
Zend Server UI:
A ZF2 Case Study

ZF2.0 Evolution from a developer perspective
v1.1

Yonni Mendes

Thoughts, feedback: yonni.m@zend.com

mailto:yonni.m@zend.com

ZF2 - Highlights

● Modern, up-to-date, hip and upbeat
● Zend & Community

○ GitHub, forums
○ Freenode #zftalk

● New and interesting toys
○ Events
○ Services
○ Uniform plugins/helpers

● Tried and True concepts
○ MVC pattern
○ Customizability
○ Di & resources

ZF2 - Lighter, stronger

ZS5 ZF1 UI ZS6 ZF2 UI
100,657 lines of php code 78,724 lines of php code

8MB of php & phtml files 4.4MB of php & phtml files

1,161 php & phtml files 758 php & phtml files

518 directories
(read: namespaces)

404 directories
(read: namespaces)

* numbers were taken a week ago from the trunk

Eye catchers in ZF2

● Events
○ Promote modularity and encapsulation
○ Mitigates tight coupling between components

● Di & ServiceManager
○ Move object provisioning out of the application

■ but not necessarily into the configuration
○ Avoid singletons and promote use of factories
○ Avoid static calls

● ModuleManager
○ Compartmentalize your application
○ Promote reuse across applications
○ Promote extensibility by 3rd party

Eye catchers: Zend\Form

● Complete rewrite
○ Decorators were annihilated
○ Validators were extracted and are not part of the

element
○ Factory functionality in a separate set of classes
○ Factory has annotations' support

● However
○ No more <?php echo $form ?> :(
○ Not even a view helper!
○ Some of the elements are tricky to use

■ checkbox
■ multiple selection

Eye pokers in ZF2

● Lambdas. Lots of Lambdas
○ Like really allot of them

● Avoid inheritance
○ ServiceManagers hate inheritance
○ Inject dependencies instead

Eye pokers in ZF2, more

● No More Brokers
○ No more static brokers
○ ServiceManagers are the new brokers
○ Uniform configuration formats
○ Helpers and plugins are sort of the same thing now

● The Framework really likes itself
○ Overriding internal functionality / classes is not

immediately obvious
○ Some components suffer from lack of extensibility

options, some enforce arbitrary limitations

Initializing a
ZF2 MVC application

Do, do more and don't

Oooh Spooky:
The Skeleton Application
● MVC implementation based on ZF2
● Basic accepted practices

○ Modular structure
○ Separation of layers and responsibilities

● Getting used to
○ Modules and namespaces alignment
○ Views and dependencies are separated

● Unzip. Bam! it works

The Initialization

● Module::init()
○ Provided by InitProviderInterface
○ Called immediately after instantiation
○ Gets the module manager as a parameter
○ No Events, services have been started yet!

The Initialization, Cont'd

● LoadModules.post event
○ Triggered on the shared eventsManager
○ After all Module objects were initialized
○ Listeners get a generic ManagerEvent parameter
○ Configuration has been merged at this point
○ Setup application services like logging,

configuration, caching...

The Initialization, Cont'd

● Module::onBootstrap()
○ "Should"
○ Provided by BootstrapProviderInterface
○ Called when called by Mvc\Application
○ Gets an MvcEvent parameter (Request, response ...)
○ Shared ServiceManagers are available at this point

Initialization fact to fun

● Distributed initialization
○ Separate bootstrap and init per module
○ Attach listeners to 'LoadModules.post' in init()
○ Attach listeners to route/dispatch in

onbootstrap()
○ Do not attach anything to 'bootstrap' event

● 'LoadModules.post' execution
○ Runs all listeners in-order
○ Avoid dependencies between modules' initialization

● Template your onBootstrap()
○ Add initializers and Abstract Factories to

ServiceManagers
○ Call things like ACL and View layout initialization

ZS6 Module::init() function
public function init(ModuleManagerInterface $manager =
null) {
 $manager->getEventManager()->

attach('loadModules.post',
array($this, 'initializeConfig'));

...

 $manager->getEventManager()->
attach('loadModules.post',
array($this, 'initializeDebugMode'));

}

ZS6 Module::onBootstrap()
public function onBootstrap(EventInterface $e) {
 $app = $this->application;
 $this->application = $e->getApplication();
 $baseUrl = static::config('baseUrl');
 $app->getRequest()->setBaseUrl($baseUrl);
...
 $this->initializeLog($e);
 $this->initializeRouter($e);
 $this->initializeSessionControl($e);
 $this->initializeACL($e);
 $this->initializeView($e);
 $this->initializeWebAPI($e);
 $this->initializeViewLayout($e);
...
 $this->detectTimezone();
}

Failure is NOT an option

Failure during initialization and bootstrap is
problematic. A few ideas:
● Ignore errors
● Stop event propagation
● Signal failure on the event
● Throw an exception (burn!)

● Trigger a new event (dispatch.error)

The failure option
try {
....
} catch (\Exception $ex) {// $e is a MvcEvent, $ex is an exception
 $events = $this->application->getEventManager();
 $error = $e;
 $error->setError(\Zend\Mvc\Application::ERROR_EXCEPTION);
 $error->setParam('exception', new Exception('..', null, $ex));
 $results = $events->trigger(MvcEvent::EVENT_DISPATCH_ERROR,
$error);
 $e->stopPropagation(true);
 $e->setResult($results);
...
}

Authentication &
Authorization

The three headed dragon

Authentication requirements

● Multiple users
● Secure passwords
● Different authentication options (simple,

extended - ldap)
● Must provide for WebAPI authentication
● This is NOT session control!

Simple is as simple does

● At first
○ Authentication action plugin
○ Zend\Auth\AuthenticationService
○ Digest Adapter

● Not good enough for cluster, moved to
DbTable adapter

● Had to extend DbTable and override
○ Credential treatment is hardcoded to be in SQL
○ Wanted to return an Identity Object, instead of a

string

Extended Authentication

Essentially similar to Simple
● Extended Zend\Auth\Ldap

○ Add support for Identity class
○ Add groups membership handling for ACL

● Custom authentication for Zend Server
○ Specify a custom "Adapter" class in ui configuration
○ Support either groups or simple roles
○ Example and start up code in github, fork away!

https://github.com/YonmaN/ZendServer-CustomAuth

Permissions' requirements

● System wide ACL: affect all aspects of the UI
● Per-Application access for extended

authentication
● Two user "levels"

○ Administrator
○ Developer

● Administrator has full access to everything
● Developer has access to read-only actions

MVC ACL integration, cont'd

● Zend\Permissions\Acl
○ Initialized with permissions' details from database
○ Initialization is performed during bootstrap
○ Information Tree is immutable, whatever the user

that's logged in - caching in the future?
● MVC actions and ACL

○ Events manager to the rescue!
○ Call acl::isAllowed() before every action

■ Resource: Controller name
■ Privilege: Action name
■ User role from Identity object

$app->getEventManager()->attach('route',
array($this, 'allow'));

WebAPI output requirements

● Change output flow without affecting
functionality
○ Controller actions should behave in the same way
○ Controller output should be uniform regardless of

view script functionality
● Affect rendering behavior from different

stages of execution
○ Different output formats (json, xml)
○ Different output view scripts
○ Different output functionality - view helpers

WebAPI output planning

public function initializeWebAPI(ManagerEvent $e) {
 $app = $e->getParam('application');
 if ($this->detectWebAPIRequest($app)) {
 $app->getEventManager()->
 attach('route', array($this,
'limitedWebapiOutput'));
 $app->getEventManager()->
 attach('dispatch', array($this,'applyWebAPIVersion'));
 $app->getEventManager()->
 attach('render', array($this, 'applyWebAPILayout'));
 }
}

WebAPI output, error
handling
$events = $app->getEventManager();
/// Remove default error handling
...
$exceptionStrategy =
$locator->get('Zend\Mvc\View\Http\ExceptionStrategy');
$exceptionStrategy->detach($events);

....
/// Introduce webapi error handling
$exceptionStrategy =
$locator->get('WebAPI\Mvc\View\Http\ExceptionStrategy');
$events->attachAggregate($exceptionStrategy);

Dependencing your
injection

Di, SM, Locator and other kinky things

D-Wha?!

class IndexController extends ActionController

{

 public function indexAction() {

 $monitorUiModel = $this->getLocator()->get
('MonitorUi\Model\FilteredMapper');

 }

}

Locator == Di == Service manager
It's all different names for the same thing

ZF2 Evolution: Using Di

Dependency injection
● Class name / instance name
● Parameters

○ Class names or actual values
○ constructor parameters
○ getter/setter

● Heavy on reflection
● Very strict behavior

ZF2 Di configuration
'definition' => array (

 'class' => array (

 'Zsd\DbConnector' => array(

'methods' => array('factory' => array('required' => true, 'context' => array
('required' => true)))

),

 'PDO' => array('instantiator' => array('Zsd\DbConnector' , 'factory'))

)

),

'instance' => array(

 'zsdDbPDO' => array('parameters' => array('context' => 'zsd')),

 'zsdDbDriver' => array('parameters' => array('connection' => 'zsdDbPDO')),

 'zsdDbAdapter' => array('parameters' => array('driver' => 'zsdDbDriver')),

 'zsdServers_tg' => array('parameters' => array(

 'table' => 'ZSD_NODES',

 'adapter' => 'zsdDbAdapter' ,

))

)

ZF2 ServiceManager
compared
array(

 'aliases' => array(

 'AuthAdapterSimple' => 'AuthAdapterDbTable',

 'AuthAdapterExtended' => 'AuthAdapterLdap',

),

 'invokables' => array(

 'index' => 'Application\Controller\IndexController',

 'Settings' => 'Application\Controller\SettingsController',

),

 'factories' => array(

 'Zend\Authentication\AuthenticationService' => function($sm) {

 $service = new AuthenticationService();

 $sessionConfig = new SessionConfig();

 $sessionConfig->setName('ZS6SESSID');

 $manager = new SessionManager($sessionConfig);

 $service->setStorage(new Session(null, null, $manager));

 $service->setMapper($sm->get('MonitorUi\Model\FilteredMapper'));

 return $service;

 }

))

Using Service Manager

● Service manager supplants Di
● Tells a human readable "story"
● Sectioned configuration

○ invokables
○ factories
○ abstractFactories
○ aliases
○ initializers

● Factories can be
○ Lambdas
○ method/function names
○ FactoryInterface implementing classes

ZS6 Di Evolution

Started with Di, moved to Service Manager
● Transition from Di to SM is difficult
● Similar systems, similar terms, different

results and implementation
● Lots of functionality resided in Di
● Bridge the gap in onBootstrap:
$di = $this->serviceManager->get('Di');
$this->serviceManager->addAbstractFactory(
new DiAbstractServiceFactory($di));

● Factories caveat: does not lend to inheritance

Common initializers, the lack thereof

● Initializers are callables, usually for injecting
objects into "awareness" interfaces

● Load initializers using ServiceManager::
addInitializer

The problem:
● MVC native objects are produced by

different ServiceManagers
● Only the "global" service manager is

immediately available
● Consistency of SM behavior suggests

Initializers should be shared ... they ain't

Common Initializers, solution
$initializers = array(

 function ($instance) use ($serviceManager) {

....

 },

);

$serviceLocators = array(

 $serviceManager ,

 $serviceManager ->get('ControllerLoader'),

 $serviceManager ->get('ControllerPluginManager'),

 $serviceManager ->get('ViewHelperManager'),

);

foreach ($serviceLocators as $serviceLocator) {

 foreach ($initializers as $initializer) {

 $serviceLocator ->addInitializer ($initializer);

 }

}

Identity Awareness
Are YOU aware?

Evolving a solution, requirements

● A user, in Zend Server 6 may be able to
○ see only a particular application

■ or a group of applications
○ Affect the application itself
○ Affect application-related information

"Affect" means filter
● The user may opt to filter by application id
● The application must enforce his

permissions on the filter

Evolving a solution, complications

● A few different components
○ Monitor Events
○ Monitor Rules
○ JobQueue
○ Page Cache
○ Codetracing

● Each component has a different filter
structure

● Each component handles applications'
relations differently

Solutions, choices and ZF2

● Controller plugin
● Event driven
● Initializer based

The plugin solution

Create an Action Plugin class that accepts the
full list of applications and the mapper's output
Problems:
● Diabolically complex

○ Difficult to extend and scale to other data types
● Different data structures and arbitrary

differences between components
● Breaks MVC: requires the controller to be

involved in business logic

The event driven solution

● Create an event listener class which modifies
a predefined filter structure

● Cause the mapper to throw out an event
before filtering

● The listener modifies the filter by consulting
an available list of allowed applications

● Mapper continues using the filter object
normally

The event driven solution

● Pros
○ Centralized functionality
○ Modular behavior - attach a listener or don't
○ Modular behavior 2 - adding more, future activities

to the filter will be easier
● Cons

○ Filters' varying structure means either a complex
listener
or

○ Multiple listeners for multiple classes
○ Listener's behavior is difficult to change on the fly

■ either its hidden and hard to get at
or

■ it's exposed and slowly becomes redundant

The initializer solution

Introduce the necessary functionality into the
class that performs the operation
● Introduce a new class which can retrieve

application ids from the identity object
○ Inject the user's Identity into this class

● Inject the new class into the data mapper
● Implement the identity filter internally in the

mapper
● Continue normally

The initializer solution

Problems
● This is a complex solution
● Requires integration in each mapper
● It requires introducing new dependencies
However
● MVC separation is preserved
● Mapper encapsulation is preserved
● It is easy to extend in an environment with

multiple authentication methods

Thank you!
Thoughts, feedback: yonni.m@zend.com

$this->trigger('complete', array('Thanks!'));

mailto:yonni.m@zend.com

