
Modeling With Zend\Db
As of Zend Framework 2.0.*

Thursday, November 15, 12

Who Am I?
•Ralph Schindler (ralphschindler)
Software Engineer on the Zend Framework team

•At Zend for 5 years
•Before that TippingPoint/3Com

Programming PHP for 13+ years
Live in New Orleans, LA.

•Lived in Austin, Tx for 5 years

2

Thursday, November 15, 12

This Webinar

•Brief words on “Modeling”
•Patterns For Modeling
•Zend\Db’s as a tool in Modeling

•Look at a real application:
https://github.com/ralphschindler/PatternsTutorialApp

3

Thursday, November 15, 12

https://github.com/ralphschindler/PatternsTutorialApp
https://github.com/ralphschindler/PatternsTutorialApp

What Is Modeling?

•(Loosely defined) M in the MVC
http://en.wikipedia.org/wiki/Model-view-controller

•From Wikipedia:
A controller can send commands to its associated view to change the view's

presentation of the model (e.g., by scrolling through a document). It can send
commands to the model to update the model's state (e.g., editing a document).

A model notifies its associated views and controllers when there has been a change
in its state. This notification allows the views to produce updated output, and the
controllers to change the available set of commands. A passive implementation of
MVC omits these notifications, because the application does not require them or the
software platform does not support them.

A view requests from the model the information that it needs to generate an
output representation.

4

Thursday, November 15, 12

What does that mean really?

•In PHP, you can generally think of it like this:
Controllers interact with environment

•$_POST, $_SERVER, $_GET, environment variables, etc

Views are responsible for display concerns
•What does my HTML look like

•As I iterate this object or array, how do I format it

•How do I escape data for consumption in a web browser

Which leaves the Model...

5

Thursday, November 15, 12

The Model is ...

•A set of characteristics:
The core of your business problem
Data & the persistence of that data
UI agnostic (HTML and Json agnostic)

•aka: View agnostic concerns / Not a view

•Models don’t have an opinion on how they are displayed

Environment agnostic (CLI vs. Browser)
•aka: Controller agnostic concerns / Not a controller

•Models don’t have an opinion on how they are consumed

•...

6

Thursday, November 15, 12

... continued,

In OO terms:
•OOM: Object oriented modeling

•A way of conceptualizing a problem domain into classes and objects to better
manage their complexity, to simplify it

•Present business object workflows in easy to understand and consume API

7

Thursday, November 15, 12

How do we build an API?

•We could just interact with the datasource directly
This offers little abstraction and leaves us with a persistence centric
API

•We need to find a suitable level of abstraction
For this we need patterns...

8

Thursday, November 15, 12

Patterns: The tools in our toolbox

•Different patterns describe a particular abstraction, that might
suit our need

•Ones we’ll cover:
TableGateway, RowGateway

•Implemented by Zend\Db

ActiveRecord
Mapper
Lazy Loading & Lazy Loading Via PHP Closure

•Domain Driven Design patterns:
Repository
Entity, Value Object, Value
Other briefly for context

9

Thursday, November 15, 12

TableGateway & RowGateway

•Implemented in Zend\Db

•TableGateway, specifically, can be used:
Directly as the gateway to “model data”

•No abstraction: “Models” are really associative arrays in this scenario

Directly as the data access for a Repository
•1 level of abstraction: Essentially as a mapper

Or as the implementation detail of a Mapper
•2 levels of abstraction: Repository > Mapper > TableGateway

10

Thursday, November 15, 12

TableGateway & RowGateway

11

Thursday, November 15, 12

ActiveRecord

12

Thursday, November 15, 12

Mapper

13

Thursday, November 15, 12

Lazy Loading Via Closure/Anon Func.

14

Thursday, November 15, 12

Lazy Loading Via Closure/Anon Func.

15

Thursday, November 15, 12

Repository

•"Persistence Ignorance" is the idea that at a particular level of
your abstraction, the API knows nothing about (*the details*)
how something is persisted

•Implementations of a Repository can deal with persistence, but
this should not be exposed in the API of this class (or the
interface for the Repository)

16

Thursday, November 15, 12

Repository

17

Thursday, November 15, 12

Entity, Value Object, Value

• An Entity has an identity and a value object does not.

• Both are generally POPO's (Plain old PHP objects).
• By definition, value objects are identity free and immutable.
• Values are simply put, any scalar in PHP (for all intents and
purposes).

• Two separate Entities can share the same reference to a Value
Object.

18

Thursday, November 15, 12

Entity

19

Thursday, November 15, 12

Value Object

•PHP’s DateTime object does not qualify:

•Your own will:

20

Thursday, November 15, 12

Others: Layered Architecture

•Layered Architecture
A way of dividing out software conceptually
In PHP, this might happen with some usage of namespaces
The type of pattern it implements implies the layer of code it
belongs to

21

Thursday, November 15, 12

Other: Services

•Services
Service Layer: separate abstraction layer between controllers and
models

Model Services: (DDD) A place where "workflows/functions that have
no natural place in a value object/entity"

Dependency Injection / Application Architecture: shared objects,
dependencies (Service Locator)

22

Thursday, November 15, 12

Other: Aggregate & Aggregate Root

• A Domain Driven Design Term

• Aggregate: the series of objects in a model bound together by
references and associations

• Aggregate Root: Only object outside members can hold a
reference to, the "entry object", the primary object

23

Thursday, November 15, 12

So you want to build an app?

•Most modern and stable frameworks (full stack & micro) give
you an option on how to handle “persistence” in models
ZF has Zend\Db, but no Zend\Model
ZF has a user contributed module for Doctrine integration
Slim, Silex, etc. don’t ship with any persistence solution
Symfony 2 ships with tools to integrate Doctrine

•Early frameworks shipped an ActiveRecord-like solution
•Persistence is not always a database

Could be a web service
Could be a document database

24

Thursday, November 15, 12

Zend\Db In Modeling

• What does one need to know?
Previous webinar:

•Have an overall idea of the architecture:
– Zend\Db\Adapter’s Drivers & Platform objects for Driver Abstraction

– Zend\Db\Sql for Sql as OO as well as SQL abstraction

Strengths of Zend\Db
•The base TableGateway is a solid approach to an object per table

•The Zend\Db\Sql\Select API is expansive and offers full a framework for full
SQL abstraction

•Zend\Db is not a modeling framework on its own
– Doctrine is a better solution for this

25

Thursday, November 15, 12

Zend\Db\Sql\Select

•Let’s have a look at some example queries to get a feel for the
Select API
https://gist.github.com/3949548

26

Thursday, November 15, 12

https://gist.github.com/3949548
https://gist.github.com/3949548

Let’s build an app!

• Code Location:
https://github.com/ralphschindler/PatternsTutorialApp/

•Problem Domain:
 I there is money in sharing playlists online.
 I am not sure what the business will be, but I know it centers
around a playlist

 We need to be able to model Track, Arist and Album information
 We might want to be able to pull information from web services

27

Thursday, November 15, 12

https://github.com/ralphschindler/PatternsTutorialApp/
https://github.com/ralphschindler/PatternsTutorialApp/

Thursday, November 15, 12

Insert->Header & Footer

Thanks!
http://twitter.com/ralphschindler
http://framework.zend.com/zf2
http://github.com/zendframework/
http://github.com/ralphschindler

29

Thursday, November 15, 12

http://twitter.com/ralphschindler
http://twitter.com/ralphschindler
http://framework.zend.com/zf2
http://framework.zend.com/zf2
http://github.com/zendframework/
http://github.com/zendframework/
http://github.com/ralphschindler
http://github.com/ralphschindler

