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Who Am I?
•Ralph Schindler (ralphschindler)
Software Engineer on the Zend Framework team

•At Zend for 5 years
•Before that TippingPoint/3Com

Programming PHP for 13+ years
Live in New Orleans, LA.

•Lived in Austin, Tx for 5 years
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This Webinar

•Brief words on “Modeling”
•Patterns For Modeling
•Zend\Db’s as a tool in Modeling

•Look at a real application:
https://github.com/ralphschindler/PatternsTutorialApp
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What Is Modeling?

•(Loosely defined) M in the MVC
http://en.wikipedia.org/wiki/Model-view-controller

•From Wikipedia:
A controller can send commands to its associated view to change the view's 

presentation of the model (e.g., by scrolling through a document). It can send 
commands to the model to update the model's state (e.g., editing a document).

A model notifies its associated views and controllers when there has been a change 
in its state. This notification allows the views to produce updated output, and the 
controllers to change the available set of commands. A passive implementation of 
MVC omits these notifications, because the application does not require them or the 
software platform does not support them.

A view requests from the model the information that it needs to generate an 
output representation.

4

Thursday, November 15, 12



What does that mean really?

•In PHP, you can generally think of it like this:
Controllers interact with environment

•$_POST, $_SERVER, $_GET, environment variables, etc

Views are responsible for display concerns
•What does my HTML look like

•As I iterate this object or array, how do I format it

•How do I escape data for consumption in a web browser

Which leaves the Model...
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The Model is ...

•A set of characteristics:
The core of your business problem
Data & the persistence of that data
UI agnostic (HTML and Json agnostic)

•aka: View agnostic concerns / Not a view

•Models don’t have an opinion on how they are displayed

Environment agnostic (CLI vs. Browser)
•aka: Controller agnostic concerns / Not a controller

•Models don’t have an opinion on how they are consumed

•...
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... continued,

In OO terms:
•OOM: Object oriented modeling

•A way of conceptualizing a problem domain into classes and objects to better 
manage their complexity, to simplify it

•Present business object workflows in easy to understand and consume API
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How do we build an API?

•We could just interact with the datasource directly
This offers little abstraction and leaves us with a persistence centric 
API

•We need to find a suitable level of abstraction
For this we need patterns...
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Patterns: The tools in our toolbox

•Different patterns describe a particular abstraction, that might 
suit our need

•Ones we’ll cover:
TableGateway, RowGateway

•Implemented by Zend\Db

ActiveRecord
Mapper
Lazy Loading & Lazy Loading Via PHP Closure

•Domain Driven Design patterns:
Repository
Entity, Value Object, Value
Other briefly for context
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TableGateway & RowGateway

•Implemented in Zend\Db

•TableGateway, specifically, can be used:
Directly as the gateway to “model data”

•No abstraction: “Models” are really associative arrays in this scenario

Directly as the data access for a Repository
•1 level of abstraction: Essentially as a mapper

Or as the implementation detail of a Mapper
•2 levels of abstraction: Repository > Mapper > TableGateway
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TableGateway & RowGateway
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ActiveRecord
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Mapper
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Lazy Loading Via Closure/Anon Func.
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Lazy Loading Via Closure/Anon Func.
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Repository

•"Persistence Ignorance" is the idea that at a particular level of 
your abstraction, the API knows nothing about (*the details*) 
how something is persisted

•Implementations of a Repository can deal with persistence, but 
this should not be exposed in the API of this class (or the 
interface for the Repository)

16

Thursday, November 15, 12



Repository
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Entity, Value Object, Value

• An Entity has an identity and a value object does not.  

• Both are generally POPO's (Plain old PHP objects).  
• By definition, value objects are identity free and immutable.  
• Values are simply put, any scalar in PHP (for all intents and 
purposes).

• Two separate Entities can share the same reference to a Value 
Object.  
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Entity
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Value Object

•PHP’s DateTime object does not qualify:

•Your own will:
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Others: Layered Architecture

•Layered Architecture
A way of dividing out software conceptually
In PHP, this might happen with some usage of namespaces
The type of pattern it implements implies the layer of code it 
belongs to
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Other: Services

•Services
Service Layer: separate abstraction layer between controllers and 
models

Model Services: (DDD) A place where "workflows/functions that have 
no natural place in a value object/entity"

Dependency Injection / Application Architecture: shared objects, 
dependencies (Service Locator)
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Other: Aggregate & Aggregate Root

• A Domain Driven Design Term

• Aggregate: the series of objects in a model bound together by 
references and associations

• Aggregate Root: Only object outside members can hold a 
reference to, the "entry object", the primary object
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So you want to build an app?

•Most modern and stable frameworks (full stack & micro) give 
you an option on how to handle “persistence” in models
ZF has Zend\Db, but no Zend\Model
ZF has a user contributed module for Doctrine integration
Slim, Silex, etc. don’t ship with any persistence solution
Symfony 2 ships with tools to integrate Doctrine

•Early frameworks shipped an ActiveRecord-like solution
•Persistence is not always a database

Could be a web service
Could be a document database
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Zend\Db In Modeling

• What does one need to know?
Previous webinar:

•Have an overall idea of the architecture:
– Zend\Db\Adapter’s Drivers & Platform objects for Driver Abstraction

– Zend\Db\Sql for Sql as OO as well as SQL abstraction

Strengths of Zend\Db
•The base TableGateway is a solid approach to an object per table

•The Zend\Db\Sql\Select API is expansive and offers full a framework for full 
SQL abstraction

•Zend\Db is not a modeling framework on its own
– Doctrine is a better solution for this
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Zend\Db\Sql\Select

•Let’s have a look at some example queries to get a feel for the 
Select API
https://gist.github.com/3949548
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Let’s build an app!

• Code Location:
https://github.com/ralphschindler/PatternsTutorialApp/

•Problem Domain:
 I there is money in sharing playlists online.
 I am not sure what the business will be, but I know it centers 
around a playlist

 We need to be able to model Track, Arist and Album information
 We might want to be able to pull information from web services
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Insert->Header & Footer

Thanks!
http://twitter.com/ralphschindler
http://framework.zend.com/zf2
http://github.com/zendframework/
http://github.com/ralphschindler
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