
© All rights reserved. Zend Technologies, Inc.

Cryptography made easy
with Zend Framework 2

by Enrico Zimuel (enrico@zend.com)

Senior Software Engineer
Zend Framework Core Team
Zend Technologies Ltd

mailto:enrico@zend.com

© All rights reserved. Zend Technologies, Inc.

About me
● Enrico Zimuel

● Software Engineer since 1996

● Senior PHP Engineer at Zend
Technologies, in the Zend Framework
Team

● Author of articles and books on
cryptography, PHP, and secure
software

● International speaker of PHP
conferences

● B.Sc. (Hons) in Computer Science and
Economics from the University
“G'Annunzio” of Pescara (Italy)

@ezimuel

enrico@zend.com

© All rights reserved. Zend Technologies, Inc.

Cryptography in Zend Framework

● In 2.0.0beta4 we released Zend\Crypt to help
developers to use cryptography in PHP projects

● In PHP we have built-in functions and extensions for
cryptography purposes:

▶ crypt()
▶ Mcrypt
▶ OpenSSL
▶ Hash (by default in PHP 5.1.2)
▶ Mhash (emulated by Hash from PHP 5.3)

© All rights reserved. Zend Technologies, Inc.

Cryptography in not so easy to use

● To implement cryptography in PHP we need a solid
background in cryptography engineering

● The Mcrypt, OpenSSL and the others PHP libraries are
good primitive but you need to know how to use it

● This can be a barrier that discouraged PHP developers

● We decided to offer a simplified API for cryptography
with security best practices built-in

● The goal is to support strong cryptography in ZF2

© All rights reserved. Zend Technologies, Inc.

Cryptography in Zend Framework

● Zend\Crypt components:

▶ Zend\Crypt\Password
▶ Zend\Crypt\Key\Derivation
▶ Zend\Crypt\Symmetic
▶ Zend\Crypt\PublicKey
▶ Zend\Crypt\Hash
▶ Zend\Crypt\Hmac
▶ Zend\Crypt\BlockCipher

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt\BlockCipher

● Zend\Crypt\BlockCipher can be used to
encrypt/decrypt sensitive data

● Provides encryption + authentication (HMAC)

● API simplified:

▶ setKey($key)
▶ encrypt($data)
▶ decrypt($data)

● It uses the Mcrypt adapter (Zend\Crypt\Symmetric\Mcrypt)

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt\BlockCipher (2)

● Default values used by BlockCipher:

▶ AES algorithm (key of 256 bits)
▶ CBC mode + HMAC (SHA-256)
▶ PKCS7 padding mode (RFC 5652)
▶ PBKDF2 to generate encryption key +

authentication key for HMAC
▶ Random IV for each encryption

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/SHA-2
http://tools.ietf.org/html/rfc5652#section-6.3
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Initialization_vector

© All rights reserved. Zend Technologies, Inc.

Example: encrypt

use Zend\Crypt\BlockCipher;

$cipher = BlockCipher::factory('mcrypt',

array('algorithm' => 'aes')
);
$cipher->setKey('this is the encryption key');
$text = 'This is the message to encrypt';
$encrypted = $cipher->encrypt($text);

printf("Encrypted text: %s\n", $encrypted);

● The encrypted text is encoded in Base64, you can get
binary output using setBinaryOutput(true)

© All rights reserved. Zend Technologies, Inc.

Example: decrypt

use Zend\Crypt\BlockCipher;

$cipher = BlockCipher::factory('mcrypt',

array('algorithm' => 'aes')
);
$cipher->setKey('this is the encryption key');
$ciphertext = 'c093e6d...';
$encrypted = $cipher->decrypt($text);

printf("Decrypted text: %s\n", $encrypted);

© All rights reserved. Zend Technologies, Inc.

Parameters

● factory($adapter, $parameters), where $parameters
can be an array with the following keys:

▶ algorithm (or algo), the name of the block cipher to use
(supported algorithms are: aes (rijndael-128), rijndael-192,
rijndael-256, blowfish, twofish, des, 3des, cast-128, cast-
256, saferplus, serpent);

▶ mode, the encryption mode of the block cipher (the supported
modes are: cbc, cfb, ctr, ofb, nofb, ncfb);

▶ key, the encryption key;

▶ iv (or salt), the Initialization Vector (IV) also known as salt;

▶ padding, the padding mode (right now we support only the
PKCS7 standard);

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt\Symmetric

● Implements symmetric ciphers (single key to
encrypt/decrypt)

● We support the Mcrypt extensions

● Zend\Crypt\Symmetric\Mcrypt is a wrapper of Mcrypt
extension with a simplified API and security best
practices built-in

● Don't use Zend\Crypt\Symmetric\Mcrypt to encrypt
sensitive data (you need also authentication, use
BlockCipher)

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt\PublicKey

● Implements public key algorithms

● We support:

▶ RSA (Zend\Crypt\PublicKey\Rsa)

▶ Diffie-Hellman (Zend\Crypt\PublicKey\DiffieHellman),
 for key exchange

● We use the OpenSSL extension

http://en.wikipedia.org/wiki/RSA_(algorithm)
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

© All rights reserved. Zend Technologies, Inc.

Example: digital signature of a file using RSA
use Zend\Crypt\PublicKey\Rsa,
 Zend\Crypt\PublicKey\RsaOptions;

$rsa = new Rsa(new RsaOptions(array(
 'passPhrase' => 'insert the passphrase here',
 'pemPath' => 'name of the private key file .pem'
)));
$filename = 'name of the file to sign';
$file = file_get_contents($filename);

$signature = $rsa->sign($file, $rsa->getOptions()->getPrivateKey(), Rsa::FORMAT_BASE64);
$verify = $rsa->verify($file, $signature, $rsa->getOptions()->getPublicKey(),
Rsa::FORMAT_BASE64);

if ($verify) {
 echo "The signature is OK\n";
 file_put_contents($filename . '.sig', $signature);
 echo "Signature saved in $filename.sig\n";
} else {
 echo "The signature is not valid!\n";
}

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt\Password

● How do you safely store a password?

▶ MD5() + salt is not secure anymore, dictionary
attacks can be performed much faster with
modern CPU + cloud environments

▶ A secure alternative is the bcrypt algorithm
● Bcrypt uses Blowfish cipher + iterations to generate

secure hash values

● Bcrypt is secure against brute force or dictionary attacks
because is slow, very slow (that means attacks need huge
amount of time to be completed)

http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/Blowfish_(cipher)

© All rights reserved. Zend Technologies, Inc.

Work factor parameter of bcrypt

● The algorithm needs a salt value and a work factor
parameter (cost), which allows you to determine how
expensive the bcrypt function will be

● We used the crypt() function of PHP to implement the
bcrypt algorithm

● The cost is an integer value from 4 to 31

● The default value for Zend\Crypt\Password\Bcrypt is 14
(that is equivalent to 1 second of computation using an
Intel Core i5 CPU at 3.3 Ghz).

● The cost value depends on the CPU speed, check on your
system! I suggest to set at least 1 second.

© All rights reserved. Zend Technologies, Inc.

Example: bcrypt

use Zend\Crypt\Password\Bcrypt;

$bcrypt = new Bcrypt();
$start = microtime(true);
$hash = $bcrypt->create('password');
$end = microtime(true);

printf ("Hash : %s\n", $hash);
printf ("Exec. time: %.2f\n", $end-$start);

● The output of bcrypt ($hash) is a string of 60 bytes

© All rights reserved. Zend Technologies, Inc.

How to verify a password

● In order to check if a password is valid against an
hash value we can use the method:

▶ verify($password, $hash)

where $password is the value to check and $hash is
the hash value generated by bcrypt

● This method returns true if the password is valid and
false otherwise.

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt\Key\Derivation

● Never use a user’s password as cryptographic key

● User's password are not secure because:

1) they are not random;

2) they generate a small space of keys (low
entropy).

● We should always use a Key Derivation Function (or KDF)

● KDF are special algorithms that generate cryptographic
keys, of any size, from a user’s password

● One of the most used KDF is the PBKDF2 algorithm
(RFC 2898).

http://en.wikipedia.org/wiki/Key_derivation_function
http://en.wikipedia.org/wiki/PBKDF2
http://tools.ietf.org/html/rfc2898

© All rights reserved. Zend Technologies, Inc.

PBKDF2
● “PBKDF2 applies a pseudorandom function, such as a

cryptographic hash, cipher, or HMAC to the input
password or passphrase along with a salt value and
repeats the process many times to produce a derived key,
which can then be used as a cryptographic key in
subsequent operations. The added computational work
makes password cracking much more difficult, and is
known as key stretching” (from Wikipedia)

● The PBKDF2 algorithm is implemented in
Zend\Crypt\Key\Derivation\Pbkdf2

© All rights reserved. Zend Technologies, Inc.

Example: Pbkdf2

use Zend\Crypt\Key\Derivation\Pbkdf2,
 Zend\Math\Math;

$salt = Math::randBytes(32);
$pass = 'this is the password of the user';
$key = Pbkdf2::calc('sha256',$pass, $salt, 100000, 32);

● We generated a cryptographic key of 32 bytes

● We used a random salt value

● We used 100'000 iterations for the algorithm (1 second
of computation on Intel Core i5 CPU at 3.3 Ghz)

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt\Hash

● Implements the hash algorithms

● We used the Hash extension included in PHP 5.1.2

● Zend\Crypt\Hash provides static methods

● The usage is very simple:

▶ Zend\Crypt\Hash::compute($hash, $data,
$output = Zend\Crypt\Hash::STRING)

where $hash is the hash algorithm to be used (i.e. sha256),
$data is the data to hash and $output specify if the output
is a string or a binary.

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt\Hash (2)

● We can retrieve the list of all the supported algorithms
using the method:

▶ Zend\Crypt\Hash::getSupportedAlgorithms()

this is a wrapper to the hash_algos() function of PHP.

● We can use retrieve the output size of a specific hash
algorithm using the method:

▶ Zend\Crypt\Hash::getOutputSize($hash,
$output = Zend\Crypt\Hash::STRING)

where $hash is the name of the algorithm and $output
specify string or binary as result

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt\Hmac

● Implements the Hash-based Message Authentication Code
(HMAC) algorithm supported by Mhash extension of
PHP (emulated by Hash from PHP 5.3)

● Zend\Crypt\Hmac provides static methods

● The usage is very simple:

▶ Zend\Crypt\Hmac::compute($key, $hash, $data,
$output = Zend\Crypt\Hmac::STRING)

where $key is the key of HMAC, $hash is the name of the
hash algorithm to be use, $data is the input data, and
$output specify the output format, string or binary

http://en.wikipedia.org/wiki/HMAC

© All rights reserved. Zend Technologies, Inc.

PHP vs. randomness

● How generate a pseudo-random value in PHP?
● Not good for cryptography purpose:

▶ rand()
▶ mt_rand()

● Good for cryptography (PHP 5.3+):

▶ openssl_random_pseudo_bytes()

© All rights reserved. Zend Technologies, Inc.

rand() is not so random

rand() of PHP on Windows Pseudo-random bits

Source: random.org website

© All rights reserved. Zend Technologies, Inc.

Random Number Generator in ZF

● We refactored the random number generator in ZF2 to
use (in order):

1) openssl_random_pseudo_bytes()

2) mcrypt_create_iv(), with MCRYPT_DEV_URANDOM

3) mt_rand(), not used for cryptography!
● OpenSSL provides secure random numbers

● Mcrypt with /dev/urandom provides medium security

● mt_rand() has low security (for crypto purposes)

© All rights reserved. Zend Technologies, Inc.

/dev/urandom used by MCRYPT_DEV_URANDOM

● /dev/urandom is the "unlocked"/non-blocking version
of /dev/random, it reuses the internal pool to produce
more pseudo-random bits

● /dev/urandom is considered “less secure” of
/dev/random because contains less entropy

● /dev/urandom is much faster than /dev/random
(milliseconds compared with seconds)

● There are some environments where are the same, for
instance OpenBSD and FreeBSD

© All rights reserved. Zend Technologies, Inc.

● There are some attacks that can affect the security
of /dev/urandom (forcing re-initialization of the pool)

● In general, even if is less secure than /dev/random is
used in many cryptographic projects

● We used in ZF2 only as second option

/dev/urandom is considered secure?

© All rights reserved. Zend Technologies, Inc.

Random number in Zend\Math\Math

● In 2.0.0beta4 we moved Zend\Crypt\Math in the new
Zend\Math

● We added a couple of methods for RNG:
▶ Zend\Math\Math::randBytes($length, $strong = false)
▶ Zend\Math\Math::rand($min, $max, $strong = false)

● randBytes() generates $length random bytes

● rand() generates a random number between $min and $max

● If $strong === true, the functions use only OpenSSL or Mcrypt
(if PHP doesn't support these extensions throw an Exception)

© All rights reserved. Zend Technologies, Inc.

Future works

● More key derivation algorithms (we just merged the
SaltedS2k in the ZF2 github repository)

● More padding methods for the block ciphers

● More password algorithms (we would like to offer
adapters for specific systems)

● Supports encryption/decryption of streams

● A new Zend\Math\Rand (already in review) component
to improve the RNG of ZF2 based on RFC 4086

● Supports authenticated encryption algorithm, like CCM,
EAX, etc

http://framework.zend.com/wiki/display/ZFDEV2/RFC+-+Random+number+generator
http://tools.ietf.org/html/rfc4086
http://en.wikipedia.org/wiki/CCM_mode
http://en.wikipedia.org/wiki/EAX_mode

© All rights reserved. Zend Technologies, Inc.

References

● N. Ferguson, B. Schneier, T. Kohno, “Cryptography Engineering”, Wiley Publishing,
2010

● D. Boneh "Cryptography course" Stanford University, Coursera - free online courses

● C. Hale, “How to safely store a password”

● S. Vaudenay, “Security Flaws Induced by CBC Padding Applications to SSL, IPSEC, WTLS”,
EuroCrypt 2002

● T. Biege, “Analysis of a strong Pseudo Random Number Generator”, 2006

● PHP-CryptLib, all-inclusive cryptographic library for PHP

● Random.org, true random numbers to anyone on the Internet

● stackexchange.com, Recommended numbers of iterations when using PKBDF2

● E.Zimuel, “Cryptography in PHP” Web & PHP Magazine, issue 2/2012

● E.Zimuel, “Cryptography made easy with Zend Framework”

http://www.schneier.com/book-ce.html
https://www.coursera.org/course/crypto
http://codahale.com/how-to-safely-store-a-password/
http://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
http://www.suse.de/~thomas/papers/random-analysis.pdf
https://github.com/ircmaxell/PHP-CryptLib
http://www.random.org/
http://security.stackexchange.com/questions/3959/recommended-of-iterations-when-using-pkbdf2-sha256
http://webandphp.com/issue-2
http://www.zimuel.it/en/english-cryptography-made-easy-with-zend-framework/

© All rights reserved. Zend Technologies, Inc.

Thank you!

● Email: enrico@zend.com

● Twitter: @ezimuel

● Blog: http://www.zimuel.it

● GitHub: https://github.com/ezimuel

mailto:enrico@zend.com
http://www.zimuel.it/
https://github.com/ezimuel
http://framework.zend.com/
http://www.zend.com/

Join us at ZendCon
The premier PHP conference!

October 22-25, 2012 – Santa Clara, CA

www.zendcon.com

Conference Themes

PHP in 2012 - The latest PHP technologies and tools

Learn how to leverage the latest mobile, HTML 5, testing and PHP
best practices

Zend Framework 2 - Hit the ground running

Learn how to build faster, more modular and more expandable
applications

Development & The Cloud – A love story
Learn how the latest developments in cloud-based services,
infrastructure and best practices can benefit you

Conference Highlights

• Sessions focused on how to best develop and deploy PHP

• Sessions designed for all knowledge levels

• Intensive tutorials for accelerated learning

• PHP Certification crash courses and testing

• Exhibit hall showcasing the latest products

• Special networking opportunities during meals and events

Call for Papers is now open!
Submit your talks by May 21, 2012

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

