MDD S INS 05 SeBE_ Microzoft \wWindows. Common-Controls 6595bE4744ccf df_ 6.0, 2600, 2922 s-vnw_ac3
File WDevicetMamedPipehnet\NiContralPiped

The above snapshot depicts only network devices that are instantiated by the RPC
svchost process. So mainly device is composed of Tcp , Ip , NamedPipe , etc. In
general it is cleared the RPC svchost provides epmapper service on port 135. The
flag is always provided in Listening state. The epmapper is configured with different
end points. This service is considered as an instance of RPC service running with
different end points stated as:

LPC port Epmapper [ncalrpc].
Epmapper Named Pipe [ncacn_np].
135/TCP [ncacn_ip_tcp].

135/UDP [ncadg_ip_udp].

593/TCP [ncacn_http].

akrwpnprE

So question arises, why epmapper is configured with different end points? Actually when
ever a client establishes a TCP connection on port 135, a RPC service instance is started
with it. The client closes the connection and issue new connection with the port returned
by the epmapper. The end point database is maintained by the PORT MAPPER service.
The database consists of various RPC interfaces. The registration is done by calling
RpcEpRegister function. So we are going to look at number of interfaces provided by
epmapper.

XX

D:vtoolz>ifids.exe —p ncacn_np —e “pipesepmapper ““.
Interfaces: 11
elaf8308-5d1f-11c?-71a4-88082hi4alfa vi.0A
AbAa6584-%eBf —11cf—-a3cf-AABASI68chlb vi .1l
1d55b526—c137-46c5-ab7?-638f2a68e869 v1.8
ebBc?3eb—88f9-11cf-%af1-B020af6e72f4 v2.A
1 cfecd-5268-101bh-—bbch-B0aallZ134%a vB.0A

h%e?9eb6B—-3d52-1ice—aaal-00006901293Ff vB.2
412f24le—cl2a—l1lce—ahff—HB2Baf6e7al’? vB.2
AARE1 36 -ABBB-B0R0—c ARE—MOARRREBBEB4G vl B
chbf3ee?2—cePe—11dl-h71e-HBcA4fcIiila vl . @
4d9f4ah8—Pdic—1icf-86ie—B028afbe7ch? vB. B
AAARE1 aB—BBBB-B0AA—cARE—HOARRRREAEA4: vB. B

The rpcss service not only runs the RPC subsystem but also the COM Service Control
Manager (SCM), which hold the core of COM/DCOM infrastructure. The interfaces can
be used as locally or remotely based on the request initiated by client. So this clears
the epmapper end points dependency on RPC svchost. Let's see the disassembly
layout:

After loading all exported and imported intermodular functions, 1 extract
RpcEpRegister function. The function is exported with base module RPCRt4.dll. The
stats that debugger provided are:

Address=77E945FA RPCRT4
Section=.text

Type=Export
Name=RpcEpRegisterA

The disassembly structured from entry point address of this specific function is:

77E945FA > 8BFF MOV EDI,EDI

77E945FC 55 PUSH EBP

77E945FD 8BEC MOV EBP,ESP

77E945FF 83EC 28 SUB ESP,28

77E94602 A1 ACA2EF77 MOV EAX,DWORD PTR DS:[77EFA2AC]
77E94607 8B55 10 MOV EDX,DWORD PTR SS:[EBP+10]
77E9460A 53 PUSH EBX

77E9460B 8945 FC MOV DWORD PTR SS:[EBP-4],EAX
77E9460E 8B45 08 MOV EAX,DWORD PTR SS:[EBP+8]
77E94611 56 PUSH ESI

77E94612 8B75 14 MOV ESI,DWORD PTR SS:[EBP+14]
77E94615 85F6 TEST ESI,ESI

77E94617 8945 EO MOV DWORD PTR SS:[EBP-20],EAX
77E9461A 8B45 0C MOV EAX,DWORD PTR SS:[EBP+C]
77E9461D 57 PUSH EDI

77E9461E 8945 E4 MOV DWORD PTR SS:[EBP-1C],EAX
77E94621 8D5D D8 LEA EBX,DWORD PTR SS:[EBP-28]
77E94624 C645 EB 00 MOV BYTE PTR SS:[EBP-15],0
77E94628 75 03 JNZ SHORT RPCRT4.77E9462D
77E9462A 8D75 EB LEA ESI,DWORD PTR SS:[EBP-15]
77E9462D 8BC6 MOV EAX,ESI

77E9462F 8D78 01 LEA EDI,DWORD PTR DS:[EAX+1]
77E94632 8A08 MOV CL,BYTE PTR DS:[EAX]
77E94634 40 INC EAX

XXI

77E94635 84C9 TEST CL,CL

77E94637 ™75 F9 JNZ SHORT RPCRT4.77E94632

77E94639 2BC7 SUB EAX,EDI
77E9463B 83F8 40 CMP EAX,40

77E9463E OF83 1A880100 JNB RPCRT4.77EACESE
77E94644 837D E4 00 CMP DWORD PTR SS:[EBP-1C],0

77E94648 OF84 1A880100 JE RPCRT4.77EACE6GS8

77E9Q464E 85D2 TEST EDX,EDX

77E94650 OF85 1C880100 JNZ RPCRT4.77EACE72

77E94656 33C0O XOR EAX,EAX

77E94658 8D7D EC LEA EDI,DWORD PTR SS:[EBP-14]

77E9465B AB STOS DWORD PTR ES:[EDI]
77E9465C AB STOS DWORD PTR ES:[EDI]
77E9465D AB STOS DWORD PTR ES:[EDI]
77E9465E AB STOS DWORD PTR ES:[EDI]

77E9465F 8D45 EC LEA EAX,DWORD PTR SS:[EBP-14]
77E94662 C745 D8 01000000 MOV DWORD PTR SS:[EBP-28],1
77E94669 8945 DC MOV DWORD PTR SS:[EBP-24],EAX

77E9466C E8 OF3FFEFF CALL RPCRT4.77E78580

The disassembly clearly depicts the calling of various modules in RPCRT4 dll. The

calls are made directly.

[10] Tokens Anatomy in RPC svchost Process.

The security tokens provide a context of executing a process in specific account of
system. The token should be initialized which enables the RPC svchost to run under
main services.exe process. Why it is necessary to look into the security tokens of a
system. The answer relies in understanding the execution context of that specific

process. Let’s see what the token monitor is displaying:

Token Monitor - Sysinternals: www.sysinternals.com = iEIi___)_'.(_j
File Edit Options Help
H R BEF| 22 | # |
i Time i Process:|[r i Thre... i Request i Logo... i Other -
367 4BEYTRI705 servicesewe97E 1112 IMPERSOMATE CLIENT OF PORT 000003... 000003E7: \WWT AUTHORITYASYSTEM
388 4BEVTINA1 servicesewe9TE 1112 REVERTTOSELF 000003...
383 4BEF7H9E45 services.ewe:37E 1112 ADJUST PRIVILEGES 000003... ENABLED: AUDIT
3B0 4E6.E7B0079E services.ewe97E 1112 IMPERSOMNATE 000003... 000003EF: WWWT AUTHORITYASYSTEM
361 4BE7B04344 servicesewe97E 1112 REVERTTOSELF 000003...
362 4717782707 servicesexe37E 1116 IMPERSOMATE CLIENT OF PORT 000003... 00A0S0BA: WWKNOCK \Administratar
3B 4717787V servicesewe:97E 1116 REVERTTOSELF 000003
fE4 4822459223 servicesewe:976 1112 IMPERSOMATE CLIENT OF PORT 000003... 00A0S0BA: WWKNOCK \Administratar
[ED 4822464336 servicesewe97E 1112 REVERTTOSELF 000003...
BEG 49.27149093 services.exe:976 1108 IMPERSOMATE CLIENT OF PORT 000003... 00A0S0BA: WWKNOCK \Administratar
BEY 4927184317 servicesexe:976 1108 REVERTTOSELF 000003...
50.31856647 services.exe:97E 1112 IMPERSOMATE CLIENT OF PORT 000003... 00A0S0BA: WWKNOCK \Administratar

50.36495840 1112 REVERTTOSELF

services.exe: 976

000003...

3 . TEMYICET. EHE riiniztrator
3 5141227698 services.ewe37E 1116 REVERTTOSELF 000003...
72 BLEFFFA200 services.ewed7E 1112 IMPERSOMATE CLIENT OF PORT 000003... Q00003E7: \AMT AUTHORITYASYSTEM
73 BLEFITI200 servicesexerd7E 1112 REVERTTOSELF 000003... “j
74 BLEFTEIES servicesewe®7E 1112 IMPERSOMATE CLIENT OF PORT 000003... Q00003E7: SAMT AUTHORITYASYSTEM
75 B1E77OED4E servicesexerd7E 1112 REVERTTOSELF 000003...
76 B1.E7794680 services.ewer376 1108 IMPERSOMATE CLIENT OF PORT 000003... Q00003E7: SAMT AUTHORITYASYSTEM
A1 R77942 services ewerd7R 1108 BEYERTTOSFLE onnnna
378 51E7B04623 servicesewe:97E 1708 IMPERSOMATE CLIENT OF PORT 000003... Q00003E7: SAMT AUTHORITYASYSTEM
379 51E7802031 servicesewe:97E 1108 REVERTTOSELF 000003...
380 5167315267 servicesewe97E 1116 IMPERSOMATE CLIENT OF PORT 000003... Q00003E7: SAMT AUTHORITYASYSTEM
3 BLEFHETET servicesewe37E 1116 REVERTTOSELF 000003...
382 51E7E25184 servicesewe97E 1112 IMPERSOMATE CLIENT OF PORT 000003... Q00003E7: SAMT AUTHORITYASYSTEM
383 B1E7O28677 servicesewe37E 1112 REVERTTOSELF 000003...
384 5167335242 servicesewe97E 1112 IMPERSOMATE CLIENT OF PORT 000003... 000003E7: \AMT AUTHDHITY\SYSTEM":J
ik | v

XXI1

The Process ID of RPC svchost process is 976. This describes the security tokens that
are used by process are KNOCK\Administrator and \\NT Authority System. The
administrative context is used in process execution. As one knows the port 135 is
always is in listening state to provided service to incoming client request. A client is
impersonated to use system port in an administrative context.

The RPC process is in direct interface with different threads that are running inside it.
The impersonation encompasses the ability of thread to run and execute using
different security information. It means impersonation depends on the specific
threads that are present in the server.

Here it is a client server mechanism .The server impersonates a client request. This
is because it provides a virtual implementation in which the server thread is
accessing resources on the behalf of the client. It actually sets a validation control
over server objects by client request. In this way impersonation of server thread is
done in the context of client. If you look a Revert to Self function, request is initiated
suddenly after the impersonation. This is because no impersonation of thread
occurred so it reverts back. No active connection is subjugated on port 135 for
services. A continuous process is going on and on as Listening state is waiting for
client connection. The impersonation and reverting of thread is undertaken by
functions that are structured below:

Let see what the disassembly says:

All names, item 12663
Address=77E7A80E RPCRT4
Section=.text

Type=Export
Name=RpclmpersonateClient

The RpclmpersonateClient is exported as :

77E7A80E > 8BFF MOV EDI,EDI

77E7A810 55 PUSH EBP

77E7A811 8BEC MOV EBP,ESP

77E7A813 833D DCAOEF77 00 CMP DWORD PTR DS:[77EFAODC],0
77E7A81A OF84 EC5B0100 JE RPCRT4.77E9040C

77E7A820 E8 5BDDFFFF CALL RPCRT4.77E78580

The impersonation function is called in this manner to impersonating a client with
server thread to access the contextual objects for functioning.

XX

RPC_STATUS RPC_ENTRY RpclmpersonateClient(
RPC_BINDING_HANDLE BindingHandle

);

The binding handle defines how exactly server impersonates a client. After
impersonation is done the reverting process occurs.

All names, item 12711
Address=77E7892A RPCRT4
Section=.text

Type=Export
Name=RpcRevertToSelf

The module is extracted from the intermodular call section.

77E7892A > 6A 00 PUSH O
77E7892C E8 651F0000 CALL RPCRT4.RpcRevertToSelfEx

The function takes no parameters as the assembly code is showing. The
RpcRevertToSelf function is called with no arguments. This function is called by RPC
server to retain its own security identity.

RPC_STATUS RPC_ENTRY RpcRevertToSelf(void);

Finally, the server calls RpclmpersonateCleint to overwrite the security for the server
thread with the client security context. After the task is completed, the server calls
RpcRevertToSelf to restore the security context defined for the server thread.

This now completes our dissection of XP svchost internals.

XXV

Conclusion

The incore analysis will help us to unveil the hidden artifacts of system
internals. The core of svchost is dissected to understand the working
functionality of operating system entities and its usage. The concepts of
thread management, Critical Objects, Registry Simulation, dispatching
routines are reversed fully. The analysis is a reverse engineering layout
of Generic Host Controller used by windows XP to queue up svchost
processes. To understand the core we have to dismantle the internals
related to system. The analysis is full structured example of this.

XXV

