
Wei Xu, Xinran Wang, Huagang Xie, Yanxin Zhang 
Palo Alto Networks 

Sep 26, 2012 

A	
  Fast	
  and	
  Precise	
  Malicious	
  PDF	
  Filter	
  	
  
	
  



Outline	
  

●  Introduc4on	
  

●  Portable	
  Document	
  Format	
  (PDF)	
  

●  Overview	
  

●  Design	
  

●  Evalua4on	
  

●  Summary	
  



Introduc.on	
  

●  PDF	
  documents	
  have	
  become	
  a	
  popular	
  vector	
  for	
  
malware	
  distribu4on	
  	
  

■  PDF	
  documents	
  are	
  less	
  likely	
  to	
  be	
  blocked	
  by	
  e-­‐mail	
  servers	
  

■ Majority	
  users	
  are	
  s4ll	
  using	
  vulnerable	
  versions	
  of	
  PDF	
  
readers	
  	
  

●  Exis4ng	
  techniques	
  are	
  limited	
  by	
  scalability	
  
■ MDScan,	
  Wepawet	
  …	
  

●  Goal:	
  A	
  PDF	
  filter	
  that	
  can	
  discard	
  the	
  benign	
  PDFs	
  very	
  
quickly	
  with	
  high	
  precision	
  



Portable	
  Document	
  Format	
  (PDF)	
  

●  Format	
  Specifica4on	
  
■  A	
  8-­‐bit	
  binary	
  file	
  format	
  created	
  by	
  Adobe	
  in	
  1993	
  

■  “A	
  complete	
  descrip4on	
  of	
  a	
  fixed-­‐layout	
  flat	
  document,	
  
including	
  the	
  text,	
  fonts,	
  graphics,	
  and	
  other	
  informa4on	
  
needed	
  to	
  display	
  it”	
  [1]	
  

■  Version	
  
Year	
   Version	
  
2003	
   PDF	
  1.5	
  /	
  Acrobat	
  6.0	
  

2005	
   PDF	
  1.6	
  /	
  Acrobat	
  7.0	
  

2006	
   PDF	
  1.7	
  /	
  Acrobat	
  8.0	
  (ISO	
  32000-­‐1)	
  

2008	
   PDF	
  1.7,	
  Adobe	
  Extension	
  Level	
  3	
  /	
  Acrobat	
  9.0	
  

2009	
   PDF	
  1.7,	
  Adobe	
  Extension	
  Level	
  5	
  /	
  Acrobat	
  9.1	
  



Portable	
  Document	
  Format	
  (PDF)	
  

●  PDF	
  file	
  structure	
  
■  Header	
  

■  Body	
  

■  Cross-­‐reference	
  table	
  

■  Trailer	
  

■  EOF	
  marker	
  

●  Lineariza4on	
  (op4miza4on)	
  

●  Incremental	
  update	
  

The need for an fast filter in large-scale detection has also
been recognized by other researcher in the detection of ma-
licious Web pages [11, 15].

Contributions. The contributions of this work are sum-
marized as follows:

- Mostly static malicious PDF detection. We propose a fast,
precise and mostly static malicious PDF filter. This filter
is based on the experience of analyzing real-world malicious
PDFs.

- Predictive features from various aspects of a PDF doc-
ument. We propose a set of features that are extracted
based on the analysis of malicious and benign PDFs. These
features cover the structure, the embedded code and the
functionalities of a PDF document. A later evaluation has
demonstrated that the features are predictive and can be
effectively used in a classification approach.

- Efficient and effective detection. We evaluate the proposed
filter in terms of performance and detection rates on a com-
prehensive data set containing hundreds of thousands sam-
ples collected from real-world. The results indicate both low
false positive rate and false negative rate.

Organization. The rest of the paper is organized as follows.
Section 2 describes the specification of PDF format. Section
3 provides an overview of the proposed approach. Section
4 elaborates the design. Section 5 discusses the implemen-
tation. Section 6 presents the evaluation results, followed
by discussion in Section 7. Section 8 surveys the related
research work and Section 9 concludes the paper.

2. BACKGROUND
Portable Document Format (PDF) is a file format for rep-
resenting documents in a manner independent of the ap-
plication software, hardware and operating system used to
create them and of the output device on which they are to
be displayed or printed [7]. A PDF document consists of a
collection of objects that together describe the appearance
of one or more pages, possibly accompanied by additional
interactive elements and higher-level application data. A
PDF file contains the objects making up a PDF document
along with associated structural information, all represented
as a single self-contained sequence of bytes [7].

A page in a PDF document can contain any combination of
text, graphics and images. The appearance of a page is de-
scribed by a PDF content stream which contains a sequence
of graphics objects to be painted on the page. Besides, a
PDF document can also contain interactive elements such
as annotations, actions triggered by keyboard or mouse and
interactive forms.

The basic structure of a PDF document, as in Figure 1a,
consists a header, a body (a set of objects), a cross-reference
table, and a trailer and an end-of-file marker. However, PDF
adopts an incremental update mechanism. That is, a PDF
file is never overwritten, only added to. Each time a PDF
file is edited, an addendum is appended to the tail of the
file. Therefore, there may exist multiple trailers, xref tables
and end-of-file markers, as illustrated in Figure 1b.

%PDF-1.4

1 0 obj

<< /Type /Catelog

/Outlines 2 0 R

/Pages 3 0 R

>>

endobj

!

5 0 obj

<< /Length 30>>

stream

!!

endstream

endobj

xref

0 6

0000000000 65535 f

0000000009 00000 n

0000000074 00000 n

0000000120 00000 n

0000000179 00000 n

0000000300 00000 n

trailer

<< /Size 7

/Root 1 0 R

>>

startxref

408

%%EOF

Header

Body

Cross Ref. 

Table

Tailer

End of file

Xref Table 

offeset

Header

Body

Xref

Trailer

EOF

Body

Xref

Trailer

EOF

Body

Xref

Trailer

EOF

!

!

!

(a) (b)

Figure 1: The Structure of A Canonical PDF File

Due to the support of JavaScript by PDF specification, as
well as the flexibility of the language and its ease of use,
JavaScript is widely utilized in malicious PDFs. In fact,
JavaScript involved PDF exploits consist of the majority
of malicious PDFs. One example of such exploits is illus-
trated in Figure 2. Vulnerable JavaScript function “me-
dia.newPlayer()” is invoked to trigger the vulnerability so
that the control will be transferred to the shellcode that has
been sprayed in the PDF reader’s process memory. An in-
tuitive prevention for JavaScript involved malicious PDFs
is disabling the JavaScript support in PDF readers. How-
ever, interactive features that relying on JavaScript in be-
nign PDFs will also be disabled. Besides, there are also
non-JavaScript involved malicious PDFs. For example, at-
tackers can also leverage embedded Flash objects or XFA
stream [17] to exploit vulnerabilities in PDF readers.

In addition to exploit vulnerabilities, attackers also incor-
porate various obfuscation techniques [17, 10] ranging from
encoding with stream filters to JavaScript obfuscation meth-
ods, e.g., string splitting/concatecation, hex/base64 encod-
ing, customized encoding/decoding functions etc. These
obfuscation techniques can effectively evade the detection
of antivirus applications, especially pattern-matching based
inspection. Therefore, the adoption of obfuscation in mali-
cious PDFs has gained unprecedent popularity among mal-
ware authors(data). This extensive use of obfuscation tech-
niques also suggests the inadequacy of signature-based ap-
proach, as we have pointed out previously. To effectively
distinguish likely malicious PDFs from benign PDFs, the
proposed filter adopts machine learning techniques on a set

2



Portable	
  Document	
  Format	
  (PDF)	
  

●  Common	
  PDF	
  Exploits	
  
■  JavaScript	
  

■  Flash	
  Objects	
  
◆  (Ac4onScript)	
  

■  TIFF	
  image	
  objects	
  

■  XFA	
  Stream	
  

function heapspray() {

var nop = unescape(‘%u9090%u9090’);

var shellcode = unescape(“%u56e8……………………….%u246c”);

while (nop.length <= 0x10000/2) {

nop += nop;

}

nop = nop.substring(0, 0x10000/2 – shellcode.length);

memory = new Array();

for (i=0; i<0x1000; i++) {

memory[i] = nop + sc;

}

}

heapspray();

try {

this.media.newPlayer(null);

}

catch (e) {}

Figure 2: An example of JavaScript involved mali-
cious PDFs

of predictive features that are selected based on our analysis
of real-world malicious PDFs.

3. OVERVIEW
parser

training

Feature selection

parser Classifier

Figure 3: Architecture of the PDF filter

Figure 3 illustrates the architecture of the proposed PDF
filter. At a high level, this process consists of three stages:
parsing labeled PDF files to extract features, selecting fea-
tures and training the classifier, and finally applying the
classifier to unknown PDF files to determine if these files
are likely benign or likely malicious. The details of the pro-
cess will be discussed in the following sections.

The set of features is selected based on the analysis of the
vulnerabilities in PDF format, study of PDF related CVEs
and examples of real-world PDF exploits. More specifically,
these features leverage the information about various aspects
of a PDF file. Such information can be generally classified
into three categories: the structure of a PDF file, the PDF
specific functionalities implemented in a file and the embed-
ded code within a PDF file. A detailed discussion on the
feature selection is presented in Section 4.

As being pointed out in [18], machine learning techniques
are more suitable for identifying similarity among subjects.
That is the effectiveness of the current set of features roots
in the observation of existing exploits. In other words, as
effective as the current feature set, it is very likely the de-
tection rate will degrade in the future, especially when new
exploits emerges due to the discover of new vulnerabilities
or software updates and when older exploits become less ef-

fective. Therefore, to mitigate such degradation in future,
new features may need to be extracted from new exploits
and the feature set should be updated accordingly.

4. DESIGN
The goal of the filter is to classify input PDFs as either
likely malicious or (likely) benign. To this end, we select a
set of features from three different aspects of a PDF docu-
ment. In this section, we first discuss the rationale behind
the selection of these features, and then we describe how
these features are validated by supervised machine learning
techniques.

4.1 Features on Embedded Code
Most of the observed PDF exploits leverage the capability
provided by the embedded script code, especially JavaScript
code. We noticed that in general, malicious PDFs are more
likely to embed script code than benign PDFs, because many
vulnerabilities reside in the JavaScript functions (in the form
of APIs) provided by PDF specification. Besides, the flex-
ibility and easy of use of the JavaScript language has pro-
vided attackers various approaches to setup a PDF reader
program’s memory with malicious code (e.g., the heap spray
attacks [19, 16]). Moreover, as we have mentioned previ-
ously, the embedded code in malicious PDFs often adopts
obfuscation techniques. The dynamic generation and inclu-
sion feature of JavaScript enables many obfuscation tech-
niques that have been adopted by attackers when creating
malicious PDFs [13, 14]. We notice that these obfuscation
techniques often invoke certain JavaScript functions that
are rarely observed in otherwise benign PDFs. Given these
observations, we select the following features on embedded
code: the number of occurrence of /JavaScript action (also
the /JS field) in both clear-format 1 and encoded-format;
the invocation of suspicious JavaScript functions;

Occurrence of /JavaScript action We noticed that ma-
licious PDFs rely heavily on JavaScript code to deliver the
attack. Based on the analysis of both known benign and
known malicious samples, 10% of the malicious PDFs con-
tain /JavaScript actions in the clear-form with an average
37.4 instances per file while only 0.5% of the benign PDFs
contain /JavaScript actions in clear-format. In encoded-
format, the malicious PDFs contain 503.7 instances of /JavaScript
actions per file on average compared with benign PDFs,
which only contain 1.3 instances of /JavaScript actions per
file. From these comparison, it is clear that the number of
occurrence of /JavaScript actions is a predictive feature of
malicious PDFs. especially within the encoded stream.

Invocations of suspicious JS functions To exploit cer-
tain vulnerabilities in the JavaScript APIs provided by PDF,
a malicious PDF document has to invoke the vulnerable
functions. Although the invocation of a vulnerable JavaScript
function does not necessarily raise an alarm, it is however
a possible indication of malicious JavaScript code. Table 1
lists the suspicious JavaScript functions. These functions
can be divided into two categories: 1) function itself has vul-
nerabilities, e.g., util.printf() [2], doc.media.newPlayer() [3];

1clear-form in this context refers to content that can be ob-
served from the source of PDF, as opposed to content that
is encoded by stream filter

3

Shellcode	
  

Heap	
  spray	
  

Exploit	
  (CVE-­‐2009-­‐4324)	
  



Portable	
  Document	
  Format	
  (PDF)	
  

●  Evasion	
  techniques	
  
■  String	
  splidng	
  

■  Split	
  into	
  various	
  objects	
  and	
  combined	
  later	
  
◆ Obj.getField()	
  

◆  Small	
  data	
  chunk	
  concatena4on	
  

■  Encryp4on	
  

■ Mul4-­‐level	
  encoding	
  

■  etc.	
  



Overview	
  

●  PDF	
  filter	
  
■  Differen4ate	
  benign	
  	
  
	
  	
  	
  	
  and	
  malicious	
  	
  
	
  	
  	
  	
  PDF	
  documents?	
  

■  Features	
  
◆  Structure	
  of	
  PDF	
  

◆  Func4onali4es	
  

◆  Embedded	
  code	
  

■ Machine	
  Learning	
  

function heapspray() {

var nop = unescape(‘%u9090%u9090’);

var shellcode = unescape(“%u56e8……………………….%u246c”);

while (nop.length <= 0x10000/2) {

nop += nop;

}

nop = nop.substring(0, 0x10000/2 – shellcode.length);

memory = new Array();

for (i=0; i<0x1000; i++) {

memory[i] = nop + sc;

}

}

heapspray();

try {

this.media.newPlayer(null);

}

catch (e) {}

Figure 2: An example of JavaScript involved mali-
cious PDFs

of predictive features that are selected based on our analysis
of real-world malicious PDFs.

3. OVERVIEW
parser

training

Feature selection

parser Classifier

Figure 3: Architecture of the PDF filter

Figure 3 illustrates the architecture of the proposed PDF
filter. At a high level, this process consists of three stages:
parsing labeled PDF files to extract features, selecting fea-
tures and training the classifier, and finally applying the
classifier to unknown PDF files to determine if these files
are likely benign or likely malicious. The details of the pro-
cess will be discussed in the following sections.

The set of features is selected based on the analysis of the
vulnerabilities in PDF format, study of PDF related CVEs
and examples of real-world PDF exploits. More specifically,
these features leverage the information about various aspects
of a PDF file. Such information can be generally classified
into three categories: the structure of a PDF file, the PDF
specific functionalities implemented in a file and the embed-
ded code within a PDF file. A detailed discussion on the
feature selection is presented in Section 4.

As being pointed out in [18], machine learning techniques
are more suitable for identifying similarity among subjects.
That is the effectiveness of the current set of features roots
in the observation of existing exploits. In other words, as
effective as the current feature set, it is very likely the de-
tection rate will degrade in the future, especially when new
exploits emerges due to the discover of new vulnerabilities
or software updates and when older exploits become less ef-

fective. Therefore, to mitigate such degradation in future,
new features may need to be extracted from new exploits
and the feature set should be updated accordingly.

4. DESIGN
The goal of the filter is to classify input PDFs as either
likely malicious or (likely) benign. To this end, we select a
set of features from three different aspects of a PDF docu-
ment. In this section, we first discuss the rationale behind
the selection of these features, and then we describe how
these features are validated by supervised machine learning
techniques.

4.1 Features on Embedded Code
Most of the observed PDF exploits leverage the capability
provided by the embedded script code, especially JavaScript
code. We noticed that in general, malicious PDFs are more
likely to embed script code than benign PDFs, because many
vulnerabilities reside in the JavaScript functions (in the form
of APIs) provided by PDF specification. Besides, the flex-
ibility and easy of use of the JavaScript language has pro-
vided attackers various approaches to setup a PDF reader
program’s memory with malicious code (e.g., the heap spray
attacks [19, 16]). Moreover, as we have mentioned previ-
ously, the embedded code in malicious PDFs often adopts
obfuscation techniques. The dynamic generation and inclu-
sion feature of JavaScript enables many obfuscation tech-
niques that have been adopted by attackers when creating
malicious PDFs [13, 14]. We notice that these obfuscation
techniques often invoke certain JavaScript functions that
are rarely observed in otherwise benign PDFs. Given these
observations, we select the following features on embedded
code: the number of occurrence of /JavaScript action (also
the /JS field) in both clear-format 1 and encoded-format;
the invocation of suspicious JavaScript functions;

Occurrence of /JavaScript action We noticed that ma-
licious PDFs rely heavily on JavaScript code to deliver the
attack. Based on the analysis of both known benign and
known malicious samples, 10% of the malicious PDFs con-
tain /JavaScript actions in the clear-form with an average
37.4 instances per file while only 0.5% of the benign PDFs
contain /JavaScript actions in clear-format. In encoded-
format, the malicious PDFs contain 503.7 instances of /JavaScript
actions per file on average compared with benign PDFs,
which only contain 1.3 instances of /JavaScript actions per
file. From these comparison, it is clear that the number of
occurrence of /JavaScript actions is a predictive feature of
malicious PDFs. especially within the encoded stream.

Invocations of suspicious JS functions To exploit cer-
tain vulnerabilities in the JavaScript APIs provided by PDF,
a malicious PDF document has to invoke the vulnerable
functions. Although the invocation of a vulnerable JavaScript
function does not necessarily raise an alarm, it is however
a possible indication of malicious JavaScript code. Table 1
lists the suspicious JavaScript functions. These functions
can be divided into two categories: 1) function itself has vul-
nerabilities, e.g., util.printf() [2], doc.media.newPlayer() [3];

1clear-form in this context refers to content that can be ob-
served from the source of PDF, as opposed to content that
is encoded by stream filter

3

Figure	
  3:	
  Architecture	
  of	
  the	
  PDF	
  filter	
  	
  



Design	
  

●  Features	
  on	
  Embedded	
  Code	
  
■  Number	
  of	
  occurrence	
  of	
  “/JavaScript”	
  (“/JS”)	
  ac4on	
  

◆  In	
  clear-­‐format	
  

◆  In	
  encoded-­‐format	
  

■  Invoca4on	
  of	
  suspicious	
  JavaScript	
  func4ons	
  	
  
◆ Obfusca4on	
  

◆  To	
  exploit	
  vulnerabili4es	
  in	
  JS	
  func4ons	
  



Design	
  

●  Suspicious	
  JavaScript	
  Func4ons	
  
Table 1: List of Suspicious JavaScript Function In-
vocation

Suspicious JavaScript
Function

Indication

eval() obfuscation
str.concat() obfuscation
str.replace() obfuscation
str.fromCharCode() obfuscation
str.split() obfuscation
str.substr() obfuscation
str.substring() obfuscation
util.printf() CVE-2008-2992
doc.media.newPlayer() CVE-2009-4324

2) functions are frequently invoked by malicious PDFs, e.g.
string.substr(), string.substring(), string.fromCharCode()
etc.

4.2 Features on PDF Functionalities
As a document description language, PDF provides a variety
of functionalities to enrich the dynamic characteristics of a
document. However, from a security point of view, some
of these functionalities have been misused by a malicious
party to pose a threat. Therefore, we also extract features
from these potentially harmful functionalities, which can be
divided into two categories: potentially harmful PDF actions
and misused PDF stream filters.

Potentially Harmful PDF Actions Actions defined in
PDF is to enable dynamic interaction between a document
and people, the reader program, as well as the environment
(e.g., the operating system). Among these actions, some
are considered more harmful than others since the potential
misuse of these operations can lead to the success of an at-
tack. Note that in general, these potentially harmful actions
are not dangerous enough alone. However, the leverage of a
combination of several such actions may produce a serious
PDF threat.

Table 2 lists the actions that are considered as harmful. For
example, /Action and /OpenAction can be used to spec-
ify functionalities performed upon user’s action or the PDF
file being opened. Such functionalities include redirection
(e.g., /GoTo, /GoToR, /GoToE), execution (e.g., /Launch) and
accessing remote resources (e.g., /URI), etc. [10]

Misused PDF Filters PDF format specifies ten standard
stream filters [7] to decode the data in a stream. Table 3 [8,
7] lists these ten stream filters. From Table 3, we notice that
these filters are often used by attackers as well.

Unlike benign PDFs, where these filters are mainly adopted
for their capabilities in data compression, the favor of fil-
ters in malicious PDF files is because malicious content can
be hidden in an encoded stream to evade static inspection.
Therefore, it is the purpose that distinguishes the usage of
filter in benign PDF files and in malicious PDF files.

One feature of the PDF stream filters is that multiple filters

Table 2: List of Potentially Harmful PDF Actions

Potentially
Harmful PDF
Action

Definition

/Action A class of actions triggered by user
/OpenAction A class of actions triggered by opening

the PDF file
/GoTo [F] redirection within the document
/GoToR [F] redirection to external src
/GoToE [F] redirection to embedded file
/Launch [F] launch an application
/SubmitForm [F] send interactive data to a URL
/URI [F] Access remote URL
/ImportData [F] Import external data

can be cascaded to form a pipeline such that a stream can be
encoded by more than one filter in sequence [7]. For exam-
ple, /Filter [/ASCII85Decode /LZWDecode] indicates the
stream data is encoded using LZW and ASCII base-85 en-
coding and should be decoded following this entry in the
stream dictionary. This feature further facilitates obfusca-
tion because malicious content can be encoded by arbitrary
number of encoding schemes [9, 8]. Based on the analysis of
real-world malicious PDF samples, we noticed certain char-
acteristics in the usage of filters in malicious PDFs, such as
an excessive number of filters for one stream, combination
of filters that are rarely observed in benign PDFs, escaped
filter name, etc. Given this, we adopt the following stream
filters related features, which is shown in Table 4 to distin-
guish benign and malicious PDFs.

4.3 Features on PDF Structure
Other than embedded script code and PDF functionalities,
malicious PDFs also exhibit a discrepancy with benign PDFs
in file structure. We leverage this discrepancy from two
aspects: malformed/mismatched elements, statistics of the
elements.

Malformed/Mismatched Elements As suggested in [9]
malicious PDFs are more likely to contain malformed ele-
ments such as mismatched or missing objects than benign
PDF files. To leverage this observation, in this work, we use
the following PDF structure related features: malformed el-
ements, invalid elements, and misplaced elements. For mal-
formed elements, we focus on “startxref”, “xref”, “trailer”,
since the existence of these elements being malformed is
highly related to a PDF file being malicious based on the
analysis of known benign and malicious PDF files. For mis-
placed elements, we focus on script code that is placed after
the entire file structure, i.e., after the last “EOF”marker.

Statistics Features of Elements From a statistic point
of view, malicious PDFs may be different from benign PDFs
in terms of average object size, total object number, etc.

As a summary, Table 5 lists the PDF structure related fea-
tures.

5. IMPLEMENTATION

4

Table	
  1:	
  List	
  of	
  Suspicious	
  JavaScript	
  Func4on	
  Invoca4on	
  	
  



Design	
  

●  Features	
  on	
  PDF	
  Func4onali4es	
  
■  Poten4ally	
  Harmful	
  PDF	
  Ac4ons	
  

Table 1: List of Suspicious JavaScript Function In-
vocation

Suspicious JavaScript
Function

Indication

eval() obfuscation
str.concat() obfuscation
str.replace() obfuscation
str.fromCharCode() obfuscation
str.split() obfuscation
str.substr() obfuscation
str.substring() obfuscation
util.printf() CVE-2008-2992
doc.media.newPlayer() CVE-2009-4324

2) functions are frequently invoked by malicious PDFs, e.g.
string.substr(), string.substring(), string.fromCharCode()
etc.

4.2 Features on PDF Functionalities
As a document description language, PDF provides a variety
of functionalities to enrich the dynamic characteristics of a
document. However, from a security point of view, some
of these functionalities have been misused by a malicious
party to pose a threat. Therefore, we also extract features
from these potentially harmful functionalities, which can be
divided into two categories: potentially harmful PDF actions
and misused PDF stream filters.

Potentially Harmful PDF Actions Actions defined in
PDF is to enable dynamic interaction between a document
and people, the reader program, as well as the environment
(e.g., the operating system). Among these actions, some
are considered more harmful than others since the potential
misuse of these operations can lead to the success of an at-
tack. Note that in general, these potentially harmful actions
are not dangerous enough alone. However, the leverage of a
combination of several such actions may produce a serious
PDF threat.

Table 2 lists the actions that are considered as harmful. For
example, /Action and /OpenAction can be used to spec-
ify functionalities performed upon user’s action or the PDF
file being opened. Such functionalities include redirection
(e.g., /GoTo, /GoToR, /GoToE), execution (e.g., /Launch) and
accessing remote resources (e.g., /URI), etc. [10]

Misused PDF Filters PDF format specifies ten standard
stream filters [7] to decode the data in a stream. Table 3 [8,
7] lists these ten stream filters. From Table 3, we notice that
these filters are often used by attackers as well.

Unlike benign PDFs, where these filters are mainly adopted
for their capabilities in data compression, the favor of fil-
ters in malicious PDF files is because malicious content can
be hidden in an encoded stream to evade static inspection.
Therefore, it is the purpose that distinguishes the usage of
filter in benign PDF files and in malicious PDF files.

One feature of the PDF stream filters is that multiple filters

Table 2: List of Potentially Harmful PDF Actions

Potentially
Harmful PDF
Action

Definition

/Action A class of actions triggered by user
/OpenAction A class of actions triggered by opening

the PDF file
/GoTo [F] redirection within the document
/GoToR [F] redirection to external src
/GoToE [F] redirection to embedded file
/Launch [F] launch an application
/SubmitForm [F] send interactive data to a URL
/URI [F] Access remote URL
/ImportData [F] Import external data

can be cascaded to form a pipeline such that a stream can be
encoded by more than one filter in sequence [7]. For exam-
ple, /Filter [/ASCII85Decode /LZWDecode] indicates the
stream data is encoded using LZW and ASCII base-85 en-
coding and should be decoded following this entry in the
stream dictionary. This feature further facilitates obfusca-
tion because malicious content can be encoded by arbitrary
number of encoding schemes [9, 8]. Based on the analysis of
real-world malicious PDF samples, we noticed certain char-
acteristics in the usage of filters in malicious PDFs, such as
an excessive number of filters for one stream, combination
of filters that are rarely observed in benign PDFs, escaped
filter name, etc. Given this, we adopt the following stream
filters related features, which is shown in Table 4 to distin-
guish benign and malicious PDFs.

4.3 Features on PDF Structure
Other than embedded script code and PDF functionalities,
malicious PDFs also exhibit a discrepancy with benign PDFs
in file structure. We leverage this discrepancy from two
aspects: malformed/mismatched elements, statistics of the
elements.

Malformed/Mismatched Elements As suggested in [9]
malicious PDFs are more likely to contain malformed ele-
ments such as mismatched or missing objects than benign
PDF files. To leverage this observation, in this work, we use
the following PDF structure related features: malformed el-
ements, invalid elements, and misplaced elements. For mal-
formed elements, we focus on “startxref”, “xref”, “trailer”,
since the existence of these elements being malformed is
highly related to a PDF file being malicious based on the
analysis of known benign and malicious PDF files. For mis-
placed elements, we focus on script code that is placed after
the entire file structure, i.e., after the last “EOF”marker.

Statistics Features of Elements From a statistic point
of view, malicious PDFs may be different from benign PDFs
in terms of average object size, total object number, etc.

As a summary, Table 5 lists the PDF structure related fea-
tures.

5. IMPLEMENTATION

4

	
  Table	
  2:	
  List	
  of	
  Poten4ally	
  Harmful	
  PDF	
  Ac4ons	
  	
  



Design	
  

●  Features	
  on	
  PDF	
  Func4onali4es	
  
■ Misused	
  PDF	
  Filters	
  

◆  Encode	
  malicious	
  content	
  	
  

Table 3: Stream Filters in PDF and Their Usage

Filter Usage Malicious(%) Benign(%)
FlateDecode Compression 77.54 88.76
LZWDecode Compression 0.47 12.42
ASCII85Decode Compression 1.25 11.85
ASCIIHexDecode Compression 9.47 0.10
RunLengthDecode Compression 0.24 0.47
JBIG2Decode Compression (pic/media) 0.78 0.03
RichMedia Compression (pic/media) 0.26 0
DCTDecode Compression (pic/media) 2.08 42.81
Crypt Encryption 0.04 0.46
Encrypt Encryption 0.91 10.81

Table 4: Filter Related Features

Feature Note
Number of filters > 2 for one stream object excessive number of filters
Suspicious filters pipeline e.g., [/JBIG2Decode /DCTDecode /ASCIIHexDecode]
Escaped filter name #hh in a filter name, e.g., /A#53#43#49#49#48#65#78Dec#6f#64e
Unknown filter name Filters that are not supported by PDF format

Table 5: Structure Related Features

Feature
Malformed “startxref”
Malformed “trailer”
Malformed “xref”
Code after last “EOF”
Average Object size

We implement the proposed filter. The filter contains three
components: a PDF parser, a PDF classifier and a classifier
generator.

The PDF parser is written in Python (run in Python 2.3+).
We modifies the parser in [1] so that our PDF parser can
generate an object based representation of an input PDF file,
i.e., it identifies all the objects, streams, and the fields/content
within these objects. It currently supports most of the en-
coding schemes commonly adopted in the filters so that the
encoded streams can be decoded for inspection. After pars-
ing the input PDF file, the PDF classifier scans the object
representation following a list of features and classifies the
PDF file under inspection as benign PDF or malicious PDF.
The feature list includes features discussed in Section 4. the
classification model applied on these features is derived from
the training sample set using the classifier generator. The
classifier generator generates various classifiers by adopting
different machine learning models.

Another component we implemented is a PDF crawler, which
is developed to collect benign PDF files 2 for both training
and evaluation purposes. Unlike a general purpose crawler,

2We assume the collected PDFs are benign and we realize
this may not be the case for all collected PDFs.

Table 6: Sample sets used in the evaluation

Sample set Benign Malicious Total
Training 19,518 5,686 25,204

Evaluation N/A N/A 157,842

the PDF crawler can collect PDF files in a specific category
of content, e.g. sports, music, science, etc., by using spe-
cific key words. In this way, we can build a benign PDF file
repository that contains different categories of PDF files and
we can further study the characteristics of malicious PDF
files in each category.

6. EVALUATION
In this section, we evaluate the proposed filter in terms of de-
tection effectiveness and performance overhead. The evalua-
tion is performed on both labeled and unlabeled PDF sample
sets with a large number of PDF files.

Sample Collection To obtain a comprehensive sample set,
we collect both benign and malicious PDF samples from
various sources. For example, the benign PDF files are col-
lected from 1)known legitimate PDF collections such as pub-
lished conference papers; 2)PDF search engines with a set of
keywords 1 that covers the most categories of content. For
malicious PDFs, one source is VirusTotal [6], from which
we obtained more than 5000 PDF files that have been iden-
tified by at least three AV vendors as malicious. Another
source of malicious PDF files a company virus database,
which contains more than two million malicious PDF files.
The statistics of the sample sets are summarized in Table 6

1We use 16 categories of keywords, e.g. arts, computer,
games, sports, etc.

5

Table	
  4:	
  Stream	
  Filter	
  Related	
  Features	
  	
  



Design	
  

●  Features	
  on	
  PDF	
  Structure	
  
■ Malformed/Mismatched	
  elements	
  in	
  PDF	
  files	
  

■  Sta4s4c	
  features	
  of	
  elements	
  in	
  PDF	
  files	
  
◆ Avg.	
  size	
  of	
  objects	
  

◆ Number	
  of	
  objects	
  

Table 3: Stream Filters in PDF and Their Usage

Filter Usage Malicious(%) Benign(%)
FlateDecode Compression 77.54 88.76
LZWDecode Compression 0.47 12.42
ASCII85Decode Compression 1.25 11.85
ASCIIHexDecode Compression 9.47 0.10
RunLengthDecode Compression 0.24 0.47
JBIG2Decode Compression (pic/media) 0.78 0.03
RichMedia Compression (pic/media) 0.26 0
DCTDecode Compression (pic/media) 2.08 42.81
Crypt Encryption 0.04 0.46
Encrypt Encryption 0.91 10.81

Table 4: Filter Related Features

Feature Note
Number of filters > 2 for one stream object excessive number of filters
Suspicious filters pipeline e.g., [/JBIG2Decode /DCTDecode /ASCIIHexDecode]
Escaped filter name #hh in a filter name, e.g., /A#53#43#49#49#48#65#78Dec#6f#64e
Unknown filter name Filters that are not supported by PDF format

Table 5: Structure Related Features

Feature
Malformed “startxref”
Malformed “trailer”
Malformed “xref”
Code after last “EOF”
Average Object size

We implement the proposed filter. The filter contains three
components: a PDF parser, a PDF classifier and a classifier
generator.

The PDF parser is written in Python (run in Python 2.3+).
We modifies the parser in [1] so that our PDF parser can
generate an object based representation of an input PDF file,
i.e., it identifies all the objects, streams, and the fields/content
within these objects. It currently supports most of the en-
coding schemes commonly adopted in the filters so that the
encoded streams can be decoded for inspection. After pars-
ing the input PDF file, the PDF classifier scans the object
representation following a list of features and classifies the
PDF file under inspection as benign PDF or malicious PDF.
The feature list includes features discussed in Section 4. the
classification model applied on these features is derived from
the training sample set using the classifier generator. The
classifier generator generates various classifiers by adopting
different machine learning models.

Another component we implemented is a PDF crawler, which
is developed to collect benign PDF files 2 for both training
and evaluation purposes. Unlike a general purpose crawler,

2We assume the collected PDFs are benign and we realize
this may not be the case for all collected PDFs.

Table 6: Sample sets used in the evaluation

Sample set Benign Malicious Total
Training 19,518 5,686 25,204

Evaluation N/A N/A 157,842

the PDF crawler can collect PDF files in a specific category
of content, e.g. sports, music, science, etc., by using spe-
cific key words. In this way, we can build a benign PDF file
repository that contains different categories of PDF files and
we can further study the characteristics of malicious PDF
files in each category.

6. EVALUATION
In this section, we evaluate the proposed filter in terms of de-
tection effectiveness and performance overhead. The evalua-
tion is performed on both labeled and unlabeled PDF sample
sets with a large number of PDF files.

Sample Collection To obtain a comprehensive sample set,
we collect both benign and malicious PDF samples from
various sources. For example, the benign PDF files are col-
lected from 1)known legitimate PDF collections such as pub-
lished conference papers; 2)PDF search engines with a set of
keywords 1 that covers the most categories of content. For
malicious PDFs, one source is VirusTotal [6], from which
we obtained more than 5000 PDF files that have been iden-
tified by at least three AV vendors as malicious. Another
source of malicious PDF files a company virus database,
which contains more than two million malicious PDF files.
The statistics of the sample sets are summarized in Table 6

1We use 16 categories of keywords, e.g. arts, computer,
games, sports, etc.

5

Table	
  5:	
  Structure	
  Related	
  Features	
  	
  



Evalua.on	
  

●  Implementa4on	
  
■  PDF	
  parser	
  -­‐>	
  Feature	
  extractor	
  -­‐>	
  Classifier	
  

●  Samples	
  
■  Training	
  set:	
  25,204	
  (19,518	
  benign	
  samples,	
  5,686	
  malicious	
  
samples)	
  	
  

■  Evalua4on	
  set:	
  157,842	
  (Download	
  from	
  Google)	
  



Evalua.on	
  

●  Compares	
  different	
  machine	
  learning	
  model	
  
■  Linear	
  model	
  (FP:	
  11.42%,	
  	
  FN:1.03%)	
  

◆  Light-­‐weight,	
  fast,	
  adjustable	
  (e.g.,	
  online	
  filtering)	
  

■  Other	
  models	
  
◆  8	
  different	
  machine	
  learning	
  models	
  

Table	
  6:	
  FP	
  and	
  FN	
  of	
  different	
  machine	
  learning	
  models	
  	
  

Classifier	
   FP	
  (%)	
   FN	
  (%)	
   Note	
  

Random	
  Forest	
   8.6	
   1.4	
   beKer	
  accuracy	
  but	
  large	
  model	
  

Bayes	
  Net	
   1.2	
   24.2	
   Low	
  FP,	
  High	
  FN	
  

J48	
   9.2	
   1.8	
   BeKer	
  FP,	
  but	
  large	
  model	
  



Summary	
  

●  A	
  set	
  of	
  predic4ve	
  features	
  that	
  can	
  effec4vely	
  detect	
  
malicious	
  PDF	
  documents	
  

●  Features	
  cover	
  three	
  aspects	
  of	
  malicious	
  PDF	
  
documents:	
  embedded	
  code,	
  PDF	
  func4onali4es	
  and	
  
PDF	
  structure	
  

●  Evalua4on	
  on	
  over	
  25,000	
  labeled	
  samples	
  and	
  over	
  
150,000	
  real	
  world	
  PDF	
  documents	
  shows	
  high	
  
detec4on	
  rate	
  and	
  low	
  false	
  posi4ve	
  rate	
  

●  Compare	
  different	
  machine	
  learning	
  models	
  to	
  study	
  
the	
  trade-­‐off	
  between	
  performance	
  and	
  accuracy	
  and	
  
to	
  beper	
  tune	
  the	
  filter	
  




