

Zend Framework:
A Beginner’s Guide

Vikram Vaswani

New York Chicago San Francisco

Lisbon London Madrid Mexico City

Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act

of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval

system, without the prior written permission of the publisher.

ISBN: 978-0-07-163940-8

MHID: 0-07-163940-3

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-163939-2,

MHID: 0-07-163939-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked

name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the

trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate

training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or

mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of

any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the

work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve

one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,

transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may

use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work

may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS

TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,

INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,

AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not

warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or

error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless

of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information

accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,

special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been

advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim

or cause arises in contract, tort or otherwise.

For Tonka, who keeps asking "Why?",
and Farah, who always knows the answer.

About the Author
Vikram Vaswani is the founder and CEO of Melonfire (http://

www.melonfire.com/), a consultancy firm with special expertise

in open-source tools and technologies. He has 12 years of

experience working with PHP and MySQL as a Web application

developer and product manager, and has created and deployed a

variety of PHP applications for corporate intranets, high-traffic

Internet Web sites, and mission-critical thin-client applications.

Vikram is also a passionate proponent of the open-source

movement and is a regular contributor of articles and tutorials

on PHP, MySQL, XML, and related tools to the community

through his regular columns on the Zend Developer Zone and

IBM DeveloperWorks. He is the author of Zend Technologies’ well-regarded PHP 101

series for PHP beginners, and his previous books include MySQL: The Complete Reference

(http://www.mysql-tcr.com/), How to Do Everything with PHP & MySQL (http://www

.everythingphpmysql.com/), PHP Programming Solutions (http://www.php-programming-

solutions.com/), and PHP: A Beginner’s Guide (http://www.php-beginners-guide.com/).

A Felix Scholar at the University of Oxford, England, Vikram combines his interest in

Web application development with various other activities. When not dreaming up plans for

world domination, he amuses himself by reading crime fiction, watching movies, playing

squash, blogging, and keeping a wary eye out for Agent Smith. Read more about him and Zend

Framework: A Beginner’s Guide at http://www.zf-beginners-guide.com.

About the Technical Editor
Ryan Mauger is the Lead Developer for Lupimedia (http://www.lupimedia.com/),

a multimedia design agency in Somerset, England that specializes in bespoke content

management systems for design-oriented Web sites. Ryan is a keen Zend Framework supporter

and contributor, and can often be found answering questions and guiding people on IRC

(#channel). When not evangelizing the Zend Framework, Ryan is a proud father, and enjoys

escaping to the lakes for a spot of fly fishing. Read more about him and his work at http://

www.rmauger.co.uk/.

http://www.melonfire.com/
http://www.melonfire.com/
http://www.mysql-tcr.com/
http://www.everythingphpmysql.com/
http://www.everythingphpmysql.com/
http://www.php-programming-solutions.com/
http://www.php-programming-solutions.com/
http://www.php-beginners-guide.com/
http://www.zf-beginners-guide.com
http://www.lupimedia.com/
http://www.rmauger.co.uk/
http://www.rmauger.co.uk/

v

Contents

FOREWORD . xiii

ACKNOWLEDGMENTS . xiv

INTRODUCTION . xv

1 Introducing the Zend Framework ... 1

Overview .. 3

Features .. 4

Standards Compliance and Best Practices .. 4

Reusability .. 4

Internationalization ... 5

Open Source .. 5

Community Support .. 5

Unique Advantages ... 5

Loose Coupling ... 5

Rapid Release Cycle ... 6

Unit Testing Policy ... 6

Code-Generation Tools ... 6

Market Credibility .. 6

Third-Party Application Interoperability .. 6

Commercial Support Options ... 7

Extensive Documentation ... 7

Application Environment ... 7

Installing the Zend Framework .. 8

Try This 1-1: Starting a New Project ... 10

Understand Application Requirements ... 11

Create the Application Directory .. 11

Create the Application Skeleton ... 11

Add Zend Framework Libraries ... 13

Define Virtual Host Settings ... 13

Using the Command-Line Tool .. 14

Summary .. 17

2 Working with Models, Views, Controllers, and Routes 19

Understanding Basic Concepts ... 20

Models .. 21

Views .. 22

Controllers .. 23

vi Zend Framework: A Beginner’s Guide

Modules .. 24

Routes ... 25

Layouts ... 25

Understanding Component Interaction .. 26

Looking Behind the Default Index Page .. 28

Understanding the Modular Directory Layout ... 30

Try This 2-1: Using a Modular Directory Layout .. 32

Creating the Default Module .. 33

Updating the Application Configuration File ... 33

Understanding Master Layouts and Custom Routes .. 33

Updating the Application Index Page ... 35

Setting a Master Layout .. 36

Using a Custom Route .. 37

Try This 2-2: Serving Static Content .. 39

Defining Custom Routes ... 39

Defining the Controller .. 40

Defining the View ... 41

Updating the Master Layout ... 42

Summary .. 44

3 Working with Forms ... 47

Understanding Form Basics ... 48

Creating Forms and Form Elements ... 53

Working with Form Elements ... 55

Setting Required and Default Values .. 65

Filtering and Validating Form Input ... 70

Using Input Filters .. 70

Using Input Validators .. 73

Retrieving and Processing Form Input ... 81

Try This 3-1: Creating a Contact Form .. 82

Defining the Form ... 82

Using a Custom Namespace ... 85

Defining a Custom Route ... 85

Defining Controllers and Views ... 86

Updating the Master Layout ... 88

Customizing Form Appearance .. 90

Using Custom Error Messages ... 91

Using Display Groups ... 93

Using Decorators .. 94

Summary .. 99

4 Working with Models .. 101

Understanding Models ... 102

Model Patterns .. 105

Model Scope ... 105

Contents vii

Installing Doctrine .. 107

Try This 4-1: Generating and Integrating Doctrine Models ... 108

Initializing the Application Database .. 109

Generating Doctrine Models ... 113

Setting Model Relationships ... 115

Autoloading Doctrine ... 116

Working with Doctrine Models .. 118

Retrieving Records ... 118

Adding, Updating, and Deleting Records ... 120

Try This 4-2: Retrieving Database Records ... 122

Creating a New Module .. 122

Defining a Custom Route ... 122

Defining the Controller ... 122

Defining the View ... 124

Summary .. 127

5 Handling CRUD Operations .. 129

Try This 5-1: Creating Database Records .. 130

Defining the Form ... 130

Defining Controllers and Views ... 136

Working with Administrative Actions .. 140

Structure .. 140

Routing ... 141

Layout ... 142

Try This 5-2: Listing, Deleting, and Updating Database Records 142

Setting the Administrative Layout .. 142

Defining Custom Routes ... 144

Defining the List Action and View ... 146

Defining the Delete Action ... 148

Defining the Update Form .. 150

Defining the Update Action and View .. 154

Updating the Display Action .. 157

Adding User Authentication ... 158

Try This 5-3: Creating a Login/Logout System ... 161

Defining Custom Routes ... 161

Defining the Login Form .. 161

Defining the Authentication Adapter .. 162

Defining the Login Action and View .. 165

Defining the Logout Action .. 167

Protecting Administrative Actions .. 167

Updating the Master Layout ... 168

Summary .. 170

viii Zend Framework: A Beginner’s Guide

6 Indexing, Searching, and Formatting Data ... 173

Try This 6-1:Searching and Filtering Database Records ... 174

Defining the Search Form ... 174

Defining the Controller and View ... 177

Updating the Master Layout ... 179

Adding Full-Text Search .. 181

Indexing Data .. 182

Searching Data .. 184

Try This 6-2: Creating a Full-Text Search Engine ... 185

Defining the Index Location ... 185

Defining Custom Routes ... 186

Defining the Index Action and View .. 186

Updating the Summary View .. 188

Updating the Search Form .. 188

Updating the Search Action and View .. 189

Handling Multiple Output Types .. 192

Try This 6-3: Expressing Search Results in XML .. 194

Enabling the XML Context ... 194

Defining the XML View ... 194

Summary .. 196

7 Paging, Sorting, and Uploading Data .. 199

Try This 7-1: Paging and Sorting Database Records ... 200

Adding Page Numbers to Routes .. 201

Updating the Index Controller and View .. 201

Adding Sort Criteria to Routes ... 204

Updating the Controller and View .. 204

Working with File Uploads .. 209

Try This 7-2: Enabling Image Uploads .. 213

Defining the Upload Destination .. 213

Updating the Form Definition .. 213

Updating the Create Action .. 215

Updating the Display Action and View .. 216

Updating the Delete Action .. 218

Working with Configuration Data .. 222

Reading Configuration Files ... 222

Writing Configuration Files .. 224

Try This 7-3: Configuring Application Settings ... 227

Defining the Configuration Form ... 227

Defining the Configuration File .. 229

Defining Custom Routes ... 230

Defining the Controller and View ... 231

Updating the Master Layout ... 233

Using Configuration Data ... 235

Summary .. 239

Contents ix

8 Logging and Debugging Exceptions .. 241

Understanding Exceptions .. 242

Understanding the Default Error-Handling Process ... 246

Using Custom Exception Classes ... 249

Controlling Exception Visibility ... 251

Try This 8-1: Creating a Custom Error Page .. 252

Logging Data .. 254

Writing Log Messages .. 254

Adding Data to Log Messages .. 259

Formatting Log Messages ... 259

Try This 8-2: Logging Application Exceptions .. 263

Defining the Log Location .. 263

Defining the Database Log Writer .. 264

Updating the Error Controller ... 265

Summary .. 268

9 Understanding Application Localization .. 271

Understanding Localization and Locales ... 272

Setting the Application Locale .. 274

Localizing Numbers ... 277

Localizing Dates and Times ... 279

Localizing Currencies ... 282

Localizing Measurements ... 285

Localizing Strings .. 287

Working with Adapters and Data Sources .. 289

Using the Application Locale ... 291

Using the Translation View Helper ... 293

Try This 9-1: Localizing the Example Application .. 294

Setting the Application Locale .. 294

Localizing Numbers and Dates ... 294

Defining String Localization Targets .. 298

Creating Translation Sources .. 300

Registering the Translation Object ... 302

Supporting Manual Locale Selection .. 306

Updating the Master Layout ... 307

Summary .. 309

10 Working with News Feeds and Web Services ... 311

Working with News Feeds ... 312

Understanding News Feed Formats .. 313

Consuming News Feeds ... 313

Creating News Feeds .. 317

Accessing Web Services ... 319

Understanding Web Services .. 319

Consuming Web Services ... 322

x Zend Framework: A Beginner’s Guide

Try This 10-1: Integrating Twitter and Blog Search Results .. 328

Defining Custom Routes ... 328

Defining the Controller and View ... 328

Updating the Master Layout ... 331

Creating REST-Based Web Services .. 332

Understanding REST Routes .. 332

Try This 10-2: Implementing REST-Based Web Services ... 334

Creating a New Module .. 334

Defining the Controller ... 334

Defining the GET Actions .. 336

Defining the POST Action .. 339

Initializing the REST Routes .. 340

Summary .. 342

11 Working with User Interface Elements ... 345

Working with Navigation Structures .. 346

Understanding Pages and Containers ... 346

Rendering Navigational Elements .. 351

Try This 11-1: Adding a Navigation Menu .. 355

Defining Navigation Pages and Containers .. 355

Registering the Navigation Object .. 357

Creating the Navigation Action Helper .. 358

Using the Menu View Helper ... 359

Working with the Dojo Toolkit ... 361

Handling Dojo Data .. 361

Using the Dojo View Helpers ... 362

Using Dojo Form Elements .. 365

Try This 11-2: Adding a Dojo Autocomplete Widget .. 368

Updating the Contact Form .. 368

Initializing the Dojo View Helper ... 369

Updating the Master Layout ... 370

Updating the Controller .. 371

Try This 11-3: Adding a YUI Calendar Widget ... 372

Updating the Form .. 372

Updating the Master Layout ... 374

Updating the Controller .. 375

Updating the View .. 377

Summary .. 378

12 Optimizing Performance .. 381

Analyzing Performance .. 382

Benchmarking ... 382

Code Profiling ... 384

Query Profiling ... 387

Contents xi

Caching Data .. 392

Understanding Cache Operations ... 392

Understanding Cache Frontends and Backends ... 395

Using the Cache Manager ... 398

Caching Doctrine Queries ... 399

Optimizing Application Code ... 401

Query Tuning .. 401

Lazy Loading .. 404

Try This 12-1: Improving Application Performance .. 405

Configuring the Application Cache .. 405

Caching Translation Strings .. 406

Caching Query Results ... 406

Caching Twitter and Blog Feeds ... 408

Summary .. 410

A Installing and Configuring Required Software .. 413

Obtaining the Software ... 414

Installing and Configuring the Software .. 416

Installing on UNIX ... 416

Installing on Windows .. 420

Testing the Software ... 426

Testing MySQL ... 426

Testing PHP .. 427

Setting the MySQL Superu-User Password ... 428

Summary .. 428

Index ... 429

This page intentionally left blank

xiii

Foreword

The PHP ecosystem has changed dramatically in the past six years. Prior to PHP 5’s advent,

we PHP developers were primarily creating our projects on an ad-hoc basis, each project

differing from its predecessor; if we paid attention, each project improved on the previous—

but there was no guarantee. While tools and practices existed for managing code quality and

standards, they were still maturing, and not in widespread use. The idea of using PHP as the

basis for a stable, enterprise-worthy application was widely scoffed as a result—despite the

fact that it was powering some of the most trafficked sites on the Web.

With the advent of PHP 5, we started seeing more of a focus on solid programming

practices. With a revised and reworked object model, we now had a solid foundation on which

to build our re-usable objects. Tools such as PHPUnit capitalized on the object model to

simplify and enable solid testing practices. These in turn led to an increased look at where code

quality fit in the PHP application life cycle.

It is from this ecosystem that PHP frameworks began to arise. While several began in PHP

4, the idea took off in PHP 5, and a handful of frameworks started taking over the landscape.

These frameworks aim to provide best practices to their users, and repeatable, reusable

structure for the applications they build.

Among these is Zend Framework. Zend Framework’s mission, from its Web site, is simply this:

Extending the art and spirit of PHP, Zend Framework is based on simplicity, object-oriented

best practices, corporate-friendly licensing, and a rigorously tested agile codebase. Zend

Framework is focused on building more secure, reliable, and modern Web 2.0 applications and

Web services, and consuming widely available APIs.

In this book, you’ll learn how Zend Framework approaches these goals, from an author

who is both well-versed in the subject as well as a capable and clear technical writer. You’ll get

both thorough and understandable explanations as well as complete examples—and hopefully

come away from reading with an appetite to develop your own applications using what has

become the de facto standard in the industry: Zend Framework.

—Matthew Weier O’Phinney, Project Lead, Zend Framework

xiv

Acknowledgments

The Zend Framework is a complex piece of software, and writing a book about it is not—as

I found out over the last eight months—a particularly simple task. Fortunately, I was aided

in this process by a diverse and dynamic group of people, all of whom played an important

part in getting this book into your hands.

First and foremost, a gigantic thank you to my wife, who supported me through the entire

process and made sure I had a comfortable and stress-free working environment. I’m pretty

sure this book would never have made it out into the world without her help. Thanks, babe!

The editorial and marketing team at McGraw-Hill deserves an honorable mention here

as well. This is my sixth book with them and, as usual, they have been an absolute pleasure

to work with. Acquisitions coordinator Joya Anthony, editorial supervisor Patty Mon, and

executive editors Jane Brownlow and Megg Morin all guided this manuscript through the

development process and played a huge role in turning it from pixels on a page to the polished

and professional product you hold in your hands. I would like to thank them for their expertise,

dedication, and efforts on my behalf.

I’d also like to single out Ryan Mauger, the technical editor for this book, for special

praise. Ryan reviewed every line of code and applied his extensive knowledge of the Zend

Framework to make the sure that the final product was both technically sound and reflective

of current best practices. I’d like to thank him for his help and advice throughout the book-

writing process. If you’re ever in the market for a PHP expert, you can't do better than him!

Finally, for making the entire book-writing process more enjoyable than it usually is,

thanks to: Patrick Quinlan, Ian Fleming, Bryan Adams, the Stones, Peter O’Donnell, MAD

Magazine, Scott Adams, Gary Larson, VH1, Britney Spears, George Michael, Kylie Minogue,

Buffy the Vampire Slayer, Farah Malegam, Stephen King, Shakira, Anahita Marker, John le

Carre, The Saturdays, Barry White, Gwen Stefani, Ping Pong, Robert Crais, Robert B. Parker,

Baz Luhrmann, Stefy, Anna Kournikova, John Connolly, Wasabi, Omega, Pidgin,

Cal Evans, Ling’s Pavilion, Tonka and his evil twin Bonka, Richelle Mead, Din Tai Fung,

HBO, Mark Twain, Tim Burton, Harish Kamath, Madonna, John Sandford, Dollhouse, Iron

Man, the London Tube, Dido, Google.com, The Matrix, Lee Child, Michael Connelly, Celio,

Antonio Prohias, Quentin Tarantino, Alfred Hitchcock, Woody Allen, Kinokuniya, Percy

Jackson, Jennifer Hudson, Mambo’s and Tito’s, Easyjet, Humphrey Bogart, Thai Pavilion,

Wikipedia, Amazon.com, U2, Ubuntu, The Three Stooges, Pacha, Oscar Wilde, Hugh Grant,

Alex Rider, Punch, Kelly Clarkson, Scott Turow, Slackware Linux, Calvin and Hobbes, Yo!

Sushi, Blizzard Entertainment, Alfred Kropp, Otto, Pablo Picasso, Popeye and Olive Oyl,

Dennis Lehane, Trattoria, Dire Straits, Bruce Springsteen, David Mitchell, The West Wing,

Wagamama, Santana, Rod Stewart, and all my friends, at home and elsewhere.

xv

Introduction

The Zend Framework is indeed, in the words of the immortal Ernest Hemingway, a

“moveable feast.” Conceived and implemented as a robust, feature-rich component library

for PHP developers, it allows you to quickly and efficiently perform a variety of common

application development tasks, including creating and validating form input, processing XML,

generating dynamic menus, paginating data, working with Web services, and much, much

more!

Perhaps the most important contribution of the Zend Framework, however, is that it has

advanced the art of PHP development by introducing PHP developers to a more standardized

and structured approach to PHP programming. This structured approach results in cleaner,

more maintainable and more secure applications, and it’s one of the key reasons that more

and more developers are switching away from the older “ad-hoc” style of programming to the

newer, framework-based approach.

For many novice PHP developers, though, the Zend Framework is a scary leap into the

unknown. The Model-View-Controller pattern, the loosely coupled architecture, and the large

number of available components often serve to befuddle developers who are used to “regular”

procedural programming and find framework-based development too complex to understand.

That’s where this book comes in. If you’re one of the many millions of users who’ve heard

about the Zend Framework and wondered what it could do for you, this is the book for you. It

takes a close look at some of the Zend Framework’s most important features—such as Model-

View-Controller implementation, routing, input validation, internationalization, and caching—

and shows you how to use them in a practical context. It also walks you through the process

of building a complete Web application with the Zend Framework, starting with the basics and

then adding in more complex features such as data pagination and sorting, user authentication,

exception handling, localization, and Web services. In short, it gives you the knowledge you

need to supercharge your PHP development by leveraging the power of the Zend Framework.

Who Should Read This Book
As you might have guessed from the title, Zend Framework: A Beginner’s Guide is intended

for users who are new to the Zend Framework. It assumes that you know the basics of PHP

programming (including the new object model in PHP 5.x) and have some familiarity with

HTML, CSS, SQL, XML, and JavaScript programming. If you’re completely new to PHP, this

is probably not the first book you should read—instead, consider working your way through

the introductory PHP tutorials at http://www.melonfire.com/community/columns/trog/ or

purchasing a beginner guide such as How to Do Everything with PHP & MySQL (http://www

.everythingphpmysql.com/) or PHP: A Beginner’s Guide (http://www.php-beginners-guide

.com/) and then returning to this book.

http://www.melonfire.com/community/columns/trog/
http://www.everythingphpmysql.com/
http://www.everythingphpmysql.com/
http://www.php-beginners-guide.com/
http://www.php-beginners-guide.com/

xvi Zend Framework: A Beginner’s Guide

In order to work with the example application in this book, you will need a functioning

PHP 5.x installation, ideally with an Apache 2.2.x Web server and a MySQL 5.x database

server. You’ll also need (obviously!) the latest version of the Zend Framework. Details on how

to obtain and configure a PHP development environment are available in the Appendix of this

book, while Chapter 1 covers the Zend Framework installation process in detail.

What This Book Covers
Since Zend Framework: A Beginner’s Guide is aimed at users new to the Zend Framework,

the first half of the book starts out by explaining basic concepts and solving fairly easy

problems. Once you’ve gained familiarity with the basics of Zend Framework development,

the second half of the book brings up more complex problems, such as internationalization

and performance optimization, and illustrates possible solutions. This also means that you

should read the chapters in order, since each chapter develops knowledge that you will need in

subsequent chapters.

Here’s a quick overview of what each chapter covers:

Chapter 1, “Introducing the Zend Framework,” introduces the Zend Framework,

explaining the benefits of framework-based development and walking you through the

process of creating a new Zend Framework project.

Chapter 2, “Working with Models, Views, Controllers, and Routes” discusses the

basics of the Model-View-Controller (MVC) pattern and introduces you to important

concepts like routing, global layouts, and modules.

Chapter 3, “Working with Forms,” introduces the Zend_Form component, explaining

how to programmatically create and validate Web forms, protect forms from attack, and

control form error messages.

Chapter 4, “Working with Models,” discusses the role of models in a Zend Framework

application and introduces the Doctrine ORM toolkit and the Zend Framework

bootstrapper.

Chapter 5, “Handling CRUD Operations,” discusses how to integrate Doctrine models

with Zend Framework controllers to implement the four common CRUD operations, add

authentication to an application, and build a simple login/logout system.

Chapter 6, “Indexing, Searching, and Formatting Data,” discusses data indexing and

searching, and also demonstrates how to add support for multiple output types to a Zend

Framework application.

Chapter 7, “Paging, Sorting, and Uploading Data,” discusses how to paginate and sort

database query results; filter and process file uploads; and read and write configuration

files in INI and XML formats.

Chapter 8, “Logging and Debugging Exceptions,” explains how the Zend Framework

handles application-level exceptions and demonstrates how to add exception logging and

filtering to a Zend Framework application.

Introduction xvii

Chapter 9, “Understanding Application Localization,” discusses the various tools

available in the Zend Framework to build a localized, multilingual application that can be

easily “ported” to different countries and regions.

Chapter 10, “Working with News Feeds and Web Services,” discusses how to use the

Zend Framework to generate and read Atom or RSS news feeds; access third-party Web

services using SOAP or REST; and allow developers to access your application using

REST.

Chapter 11, “Working with User Interface Elements,” discusses how to improve

site navigation with menus, breadcrumbs, and sitemaps, and also explains the Zend

Framework’s Dojo integration with examples of an AJAX-enabled autocomplete form

field and a pop-up calendar widget.

Chapter 12, “Optimizing Performance,” discusses various techniques for measuring

and improving Web application performance, including benchmarking, stress testing, code

profiling, caching, and query optimization.

Appendix, “Installing and Configuring Required Software,” guides you through the

process of installing and configuring an Apache/PHP/MySQL development environment

on Windows and Linux.

Conventions
This book uses different types of formatting to highlight special advice. Here’s a list:

NOTE

Additional insight or information on the topic

TIP

A technique or trick to help you do things better

CAUTION

Something to watch out for

Q: A frequently asked question, . . .

A: . . . and its answer

Ask the Expert

xviii Zend Framework: A Beginner’s Guide

In the code listings in this book, text highlighted in bold is a command to be entered at the

prompt. For example, in the following listing

mysql> INSERT INTO movies (mtitle, myear) VALUES ('Rear Window', 1954);
Query OK, 1 row affected (0.06 sec)

the line in bold is a query that you would type in at the command prompt. You can use this as a

guide to try out the commands in the book.

Companion Web Site
You can find the code for the example application discussed in this book at its companion Web

site, http://www.zf-beginners-guide.com/. Code archives are organized by chapter, and may

be directly downloaded and used in your Zend Framework development environment.

http://www.zf-beginners-guide.com/

1

Chapter 1
Introducing the

Zend Framework

2 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

Learn the benefits of framework-based development

Understand the history and unique advances of the Zend Framework

Understand the structure of a Zend Framework application

Install and start using the Zend Framework

It’s no exaggeration to say that PHP is today one of the most popular programming languages

in the world, and the toolkit of choice for millions of Web application developers across the

planet. According to recent statistics, the language is in use on more than 22 million Web

sites and a third of the world’s Web servers—no small feat, especially when you consider that

PHP is developed and maintained entirely by a worldwide community of volunteers with no

commercial backing whatsoever!

The reasons for PHP’s popularity are not hard to understand. It’s scalable, easily

available, and plays well with third-party software. It uses clear, simple syntax and delights

in non-obfuscated code, making it easy to learn and use and encouraging rapid application

development. And it has a massive advantage over commercial programming toolkits, because

it’s available free of charge for a variety of platforms and architectures, including UNIX,

Microsoft Windows, and Mac OS, under an open-source license.

Developers too report high levels of satisfaction with PHP. In an August 2009 study of

ten scripting languages by Evans Data Corporation, PHP developers had the highest user

satisfaction levels (followed closely by Ruby and Python users). In particular, PHP ranked

highest for cross-platform compatibility, availability and quality of tools, and performance, and

second highest for maintainability and readability, extensibility, ease of use, and security.

For organizations and independent developers, all these facts add up to just one thing:

Using PHP saves both money and time. Building applications with PHP costs less, because the

language can be used for a variety of purposes without payment of licensing fees or investment

in expensive hardware or software. And using PHP also reduces development time without

sacrificing quality, because of the easy availability of ready-made, robust, and community-

tested widgets and extensions that developers can use to painlessly add new functions to the

language.

Now, although it might not seem apparent at first glance, PHP’s much-vaunted ease of use

is both good and bad. It’s good because unlike, say, C++ or Java, PHP programs are relatively

easy to read and understand, and this encourages novice programmers to experiment with

the language and pick up the basics without requiring intensive study. It’s bad because PHP’s

corresponding lack of “strictness” can lull those same programmers into a false sense of

security and encourage them to write applications for public consumption without awareness

of the necessary standards for code quality, security, and reusability.

Chapter 1: Introducing the Zend Framework 3

With this in mind, there’s been a concerted and visible effort in the PHP community

over the last few years to move from ad-hoc “anything goes” programming to a more

standardized, framework-oriented approach. Not only does this approach make it easier to get

up and running when building a PHP application from scratch, but it produces cleaner, more

consistent, and more secure application code. This chapter, and the remainder of this book,

introduces you to one such framework, the Zend Framework, which provides a flexible and

scalable approach to building PHP applications for serious developers.

Overview
In the words of its official Web site (http://framework.zend.com/), the Zend Framework

is “an open source framework for developing web applications and services with PHP 5

[…] based on simplicity, object-oriented best practices, corporate friendly licensing, and a

rigorously tested agile codebase.” It provides a comprehensive set of tools to build and deploy

PHP-based Web applications, with built-in APIs for common functions like security, input

validation, data caching, database and XML operations, and internationalization.

Unlike many other frameworks, the Zend Framework uses a “loosely coupled”

architecture. Simply put, this means that although the framework itself consists of numerous

components, these components are largely independent and have minimal links to each

other. This loosely coupled architecture helps in producing lightweight applications, because

developers can choose to use only the specific components they need for the task at hand.

So, for example, developers looking to add authentication or caching to their application can

directly make use of the Zend_Auth or Zend_Cache components, without needing the rest of

the framework.

The Zend Framework also provides a complete implementation of the Model-View-

Controller (MVC) pattern, which allows application business logic to be separated from the

user interface and data models. This pattern is recommended for applications of medium to

large complexity and is commonly used for Web application development, as it encourages

code reusability and produces a more manageable code structure. Zend Framework’s

implementation of the MVC pattern is discussed in detail in Chapter 2.

The Zend Framework is created and maintained by Zend Technologies, a commercial

software vendor whose founders, Andi Gutmans and Zeev Suraski, were also responsible

for the first major rewrite of the PHP parser, released as PHP 3.0 in 1997. The first version

of the Zend Framework, v1.0, was released in July 2007 and contained 35 core components,

including components for caching, authentication, configuration management, database access,

RSS and Atom feed generation, and localization.

Since then, the framework has been through numerous iterations with the most recent

release, v1.10, now containing more than 65 components that support (among other things)

Adobe’s Action Message Format (AMF), Google’s GData APIs, and Amazon’s EC2 and SQS

Web services. Fortunately, the increase in the number of components has been accompanied

by a corresponding increase in documentation—the manual for Zend Framework v1.9

(circa 2009) weighs in at 3.7MB, as compared to the 780KB manual that shipped with Zend

Framework v1.0 in 2007.

http://framework.zend.com/

4 Zend Framework: A Beginner’s Guide

Although Zend Technologies operates commercially in a number of different markets,

it makes the Zend Framework available to the public as an open-source project under the

BSD License, thereby allowing it to be freely used in proprietary commercial products

without the payment of a license fee. This “business-friendly” licensing policy has made the

Zend Framework popular with both corporate and individual users. Startups, Fortune 500

companies, independent developers, and PHP hobbyists are all fans of the project—as of this

writing, the Zend Framework has been downloaded more than 10 million times and there are

more than 400 open-source projects that are either based on, or extend, the Zend Framework.

A vibrant, enthusiastic developer community can be found swapping bug patches and tips on

the mailing list and wiki, with additional support coming from the online manual and reference

guide. The community is also encouraged to “give back” to the framework by submitting new

components—there are currently over 500 independent contributors to the project—so long as

the contributions meet Zend’s requirements for documentation and unit testing.

Features
You might be wondering why using the Zend Framework is a better idea than simply rolling

your own code, the way you’re used to right now. Well, here are some reasons.

Standards Compliance and Best Practices
Unlike some other programming languages, PHP doesn’t enforce a common coding standard.

As a result, the manner in which PHP applications are written differs significantly from

developer to developer, making it hard to ensure project-wide consistency. PHP’s relative

lack of “strictness” can also produce code that fails to adhere to best practices, rendering it

vulnerable to attack.

The Zend Framework, on the other hand, incorporates current thinking on best practices,

provides a standard filesystem layout, and provides built-in support for common application

development tasks such as input validation and sanitization. Therefore, using it as the basis

for a PHP project automatically produces higher-quality code and an application that’s more

forward-leaning on security issues. Additionally, because the Zend Framework is well-

documented, developers joining the project team at a later date will have a much shorter

learning curve and can begin contributing to the project faster.

Reusability
The Zend Framework is completely object-oriented and makes full use of the new object

model in PHP 5.x. This object-oriented programming (OOP) architecture encourages code

reusability, allowing developers to significantly reduce the time spent writing duplicate code.

This fact is particularly important in the context of Web applications, which often need to

expose multiple interfaces to their data. Suppose, for example, that you wish to build an XML

interface to your application’s existing search engine functionality. With the Zend Framework,

this is as simple as defining a new view that takes care of reformatting controller output in

XML. It’s not necessary to rewrite any of the existing controller logic, and the entire process is

transparent and easy to accomplish.

Chapter 1: Introducing the Zend Framework 5

Internationalization
As a project that is intended for use in Web application development, it would be unusual indeed

if the Zend Framework did not include comprehensive support for application internationalization

and localization. The Zend_Locale component allows for application-level control over the

user’s locale, while the Zend_Translate component makes it possible to support multilingual

applications that include Latin, Chinese, and European character sets. Other useful components

include Zend_Date and Zend_Currency, for localized date/time and currency formatting.

Open Source
The Zend Framework is an open-source project. Although the project is sponsored by Zend

Technologies, much of the development is handled by a worldwide team of volunteers who

take care of fixing bugs and adding new features. Zend Technologies provides direction to the

project, as well as a group of “master engineers” who make decisions on what gets included in

the final product. As noted earlier, the framework may be used without payment of licensing

fees or investments in expensive hardware or software. This reduces software development

costs without affecting either flexibility or reliability. The open-source nature of the code

further means that any developer, anywhere, can inspect the code tree, spot errors, and suggest

possible fixes; this produces a stable, robust product wherein bugs, once discovered, are

rapidly resolved—often within a few hours of discovery!

Community Support
Looking for a way to integrate Flickr photostreams or Google Maps data into your application?

Try the Zend_Service_Flickr or Zend_Gdata components. Need to communicate with a Flash

application using Adobe Action Message Format (AMF)? Reach for the Zend_Amf component.

Need to quickly integrate an RSS feed into your application? Zend_Feed has everything you need.

As these examples illustrate, one of the nice things about a community-supported project

like the Zend Framework is the access it offers to the creativity and imagination of hundreds of

developers across the world. The Zend Framework is composed of a large number of independent

components that developers can use to painlessly add new functionality to their PHP project. Using

these components is usually a more time- and cost-efficient alternative to rolling your own code.

Unique Advantages
Now, one might well argue that the features listed above apply to all PHP frameworks, not just

the Zend Framework. However, the Zend Framework does possess some unique features that

give it an edge over the competition.

Loose Coupling
Unlike many other frameworks, where the individual pieces of the framework are closely

linked with each other, the components of the Zend Framework can be easily separated and

used on an “as needed” basis. So, while the Zend Framework certainly includes everything

you need to build a modern, MVC-compliant Web application, it doesn’t force you to do

so—you’re just as welcome to pull out any of the individual library components and integrate

6 Zend Framework: A Beginner’s Guide

them into your non-MVC application. This loose coupling helps reduce the footprint of your

application and preserves flexibility for future changes.

Rapid Release Cycle
The Zend Framework team follows an aggressive release schedule, with an average of between

one and three releases each month. In addition to these stable releases, there are also previews

and release candidates, which serve to give the community a heads-up on what to expect while

the final release is being prepared. These frequent releases serve not only to keep the project

moving forward, but to ensure that bugs are picked up and resolved as quickly as possible.

Developers can also access “bleeding edge” code from the project’s public Subversion repository.

Unit Testing Policy
Given that the Zend Framework is a loosely coupled set of components that are subject to

ongoing development, unit testing assumes particular importance to ensure that components

continue working correctly and the code base remains stable throughout multiple release cycles.

The Zend Framework has a strict unit testing policy, which dictates that components can only

be added to the framework if they are accompanied by a reasonably complete and working

collection of unit tests (written under the PHPUnit testing framework). This policy ensures that

backward compatibility is maintained between releases and regressions are readily visible.

Code-Generation Tools
Zend Framework includes a “tooling” feature that allows developers to get a new Zend

Framework project up and running with minimal effort. This feature, implemented as a

command-line script built on top of the Zend_Tool component, takes care of creating the base

filesystem layout for a new project and populating it with an initial set of controllers, views,

and actions. Developers can use this tooling script as a convenient shortcut to quickly create

new project objects as development progresses.

Market Credibility
The Zend Framework is sponsored by Zend Technologies, one of the best-known software

companies in the PHP space. The company produces a number of commercial products for

enterprise use and has a long track record of creating successful and innovative products for

PHP developers, such as Zend Server, a PHP Web application server for business-critical

applications, and Zend Studio, an integrated IDE for PHP application development. Zend

Technologies’ customers include IBM, McAfee, FOX Interactive Media, Lockheed Martin,

SalesForce.com, NASA, and Bell Canada; as such, its support of the Zend Framework ensures

immediate credibility in the marketplace and serves as a useful tool when convincing clients

and/or senior managers to take the leap into framework-based development.

Third-Party Application Interoperability
Zend Technologies’ market position as one of the leading vendors of enterprise PHP solutions

has allowed it to garner broad industry support for the Zend Framework. Zend Framework

Chapter 1: Introducing the Zend Framework 7

includes native support for many third-party tools and technologies, including Adobe Action

Message Format (AMF), the Google Data APIs, the Dojo Toolkit, Microsoft CardSpace, and

Web services from Amazon, Yahoo!, Twitter, Flickr, Technorati, and Del.icio.us.

That’s not all. One of PHP’s strengths has historically been its support for a wide range

of different databases, file formats, and protocols. The Zend Framework provides a common

API for accessing MySQL, PostgreSQL, Oracle, and Microsoft SQL Server databases (among

others) via its Zend_Db components, and also includes components for sending and receiving

email using the SMTP, IMAP, and POP3 protocols; building Web services using the SOAP and

REST protocols; encoding and decoding JSON data; parsing feeds in Atom and RSS formats;

and creating and manipulating PDF documents.

Commercial Support Options
The Zend Framework is “free”—users can download and use it at no cost under the terms of the

BSD License, but by the same token, users are expected to support themselves via community

tools such as mailing lists and wikis. For companies and individuals looking for a greater level

of support, Zend Technologies offers commercial support and training packages, consultancy

services from Zend engineers, and proprietary PHP development and deployment tools that

can help speed and optimize Zend Framework development. For many business organizations,

this ability to access technical support, albeit at a fee, is a key reason for selecting the Zend

Framework as their application toolkit of choice. There’s also the Zend Framework Certification

program, which provides a measure of an individual developer’s Zend Framework skills, and is

recognized throughout the industry as an indicator of his or her Zend Framework competence.

Extensive Documentation
The Zend Framework comes with extensive documentation for the 60+ components included

with the core distribution. This documentation includes a programmer’s reference guide

containing more than 1000 pages; a “quick start” guide for experienced developers; detailed

API documents; video tutorials; webinars; and podcasts by well-known Zend engineers. This

wide range of learning materials can significantly reduce the learning curve for both novice

and experienced programmers and it is, in fact, one of the key areas where Zend Framework

surpasses competing PHP frameworks.

Application Environment
All Zend Framework applications are also PHP applications and can run in any PHP-capable

environment. This environment typically consists of at least the following three components:

A base operating system, usually either Linux or Microsoft Windows

A Web server, usually Apache on Linux or Internet Information Services on Microsoft

Windows, to intercept HTTP requests and either serve them directly or pass them on to the

PHP interpreter for execution

8 Zend Framework: A Beginner’s Guide

A PHP interpreter to parse and execute PHP code, and return the results to the Web server

There’s also often a fourth optional but very useful component:

A database engine, such as MySQL or PostgreSQL, that holds application data, accepts

connections from the PHP layer, and modifies or retrieves data from the database

Figure 1-1 illustrates the interaction between these components.

It’s worth noting that the Linux/Apache/PHP/MySQL combination is extremely popular

with developers, and is colloquially referred to as the “LAMP stack.” The LAMP stack is

popular because all its components are open-source projects and, as such, can be downloaded

from the Internet at no charge. As a general principle, there are also no fees or charges

associated with using these components for either personal or commercial purposes, or for

developing and distributing applications that use them. If you do intend to write commercial

applications, however, it’s a good idea to review the licensing terms that are associated with

each of these components; typically, you will find these on the component’s Web site as well

as in the product archive.

Installing the Zend Framework
Now that you know a little bit about the Zend Framework, let’s dive right into actually

building applications in it. As a necessary first step, you must first ensure that you have a

working Apache/PHP/MySQL development environment. The appendix of this book has

detailed instructions for obtaining these components, for installing them, and for testing your

development environment to ensure that it’s working correctly, so flip ahead and come back

here once you’re ready.

All done? The next step is to download and install the Zend Framework to your

development environment. Visit the official Zend Framework Web site at http://framework

ServerClient

Web browser SQL query

HTTP request

HTTP response

SQL result set
Linux OS

MySQL
Apache

PHP

Figure 1-1 The components of a typical PHP application environment

http://framework.zend.com/

Chapter 1: Introducing the Zend Framework 9

.zend.com/ and get a copy of the most recent release of the software. Zend Technologies

makes two versions of the package available: a “minimal” version, which contains just the

standard libraries and command-line tools, and a “full” version, which contains additional

documentation, examples, unit tests, and third-party toolkits. The full version is recommended.

Once you’ve downloaded the code archive, extract its contents to a temporary area on the

file system.

shell> cd /tmp
shell> tar -xzvf ZendFramework-XX.tar.gz

You should end up with a directory structure that looks something like Figure 1-2.

Of all these directories, the two you’ll need immediately are the library/ and bin/ directories.

The library/ directory contains all the Zend Framework components, while the bin/ directory

contains command-line tools that are helpful in initializing a new project and adding objects to it.

These two directories need to be manipulated as follows:

The contents of the library/ directory should be moved to a location in your PHP “include

path” list. On UNIX/Linux systems, good possible locations for this are /usr/local/lib/

php or /usr/local/share/php. On Windows, consider using your PHP or PEAR installation

directory, such as C:\Program Files\PHP or C:\Program Files\PHP\PEAR. Note that in

case the target directory is not already part of

your PHP “include path” list, you must add it

before proceeding.

The contents of the bin/ directory should

be moved to a location in your system’s

executable path. If the directory containing

your PHP binary—typically /usr/local/bin

on UNIX/Linux or C:\PHP on Windows—is

already part of your system’s executable

path, then that is usually the ideal location to

use. Alternatively, move the contents of the

bin/ directory to any other location you find

convenient, always remembering to add that

location to your system’s executable path list.

NOTE

The bin/ directory contains three scripts: zf.sh, the
command-line interface for UNIX/Linux; zf.bat,
the command-line interface for Windows; and zf.php,
the main “worker” script. On UNIX/Linux, you will need
to make the zf.sh script executable with the chmod
command; you may also wish to rename or alias it to
make it easier to access.

Figure 1-2 The contents of a
Zend Framework release
archive

http://framework.zend.com/

10 Zend Framework: A Beginner’s Guide

Here are examples of commands you can use to perform these tasks:

shell> cd ZendFramework-XX
shell> mv library/* /usr/local/lib/php/
shell> mv bin/* /usr/local/bin/
shell> chmod +x /usr/local/bin/zf.sh
shell> ln -s /usr/local/bin/zf.sh /usr/local/bin/zf

You should now be able to access the zf command-line script from your shell prompt, on both

Linux and Windows. Try this by issuing the following command at your shell prompt:

shell> zf —help

If all is working as it should, you should be presented with a list of options. Figure 1-3

illustrates the output on Linux.

Starting a New Project
Once you’ve got the Zend Framework installed and the zf command-line script working,

you’re ready to start creating applications with it. The following steps discuss how to

accomplish this task.

Try This 1-1

Figure 1-3 The output of the zf --help command

Chapter 1: Introducing the Zend Framework 11

Understand Application Requirements
Before diving into the code, it’s worthwhile spending a few minutes understanding the example

application you’ll be building in the first half of this book. The application is the Web site of

a fictional store that specializes in the sale of rare postal stamps to hobbyists and professional

philatelists. Unlike other hobbyist stores, though, this one has an interesting twist: It functions

as an online stamp sourcing agency, allowing individual collectors to upload pictures and

descriptions of stamps they may have for sale into a central database, and letting buyers search

this stamp database by country, year, and keyword. In the event of a match, the store will

purchase the stamp from the seller and resell it to the buyer…at a hefty commission, naturally!

Designated site moderators would have direct access to the uploaded listings, and would

manually approve suitable ones for display in search results. Moderators would also have

access to a simple content management system for news and press releases; this information

would be accessible both via the Web site and as an RSS feed. And just to make things

interesting, the stamp database would also be available via a SOAP interface, to facilitate

integration with third-party applications.

Sounds funky? It is. And it even has a cool name: the Stamp Query and Research Engine

or, as its friends like to call it, SQUARE.

The SQUARE example application is conceived such that it covers common requirements

encountered in day-to-day application development: static pages, input forms, image upload,

login-protected administration panel, data paging and sorting, multiple output types, and

keyword search. Implementing these features requires one to understand the nitty-gritties of form

processing, input validation, session management, authentication and security, CRUD database

operations, Web service APIs, and integration with third-party libraries. As such, it should be a

good starting point to begin understanding application development with the Zend Framework.

Create the Application Directory
Let’s get started. Change to the Web server’s document root directory (typically /usr/local/

apache/htdocs on UNIX/Linux or C:\Program Files\Apache\htdocs on Windows) and create

a new subdirectory for the application. For reasons that have been explained in the preceding

section, name this directory square/.

shell> cd /usr/local/apache/htdocs
shell> mkdir square

This directory will be referenced throughout this book as $APP_DIR.

Create the Application Skeleton
The next step is to initialize the application and create the basic files and directories needed

for a skeletal Zend Framework application. The zf command-line script can do this for you

automatically—simply change to $APP_DIR and run the following command (see Figure 1-4):

shell> cd /usr/local/apache/htdocs/square
shell> zf create project.

(continued)

12 Zend Framework: A Beginner’s Guide

The script will now create an empty application container and populate it with an initial

set of files. Once the process is complete, you’ll see a number of new subdirectories in the

application directory, as shown in Figure 1-5.

This is the default directory structure for Zend

Framework applications. Each directory serves a

different purpose, as discussed in the following list:

$APP_DIR/application/ is the main application

directory, which contains all the application

code, including controllers, views, and models.

$APP_DIR/library/ holds third-party libraries

and classes used by the application. If you

decide to bundle the Zend Framework with

your application (see the next section), this is

where you’ll put it.

$APP_DIR/public/ holds publicly accessible

content, such as image and media files, CSS style

sheets, JavaScript code, and other static resources.

$APP_DIR/tests/ holds unit tests for the

application.

Figure 1-4 The output of the zf create project command

Figure 1-5 The default directory structure
for a new Zend Framework
application

Chapter 1: Introducing the Zend Framework 13

Add Zend Framework Libraries
At this point, you have an important decision to make. You must decide whether to include the

Zend Framework libraries with your application, or leave it up to users to download and install

these libraries themselves. There are pros and cons to each option, as follows:

Requiring users to download the Zend Framework libraries themselves ensures that

they always have access to the latest code (and bug fixes). However, the process can be

intimidating for novice users, and if the newer libraries are not backward-compatible with

the original versions used, unusual and hard-to-track bugs could appear.

Bundling the Zend Framework libraries with the application ensures that users can begin

using the application out of the box, with no version incompatibilities. However, it also

“locks in” users to a particular version of the Zend Framework, possibly making it harder

to upgrade to newer versions with additional features or necessary bug fixes.

For purposes of this book, I’ll assume that the Zend Framework libraries will be bundled

with the application. Therefore, copy the contents of the Zend Framework library/ directory

to $APP_DIR/library/, as you did earlier in the chapter, using the following command.

The default application settings are to automatically look in this location for libraries to be

included.

shell> cp -R /usr/local/lib/php/Zend library/

Define Virtual Host Settings
To make it easier to access the application, it’s a good idea to define a new virtual Web host

and point it to the application’s public directory. This is an optional but recommended step,

as it helps simulate a “live” environment and presents application resources (URLs) as they

would appear to users in a public environment.

Assuming you’re using the Apache Web server, you can set up a named virtual host for

the application by editing the Apache configuration file (httpd.conf or httpd-vhosts.conf) and

adding the following lines to it:

NameVirtualHost *:80
<VirtualHost *:80>
 DocumentRoot "/usr/local/apache/htdocs/square/public"
 ServerName square.localhost
</VirtualHost>

These lines define a new virtual host, http://square.localhost/, whose document root

corresponds to the $APP_DIR/public/ directory. Restart the Web server to activate these new

settings. Note that if you’re on a network, it might be necessary to update your network’s local

DNS server to let it know about the new host as well.

(continued)

http://square.localhost/

14 Zend Framework: A Beginner’s Guide

Figure 1-6 The default application index page

Once these steps are complete, pop open your Web browser and browse to the virtual host

that you just set up, by entering the URL http://square.localhost/. If you see a Zend Framework

welcome page, like the one shown in Figure 1-6, pat yourself on the back, because you just got

a complete (albeit extremely simple) Zend Framework application up and running!

Using the Command-Line Tool
As illustrated in the previous section, the zf command-line script allows you to perform a

number of different operations. For example, drop to your command prompt and issue the

following command:

shell> zf show version

http://square.localhost/

Chapter 1: Introducing the Zend Framework 15

Q: Can I use the Zend Framework in a shared hosting environment, where I’m likely

to have limited or no control over global PHP configuration directives like the PHP

“include path”?

A: Yes, absolutely. There are a couple of ways to accomplish this:

 If you’re simply concerned about using Zend Framework classes in your application,

all you need to do is copy the library/Zend directory to your home area, and then use

the ini_set() function to dynamically add this location to your PHP include path in

your application scripts.

 If you’d like to use the zf command-line script, you should also copy the bin/ directory

to your home area (at the same level as the library/ directory). You should then be able

to invoke the zf command-line script as usual, by prepending the complete filesystem

path to the script name. This will work because, if the Zend Framework cannot be

found in the PHP include path, the zf command-line script will also look for a library/

Zend directory one level above it in the current directory hierarchy and use it if

available. Alternatively, you can explicitly tell the zf command-line script where to

find your Zend Framework installation, by setting the ZEND_TOOL_INCLUDE_PATH_
PREPEND environment variable to the appropriate location.

Ask the Expert

This command displays the version number of the currently installed Zend Framework

release. Figure 1-7 and Figure 1-8 illustrate the output on Linux and Windows, respectively.

You can also try the following command to retrieve complete phpinfo() information:

shell> zf show phpinfo

The zf command-line tool also provides a quick and easy way to view the current “profile”

of your application. This profile contains a hierarchical list of the current contents of your

application, with descriptions of the files within it, and it’s a great way to get a fast bird’s-eye

view of the application without manually drilling down into each directory.

Figure 1-7 The output of the zf show version command on Linux

16 Zend Framework: A Beginner’s Guide

Figure 1-8 The output of the zf show version command on Windows

Figure 1-9 An example project profile

Try it out by changing directories to $APP_DIR and executing the following command:

shell> zf show profile

Figure 1-9 illustrates the output on Linux.

Chapter 1: Introducing the Zend Framework 17

Summary
This chapter provided a gentle introduction to the world of Zend Framework development,

introducing you to the project and illustrating some of its unique features and advantages vis-

à-vis competing alternatives. It also guided you through the process of installing the Zend

Framework and using the command-line tool to start a new project. These basic skills will

serve you well as you move to the next chapter, which discusses core application development

concepts and gets you started with building a framework-based Web application.

If you’d like to learn more about the topics discussed in this chapter, you’ll find the

following links useful:

The official Zend Framework Web site, at

http://framework.zend.com/

The Zend Framework community wiki, at

http://framework.zend.com/wiki/

Zend Framework usage statistics, at

http://framework.zend.com/about/numbers

Zend Framework case studies, at

http://framework.zend.com/about/casestudies

Zend Framework components, at

http://framework.zend.com/about/components

The Zend Framework CLI tool, at

http://framework.zend.com/manual/en/zend.tool.framework.clitool.html

The Zend Framework filesystem layout, at

http://framework.zend.com/wiki/display/ZFDEV/Choosing+Your+Application%27s+

Directory+Layout

The Zend Framework development roadmap, at

http://framework.zend.com/roadmap

http://framework.zend.com/
http://framework.zend.com/wiki/
http://framework.zend.com/about/numbers
http://framework.zend.com/about/casestudies
http://framework.zend.com/about/components
http://framework.zend.com/manual/en/zend.tool.framework.clitool.html
http://framework.zend.com/wiki/display/ZFDEV/Choosing+Your+Application%27s+Directory+Layout
http://framework.zend.com/wiki/display/ZFDEV/Choosing+Your+Application%27s+Directory+Layout
http://framework.zend.com/roadmap

This page intentionally left blank

19

Chapter 2
Working with Models,

Views, Controllers,

and Routes

20 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

Understand the basics of the Model-View-Controller pattern

Find out how URL requests are handled in a Zend Framework application

Gain the benefits of a modular directory layout

Define and apply a global template to application views

Create custom routes for application resources

Learn to serve static content pages

The preceding chapter gave you a gentle introduction to the Zend Framework, by guiding you

through the process of installing the framework and starting a new project. You now need

to start fleshing out the application skeleton with code that makes it functional. This chapter

will help you to do so, by introducing you to the fundamental design principles of a Zend

Framework application and then applying this knowledge to the task of building a real-world

application. So without further ado, let’s jump straight in!

Understanding Basic Concepts
When you are developing a PHP application, the typical approach is to embed PHP code

into one or more HTML documents using special delimiters. This makes it easy to construct

dynamic Web pages containing programming constructs like variables and function calls;

simply alter the values of the variables embedded within the HTML code, and the content

displayed on the page changes appropriately.

As every application developer knows, however, this convenience comes at a price.

The approach described in the previous paragraph produces PHP scripts that are so closely

interwoven with HTML code that maintaining them is a nightmare. Since the same physical

file usually contains both HTML interface elements and PHP code, developers and interface

designers must coordinate with each other to make changes. The most common example of

this is when interface designers need to alter the look and feel of a Web application—typically,

the changes they make to the HTML code must be monitored by a developer to ensure the

integrity of the embedded business logic.

This type of arrangement is easily recognized by its most visible symptom: a bunch of

harried developers and designers clustered around a single computer arguing with each other

as they take turns at the keyboard. Needless to say, in addition to producing frayed tempers

and suboptimal code, this approach also usually requires more time and money than is strictly

necessary for the task at hand. And that’s where the Zend Framework can help.

Chapter 2: Working with Models, Views, Controllers, and Routes 21

Zend Framework applications are built according to a widely accepted set of principles

which encourage code reusability, maintainability, and scalability. One of the linchpins of

this approach is the Model-View-Controller (MVC) design pattern, which allows application

business logic to be separated from the user interface and data models, such that they can

be manipulated independent of each other. The MVC pattern also encourages efficient

organization and separation of an application’s responsibilities, and allows different

components to be tested independently.

The following sections explain the key components of the MVC pattern, with specific

notes on the Zend Framework’s implementation where relevant.

Models
Every application is driven by data, whether it’s something as simple as a username and

password or as complex as a multicurrency shopping cart. In the MVC pattern, this “data

layer” is represented by one or more models, which provide functions to retrieve, save, delete,

and otherwise manipulate application data. This data layer is output-agnostic: it is completely

concerned with the data itself, and completely unconcerned with how that data is presented to

the user. As such, it provides a logically independent interface to manipulate application data.

To illustrate, consider a simple Web application that allows users to post classified

advertisements for used cars. Under the MVC pattern, this application’s data—the car

listings—would be represented by a Listing model, which would expose methods for

manipulating the underlying data. This model would not be concerned with the visual display

of the listings; rather, its focus would be on the functions needed to access and manipulate

individual listings and their attributes in the data store.

Here’s an example of what one such model might look like:

<?php
class ListingModel
{
 public function __construct()
 {
 // constructor
 }

 public function read($id)
 {
 // code to retrieve a single listing using its ID
 }

 public function find($criteria)
 {
 // code to retrieve listings matching given criteria
 }

 public function save()
 {

22 Zend Framework: A Beginner’s Guide

 // code to insert or update a listing
 }

 public function delete()
 {
 // code to delete a listing
 }
}
?>

When application data is stored in a database, such as MySQL, SQLite, or PostgreSQL,

models may make use of an underlying database abstraction layer to handle the tasks of

managing database connections and executing SQL queries. The Zend Framework includes a

database abstraction layer, Zend_Db, which provides a common interface to many different

database systems, and models in the Zend Framework are typically expressed using the Data

Mapper pattern. It’s also quite easy to integrate third-party models, such as those created with

Object-Relational Mapping (ORM) tools such as Doctrine and Propel, into a Zend Framework

application.

Views
If models are concerned solely with accessing and manipulating the application’s raw data,

views are concerned solely with how this data is presented to the user. Views can simply be

thought of as the “user interface layer,” responsible for displaying data but not capable of

directly accessing or manipulating it. Views can also receive input from the user, but their

responsibility is again limited to the appearance and behavior of the input form; they are not

concerned with processing, sanitizing, or validating the input data.

In the context of the classifieds application discussed earlier, views would be responsible

for displaying current listings and for generating forms into which new listings could be

entered. So, for example, there might be a view to display all the latest listings in a particular

category, and a view to input new listings. In all of these cases, the controller and/or the model

would handle the tasks of retrieving and processing data, while the view would take care of

massaging this data into an acceptable format for display and then rendering it to the user.

Here’s an example of a view intended to display the most recent listings:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8"/>
 <base href="/" />
 </head>
 <body>
 <div id="header">
 <div id="logo">

Chapter 2: Working with Models, Views, Controllers, and Routes 23

 </div>
 </div>

 <div id="content">
 <h1>Recent listings</h1>
 <?php foreach ($this->listings as $l): ?>
 <div class="listing">
 <h3 class="listing_title">
 <a href="/listing/view/<?php echo $l->id; ?>">
 <?php echo $l->title; ?>

 </h3>

 <?php echo $l->content; ?>

 </div>
 <?php endforeach; ?>
 </div>

 </body>
</html>

As this example illustrates, views are typically expressed as PHP scripts containing the

HTML code or markup necessary to correctly render and display output to the user. These

scripts can also contain variable placeholders for dynamic data; values for these placeholders

are set by the corresponding controller and interpolated into the view when it is rendered.

Under the Zend Framework, view scripts are rendered by the Zend_View component, which

also provides ancillary functions for output escaping and a set of “helpers” for common view

tasks such as navigation, metatag creation, and link generation. It’s also quite easy to integrate

third-party template engines, such as Smarty or Savant, into a Zend Framework application by

extending the Zend_View_Interface abstract class.

Controllers
Controllers are the link between models and views. They make changes to application data

using models, and then call views to display the results to the user. A controller may be linked

to multiple views, and it may call a different view depending on the result that is to be shown

at any given time. Controllers can thus be thought of as the “processing layer,” responsible for

responding to user actions, triggering changes in application state, and displaying the new state

to the user.

In the context of the application discussed earlier, controllers would be responsible

for reading and validating request parameters, saving and retrieving listings using model

functions, and selecting appropriate views to display listing details. So, for example, a

controller would intercept a request for the most recent listings, query the ListingModel model

for a list of recent entries, select an appropriate view, interpolate the entries into the view, and

24 Zend Framework: A Beginner’s Guide

render the view. Similarly, if the user chose to add a new listing, the controller would select

and render an input view, validate and sanitize the user’s input, insert the sanitized input

into the data store using the ListingModel model, and then select and render another view to

display whether or not the operation was successful.

Here’s an example of a controller that brings together the model and view illustrated

previously:

<?php
class ListingController
{
 function indexAction()
 {
 // code to initialize model
 // and retrieve data
 $listing = new ListingModel();
 $matches = $listing->find(
 array(
 'date' => '-10 days',
 'status' => 'published'
)
);

 // code to initialize view
 // and populate with data returned from model
 $view = new ListingView();
 $view->listings = $matches;
 echo $view->render('recent.php');
 }
}
?>

As this example illustrates, a controller serves as an intermediary, invoking model

methods to perform operations on application data, and using views to display the results of

those operations to the user. Under the Zend Framework, controllers are created as children

of the Zend_Controller_Action class, and contain methods, also called actions, which hold

the processing code necessary to interact with models and views. There’s also an über-

controller, the front controller, which is responsible for intercepting user requests and invoking

appropriate controller and action methods to satisfy them (more on this in the next section).

In addition to the three key components described above, the Zend Framework also

introduces some additional ideas to streamline application development. These are described in

the following sections.

Modules
By default, all models, controllers, actions, and views live in the—what else?—“default”

module. However, you may often wish to group models, views, and controllers together

into self-contained “boxes” based on the different functional areas of your Web application.

Chapter 2: Working with Models, Views, Controllers, and Routes 25

Modules provide a way to accomplish this. So, for example, if your application includes

functions for search, user profile management, and news, you could create separate “search,”

“profile,” and “news” modules, and place the corresponding models, views, and controllers for

each in these modules.

Modules provide a convenient way to organize application code, or a way to build third-

party application components that can easily be plugged in to an existing installation. The

Zend Framework’s default router is fully module-aware, allowing you to begin using modules

in your application without any custom programming, and each module (except the “default”

module) also has its own namespace to prevent object and variable collisions.

Routes
Routes provide the link between user requests and actions. When a user makes a request for

an application URL, the front controller intercepts that request and decides, based on the URL

pattern, which controller and action should be invoked to fulfill the request. This process of

routing requests to controllers is a key part of the application execution flow, and is capable of

extensive configuration. Routes make use of regular expressions for pattern matching, and can

be expressed using either XML or INI file syntax.

By default, the Zend Framework includes some standard routes that are suitable for

applications of small to medium complexity. These standard routes assume that application

URLs are of the form /module/controller/action, and divert user requests accordingly. So, for

example, a request for http://application/auto/listing/index would be automatically mapped

to ListingController::indexAction in the “auto” module. Notice that controller and

action names follow a specific case and naming convention.

NOTE

The Zend Framework’s routing subsystem automatically applies default values to routes
that don’t conform to the /module/controller/action format. A detailed discussion of
these default values, and their impact on how request URLs are mapped to controllers
and actions, can be found in the section entitled “Understanding Component
Interaction.”

In case the standard routes described in the previous paragraph are too limiting or

inflexible for the demands of your application, the Zend Framework also supports custom,

user-defined routes. These routes support (among other things) optional and mandatory

parameters, default values, and multiple chained routes, and they allow you to micromanage

your application’s routing so that application URLs need not directly reflect your internal

classification of controllers, actions, and modules.

Layouts
In the classical sense, a layout is a definition of how a collection of elements is arranged. In

the context of a Zend Framework application, layouts can be thought of as interface templates,

providing a way to “decorate” application content using one or more standard application-

wide interfaces. Layouts provide a way to abstract common interface elements, such as page

http://application/auto/listing/index

26 Zend Framework: A Beginner’s Guide

headers and footers or site-wide navigation widgets, into separate files that can be edited and

maintained independent of individual views.

It’s quite common for an application to have more than one layout. For example, you

might wish to present one interface to users and another to administrators, or you might wish

to allow users to customize their experience of the application by selecting from a set of

predefined interface themes. Layouts make these, and other templating options, reasonably

easy to implement.

NOTE

You’ll begin working with modules, custom routes, and layouts later in this chapter.

Understanding Component Interaction
If you think of a Zend Framework application like a circus (and the analogy is often more

than a little apt), then the front controller is the ringmaster, whipping the acts into shape and

making sure the audience is satisfied. This section examines its role in more detail, illustrating

it in the context of the steps that go into intercepting and satisfying a request for an application

resource.

Figure 2-1 illustrates the flow of a request through a typical Zend Framework application.

Front controller
Request

Database

Router

Action

controller

View

Model

Layout
Response

Figure 2-1 Interaction between models, views, and controllers

Chapter 2: Working with Models, Views, Controllers, and Routes 27

As the controller tasked with intercepting client requests and directing them to the

appropriate target for response, the front controller has a key role to play in the overall flow of

a request through the application.

1. When a request arrives, the Web server’s .htaccess file automatically rewrites it into a

standard format and passes it on to the index.php script. This script sets up the application

environment, reads the application configuration file, and creates an instance of the front

controller.

2. The front controller examines the request and determines the key components of the URL.

It then attempts to route the request to an appropriate controller and action. To perform this

routing, the front controller will check both default and custom routes, and make use of

pattern-matching techniques to select an appropriate target for the request.

3. If a match is found, the front controller transfers control to the corresponding controller and

action. Once invoked, the action makes changes to the application state using one or more

models. It also selects the view to be displayed and sets any required view properties. Once

the action has completed, the selected view renders its output, wrapping it in a layout as

needed. This output is then transmitted back to the requesting client.

4. In the event that none of the application’s defined routes match the request, an exception

is thrown and the error controller and action are invoked. Based on the parameters of the

exception, the error action renders a view containing a failure notice. This output is then

transmitted back to the requesting client.

NOTE

Any uncaught exceptions generated during the request-handling process will invoke the
error controller and corresponding action. This will produce a view containing a failure
notice, which is transmitted back to the requesting client.

As noted earlier, the routing subsystem automatically maps URLs in the format

/module/controller/action to the corresponding module, controller, and action. So, for

example, to access the ListingController::saveAction in the “auto” module,

you’d need to request the URL http://application/auto/listing/save. Similarly, to access the

NewsController::editAction in the “content” module, you’d need to request the URL

http://application/content/news/edit.

If the routing subsystem receives a request that doesn’t conform to the /module/controller/

action format, it automatically applies default settings, as follows:

For requests without a module name, the routing subsystem automatically assumes the

module to be the “default” module.

For requests without a controller name, the routing subsystem automatically assumes the

controller to be the IndexController of the selected module.

http://application/auto/listing/save
http://application/content/news/edit

28 Zend Framework: A Beginner’s Guide

For requests without an action name, the routing subsystem automatically assumes the

controller to be the indexAction of the selected controller.

To better understand how these default settings play out in practice, consider the following

examples:

The ContactController::sendAction in the “default” module can be accessed at

both http://application/default/contact/send and http://application/contact/send.

The PostController::indexAction in the “default” module can be accessed at both

http://application/default/post/index and http://application/post/.

The NewsController::indexAction in the “content” module can be accessed at

both http://application/content/news/index and http://application/content/news.

Looking Behind the Default Index Page
With all this background information at hand, let’s go back to the code generated by the zf

command-line tool in Chapter 1 and take a closer look at how the default Zend Framework

welcome page is generated. We’ll begin at the beginning, with the initial request for http://

square.localhost/. This request produces the default application index page shown in

Figure 2-2.

What goes into making this happen? Well, consider that when you request the URL http://

square.localhost/, the default routes described in the previous section come into play, and

this URL is automatically rewritten to http://square.localhost/default/index/index. The

Zend Framework’s routing subsystem then redirects this request to the “default” module’s

IndexController and indexAction() method.

This controller and action is automatically created by the zf command-line tool, and by

convention is stored at $APP_DIR/application/controllers/IndexController.php. Here’s what it

looks like:

<?php
class IndexController extends Zend_Controller_Action
{
 public function init()
 {
 /* Initialize action controller here */
 }

 public function indexAction()
 {
 // action body
 }
}

Here, the indexAction() method is a simple stub without any executable code. Once it

completes executing, it automatically selects its default view for rendering. By convention,

http://application/default/contact/send
http://application/contact/send
http://application/default/post/index
http://application/post/
http://application/content/news/index
http://application/content/news
http://square.localhost/
http://square.localhost/
http://square.localhost/default/index/index
http://square.localhost/
http://square.localhost/

Chapter 2: Working with Models, Views, Controllers, and Routes 29

this view is named after the controller and action and can be found in the corresponding view

scripts directory, which in this case would be $APP_DIR/application/views/scripts/index/index

.phtml. Open this file and you’ll see the HTML markup that generates the output shown in

Figure 2-2:

<style>
 a:link,
 a:visited
 {
 color: #0398CA;
 }

 span#zf-name
 {
 color: #91BE3F;
 }

 div#welcome
 {
 color: #FFFFFF;
 background-image: url(
 http://framework.zend.com/images/bkg_header.jpg);
 width: 600px;
 height: 400px;
 border: 2px solid #444444;
 overflow: hidden;
 text-align: center;
 }

Figure 2-2 The default application index page

30 Zend Framework: A Beginner’s Guide

 div#more-information
 {
 background-image: url(
 http://framework.zend.com/images/bkg_body-bottom.gif);
 height: 100%;
 }
</style>
<div id="welcome">
 <h1>Welcome to the Zend Framework!</h1>

 <h3>This is your project's main page</h3>

 <div id="more-information">
 <p><img src=
 "http://framework.zend.com/images/PoweredBy_ZF_4LightBG.png"
/>
 </p>
 <p>
 Helpful Links:

 Zend Framework
Website |

 Zend Framework Manual
 </p>
 </div>
</div>

From this markup, it should be clear that so long as you name and place your controllers,

actions, and views correctly, there isn’t really very much work for you to do. The framework will

automatically locate and execute files for you, using its default routes, without requiring any manual

intervention. As you proceed through this chapter and the remainder of this book, you’ll learn a

little more about how these standard Zend Framework conventions can be used to your advantage,

by reducing the amount of manual coding required in getting an application up and running.

Understanding the Modular Directory Layout
In the previous chapter, you saw how the zf command-line tool creates a directory structure

for your new Zend Framework application. In its initial form, this structure only contains

the directories needed to get a basic test application up and running. As you flesh out your

application with new features, you’ll also need to expand this basic structure and create

additional directories to hold different types of data.

To better understand this, consider Figure 2-3, which illustrates the full directory structure

for a Zend Framework application.

Each of the directories shown in Figure 2-3 has a specific purpose, as listed in Table 2-1.

The $APP_DIR/application/modules/ directory bears special mention. This directory

Chapter 2: Working with Models, Views, Controllers, and Routes 31

is intended to store application modules, with

each module represented as a subdirectory under

$APP_DIR/application/modules/. The internal

structure of each module directory mirrors that of

the global $APP_DIR/application/ directory, as

shown in Figure 2-4.

This directory structure thus makes a

distinction between global application controllers,

views, and models, which are stored under the

$APP_DIR/application/ hierarchy, and module-

specific controllers, views, and models, which are

stored under the $APP_DIR/application/modules/

hierarchy.

From a development perspective, the choice

of which location to use for your application’s

code is an entirely subjective one. There is no

one “correct” approach, and so you can choose to

store your code in the global directories, in per-

module directories, or in a hybrid combination

of both, depending on what approach you find

Figure 2-3 The recommended directory
structure for a Zend
Framework application

Table 2-1 The Key Directories in a Zend Framework Application

Directory Description

$APP_DIR/application Main application directory

$APP_DIR/application/controllers Global controllers

$APP_DIR/application/views Global views

$APP_DIR/application/models Global models

$APP_DIR/application/configs Global configuration data

$APP_DIR/application/layouts Global layouts

$APP_DIR/application/modules Modules

$APP_DIR/library Third-party libraries and classes

$APP_DIR/public Main publicly accessible directory

$APP_DIR/public/css CSS style sheets

$APP_DIR/public/js JavaScript program code

$APP_DIR/public/images Application images

$APP_DIR/tests Unit tests

$APP_DIR/temp Temporary data

32 Zend Framework: A Beginner’s Guide

Figure 2-4 The recommended directory
structure for a Zend
Framework application
module

appropriate to your application’s requirements and

structure.

That said, the SQUARE example application

described in these chapters makes extensive

use of modules, and this book recommends the

use of modules in general for Zend Framework

application development, for the following reasons:

Organizing code into modules produces a

structured code tree, because all the controllers,

views, and models related to a particular

function or set of functions are stored within the

same directory tree. A module-based directory

layout also makes the areas of logical separation

within an application immediately visible, with

no additional documentation necessary, and is

more maintainable in the long run.

Organizing code into modules encourages

the creation of more robust and extensible

software. Modules can be structured as

independent packages with their own controllers, views, and models. Modules can thus

be thought of as reusable components that can be plugged in to an existing application to

quickly give it new functionality.

When you are using modules with the Zend Framework’s default routes, it’s necessary

to include the module name in your URL request, in the format /module/controller/action. If

the routing subsystem receives a request that doesn’t contain a module name, it automatically

looks in what it considers the “default” module—the global application directory, $APP_DIR/

application/.

This behavior can create confusion and no small degree of inconsistency in application

URLs when the application also contains additional modules in the $APP_DIR/application/

modules/ hierarchy. Therefore, when following a modular directory structure, it’s a good

idea to explicitly create a directory for the “default” module, at $APP_DIR/application/

modules/default, and move controllers, views, and models that were previously stored in

the $APP_DIR/application/* hierarchy to the $APP_DIR/application/modules/default/*

hierarchy.

Using a Modular Directory Layout
As discussed in the previous section, a modular directory layout enforces consistency and

produces a more manageable code tree. The following steps discuss how to adopt this layout

for the example application created in Chapter 1, as a prelude to beginning application

development.

Try This 2-1

Chapter 2: Working with Models, Views, Controllers, and Routes 33

Creating the Default Module
The first step is to create the $APP_DIR/application/modules/ directory, and then create a set of

subdirectories within that for the default module and its controllers and views. The zf command-

line tool does not create these directories, and so it is necessary to perform this task manually.

shell> cd /usr/local/apache/htdocs/square/application
shell> mkdir modules
shell> mkdir modules/default

Next, move the existing models, controllers, and views from $APP_DIR/application/* to

$APP_DIR/application/modules/default/*:

shell> mv controllers modules/default/
shell> mv views modules/default/
shell> mv models modules/default/

Updating the Application Configuration File
The next step is to update the global application configuration file, located at $APP_DIR/

application/configs/application.ini, with the location of the modules directory. This tells the

Zend Framework’s routing subsystem how to resolve module-specific entities.

To perform this update, open the application configuration file in a text editor and add the

following lines to the [production] section:

resources.frontController.moduleDirectory = APPLICATION_PATH "/
modules"
resources.modules = ""

Once you’ve completed the preceding steps, try accessing the application index page using

the URLs http://square.localhost/ and http://square.localhost/default/index/index. If all has

gone well, you should see the default application index page in both cases, as shown in Figure 2-2.

TIP

Regardless of whether or not you organize your application into modules, remember
that you can always redirect URL requests to specific modules, controllers, and actions
through the use of custom routes.

Understanding Master Layouts and Custom Routes
At this point, you know enough about the inner workings of a Zend Framework application

to actually begin writing some code of your own. The following sections get you started, by

guiding you through the process of creating a custom welcome page, setting up a master layout

for the application, and building a custom route to it.

http://square.localhost/
http://square.localhost/default/index/index

34 Zend Framework: A Beginner’s Guide

Q: How is it that the URLs http://square.localhost/ and http://square.localhost/default/index/

index produce the same output page?

A: The Zend Framework’s routing subsystem automatically applies certain default settings

to routes that don’t conform to the standard /module/controller/action format. Simply

put, in the absence of a module name, it assumes the “default” module, and in the

absence of a controller and action name, it assumes the indexAction() method of the

IndexController of the selected module. As a result of these default substitutions, the

request http://square.localhost/ is automatically rewritten to http://square.localhost/default/

index/index, and directed to the “default” module’s IndexController::indexAction
for completion.

Q: How do naming conventions for controllers, actions, and views work in the Zend

Framework?

A: The Zend Framework uses “camel-casing” for controller and action names.

Controller names are specified using upper camel-case and are suffixed with the word

Controller (examples: IndexController, StaticContentController,

FunkyChickenController), while action names are specified using lower camel-case

and suffixed with the word Action (examples: indexAction, displayPostAction,

redButtonAction). For modules other than the “default” module, controller names must

be additionally prefixed with the module name (examples: News_IndexController,

Catalog_EntryController).

View scripts take their name from the corresponding controller and action.

Typically, the view script is stored in a directory corresponding to the controller name

(without the Controller suffix), in a file whose name corresponds to the action name

(without the Action suffix). Therefore, the view script for the clickAction in the

ExampleController would be located at /views/scripts/example/click.phtml.

Multiple words in the controller or action name are represented by hyphens or

periods in the corresponding view script file path. Therefore, the view script for the

displayItemAction in the ShoppingCartController would be located at /views/

scripts/shopping-cart/display-item.phtml.

To prevent name collisions, the Zend Framework also allows the use of custom

namespaces, which can be prefixed to object or class names. These namespaces can be

registered with the Zend Framework autoloader, to have the corresponding definitions

automatically loaded on demand, as needed. You’ll see an example of this in Chapter 3.

Ask the Expert

http://square.localhost/
http://square.localhost/default/index/index
http://square.localhost/default/index/index
http://square.localhost/
http://square.localhost/default/index/index
http://square.localhost/default/index/index

Chapter 2: Working with Models, Views, Controllers, and Routes 35

Updating the Application Index Page
Now, while the default welcome page created by the zf command-line tool is certainly pretty,

it’s not really what you want application users to see in a live environment. So, how about

updating it with a custom welcome message and some descriptive information about the

application?

You already know that the application index page is served by the “default” module’s

IndexController::indexAction. Under a modular layout, the view corresponding to

this controller and action is located at $APP_DIR/application/modules/default/views/scripts/

index/index.phtml. Open this file in a text editor, and replace its contents with the following

markup:

<h2>Welcome!</h2>
<p>Welcome to SQUARE, our cutting-edge Web search application for rare
stamps.</p>
<p>We have a wide collection of stamps in our catalog for your
browsing pleasure, and we also list hundreds of thousands of
stamps from individual collectors across the country. If
you find something you like, drop us a line and we'll do our best to
obtain it for you. Needless to say, all stamps purchased through us
come with a certificate of authenticity, and our unique 60-day
money-back guarantee.</p>
<p>The SQUARE application is designed to be as user-friendly as
possible. Use the links in the menu above to navigate and begin
searching.</p>

Save the changes, and revisit the application index page at http://square.localhost/. You

should see a revised index page, as shown in Figure 2-5.

Figure 2-5 The updated application index page

http://square.localhost/

36 Zend Framework: A Beginner’s Guide

Setting a Master Layout
The application index page now displays relevant content, but it’s still a long way from being

easy on the eyes. So, the next step is to give it some visual pizzazz by adding some images

and navigation to it. These elements will be common to all the pages of the application, so,

although you can add them to each individual view of your application, they’re better suited

for placement in a master layout, which can then be wrapped around each view. Using a layout

is not only less time-consuming, but because the layout is stored in a single file that’s accessed

from multiple views, it’s also easier to make changes as the application evolves.

To set a master layout for the application, perform the following steps.

Creating the Layout Template File
The first step is to create the $APP_DIR/application/layouts/ directory, which is the default

location for layout files under the Zend Framework’s recommended directory layout.

shell> cd /usr/local/apache/htdocs/square/application
shell> mkdir layouts

Within this directory, create a new text file containing the following markup:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8"/>
 <base href="/" />
 <link rel="stylesheet" type="text/css" href="/css/master.css" />
 </head>
 <body>
 <div id="header">
 <div id="logo">

 </div>

 <div id="menu">
 HOME
 SERVICES
 CONTACT
 </div>
 </div>

 <div id="content">
 <?php echo $this->layout()->content ?>
 </div>

 <div id="footer">
 <p>

Chapter 2: Working with Models, Views, Controllers, and Routes 37

 Created with
 Zend Framework. Licensed under
 Creative Commons.
 </p>
 </div>
 </body>
</html>

Save this file as $APP_DIR/application/layouts/master.phtml.

You’ll notice that the master layout also makes use of two additional assets—a CSS

stylesheet and a logo image. These files need to be located in the application’s public area,

so that they can be retrieved over HTTP by connecting clients. Accordingly, also create the

$APP_DIR/public/css/ and $APP_DIR/public/images/ directories and copy over the necessary

assets to these locations. You’ll find these assets in the code archive for this chapter, which can

be downloaded from this book’s companion Web site at http://www.zf-beginners-guide.com/.

Updating the Application Configuration File
The next step is to update the global application configuration file, located at $APP_DIR/

application/configs/application.ini, with the location of the layouts directory and the name of

the default layout to use when rendering application views. Open the file in a text editor, and

add the following directives to the [production] section:

resources.layout.layoutPath = APPLICATION_PATH "/layouts"
resources.layout.layout = master

And now, when you revisit the application index page, you should see your new layout in

all its glory, as shown in Figure 2-6.

Using a Custom Route
Custom routes make it possible to map application URLs to specific modules, controllers, and

actions, and are particularly useful when the Zend Framework’s default routes turn out to be

inadequate or limiting.

To illustrate, let’s say that you’d like the application URL /home to redirect users to the

application index page. To create a custom route that maps this URL to the “default” module’s

IndexController::indexAction, simply update the application configuration file

at $APP_DIR/application/configs/application.ini and add the following route entry to the

[production] section:

resources.router.routes.home.route = /home
resources.router.routes.home.defaults.module = default
resources.router.routes.home.defaults.controller = index
resources.router.routes.home.defaults.action = index

A route entry typically contains route, module, controller, and action attributes.

The route attribute specifies the URL pattern that the route should match, while the module,

controller, and action attributes indicate which module, controller, and action should

http://www.zf-beginners-guide.com/

38 Zend Framework: A Beginner’s Guide

be used to fulfill the request. Each route also has a unique name (in this case, home), which

serves as a shortcut for automatic URL generation inside views.

After saving your changes, try visiting the URL http://square.localhost/home in your

Web browser. If all is well, you should be presented with the application index page, as shown

in Figure 2-6.

TIP

Route names are useful because you can use them with the url() view helper
to automatically generate URLs inside views. For example, a call to $view-
>url(array(), 'home') inside a view script would automatically generate the
URL string /home.

Figure 2-6 The application index page, wrapped in a custom layout

http://square.localhost/home

Chapter 2: Working with Models, Views, Controllers, and Routes 39

Serving Static Content
In previous sections, your activities have been limited to modifying the application’s existing

controllers and views. However, as development progresses, you’ll find it necessary to begin

creating new controllers, actions, and views to encapsulate additional functionality. This

shouldn’t be any cause for alarm, though, because there’s a standard process you can follow

whenever you need to add new functionality to a Zend Framework application.

These steps are illustrated in the following sections, which will guide you through the

process of adding a new StaticContentController and associated views that will be

responsible for serving up static content pages such as “About Us” and “Services” pages.

Defining Custom Routes
The first step is to define a base route for static content pages. For simplicity, we’ll assume that

all static content page URLs will be of the form /content/xx, where xx is a variable indicating

the name of the content page. To set up a custom route to handle such URLs, add the following

route definition to the application configuration file at $APP_DIR/application/configs/

application.ini:

resources.router.routes.static-content.route = /content/:page
resources.router.routes.static-content.defaults.module = default
resources.router.routes.static-content.defaults.controller =
static-content
resources.router.routes.static-content.defaults.action = display

This route is a little more complex than the one you saw earlier, because it contains a variable

placeholder. The Zend Framework supports the use of variable placeholders, indicated by a

preceding colon, in route patterns, and will automatically convert that segment of the request

Try This 2-2

Q: Why are layouts stored at the global level and not the module level?

A: With Web applications, it’s quite common for views in different modules to share the same

common layout. Therefore, the Zend Framework’s default directory layout suggests placing

layouts at the global, or application, level under $APP_DIR/application/layouts/, rather

than under the $APP_DIR/application/modules/ hierarchy.

That said, if your application is structured such that each module uses a different

layout, you could relocate your layout files to the module level, and write a custom plug-in

that dynamically changes the layout based on the module being accessed. You’ll find a

more detailed discussion of how to do this in the links at the end of this chapter.

Ask the Expert

(continued)

40 Zend Framework: A Beginner’s Guide

URL into a variable that can be accessed from within a controller. This means that if, for example,

a client requested the URL /content/hello-world, the routing subsystem would automatically

capture the URL segment “hello-world” and store it in a request variable named page.

Defining the Controller
Why do we need to capture the final segment of the URL and store it as a request variable?

That question is answered in the next paragraph, but, until we get there, let’s create the

“default” module’s StaticContentController, which, by convention, should be located

at $APP_DIR/application/modules/default/controllers/StaticContentController.php. Create this

file and fill it with the following code:

<?php
class StaticContentController extends Zend_Controller_Action
{
 public function init()
 {
 }

 // display static views
 public function displayAction()
 {
 $page = $this->getRequest()->getParam('page');
 if (file_exists($this->view->getScriptPath(null) .
 "/" . $this->getRequest()->getControllerName() .
 "/$page." . $this->viewSuffix)) {
 $this->render($page);
 } else {
 throw new Zend_Controller_Action_Exception('Page not found',
404);
 }
 }

}

This controller exposes a single action, displayAction(), which is responsible

for reading the page variable set up by the routing subsystem using the request object’s

getParam() method. It then attempts to find a view script matching the value of this

variable. If a matching view script is found, it is rendered and sent to the client. So,

for example, if the URL requested by the client was /content/hello-world, the call to

$request->getParam('page') would return the value “hello-world,” and the action

would therefore attempt to render a view named $APP_DIR/application/modules/default/

views/scripts/static-content/hello-world.phtml.

If no matching view can be found, a 404 exception is raised and propagated forward to the

default exception handler, which formats it into a readable error page and displays it to the client.

Chapter 2: Working with Models, Views, Controllers, and Routes 41

Defining the View
The next (and final) step is to create views corresponding to the controllers and actions created

in the previous step. In most cases, the view name will be based on the controller and action

name. However, in this particular case, the action is a generic display action that receives the

view name as a variable from the URL request. So, to define a static “Services” page accessible

at the URL /content/services, create a file at $APP_DIR/application/modules/default/views/

scripts/static-content/services.phtml and fill it with some content, as in the following example:

<h2>Services</h2>
<p>We provide a number of services, including procurement, valuation
and mail-order sales. Please contact us to find out more.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>

Similarly, to define an “About Us” page accessible at the URL /content/about-us, create a

file named $APP_DIR/application/modules/default/views/scripts/static-content/about-us.phtml

and fill it with some content, as in the following example:

<h2>About Us</h2>
<p>We have been in the business of stamp procurement and sales since
1927, and are internationally known for our expertise and industry-wide

Q: Why do none of the class definitions in this chapter include a closing PHP tag?

A: According to the Zend Framework coding standard, files that contain only PHP code should

not include the closing tag ?>, as it can lead to header problems with the HTTP response if

the text editor you’re using automatically adds a new line to the end of your files. For more

information on the Zend Framework coding standard, refer to the links at the end of this

chapter.

Ask the Expert

42 Zend Framework: A Beginner’s Guide

network. We encourage you to find out more about us using the links
above.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>

If you now try visiting the URL http://square.localhost/content/about-us or http://

square.localhost/content/services through your Web browser, you should see the static pages

above. Figure 2-7 illustrates a sample of the result.

Updating the Master Layout
As a final step, you can update the navigation links in the application’s main menu to reflect

the new static content pages using the url()helper method. To do this, update the master

layout, at $APP_DIR/application/layouts/master.phtml, with the changes highlighted in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8"/>
 <base href="/" />
 <link rel="stylesheet" type="text/css" href="/css/master.css" />
 </head>
 <body>
 <div id="header">
 <div id="logo">

 </div>

<div id="menu">
 <a href="<?php echo $this->url(array(), 'home'); ?>">HOME
 <a href="<?php echo $this->url(array('page' => 'services'),
 'static-content'); ?>">SERVICES
 CONTACT
 </div>
 </div>

http://square.localhost/content/about-us
http://square.localhost/content/services
http://square.localhost/content/services

Chapter 2: Working with Models, Views, Controllers, and Routes 43

 <div id="content">
 <?php echo $this->layout()->content ?>
 </div>

 <div id="footer">
 <p>Created with
 Zend Framework. Licensed under
 Creative Commons.
 </p>
 </div>
 </body>
</html>

Here, the url() helper method is used to automatically generate URLs for the /home and

/content/services routes. This helper accepts two parameters—an array of variable-value pairs

Figure 2-7 A static content page

44 Zend Framework: A Beginner’s Guide

to be interpolated into the URL string, and the name of the route—and then generates URL

strings corresponding to these parameters when the view is rendered. And if you revisit the

application index page, you’ll see that the “Home” and “Services” main menu links are now

active and, when clicked, display the correct content.

NOTE

It’s worth pointing out that there is actually an easier way to serve static pages in a
Zend Framework application: You can simply place them in the $APP_DIR/public/
directory as HTML files, and link to them manually. However, these pages would not be
able to use any of the Zend Framework’s built-in features, such as global layouts, routes,
caching, or security, and, as such, this approach is not usually recommended.

Summary
Now that you are at the end of this chapter, you should have a much deeper understanding

of what goes into making a Zend Framework application tick. This chapter began with an

introduction to the Model-View-Controller design pattern, explaining what models, views, and

controllers are and how they interact with each other to produce a logically separated, layered

application. It also introduced some additional important concepts, such as modules, routes,

layouts, and the front controller, and explained the basics of how user requests are routed

and handled in an application context. Finally, it applied all this theory to the real world, by

beginning the process of customizing and enhancing the simple test application created at the

end of the previous chapter.

The SQUARE example application is still in its early stages: It has a customized layout,

knows how to deal with modules, and can serve up static content. This might not seem like

much, but implementing even this very basic functionality will have helped you understand

the main principles of MVC-based development with the Zend Framework and created a solid

foundation for the more advanced material in subsequent chapters.

To learn more about the topics discussed in this chapter, consider visiting the following

links:

Wikipedia’s discussion of Model-View-Controller architecture, at

http://en.wikipedia.org/wiki/Model-view-controller

The basics of the Zend Framework’s MVC implementation, at

http://framework.zend.com/docs/quickstart

The Zend Framework router, at

http://framework.zend.com/manual/en/zend.controller.router.html

The Zend Framework front controller, at

http://framework.zend.com/manual/en/zend.controller.front.html

The Zend Framework layout engine, at

http://framework.zend.com/manual/en/zend.layout.html

http://en.wikipedia.org/wiki/Model-view-controller
http://framework.zend.com/docs/quickstart
http://framework.zend.com/manual/en/zend.controller.router.html
http://framework.zend.com/manual/en/zend.controller.front.html
http://framework.zend.com/manual/en/zend.layout.html

Chapter 2: Working with Models, Views, Controllers, and Routes 45

A discussion of building a modular application with the Zend Framework (Jeroen

Keppens), at

http://blog.keppens.biz/2009/06/create-modular-application-with-zend.html

A discussion of using per-module layouts in the Zend Framework wiki and forums, at

http://framework.zend.com/wiki/display/ZFPROP/Zend_Layout and http://www

.zfforums.com/zend-framework-components-13/model-view-controller-mvc-21/

modules-layouts-2645.html

The Zend Framework directory layout, at

http://framework.zend.com/wiki/display/ZFPROP/Zend+Framework+Default+

Project+Structure+-+Wil+Sinclair

The Zend Framework coding standard, at

http://framework.zend.com/manual/en/coding-standard.html

http://blog.keppens.biz/2009/06/create-modular-application-with-zend.html
http://framework.zend.com/wiki/display/ZFPROP/Zend_Layout
http://www.zfforums.com/zend-framework-components-13/model-view-controller-mvc-21/modules-layouts-2645.html
http://www.zfforums.com/zend-framework-components-13/model-view-controller-mvc-21/modules-layouts-2645.html
http://www.zfforums.com/zend-framework-components-13/model-view-controller-mvc-21/modules-layouts-2645.html
http://framework.zend.com/wiki/display/ZFPROP/Zend+Framework+Default+Project+Structure+-+Wil+Sinclair
http://framework.zend.com/wiki/display/ZFPROP/Zend+Framework+Default+Project+Structure+-+Wil+Sinclair
http://framework.zend.com/manual/en/coding-standard.html

This page intentionally left blank

47

Chapter 3
Working with Forms

48 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

● Learn to programmatically create forms and form elements

● Understand how to filter and validate user input

● Protect your forms from Cross-Site Request Forgery (CSRF) attacks and

spambots

● Control the appearance of form elements and error messages

● Create a working contact form

In the previous chapter, you learned how the Zend Framework implements the Model-View-

Controller pattern, and you looked underneath the hood of the example application to see how

it works. You also started to flesh out the example application by adopting a modular directory

structure, adding a master layout, and creating custom controllers, views, and routes for static

content.

Now, while you can certainly use the Zend Framework to serve up static content, doing so

is a lot like using a bulldozer to knock over a tower of plastic blocks. There’s nothing stopping

you from doing it, but it’s not really what the bulldozer was intended for, and you’re liable to

face hard questions about why there’s a bulldozer in your living room in the first place! The

Zend Framework is similar, in that it’s intended to provide robust, elegant, and extensible

solutions to complex Web application development tasks. The more complex the task, the

better suited it is to the power and flexibility of the framework…and the more fun you’ll have

knocking it down!

In this chapter, you’ll learn how the Zend Framework can simplify one of the most

common application development tasks: creating Web forms and processing user input. You’ll

also apply this knowledge to add some interactivity to the SQUARE example application, by

creating a contact form. So without further ado, let’s jump right in!

Understanding Form Basics
To demonstrate how the Zend Framework can help you with forms, a brief yet illustrative

example will suffice. If you’re like most PHP developers, chances are that you’ve written

a form-processing script like the following one at some point in your career:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 </head>

Chapter 3: Working with Forms 49

 <body>
 <h2>Create Item</h2>
 <?php
 if (!isset($_POST['submit'])) {
 // no POST submission, display form
 ?>
 <form method="post" action="/item/create">
 <table>
 <tr>
 <td>Item name:</td>
 <td><input type="text" name="name" size="30" /></td>
 </tr>

 <tr>
 <td>Item quantity:</td>
 <td><input type="text" name="qty" size="3" /></td>
 </tr>

 <tr>
 <td colspan="2">
 <input type="submit" name="submit" value="Submit" />
 </td>
 </tr>
 </table>
 </form>
 <?php
 } else {
 // POST submission, validate input
 if (trim($_POST['name']) == '') {
 die('ERROR: Missing value - Item name');
 }
 if (trim($_POST['qty']) == '') {
 die('ERROR: Missing value - Item quantity');
 }
 if ($_POST['qty'] <= 0) {
 die('ERROR: Invalid value - Item quantity');
 }

 // process input
 // eg: save to database
 // attempt a connection
 try {
 $pdo = new PDO('mysql:dbname=test;host=localhost', 'user',
'pass');

 // create and execute INSERT query
 $name = $pdo->quote($_POST['name']);
 $qty = $pdo->quote($_POST['qty']);

50 Zend Framework: A Beginner’s Guide

 $sql = "INSERT INTO shoppinglist (name, qty) VALUES ($name,
$qty)";
 $pdo->exec($sql) or die("ERROR: " . implode(":", $pdo-
>errorInfo()));

 // close connection
 unset($pdo);

 // display success message
 echo 'Thank you for your submission';
 } catch (Exception $e) {
 die("ERROR: " . $e->getMessage());
 }
 }
 ?>
 </body>
</html>

There’s nothing very clever or complicated here. This script is divided into two parts,

split by a conditional test that inspects the $_POST variable to determine if the form has been

submitted. The first half displays an input form containing two fields and a submit button; the

second half validates the input to ensure that it is in the correct format and then proceeds to

escape it and insert it into a database.

Figure 3-1 illustrates what the form looks like.

Now, while the script and general approach that you’ve just seen work in practice, there’s

no denying that it has a couple of problems:

The same script file contains both HTML interface elements and PHP business logic. As ●

discussed in the previous chapter, this is both messy to look at and hard to maintain. It’s

also hard to enforce consistency between forms, since the code required to produce each

form is customized to a very high degree.

Every time you add a new field to the form in the first half of the script, you need to add a ●

corresponding set of validation tests and error messages to the second half of the script. This

is annoying, and often repetitive; witness

that the first two tests in the previous

example do essentially the same thing.

There’s no way to reuse validation tests ●

from one form in other forms (unless you

had the foresight to package them into

classes or functions from the get-go). As a

result, you often end up writing the same

code time and time again, especially when

working with forms that perform related or

similar operations.

Figure 3-1 A form created using standard
HTML markup

Chapter 3: Working with Forms 51

The Zend Framework comes with a set of components, collectively referred to as Zend_

Form, which addresses these problems. To illustrate, consider the following example, which

uses Zend_Form to produce a result equivalent to the previous script:

<?php
class Form_Item_Create extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/item/create')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Item name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('Alpha', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim');

 // create text input for quantity
 $qty = new Zend_Form_Element_Text('qty');
 $qty->setLabel('Item quantity:');
 $qty->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('Int', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Submit')
 ->setOptions(array('class' => 'submit'));

 // attach elements to form
 $this->addElement($name)
 ->addElement($qty)
 ->addElement($submit);

 }
}

class ExampleController extends Zend_Controller_Action
{

52 Zend Framework: A Beginner’s Guide

 public function formAction()
 {
 $form = new Form_Item_Create;
 $this->view->form = $form;
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 $values = $form->getValues();
 $pdo = new PDO('mysql:dbname=test;host=localhost', 'user',
'pass');
 $sql = sprintf("INSERT INTO shoppinglist (name, qty)
 VALUES ('%s', '%d')", $values['name'], $values['qty']);
 $pdo->exec($sql);
 $this->_helper->getHelper('FlashMessenger')
 ->addMessage('Thank you for your submission');
 $this->_redirect('/index/success');
 }
 }
 }
}

Figure 3-2 illustrates what the form looks like.

You’ll immediately notice three things about the code that creates the form in Figure 3-2:

There isn’t a single line of HTML code in the script. Form and form elements are ●

represented as PHP objects, and they are configured using object methods. This ensures

consistency and produces a standards-compliant Web form.

Predefined validators and filters are available for common input validation and sanitization ●

tasks. This reduces the amount of work involved, produces more maintainable code,

and avoids repetition. Validators can also be combined or extended to support custom

requirements.

Validators are specified at the same time as ●

form fields. This allows the form to “know”

what each field can support and to easily

identify the source of input errors. A single

field can also be associated with multiple

validators for more stringent input validation.

It should be clear from these points that

Zend_Form provides a convenient, maintainable,

and extensible solution for input form creation and

data validation. The remainder of this chapter will

explore Zend_Form in detail, illustrating it in a

practical context.

Figure 3-2 A form created using the
Zend_Form component

Chapter 3: Working with Forms 53

Creating Forms and Form Elements
From the previous section, you know that Zend_Form offers an object-oriented API for

generating forms and validating user input. Under the Zend_Form approach, forms are

represented as instances of, or objects inheriting from, the Zend_Form base class. This

base class exposes a number of methods to control the operation of the form, including the

setAction() method to set the form’s action URL and the setMethod() method to set the

submission method. There’s also a catch-all setAttribs() method, which allows you to set

other form attributes. Here’s an example of using these methods:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/my/action')
 ->setAttribs(array(
 'class' => 'form',
 'id' => 'example'
))
 ->setMethod('post');
 }
}

Form elements are added by instantiating objects of the corresponding Zend_Form_

Element_* class, setting element properties via class methods, and then attaching them to the

form with the addElement() method. Here’s an example of adding a text input and a submit

button to a form:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/my/action')
 ->setAttribs(array(
 'class' => 'form',
 'id' => 'example'
))
 ->setMethod('post');

 // create text input for title
 $title = new Zend_Form_Element_Text('title');
 $title->setLabel('Title:')
 ->setOptions(array(

54 Zend Framework: A Beginner’s Guide

 'size' => '35'
));

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit', array(
 'label' => 'Submit',
 'class' => 'submit'
));

 // attach elements to form
 $this->addElement($title)
 ->addElement($submit);
 }
}

Element objects can be configured either by passing values to the object constructor or

by using named object methods. In the previous example, the object constructor for the text

input element was passed the element name in the constructor, and the setLabel() and

setOptions() methods were then used to set the element label and display properties,

respectively. On the other hand, the submit button was configured directly in the object

constructor, which was passed an array of options as the second argument.

TIP

You can also attach descriptions to form fields with the setDescription() method.

If you prefer, you can also create form elements using the createElement() method,

by passing the element type to the method as its first argument. Here’s an example, which is

equivalent to the previous one:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/my/action')
 ->setAttribs(array(
 'class' => 'form',
 'id' => 'example'
))
 ->setMethod('post');

 // create text input for title
 $title = $this->createElement('text', 'title', array(
 'label' => 'Title:',
 'size' => 35,
));

Chapter 3: Working with Forms 55

 // create submit button
 $submit = $this->createElement('submit', 'submit', array(
 'label' => 'Submit',
 'class' => 'submit'
));

 // attach elements to form
 $this->addElement($title)
 ->addElement($submit);

 }
}

TIP

In many of the code listings in this chapter, you’ll see examples of method chaining,
wherein one method appears to invoke another. This is an example of the Zend
Framework’s “fluent interface,” which provides a convenient shortcut to configure form
objects with minimal additional coding. The end result is also significantly more readable.
You can read more about fluent interfaces in the links at the end of this chapter.

Working with Form Elements
By default, the Zend Framework ships with definitions for 16 form elements, ranging from

simple text input elements to more complex multiple selection lists, and it’s useful to learn

more about them. Table 3-1 gives a list of these 16 elements, together with their corresponding

class names.

The following sections examine these in more detail.

Text and Hidden Fields
Text input fields, password input fields, and larger text input areas are represented by the

Zend_Form_Element_Text, Zend_Form_Element_Password, and Zend_Form_Element_

Textarea classes, respectively, while hidden form fields are represented by the Zend_Form_

Element_Hidden class. The following example demonstrates these elements in action:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name

56 Zend Framework: A Beginner’s Guide

 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('First name:')
 ->setOptions(array('id' => 'fname'));

 // create password input
 $pass = new Zend_Form_Element_Password('pass');
 $pass->setLabel('Password:')
 ->setOptions(array('id' => 'upass'));

 // create hidden input
 $uid = new Zend_Form_Element_Hidden('uid');
 $uid->setValue('49');

 // create text area for comments
 $comment = new Zend_Form_Element_Textarea('comment');
 $comment->setLabel('Comment:')
 ->setOptions(array(
 'id' => 'comment',

Element Class Description

Zend_Form_Element_Text Text input field

Zend_Form_Element_Hidden Hidden field

Zend_Form_Element_Password Password field

Zend_Form_Element_Radio Radio button

Zend_Form_Element_Checkbox Check box

Zend_Form_Element_MultiCheckbox Group of related check boxes

Zend_Form_Element_Select Selection list (single)

Zend_Form_Element_MultiSelect Selection list (multiple)

Zend_Form_Element_Textarea Text input field

Zend_Form_Element_File File input field

Zend_Form_Element_Image Image

Zend_Form_Element_Button Button

Zend_Form_Element_Hash Unique string (for session identification)

Zend_Form_Element_Captcha CAPTCHA (for spam filtering)

Zend_Form_Element_Reset Reset button

Zend_Form_Element_Submit Submit button

Table 3-1 Form Element Classes Included with the Zend Framework

Chapter 3: Working with Forms 57

 'rows' => '10',
 'cols' => '30',
));

 // attach elements to form
 $this->addElement($name)
 ->addElement($pass)
 ->addElement($uid)
 ->addElement($comment);
 }
}

Figure 3-3 illustrates the result.

Radio Buttons and Checkboxes
Radio buttons are represented by the Zend_

Form_Element_Radio class, while check

boxes are represented by the Zend_Form_

Element_Checkbox class. Here’s an example

of these two classes in action:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('id' => 'fname'));

 // create radio buttons for type
 $type = new Zend_Form_Element_Radio('type');
 $type->setLabel('Membership type:')
 ->setMultiOptions(array(
 'silver' => 'Silver',
 'gold' => 'Gold',
 'platinum' => 'Platinum'
))
 ->setOptions(array('id' => 'mtype'));

 // create checkbox for newsletter subscription
 $subscribe = new Zend_Form_Element_Checkbox('subscribe');
 $subscribe->setLabel('Subscribe to newsletter')

Figure 3-3 A form with text and hidden input
elements

58 Zend Framework: A Beginner’s Guide

 ->setCheckedValue('yes')
 ->setUncheckedValue('no');

 // attach elements to form
 $this->addElement($name)
 ->addElement($type)
 ->addElement($subscribe);
 }
}

The setMultiOptions() method of the Zend_Form_Element_Radio object accepts

an array, and uses it to set the list of available radio button options. The keys of the array

represent the form values that will be submitted, while the corresponding values represent

the human-readable labels for each option. Similarly, the setCheckedValue() and

setUncheckedValue() methods of the Zend_

Form_Element_Checkbox object allow you to

customize the value for the element’s checked and

unchecked states. By default, these values are set to

1 and 0, respectively.

Figure 3-4 illustrates the result.

If you’d like the user to select from a set of

options, the Zend_Form_Element_MultiCheckbox

class is often a better bet than the Zend_Form_

Element_Checkbox class, because it exposes

a setMultiOptions() method that allows

for multiple items to be selected. The resulting

collection is then formatted and submitted as an

array. Here’s an example of it in action:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('id' => 'fname'));

 // create radio buttons for type
 $type = new Zend_Form_Element_Radio('type');
 $type->setLabel('Pizza crust:')

Figure 3-4 A form with radio buttons
and check boxes

Chapter 3: Working with Forms 59

 ->setMultiOptions(array(
 'thin' => 'Thin',
 'thick' => 'Thick'
))
 ->setOptions(array('id' => 'type'));

 // create checkbox for toppings
 $toppings = new Zend_Form_Element_MultiCheckbox('toppings');
 $toppings->setLabel('Pizza toppings:')
 ->setMultiOptions(array(
 'bacon' => 'Bacon',
 'olives' => 'Olives',
 'tomatoes' => 'Tomatoes',
 'pepperoni' => 'Pepperoni',
 'ham' => 'Ham',
 'peppers' => 'Red peppers',
 'xcheese' => 'Extra cheese',
));

 // attach elements to form
 $this->addElement($name)
 ->addElement($type)
 ->addElement($toppings);
 }
}

Figure 3-5 illustrates what the result looks like.

Selection Lists
Single- and multiple-selection lists are supported

through the Zend_Form_Element_Select and

Zend_Form_Element_MultiSelect classes. Like the

Zend_Form_Element_MultiCheckbox class, they

too expose a setMultiOptions() method that

can be used to set up the list of available options.

The following example demonstrates both these

element types in action:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

Figure 3-5 A form with radio buttons
and multiple check boxes

60 Zend Framework: A Beginner’s Guide

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('id' => 'fname'));

 // create selection list for source country
 $from = new Zend_Form_Element_Select('from');
 $from->setLabel('Travelling from:')
 ->setMultiOptions(array(
 'IN' => 'India',
 'US' => 'United States',
 'DE' => 'Germany',
 'FR' => 'France',
 'UK' => 'United Kingdom'
));

 // create multi-select list for destination countries
 $to = new Zend_Form_Element_MultiSelect('to');
 $to->setLabel('Travelling to:')
 ->setMultiOptions(array(
 'IT' => 'Italy',
 'SG' => 'Singapore',
 'TR' => 'Turkey',
 'DK' => 'Denmark',
 'ES' => 'Spain',
 'PT' => 'Portugal',
 'RU' => 'Russia',
 'PL' => 'Poland'
));

 // attach elements to form
 $this->addElement($name)
 ->addElement($from)
 ->addElement($to);
 }
}

Figure 3-6 illustrates the result.

File Upload Fields
If you’re looking to upload one or more files

through a form, you’ll need the Zend_Form_

Element_File class, which provides a browseable

file input box. Here’s an example of it in use:

<?php
class Form_Example extends Zend_Form
{ Figure 3-6 A form with selection lists

Chapter 3: Working with Forms 61

 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setEnctype('multipart/form-data')
 ->setMethod('post');

 // create file input for photo upload
 $photo = new Zend_Form_Element_File('photo');
 $photo->setLabel('Photo:')
 ->setDestination('/tmp/upload');

 // attach elements to form
 $this->addElement($photo);
 }
}

CAUTION

Remember that you must set the form encoding type
to 'multipart/form-data' for form uploads to
be correctly handled. This can be done using the
setEnctype() method of the form object.

Figure 3-7 illustrates what it looks like.

TIP

If you’re trying to upload multiple related files, there’s a convenient setMultiFile()
method that generates a sequence of file input fields and saves you the hassle of
instantiating multiple Zend_Form_Element_File objects. You’ll see an example of this in
the next chapter.

Buttons
Every form needs a submit button, and some also need a reset button. These two critical form

elements are represented by the Zend_Form_Element_Submit and Zend_Form_Element_Reset

classes, respectively, and they’re illustrated in the next listing:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for title

Figure 3-7 A form with file input fields

62 Zend Framework: A Beginner’s Guide

 $title = new Zend_Form_Element_Text('title');
 $title->setLabel('Title:')
 ->setOptions(array('size' => '35'));

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Submit');

 // create reset button
 $reset = new Zend_Form_Element_Reset('reset');
 $reset->setLabel('Cancel');

 // attach elements to form
 $this->addElement($title)
 ->addElement($submit)
 ->addElement($reset);
 }
}

Figure 3-8 illustrates the resulting output.

If you’re after a more generic form button,

you’ll find it in the Zend_Form_Element_Button

class, which provides a simple, clickable

form button that is useful for many different

purposes. Image buttons can be generated with

the Zend_Form_Element_Image class; use the

setImage() method to specify the source image

for the button. Here’s an example of one such

image button:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for title
 $title = new Zend_Form_Element_Text('title');
 $title->setLabel('Title:')
 ->setOptions(array('size' => '35'));

 // create image submit button
 $submit = new Zend_Form_Element_Image('submit');
 $submit->setImage('/images/submit.jpg');

Figure 3-8 A form with submit and reset
buttons

Chapter 3: Working with Forms 63

 // attach elements to form
 $this->addElement($title)
 ->addElement($submit);
 }
}

Figure 3-9 illustrates the resulting output.

Hash and CAPTCHA Fields
The Zend Framework includes two “special” form

elements to assist in maintaining input security: the

Hash and CAPTCHA elements. These are represented by the Zend_Form_Element_Hash and

Zend_Form_Element_Captcha classes, respectively.

The Hash element uses a salt value to generate a unique key for the form and store it in the

session. When the form is submitted, the hash value submitted with the form is automatically

compared to the value stored in the session. If a match is found, the form submission is

assumed to be genuine. If there is a mismatch, it’s a reasonable supposition that the form has

been hijacked and is being used in a Cross-Site Request Forgery (CSRF) attack.

Here’s an example of using this element:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for number
 $cc = new Zend_Form_Element_Text('ccnum');
 $cc->setLabel('Credit card number:')
 ->setOptions(array('size' => '16'));

 // create text input for amount
 $amount = new Zend_Form_Element_Text('amount');
 $amount->setLabel('Payment amount:')
 ->setOptions(array('size' => '4'));

 // create hash
 $hash = new Zend_Form_Element_Hash('hash');
 $hash->setSalt('hf823hflw03j');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Submit');

 // attach elements to form

Figure 3-9 A form with an image button

64 Zend Framework: A Beginner’s Guide

 $this->addElement($cc)
 ->addElement($amount)
 ->addElement($hash)
 ->addElement($submit);
 }
}

The CAPTCHA element automatically generates a CAPTCHA verification input, which

is a useful tool to filter out automated form submissions. More and more Web sites are using

CAPTCHAs to reduce the number of false registrations and/or spam messages received

through online forms. Although manually generating and verifying a CAPTCHA is a tedious

process, the Zend_Form_Element_Captcha makes it as simple as adding a few lines of code to

your form. Here’s an example:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for user name
 $name = new Zend_Form_Element_Text('username');
 $name->setLabel('Username:')
 ->setOptions(array('size' => '16'));

Q: What is a CSRF attack, and how do I protect against it?

A: Typically, when a user visits a protected Web site and validates his/her access credentials,

a user session is generated and the access credentials are revalidated from the session data

store on each request. A CSRF attack involves hijacking a validated user session and using

the implicit trust relationship that already exists between the user and the host application

to invisibly transmit unauthorized requests through input sources such as Web forms. By

generating a unique hash value for each Web form and validating this value when the form

is submitted, a developer is able to make it harder to perform this type of attack. Using a

hash value also provides (limited) protection from automated spam mailers (“spambots”),

and is more user-friendly than a CAPTCHA.

Ask the Expert

Chapter 3: Working with Forms 65

 // create password input
 $pass = new Zend_Form_Element_Password('password');
 $pass->setLabel('Password:')
 ->setOptions(array('size' => '16'));

 // create captcha
 $captcha = new Zend_Form_Element_Captcha('captcha', array(
 'captcha' => array(
 'captcha' => 'Figlet',
 'wordLen' => 5,
 'timeout' => 300,
)
));
 $captcha->setLabel('Verification:');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($pass)
 ->addElement($captcha)
 ->addElement($submit);
 }
}

Figure 3-10 illustrates what the result might look like.

NOTE

A number of predefined CAPTCHA adapters are included with the Zend Framework,
including adapters for simple string-transposition operations (“Dumb”) and for visual
CAPTCHAS (“Image” and “Figlet”). You’ll see another example of an image CAPTCHA
a little further along in this chapter.

Setting Required and Default Values
You can mark a specific input element as required by calling its setRequired() method

with a true argument. Here’s an example:

<?php
class Form_Example extends Zend_Form
{

 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

66 Zend Framework: A Beginner’s Guide

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true);

Figure 3-10 A form containing a CAPTCHA

Q: What is a CAPTCHA?

A: A CAPTCHA, or Completely Automated Public Turing test to tell Computers and Humans

Apart, is a common challenge-response test used to identify whether the entity at the

other end of a connection is a human being or a computer. On the Web, the typical form

of a CAPTCHA is a distorted sequence of random alphanumeric characters, operating

on the principle that a computer would be unable to see past the distortion, but a human,

with greater powers of perception, would be able to correctly identify the sequence.

Such CAPTCHAs are typically attached to input forms on the Web (for example, user

registration forms), and they must be solved correctly before the input will be processed by

the host application. CAPTCHAs need not always be visual; audio CAPTCHAs are also

possible, and are most appropriate for visually handicapped users.

Ask the Expert

Chapter 3: Working with Forms 67

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true);

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit',
 array('class' => 'submit')
);
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($submit);
 }
}

When you use the setRequired() method on an input field, Zend_Form automatically

attaches a NotEmpty validator to that field. As a result, if the field is empty when the form is

submitted, an error message will appear. Figure 3-11 illustrates the result.

TIP

You can tell Zend_Form not to attach a NotEmpty validator to required elements by
explicitly calling the element’s setAutoInsertNotEmptyValidator() method with
a false argument. Validators are discussed in detail in the next section.

You can attach default values to input elements by calling the element object’s

setValue() method with the default value or by calling the form object’s setDefaults()
method with an array of default values. For text input fields, this can be any string value; for

Figure 3-11 The result of submitting a form without required input values

68 Zend Framework: A Beginner’s Guide

radio buttons and selection lists, it should be the index of the selected item. Here’s an example,

which demonstrates both of these methods:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->setValue('Enter your name');

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->setValue('Enter your email address');

 // create radio buttons for type
 $type = new Zend_Form_Element_Radio('type');
 $type->setLabel('Membership type:')
 ->setMultiOptions(array(
 'silver' => 'Silver',
 'gold' => 'Gold',
 'platinum' => 'Platinum'
));

 // create checkbox for newsletter subscription
 $subscribe = new Zend_Form_Element_Checkbox('subscribe');
 $subscribe->setLabel('Subscribe to newsletter')
 ->setCheckedValue('yes')
 ->setUncheckedValue('no');

 // create selection list for source country
 $from = new Zend_Form_Element_Select('from');
 $from->setLabel('Country:')
 ->setMultiOptions(array(
 'IN' => 'India',
 'US' => 'United States',
 'DE' => 'Germany',
 'FR' => 'France',

Chapter 3: Working with Forms 69

 'UK' => 'United Kingdom'
));

 // create submit button
 $submit = new Zend_Form_Element_Submit(
 'submit', array('class' => 'submit'));
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($type)
 ->addElement($from)
 ->addElement($subscribe)
 ->addElement($submit);

 // set default values
 $this->setDefaults(array(
 'type' => 'platinum',
 'subscribe' => 'yes',
 'from' => 'FR',
));
 }
}

Figure 3-12 illustrates what the result looks like.

Figure 3-12 A form rendered with default values

70 Zend Framework: A Beginner’s Guide

Filtering and Validating Form Input
As a Web application developer, there’s one unhappy fact that you’ll have to learn to live with:

There are always going to be people out there who get their chuckles from finding loopholes

in your code and exploiting these loopholes for malicious purposes. Therefore, one of the most

important things a developer can do to secure an application is to properly filter and validate

all the input passing through it.

The following sections discuss the filtering and validation tools available in the Zend

Framework, together with examples of how they can be used with Web forms to make your

application more secure.

Using Input Filters
Most of the time, input exploits consist of sending your application cleverly disguised values

that “trick” it into doing something it really, really shouldn’t. A common example of this type

of exploit is the SQL injection attack, wherein an attacker remotely manipulates your database

with an SQL query embedded inside form input. Therefore, one of the most important things a

developer must do before using any input supplied by the user is to “sanitize” it by removing

any special characters or symbols from it.

PHP comes with various functions to assist developers in the task of sanitizing input. For

example, the addslashes() function escapes special characters (like quotes and backslashes)

in input so that it can be safely entered into a database, while the strip_tags() function

strips all the HTML and PHP tags out of a string, returning only the ASCII content. There’s also

the htmlentities() function, which is commonly used to replace special characters like ",

&, <, and > with their corresponding HTML entity values, rendering them harmless.

Here’s an example of sanitizing form input with the htmlentities() function:

<?php
// define array of sanitized data
$sanitized = array();

// strip tags from POST input
if (isset($_POST['name']) && !empty($_POST['name'])) {
 $sanitized['name'] = htmlentities($_POST['name']);
}

// processing code //
?>

When it comes to filtering user input, the Zend Framework does a lot of the heavy lifting for

you. The Zend_Filter component provides a comprehensive set of input filters, which can either

be attached to form elements with the addFilter() method or used on a stand-alone basis for

ad-hoc input sanitization. Here’s an example of using the HTMLEntities filter on a text input field:

<?php
class Form_Example extends Zend_Form

Chapter 3: Working with Forms 71

{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for user name
 // filter special characters
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Username:')
 ->setOptions(array('size' => '16'))
 ->addFilter('HtmlEntities');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($submit);
 }
}

You can also pass the addFilter() method an instance of the Zend_Filter_* class, as

shown in the following equivalent script:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for user name
 // filter special characters
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Username:')
 ->setOptions(array('size' => '16'))
 ->addFilter(new Zend_Filter_HtmlEntities());

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form

72 Zend Framework: A Beginner’s Guide

 $this->addElement($name)
 ->addElement($submit);
 }
}

Some filters support additional options, which can be passed to the addFilter() method

as an array or, if you’re using a class instance, as arguments to the object constructor. Consider

the next example, which uses the Alpha filter to strip out all non-alphabetic characters from

user input. An additional option, passed to the addFilter() method as a second argument,

retains whitespace (which is stripped by default).

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 // allow alphabetic characters and whitespace
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addFilter('Alpha', array('allowWhiteSpace' => true))
 ->addFilter('HtmlEntities');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($submit);
 }
}

Table 3-2 gives a list of some important filters that ship with the Zend Framework,

together with a brief description of each. You’ll see many of these filters in use in this and

subsequent chapters.

TIP

You can attach multiple filters to a form element in one of two ways: by calling the
addFilter() method multiple times, with a different filter name on each invocation, or by
using the addFilters() method and passing it an array containing a list of filter names.

Chapter 3: Working with Forms 73

Using Input Validators
Filtering input is only part of the puzzle. It’s also extremely important to validate user

input to ensure that it is in the correct format before using it for calculations or saving it

to the application’s data store. Improperly validated application input can not only cause

significant data corruption and loss, but it can also be embarrassing in the extreme to the proud

application developer.

In order to illustrate the importance of input validation, consider a simple example: an

online mortgage calculator that allows a user to enter the desired loan amount, finance term,

and interest rate. Now, let’s assume that the application doesn’t include any input validation.

And let’s also suppose that the user decides to enter the string 'ten', instead of the number

10, into the term field.

Filter Name Description

Alnum Removes non-alphanumeric characters from argument

Alpha Removes non-alphabetic characters from argument

Digits Removes non-numeric characters from argument

Int Returns integer value of argument

Dir Returns directory name component of argument

BaseName Returns filename component of argument

RealPath Returns absolute filesystem path for argument

StringToLower Converts argument to a lowercase string

StringToUpper Converts argument to an uppercase string

StringTrim Removes leading and trailing whitespace from argument

StripNewlines Removes line break characters from argument

HtmlEntities Converts special characters in argument to their HTML entity
equivalents

StripTags Removes HTML and PHP code from argument

Encrypt Returns encrypted version of argument

Decrypt Returns decrypted version of argument

NormalizedToLocalized Returns argument in standard form

LocalizedToNormalized Returns argument in localized form

Callback Calls user-defined filter with argument

LowerCase Converts contents of uploaded file to lowercase

UpperCase Converts contents of uploaded file to uppercase

Rename Renames uploaded file

Table 3-2 Input Filters Included with the Zend Framework

74 Zend Framework: A Beginner’s Guide

It shouldn’t be too hard to guess what happens next. The application will perform a few

internal calculations that will end in it attempt to divide the total amount payable by the specified

term. Since the term in this case is a string, PHP will cast it to the number 0, producing a division-

by-zero error. The resulting slew of ugly error messages is likely to leave even the most blasé

developer red-faced; more importantly, if the invalid input is also saved to the database as is, the

error will recur every time the calculation is repeated on the record. Multiply this by even a few

hundred records containing similar errors, scattered throughout the database, and you’ll quickly

see how the lack of appropriate input validation can significantly damage an application.

PHP comes with various functions to assist developers in the task of validating input. For

example, the is_numeric() function tests if a value is numeric, while the ctype_alpha()
and ctype_alnum() functions can be used to test for alphabetic and alphanumeric strings.

There’s also the filter_var() function, while can be used to test the validity of email

addresses and URLs, and the preg_match() function, which allows for pattern validation

using regular expressions. Here’s an example of some of these functions in action:

<?php
// define array of valid data
$valid = array();

// check if age is a number
if (is_numeric(trim($_POST['age']))) {
 $valid['age'] = trim($_POST['age']);
} else {
 die ('ERROR: Age is not a number.');
}

// check for valid first name
if (isset($_POST['firstname']) && ctype_alpha($_POST['firstname'])) {
 $valid['firstname'] = trim($_POST['firstname']);
} else {
 die ('ERROR: First name not present or invalid.');
}

// check for valid email address
if (isset($_POST['email'])
 && filter_var($_POST['email'], FILTER_VALIDATE_EMAIL)) {
 $valid['email'] = trim($_POST['email']);
} else {
 die ('ERROR: Email address not present or invalid.');
}

// processing code here //
?>

As with filters, the Zend Framework ships with a large number of predefined input

validators, collectively referred to as Zend_Validate, which can either be attached to form

elements with the addValidator() method or used ad hoc. Validator-specific options can

Chapter 3: Working with Forms 75

be passed as the third argument to the addFilter() method as an associative array of key-

value pairs, as shown in the following example:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for age
 // should contain only integer values between 1 and 100
 $age = new Zend_Form_Element_Text('age');
 $age->setLabel('Age:')
 ->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addValidator('Int')
 ->addValidator('Between', false, array(1,100));

 // create text input for name
 // should contain only alphabetic characters and whitespace
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('First name:')
 ->setOptions(array('size' => '16'))
 ->setRequired(true)
 ->addValidator('Alpha', false, array('allowWhiteSpace' =>
true));

 // create text input for email address
 // should contain a valid email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:')
 ->setOptions(array('size' => '16'))
 ->setRequired(true)
 ->addValidator('EmailAddress');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($age)
 ->addElement($name)
 ->addElement($email)
 ->addElement($submit);
 }
}

76 Zend Framework: A Beginner’s Guide

As with filters, validators can also be specified as instances of the corresponding Zend_

Validate_* class, with validator options passed as arguments to the object constructor. The next

example, which is equivalent to the previous one, illustrates this approach:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for age
 // should contain only integer values between 1 and 100
 $age = new Zend_Form_Element_Text('age');
 $age->setLabel('Age:')
 ->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addValidator(new Zend_Validate_Int())
 ->addValidator(new Zend_Validate_Between(1,100));

 // create text input for name
 // should contain only alphabetic characters and whitespace
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('First name:')
 ->setOptions(array('size' => '16'))
 ->setRequired(true)
 ->addValidator(new Zend_Validate_Alpha(true));

 // create text input for email address
 // should contain a valid email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:')
 ->setOptions(array('size' => '16'))
 ->setRequired(true)
 ->addValidator(new Zend_Validate_EmailAddress());

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($age)
 ->addElement($name)
 ->addElement($email)
 ->addElement($submit);
 }
}

Chapter 3: Working with Forms 77

Figure 3-13 illustrates the result of attempting to submit invalid values through such

a form.

Table 3-3 provides a list of some important validators available in the Zend Framework,

together with a brief description of each. You’ll see many of these validators in use further

along in this chapter, as well as in subsequent chapters.

Figure 3-13 The result of submitting a form with invalid input values

Validator Name Description

NotEmpty Returns false if argument is empty

StringLength Returns false if argument does not conform to specified minimum/maximum
length

InArray Returns false if argument is not in specified array

Identical Returns false if argument does not match specified value

Alnum Returns false if argument does not contain only alphanumeric characters

Alpha Returns false if argument does not contain only alphabetic characters

Int Returns false if argument is not an integer

Float Returns false if argument is not a floating-point number

Hex Returns false if argument is not a hexadecimal value

Digits Returns false if argument does not contain only numbers

Between Returns false if argument is not in a specified numeric range

Table 3-3 Input Validators Included with the Zend Framework

78 Zend Framework: A Beginner’s Guide

Validator Name Description

GreaterThan Returns false if argument is not greater than a specified value

LessThan Returns false if argument is not less than a specified value

Date Returns false if argument is not a valid date

EmailAddress Returns false if argument does not conform to standard email address conventions

Hostname Returns false if argument does not conform to standard host name conventions

Ip Returns false if argument does not conform to standard IP address conventions

Regex Returns false if argument does not conform to specified regular expression
pattern

Barcode Returns false if argument is not a valid bar code

Ccnum Returns false if argument does not conform to the Luhn algorithm for standard
credit card number conventions

Iban Returns false if argument is not a valid IBAN number

Exists Returns false if argument is not a valid file

Count Returns false if number of uploaded files is outside the range specified in
argument

Size Returns false if uploaded file size is outside the range specified in argument

FilesSize Returns false if uploaded file size total is outside the range specified in argument

Extension Returns false if uploaded file extension does not match those specified in argument

MimeType Returns false if uploaded file MIME type does not match those specified in
argument

IsCompressed Returns false if uploaded file is not a compressed archive file

IsImage Returns false if uploaded file is not an image file

ImageSize Returns false if uploaded image dimensions are outside the range specified in
argument

Crc32, Md5, Sha1,
Hash

Returns false if uploaded file content does not match the hash value specified in
argument (supports crc32, md5, and sha1 hash algorithms)

ExcludeExtension Returns false if uploaded file extension matches those specified in argument

ExcludeMimeType Returns false if uploaded file MIME type matches those specified in argument

WordCount Returns false if number of words in uploaded file is outside the range specified
in argument

Db_RecordExists Returns false if a particular record does not exist in the database and table
specified in argument

Db_NoRecordExists Returns false if a particular record exists in the database and table specified in
argument

Table 3-3 Input Validators Included with the Zend Framework (continued)

Chapter 3: Working with Forms 79

Using Validator and Filter Chains
One of the most interesting things about the Zend_Filter and Zend_Validate components

is their support for chaining or stacking. Essentially, this means that it is possible to attach

multiple filters and validators to a single input element, and have them automatically run, in

sequence, once the form is submitted. The following example illustrates this by setting up

a chain of four filters:

<?php
 // create text input for name
 // filter tags, entities and whitespace
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('First name:')
 ->setOptions(array('size' => '16'))
 ->setRequired(true)
 ->addFilter('StripTags')
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim')
 ->addFilter('StringToLower');
?>

In this example, the first filter strips HTML and PHP tags from the input, the second encodes

entities, the third trims leading and trailing whitespace, and the fourth transforms the result to

lowercase. These filters are executed on the input value in their order of appearance in the chain.

Validator chains work in a similar manner and come with an additional property. A

validator chain can be configured such that a failure in any one validator terminates the

entire chain with an error message. This behavior is controlled by the second argument to the

addValidator() method which, when set to true, breaks the chain if there is a failure in the

corresponding validator. Consider the next example, which illustrates this:

<?php
 // create text input for age

Q: I’m already validating form input using JavaScript. Why do I also need to validate it

using PHP?

A: It’s common practice to use client-side scripting languages like JavaScript or VBScript for

client-side input validation. However, this type of client-side validation is not foolproof—if

a user turns off JavaScript in the client, all your client-side code will become nonfunctional.

That’s why it’s a good idea to couple client-side validation (which is faster) with server-side

validation (which is more secure).

Ask the Expert

80 Zend Framework: A Beginner’s Guide

 // should contain only integer values between 1 and 100
 $age = new Zend_Form_Element_Text('age');
 $age->setLabel('Age:')
 ->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('Int', true)
 ->addValidator('Between', true, array(1,100));
?>

In this example, a failure in any one of the validators breaks the chain, and the remaining

validators will not be processed. So, for example, if the input is not an integer value, the

validation chain will terminate with the error message generated by the Int validator, and the

Between validator will not be executed. Contrast this with the next listing:

<?php
 // create text input for age
 // should contain only integer values between 1 and 100
 $age = new Zend_Form_Element_Text('age');
 $age->setLabel('Age:')
 ->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addValidator('NotEmpty', false)
 ->addValidator('Int', false)
 ->addValidator('Between', false, array(1,100));
?>

In this version, even if one of the validators fails, the remaining validators will still be run,

and error messages generated by any subsequent failures will be added to the message stack.

This is illustrated in Figures 3-14 and 3-15, which compare and contrast the difference in

behavior of these two listings.

Figure 3-14 A validator chain, broken on the first failure

Chapter 3: Working with Forms 81

TIP

In case the predefined filters and validators that ship with the Zend Framework don’t
meet your needs, remember that you can always write your own. The Zend Framework
manual has examples of how to do this.

Retrieving and Processing Form Input
Within a controller script, you can use a number of Zend_Form methods to retrieve and

process form input after submission:

The● isValid() method checks if the submitted input is valid. This method accepts an

array of input values and returns Boolean true or false depending on whether these values

match the validation rules set up with the various addValidator() calls.

If the input is invalid, the ● getMessages() method returns a list of the error messages

generated during the validation process. This list can be processed and displayed when the

form is re-rendered to give the user a hint about what went wrong.

If the input is valid, the ● getValues() method can be used to retrieve the valid, filtered

values for further processing. Input values are returned as elements of an associative

array, where the array key represents the element name and the array value represents the

corresponding input value. There’s also a getUnfilteredValues() method, which

returns the original, unfiltered input as entered by the user.

TIP

The isValid() method automatically verifies CAPTCHA and hash values, with no
additional programming required on your part.

Figure 3-15 A validator chain, processed without any break

82 Zend Framework: A Beginner’s Guide

The next listing illustrates how these methods are typically used in the context of

a controller script:

<?php
class ExampleController extends Zend_Controller_Action
{
 public function formAction()
 {
 $form = new Form_Example;
 $this->view->form = $form;

 // check the request
 // run the validators
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 // valid data: get the filtered and valid values
 // do something, save to database or write to file
 // display a success view
 $values = $form->getValues();
 $this->_redirect('/form/success');
 } else {
 // invalid data: get the error message array
 // for manual processing (if needed)
 // redisplay the form with errors
 $this->view->messages = $form->getMessages();
 }
 }
 }
}
?>

Creating a Contact Form
With all this background information at hand, let’s now look at how it plays out in the context

of a practical application. The following section applies everything you’ve learned so far to

create an email inquiry form for the SQUARE application. This form will invite the user to

enter a message and, on submission, will format the input into an email message and send it to

the site administrators for follow-up.

Defining the Form
To begin, let’s consider the requirements of the input form. They aren’t very complicated—all

that’s really needed are three fields for the user to enter his or her name, email address, and

message. These values should be validated, particularly the email address, to ensure authenticity

and thereby make it possible for administrators to respond to email inquiries. To filter out

automated submissions and reduce the incidence of spam, it would also be nice to include a

Try This 3-1

Chapter 3: Working with Forms 83

visual CAPTCHA—something that’s quite easy to do with Zend_Form, as illustrated earlier.

Here’s an example of what the resulting form definition would look like:

<?php
class Square_Form_Contact extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/contact/index')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('Alpha', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim');

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('EmailAddress', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringToLower')
 ->addFilter('StringTrim');

 // create text input for message body
 $message = new Zend_Form_Element_Textarea('message');
 $message->setLabel('Message:')
 ->setOptions(array('rows' => '8','cols' => '40'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim');

 // create captcha
 $captcha = new Zend_Form_Element_Captcha('captcha', array(
 'captcha' => array(
 'captcha' => 'Image',

(continued)

84 Zend Framework: A Beginner’s Guide

 'wordLen' => 6,
 'timeout' => 300,
 'width' => 300,
 'height' => 100,
 'imgUrl' => '/captcha',
 'imgDir' => APPLICATION_PATH . '/../public/captcha',
 'font' => APPLICATION_PATH .
 '/../public/fonts/LiberationSansRegular.ttf',
)
));
 $captcha->setLabel('Verification code:');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Send Message')
 ->setOptions(array('class' => 'submit'));

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($message)
 ->addElement($captcha)
 ->addElement($submit);
 }
}

You should already be familiar with most of the preceding code. The form contains two

text input elements for the user’s name and email address, one text area for the message body,

and a CAPTCHA element for verification. Alpha and NotEmpty validators are attached to the

name and message body fields, while an EmailAddress validator is used to check the submitted

email address. All fields are filtered using the HTMLEntities validator, and the email address

is additionally converted to lowercase with the StringToLower validator.

The options passed to the Zend_Form_Element_Captcha instance are also worth looking

into. Unlike the example shown in an earlier section, this definition generates a more complex

CAPTCHA by dynamically overlaying a random sequence of characters on a distressed

background. This type of CAPTCHA is commonly used in Web forms to stymie automated bot

submissions, many of which include optical character recognition (OCR) algorithms that can

“read” characters overlaid on a clear background. The options passed to the object instance include

the dimensions of the CAPTCHA image, the disk location to store the generated CAPTCHA, the

number of characters in the CAPTCHA, and the font file to use for the text overlay.

CAUTION

If you’re using copyrighted fonts that cannot be redistributed, you should move the
$APP_DIR/public/fonts/ directory to a location outside the server document root, such
as $APP_DIR/application/fonts/, to ensure that the fonts are not publicly accessible
through a Web browser. If you’re doing this, remember to update the application code
to reflect the new path as well.

Chapter 3: Working with Forms 85

You’ll notice that the previous example makes use of a custom font, and it stores generated

CAPTCHAs in a specified directory. Accordingly, also create the $APP_DIR/public/captcha/

and $APP_DIR/public/fonts/ directories and copy over the necessary assets to these locations.

You’ll find these assets in the code archive for this chapter, which can be downloaded from

this book’s companion Web site at http://www.zf-beginners-guide.com/.

NOTE

The font used for the CAPTCHA in this example is the Liberation Sans font, part of a
collection of fonts released to the community under the GNU General Public License by
RedHat Inc. in 2007. Users are free to use, modify, copy, and redistribute these fonts
under the terms of the GNU GPL.

Using a Custom Namespace
The definition in the previous section uses a custom namespace, “Square,” which is prefixed

to the class name. This is a recommended practice for any custom objects or libraries that you

may create for the application, as it helps avoid name collisions between your definitions and

others that may exist in the application space. An added benefit is that if you register your

custom namespace with the Zend Framework’s autoloader and then locate your definitions

correctly in the application directory structure, the Zend Framework will automatically find

and load them as needed at run time.

With this in mind, save the class definition from the preceding code to $APP_DIR/

library/Square/Form/Contact.php, and then add the following directive to the application

configuration file, at $APP_DIR/application/configs/application.ini, to register the “Square”

namespace with the autoloader:

autoloaderNamespaces[] = "Square_"

CAUTION

If your classes use an underscore to separate the namespace from the rest of the class
name, you must include this underscore when registering the namespace with the Zend
Framework autoloader.

Defining a Custom Route
This is also a good time to add a custom route for the new form. While you’ve got the

application configuration file open in your text editor, add the following route definition to it:

resources.router.routes.contact.route = /contact
resources.router.routes.contact.defaults.module = default
resources.router.routes.contact.defaults.controller = contact
resources.router.routes.contact.defaults.action = index

(continued)

http://www.zf-beginners-guide.com/

86 Zend Framework: A Beginner’s Guide

Based on the material discussed in Chapter 2, this should be quite familiar to you—it sets

up a route such that requests for the application URL /contact are handled by the “default”

module’s ContactController::indexAction.

Defining Controllers and Views
The next step is to define the aforesaid ContactController::indexAction.. By

convention, this controller should be located at $APP_DIR/application/modules/default/

controllers/ContactController.php, and should look something like this:

<?php
class ContactController extends Zend_Controller_Action
{

 public function init()
 {
 $this->view->doctype('XHTML1_STRICT');
 }

 public function indexAction()
 {
 $form = new Square_Form_Contact();
 $this->view->form = $form;
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 $values = $form->getValues();
 $mail = new Zend_Mail();
 $mail->setBodyText($values['message']);
 $mail->setFrom($values['email'], $values['name']);
 $mail->addTo('info@square.example.com');
 $mail->setSubject('Contact form submission');
 $mail->send();
 $this->_helper->getHelper('FlashMessenger')
 ->addMessage('Thank you. Your message was successfully
sent.');
 $this->_redirect('/contact/success');
 }
 }
 }

 public function successAction()
 {
 if ($this->_helper->getHelper('FlashMessenger')->getMessages()) {
 $this->view->messages =
 $this->_helper->getHelper('FlashMessenger')->getMessages();
 } else {

Chapter 3: Working with Forms 87

 $this->_redirect('/');
 }
 }
}

Most of the heavy lifting here is done by the indexAction() method, which creates an

object of the Square_Form_Contact class discussed earlier and attaches it to the view. When

the form is submitted, the object’s isValid() method is used to validate the input submitted

by the user. If the input is found to be valid, an instance of the Zend_Mail component is

created, and object methods are used to format the input into an email message and send it

to a specified email address. Once the message has been sent, control is transferred to the

successAction() method, which renders a success view.

That’s what happens if all goes well…but there’s many a slip ’twixt the cup and the

lip, so it’s useful to understand what happens if things go wrong. If the input is found to be

invalid, the isValid() method will return false and the form will be redisplayed, with error

messages indicating the source of the error(s). Zend_Form will also automatically populate

the form with the original input values to ensure that the user doesn’t need to re-enter all the

requested data. On the other hand, if the input is valid but an error occurs in the process of

email generation and transmission, Zend_Mail will throw a PHP exception, which will be

caught and handled by the application’s default error handler.

NOTE

In order for the Zend_Mail object’s send() method to work correctly, a mail delivery
agent (such as sendmail) must be available and correctly configured in your php.ini
configuration file. If this is not the case, message transmission will fail and the send()
method will throw an exception at the point of failure.

This controller also introduces a new tool, the FlashMessenger helper, which is a useful

little “helper” to simplify the display of status messages to the user. Messages can be added

to the FlashMessenger object via its addMessage() method; these messages are then stored

in the session until retrieved with a call to the getMessages() method, at which point

they are removed from the session. This makes the FlashMessenger a convenient place to

temporarily store messages between the time an operation ends and the time the subsequent

view completes rendering, and you’ll see it being used frequently throughout this book.

CAUTION

You’ll notice that the controller’s init() method sets the view’s document type to XHTML
1.0 Strict. This is because, by default, Zend_Form doesn’t produce well-formed XHTML
markup. Setting the document type in this manner forces it to do so.

Obviously, you also need a couple of views, one for the input form and one for the

success message. Here’s the input view, which by convention should be located at $APP_DIR/

application/modules/default/views/scripts/contact/index.phtml:

<h2>Contact</h2>
<?php echo $this->form; ?>

(continued)

88 Zend Framework: A Beginner’s Guide

And here’s the success view, which by convention should be stored at $APP_DIR/

application/modules/default/views/scripts/contact/success.phtml:

<h2>Success</h2>
<?php echo implode($this->messages); ?>

Updating the Master Layout
All that’s left now is to update the navigation links in the application’s main menu to reflect

the new inquiry form using the url()helper method. To do this, update the master layout, at

$APP_DIR/application/layouts/master.phtml, with the changes highlighted in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8"/>
 <base href="/" />
 <link rel="stylesheet" type="text/css" href="/css/master.css" />
 </head>
 <body>
 <div id="header">
 <div id="logo">

 </div>

 <div id="menu">
 <a href="<?php echo $this->url(array(), 'home'); ?>">HOME
 <a href="<?php echo $this->url(array('page' => 'services'),
 'static-content'); ?>">SERVICES

<a href="<?php echo $this->url(array(), 'contact');
?>">CONTACT
 </div>
 </div>

 <div id="content">
 <?php echo $this->layout()->content ?>
 </div>

 <div id="footer">
 <p>Created with
 Zend Framework. Licensed under
 Creative Commons
 .</p>
 </div>
 </body>
</html>

Chapter 3: Working with Forms 89

If you now try visiting the URL http://square.localhost/contact through your Web

browser, you should see a form like the one in Figure 3-16.

Enter values into the form fields and submit it; if all goes well, you should see a success

message like the one in Figure 3-17.

(continued)

Figure 3-16 The SQUARE contact form

Figure 3-17 The result of successfully submitting the SQUARE contact form

http://square.localhost/contact

90 Zend Framework: A Beginner’s Guide

You can also try submitting the form with invalid values. The built-in validators will catch

your invalid input and redisplay the form with error messages, as shown in Figure 3-18.

NOTE

Remember to update the recipient email address in the
ContactController::indexAction to reflect your own email address, or else the
email messages generated by the Zend_Mail component will never be received by you.

Customizing Form Appearance
You should now have a reasonably good idea about what goes into building a form with the

Zend Framework, as well as some insight into the tools available to help you secure your

application against invalid and malicious input. This section takes a quick look at some of the

tools available to help you improve the appearance and behavior of your forms, with a view to

making them clearer and more informative.

Figure 3-18 The result of submitting the SQUARE contact form with invalid input values

Chapter 3: Working with Forms 91

Using Custom Error Messages
Each input validator comes with a set of default error messages appropriate to the type of data

being validated. More often than not, these default error messages provide enough information

for users to locate and correct the errors in their input. However, cases may arise when these

default messages need to be modified to be more descriptive and user-friendly.

This is not very difficult to do, because each validator can be configured to display

custom error messages via the 'messages' key of the options array passed to the

addValidator() method. Consider the following example, which illustrates this:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->addValidator('Alpha', false, array(
 'messages' => array(
 Zend_Validate_Alpha::INVALID
 => "ERROR: Invalid name",
 Zend_Validate_Alpha::NOT_ALPHA
 => "ERROR: Name cannot contain non-alpha characters",
 Zend_Validate_Alpha::STRING_EMPTY
 => "ERROR: Name cannot be empty"
)
))
 ->addFilter('StringTrim');
 $validator = $name->getValidator('Alpha');

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->addValidator('EmailAddress', true, array(
 'messages' => array(
 Zend_Validate_EmailAddress::INVALID
 => "ERROR: Invalid email address",
 Zend_Validate_EmailAddress::INVALID_FORMAT
 => "ERROR: Invalid email address",

92 Zend Framework: A Beginner’s Guide

 Zend_Validate_EmailAddress::INVALID_HOSTNAME
 => "ERROR: Invalid hostname format",
 Zend_Validate_EmailAddress::INVALID_LOCAL_PART
 => "ERROR: Invalid username format",
 Zend_Validate_EmailAddress::LENGTH_EXCEEDED
 => "ERROR: Email address too long"
)
))
 ->addFilter('StringTrim');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($submit);
 }
}

In this example, the default error messages for each invalid case are overridden

by the custom messages specified in the 'messages' key of the array passed to the

addValidator() method. The constants on the left side of the message array can be

obtained by inspecting the corresponding validator’s source code. These new messages

will then be generated, added to the error stack, and displayed in the form whenever the

corresponding element fails validation. An example of the output is shown in Figure 3-19.

TIP

You can also pass custom error messages to a validator via its setMessages() method.

Figure 3-19 A form with custom error messages

Chapter 3: Working with Forms 93

Using Display Groups
It’s usually a good idea to group together form elements that have some tenuous or

not-so-tenuous connection to each other. This is a more usable and readable approach than

a collection of unordered elements clumped together without any clear categorization. With

Zend_Form, this is accomplished through the use of display groups.

Display groups are added to a form with the form object’s addDisplayGroup()
method, which accepts two arguments: an array containing the names of the elements in the

group, and a name for the group. The elements in question should have already been added

to the form with the addElement() method. The setLegend() method can then be used

to specify a name for the display group. At render time, these display groups and legends are

represented by the <fieldset> and <legend> elements, respectively.

Here’s an illustrative example:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->addFilter('StringTrim');

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->addValidator('EmailAddress', true)
 ->addFilter('StringTrim');

 // create text input for tel number
 $tel = new Zend_Form_Element_Text('tel');
 $tel->setLabel('Telephone number:');
 $tel->setOptions(array('size' => '50'))
 ->setRequired(true);

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

94 Zend Framework: A Beginner’s Guide

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($tel);

 // add display group
 $this->addDisplayGroup(
 array('name', 'email', 'tel', 'address'),
 'contact'
);
 $this->getDisplayGroup('contact')
 ->setLegend('Contact Information');

 $this->addElement($submit);
 }
}

Figure 3-20 illustrates what the result looks like.

Using Decorators
When rendering a form, Zend_Form automatically wraps each form element in a set of HTML

code blocks that control the location and appearance of the element. These blocks of HTML

markup are referred to as decorators and, in addition to providing a ready hook for CSS-based

manipulation, they can be customized on a per-element basis to radically alter how form

elements are rendered.

Figure 3-20 A form with display groups

Chapter 3: Working with Forms 95

Like filters and validators, the Zend Framework ships with a number of default decorators.

Table 3-4 lists the ones you’re most likely to encounter.

The default Zend_Form decorators use the following markup:

Form labels are wrapped in ● <dt>...</dt> elements.

Input fields are wrapped in ● <dd>...</dd> elements.

Validation errors are rendered as list items and wrapped in ● ... elements.

Figure 3-21 illustrates the HTML source code of one such form, while Figure 3-22

illustrates the rendered result.

Figure 3-21 The source code of a form using default decorators

Table 3-4 Commonly Used Form Decorators

Decorator Name Description

Form Controls the markup around the form

FormElements Controls the markup around form fields

HtmlTag Controls the markup around form fields

ViewHelper Controls the view helper

Errors Controls the markup around validation errors (per field)

FormErrors Controls the markup around validation errors (summary)

Description Controls the markup around field descriptions

Label Controls the markup around field labels

Fieldset Controls the markup around fieldsets

96 Zend Framework: A Beginner’s Guide

Often, this arrangement is not suitable for your application’s user interface. To alter it, use

one of the following methods:

The● addDecorators() method accepts an array of decorator names and adds

the corresponding decorators to the element. If you add a decorator that already

exists, the decorator’s settings will be overwritten with the values specified in the

addDecorators() method.

The● clearDecorators() method removes all existing decorators for an element.

The● setDecorators() method accepts an array of decorator names, removes all

existing decorators for an element, and attaches the new set of decorators to it.

TIP

To disable the default decorators for a particular form or form element, add a
'disableLoadDefaultDecorators' key to that form or form element’s options array.
Note that if you’re disabling the default decorators, you should still add back the
ViewHelper decorator with the addDecorators() or setDecorators() method, as
this decorator produces the basic markup for the form and its elements.

To illustrate how these decorators can be used, consider the following example:

<?php
class Form_Example extends Zend_Form
{
 public $formDecorators = array(
 array('FormElements'),

Figure 3-22 The rendered version of a form in Figure 3-21

Chapter 3: Working with Forms 97

 array('Form'),
);

 public $elementDecorators = array(
 array('ViewHelper'),
 array('Label'),
 array('Errors'),
);

 public $buttonDecorators = array(
 array('ViewHelper'),
 array('HtmlTag', array('tag' => 'p'))
);

 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post')
 ->setDecorators($this->formDecorators);

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->setDecorators($this->elementDecorators);

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->setDecorators($this->elementDecorators);

 // create checkbox for newsletter subscription
 $subscribe = new Zend_Form_Element_Checkbox('subscribe');
 $subscribe->setLabel('Subscribe to newsletter:')
 ->setCheckedValue('yes')
 ->setUncheckedValue('no')
 ->setDecorators($this->elementDecorators);

 // create submit button
 $submit = new Zend_Form_Element_Submit(
 'submit', array('class' => 'submit'));
 $submit->setLabel('Sign Up')
 ->setDecorators($this->buttonDecorators);

98 Zend Framework: A Beginner’s Guide

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($subscribe)
 ->addElement($submit);
 }
}

This listing resets the default decorators with the setDecorators() method, removing

the <dt>...</dt> and <dd>...</dd> elements around labels and input fields and

instead adjusting the appearance of these elements with CSS, which offers more precise control.

Consider Figure 3-23, which illustrates the revised source code, and Figure 3-24, which

illustrates the rendered result.

As this example illustrates, decorators provide a solution to the problem of controlling

form markup such that it conforms to the rest of your application’s interface. And in case you

find that the default decorators don’t offer enough control for you, remember that you can

always define your own form markup by creating a custom decorator class (simply extend

the Zend_Form_Decorator_Abstract abstract class) and using that instead. You’ll find links to

articles on this topic at the end of the chapter.

Figure 3-23 The source code of a form using custom decorators

Chapter 3: Working with Forms 99

NOTE

Decorators are an extensive topic in themselves, and it isn’t possible to cover them in
exhaustive detail in this book. The material presented in the preceding section should be
enough to get you started and to help you understand the relatively simple decorators
used in this book. For more in-depth study, refer to the links at the end of this chapter.

Summary
This chapter focused on forms: creating them, validating them, and processing them. It

introduced you to three of the most important components in the Zend Framework—

Zend_Form, Zend_Validate, and Zend_Filter—and showed you how they can be used to

securely request and handle user input. It then applied this knowledge to the SQUARE example

application, guiding you through the process of registering a new namespace for custom

objects, creating an email inquiry form, and transmitting the input received through this form

as an email message using the Zend_Mail component. Finally, it took a quick look at some of

the tools available to help you control the appearance of your forms, including display groups,

decorators, and custom error messages; you’ll see these tools in use throughout this book.

To learn more about the topics discussed in this chapter, consider visiting the following

links:

Wikipedia’s discussion of CSRF and XSS attacks, at ●

http://en.wikipedia.org/wiki/Cross-site_request_forgery and

http://en.wikipedia.org/wiki/Cross-site_scripting

Wikipedia’s discussion of CAPTCHAs, at ●

http://en.wikipedia.org/wiki/Captcha

Figure 3-24 The rendered version of the form in Figure 3-23

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Captcha

100 Zend Framework: A Beginner’s Guide

Wikipedia’s discussion of fluent interfaces, at ●

http://en.wikipedia.org/wiki/Fluent_interface

The Zend Framework autoloader, at ●

http://framework.zend.com/manual/en/zend.loader.autoloader.html

The Zend_Form component, at ●

http://framework.zend.com/manual/en/zend.form.html

The Zend_Filter component, at ●

http://framework.zend.com/manual/en/zend.filter.html

The Zend_Validate component, at ●

http://framework.zend.com/manual/en/zend.validate.html

The Zend_Mail component, at ●

http://framework.zend.com/manual/en/zend.mail.html

A discussion of creating custom decorators (Matthew Weier O’Phinney), at ●

http://weierophinney.net/matthew/archives/213-From-the-inside-out-How-to-layer-

decorators.html

http://en.wikipedia.org/wiki/Fluent_interface
http://framework.zend.com/manual/en/zend.loader.autoloader.html
http://framework.zend.com/manual/en/zend.form.html
http://framework.zend.com/manual/en/zend.filter.html
http://framework.zend.com/manual/en/zend.validate.html
http://framework.zend.com/manual/en/zend.mail.html
http://weierophinney.net/matthew/archives/213-From-the-inside-out-How-to-layer-decorators.html
http://weierophinney.net/matthew/archives/213-From-the-inside-out-How-to-layer-decorators.html

101

Chapter 4
Working with Models

102 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

● Understand the role of models in the Model-View-Controller pattern

● Learn the benefits of the “fat model, skinny controller” approach

● Integrate the Doctrine Object Relational Mapping (ORM) toolkit with the

Zend Framework

● Create models using the Doctrine model generator

● Use Doctrine models to retrieve records from a MySQL database

● Find out how to filter input with the Zend_Filter_Input component

● Tweak the application startup process with the Zend Framework bootstrapper

The previous chapter gave you a crash course in the basics of creating, validating, and

processing forms using the Zend Framework. However, form input doesn’t just disappear

into a vacuum; it has to go somewhere. More often than not, that “somewhere” is a database,

such as MySQL, SQLite, or PostgreSQL, so adding database support to an application

becomes a key task for the application developer.

A database is only part of the puzzle, though: You also need models to interact with it.

Models, which are logically independent of views and controllers, serve as the application’s

“data layer” and provide all the functions necessary to manipulate application data. The Zend

Framework makes it easy to write models that are specific to your application’s requirements;

you can also integrate models generated by popular third-party tools such as Doctrine or Propel.

This chapter will take your Zend Framework skills up another couple of notches, by

showing you how to create and add models to your application, and then use these models to

retrieve data from a MySQL database. It will also introduce you to Doctrine, a powerful (and

free) data mapping tool that can significantly simplify these tasks.

Understanding Models
By now, you should be reasonably familiar with views and controllers, which respectively

represent the “user interface layer” and “processing layer” of an MVC-compliant application.

Models represent the “data layer,” responsible both for providing a channel through which

data can be accessed and for maintaining and enforcing any business rules related to that

data. So, for example, if you’re building a check-in system for an online library, you might

have a Transaction model that not only records the details of books checked in and out of the

system, but also includes rules to disallow a single member from having more than five books

checked out at any one time, or to autocalculate fees for late check-ins and debit them to the

corresponding member account. Similarly, if you’re building an airline ticketing application,

Chapter 4: Working with Models 103

you might have a Ticket model that is not only capable of saving and retrieving ticket purchase

records, but can also automatically increase or decrease the price of a ticket depending on

current passenger load for a particular flight.

Here’s an example of a simple model:

<?php
// model to handle member data
class MemberModel
{
 protected $db;

 public $id;
 public $name;
 public $age;
 public $type;
 private $rate;

 // constructor
 // initialize database connection
 public function __construct()
 {
 $this->db = new PDO('mysql:dbname=db;host=localhost', 'user',
'pass');
 $this->db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 }

 // get member record by id
 public function fetch($id)
 {
 $id = $this->db->quote($this->id);
 $rs = $this->db->query("SELECT * FROM member WHERE id = $id");
 return $rs->fetchAll(PDO::FETCH_ASSOC);
 }

 // get all member records
 public function fetchAll()
 {
 $rs = $this->db->query("SELECT * FROM member");
 return $rs->fetchAll(PDO::FETCH_ASSOC);
 }

 // add new member record
 public function save()
 {
 // filter input data
 $f = array();
 $f['name'] = htmlentities($this->name);
 $f['age'] = htmlentities($this->age);

104 Zend Framework: A Beginner’s Guide

 $f['type'] = htmlentities($this->type);

 // validate age
 if ($f['age'] < 18) {
 throw new Exception('Member under 18');
 }

 // auto-calculate discount based on membership type
 switch ($f['type']) {
 case 'silver':
 $f['rate'] = 0;
 break;
 case 'gold':
 $f['rate'] = 0.10;
 break;
 case 'platinum':
 $f['rate'] = 0.25;
 break;
 }

 $this->db->exec(
 'INSERT INTO member (Name, Age, Type, DiscountRate) VALUES(' .
 $this->db->quote($f['name']) . ', ' .
 $this->db->quote($f['age']) . ', ' .
 $this->db->quote($f['type']) . ', ' .
 $this->db->quote($f['rate']) . ')'
);
 return $this->db->lastInsertId();
 }
}
?>

As you can see, this model uses PHP’s PDO abstraction layer to interact with a MySQL

database. It exposes a number of methods for retrieving records from, and saving records to,

the database. It also includes some business rules (autocalculating the discount rate based on

the membership type) and some input validation rules (verifying that the member is 18 or

older). As with all good models, its purpose begins and ends with data; it has nothing to say

about how that data is formatted and displayed.

Here’s how you would use it in an application:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function saveAction()
 {
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 $model = new MemberModel;
 $model->name = $form->getValue('name');

Chapter 4: Working with Models 105

 $model->age = $form->getValue('age');
 $model->type = $form->getValue('type');
 $id = $model->save();
 $this->view->message = "Record saved with ID: $id";
 }
 }
 }
}

Model Patterns
When it comes to working with models, there are two commonly used patterns: the

DataMapper pattern and the ActiveRecord pattern. The previous example is an illustration of

the ActiveRecord pattern, in which a model class corresponds directly with a database table

and exposes methods like save(), update(), and delete() to manipulate the records

in that table. It should be clear that under this pattern, models and their underlying database

tables are closely linked, and a change in one necessitates a change in the other.

The DataMapper pattern is slightly different, in that there need not exist a 1:1

correspondence between the model class and the underlying database table. Rather, this pattern

uses an in-between layer (the “mapper” of the name) to handle the task of mapping data from

the model class to database fields. In this case, it is the mapper class that exposes methods like

save(), update(), and fetch(), and internally performs the translation necessary to

correctly map class members to database fields. This pattern allows for greater flexibility and

a wider variety of configurations than the ActiveRecord pattern; the separation of data from

data storage also produces more readable and maintainable models. That said, it’s also more

complex to implement than the ActiveRecord pattern.

Which do you use when? There’s no easy answer to that question, because it’s a lot like

asking which flavor of ice cream is best. The ActiveRecord pattern, by definition, assumes

that you’re using a database for data storage, and models based on this pattern are closely

coupled with the underlying database structure. This is good for smaller projects or for projects

where the key functions correspond closely to the standard SELECT, INSERT, UPDATE,

and DELETE commands. The DataMapper pattern allows for explicit separation between

application-level business rules and data storage, and it is the model itself, rather than the

underlying database, that is considered the primary data definition agent. A corollary of this

is that you’re not limited only to a database; the mapper can just as easily map data to other

types of storage, such as flat files, XML, or LDAP. This pattern is good for projects with

sophisticated data structures and/or custom storage formats, or those where the key functions

require more complex interactions between application entities.

Model Scope
It’s often hard to draw a line between what goes into a model and what goes into a controller.

For example, in the banking example described earlier, one might well argue that the

validation related to amounts and locations should be in the controller, rather than in the

model. In general, though, the developer community has largely adopted the “fat model,

skinny controller” approach recommended by various thought leaders, including Martin

106 Zend Framework: A Beginner’s Guide

Fowler, Jamis Buck, and Chris Hartjes (you’ll find links at the end of this chapter), which

proposes that business logic should be located within models, rather than controllers, wherever

possible. This approach offers a number of benefits:

“Fat” models reduce duplication and help developers adhere to the Don’t Repeat Yourself ●

(DRY) maxim by encapsulating key business rules into reusable objects and object

methods. Inheritance chains can then be used to apply these rules consistently across the

application. Specifying models using OOP principles also makes it possible to extend base

models with additional functionality as needed, and to make a distinction between public

and private model attributes within the larger application space.

Self-contained “fat” models that encapsulate all the business rules necessary for their ●

proper functioning are more portable than “thin” models that rely on application

controllers to enforce business rules. Since most of the application’s business logic is in

the model, rather than in the controller, switching to a different framework, for example,

becomes much easier, as the model can simply be swapped in to the new system and will

usually work without significant retrofitting required.

When “fat” models handle most of the heavy lifting, controllers typically end up ●

containing only a few lines of highly focused code. This makes them easier to understand

and read, and contributes to better overall performance (because controllers are typically

invoked more frequently than models). It also produces more maintainable code: For

example, if you need to change the business rules for a particular application entity, you

only need to update the model for that entity, not for all the controllers that use it.

Debugging and testing become more transparent under the “fat model, skinny controller” ●

approach, because it’s usually very easy to identify whether the model or the controller is

the source of an error, and to correct it with minimal impact on the rest of the application.

It’s important to note, at this point, that the Zend Framework does not come with a

Zend_Model component, or a set of predefined models, that you can “drop in” to your

Q: Is a “model” simply a set of prepackaged SQL statements?

A: No, definitely not. It’s a common misconception that models are simply object

representations of database tables, with methods corresponding to the SQL INSERT,

SELECT, UPDATE, and DELETE statements. In reality, models are much more than

Structured Query Language (SQL) wrappers. They can (and should) enforce application-

specific business rules, perform calculations, handle conversions, apply filters, and perform

any other required operations on data. Remember, the more intelligent your models, the less

work for your controllers, and the more maintainable and portable your application.

Ask the Expert

Chapter 4: Working with Models 107

application; you always need to create your own. The Zend Framework includes a number

of tools that can assist you in this task, such as the Zend_Db_Adapter database abstraction

layer and the Zend_Db_Table interface to table operations. However, you can also create your

application models using third-party tools like Doctrine or Propel, and integrate them into

your Zend Framework application. And that, in fact, is what the next section is all about.

Installing Doctrine
While you can certainly create your application models from scratch, using the components

provided by the Zend Framework, there’s an easier way: use an Object Relational Mapping

(ORM) tool to automatically generate them for you. These tools can automatically scan an

existing database and create model classes corresponding to the tables within it, using either

the ActiveRecord or DataMapper pattern. It’s then a simple task to add these autogenerated

models to an application and extend them as needed to support specific requirements.

There are a large number of free, open-source

ORM tools available for PHP, such as Propel,

Doctrine, RedBean, and Qcodo. This book uses

Doctrine, which is extremely popular among

developers on account of its ease of use, flexibility,

and extensive documentation. The Doctrine

package includes a database abstraction layer,

with support for most common RDBMS systems;

a customized version of SQL called Doctrine

Query Language (DQL); and tools to automatically

generate model classes from an existing database

schema. These model classes are based on the

ActiveRecord pattern, and are fully compliant with

the PHP 5.3.x object model.

To get started with Doctrine, download and

install the latest version to your development

environment by visiting the official Doctrine Web

site and getting a copy of the most recent release

of the software. Then, extract its contents to a

temporary area on the file system.

shell> cd /tmp
shell> tar -xzvf Doctrine-XX.tgz

You should end up with a directory structure

that looks something like Figure 4-1. The lib/

directory contains all the Doctrine components,

while the tests/ directory contains test cases.

The contents of the lib/ directory should be

moved to a location in your PHP “include path” list.
Figure 4-1 The contents of a Doctrine

release archive

108 Zend Framework: A Beginner’s Guide

On UNIX/Linux systems, good possible locations for this are /usr/local/lib/php or /usr/local/

share/php. On Windows, consider using your PHP or PEAR installation directory, such

as C:\Program Files\PHP or C:\Program Files\PHP\PEAR. Note that in case the target

directory is not already part of your PHP “include path” list, you must add it before

proceeding.

Here are example commands you can use to perform these tasks:

shell> cd Doctrine-XX
shell> mv lib /usr/local/lib/php/Doctrine

You should now be able to access Doctrine from within a PHP script. To verify this,

create the following simple script, remembering to replace the access credentials with values

appropriate to your system:

<?php
// include main Doctrine class file
include_once 'Doctrine/Doctrine.php';
spl_autoload_register(array('Doctrine', 'autoload'));

// create Doctrine manager
$manager = Doctrine_Manager::getInstance();

// create database connection
$conn = Doctrine_Manager::connection(
 'mysql://root@localhost/test', 'doctrine');

// get and print list of databases
$databases = $conn->import->listDatabases();
print_r($databases);
?>

Save this script as /tmp/doctrine-test.php and execute it at the command prompt using the

PHP command-line interface (CLI), as follows:

shell> cd /tmp/
shell> php ./doctrine-test.php

Figure 4-2 illustrates an example of the output you will see.

 Generating and Integrating
Doctrine Models

Once you’ve got Doctrine installed and working, you’re ready to start creating models with it.

You can then add these models to the example application, and set things up so that they are

automatically loaded as needed. The following sections discuss how to accomplish these tasks.

Try This 4-1

Chapter 4: Working with Models 109

Initializing the Application Database
The first step is to create a MySQL database for the application. To do this, drop to your

command prompt, fire up the MySQL command-line client, and create a new database using

the following commands:

shell> mysql -u root -p
Enter password: *****
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 17
Server version: 5.1.30-community MySQL Community Server (GPL)

mysql> CREATE DATABASE square;
Query OK, 0 rows affected (0.00 sec)
mysql> USE square;
Database changed

Add some tables to this database, as shown in the following code:

mysql> CREATE TABLE IF NOT EXISTS country (
-> CountryID INT(11) NOT NULL AUTO_INCREMENT,
-> CountryName VARCHAR(255) NOT NULL,
-> PRIMARY KEY (CountryID)
->) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE IF NOT EXISTS grade (
-> GradeID INT(11) NOT NULL AUTO_INCREMENT,
-> GradeName VARCHAR(255) NOT NULL,
-> PRIMARY KEY (GradeID)

(continued)

Figure 4-2 The list of available databases, as returned by Doctrine

110 Zend Framework: A Beginner’s Guide

->) ENGINE=InnoDB DEFAULT CHARSET=utf8;
Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE IF NOT EXISTS type (
-> TypeID INT(11) NOT NULL AUTO_INCREMENT,
-> TypeName VARCHAR(255) NOT NULL,
-> PRIMARY KEY (TypeID)
->) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE IF NOT EXISTS item (
-> RecordID INT(11) NOT NULL AUTO_INCREMENT,
-> RecordDate DATE NOT NULL,
-> SellerName VARCHAR(255) NOT NULL,
-> SellerEmail VARCHAR(255) NOT NULL,
-> SellerTel VARCHAR(50) DEFAULT NULL,
-> SellerAddress TEXT,
-> Title VARCHAR(255) NOT NULL,
-> `Year` INT(4) NOT NULL,
-> CountryID INT(4) NOT NULL,
-> Denomination FLOAT NOT NULL,
-> TypeID INT(4) NOT NULL,
-> GradeID INT(4) NOT NULL,
-> SalePriceMin FLOAT NOT NULL,
-> SalePriceMax FLOAT NOT NULL,
-> Description TEXT NOT NULL,
-> DisplayStatus TINYINT(1) NOT NULL,
-> DisplayUntil DATE DEFAULT NULL,
-> PRIMARY KEY (RecordID)
->) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE IF NOT EXISTS user (
-> RecordID INT(4) NOT NULL AUTO_INCREMENT,
-> Username VARCHAR(10) NOT NULL,
-> Password TEXT NOT NULL,
-> PRIMARY KEY (RecordID)
->) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Query OK, 0 rows affected (0.09 sec)
mysql> CREATE TABLE IF NOT EXISTS log (

-> RecordID int(11) NOT NULL AUTO_INCREMENT,
-> LogMessage text NOT NULL,
-> LogLevel varchar(30) NOT NULL,
-> LogTime varchar(30) NOT NULL,
-> Stack text,
-> Request text,
-> PRIMARY KEY (RecordID)
->) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Query OK, 0 rows affected (0.09 sec)

Chapter 4: Working with Models 111

Table 4-1 gives a brief description of these tables.

To better understand how these tables are connected, take a look at Figure 4-3, which

presents an entity-relationship diagram of the MySQL database in this chapter.

Proceed to initialize the master tables with some records:

mysql> INSERT INTO country (CountryID, CountryName) VALUES
-> (1, 'United States'),
-> (2, 'United Kingdom'),
-> (3, 'India'),
-> (4, 'Singapore'),
-> (5, 'Germany'),
-> (6, 'France'),
-> (7, 'Italy'),

Table 4-1 A Brief Description of the Application Database

Table Name Contains

item List of stamps available for sale, together with seller contact information

user List of authorized users

country Master list of countries

grade Master list of stamp grades

type Master list of stamp types

log Error log

Q: If the Zend Framework convention is to use upper camel-casing for entity names, why

are the MySQL database and table names in this chapter specified in lowercase?

A: At the filesystem level, MySQL represents databases and tables as directories and files,

respectively. Some file systems (for example Windows) don’t make a distinction between

upper- and lowercase filenames, while others (for example Linux) do. Therefore, to

simplify moving databases and tables between different operating systems, it’s generally

recommended to lowercase all database and table names, and to ensure they consist only

of alphanumeric and underscore characters. Obviously, you should also try to avoid using

reserved MySQL keywords as database names.

Ask the Expert

(continued)

112 Zend Framework: A Beginner’s Guide

-> (8, 'Spain'),
-> (9, 'Hungary');

Query OK, 9 rows affected (0.09 sec)
Records: 9 Duplicates: 0 Warnings: 0

mysql> INSERT INTO grade (GradeID, GradeName) VALUES
 -> (1, 'Very Fine'),
 -> (2, 'Fine'),

-> (3, 'Good'),
 -> (4, 'Average'),
 -> (5, 'Poor');
Query OK, 5 rows affected (0.09 sec)
Records: 5 Duplicates: 0 Warnings: 0

mysql> INSERT INTO type (TypeID, TypeName) VALUES
-> (1, 'Commemorative'),
-> (2, 'Decorative'),
-> (3, 'Definitive'),
-> (4, 'Special'),
-> (5, 'Other');

Figure 4-3 An entity-relationship diagram of the application database

Chapter 4: Working with Models 113

Query OK, 5 rows affected (0.09 sec)
Records: 5 Duplicates: 0 Warnings: 0

You can also insert a couple of dummy records into the item table, just to get things rolling:

mysql> INSERT INTO item (RecordID, RecordDate, SellerName,
-> SellerEmail, SellerTel, SellerAddress, Title,
-> Year, CountryID, Denomination, TypeID, GradeID,
-> SalePriceMin, SalePriceMax, Description,
-> DisplayStatus, DisplayUntil) VALUES
-> (1, '2009-12-06', 'John Doe', 'john@example.com',
-> '+123456789102', '12 Green House, Red Road, Blue City',
-> 'Himalayas - Silver Jubilee', 1958, 3, 5.00, 1, 2, 10, 15,
-> 'Silver jubilee issue. Aerial view of snow-capped.
-> Himalayan mountains. Horizontal orange stripe across
-> top margin. Excellent condition, no marks.', 0, NULL);

Query OK, 1 row affected (0.02 sec)

mysql> INSERT INTO item (RecordID, RecordDate, SellerName,
-> SellerEmail, SellerTel, SellerAddress, Title,
-> Year, CountryID, Denomination, TypeID, GradeID,
-> SalePriceMin, SalePriceMax, Description,
-> DisplayStatus, DisplayUntil) VALUES
-> (2, '2009-10-05', 'Susan Doe', 'susan@example.com',
-> '+198765432198', '1 Tiger Place, Animal City 648392',
-> 'Britain - WWII Fighter', 1966, 2, 1.00, 1, 4, 1.00, 2.00,
-> 'WWII Fighter Plane overlaid on blue sky. Cancelled',
-> 0, NULL);

Query OK, 1 row affected (0.02 sec)

For security reasons, it’s also a good idea to create a dedicated MySQL user account with

privileges to access only this database. Go ahead and do this using the following command:

mysql> GRANT ALL ON square.* TO square@localhost IDENTIFIED BY 'square';
Query OK, 1 row affected (0.00 sec)

Your database is now set up, and you’re ready to start creating models from it!

Generating Doctrine Models
Doctrine comes with a powerful model generator, which can “read” an existing database and

generate a set of model classes from it. To see it in action, create and run the following PHP script:

<?php
// include main Doctrine class file
include_once 'Doctrine.php';

(continued)

114 Zend Framework: A Beginner’s Guide

spl_autoload_register(array('Doctrine', 'autoload'));

// create Doctrine manager
$manager = Doctrine_Manager::getInstance();

// create database connection
$conn = Doctrine_Manager::connection(
 'mysql://square:square@localhost/square', 'doctrine');

// auto-generate models
Doctrine::generateModelsFromDb('/tmp/models',
 array('doctrine'),
 array('classPrefix' => 'Square_Model_')
);
?>

This script sets up a connection to the database created in the previous section, and then uses

the generateModelsFromDb() method to dynamically generate models corresponding

to the tables in the database. These models will be saved to the directory named in the first

argument to the method. Notice also that, in the array passed to the method as third argument,

there’s an option that tells Doctrine to prefix each model class name with a custom string. This

is useful to have the models conform to the Zend

Framework’s autoloading subsystem.

Execute this script at the command prompt

using the PHP CLI, as follows:

shell> cd /tmp
shell> php ./doctrine-models-generate
.php

If all goes well, Doctrine will write a set of

models to the specified directory. Take a look, and

you should see something like Figure 4-4.

These models should now be copied to the

application directory. To do this, change to $APP_

DIR and execute the following commands:

shell> mkdir library/Square/Model
shell> cp /tmp/models/* library/Square/Model
shell> cp /tmp/models/generated/* library/Square/Model

By default, the Doctrine model generator uses the model class name as the basis for the

corresponding filename. So, for example, a model class named Square_Model_Item will be

saved to a filename Square_Model_Item.php. Unfortunately, this arrangement does not sit well

with the Zend Framework’s autoloader, which expects a class named Square_Model_Item to

be saved as Square/Model/Item.php. To resolve this, it’s necessary to manually rename each of

Figure 4-4 The autogenerated Doctrine
models, in their original state

Chapter 4: Working with Models 115

the generated model class files, removing the prefix that was automatically added by Doctrine.

Here’s an example:

shell> cd library/Square/Model
shell> mv Square_Model_BaseCountry.php BaseCountry.php

At the end of the process, you should have a structure that looks like Figure 4-5.

TIP

If you’re using Doctrine v1.2, you can pass an additional 'classPrefixFiles'
option to the generateModelsFromDb() method. This specifies whether or not
the class prefix should be added to the model filenames. Setting this to 'false'
reduces the work involved in getting Doctrine models integrated with your application,
as it is no longer necessary to rename each model file to conform to Zend Framework
conventions.

Notice that Doctrine maps each table in the database to two model classes: a base class and a

child class. The base class extends the Doctrine_Record class, includes the table definition,

and exposes (via inheritance) all the methods for common database operations. The child class

is a stub class derived from the base class, and it serves as a container for any custom methods

that you might want to add to the model.

Setting Model Relationships
Now, while Doctrine can produce models that

correspond to individual tables and expose

methods for common operations on those tables,

it doesn’t have the intelligence to automatically

detect relationships between tables. However, these

relationships are often critically important in practical

use, so it’s up to the application developer to define

these relationships by linking models together.

Doctrine makes it possible to replicate all

the different types of relationships possible in

an RDBMS—one-to-one, one-to-many, many-

to-many, and self-referencing—using just two

methods: hasOne() and hasMany(). Both these

methods take two arguments: the name of the other

model to be used in the relationship, and an array of

options specifying parameters for the relationship.

To ensure that these relationships are automatically

loaded when the model is instantiated, they should

be used within the model’s setUp() method.

Figure 4-5 The autogenerated Doctrine
models, after integration into
the application

(continued)

116 Zend Framework: A Beginner’s Guide

To understand how this works, flip back a few pages to Figure 4-3, which illustrates the

relationships between the various database tables. It should be clear from Figure 4-3 that there

exists a 1:n relationship between the country, grade, and type master tables on the one hand,

and the item table on the other. This relationship makes use of the item.CountryID, item

.GradeID, and item.TypeID foreign key fields, and it can be expressed in Doctrine by adding

the following code to the Item model class:

<?php
class Square_Model_Item extends Square_Model_BaseItem
{
 public function setUp()
 {
 $this->hasOne('Square_Model_Grade', array(
 'local' => 'GradeID',
 'foreign' => 'GradeID'
)
);
 $this->hasOne('Square_Model_Country', array(
 'local' => 'CountryID',
 'foreign' => 'CountryID'
)
);
 $this->hasOne('Square_Model_Type', array(
 'local' => 'TypeID',
 'foreign' => 'TypeID'
)
);
 }
}

Here, the setUp() method takes care of automatically defining the foreign key

relationships between the Item model and the Country, Grade, and Item models. This comes in

handy when joining these tables together in a Doctrine query (as you’ll shortly see).

Autoloading Doctrine
All that’s left now is to get the Zend Framework application and Doctrine talking nice to each

other. There are a number of ways this can be done, but the recommended approach involves

initializing Doctrine in the application bootstrap file and configuring it to “lazy load” models as

needed. This approach is advocated by leading Zend Framework developers such as Matthew

Weier O’Phinney and Eric LeClerc, and you’ll find links to their work at the end of this chapter.

The first step is to decide whether to include the Doctrine libraries with your application or

to allow users to download and install these libraries themselves. To understand the pros and

cons of these options, revisit Chapter 1, when you had a similar decision to make for the Zend

Framework libraries. In keeping with what was decided earlier, let’s assume that the Doctrine

Chapter 4: Working with Models 117

libraries will be bundled with the application. Therefore, copy the contents of the Doctrine lib/

directory to $APP_DIR/library/Doctrine, using the following command:

shell> cp -R /usr/local/lib/php/Doctrine library/

The next step is to update the application configuration file, at $APP_DIR/application/

configs/application.ini, with a Data Source Name (DSN) that Doctrine can use to connect to

the MySQL database created earlier. To perform this update, open the application configuration

file in a text editor and add the following lines to the [production] section:

doctrine.dsn = "mysql://square:square@localhost/square"

The final step is to initialize Doctrine by adding the necessary code to the application

bootstrapper. As the name suggests, this component is automatically invoked on each request

to “bootstrap” required application resources. It’s defined as a class extending the Zend_

Application_Bootstrap_Bootstrap class, and it’s located in $APP_DIR/application/Bootstrap.php.

Open this file in a text editor, and update it with a new _initDoctrine() method, as

follows:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initDoctrine()
 {
 require_once 'Doctrine/Doctrine.php';
 $this->getApplication()
 ->getAutoloader()
 ->pushAutoloader(array('Doctrine', 'autoload'),
'Doctrine');

 $manager = Doctrine_Manager::getInstance();
 $manager->setAttribute(
 Doctrine::ATTR_MODEL_LOADING,
 Doctrine::MODEL_LOADING_CONSERVATIVE
);

 $config = $this->getOption('doctrine');
 $conn = Doctrine_Manager::connection($config['dsn'],
'doctrine');
 return $conn;
 }

}

Under the Zend Framework’s bootstrap system, any protected method belonging to

the Bootstrap class and named with the special prefix _init* is considered a resource

(continued)

118 Zend Framework: A Beginner’s Guide

method and is automatically executed by the bootstrapper. The preceding listing defines

the _initDoctrine() resource method, which starts off by including the main Doctrine

class and configuring the autoloader with information on how to load Doctrine classes. It then

creates an instance of the Doctrine_Manager class, configures Doctrine lazy loading, reads the

DSN from the application configuration file, and opens a connection to the database.

Since this method will be automatically executed on every request, Doctrine models will

be available for use in any application controller. With this, Doctrine is ready for use!

Working with Doctrine Models
Before going any further, let’s take a quick diversion into the world of Doctrine models. As

discussed earlier, Doctrine models implement the ActiveRecord pattern, wherein each instance

of the model class represents a record of the underlying table, and each property of the

instance represents a field of the record. Models extend the Doctrine_Record base class, which

exposes a number of methods to simplify the work of adding, editing, deleting, and searching

for records. The following sections examine these aspects in more detail.

Retrieving Records
There are a couple of different ways to retrieve records using a Doctrine model. If you have

the record’s primary key, one approach is to simply use the find() method, as follows:

<?php
$member = Doctrine::getTable('Member')->find(1);
var_dump($member->toArray());
?>

If you’d instead prefer to fetch all the available records, you can use the findAll()
method, as follows:

<?php
$members = Doctrine::getTable('Members')->findAll();
var_dump($members->toArray());
?>

Doctrine comes with its own variant of SQL called Doctrine Query Language (DQL),

which provides a flexible interface to creating and executing database queries. This offers

an alternative, and more flexible, option for retrieving records from a database. Consider the

following simple example, which retrieves all member records as an array:

<?php
$q = Doctrine_Query::create()
 ->from('Member m');
$result = $q->fetchArray();
?>

Chapter 4: Working with Models 119

Using Filters
The Doctrine_Query class exposes a fluent interface, which means it’s very easy to add

layers to this query. For example, let’s suppose you wanted to retrieve only records of active

member accounts. You can add this condition to the query with the where() method, as

follows:

<?php
$q = Doctrine_Query::create()
 ->from('Member m')
 ->where('m.Status = ?', 1);
$result = $q->fetchArray();
?>

You can attach multiple filters to a query in this manner with the addWhere() method.

Here’s an example that retrieves records of active members located in the United Kingdom:

<?php
$q = Doctrine_Query::create()
 ->from('Member m')
 ->where('m.Status = ?', 1)
 ->addWhere('m.Location = ?', 'UK');
$result = $q->fetchArray();
?>

Grouping and Ordering Results
You can group and order the result set with the orderBy() and groupBy() methods.

Here’s an example of grouping and ordering members by country:

<?php
$q = Doctrine_Query::create()
 ->from('Member m')
 ->where('m.Status = ?', 1)
 ->groupBy('m.Location')
 ->orderBy('m.Location DESC');
$result = $q->fetchArray();
?>

Joining Tables
You can also use DQL to perform joins between tables, using the leftJoin() and

innerJoin() methods. Here’s an example that creates a left join:

<?php
$q = Doctrine_Query::create()
 ->from('Member m')
 ->leftJoin('m.Country c')
 ->leftJoin('m.OrgType o')

120 Zend Framework: A Beginner’s Guide

 ->where('o.DisplayStatus = 1');
$result = $q->execute();
?>

And here’s an example of an inner join:

<?php
$q = Doctrine_Query::create()
 ->from('Member m')
 ->innerJoin('m.Country c');
$result = $q->execute();
?>

The fields to use for the join are automatically set by Doctrine, based on the relationships

defined in the source model’s setUp() method.

TIP

When using DQL, you might need to review the autogenerated code for a particular
query. Doctrine lets you do this via its getSql() method, which returns the raw SQL of
a query for inspection.

Adding, Updating, and Deleting Records
Adding a new record to the database using a Doctrine model is simplicity itself: Simply

instantiate an instance of the model class, set field values as model properties, and call the

model’s save() method. Here’s an example:

<?php
$member = new Member;
$member->FirstName = 'Jack';
$member->LastName = 'Frost';
$member->Email = 'jack@example.com';

Q: Does DQL support right joins?

A: No. DQL currently only supports left joins and inner joins. But this shouldn’t slow

you down, because left and right joins are interchangeable, depending on which side of

the join you’re standing on. To illustrate, consider the following two queries, which are

equivalent:

 SELECT * FROM c LEFT JOIN a USING (id);
 SELECT * FROM a RIGHT JOIN c USING (id);

Ask the Expert

Chapter 4: Working with Models 121

$member->JoinDate = '2009-11-11';
$member->Status = 1;
$id = $member->save();
?>

To update an existing record, retrieve it using either the find() method or a DQL query,

update the necessary properties, and save it back to the database using the save() method.

Here’s an example:

<?php
$member = Doctrine::getTable('Member')->find(1);
$member->FirstName = 'John';
$member->Status = 2;
$member->save();
?>

For more precise control, you can also update records using the DQL update() method.

Here’s an example, which is equivalent to the previous one:

<?php
$q = Doctrine_Query::create()
 ->update('Member m')
 ->set('m.FirstName', '?', 'John')
 ->set('m.Status', '?', '2')
 ->addWhere('m.RecordID = ?', 1);
$q->execute();
?>

In a similar vein, you can delete records either by calling the model’s delete() method

or by using a DQL query. The following listing illustrates both these approaches:

<?php
// using model methods
$member = Doctrine::getTable('Member')->find(11);
$member->delete();

// using DQL
$q = Doctrine_Query::create()
 ->delete('Member m')
 ->addWhere('m.RecordID = ?', 11);
$q->execute();
?>

While a full explanation of the Doctrine package is beyond the scope of this book,

the preceding examples should have given you some insight into the basics of model

operations and provided a foundation for you to understand the material in the following

sections. For more information, and many more examples, refer to the links at the end of

this chapter.

122 Zend Framework: A Beginner’s Guide

Retrieving Database Records
Now that you know a little bit about how Doctrine models work, how about doing something

practical with that knowledge? The following section will show you how to use these models

to retrieve individual stamp listings from the database, format them, and display them within

the context of the SQUARE example application.

Creating a New Module
So far, all the examples you’ve seen have been created under the “default” module. However,

one of the advantages of using a modular directory layout is that it allows you to group

together logically related controllers and thereby produce a more maintainable and organized

code tree. With this in mind, create a new module named “catalog,” which will contain

all the controllers and views related to adding, retrieving, searching, and manipulating the

application’s catalog of stamps for sale.

To create this new “catalog” module, change to $APP_DIR/application/ and execute the

following commands:

shell> mkdir modules/catalog
shell> mkdir modules/catalog/controllers
shell> mkdir modules/catalog/views
shell> mkdir modules/catalog/views/scripts

Defining a Custom Route
Next, let’s define a route for display URLs. For simplicity, we’ll assume that all display URLs

will be of the form /catalog/item/display/xx, where xx is a variable indicating the record

ID. To set up a custom route to handle such URLs, add the following route definition to the

application configuration file at $APP_DIR/application/configs/application.ini:

resources.router.routes.catalog-display.route = /catalog/item/
display/:id
resources.router.routes.catalog-display.defaults.module = catalog
resources.router.routes.catalog-display.defaults.controller = item
resources.router.routes.catalog-display.defaults.action = display

Defining the Controller
The next step is to define a controller and action corresponding to the route definition in the

previous section. By convention, this controller will be located at $APP_DIR/application/

modules/catalog/controllers/ItemController.php. Here’s what it looks like:

<?php
class Catalog_ItemController extends Zend_Controller_Action
{
 public function init()

Try This 4-2

Chapter 4: Working with Models 123

 {
 }

 // action to display a catalog item
 public function displayAction()
 {
 // set filters and validators for GET input
 $filters = array(
 'id' => array('HtmlEntities', 'StripTags', 'StringTrim')
);
 $validators = array(
 'id' => array('NotEmpty', 'Int')
);

 // test if input is valid
 // retrieve requested record
 // attach to view
 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());
 if ($input->isValid()) {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.RecordID = ?', $input->id);

 $result = $q->fetchArray();
 if (count($result) == 1) {
 $this->view->item = $result[0];
 } else {
 throw new Zend_Controller_Action_Exception('Page not found', 404);
 }
 } else {
 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }
}

NOTE

Under the Zend Framework, each module (except the “default” module) has its
own namespace to prevent object and variable collisions. You can see this in the
Catalog_ItemController, where the module name is prefixed to the controller name to
create a custom namespace.

(continued)

124 Zend Framework: A Beginner’s Guide

In this example, the displayAction() method first retrieves the value of the input

variable $_GET['id'], and then interpolates this value into a Doctrine query that attempts

to find a matching record in the database. If the query returns a single record as the result,

this result is assigned to the view as an associative array. If no matches, or multiple matches,

are found, a 404 exception is raised and propagated forward to the default exception handler,

which formats it into a readable error page and displays it to the client.

This listing also introduces a new component, the Zend_Filter_Input component. This

component, as the name suggests, provides an alternative approach to filtering and validating

input, and it is very useful in situations where the user’s input doesn’t come through a form

(as in this example, where the record ID is submitted as a URL request parameter). All of the

filters and validators discussed in Chapter 3 can also be used with Zend_Filter_Input.

How does it work? The Zend_Filter_Input class constructor accepts three arguments—an

array of filters, an array of validators, and an array of input data to be tested—and runs the first

and second of these on the third. You can also specify the array of input data separately, using

the setData() method. In the previous listing, for example, the $_GET['id'] variable

is first filtered using the HTMLEntities, StripTags, and StringTrim filters, and is then checked

to make sure it is an integer. As with Zend_Form, there’s an isValid() method, which

returns Boolean true or false depending on whether or not the data is valid; this can be used as

a conditional wrapper around the action’s business logic.

Defining the View
Assuming the requested record ID is valid and a record matching it is found in the database, the

controller renders the corresponding view, which, by convention, should be stored at $APP_

DIR/application/modules/catalog/views/scripts/item/display.phtml. Here’s what it looks like:

<h2>View Item</h2>
<h3>
 FOR SALE:
 <?php echo $this->escape($this->item['Title']); ?> -
 <?php echo $this->escape($this->item['Year']); ?> -
 <?php echo $this->escape($this->item['Square_Model_Grade']
['GradeName']); ?>
</h3>

<div id="container">
 <div id="record">
 <table>
 <tr>
 <td class="key">Title:</td>
 <td class="value">
 <?php echo $this->escape($this->item['Title']); ?>
 </td>
 </tr>
 <tr>
 <td class="key">Type:</td>
 <td class="value">

Chapter 4: Working with Models 125

 <?php echo $this->escape(
 $this->item['Square_Model_Type']['TypeName']); ?>
 </td>
 </tr>
 <tr>
 <td class="key">Year:</td>
 <td class="value">
 <?php echo $this->escape($this->item['Year']); ?>
 </td>
 </tr>
 <tr>
 <td class="key">Country:</td>
 <td class="value">
 <?php echo $this->escape(
 $this->item['Square_Model_Country']['CountryName']); ?>
 </td>
 </tr>
 <tr>
 <td class="key">Denomination:</td>
 <td class="value">
 <?php echo $this->escape(
 sprintf('%01.2f', $this->item['Denomination'])); ?>
 </td>
 </tr>
 <tr>
 <td class="key">Grade:</td>
 <td class="value">
 <?php echo $this->escape(
 $this->item['Square_Model_Grade']['GradeName']); ?>
 </td>
 </tr>
 <tr>
 <td class="key">Sale price:</td>
 <td class="value">
 $<?php echo $this->escape($this->item['SalePriceMin']); ?> -
 $<?php echo $this->escape($this->item['SalePriceMax']); ?>
 </td>
 </tr>
 <tr>
 <td class="key">Description:</td>
 <td class="value">
 <?php echo $this->escape($this->item['Description']); ?>
 </td>
 </tr>
 </table>
 </div>
</div>

(continued)

126 Zend Framework: A Beginner’s Guide

Nothing too complicated here. This view script simply reformats the record retrieved by the

model in the previous step, and displays it in a usable and readable format. Notice the use of the

escape() method to automatically escape the output of the view before displaying it to the user.

To see this in action, try accessing the URL http://square.localhost/catalog/item/1 in your

browser. If everything is working correctly, the controller will retrieve the record with ID #1

from the database (you’ll remember that we manually added this record when initializing the

database), assign it to the view, and render it. The output should look something like Figure 4-6.

As a test, you can also try accessing the same URL again, but with an invalid or missing record

ID. You should see either a “Page not found” or an “Invalid input” error, as shown in Figure 4-7.

Figure 4-6 The result of successfully retrieving a database record

Figure 4-7 The result of an unsuccessful retrieval attempt

http://square.localhost/catalog/item/1

Chapter 4: Working with Models 127

Summary
While previous chapters have focused on views and controllers, this one focused on models:

what they are, how they work, and what role they play in an MVC application. Although the

Zend Framework doesn’t come with a dedicated model component, it’s nevertheless quite easy

to create your own or to integrate third-party models, such as those generated by the Doctrine

ORM package, into a Zend Framework application. This chapter demonstrated the process,

showing you how to create Doctrine models and configure them to work in the context of

a Zend Framework application. It also introduced you to the Zend_Filter_Input component, a

useful tool for ad-hoc input filtering and validation, and the Bootstrap class, which provides

a framework for initializing application resources at run time.

The SQUARE example application is now significantly smarter as well. It has a database

for persistent storage, and a controller than can interact with it to retrieve and display database

records. More importantly, it finally has a set of robust, extensible models. This will not only

simplify data access and manipulation, but it will also provide a basis for the more advanced

functionality discussed in later chapters of this book.

To learn more about the topics discussed in this chapter, consider visiting the following

links:

The official Doctrine Web site and manual, at ● http://www.doctrine-project.org/ and

http://www.doctrine-project.org/documentation/manual/1_1/en

An introduction to Doctrine models, at ● http://www.doctrine-project.org/documentation/

manual/1_1/en/introduction-to-models

Information on how to express database relationships using Doctrine models, at ●

http://www.doctrine-project.org/documentation/manual/1_1/en/defining-models

Sample queries using Doctrine, at ●

http://www.doctrine-project.org/documentation/manual/1_0/en/working-with-models

Q: Why do I need to escape output before displaying it?

A: As a general rule, you shouldn’t trust any data that comes from an external source. This is

because it’s always possible for attackers to embed malicious content into this data and, if

you use it without first cleaning it, you might be putting your application’s users at risk.

A common example of this type of exploit is the “cross-site scripting attack,” wherein an

attacker is able to gain access to sensitive user data by piggybacking malicious JavaScript

code or HTML form code into your Web pages. With this in mind, it’s always essential to

pass output through a sanitization routine before displaying it to the user.

Ask the Expert

http://www.doctrine-project.org/
http://www.doctrine-project.org/documentation/manual/1_1/en
http://www.doctrine-project.org/documentation/manual/1_1/en/introduction-to-models
http://www.doctrine-project.org/documentation/manual/1_1/en/introduction-to-models
http://www.doctrine-project.org/documentation/manual/1_1/en/defining-models
http://www.doctrine-project.org/documentation/manual/1_0/en/working-with-models

128 Zend Framework: A Beginner’s Guide

Wikipedia’s discussion of the ActiveRecord pattern, at ●

http://en.wikipedia.org/wiki/Active_record_pattern

Wikipedia’s discussion of Object Relational Mapping, at ●

http://en.wikipedia.org/wiki/Object-relational_mapping

Wikipedia’s discussion of CSRF and XSS attacks, at ●

http://en.wikipedia.org/wiki/Cross-site_request_forgery and

http://en.wikipedia.org/wiki/Cross-site_scripting

The Zend_Filter_Input component, at ●

http://framework.zend.com/manual/en/zend.filter.input.html

The Bootstrap class, at ●

http://framework.zend.com/manual/en/zend.application.theory-of-operation.html

A discussion of the DataMapper pattern (Martin Fowler), at ●

http://martinfowler.com/eaaCatalog/dataMapper.html

A discussion of the Anemic Domain Model (Martin Fowler), at ●

http://martinfowler.com/bliki/AnemicDomainModel.html

Current thinking on the “fat models, skinny controllers” approach (Jamis Buck and Chris ●

Hartjes), at

http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model and

http://www.littlehart.net/atthekeyboard/2007/04/27/fat-models-skinny-controllers/

A discussion of autoloading Doctrine and Doctrine models in the context of a Zend ●

Framework application (Matthew Weier O’Phinney and Eric Leclerc), at

http://weierophinney.net/matthew/archives/220-Autoloading-Doctrine-and-Doctrine-

entities-from-Zend-Framework.html and

http://www.danceric.net/2009/06/06/doctrine-orm-and-zend-framework/

http://en.wikipedia.org/wiki/Active_record_pattern
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_scripting
http://framework.zend.com/manual/en/zend.filter.input.html
http://framework.zend.com/manual/en/zend.application.theory-of-operation.html
http://martinfowler.com/eaaCatalog/dataMapper.html
http://martinfowler.com/bliki/AnemicDomainModel.html
http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model
http://www.littlehart.net/atthekeyboard/2007/04/27/fat-models-skinny-controllers/
http://weierophinney.net/matthew/archives/220-Autoloading-Doctrine-and-Doctrine-entities-from-Zend-Framework.html
http://weierophinney.net/matthew/archives/220-Autoloading-Doctrine-and-Doctrine-entities-from-Zend-Framework.html
http://www.danceric.net/2009/06/06/doctrine-orm-and-zend-framework/

129

Chapter 5
Handling CRUD

Operations

130 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

Understand and implement the four CRUD operations

Learn different techniques of handling date input in Web forms

Create multiple layout templates, and switch between them automatically

Build a simple login/logout system

Protect administrative actions with user authentication

Chances are you’re already familiar with the acronym CRUD. It represents the four

fundamental operations—Create, Read, Update, and Delete—that can be performed on

application data. Most applications that use persistent data will also expose an interface that

allows users to perform these four types of operations on the data. Models are an interface

to an application’s data, so no discussion of models is complete without an accompanying

discussion of how they can be used to add CRUD functions to an application.

This chapter will focus squarely (pardon the pun!) on this aspect of application

development, illustrating how to implement CRUD functions in the context of the SQUARE

example application. It introduces you to the Zend_Auth component and shows you how to

attach user authentication to application-level actions. And it also teaches you a little more

about using models, controllers, views, and layouts in practice. So come on in, and let’s get

cracking!

Creating Database Records
You already know how to create and manipulate Web forms using the Zend Framework, and

the previous chapter showed you how easy it is to integrate a Doctrine model into a Zend

Framework controller. Let’s now put those two things together and build a Web form that

allows sellers to enter stamp information and have this information added to the application

database.

Defining the Form
The first step is to define the input form that will form the basis for the catalog entry. Here’s

the form definition, which should be saved to $APP_DIR/library/Square/Form/ItemCreate

.php:

<?php
class Square_Form_ItemCreate extends Zend_Form
{
 public function init()
 {

Try This 5-1

Chapter 5: Handling CRUD Operations 131

 // initialize form
 $this->setAction('/catalog/item/create')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('SellerName');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->addValidator('Regex', false, array(
 'pattern' => '/^[a-zA-Z]+[A-Za-z\'\-\.]{1,50}$/'
))
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create text input for email address
 $email = new Zend_Form_Element_Text('SellerEmail');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->addValidator('EmailAddress', false)
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim')
 ->addFilter('StringToLower');

 // create text input for tel number
 $tel = new Zend_Form_Element_Text('SellerTel');
 $tel->setLabel('Telephone number:');
 $tel->setOptions(array('size' => '50'))
 ->addValidator('StringLength', false, array('min' => 8))
 ->addValidator('Regex', false, array(
 'pattern' => '/^\+[1-9][0-9]{6,30}$/',
 'messages' => array(
 Zend_Validate_Regex::INVALID =>
 '\'%value%\' does not match international number
 format +XXYYZZZZ',
 Zend_Validate_Regex::NOT_MATCH =>
 '\'%value%\' does not match international number
 format +XXYYZZZZ'
)
))
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create text input for address
 $address = new Zend_Form_Element_TextArea('SellerAddress');
 $address->setLabel('Postal address:')

(continued)

132 Zend Framework: A Beginner’s Guide

 ->setOptions(array('rows' => '6','cols' => '36'))
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create text input for item title
 $title = new Zend_Form_Element_Text('Title');
 $title->setLabel('Title:')
 ->setOptions(array('size' => '60'))
 ->setRequired(true)
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create text input for item year
 $year = new Zend_Form_Element_Text('Year');
 $year->setLabel('Year:')
 ->setOptions(array('size' => '8', 'length' => '4'))
 ->setRequired(true)
 ->addValidator('Between', false, array(
 'min' => 1700, 'max' => 2015))
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create select input for item country
 $country = new Zend_Form_Element_Select('CountryID');
 $country->setLabel('Country:')
 ->setRequired(true)
 ->addValidator('Int')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim')
 ->addFilter('StringToUpper');
 foreach ($this->getCountries() as $c) {
 $country->addMultiOption($c['CountryID'], $c['CountryName']);
 }

 // create text input for item denomination
 $denomination = new Zend_Form_Element_Text('Denomination');
 $denomination->setLabel('Denomination:')
 ->setOptions(array('size' => '8'))
 ->setRequired(true)
 ->addValidator('Float')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create radio input for item type
 $type = new Zend_Form_Element_Radio('TypeID');
 $type->setLabel('Type:')
 ->setRequired(true)
 ->addValidator('Int')

Chapter 5: Handling CRUD Operations 133

 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');
 foreach ($this->getTypes() as $t) {
 $type->addMultiOption($t['TypeID'], $t['TypeName']);
 }
 $type->setValue(1);

 // create select input for item grade
 $grade = new Zend_Form_Element_Select('GradeID');
 $grade->setLabel('Grade:')
 ->setRequired(true)
 ->addValidator('Int')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');
 foreach ($this->getGrades() as $g) {
 $grade->addMultiOption($g['GradeID'], $g['GradeName']);
 };

 // create text input for sale price (min)
 $priceMin = new Zend_Form_Element_Text('SalePriceMin');
 $priceMin->setLabel('Sale price (min):')
 ->setOptions(array('size' => '8'))
 ->setRequired(true)
 ->addValidator('Float')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create text input for sale price (max)
 $priceMax = new Zend_Form_Element_Text('SalePriceMax');
 $priceMax->setLabel('Sale price (max):')
 ->setOptions(array('size' => '8'))
 ->setRequired(true)
 ->addValidator('Float')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create text input for item description
 $notes = new Zend_Form_Element_TextArea('Description');
 $notes->setLabel('Description:')
 ->setOptions(array('rows' => '15','cols' => '60'))
 ->setRequired(true)
 ->addFilter('HTMLEntities')
 ->addFilter('StripTags')
 ->addFilter('StringTrim');

 // create CAPTCHA for verification
 $captcha = new Zend_Form_Element_Captcha('Captcha', array(

(continued)

134 Zend Framework: A Beginner’s Guide

 'captcha' => array(
 'captcha' => 'Image',
 'wordLen' => 6,
 'timeout' => 300,
 'width' => 300,
 'height' => 100,
 'imgUrl' => '/captcha',
 'imgDir' => APPLICATION_PATH . '/../public/captcha',
 'font' => APPLICATION_PATH .
 '/../public/fonts/LiberationSansRegular.ttf',
)
));

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Submit Entry')
 ->setOrder(100)
 ->setOptions(array('class' => 'submit'));

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($tel)
 ->addElement($address);

 // create display group for seller information
 $this->addDisplayGroup(
 array('SellerName', 'SellerEmail', 'SellerTel',
 'SellerAddress'), 'contact');
 $this->getDisplayGroup('contact')
 ->setOrder(10)
 ->setLegend('Seller Information');

 // attach elements to form
 $this->addElement($title)
 ->addElement($year)
 ->addElement($country)
 ->addElement($denomination)
 ->addElement($type)
 ->addElement($grade)
 ->addElement($priceMin)
 ->addElement($priceMax)
 ->addElement($notes);

 // create display group for item information
 $this->addDisplayGroup(

Chapter 5: Handling CRUD Operations 135

 array('Title', 'Year', 'CountryID', 'Denomination',
 'TypeID', 'GradeID', 'SalePriceMin', 'SalePriceMax',
 'Description'), 'item');
 $this->getDisplayGroup('item')
 ->setOrder(20)
 ->setLegend('Item Information');

 // attach element to form
 $this->addElement($captcha);

 // create display group for CAPTCHA
 $this->addDisplayGroup(array('Captcha'), 'verification');
 $this->getDisplayGroup('verification')
 ->setOrder(30)
 ->setLegend('Verification Code');

 // attach element to form
 $this->addElement($submit);
 }

 public function getCountries() {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Country c');
 return $q->fetchArray();
 }

 public function getGrades() {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Grade g');
 return $q->fetchArray();
 }

 public function getTypes() {
 $q = Doctrine_Query::create()
 ->from('Square_Model_type t');
 return $q->fetchArray();
 }

}

Much of this should be familiar to you from Chapter 3. This form contains a mixture of text

input fields and selection lists, corresponding closely with the fields in the item database table

created earlier in the chapter. All the fields use the HTMLEntities and StringTrim input filters,

and many of them include input validators as well. In particular, notice the use of the Regex

validator for validating names and telephone numbers using a custom pattern. As explained

in Chapter 3, the form elements are organized into display groups for greater usability, and, in

a few cases, custom error messages are used as well.

(continued)

136 Zend Framework: A Beginner’s Guide

The most interesting thing about this form definition in the preceding code, however, is

the use of Doctrine models to populate the three selection lists. Notice that the class includes

three ancillary methods, getCountries(), getGrades(), and getTypes(), which

internally invoke the Doctrine models created in Chapter 4 to retrieve a list of options from

the corresponding master tables. These options are then attached to form elements via the

addMultiOption() method.

Defining Controllers and Views
The action URL for the form defined in the previous section is specified as /catalog/

item/create. Under standard Zend Framework naming conventions, this corresponds to

ItemController::createAction in the “catalog” module. This controller was created in

Chapter 4; now it needs to be updated with the new action. Here’s what the code looks like:

<?php
class Catalog_ItemController extends Zend_Controller_Action
{
 public function createAction()
 {
 // generate input form
 $form = new Square_Form_ItemCreate;
 $this->view->form = $form;

 // test for valid input
 // if valid, populate model
 // assign default values for some fields
 // save to database
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 $item = new Square_Model_Item;
 $item->fromArray($form->getValues());
 $item->RecordDate = date('Y-m-d', mktime());
 $item->DisplayStatus = 0;
 $item->DisplayUntil = null;
 $item->save();
 $id = $item->RecordID;
 $this->_helper->getHelper('FlashMessenger')->addMessage(
 'Your submission has been accepted as item #' . $id .
 '. A moderator will review it and, if approved,
 it will appear on the site within 48 hours.');
 $this->_redirect('/catalog/item/success');
 }
 }
 }

 public function successAction()

Chapter 5: Handling CRUD Operations 137

 {
 if ($this->_helper->getHelper('FlashMessenger')->getMessages()) {
 $this->view->messages = $this->_helper
 ->getHelper('FlashMessenger')->getMessages();
 } else {
 $this->_redirect('/');
 }
 }
}

Assuming the form input is valid, the createAction() method creates an instance

of the Item model and populates it using the input submitted through the Web form. Any

necessary custom adjustments to the input data—for example, setting the record’s display

status to hidden—are performed at this point as well, and the record is then saved to the

database by calling the model’s save() method, which formulates and executes the necessary

INSERT query. Any errors in the process will be represented as Doctrine exceptions and

propagated forward to the default exception handler for resolution.

If the record is saved successfully, a status message indicating this fact is added to the

FlashMessenger and control is transferred to the successAction() method, which renders

a success view. By convention, this view script is located at $APP_DIR/application/modules/

catalog/views/scripts/item/success.phtml. Here’s what it looks like:

<h2>Success</h2>
<?php echo implode($this->messages); ?>

Q: Why are you redirecting to the successAction(), instead of simply rendering

a success view within the createAction(), after saving the record in the previous

example?

A: This is the recommended approach to follow after any successful POST operation,

and is specifically done to avoid the so-called “double post problem.” Consider that,

in the scenario where the success view is rendered by the createAction(), if the

application user hits the browser’s Refresh/Reload button after the success view has been

rendered, it will result in the same data being POST-ed to the server twice. However, by

storing the success message in the FlashMessenger action helper and redirecting to the

successAction() to render the success view, this problem is completely eliminated;

reloading the page in this scenario will either generate the success view again (without

causing a double post) or redirect the client back to the index page.

Ask the Expert

(continued)

138 Zend Framework: A Beginner’s Guide

Similarly, the view script for the input form is located at $APP_DIR/application/modules/

catalog/views/scripts/item/create.phtml, and looks like this:

<h2>Add Item</h2>
<?php echo $this->form; ?>

And you’re done! To see this in action, browse to the URL http://square.localhost/

catalog/item/create, and you should be presented with a form like the one in Figure 5-1.

Enter values into the form and submit it. If your input passes validation, a new record will

be created and inserted into the item table, and the success view will be rendered. Figure 5-2

illustrates the result of a successful submission.

You can verify that the record was successfully inserted by accessing the

ItemController::displayAction from Chapter 4 at the URL http://square

.localhost/catalog/item/display/xx, where xx is the ID of the newly inserted record.

If your input is invalid, the form will be re-rendered with error messages indicating what

went wrong, as shown in Figure 5-3.

Figure 5-1 The form to add a new item to the SQUARE catalog

http://square.localhost/catalog/item/display/xx
http://square.localhost/catalog/item/display/xx
http://square.localhost/catalog/item/create
http://square.localhost/catalog/item/create

Chapter 5: Handling CRUD Operations 139

Figure 5-2 The result of successfully adding a new item to the SQUARE catalog

Figure 5-3 The result of submitting the form with invalid input values

140 Zend Framework: A Beginner’s Guide

Working with Administrative Actions
At this point, one of the key goals of the SQUARE example application—allowing sellers

to directly upload listings of available stamps—has been met. However, these items aren’t

immediately visible in the public domain, because application administrators must still manually

review uploaded items and either approve them for display or remove them from the database.

And that’s where the SQUARE administration panel comes in.

The SQUARE administration panel is a section of the application reserved specifically

for application administrators. It provides an interface for administrators to view, update, and

delete catalog items, and it’s therefore the perfect place to illustrate how the remaining CRUD

operations can be implemented. But before you dive into the code, it’s a good idea to understand

the different ways in which administrative actions can be handled in the context of a Zend

Framework application. There are three aspects to consider here: structure, routing, and layout.

Structure
In a modular application, there are a number of ways in which administrative actions can be

structured:

Create a single controller in the default module

that holds all the administrative actions for

the application. Under this approach, a single

controller would contain administrative actions

for all the application’s modules (see Figure 5-4).

This approach is not recommended, except for

very small applications, as the single controller

could quickly grow to a very large size, affecting

both performance and maintainability.

Create a separate module that holds all the

administrative actions for the application. Under

this approach, the new module would contain

individual controllers for the application’s

administrative actions, with one such

controller per module (see Figure 5-5). This

is a common approach, but it too is not very

maintainable, because as Figure 5-5 illustrates,

you end up with a single controller that must

manage the information of the multiple

controllers within each module. It’s also not

ideal when building self-contained modules, as

the actions related to each module are not all

stored in the same filesystem location.

Figure 5-4 Administrative actions in a
single controller

Figure 5-5 Administrative controllers in a
separate module

Chapter 5: Handling CRUD Operations 141

Create a separate controller within each module

that holds all the administrative actions for that

module. Under this approach, each module

includes, at minimum, two controllers: one for

public actions and the other for corresponding

administrative actions (see Figure 5-6). This

approach is recommended for various reasons:

It makes sense from both logical and physical

perspectives, as all the actions for a specific

module are held in a single filesystem location;

it’s reasonably easy to maintain; and it is flexible

enough to be adapted to different purposes.

Routing
To ensure consistency, it is generally a good idea

for administrative routes to mimic their public

counterparts. So, for example, if the public route to

an action is /article/edit/5, the corresponding administrative route might be of the form /admin/

article/edit/5. The use of the /admin prefix serves to mark the route as being administrative

in nature, while simultaneously providing a clear and consistent interface to an application’s

functionality. This consistency is particularly important if, say, you later decide to expose REST

or SOAP functionality as well.

Unlike some other frameworks, the Zend Framework doesn’t come with built-in

administrative routes. Therefore, it is necessary to manually configure these routes, either by

specifying them in the application configuration file or by extending the base router to

become “prefix-aware.” An example of the former is shown in the following code; look at

the end of this chapter for links to examples of the latter:

resources.router.routes.list.route = /admin/articles/index
resources.router.routes.list.defaults.module = system
resources.router.routes.list.defaults.controller = articles
resources.router.routes.list.defaults.action = list

resources.router.routes.view.route = /admin/articles/view/:id
resources.router.routes.view.defaults.module = system
resources.router.routes.view.defaults.controller = articles
resources.router.routes.view.defaults.action = display

resources.router.routes.update.route = /admin/articles/edit/:id
resources.router.routes.update.defaults.module = system
resources.router.routes.update.defaults.controller = articles
resources.router.routes.update.defaults.action = update

Figure 5-6 Administrative controllers
within each module

142 Zend Framework: A Beginner’s Guide

resources.router.routes.delete.route = /admin/articles/delete/:id
resources.router.routes.delete.defaults.module = system
resources.router.routes.delete.defaults.controller = articles
resources.router.routes.delete.defaults.action = delete

Layout
By default, all views will use the master layout defined in the application configuration file.

However, customers often request a different look and feel for an application’s administrative

views, either for aesthetic purposes or to visually highlight to users that they’ve moved to a

different section of the application.

It’s not particularly difficult to do this with a Zend Framework application: Simply create

a new layout for administrative views, and then switch to it as needed within individual actions.

Here’s an example:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function adminDeleteAction()
 {
 $this->_helper->layout->setLayout('admin');
 // continue
 }
}

This can be tedious (not to mention having the potential to become a maintenance

nightmare) when dealing with a large number of actions. Therefore, an alternative approach

is to examine the request URL and automatically switch the layout within the controller’s

init() or preDispatch() method, before rendering the view. This approach is discussed

in detail in the next section.

Listing, Deleting, and Updating
Database Records

With all this background information in mind, let’s proceed to build the SQUARE administration

panel. As noted earlier, to keep things simple, we’ll assume that administrators only need to view,

edit, and delete items from the catalog. The following sections discuss each of these functions in

detail.

Setting the Administrative Layout
The first step is to define a new master layout for administrative views. Since the main purpose

of this layout is simply to distinguish the administrative interface from the public one, it doesn’t

need to be particularly elaborate. Here’s an example of what it might look like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Try This 5-2

Chapter 5: Handling CRUD Operations 143

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <base href="/" />
 <link rel="stylesheet" type="text/css" href="/css/master.css" />
 <link rel="stylesheet" type="text/css" href="/css/admin.css" />
 <script src="/js/form.js"></script>
 </head>
 <body>
 <div id="header">
 <div id="logo">

 </div>

 <div id="menu">
 <a href="<?php echo $this->url(
 array(), 'admin-catalog-index'); ?>">CATALOG
 </div>
 </div>

 <div id="content">
 <?php echo $this->layout()->content ?>
 </div>

 <div id="footer">
 <p>Created with
 Zend Framework. Licensed under
 Creative Commons
 .</p>
 </div>
 </body>
</html>

As you did in Chapter 2, save this layout template to the application’s layout directory as

$APP_DIR/application/layouts/admin.phtml.

You’ll notice that the layout also makes use of three additional assets—a CSS stylesheet,

a JavaScript code file, and a logo image. These files need to be located in the application’s

public area, so that they can be retrieved over HTTP by connecting clients. You’ll find

these assets in the code archive for this chapter, which can be downloaded from this book’s

companion Web site at http://www.zf-beginners-guide.com/.

The next step is to set things up so that the framework automatically switches the default

layout to the new administrative layout whenever the router encounters a URL with the

/admin prefix. As discussed earlier, one way to do this is to specify the new layout’s name in

each route definition. However, a simpler option is to perform this switch in the controller’s

preDispatch() method, which is automatically called before every action is invoked.

(continued)

http://www.zf-beginners-guide.com/

144 Zend Framework: A Beginner’s Guide

The code to do this should be added to the Catalog_AdminItemController at $APP_

DIR/application/modules/catalog/controllers/AdminItemController.php, as shown in the

following example:

<?php
class Catalog_AdminItemController extends Zend_Controller_Action
{
 // action to handle admin URLs
 public function preDispatch()
 {
 // check URL for /admin pattern
 // set admin layout
 $url = $this->getRequest()->getRequestUri();
 $this->_helper->layout->setLayout('admin');

 }
}

This code checks the current request and switches to the administrative layout template

using the setLayout() method.

Defining Custom Routes
The next step is to define custom routes for the administrative functions. It’s necessary at this

point to make some assumptions about what these routes will look like, so let’s assume that

1. The summary listing URL will be of the form /admin/catalog/item/index.

2. All display URLs will be of the form /admin/catalog/item/display/xx, where xx is a variable

indicating the record ID.

Q: What is the preDispatch() method?

A: The preDispatch() method is a special “stub” method that is automatically executed

by the controller before the requested action is invoked. It’s particularly useful for

preprocessing, logging, or otherwise manipulating the contents of a request before

passing it on to the specified action. And, in case you’re wondering, there’s also a

postDispatch() method, which is automatically executed by the controller after the

requested action is invoked.

Ask the Expert

Chapter 5: Handling CRUD Operations 145

3. All update URLs will be of the form /admin/catalog/item/update/xx, where xx is a variable

indicating the record ID.

4. All delete URLs will be of the form /admin/catalog/item/delete/xx, where xx is a variable

indicating the record ID.

To set up custom routes corresponding to the URLs for the routes, add the following route

definitions to the application configuration file at $APP_DIR/application/configs/application.ini:

resources.router.routes.admin-catalog-index.route = /admin/catalog/item/
index
resources.router.routes.admin-catalog-index.defaults.module = catalog
resources.router.routes.admin-catalog-index.defaults.controller = admin.
item
resources.router.routes.admin-catalog-index.defaults.action = index

resources.router.routes.admin-catalog-display.route =
/admin/catalog/item/display/:id
resources.router.routes.admin-catalog-display.defaults.module = catalog
resources.router.routes.admin-catalog-display.defaults.controller =
admin.item
resources.router.routes.admin-catalog-display.defaults.action = display

resources.router.routes.admin-catalog-update.route =
/admin/catalog/item/update/:id
resources.router.routes.admin-catalog-update.defaults.module = catalog
resources.router.routes.admin-catalog-update.defaults.controller =
admin.item
resources.router.routes.admin-catalog-update.defaults.action = update
resources.router.routes.admin-catalog-update.defaults.id = ""

resources.router.routes.admin-catalog-delete.route =
/admin/catalog/item/delete
resources.router.routes.admin-catalog-delete.defaults.module = catalog
resources.router.routes.admin-catalog-delete.defaults.controller =
admin.item
resources.router.routes.admin-catalog-delete.defaults.action = delete

resources.router.routes.admin-catalog-success.route =
/admin/catalog/item/success
resources.router.routes.admin-catalog-success.defaults.module = catalog
resources.router.routes.admin-catalog-success.defaults.controller =
admin.item
resources.router.routes.admin-catalog-success.defaults.action = success

(continued)

146 Zend Framework: A Beginner’s Guide

Defining the List Action and View
With all these pieces in place, we’re now ready to begin writing some action code. Consider

the following Catalog_AdminItemController::indexAction, which retrieves a list

of records from the database using the Doctrine model and attaches them to the view:

<?php
class Catalog_AdminItemController extends Zend_Controller_Action
{
 // action to display list of catalog items
 public function indexAction()
 {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Type t');
 $result = $q->fetchArray();
 $this->view->records = $result;
 }
}

The view then takes over and formats this information into a table to make it more

readable. Here’s what the view script looks like (as per convention, this should be saved as

$APP_DIR/application/modules/catalog/views/scripts/admin-item/index.php):

<h2>List Items</h2>
<?php if (count($this->records)): ?>
<div id="records">
 <form method="post" action="
 <?php echo $this->url(array(), 'admin-catalog-delete'); ?>">
 <table>
 <tr>
 <td></td>
 <td class="key">
 Item ID
 </td>
 <td class="key">
 Title
 </td>
 <td class="key">
 Denomination
 </td>
 <td class="key">
 Country
 </td>
 <td class="key">
 Grade
 </td>

Chapter 5: Handling CRUD Operations 147

 <td class="key">
 Year
 </td>
 <td></td>
 <td></td>
 </tr>
 <?php foreach ($this->records as $r):?>
 <tr>
 <td><input type="checkbox" name="ids[]"
 value="<?php echo $r['RecordID']; ?>" style="width:2px" />
 </td>
 <td><?php echo $this->escape($r['RecordID']); ?></td>
 <td><?php echo $this->escape($r['Title']); ?></td>
 <td><?php echo $this->escape(sprintf('%1.2f',
 $r['Denomination'])); ?></td>
 <td><?php echo $this->escape(
 $r['Square_Model_Country']['CountryName']); ?></td>
 <td><?php echo $this->escape(
 $r['Square_Model_Grade']['GradeName']); ?></td>
 <td><?php echo $this->escape($r['Year']); ?></td>
 <td><a href="<?php echo $this->url(array('id' =>
$r['RecordID']),
 'admin-catalog-display'); ?>">Display</td>
 <td><a href="<?php echo $this->url(array('id' =>
$r['RecordID']),
 'admin-catalog-update'); ?>">Update</td>
 </tr>
 <?php endforeach; ?>
 <tr>
 <td colspan="10"><input type="submit" name="submit"
 style="width:150px" value="Delete Selected" /></td>
 </tr>
 </table>
 </form>
</div>

<?php else: ?>
No records found
<?php endif; ?>

There are a few important points to note about this view:

All field values are escaped before being rendered. As discussed in Chapter 4, this is a

fundamental security precaution that you should take when working with output values, to

reduce the risk of CSRF and XSS attacks.

(continued)

148 Zend Framework: A Beginner’s Guide

The display <table> is enclosed within a <form>. This is necessary to handle the check

boxes that appear next to each record, to enable multirecord deletion. Note that this form is

manually generated inside the view script, rather than with Zend_Form, because there’s no

easy way to create this kind of form-plus-table combination in Zend_Form.

Each record is displayed with “Update” and “Display” links. These correspond to the

routes configured in the previous section, and they’re dynamically generated at run time

with the url() view helper. Notice that the record ID is included in the request URL as

a GET parameter.

To see this view in action, fire up your browser and point it to http://square.localhost/

admin/catalog/item/index. You should be rewarded with a summary page like the one shown

in Figure 5-7.

Defining the Delete Action
When the user selects one or more records for deletion, the selected record IDs are POST-ed as an

array to the Catalog_AdminItemController::deleteAction. This deleteAction()

Figure 5-7 The catalog summary page in the SQUARE administration panel

http://square.localhost/admin/catalog/item/index
http://square.localhost/admin/catalog/item/index

Chapter 5: Handling CRUD Operations 149

method reads the selected IDs and uses the Doctrine model to formulate a DELETE query that

removes them from the database. Here’s what it looks like:

<?php
class Catalog_AdminItemController extends Zend_Controller_Action
{
 // action to delete catalog items
 public function deleteAction()
 {
 // set filters and validators for POST input
 $filters = array(
 'ids' => array('HtmlEntities', 'StripTags', 'StringTrim')
);
 $validators = array(
 'ids' => array('NotEmpty', 'Int')
);
 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());

 // test if input is valid
 // read array of record identifiers
 // delete records from database
 if ($input->isValid()) {
 $q = Doctrine_Query::create()
 ->delete('Square_Model_Item i')
 ->whereIn('i.RecordID', $input->ids);
 $result = $q->execute();

 $this->_helper->getHelper('FlashMessenger')
 ->addMessage('The records were successfully deleted.');
 $this->_redirect('/admin/catalog/item/success');
 } else {
 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }

 // success action
 public function successAction()
 {
 if ($this->_helper->getHelper('FlashMessenger')->getMessages()) {
 $this->view->messages = $this->_helper
 ->getHelper('FlashMessenger')->getMessages();
 } else {
 $this->_redirect('/admin/catalog/item/index');
 }
 }
}

(continued)

150 Zend Framework: A Beginner’s Guide

To see this in action, select one or more records for deletion by ticking the corresponding

check boxes in the summary page, and then submit the form using the Delete Selected button.

The records should be deleted from the database, and you should be presented with a

success message, like the one shown in Figure 5-8.

Defining the Update Form
It’s also quite common for administrators to have the ability to update more fields of a record

than unprivileged users can update. For example, in the SQUARE application, in addition

to the usual item description fields, administrators should also have the ability to update the

item’s display status and define the period for which the item is visible in the public catalog.

Zend_Form, with its object-oriented approach to form creation, is particularly good at meeting

this requirement. Using OOP concepts of inheritance and extensibility, it’s possible to extend

a parent form class and derive different child form classes from it by adding and subtracting form

elements via Zend_Form’s addElement() and removeElement() methods.

To illustrate, consider the following ItemUpdate form class, which is derived from the

ItemCreate form class created at the beginning of this chapter. This child class shares many

input elements with its parent; however, since it’s intended for use only by administrators,

it removes some unwanted elements (the CAPTCHA input) and adds other necessary ones

(display status and date inputs). Here’s the code:

<?php
class Square_Form_ItemUpdate extends Square_Form_ItemCreate
{
 public function init()
 {
 // get parent form
 parent::init();

 // set form action (set to false for current URL)
 $this->setAction('/admin/catalog/item/update');

 // remove unwanted elements
 $this->removeElement('Captcha');
 $this->removeDisplayGroup('verification');

Figure 5-8 The result of successfully deleting items in the SQUARE administration panel

Chapter 5: Handling CRUD Operations 151

 // create hidden input for item ID
 $id = new Zend_Form_Element_Hidden('RecordID');
 $id->addValidator('Int')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create select input for item display status
 $display = new Zend_Form_Element_Select('DisplayStatus',
 array('onChange' =>
 "javascript:handleInputDisplayOnSelect('DisplayStatus',
 'divDisplayUntil', new Array('1'));"));
 $display->setLabel('Display status:')
 ->setRequired(true)
 ->addValidator('Int')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');
 $display->addMultiOptions(array(
 0 => 'Hidden',
 1 => 'Visible'
));

 // create hidden input for item display date
 $displayUntil = new Zend_Form_Element_Hidden('DisplayUntil');
 $displayUntil->addValidator('Date')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create select inputs for item display date
 $displayUntilDay = new Zend_Form_Element_Select('DisplayUntil_day');
 $displayUntilDay->setLabel('Display until:')
 ->addValidator('Int')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim')
 ->addFilter('StringToUpper')
 ->setDecorators(array(
 array('ViewHelper'),
 array('Label', array('tag' => 'dt')),
 array('HtmlTag',
 array(
 'tag' => 'div',
 'openOnly' => true,
 'id' => 'divDisplayUntil',
 'placement' => 'prepend'
)
),
));
 for($x=1; $x<=31; $x++) {
 $displayUntilDay->addMultiOption($x, sprintf('%02d', $x));
 }

(continued)

152 Zend Framework: A Beginner’s Guide

 $displayUntilMonth = new Zend_Form_Element_Select('DisplayUntil_month');
 $displayUntilMonth->addValidator('Int')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim')
 ->setDecorators(array(
 array('ViewHelper')
));
 for($x=1; $x<=12; $x++) {
 $displayUntilMonth->addMultiOption(
 $x, date('M', mktime(1,1,1,$x,1,1)));
 }

 $displayUntilYear = new Zend_Form_Element_Select('DisplayUntil_year');
 $displayUntilYear->addValidator('Int')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim')
 ->setDecorators(array(
 array('ViewHelper'),
 array('HtmlTag',
 array(
 'tag' => 'div',
 'closeOnly' => true
)
),
));
 for($x=2009; $x<=2012; $x++) {
 $displayUntilYear->addMultiOption($x, $x);
 }

 // attach element to form
 $this->addElement($id)
 ->addElement($display)
 ->addElement($displayUntil)
 ->addElement($displayUntilDay)
 ->addElement($displayUntilMonth)
 ->addElement($displayUntilYear);

 // create display group for status
 $this->addDisplayGroup(
 array('DisplayStatus', 'DisplayUntil_day',
 'DisplayUntil_month', 'DisplayUntil_year',
 'DisplayUntil'), 'display');
 $this->getDisplayGroup('display')
 ->setOrder(25)
 ->setLegend('Display Information');
 }
}

Save this form definition as $APP_DIR/library/Square/Form/ItemUpdate.php.

Chapter 5: Handling CRUD Operations 153

Handling Date Input
A word here about the date input fields in this form. As you may remember from Chapter 3,

Zend_Form includes a Date validator, which can be used to check if a date is valid or not. If

you take a look at the preceding form definition, you’ll see that it includes three selection lists

for date input, one each for the day, month, and year. There’s also a hidden input field, which

is used internally to store the composite date value created from the three selection lists, and

which is associated with the aforesaid Date validator.

You’re probably thinking that this seems unnecessarily complex, and you’re right. Why?

Well, at its default settings, the Date validator expects the date input to be formatted as a single

string in YYYY-MM-DD format, and produces a validation error if this format is not met. In

the real world, though, users often make errors when manually typing in date values as strings.

Common errors include selecting a different format (for example, DD-MM-YYYY), forgetting

to pad single-digit date and month values with zeroes (for example, entering 9 instead of 09),

or using a different separator (for example, YYYY/MM/DD).

With this in mind, it’s generally considered safer and more user-friendly to present

a selection list or graphical calendar interface for date input, as this is less prone to user

eccentricities, and then rewrite the input into the desired format programmatically. As you’ll

see in the next section, that’s precisely what the updateAction() does. It uses the input

from the three selection lists to create a composite date value in YYYY-MM-DD format,

sets the hidden input field to this value, and then allows validation to proceed in the normal

fashion.

Since the hidden input field is associated with a Date validator, an invalid date will fail

validation and the Date validator will generate an error message, which will be visible when

the form is re-rendered. If the date is valid, the input will pass validation and the remainder of

the action code will be executed as normal.

TIP

There are other approaches to handling date input fields as well. One, suggested by
leading Zend Framework developer Matthew Weier O’Phinney, involves extending the
Zend_Form_Element base class to create a composite date input element (you’ll find a
link to this approach at the end of the chapter). Another technique, discussed in detail in
Chapter 11, involves using a graphical calendar component in combination with a text
input field to directly write the selected date to the form in the required format.

You’ll notice that this form definition also makes use of the HtmlTag decorator. As

explained in Chapter 3, this decorator controls the markup around form fields. In this particular

case, it’s used to wrap a <div> element around the three date selection lists, through selective

use of the decorator’s 'openOnly' and 'closeOnly' attributes. This <div> is used by the

user-defined handleInputDisplayOnSelect() JavaScript function, which automatically

hides or shows the group of date selectors depending on the item’s display status.

(continued)

154 Zend Framework: A Beginner’s Guide

Defining the Update Action and View
Updating records typically involves two distinct queries:

1. The first query is a read query, occurring when the user selects a record for update. The

updateAction() must read the selected record from the database, prepopulate a Web

form with the field values currently stored in the database, and render this form to the user.

2. The second query is a write query, occurring when the user submits the form. The

updateAction() must receive, filter, and validate the submitted values. If the values are

valid, the action must write the new version of the record to the database.

The Catalog_AdminItemController::updateAction performs both of these

functions. Here’s what it looks like:

<?php
class Catalog_AdminItemController extends Zend_Controller_Action
{
 // action to modify an individual catalog item
 public function updateAction()
 {
 // generate input form
 $form = new Square_Form_ItemUpdate;
 $this->view->form = $form;

 if ($this->getRequest()->isPost()) {
 // if POST request
 // test if input is valid
 // retrieve current record
 // update values and replace in database
 $postData = $this->getRequest()->getPost();
 $postData['DisplayUntil'] = sprintf('%04d-%02d-%02d',
 $this->getRequest()->getPost('DisplayUntil_year'),
 $this->getRequest()->getPost('DisplayUntil_month'),
 $this->getRequest()->getPost('DisplayUntil_day')
);
 if ($form->isValid($postData)) {
 $input = $form->getValues();
 $item = Doctrine::getTable('Square_Model_Item')
 ->find($input['RecordID']);
 $item->fromArray($input);
 $item->DisplayUntil =
 ($item->DisplayStatus == 0) ? null : $item->DisplayUntil;
 $item->save();
 $this->_helper->getHelper('FlashMessenger')
 ->addMessage('The record was successfully updated.');
 $this->_redirect('/admin/catalog/item/success');
 }
 } else {
 // if GET request
 // set filters and validators for GET input

Chapter 5: Handling CRUD Operations 155

 // test if input is valid
 // retrieve requested record
 // pre-populate form
 $filters = array(
 'id' => array('HtmlEntities', 'StripTags', 'StringTrim')
);
 $validators = array(
 'id' => array('NotEmpty', 'Int')
);
 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());
 if ($input->isValid()) {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.RecordID = ?', $input->id);
 $result = $q->fetchArray();
 if (count($result) == 1) {
 // perform adjustment for date selection lists
 $date = $result[0]['DisplayUntil'];
 $result[0]['DisplayUntil_day'] = date('d', strtotime($date));
 $result[0]['DisplayUntil_month'] = date('m', strtotime($date));
 $result[0]['DisplayUntil_year'] = date('Y', strtotime($date));
 $this->view->form->populate($result[0]);
 } else {
 throw new Zend_Controller_Action_Exception('Page not found', 404);
 }
 } else {
 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }
 }
}

Broadly speaking, this updateAction() method consists of two sections, divided by

a conditional test:

1. If the request is a POST request, the action retrieves the POST input and performs the

necessary adjustments to create a composite date string in YYYY-MM-DD format, as

discussed in the preceding section. It then uses the Zend_Form object’s isValid()
method to test whether the submitted input is valid. Assuming that the input is valid, the

action uses the Doctrine find() method to retrieve the selected record as an instance of

the Item model class, and sets new values for the various fields of the record using the

submitted input. The save() method is used to save the record back to the database, and

control passes to the successAction().

(continued)

156 Zend Framework: A Beginner’s Guide

2. If the request is a GET request, the action retrieves the record ID from the URL request

string, validates it, and executes a Doctrine query to retrieve the corresponding record from

the database. It performs the reverse adjustments for the date input values, and then uses the

Zend_Form object’s populate() method to prepopulate the input form with the current

field values from the record.

Here’s the corresponding view script, which should be saved as $APP_DIR/application/

modules/catalog/views/scripts/admin-item/update.php:

<h2>Update Item</h2>
<?php echo $this->form; ?>

<script>
handleInputDisplayOnSelect('DisplayStatus',
 'divDisplayUntil', new Array('1'));
</script>

To see this in action, use the “Update” link on the summary page to select one of the

records for update, or use your browser to access an update URL, such as http://square

.localhost/admin/catalog/item/update/1. You should be presented with a form that is already

populated with the current contents of the record, as shown in Figure 5-9.

Figure 5-9 The form to update an existing item in the SQUARE administration panel

http://square.localhost/admin/catalog/item/update/1
http://square.localhost/admin/catalog/item/update/1

Chapter 5: Handling CRUD Operations 157

Notice that this form includes additional fields that allow you to control the item’s display

status (see Figure 5-10). If the status is set to visible, you will also have the option to define the

date until which it should remain visible.

Make your changes and submit the form. Assuming your input passes validation, the record

will be updated and you will be presented with a success message. Remember that you can

also verify the update by browsing to the corresponding display URL, such as http://square

.localhost/catalog/item/display/1.

Updating the Display Action
There’s one final change to be made. In Chapter 4, you created a displayAction() that

would accept an item ID and retrieve the corresponding record from the database using a

Doctrine query. However, that query did not take account of the item’s current display status.

Since there now exists a mechanism for administrators to adjust an item’s visibility status, it’s

a good idea to update this displayAction() to also take this status into account and display

only those items which are set as publicly visible.

To do this, update the ItemController::displayAction, located at $APP_DIR/

application/modules/catalog/controllers/ItemController.php, such that it incorporates the

visibility-adjusting condition in the Doctrine query:

<?php
class Catalog_ItemController extends Zend_Controller_Action
{
 // action to display a catalog item
 public function displayAction()
 {
 // set filters and validators for GET input
 // ...

 // test if input is valid
 // retrieve requested record
 // attach to view

Figure 5-10 Additional options to define item visibility in the SQUARE update form

(continued)

http://square.localhost/catalog/item/display/1
http://square.localhost/catalog/item/display/1

158 Zend Framework: A Beginner’s Guide

 if ($input->isValid()) {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.RecordID = ?', $input->id)
 ->addWhere('i.DisplayStatus = 1')
 ->addWhere('i.DisplayUntilDate >= CURDATE()');
 $result = $q->fetchArray();
 if (count($result) == 1) {
 $this->view->item = $result[0];
 } else {
 throw new Zend_Controller_Action_Exception('Page not found', 404);
 }
 } else {
 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }
}

With this change, only items that have specifically been marked as visible will be

accessible through the public interface. Any attempt to access items other than these will raise

a 404 exception, which is propagated forward to the default exception handler for display to

the requesting client.

NOTE

Are you wondering why this chapter doesn’t include any coverage of reading individual
records (the R in CRUD)? This aspect was already covered in Chapter 4, in the section
entitled “Retrieving Database Records,” which used a Doctrine model to read and
display database records by ID. The administration panel discussed in this chapter
includes a similar function, which you’ll find in the code archive for this chapter.
The code archive can be downloaded from this book’s companion Web site at
http://www.zf-beginners-guide.com/.

Adding User Authentication
At this point, the administration panel is complete, and administrators can perform read,

update, and delete actions on records through a browser-based interface. However, these

actions are currently unprotected and, as a result, any user can access them via their URL

routes. This is obviously a security risk, so the next step must be to implement a mechanism

that allows the application to distinguish between “unprivileged users” and “administrators,”

and only allow the latter group access to administrative functions.

http://www.zf-beginners-guide.com/

Chapter 5: Handling CRUD Operations 159

The Zend Framework includes a component specifically designed to tackle user authentication

tasks. This component, called Zend_Auth, provides an API and a set of adapters for verifying user

credentials against a variety of data sources, including SQL-compliant database systems, text files,

LDAP directories, and OpenID providers. Successfully authenticated identities are automatically

stored in the session by Zend_Auth, and thus can be retrieved or reverified at any time by

a controller or action.

NOTE

Out of the box, Zend_Auth only supports session-based storage. However, you can add
support for other storage mechanisms simply by extending the Zend_Auth_Storage_
Interface class. More information, and examples of how to do this, can be found in the
links at the end of this chapter.

To understand how this works in practice, consider the following example:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function authenticateAction()
 {
 // generate a login form
 $form = new Form_Example_Auth;
 $this->view->form = $form;
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 // get credentials from user input
 // initialize authentication adapter
 // perform authentication and test result
 $values = $form->getValues();
 $adapter = new Zend_Auth_Adapter_DbTable($this->db);
 $adapter->setIdentity($values['username'])
 ->setCredential($values['password']);
 $auth = Zend_Auth::getInstance();
 $result = $auth->authenticate($adapter);
 if ($result->isValid()) {
 $this->_helper->getHelper('FlashMessenger')
 ->addMessage('You were successfully logged
in.');
 $this->_redirect('/admin/index');
 } else {
 $this->view->message =
 'You could not be logged in. Please try again.';
 }
 }
 }
 }
}

160 Zend Framework: A Beginner’s Guide

This example makes use of the DbTable database authentication adapter, which is

initialized with an instance of the Zend_Db_Adapter_Abstract class. This adapter is passed

a set of user credentials, and the Zend_Auth singleton is then used to perform authentication

against these credentials. The return value of the Zend_Auth::authenticate method

is a Zend_Auth_Result object; this object can then be tested via its isValid() method to

determine whether authentication succeeded or failed.

Zend_Auth also exposes a number of additional methods, which can be used from

within individual controllers and actions to verify that an authenticated session exists. For

example, the hasIdentity() method returns a Boolean value indicating whether an

authenticated user session exists, while the getIdentity() method returns the identity

of the authenticated user. These methods can be invoked from within individual actions to

test whether or not the user has been authenticated, and therefore, to allow or disallow the

action’s execution.

Here’s an example, which ensures that the protectedAction() is only available to

authenticated users:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function protectedAction()
 {
 // check if user is authenticated
 // if no, redirect to login page
 // if yes, proceed as normal
 if (!Zend_Auth::getInstance()->hasIdentity()) {
 $this->_redirect('/admin/login');
 } else {
 $model = new MemberModel;
 $this->view->data = $model->fetchAll();
 }
 }
}

It’s also possible to create custom authentication adapters that verify credentials against

other data sources, simply by extending the base Zend_Auth_Adapter_Interface class.

The child class must expose, at minimum, a constructor that accepts user credentials and

an authenticate() method that verifies these credentials against an authentication

provider. The return value of the authenticate() method must be an instance of the

Zend_Auth_Result class, with a constant indicating whether or not authentication was

successful. You’ll see an example of one such custom authentication adapter in the next

section.

Chapter 5: Handling CRUD Operations 161

Creating a Login/Logout System
Zend_Auth is one of those components that’s hard to explain, and is better understood with

a practical example. With this in mind, let’s put it to work in a practical context by building

a simple login/logout system to protect access to the SQUARE administration panel. The

following sections will guide you through the process.

Defining Custom Routes
As always, a good place to begin is with the route definitions. Define login and logout routes for

your administration panel by adding the following definitions to your application configuration

file at $APP_DIR/application/configs/application.ini:

resources.router.routes.login.route = /admin/login
resources.router.routes.login.defaults.module = default
resources.router.routes.login.defaults.controller = login
resources.router.routes.login.defaults.action = login

resources.router.routes.login-success.route = /admin/login/success
resources.router.routes.login-success.defaults.module = default
resources.router.routes.login-success.defaults.controller = login
resources.router.routes.login-success.defaults.action = success

resources.router.routes.logout.route = /admin/logout
resources.router.routes.logout.defaults.module = default
resources.router.routes.logout.defaults.controller = login
resources.router.routes.logout.defaults.action = logout

Defining the Login Form
The next step is to define the login form itself. This doesn’t need to be very complicated—all

you really need is a field for the username, a field for the password, and a submit button. Here’s

the form definition, which should be saved as $APP_DIR/library/Square/Form/Login.php:

<?php
class Square_Form_Login extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/admin/login')
 ->setMethod('post');

 // create text input for name
 $username = new Zend_Form_Element_Text('username');
 $username->setLabel('Username:')

Try This 5-3

(continued)

162 Zend Framework: A Beginner’s Guide

 ->setOptions(array('size' => '30'))
 ->setRequired(true)
 ->addValidator('Alnum')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create text input for password
 $password = new Zend_Form_Element_Password('password');
 $password->setLabel('Password:')
 ->setOptions(array('size' => '30'))
 ->setRequired(true)
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Log In')
 ->setOptions(array('class' => 'submit'));

 // attach elements to form
 $this->addElement($username)
 ->addElement($password)
 ->addElement($submit);
 }
}

Defining the Authentication Adapter
The form in the previous section submits its data to the LoginController::loginAction in

the “default” module. Before we get into the code for this action, though, we need to spend a few

minutes creating an authentication adapter that knows how to verify the supplied username and

password against the user table created in Chapter 4.

As discussed earlier, it’s not very difficult to create a custom authentication adapter with

Zend_Auth. It can be done simply by extending the base Zend_Auth_Adapter_Interface class

and ensuring that the child class exposes an authenticate() method that knows how to

perform the required authentication. The more important question is, why is it even necessary

to create a custom adapter, when Zend_Auth already includes a built-in adapter for database

authentication?

The reason has entirely to do with efficiency and consistency. To begin with, the

Zend_Auth_Adapter_DbTable adapter only works with an instance of the Zend_Db class,

and it cannot be used directly with a Doctrine model. Zend_Db, in turn, expects its database

connection parameters to be specified in a format different from that used by Doctrine.

Therefore, in order to use the Zend_Auth_Adapter_DbTable directly, it is necessary to either

specify the same database connection parameters in two different formats in the application

configuration file (not ideal, as it means updating two sets of parameters every time you, say,

change the database password) or write code to “translate” the Doctrine DSN string to the

Chapter 5: Handling CRUD Operations 163

array format expected by Zend_Db (tedious and error-prone due to the large number of DSN

permutations possible).

There’s also the small matter of consistency. Thus far, all database access has occurred

through Doctrine models. Switching over to Zend_Db only for authentication-related queries

is confusing; it’s also inefficient because the application now has to load two sets of libraries

instead of one for database operations. For all these reasons, it makes sense to create a custom

authentication adapter that uses Doctrine internally, instead of using the provided Zend_Auth_

Adapter_DbTable adapter.

With that explanation out of the way, let’s proceed to the actual code. Consider the

following listing, which creates a Doctrine-based authentication adapter that conforms to

Zend_Auth conventions:

<?php
class Square_Auth_Adapter_Doctrine implements Zend_Auth_Adapter_Interface
{
 // array containing authenticated user record
 protected $_resultArray;

 // constructor
 // accepts username and password
 public function __construct($username, $password)
 {
 $this->username = $username;
 $this->password = $password;
 }

 // main authentication method
 // queries database for match to authentication credentials
 // returns Zend_Auth_Result with success/failure code
 public function authenticate()
 {
 $q = Doctrine_Query::create()
 ->from('Square_Model_User u')
 ->where('u.Username = ? AND u.Password = PASSWORD(?)',
 array($this->username, $this->password)
);
 $result = $q->fetchArray();
 if (count($result) == 1) {
 return new Zend_Auth_Result(
 Zend_Auth_Result::SUCCESS, $this->username, array());
 } else {
 return new Zend_Auth_Result(
 Zend_Auth_Result::FAILURE, null,
 array('Authentication unsuccessful')
);
 }
 }

(continued)

164 Zend Framework: A Beginner’s Guide

 // returns result array representing authenticated user record
 // excludes specified user record fields as needed
 public function getResultArray($excludeFields = null)
 {
 if (!$this->_resultArray) {
 return false;
 }

 if ($excludeFields != null) {
 $excludeFields = (array)$excludeFields;
 foreach ($this->_resultArray as $key => $value) {
 if (!in_array($key, $excludeFields)) {
 $returnArray[$key] = $value;
 }
 }
 return $returnArray;
 } else {
 return $this->_resultArray;
 }
 }
}

Save this class as $APP_DIR/library/Square/Auth/Adapter/Doctrine.php.

The main workhorse in this class definition is the authenticate() method, which

formulates and executes a Doctrine query to check if the supplied username and password are

valid. The method returns an instance of the Zend_Auth_Result class with three properties:

a result code indicating success or failure, the username (or other unique identity key) if

successful, and an array containing error messages if unsuccessful.

TIP

Apart from simple success and failure indicators, a number of other result codes
are also available. These can be used to provide more specific information on why
the authentication attempt failed—for example, whether the failure was related to the
username or to the password, whether the discovered user record was ambiguous, or
whether some other type of error occurred. A complete list of these result codes can be
found in the Zend Framework manual.

While the authenticate() method simply returns whether or not the user was

authenticated, the getResultArray() method returns the complete user record for

authenticated users, as an array. This method optionally accepts a list of fields to be

excluded and strips these fields from the returned array. This is a handy method to include

in your adapter, because it allows one-shot access to the entire user record and makes it

easy to persist the user record in the session for use in other actions. You’ll see an example of

this in the next section.

Chapter 5: Handling CRUD Operations 165

Defining the Login Action and View
With most of the hard work delegated to the authentication adapter, creating the

LoginController::loginAction becomes a piece of cake. Here’s the code,

which by convention should be saved as $APP_DIR/application/modules/default/

controllers/LoginController.php:

<?php
class LoginController extends Zend_Controller_Action
{
 public function init()
 {
 $this->_helper->layout->setLayout('admin');
 }

 // login action
 public function loginAction()
 {
 $form = new Square_Form_Login;
 $this->view->form = $form;
 // check for valid input
 // authenticate using adapter
 // persist user record to session
 // redirect to original request URL if present
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 $values = $form->getValues();
 $adapter = new Square_Auth_Adapter_Doctrine(
 $values['username'], $values['password']
);
 $auth = Zend_Auth::getInstance();
 $result = $auth->authenticate($adapter);
 if ($result->isValid()) {
 $session = new Zend_Session_Namespace('square.auth');
 $session->user = $adapter->getResultArray('Password');
 if (isset($session->requestURL)) {
 $url = $session->requestURL;
 unset($session->requestURL);
 $this->_redirect($url);
 } else {
 $this->_helper->getHelper('FlashMessenger')
 ->addMessage('You were successfully logged in.');
 $this->_redirect('/admin/login/success');
 }
 } else {
 $this->view->message =
 'You could not be logged in. Please try again.';
 }
 }
 }
 }

(continued)

166 Zend Framework: A Beginner’s Guide

 public function successAction()
 {
 if ($this->_helper->getHelper('FlashMessenger')->getMessages()) {
 $this->view->messages = $this->_helper
 ->getHelper('FlashMessenger')
 ->getMessages();
 } else {
 $this->_redirect('/');
 }
 }
}

The loginAction() reads the credentials submitted through the login form, and uses

the authentication adapter created in the previous step to verify them against the application

database. If authentication fails, it re-renders the form with an error message. If not, it stores

the user record in the session and then looks up the session namespace to see if there is an

entry for the original request URL (more on this later). If there is, it redirects the client to that

URL; if not, it forwards to the successAction() and renders the success view.

Here’s what the login view script at $APP_DIR/application/modules/default/views/login/

login.phtml looks like:

<h2>Login</h2>
<div style="color:red; font-weight:bolder">
 <?php echo $this->message; ?>
</div>
<?php echo $this->form; ?>

Q: Why is the LoginController part of the “default” module, rather than the “catalog”

module?

A: The “catalog” module serves as a container for controllers, actions, and views related

to catalog management. However, login/logout actions are not specific to catalog

management, and are better situated at the global, or application, level. The “default”

module is therefore a more logical location for these actions.

Ask the Expert

Chapter 5: Handling CRUD Operations 167

Defining the Logout Action
The corollary to the loginAction() is the logoutAction(), which destroys the

authenticated session and clears the user’s identity via the Zend_Auth::clearIdentity
method. Here’s what it looks like:

<?php
class LoginController extends Zend_Controller_Action
{
 public function logoutAction()
 {
 Zend_Auth::getInstance()->clearIdentity();
 Zend_Session::destroy();
 $this->_redirect('/admin/login');
 }
}

Protecting Administrative Actions
The final step is to attach authentication checks to the actions you wish to protect.

Since all the administrative actions created to date are located in a single controller,

the Catalog_AdminItemController, these checks can conveniently be added to that controller’s

preDispatch() method. Here’s what the updated preDispatch() method looks like:

<?php
class Catalog_AdminItemController extends Zend_Controller_Action
{
 // action to handle admin URLs
 public function preDispatch()
 {
 // set admin layout
 // check if user is authenticated
 // if not, redirect to login page
 $url = $this->getRequest()->getRequestUri();
 $this->_helper->layout->setLayout('admin');
 if (!Zend_Auth::getInstance()->hasIdentity()) {
 $session = new Zend_Session_Namespace('square.auth');
 $session->requestURL = $url;
 $this->_redirect('/admin/login');
 }
 }
}

As a result of this change, whenever the router receives a request for an administrative

action, the preDispatch() method will first check if the user’s identity has been authenticated

(continued)

168 Zend Framework: A Beginner’s Guide

using the Zend_Auth::hasIdentity method. If no such identity exists, this method will

return false. If this happens, the request URL will be stored in the session, and the client will be

redirected to the login form.

Following a successful login, the request URL will be retrieved from the session by the

loginAction() (discussed in the previous section) and the client will be redirected back to

this URL. The preDispatch() method will again be executed, but this time, since the user’s

identity has already been confirmed, the hasIdentity() will return true, and the requested

action will be dispatched in the normal manner.

Updating the Master Layout
As illustrated in the preceding section, the Zend_Auth object’s hasIdentity() method

provides a convenient test for whether or not the user has been authenticated. This fact can

be put to good use in the administrative layout, to selectively display certain menu items

depending on whether the user is logged in or not. Here’s an example, which updates the

administrative layout at $APP_DIR/application/layouts/admin.phtml to display a “Logout”

item in the main menu when the user is logged in, and a “Login” item otherwise. The changes

to the layout are highlighted in bold.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <base href="/" />
 <link rel="stylesheet" type="text/css" href="/css/master.css" />
 <link rel="stylesheet" type="text/css" href="/css/admin.css" />
 <link rel="stylesheet" type="text/css" href="/css/yui/calendar.css" />
 <script src="/js/form.js"></script>
 </head>
 <body>
 <div id="header">
 <div id="logo">

 </div>

 <div id="menu">
 <?php if (Zend_Auth::getInstance()->hasIdentity()): ?>
 <a href="<?php echo $this->url(array(),
 'admin-catalog-index'); ?>">CATALOG
 <a href="<?php echo $this->url(array(), 'logout'); ?>">LOGOUT
 <?php else: ?>

Chapter 5: Handling CRUD Operations 169

 <a href="<?php echo $this->url(array(), 'login'); ?>">LOGIN
 <?php endif; ?>
 </div>
 </div>

 <div id="content">
 <?php echo $this->layout()->content ?>
 </div>

 <div id="footer">
 <p>Created with
 Zend Framework. Licensed under
 Creative Commons
 .</p>
 </div>
 </body>
</html>

And you’re done! To see this in action, try

accessing the summary page at http://square

.localhost/admin/catalog/item/index. You

should be presented with a login form, as in

Figure 5-11.

Once you submit valid credentials through this

form, you should be automatically redirected to the

summary page. The main menu should also reflect

your logged-in status by displaying a new “Logout”

link, as shown in Figure 5-12.

Figure 5-12 The post-login menu in the SQUARE administration panel

Figure 5-11 The login form for the
SQUARE administration
panel

http://square.localhost/admin/catalog/item/index
http://square.localhost/admin/catalog/item/index

170 Zend Framework: A Beginner’s Guide

Summary
This chapter focused on two of the most common tasks you’ll encounter when building Web

applications: implementing CRUD operations and authenticating users. Building on the

techniques discussed in previous chapters, it showed you how to list, create, update, and delete

database records using the MVC paradigm. It also introduced you to the Zend_Auth component

and explained how it can be used to protect access to specified actions with a simple user

authentication system.

At the end of this chapter, the SQUARE example application has a lot of meat on its bones.

Users are now able to directly add stamps for sale to the online catalog, while administrators

have the capability to review these listings, approve them for display, modify them, or delete

them through a reasonably full-fledged administration panel. Access to these administrative

functions is protected through a basic login/logout system, and there are even a couple of

nice touches, such as the ability to automatically redirect to the originally requested action

post-login and a main menu that “knows” whether or not a user is currently logged in.

Implementing these functions should have given you some insight into how the different

components of the Zend Framework can be combined to satisfy real-world requirements.

Remember that you can read more about the topics discussed in this chapter by visiting the

following links:

The Zend_Controller component, at

http://framework.zend.com/manual/en/zend.controller.html

The Zend_Layout component, at

http://framework.zend.com/manual/en/zend.layout.html

The Zend_Auth component, at

http://framework.zend.com/manual/en/zend.auth.html

Q: Can I use Zend_Auth to grant or deny access to application resources on the basis of

user roles or privileges?

A: No. As the Zend Framework manual points out, Zend_Auth is concerned with user

authentication (verifying that a user is who he or she claims to be) and not with user access

control (verifying that a user has rights to access specific application resources). In practical

terms, this means that once authenticated, a user can access any or all of the protected

actions; the system does not allow for fine-grained control over which user has access to

which action(s). If your application needs to control access to specific actions based on user

roles, you should consider using the Zend_Acl component instead.

Ask the Expert

http://framework.zend.com/manual/en/zend.controller.html
http://framework.zend.com/manual/en/zend.layout.html
http://framework.zend.com/manual/en/zend.auth.html

Chapter 5: Handling CRUD Operations 171

A more sophisticated Doctrine authentication adapter (Jason Eisenmenger and David Werner),

at http://framework.zend.com/wiki/pages/viewpage.action?pageId=3866950

A discussion of creating simple, extensible CRUD with the Zend Framework (Ryan

Mauger), at http://www.rmauger.co.uk/2009/06/creating-simple-extendible-crud-using-

zend-framework/

A discussion of creating composite date input elements (Matthew Weier O’Phinney), at

http://weierophinney.net/matthew/archives/217-Creating-composite-elements.html

More information on creating a login/logout system (Matthew Weier O’Phinney), at http://

weierophinney.net/matthew/archives/165-Login-and-Authentication-with-Zend-

Framework.html

A discussion of enhancing the base router (Michael Sheakoski), at http://framework

.zend.com/wiki/display/ZFUSER/MJS_Controller_PathRouter+-+An+enhanced+

RewriteRouter?focusedCommentId=9437448

A discussion of using a database for Zend_Auth identity storage (Branko Ajzele), at http://

inchoo.net/zend/zend-authentication-component-zend_auth-database-storage-class/

http://framework.zend.com/wiki/pages/viewpage.action?pageId=3866950
http://www.rmauger.co.uk/2009/06/creating-simple-extendible-crud-using-zend-framework/
http://www.rmauger.co.uk/2009/06/creating-simple-extendible-crud-using-zend-framework/
http://weierophinney.net/matthew/archives/217-Creating-composite-elements.html
http://weierophinney.net/matthew/archives/165-Login-and-Authentication-with-Zend-Framework.html
http://weierophinney.net/matthew/archives/165-Login-and-Authentication-with-Zend-Framework.html
http://weierophinney.net/matthew/archives/165-Login-and-Authentication-with-Zend-Framework.html
http://framework.zend.com/wiki/display/ZFUSER/MJS_Controller_PathRouter+-+An+enhanced+RewriteRouter?focusedCommentId=9437448
http://framework.zend.com/wiki/display/ZFUSER/MJS_Controller_PathRouter+-+An+enhanced+RewriteRouter?focusedCommentId=9437448
http://framework.zend.com/wiki/display/ZFUSER/MJS_Controller_PathRouter+-+An+enhanced+RewriteRouter?focusedCommentId=9437448
http://inchoo.net/zend/zend-authentication-component-zend_auth-database-storage-class/
http://inchoo.net/zend/zend-authentication-component-zend_auth-database-storage-class/

This page intentionally left blank

173

Chapter 6
Indexing, Searching,

and Formatting Data

174 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

● Dynamically generate and execute database search queries

● Learn to store and index different types of data

● Create a full-text search engine with the Zend_Search_Lucene component

● Understand how to enable output type switching at run time

● Express the same output in many different formats, including XML

Have you ever seen a sponge in a bucket of water? For the first minute or two, while it’s still

mostly dry, it floats happily on the surface, without a care in the world. As it soaks up more

and more water, though, it gradually submerges, until it’s finally completely wet and ready for

use. A user-facing Web application is a lot like this. When it’s first launched on the Web, it’s

usually little more than an empty shell, waiting for the world to notice it. As it attracts users, it

begins soaking up data, and positive network effects start to take over: The more people who

use it, the more valuable it becomes to others.

What does this have to do with anything? Well, as your application starts accumulating

user content, it becomes more and more important to have this content searchable and

accessible in different formats, so that users can exploit it for different purposes (for example,

mashing it up with content from other services). Simply providing a browsable index of

database contents won’t cut it; you also need to offer users different ways to search data and

filter results, and different formats in which to express these search results.

That’s where this chapter comes in. Over the next few pages, it will introduce you to the

basics of adding search functionality to a Web application, with examples of both filter-based

searchs and full-text searchs. It will also discuss the Zend Framework’s ContextSwitch helper,

which provides a flexible and extensible system for handling multiple output types, including

XML and JSON.

Searching and Filtering Database Records
In the previous chapter, you built an interface for users to upload items to the product catalog

and for administrators to review and approve these items for display on the public Web site.

This section will build on the work done in the previous chapter, by creating an interface for

users to browse approved items and filter them by various criteria.

Defining the Search Form
For this illustrative example, let’s keep the search form as simple as possible by assuming that

users will only need to search for stamps by three criteria: year, price, and grade. Here’s what

the search form definition looks like:

Try This 6-1

Chapter 6: Indexing, Searching, and Formatting Data 175

<?php
class Square_Form_Search extends Zend_Form
{
 public $messages = array(
 Zend_Validate_Int::INVALID =>
 '\'%value%\' is not an integer',
 Zend_Validate_Int::NOT_INT =>
 '\'%value%\' is not an integer'
);

 public function init()
 {
 // initialize form
 $this->setAction('/catalog/item/search')
 ->setMethod('get');

 // set form decorators
 $this->setDecorators(array(
 array('FormErrors',
 array('markupListItemStart' => '', 'markupListItemEnd' =>
'')),
 array('FormElements'),
 array('Form')
));

 // create text input for year
 $year = new Zend_Form_Element_Text('y');
 $year->setLabel('Year:')
 ->setOptions(array('size' => '6'))
 ->addValidator('Int', false,
 array('messages' => $this->messages))
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create text input for price
 $price = new Zend_Form_Element_Text('p');
 $price->setLabel('Price:')
 ->setOptions(array('size' => '8'))
 ->addValidator('Int', false,
 array('messages' => $this->messages))
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create select input for grade
 $grade = new Zend_Form_Element_Select('g');
 $grade->setLabel('Grade:')
 ->addValidator('Int', false, (continued)

176 Zend Framework: A Beginner’s Guide

 array('messages' => $this->messages))
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim')
 ->addMultiOption('', 'Any');
 foreach ($this->getGrades() as $g) {
 $grade->addMultiOption($g['GradeID'], $g['GradeName']);
 };

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Search')
 ->setOptions(array('class' => 'submit'));

 // attach elements to form
 $this->addElement($year)
 ->addElement($price)
 ->addElement($grade)
 ->addElement($submit);

 // set element decorators
 $this->setElementDecorators(array(
 array('ViewHelper'),
 array('Label', array('tag' => ''))
));
 $submit->setDecorators(array(
 array('ViewHelper'),
));
 }

 public function getGrades()
 {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Grade g');
 return $q->fetchArray();
 }
}

This is a fairly standard form definition, of the type you should be familiar with by now:

two text input fields, one selection list, and one submit button, all wrapped inside an init()
method. Notice that the default Label decorator has been modified to wrap each element label

in a element (instead of the default <dt> element), thereby ensuring that the form

elements are rendered horizontally instead of vertically.

There is one other point of note. So far, in all the previous examples, validation errors have

been automatically displayed to the user under the corresponding input element. Often, however,

Chapter 6: Indexing, Searching, and Formatting Data 177

application or user interface requirements dictate that these errors should be displayed together,

in a single block at the top of the form instead of under individual elements. This is not very

difficult to do—there is a built-in FormErrors decorator that does this for you automatically—but

accomplishing it requires you to disable the Errors decorator that is attached to each element

by default. The form definition in the preceding code does both these tasks by adding the

FormErrors decorator via the Zend_Form object’s setDecorators() method and then

specifically excluding the Errors decorator from the list of decorators applied to each element via

the Zend_Form object’s setElementDecorators() method.

Once you’ve understood the form definition, save it as $APP_DIR/library/Square/Form/

Search.php.

Defining the Controller and View
The next step is to define the action and view for the browse/search interface. Update the

Catalog_ItemController class at $APP_DIR/modules/catalog/controllers/ItemController.php

with the following searchAction() method:

<?php
class Catalog_ItemController extends Zend_Controller_Action
{

 public function searchAction()
 {
 // generate input form
 $form = new Square_Form_Search;
 $this->view->form = $form;

 // check for valid input
 // generate base query
 if ($form->isValid($this->getRequest()->getParams())) {
 $input = $form->getValues();
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.DisplayStatus = 1')
 ->addWhere('i.DisplayUntil >= CURDATE()');

 // attach criteria to base query
 if (!empty($input['y'])) {
 $q->addWhere('i.Year = ?', $input['y']);
 }

(continued)

178 Zend Framework: A Beginner’s Guide

 if (!empty($input['g'])) {
 $q->addWhere('i.GradeID = ?', $input['g']);
 }
 if (!empty($input['p'])) {
 $q->addWhere('? BETWEEN i.SalePriceMin AND i.SalePriceMax',
 $input['p']);
 }

 // execute query and attach results to view
 $results = $q->fetchArray();
 $this->view->results = $results;
 }

 }

}

The searchAction() method first formulates a base query that returns a list of all the

approved items in the catalog. Based on the input entered by the user, it then attaches Where

clauses to this query to further filter the result set by the specified criteria. Once the query is

executed, the results are assigned to a view variable. If the submitted input is invalid, the list of

validation error messages is likewise assigned to a view variable.

The view script takes care of iterating over the result set and formatting each record for

display. Errors, if any, are displayed at the top of the results page via the FormErrors decorator.

Here’s the view script, which should be saved as $APP_DIR/modules/catalog/views/scripts/

search php:

<h2>Search</h2>
<?php echo $this->form; ?>

<h2>Search Results</h2>
<p><?php echo count($this->results); ?> result(s) found.</p>

<?php if (count($this->results)): ?>
 <?php $x=1; ?>
 <?php foreach ($this->results as $r): ?>

 <div>
 <?php echo $x; ?>.
 <a href="<?php echo $this->url(array('id' =>
 $this->escape($r['RecordID'])), 'catalog-display'); ?>">
 <?php echo $this->escape($r['Title']); ?>
 (<?php echo $this->escape($r['Year']); ?>)

 <?php if (!empty($r['Description'])): ?>

<?php echo $this->escape($r['Description']); ?>
 <?php endif; ?>

Chapter 6: Indexing, Searching, and Formatting Data 179

 Grade:
 <?php echo $this->escape($r['Square_Model_Grade']['GradeName']);
?> |
 Country:
 <?php echo $this->escape($r['Square_Model_Country']
['CountryName']); ?> |
 Sale price:
 $<?php echo sprintf('%0.2f', $this->escape($r['SalePriceMin']));
?> to
 $<?php echo sprintf('%0.2f', $this->escape($r['SalePriceMax']));
?>

 </div>

 <?php $x++; ?>
 <?php endforeach; ?>
<?php endif; ?>

<div>
 <a href="<?php echo $this->url(array(
 'module' => 'catalog',
 'controller' => 'item',
 'action' => 'create'),
 null, true); ?>">Add Item
</div>

Updating the Master Layout
All that’s left now is to update the navigation links in the application’s main menu to reflect the

new browse/search form using the url() helper method. To do this, update the master layout,

at $APP_DIR/application/layouts/master.phtml, with the changes highlighted in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
...

 <div id="menu">
 <a href="<?php echo $this->url(array(), 'home'); ?>">HOME
 <a href="<?php echo $this->url(array('page' => 'services'),
 'static-content'); ?>">SERVICES
 <a href="<?php echo $this->url(array('module' => 'catalog',
 'controller' => 'item', 'action' => 'search'), 'default', true);
 ?>">CATALOG

(continued)

180 Zend Framework: A Beginner’s Guide

 <a href="<?php echo $this->url(array(), 'contact');
?>">CONTACT
 </div>
 </div>

...
</html>

NOTE

Pay attention to the arguments passed to the url() view helper in the previous listing.
The second argument, as you already know, specifies the route name to use for URL
generation. If this argument is null, the view helper will use the route that generated
the current URL as the basis for the new URL. Since this can produce odd errors when
working with routes that reset the URL request, it's a good idea to explicitly tell the
framework to use its standard, or “default,” route, corresponding to a URL of the form
/module/controller/action, in these cases.

If you now try visiting the URL http://square.localhost/catalog/item/search through your

Web browser, you should see a form like the one in Figure 6-1.

Enter values into the search input fields and submit the form, and if all goes well, you

should see a revised list of items matching your search parameters, as shown in Figure 6-2.

Figure 6-1 The SQUARE catalog search form

http://square.localhost/catalog/item/search

Chapter 6: Indexing, Searching, and Formatting Data 181

You can also try submitting the form with invalid values. The built-in validators will catch

your invalid input and display error messages at the top of the page in a single block, as shown

in Figure 6-3.

Adding Full-Text Search
When you’re building an application search engine, there are a couple of different ways you

can go. You can create a filter-based search engine, wherein specific criteria entered by the user

are used to filter the list of search results, as shown in the previous section. Or, you can create

a full-text search engine, which indexes application content and finds matches on the basis of

keywords entered by the user. In modern Web applications, a full-text search is often preferred,

because it’s typically faster and produces more accurate results than a database search.

The Zend Framework comes with a very capable full-text search component, known

as Zend_Search_Lucene. A PHP-only implementation of the Apache Lucene Project, this

component can be used both to index various document types (including text, HTML, and

Figure 6-2 A list of catalog items matching the search criteria entered into the search form

Figure 6-3 Validation errors in search input, captured and emitted in a single block

182 Zend Framework: A Beginner’s Guide

some Microsoft Office 2007 formats) as well as to perform different types of search queries on

the indexed data.

There are two primary operations involved in implementing full-text search with

Zend_Search_Lucene: indexing data and searching data. Indexing involves scanning a set of

documents and creating an index of their contents; searching involves looking up this index

to find documents matching various user-specified criteria. The following sections provide an

overview of these two operations.

Indexing Data
A Zend_Search_Lucene index is composed of individual documents, each of which may be

further broken into fields. When you’re building an index, Zend_Search_Lucene allows users

precise control over how each field of a document should be treated. The two basic parameters

here are indexing and storage: Indexed fields can be used in searches, while stored fields can

be displayed in search results. There are five basic types of fields:

Keyword● fields are not tokenized, but are indexed and stored within the index.

Text● fields are tokenized, indexed, and stored.

UnStored● fields are tokenized and indexed, but not stored.

UnIndexed● fields are tokenized and stored, but not indexed.

Binary● fields are not tokenized or indexed, but are stored.

When you’re making a determination as to which field types to use in your Zend_Search_

Lucene index, it’s important to have a clear idea of which fields you’ll be using as search criteria

and which fields you plan to display in search results. To illustrate how this works in practice,

assume for a moment that you have a collection of XML documents in the following format:

<?xml version='1.0'?>
<document>
 <id>5468</id>
 <from>Jim Doe <jim@example.com></from>
 <to>Jane Doe <jane@example.com></to>
 <subject>Re: Hello</subject>
 <date>Tuesday, February 27, 2008 10:45 PM</date>
 <body>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
 nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
 in reprehenderit in voluptate velit esse cillum dolore eu fugiat
 nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt
 in culpa qui officia deserunt mollit anim id est laborum</body>
</document>

Chapter 6: Indexing, Searching, and Formatting Data 183

Here’s some example code that illustrates how a collection of these documents could

be indexed:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function indexAction()
 {
 // get index directory
 $index = Zend_Search_Lucene::create('/tmp/indexes');

 foreach (glob('*.xml') as $file) {
 // read source xml
 $xml = simplexml_load_file($file);

 // create new document in index
 $doc = new Zend_Search_Lucene_Document();

 // index and store fields
 $doc->addField(Zend_Search_Lucene_Field::UnIndexed('id', $xml-
>id));
 $doc->addField(Zend_Search_Lucene_Field::Text('from', $xml-
>from));
 $doc->addField(Zend_Search_Lucene_Field::Text('to', $xml->to));
 $doc->addField(Zend_Search_Lucene_Field::Text(
 'date', strtotime($xml->date)));
 $doc->addField(Zend_Search_Lucene_Field::UnStored(
 'subject', $xml->subject));
 $doc->addField(Zend_Search_Lucene_Field::UnStored('body', $xml-
>body));

 // save result to index
 $index->addDocument($doc);
 }

 // set number of documents in index
 $count = $index->count();
 }
}

Each document in the index is represented as a Zend_Search_Lucene_Document object,

and the individual fields of each message are represented as Zend_Search_Lucene_Field

objects. These fields are indexed and added to the document with the Zend_Search_
Lucene_Document::addField() method, and the final document is then added to the

index with the Zend_Search_Lucene::addDocument() method.

Defining which fields should be searchable and which fields should be displayed in

search results is a key task when indexing data. The previous example supposes that recipient,

date, subject, and body fields should be searchable, while only recipient and date fields

184 Zend Framework: A Beginner’s Guide

should be displayed in search results. Marking the body and subject fields as UnStored fields

makes them searchable while reducing the disk space consumed by the index, while marking

the recipient and date fields as Text fields makes it possible to both search them and display

them in search results.

Searching Data
Once the data has been indexed, the next step is to search it. Zend_Search_Lucene comes with

a full-featured query engine that can be used to perform both simple and complex queries on

an index. Queries may be created either by applying the built-in query parser to user input or

by programmatically generating them using API methods. For simple keyword queries, the

standard query parser is suitable; more complex queries that include modifiers, proximity

constraints, subqueries, or field groups should be created using API methods.

Here’s some example code that illustrates how to search a collection of indexed documents

and display matching results:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function searchAction()
 {
 // get query string from $_GET['query']
 // if valid, open index and parse query string
 // execute query and return array of result objects
 $input->setData($this->getRequest()->getParams());
 if ($input->isValid()) {
 $index = Zend_Search_Lucene::open('/tmp/indexes');
 $results = $index->find(
 Zend_Search_Lucene_Search_QueryParser::parse($input->query));
 $this->view->results = $results;
 }
 }
}

As illustrated in the preceding code, the first step is to open a handle to the index created

earlier using the Zend_Search_Lucene::open() method. Next, the query string is

passed to the Zend_Search_Lucene object’s find() method to scan the index for matching

documents. Matches are returned as Zend_Search_Lucene_Search_QueryHit objects, and are

ranked by score. Each of these objects exposes the document number and the document score as

object properties. Other stored fields of the document can also be accessed as object properties,

as shown in the previous example. All field values are automatically encoded to UTF-8.

The query string passed to the find() method may contain keywords, phrases, wildcards,

range constraints, proximity modifiers, and Boolean operators like AND, OR, and NOT.

When this query string is submitted directly by the user, it’s a good idea to pass it through the

Zend_Search_Lucene_Search_QueryParser::parse() method, which takes care

of automatically parsing and tokenizing the query string and converting it into a set of query

objects. This also reduces the amount of input validation needed.

Chapter 6: Indexing, Searching, and Formatting Data 185

NOTE

A full discussion of the query language supported by Zend_Search_Lucene is not
possible within the limited scope of this book. However, you can look up detailed
information on this topic using the links at the end of this chapter.

Creating a Full-Text Search Engine
With all this background information at hand, let’s see how Zend_Search_Lucene works in

a practical context. This next section replaces the filter-based search engine, created for the

SQUARE application earlier in this chapter, with a full-text search system based on Zend_

Search_Lucene.

Defining the Index Location
Zend_Search_Lucene full-text search indices are stored as disk files, and so one of the first

tasks is to define a location for these files. So, create the $APP_DIR/data/indexes/ directory,

which is the default location for search index files under the Zend Framework’s recommended

directory layout.

shell> cd /usr/local/apache/htdocs/square
shell> mkdir data
shell> mkdir data/indexes

It’s also a good idea to update the application configuration file, at $APP_DIR/application/

configs/application.ini, with this location, so that it can be used from within actions. Open this

file and update it with the following configuration directive:

indexes.indexPath = APPLICATION_PATH "/../data/indexes"

Try This 6-2

(continued)

Q: How do I sort or limit search results from a Zend_Search_Lucene search?

A: By default, Zend_Search_Lucene returns all matching documents, sorted by score. If

this is not to your taste, you can define the sort field and sort order by passing additional

parameters to the find() method. Similarly, you can restrict the number of matches

returned by specifying a limit via the setResultSetLimit() method.

Ask the Expert

186 Zend Framework: A Beginner’s Guide

Defining Custom Routes
While you’re updating the application configuration, it’s also a good idea to add a route for the

createFulltextIndexAction(). Since index creation is typically an administrative task,

this action should be part of the Catalog_AdminItemController. Here’s the corresponding route

definition:

resources.router.routes.admin-fulltext-index-create.route =
/admin/catalog/fulltext-index/create
resources.router.routes.admin-fulltext-index-create.defaults.module =
catalog
resources.router.routes.admin-fulltext-index-create.defaults.
controller =
admin.item
resources.router.routes.admin-fulltext-index-create.defaults.action =
create.fulltext.index

Defining the Index Action and View
The next step is to actually build a full-text index of the content stored in the application

database. The easiest way to do this is to perform a Doctrine query to retrieve records from the

database, and then feed these to the Zend_Search_Lucene indexer in a loop. Here’s the code

for the createFulltextIndexAction() method, which is responsible for this task:

<?php
class Catalog_AdminItemController extends Zend_Controller_Action
{

 // action to create full-text indices
 public function createFulltextIndexAction()
 {
 // create and execute query
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.DisplayStatus = 1')
 ->addWhere('i.DisplayUntil >= CURDATE()');
 $result = $q->fetchArray();

 // get index directory
 $config = $this->getInvokeArg('bootstrap')->getOption('indexes');
 $index = Zend_Search_Lucene::create($config['indexPath']);

 foreach ($result as $r) {
 // create new document in index
 $doc = new Zend_Search_Lucene_Document();

Chapter 6: Indexing, Searching, and Formatting Data 187

 // index and store fields
 $doc->addField(Zend_Search_Lucene_Field::Text('Title',
$r['Title']));
 $doc->addField(
 Zend_Search_Lucene_Field::Text('Country',
 $r['Square_Model_Country']['CountryName']));
 $doc->addField(
 Zend_Search_Lucene_Field::Text('Grade',
 $r['Square_Model_Grade']['GradeName']));
 $doc->addField(Zend_Search_Lucene_Field::Text('Year',
$r['Year']));
 $doc->addField(Zend_Search_Lucene_Field::UnStored(
 'Description', $r['Description']));
 $doc->addField(Zend_Search_Lucene_Field::UnStored(
 'Denomination', $r['Denomination']));
 $doc->addField(Zend_Search_Lucene_Field::UnStored(
 'Type', $r['Square_Model_Type']['TypeName']));
 $doc->addField(Zend_Search_Lucene_Field::UnIndexed(
 'SalePriceMin', $r['Denomination']));
 $doc->addField(Zend_Search_Lucene_Field::UnIndexed(
 'SalePriceMax', $r['Denomination']));
 $doc->addField(Zend_Search_Lucene_Field::UnIndexed(
 'RecordID', $r['RecordID']));

 // save result to index
 $index->addDocument($doc);
 }

 // set number of documents in index
 $count = $index->count();
 $this->_helper->getHelper('FlashMessenger')
 ->addMessage("The index was successfully created
 with $count documents.");
 $this->_redirect('/admin/catalog/item/success');
 }

}

Here, the createFulltextIndexAction() first executes a Doctrine query to retrieve

a list of all approved catalog items. It then initializes a new Zend_Search_Lucene index with

the index location specified in the previous step (notice how the configuration file value is

retrieved using the getInvokeArg() method), and then iterates over the records returned

by the Doctrine query, feeding each one to the indexer as a separate document. For each such

document, the title, description, country, grade, year, denomination, and type are indexed;

of these, only the title, country, grade, and year are stored in the index for display in search

results, together with the record ID and sale price range. Once indexing is complete, a success

view is generated, summarizing the number of documents indexed.

(continued)

188 Zend Framework: A Beginner’s Guide

Updating the Summary View
It’s also a good idea to update the administrative summary page, at $APP_DIR/application/

modules/catalog/views/scripts/admin-item/index.phtml, to display a link to the new action. The

changes to the view script are highlighted in bold.

<h2>List Items</h2>
<?php if (count($this->records)): ?>
<div id="records">
 <form method="post" action="<?php echo $this->url(array(),
 'admin-catalog-delete'); ?>">
 <table>

 ...
 <tr>
 <td colspan="7"><input type="submit" name="submit"
style="width:150px" value="Delete Selected" /></td>
 <td colspan="2"><a href="<?php echo $this->url(array(),
'admin-fulltext-index-create'); ?>">Update full-text indices</td>
 </tr>
 </table>
 </form>
</div>

<?php else: ?>
No records found
<?php endif; ?>

Updating the Search Form
Once the indexing end of things is handled, there’s just the searching end left to handle. Begin by

updating the search form definition, at $APP_DIR/library/Square/Form/Search.php, such that it

contains only a single text input field for search keywords. Here’s the revised form definition:

<?php
class Square_Form_Search extends Zend_Form
{
public function init()
 {
 // initialize form
 $this->setAction('/catalog/item/search')
 ->setMethod('get');

 // create text input for keywords
 $query = new Zend_Form_Element_Text('q');
 $query->setLabel('Keywords:')
 ->setOptions(array('size' => '20'))
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');
 $query->setDecorators(array(
 array('ViewHelper'),

Chapter 6: Indexing, Searching, and Formatting Data 189

 array('Errors'),
 array('Label', array('tag' => '')),
));

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Search')
 ->setOptions(array('class' => 'submit'));
 $submit->setDecorators(array(
 array('ViewHelper'),
));

 // attach elements to form
 $this->addElement($query)
 ->addElement($submit);
 }
}

Updating the Search Action and View
The final step is to update the Catalog_ItemController::searchAction to use Zend_

Search_Lucene’s full-text index instead of a Doctrine query. Here’s the revised code:

<?php
class Catalog_ItemController extends Zend_Controller_Action
{

 // action to perform full-text search
 public function searchAction()
 {
 // generate input form
 $form = new Square_Form_Search;
 $this->view->form = $form;

 // get items matching search criteria
 if ($form->isValid($this->getRequest()->getParams())) {
 $input = $form->getValues();
 if (!empty($input['q'])) {
 $config = $this->getInvokeArg('bootstrap')-
>getOption('indexes');
 $index = Zend_Search_Lucene::open($config['indexPath']);
 $results = $index->find(
 Zend_Search_Lucene_Search_QueryParser::parse($input['q']));
 $this->view->results = $results;
 }
 }
 }

}
(continued)

190 Zend Framework: A Beginner’s Guide

The return value of the Zend_Search_Lucene find() method is different from that of the

Doctrine fetchArray() method; field values are now exposed as object properties instead

of array elements. Therefore, it is necessary to update the corresponding view script, at $APP_

DIR/modules/catalog/views/scripts/item/search.phtml, as follows:

<h2>Search</h2>
<?php echo $this->form; ?>

<h2>Search Results</h2>
<p><?php echo count($this->results); ?> result(s) found.</p>

<?php if (count($this->results)): ?>
 <?php $x=1; ?>
 <?php foreach ($this->results as $r): ?>
 <div>
 <?php echo $x; ?>.
 <a href="<?php echo $this->url(
 array('id' => $this->escape($r->RecordID)),
 'catalog-display'); ?>">
 <?php echo $this->escape($r->Title); ?>
 (<?php echo $this->escape($r->Year); ?>)

 Score: <?php printf('%1.4f', $this->escape($r->score)); ?>

 Grade: <?php echo $this->escape($r->Grade); ?> |
 Country: <?php echo $this->escape($r->Country); ?> |
 Sale price:
 $<?php echo sprintf('%0.2f', $this->escape($r->SalePriceMin)); ?>
to
 $<?php echo sprintf('%0.2f', $this->escape($r->SalePriceMax)); ?>

 </div>

 <?php $x++; ?>
 <?php endforeach; ?>
<?php endif; ?>

<div>
 <a href="<?php echo $this->url(array(
 'module' => 'catalog',
 'controller' => 'item',
 'action' => 'create'),
 null, true); ?>">Add Item
</div>

Chapter 6: Indexing, Searching, and Formatting Data 191

To see this in action, first log in to the SQUARE administration panel and create the full-text

indices by browsing to the URL http://square.localhost/admin/catalog/fulltext-index/create.

Once the index creation process is complete, you

should see a success page, like the one displayed in

Figure 6-4.

You can now try searching the index by visiting

the URL http://square.localhost/catalog/item/search

through your Web browser. You should see a revised

search form, like the one in Figure 6-5.

Enter one or more keywords into the input field

and submit it and, if all goes well, you should see a

list of items matching your keywords, as shown in

Figure 6-6.

Figure 6-4 The result of successfully creating a full-text index of catalog contents

Figure 6-5 The revised SQUARE
catalog search form

Figure 6-6 A list of catalog items matching the full-text search criteria entered into the search form

http://square.localhost/admin/catalog/fulltext-index/create
http://square.localhost/catalog/item/search

192 Zend Framework: A Beginner’s Guide

Handling Multiple Output Types
Modern Web applications do not just speak HTML—they’re also usually capable of

serving up RSS, JSON, XML, and a variety of other formats as well. Since the MVC pattern

distinguishes between data and presentation, it’s ideally suited to this sort of thing; supporting

a new output type now becomes as simple as creating a new view containing the appropriate

formatting codes and/or markup. Most importantly, these changes are localized to the view layer,

and can be accomplished without any modifications needed in the controller and model layers.

The Zend Framework comes with a built-in handler for multiple output types, or contexts,

known as the ContextSwitch helper. This helper handles all the tasks involved in switching to

a different output format, including disabling the default layout, selecting the appropriate view

script, and sending the correct headers for the selected format.

To illustrate how this works, consider the following example, which sets up a new context

for YAML output:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function init()
 {
 // initialize context switch helper
 $contextSwitch = $this->_helper->getHelper('contextSwitch');
 $contextSwitch->addContext(
 'yaml',
 array(

Q: Which is better: full-text search using disk indices or filter-based search using

database queries?

A: As a general rule, full-text search produces better quality results than database search, for a

couple of reasons. It’s not usually practical to allow users to search by every single facet of

a database record, and besides, the full-text search capabilities built into most RDBMSes

aren’t as sophisticated or as efficient as those found in more focused full-text search tools

like Lucene, Sphinx, or Solr. It’s also typically faster than database search, as the search is

performed using disk-based indices rather than over a database connection. That said, full-text

search relies on static disk indices created from the source content, and therefore, in situations

where the source content is subject to frequent updates, full-text search results can lag behind

the actual, available content. A database search, because it runs directly on the content, does

not suffer from this lag. As with most questions, therefore, the answer to this one is subjective

and depends on the exact balance you wish to achieve between performance and accuracy.

Ask the Expert

Chapter 6: Indexing, Searching, and Formatting Data 193

 'suffix' => 'yaml',
 'headers' => array('Content-Type' => 'text/yaml')
)
);
 $contextSwitch->addActionContext('list', 'yaml')
 ->initContext();
 }
}

There are four basic steps to be followed when supporting a new output type with the

ContextSwitch helper:

1. Define the context parameters. The ContextSwitch helper comes with an

addContext() method that can be used to define a new context. This addContext()

method accepts two arguments: a string holding the name of the new output type,

and an array containing additional configuration information, such as the headers to

be sent to the requesting client and the filename suffix to look for in view scripts. In

the previous example, the addContext() method specifies a view filename suffix of

.yaml and a 'Content-Type' header of text/yaml.

NOTE

This step can be omitted when working with the predefined XML and JSON contexts.

2. Link the context with one or more actions. Once the output type has been defined, the

ContextSwitch helper’s addActionContext() method can be used to map it to one

or more actions. In the previous example, the addActionContext() method specifies

that the listAction() can also return output in YAML format.

TIP

In case you have a number of different contexts and actions to deal with, consider using
the addActionContexts() method, which accepts an array of context-action pairs and
serves as a convenient shortcut to map multiple contexts and actions in a single method call.

3. Create a view script for the context. The next step is to create a view script for each

action and context. By default, this view script is named with the suffix specified in the

addContext() method, and it contains all the formatting codes, markup, and business

logic needed to generate output in the specified format. To illustrate, consider that in the

previous example, the view script list.yaml.phtml would be responsible for generating

a YAML view of the listAction() method’s output. Similarly, if the required output

type was XLS, the view script would be named list.xls.phtml, and it would contain the

PHP code necessary to generate spreadsheets in Microsoft Excel format.

194 Zend Framework: A Beginner’s Guide

4. Initialize the context. This is the final step, and also the simplest, because it simply

entails calling the ContextSwitch helper’s initContext() method. When called

without any arguments, this method initializes all the defined contexts and gets the

ball rolling. You can now attach the special ?format=context-name parameter to the

action’s URL string to indicate the required output type to the ContextSwitch helper—

for example, ?format=yaml for YAML output or ?format=xls for XLS output.

Expressing Search Results in XML
To illustrate how the ContextSwitch helper works in practice, let’s enhance the search engine

created earlier in the chapter with support for XML output. The following sections guide you

through the process.

Enabling the XML Context
Since the ContextSwitch helper comes with built-in definitions for XML and JSON contexts, it

isn’t necessary to define them with the addContext() method. Instead, we can skip directly to

mapping the XML context to the searchAction() method with the addActionContext()
method. Add this method invocation to the Catalog_ItemController class’s init() method,

as follows:

<?php
class Catalog_ItemController extends Zend_Controller_Action
{
 public function init()
 {
 // initialize context switch helper
 $contextSwitch = $this->_helper->getHelper('contextSwitch');
 $contextSwitch->addActionContext('search', 'xml')
 ->initContext();
 }
}

Defining the XML View
Once the XML context has been mapped and initialized, any request for search results in XML

format will be served by the corresponding XML view script. By convention, this view should

be saved as $APP_DIR/application/modules/catalog/views/scripts/item/search.xml.phtml.

Here’s what it should contain:

<?php
// create XML document
$dom = new DOMDocument('1.0', 'utf-8');

Try This 6-3

Chapter 6: Indexing, Searching, and Formatting Data 195

// create root element
$root = $dom->createElementNS(
 'http://square.localhost', 'square:document');
$dom->appendChild($root);

// convert to SimpleXML
$xml = simplexml_import_dom($dom);

// add summary element
$xml->addChild('matches', count($this->results));
$xml->addChild('searchTime', time());

// add resultset elements
$results = $xml->addChild('results');
foreach ($this->results as $r) {
 $result = $results->addChild('result');
 $result->addChild('score', $this->escape($r->score));
 $result->addChild('id', $this->escape($r->RecordID));
 $result->addChild('title', $this->escape($r->Title));
 $result->addChild('year', $this->escape($r->Year));
 $result->addChild('grade', $this->escape($r->Grade));
 $result->addChild('country', $this->escape($r->Country));
 $price = $result->addChild('price');
 $price->addChild('min', $this->escape($r->SalePriceMin));
 $price->addChild('max', $this->escape($r->SalePriceMax));
}

// return output
echo $xml->asXML();
?>

If you’re familiar with PHP’s SimpleXML and DOM extensions, the preceding script

should be fairly easy to read. It begins by using PHP’s DOM extension to generate a new XML

document and prolog, and to define a custom namespace for the XML data that will follow.

This document is then converted to a SimpleXML object (for convenience), and the result

set returned by the searchAction() action method is processed and presented as a series

of XML elements. Once the entire result set has been processed, the SimpleXML asXML()
method is used to output the final XML document tree to the requesting client.

To see this in action, try performing a search by visiting the search URL at http://square

.localhost/catalog/item/search and entering a set of keywords. You should be presented with

the search results in HTML format, as shown in Figure 6-6.

Now, request the same search results in XML format by appending an additional

?format=xml parameter to the URL string. On detecting this parameter, the ContextSwitch

(continued)

http://square.localhost/catalog/item/search
http://square.localhost/catalog/item/search

196 Zend Framework: A Beginner’s Guide

helper will automatically switch the output type and present you with the search results in

XML format, as shown in Figure 6-7.

TIP

The 'format' parameter passed to the ContextSwitch helper need not only be
specified as a GET parameter. It can come from any valid parameter source, including
the route definition itself.

Summary
Once your application’s basic CRUD functions are up and running, users and administrators

are free to add data to it. This begets a new problem, that of making application data

accessible, searchable, and exportable to a number of common formats. This chapter focused

specifically on this problem, guiding you through the process of adding search capabilities

to an application and showing you how to use the Zend_Search_Lucene component. It also

demonstrates the ContextSwitch helper, which makes it easy to support different output

formats such as XML, RSS, JSON, and others.

Figure 6-7 Results of a search, expressed in XML

Chapter 6: Indexing, Searching, and Formatting Data 197

To read more about the topics discussed in this chapter, consider visiting the following links:

The Zend_Search_Lucene component, at ● http://framework.zend.com/manual/en/zend

.search.lucene.html

The Zend_Search_Lucene query language, at ● http://framework.zend.com/manual/en/

zend.search.lucene.query-language.html

The ContextSwitch helper, at ● http://framework.zend.com/manual/en/zend.controller

.actionhelpers.html

PHP’s SimpleXML extension, at ● http://www.php.net/simplexml

PHP’s DOM extension, at● http://www.php.net/dom

A discussion of using the ContextSwitch helper to output Microsoft Excel spreadsheets ●

(Pablo Viquez), at http://www.pabloviquez.com/2009/08/export-excel-spreadsheets-

using-zend-framework/

A discussion of using the ContextSwitch helper to change layouts on the fly (Phil Brown), ●

at http://morecowbell.net.au/2009/02/changing-layouts-with-zend-contextswitch/

A discussion of creating a REST API with the ContextSwitch helper (Chris Danielson), at ●

http://www.chrisdanielson.com/2009/09/02/creating-a-php-rest-api-using-the-zend-

framework/

A comparison of indexing email messages with Zend_Search_Lucene and Sphinx (Vikram ●

Vaswani), at http://devzone.zend.com/article/4887-Indexing-Email-Messages-with-

PHP-Zend-Lucene-and-Sphinx

http://framework.zend.com/manual/en/zend.search.lucene.html
http://framework.zend.com/manual/en/zend.search.lucene.html
http://framework.zend.com/manual/en/zend.search.lucene.query-language.html
http://framework.zend.com/manual/en/zend.search.lucene.query-language.html
http://framework.zend.com/manual/en/zend.controller.actionhelpers.html
http://framework.zend.com/manual/en/zend.controller.actionhelpers.html
http://www.php.net/simplexml
http://www.php.net/dom
http://www.pabloviquez.com/2009/08/export-excel-spreadsheets-using-zend-framework/
http://www.pabloviquez.com/2009/08/export-excel-spreadsheets-using-zend-framework/
http://morecowbell.net.au/2009/02/changing-layouts-with-zend-contextswitch/
http://www.chrisdanielson.com/2009/09/02/creating-a-php-rest-api-using-the-zend-framework/
http://devzone.zend.com/article/4887-Indexing-Email-Messages-with-PHP-Zend-Lucene-and-Sphinx
http://devzone.zend.com/article/4887-Indexing-Email-Messages-with-PHP-Zend-Lucene-and-Sphinx
http://www.chrisdanielson.com/2009/09/02/creating-a-php-rest-api-using-the-zend-framework/

This page intentionally left blank

199

Chapter 7
Paging, Sorting,

and Uploading Data

200 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

● Page and sort database result sets

● Filter, validate, and process file uploads through Web forms

● Read and write configuration files in INI and XML formats

When you’re building a software application, one of your most important tasks is to

identify which aspects of the application’s behavior should be configurable by the

user. For example, if you’re building a content management system, you will probably

want to allow the application administrator leeway to decide how dates and times should

be displayed, whether or not images can be attached to posts, and whether or not comments

should be subject to moderator review and approval. However, you will probably not want

the administrator fiddling with the file format in which data is stored, or the manner in which

exceptions are handled, as these aspects are internal to the application and (usually) not

appropriate for user-level configuration.

Identifying which aspects of an application should be user-configurable isn’t as easy

as it sounds. In order to perform the analysis correctly, the developer requires a thorough

understanding of both the software’s goals and the end-user requirements it is built to address.

Once the analysis is complete, however, things become much easier. The identified variables

can be relocated to a separate storage area (usually one or more configuration files), and it’s

now up to the developer to present an interface for application administrators to manipulate

these variables at run time.

The Zend Framework includes a Zend_Config component, which provides a full-featured

API for reading and writing configuration files in various formats. This chapter examines this

component in detail, discussing how it can be used to manage configuration data in the context

of the SQUARE example application. It also revisits two components from previous chapters,

Zend_Form and Doctrine, and illustrates how they can be used to satisfy two common

requirements: enabling file uploads, and paging and sorting large result sets.

Paging and Sorting Database Records
When you’re dealing with large data sets within a Web application, it’s generally considered

a Bad Thing to simply dump all the available data into a single page willy-nilly and let the

user sort it out for himself or herself. Pagination, which involves breaking large data sets into

smaller chunks, or pages, is a common user interface pattern for improving readability and

navigation in these situations. Pagination is important because it allows the user to exert some

degree of control over which segment of the data set is visible at any given moment, and thus

avoid drowning in a never-ending sea of data. When used with a database server, pagination

also helps reduce server load by producing smaller result sets.

Try This 7-1

Chapter 7: Paging, Sorting, and Uploading Data 201

The interesting thing about pagination is that the program code needed to implement this

pattern is reasonably standard, and is unlikely to change from project to project. This makes it

the ideal kind of thing to implement as a reusable component, and, in fact, most frameworks

and database abstraction layers come with a ready-made pagination component. For example,

the Zend Framework includes a Zend_Paginator component, which comes with adapters

(including one for Zend_Db) for different data sources. Similarly, Doctrine comes with a

Doctrine_Pager component, which can be used to directly process and page Doctrine queries.

There isn’t much to choose between Zend_Paginator and Doctrine_Pager: Both

components work by segmenting a single data set into smaller subsets, and by generating

navigation links to move back and forth between the different subsets. However, since

pagination is most commonly associated with database result sets, it usually makes sense to

use the pager component that is recommended by, or included with, the database abstraction

layer in use. Since this book recommends Doctrine for all database access operations, the

following discussion will focus on the Doctrine_Pager and Doctrine_Query components,

illustrating how they can be used to page and sort database result sets in the context of the

SQUARE example application.

Adding Page Numbers to Routes
The typical operation of a pagination component is quite simple. The component is first

configured with the number of items to be displayed per page. It then calculates the total

number of pages by dividing the total number of items present in the data set by the number

of items requested per page, and then it dynamically generates a set of navigation links for

movement between these pages. Each link contains an additional GET parameter (the page

number) that the page controller can use to determine which subset of data is being requested.

To illustrate how this works, open the application configuration file at $APP_DIR/

application/configs/application.ini and update the route definition for the administrative

summary page with an additional parameter, as follows:

resources.router.routes.admin-catalog-index.route =
/admin/catalog/item/index/:page
resources.router.routes.admin-catalog-index.defaults.module = catalog
resources.router.routes.admin-catalog-index.defaults.controller =
admin.item
resources.router.routes.admin-catalog-index.defaults.action = index
resources.router.routes.admin-catalog-index.defaults.page = 1

Updating the Index Controller and View
The next step is to update the Catalog_AdminItemController::indexAction to

use this parameter when formulating its SELECT query. This is where the Doctrine_Pager

component comes in. Here’s what the updated action code looks like:

<?php
class Catalog_AdminItemController extends Zend_Controller_Action
{

(continued)

202 Zend Framework: A Beginner’s Guide

 // action to display list of catalog items
 public function indexAction()
 {
 // set filters and validators for GET input
 $filters = array(
 'page' => array('HtmlEntities', 'StripTags', 'StringTrim')
);
 $validators = array(
 'page' => array('Int')
);
 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());

 // test if input is valid
 // create query and set pager parameters
 if ($input->isValid()) {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Type t');

 $perPage = 5;
 $numPageLinks = 5;

 // initialize pager
 $pager = new Doctrine_Pager($q, $input->page, $perPage);

 // execute paged query
 $result = $pager->execute(array(), Doctrine::HYDRATE_ARRAY);

 // initialize pager layout
 $pagerRange = new Doctrine_Pager_Range_Sliding(
 array('chunk' => $numPageLinks), $pager);
 $pagerUrlBase = $this->view->url(
 array(), 'admin-catalog-index', 1) . "/{%page}";
 $pagerLayout = new Doctrine_Pager_Layout(
 $pager, $pagerRange, $pagerUrlBase);

 // set page link display template
 $pagerLayout->setTemplate('{%page}');
 $pagerLayout->setSelectedTemplate(
 '{%page}');
 $pagerLayout->setSeparatorTemplate(' ');

 // set view variables
 $this->view->records = $result;
 $this->view->pages = $pagerLayout->display(null, true);

Chapter 7: Paging, Sorting, and Uploading Data 203

 } else {
 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }
}

This code differs from the original in that the query is routed through the Doctrine_Pager

component, which is initialized with the query, the page number, and the number of items per

page (in this case, four). When the query is executed through this component’s execute()
method, it is automatically constrained to retrieve only the set of records corresponding to the

specified page offset.

However, there’s still the small matter of generating navigation links so that users can

access other pages of the data set. This is handled by the Doctrine_Pager_Layout component,

which accepts a URL template containing a variable placeholder, and then dynamically

generates a set of navigation links from this template, replacing the variable placeholder with

actual page numbers as needed. The number of navigation links, and the HTML formatting to

be applied to each link, can be configured using Doctrine_Pager_Layout methods. The final

output of the new Doctrine_Pager_Layout object’s display() method is a block of HTML

code that can be directly incorporated into the view, as follows:

<h2>List Items</h2>
<?php if (count($this->records)): ?>
<div id="pager">
 Pages: <?php echo $this->pages; ?>
</div>

<div id="records">

...
</div>

<div id="pager">
 Pages: <?php echo $this->pages; ?>
</div>
<?php else: ?>
No records found
<?php endif; ?>

To see this in action, visit the catalog summary page in the SQUARE administration panel

by browsing to http://square.localhost/admin/catalog/item/index. Assuming that you have

more than four items in the catalog, you should see a set of page navigation links, which can

be used to page through the result set. Figure 7-1 has an example of the result:

Notice that each page link includes the corresponding page number in its URL, as a GET
parameter.

More information on how the Doctrine_Pager_Layout component can be used to define the

layout of navigation links is available in the links at the end of this chapter.
(continued)

http://square.localhost/admin/catalog/item/index

204 Zend Framework: A Beginner’s Guide

Adding Sort Criteria to Routes
Paging is one way of slicing and dicing a data set, but there are others. Another extremely

common requirement involves allowing users to sort the data set by one of its fields. Here too,

additional parameters indicating the field and direction to sort by are appended to the URL

request, and the page controller is configured to sort the data by these parameters before handing

it off to the view for display.

To see how this works, go back to the application configuration file at $APP_DIR/

application/configs/application.ini and further revise the route definition with two additional

parameters, as shown in the following example:

resources.router.routes.admin-catalog-index.route =
/admin/catalog/item/index/:page/:sort/:dir
resources.router.routes.admin-catalog-index.defaults.module = catalog
resources.router.routes.admin-catalog-index.defaults.controller =
admin.item
resources.router.routes.admin-catalog-index.defaults.action = index
resources.router.routes.admin-catalog-index.defaults.page = 1
resources.router.routes.admin-catalog-index.defaults.sort = RecordID
resources.router.routes.admin-catalog-index.defaults.dir = asc

Updating the Controller and View
These parameters should be incorporated into the Doctrine query generated by the Catalog_
AdminItemController::indexAction. The InArray validator can be used to ensure that

only valid parameters make it through to the main body of the action. The revised action code

is shown in the following example:

<?php
class Catalog_AdminItemController extends Zend_Controller_Action

Figure 7-1 The catalog summary view, with paging enabled

Chapter 7: Paging, Sorting, and Uploading Data 205

{
 // action to display list of catalog items
 public function indexAction()
 {
 // set filters and validators for GET input
 $filters = array(
 'sort' => array('HtmlEntities', 'StripTags', 'StringTrim'),
 'dir' => array('HtmlEntities', 'StripTags', 'StringTrim'),
 'page' => array('HtmlEntities', 'StripTags', 'StringTrim')
);

 $validators = array(
 'sort' => array(
 'Alpha',
 array('InArray', 'haystack' =>
 array('RecordID', 'Title', 'Denomination',
 'CountryID', 'GradeID', 'Year'))
),
 'dir' => array(
 'Alpha',
 array('InArray', 'haystack' =>
 array('asc', 'desc'))
),
 'page' => array('Int')
);
 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());

 // test if input is valid
 // create query and set pager parameters
 if ($input->isValid()) {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Type t')
 ->orderBy(sprintf('%s %s', $input->sort, $input->dir));

 $perPage = 4;
 $numPageLinks = 5;

 // initialize pager
 $pager = new Doctrine_Pager($q, $input->page, $perPage);

 // execute paged query
 $result = $pager->execute(array(), Doctrine::HYDRATE_ARRAY);

(continued)

206 Zend Framework: A Beginner’s Guide

 // initialize pager layout
 $pagerRange = new Doctrine_Pager_Range_Sliding(array('chunk' =>
$numPageLinks), $pager);
 $pagerUrlBase = $this->view->url(array(), 'admin-catalog-index',
1) . "/{%page}/{$input->sort}/{$input->dir}";
 $pagerLayout = new Doctrine_Pager_Layout($pager, $pagerRange,
$pagerUrlBase);

 // set page link display template
 $pagerLayout->setTemplate('{%page}');
 $pagerLayout->setSelectedTemplate('<span
class="current">{%page}');
 $pagerLayout->setSeparatorTemplate(' ');

 // set view variables
 $this->view->records = $result;
 $this->view->pages = $pagerLayout->display(null, true);
 } else {
 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }
}

Note that the URL template used by the Doctrine_Pager_Layout component to generate

page links should also be updated to include the necessary sorting parameters, so that sorting

criteria are not “lost” when moving between pages.

The final step is to update the view and include links for the user to sort the different fields

of the data set. Here’s the revised view script:

<h2>List Items</h2>
<?php if (count($this->records)): ?>
<div id="pager">
 Pages: <?php echo $this->pages; ?>
</div>

<div id="records">
 <form method="post" action="<?php echo $this->url(array(), 'admin-
catalog-delete'); ?>">
 <table>
 <tr>
 <td></td>
 <td class="key">
 Item ID
 <a href="<?php echo $this->url(array('sort' => 'RecordID',
'dir' => 'asc'), 'admin-catalog-index'); ?>">⇑
 <a href="<?php echo $this->url(array('sort' => 'RecordID',
'dir' => 'desc'), 'admin-catalog-index'); ?>">⇓
 </td>

Chapter 7: Paging, Sorting, and Uploading Data 207

 <td class="key">
 Title
 <a href="<?php echo $this->url(array('sort' => 'Title', 'dir'
=> 'asc'), 'admin-catalog-index'); ?>">⇑
 <a href="<?php echo $this->url(array('sort' => 'Title', 'dir'
=> 'desc'), 'admin-catalog-index'); ?>">⇓
 </td>
 <td class="key">
 Denomination
 <a href="<?php echo $this->url(array('sort' => 'Denomination',
'dir' => 'asc'), 'admin-catalog-index'); ?>">⇑
 <a href="<?php echo $this->url(array('sort' => 'Denomination',
'dir' => 'desc'), 'admin-catalog-index'); ?>">⇓
 </td>
 <td class="key">
 Country
 <a href="<?php echo $this->url(array('sort' => 'CountryID',
'dir' => 'asc'), 'admin-catalog-index'); ?>">⇑
 <a href="<?php echo $this->url(array('sort' => 'CountryID',
'dir' => 'desc'), 'admin-catalog-index'); ?>">⇓
 </td>
 <td class="key">
 Grade
 <a href="<?php echo $this->url(array('sort' => 'GradeID',
'dir' => 'asc'), 'admin-catalog-index'); ?>">⇑
 <a href="<?php echo $this->url(array('sort' => 'GradeID',
'dir' => 'desc'), 'admin-catalog-index'); ?>">⇓
 </td>
 <td class="key">
 Year
 <a href="<?php echo $this->url(array('sort' => 'Year', 'dir'
=> 'asc'), 'admin-catalog-index'); ?>">⇑
 <a href="<?php echo $this->url(array('sort' => 'Year', 'dir'
=> 'desc'), 'admin-catalog-index'); ?>">⇓
 </td>
 <td></td>
 <td></td>
 </tr>
 <?php foreach ($this->records as $r):?>

 ...
 <td><?php echo $this->escape($r['RecordID']); ?></td>
 <td><?php echo $this->escape($r['Title']); ?></td>
 ...

 </tr>

(continued)

208 Zend Framework: A Beginner’s Guide

 <?php endforeach; ?>
 <tr>
 <td colspan="7">
 <input type="submit" name="submit" style="width:150px"
 value="Delete Selected" />
 </td>
 <td colspan="2">
 <a href="<?php echo $this->url(array(),
 'admin-fulltext-index-create'); ?>">Update full-text indices</
a>
 </td>
 </tr>
 </table>
 </form>
</div>

<div id="pager">
 Pages: <?php echo $this->pages; ?>
</div>
<?php else: ?>
No records found
<?php endif; ?>

And now, when you revisit the URL at http://square.localhost/admin/catalog/item/

index, you’ll see that you can sort the data set by various fields, in either ascending or

descending order. This sorting selection is retained even as you move between the pages of

the data set. If no sorting criteria are stated, the route defaults will ensure that the data set is

automatically sorted by item ID in ascending order.

Figure 7-2 has an example of the output, sorted by grade (look at the URL in your browser

address bar to better understand how this works).

Figure 7-2 The catalog summary view, with sorting and paging enabled

http://square.localhost/admin/catalog/item/index
http://square.localhost/admin/catalog/item/index

Chapter 7: Paging, Sorting, and Uploading Data 209

Working with File Uploads
In Chapter 3, you got a crash course in how to create and process forms with the Zend_Form

component, and subsequent chapters have further increased your knowledge of Zend_Form

by applying those techniques to different types of forms. However, there’s one fairly common

requirement that hasn’t been covered to date: handling file uploads through forms.

PHP has, of course, supported file upload through forms for many years, and offers both

the special $_FILES superglobal and a number of built-in methods, such as is_uploaded_
file() and move_uploaded_file(), to assist in the task of managing uploaded files

securely and efficiently. Under the Zend Framework, similar functionality is available through

the Zend_File_Transfer component, which provides a full-fledged API for receiving, validating,

and processing uploaded files. This component also works seamlessly to handle file transfers

initiated through Zend_Form elements.

CAUTION

While PHP natively supports POST and PUT file uploads, the Zend_File_Transfer
component currently only supports POST uploads.

The best way to understand how file transfers work under Zend_Form is with an example.

Consider the following code, which sets up a simple form consisting of a file upload element

and a submit button:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create file input for photo upload
 $photo = new Zend_Form_Element_File('photo');
 $photo->setLabel('Photo:')
 ->setDestination('/tmp/upload');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Submit');

 // attach elements to form
 $this->addElement($photo)
 ->addElement($submit);

 return $this;
 }
}

210 Zend Framework: A Beginner’s Guide

Figure 7-3 illustrates what this form looks like.

The setDestination() method defines the

target directory for uploaded files. Note that this

directory should already exist prior to initializing

the Zend_Form object in an action; if it doesn’t,

the object will throw an exception. It’s also a

good idea to make sure that the target directory

is writable by the Web server, to avoid any

unexpected failures when processing the upload.

When the form is submitted, calling its

getValues() method inside an action will

automatically receive and transfer the file to the

specified destination. Here’s an example:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function formAction()
 {
 $form = new Form_Example;
 $this->view->form = $form;

 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 $values = $form->getValues();
 $this->_redirect('/form/success');
 }
 }
 }
}

For security reasons, it’s not a good idea to receive files without first validating them.

There may also be application-level constraints that need to be satisfied by the uploaded files,

such as constraints on the file size or file type. These requirements are satisfied by the diverse

array of file-specific input validators that are included in the Zend Framework, as shown in

Table 7-1.

It may also be necessary to perform various types of operations on the uploaded files

before saving them to disk, such as renaming them, modifying their contents, or encrypting

them. The file-specific input filters that are included in the Zend Framework (see Table 7-2)

can take care of these requirements.

To illustrate these filters and validators in action, consider a revised version of

the form definition shown previously. This version uses a combination of filters and

Figure 7-3 A form with a file input field

Chapter 7: Paging, Sorting, and Uploading Data 211

Table 7-1 File Upload Validators Included with the Zend Framework

Validator Name Description

Exists Returns false if argument is not a valid file

Count Returns false if number of uploaded files is outside the range specified in
argument

Size Returns false if uploaded file size is outside the range specified in argument

FilesSize Returns false if uploaded file size total is outside the range specified in
argument

Extension Returns false if uploaded file extension does not match those specified in
argument

MimeType Returns false if uploaded file MIME type does not match those specified in
argument

IsCompressed Returns false if uploaded file is not a compressed archive file

IsImage Returns false if uploaded file is not an image file

ImageSize Returns false if uploaded image dimensions are outside the range specified
in argument

Crc32, Md5, Sha1, Hash Returns false if uploaded file content does not match the hash value
specified in argument (supports crc32, md5, and sha1 hash algorithms)

ExcludeExtension Returns false if uploaded file extension matches those specified in argument

ExcludeMimeType Returns false if uploaded file MIME type matches those specified in argument

WordCount Returns false if number of words in uploaded file is outside the range
specified in argument

Table 7-2 File Upload Filters Included with the Zend Framework

Filter Name Description

Encrypt Encrypts contents of uploaded file

Decrypt Decrypts contents of uploaded file

LowerCase Converts contents of uploaded file to lowercase

UpperCase Converts contents of uploaded file to uppercase

Rename Renames uploaded file

212 Zend Framework: A Beginner’s Guide

validators to restrict uploads to JPEG images under 40KB in size and rename them to

a unique filename.

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create file input for photo upload
 $photo = new Zend_Form_Element_File('photo');
 $photo->setLabel('Photo:')
 ->setDestination('/tmp/upload')
 ->addFilter('Rename',
 sprintf('p-%s.jpg', uniqid(md5(time()), true)))
 ->addValidator('Extension', false, 'jpg')
 ->addValidator('MimeType', false, 'image/jpeg')
 ->addValidator('Size', false, 40000);

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Submit');

 // attach elements to form
 $this->addElement($photo)
 ->addElement($submit);

 return $this;
 }
}

Figure 7-4 has an example of the output seen when attempting to upload a file that does

not match the specified constraints.

Figure 7-4 The result of uploading an invalid file

Chapter 7: Paging, Sorting, and Uploading Data 213

Enabling Image Uploads
With all this background information at hand, let’s consider updating the SQUARE example

application by allowing sellers to add up to three photographs to their catalog entries. The

following sections discuss how to enable this feature.

Defining the Upload Destination
The first step is to define a destination for uploaded images. Since these images will eventually

be displayed in the public catalog and therefore must be accessible through unauthenticated

URL requests, it makes sense to store them under the $APP_DIR/public/ directory hierarchy.

So, create the $APP_DIR/public/uploads/, as follows:

shell> cd /usr/local/apache/htdocs/square/public
shell> mkdir uploads

Since different controllers and actions will require this information, it also makes sense to

centralize it in the application configuration file. Accordingly, open the application configuration

file, at $APP_DIR/application/configs/application.ini, and add the following directive to it:

uploads.uploadPath = APPLICATION_PATH "/../public/uploads"

Updating the Form Definition
The next step is to update the form for creating new catalog entries with additional file upload

elements. To do this, update the form definition, at $APP_DIR/library/Square/Form/ItemCreate

.php, with the changes highlighted in bold:

<?php
class Square_Form_ItemCreate extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/catalog/item/create')
 ->setMethod('post');

 // -------------- //
 // element definitions abbreviated due to space constraints //
 // refer to Chapter 4 or the code archive //
 // for the complete form definition //
 // ------------- //

 // create file input for item images
 $images = new Zend_Form_Element_File('images');
 $images->setMultiFile(3)

Try This 7-2

(continued)

214 Zend Framework: A Beginner’s Guide

 ->addValidator('IsImage')
 ->addValidator('Size', false, '204800')
 ->addValidator('Extension', false, 'jpg,png,gif')
 ->addValidator('ImageSize', false, array(
 'minwidth' => 150,
 'minheight' => 150,
 'maxwidth' => 150,
 'maxheight' => 150
))
 ->setValueDisabled(true);

 // attach element to form
 $this->addElement($images);

 // create display group for file elements
 $this->addDisplayGroup(array('images'), 'files');
 $this->getDisplayGroup('files')
 ->setOrder(40)
 ->setLegend('Images');

 // attach element to form
 $this->addElement($submit);
 }
}

This change adds a set of three file upload elements to the form, via the setMultiFile()
method. A set of validators is used to ensure that these elements can only be used to upload

Q: Why are you calling the Zend_Form_Element_File object’s setValueDisabled()
method?

A: This call prevents the files from being automatically received when the getValues()
method is called in the action. That’s simple, but the really interesting question is, why

should the files not be automatically received? And therein lies a tale. You see, the Rename

filter does not actually support multifile uploads. However, our application requirements

dictate that uploaded files should be renamed to a specific format. To reconcile these two

facts, Thomas Wiedner, a well-known Zend Framework developer, suggests dynamically

setting the Rename filter on each individual file of the multifile upload, and then manually

receiving it using the Zend_File_Transfer HTTP adapter’s receive() method. So, the

call to setValueDisabled() ensures that the files are not automatically received in the

action and provides room for this manual receive-and-rename process.

Ask the Expert

Chapter 7: Paging, Sorting, and Uploading Data 215

image files in JPEG, GIF, or PNG format, each under 2MB in size and each with dimensions

of 150 150 pixels. It’s also a good idea to rename uploaded images to conform to a standard

naming format before saving them to disk, and this is handled by the Rename filter (discussed

in the next section).

Updating the Create Action
The next step is to update the Catalog_ItemController::createAction to receive

the uploaded images, rename them to conform to a standard format, and save them to disk. To

accomplish this, revise the action code, at $APP_DIR/application/modules/catalog/controllers/

ItemController.php, with the changes highlighted in bold:

<?php
class Catalog_ItemController extends Zend_Controller_Action
{
 public function createAction()
 {
 // generate input form
 $form = new Square_Form_ItemCreate;
 $this->view->form = $form;

 // test for valid input
 // if valid, populate model
 // assign default values for some fields
 // save to database
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 $item = new Square_Model_Item;
 $item->fromArray($form->getValues());
 $item->RecordDate = date('Y-m-d', mktime());
 $item->DisplayStatus = 0;
 $item->DisplayUntil = null;
 $item->save();
 $id = $item->RecordID;
 $config = $this->getInvokeArg('bootstrap')-
>getOption('uploads');
 $form->images->setDestination($config['uploadPath']);
 $adapter = $form->images->getTransferAdapter();
 for($x=0; $x<$form->images->getMultiFile(); $x++) {
 $xt = @pathinfo($adapter->getFileName('images_'.$x.'_'),
 PATHINFO_EXTENSION);
 $adapter->clearFilters();
 $adapter->addFilter('Rename', array(
 'target' => sprintf('%d_%d.%s', $id, ($x+1), $xt),
 'overwrite' => true
));
 $adapter->receive('images_'.$x.'_');
 }

(continued)

216 Zend Framework: A Beginner’s Guide

 $this->_helper->getHelper('FlashMessenger')->addMessage(
 'Your submission has been accepted as item #' . $id .
 '. A moderator will review it and, if approved, it will
 appear on the site within 48 hours.');
 $this->_redirect('/catalog/item/success');
 }
 }
 }
}

Here, the Zend_Form_Element_File object’s getTransferAdapter() method returns

an instance of the Zend_File_Transfer HTTP adapter. This adapter serves as a control point

for receiving, validating, and processing multifile uploads. It exposes a receive() method,

which can be used to manually receive the individual elements of a multifile upload. The use

of the Rename filter on each file ensures that these files are automatically renamed using

a particular naming convention that incorporates both the entry’s record ID and the file

sequence ID in the filename. The renamed files are then saved to disk, in the destination

directory specified by the Zend_Form_Element_File object’s setDestination() method.

CAUTION

When you’re storing uploaded files with their original name, remember to validate the
filename before receiving the file with the receive() method. This is to eliminate the
possibility of files being injected into the server’s file system through the use of filenames
like '../etc/passwd' or '../index.php', which would obviously cause serious
problems on a badly configured server.

Updating the Display Action and View
Most of the heavy lifting is now over. The next step is to update the Catalog_
ItemController::displayAction to display uploaded images together with the

other details of an entry. Here’s the revised code for the displayAction() method.

<?php
class Catalog_ItemController extends Zend_Controller_Action
{
 // action to display a catalog item
 public function displayAction()
 {
 // set filters and validators for GET input
 $filters = array(
 'id' => array('HtmlEntities', 'StripTags', 'StringTrim')
);
 $validators = array(
 'id' => array('NotEmpty', 'Int')
);

Chapter 7: Paging, Sorting, and Uploading Data 217

 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());

 // test if input is valid
 // retrieve requested record
 // attach to view
 if ($input->isValid()) {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.RecordID = ?', $input->id)
 ->addWhere('i.DisplayStatus = 1')
 ->addWhere('i.DisplayUntil >= CURDATE()');
 $result = $q->fetchArray();
 if (count($result) == 1) {
 $this->view->item = $result[0];
 $this->view->images = array();
 $config = $this->getInvokeArg('bootstrap')-
>getOption('uploads');
 foreach (glob("{$config['uploadPath']}/
 {$this->view->item['RecordID']}_*") as $file)
 {
 $this->view->images[] = basename($file);
 }
 } else {
 throw new Zend_Controller_Action_Exception('Page not found',
404);
 }
 } else {
 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }
}

The additional code reads the location of the upload directory from the application

configuration file, uses PHP’s glob() function to retrieve a list of all files corresponding

to the item ID in that directory, and then sends the resulting file list to the view as an array.

The view script can now process this array and display the images in a gallery, as follows:

<h2>View Item</h2>
<h3>
 FOR SALE:
 <?php echo $this->escape($this->item['Title']); ?> -
 <?php echo $this->escape($this->item['Year']); ?> -
 <?php echo $this->escape($this->item['Square_Model_Grade']

(continued)

218 Zend Framework: A Beginner’s Guide

['GradeName']); ?>
</h3>

<div id="container">
 <div id="images">
 <?php foreach ($this->images as $image): ?>
 <img src="/uploads/<?php echo $this->escape($image); ?>"
 width="150" height="150" />
 <?php endforeach; ?>
 </div>
 <div id="record">
 <table>
 <tr>
 <td class="key">Title:</td>
 <td class="value">
 <?php echo $this->escape($this->item['Title']); ?>
 </td>
 </tr>

 ...
 <tr>
 <td class="key">Description:</td>
 <td class="value">
 <?php echo $this->escape($this->item['Description']); ?>
 </td>
 </tr>
 </table>
 </div>
</div>

In a similar manner, you should update the Catalog_AdminItemController::
displayAction and corresponding view script to display the images associated with each

item. You’ll find the necessary code in this chapter’s code archive, which can be downloaded

from this book’s companion Web site at http://www.zf-beginners-guide.com/.

Updating the Delete Action
Finally, you should also update the Catalog_AdminItemController::deleteAction
to automatically remove the uploaded images associated with a catalog item when the item

is deleted. This is not very difficult to do, and the relevant code is shown in the following

example:

<?php
class Catalog_AdminItemController extends Zend_Controller_Action
{
 // action to delete catalog items
 public function deleteAction()

http://www.zf-beginners-guide.com/

Chapter 7: Paging, Sorting, and Uploading Data 219

 {
 // set filters and validators for GET input
 $filters = array(
 'ids' => array('HtmlEntities', 'StripTags', 'StringTrim')
);
 $validators = array(
 'ids' => array('NotEmpty', 'Int')
);
 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());

 // test if input is valid
 // read array of record identifiers
 // delete records from database
 if ($input->isValid()) {
 $q = Doctrine_Query::create()
 ->delete('Square_Model_Item i')
 ->whereIn('i.RecordID', $input->ids);
 $result = $q->execute();
 $config = $this->getInvokeArg('bootstrap')-
>getOption('uploads');
 foreach ($input->ids as $id) {
 foreach (glob("{$config['uploadPath']}/{$id}_*") as $file) {
 unlink($file);
 }
 }
 $this->_helper->getHelper('FlashMessenger')
 ->addMessage('The records were successfully deleted.');
 $this->_redirect('/admin/catalog/item/success');
 } else {
 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }
}

To see all of this in action, try adding a new entry to the catalog by visiting the URL

http://square.localhost/catalog/item/create. As shown in Figure 7-5, the input form will

now display a set of three additional file upload elements.

Enter details for a new entry, attach one or more images, and submit the entry. If the

images don’t correspond to the specified formats and dimensions, you’ll be presented with an

error, as shown in Figure 7-6.

(continued)

http://square.localhost/catalog/item/create

220 Zend Framework: A Beginner’s Guide

Figure 7-5 The form to add a new item to the SQUARE catalog, with additional file upload elements

Figure 7-6 The result of attempting to upload invalid files

Chapter 7: Paging, Sorting, and Uploading Data 221

Following a successful submission, you

should be able to find the uploaded images in the

application’s directory, renamed to the standard

format (see Figure 7-7). You can now log in to

the application’s administration panel, find the

newly added item, and make it visible in the public

catalog. Then, visit the item’s display URL and

you should be presented with a page containing

the item details and the set of images that

you uploaded. Figure 7-8 has an example of

the output.

And finally, if you try deleting the item through the administration panel and then check

the $APP_DIR/public/uploads/ directory, you’ll find that the image files have also been

removed.

Figure 7-7 Uploaded images, renamed
to a standard format

Figure 7-8 The detail page for a catalog entry, complete with user-supplied images

222 Zend Framework: A Beginner’s Guide

Working with Configuration Data
As explained earlier, an application developer must usually define which aspects of an

application’s behavior should be configurable by the user. This information, or configuration

data, should be stored within the application’s data store (which could be a database, a

flat file, or some other form of permanent storage), and accessed as needed by different

application components.

The Zend Framework makes the task of handling configuration files a little easier, with its

Zend_Config component. This component provides a full-featured API for reading and writing

configuration files, using an adapter-based approach. As of this writing, the component comes

with adapters for both INI and XML formats, and it’s reasonably easy to write new adapters

for other custom formats as well.

The best way to illustrate how Zend_Config works is with a few examples. The following

sections will get you started.

Reading Configuration Files
Zend_Config can be used to read and parse configuration files expressed either in XML or INI

format. To illustrate how this works, assume for a moment that you have an INI configuration

file named example.ini, containing the following data:

[object]
shape = 'square'
size = '10'
color = 'red'
typeface.name = 'Mono'
typeface.size = 19
typeface.units = 'px'
typeface.color = 'white'

This data can be read into a Zend_Config object, and the individual configuration variables

can then be accessed as object properties using standard object notation. Here’s an example,

which illustrates this:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function configAction()
 {
 // initialize configuration object
 $config = new Zend_Config_Ini(APPLICATION_PATH . "/configs/
example.ini");

 // sets $view->a to 'square'
 $this->view->a = $config->object->shape;

Chapter 7: Paging, Sorting, and Uploading Data 223

 // sets $view->b to 'white'
 $this->view->b = $config->object->typeface->color;
 }
}

CAUTION

By default, configuration data represented in a Zend_Config object is read-only, and
any attempt to modify it will produce an exception. To allow modifications, pass an
additional options array to the Zend_Config object as third argument, specifying the
'allowModifications' key as true. More information on this can be obtained from
the links at the end of this chapter.

There’s also a Zend_Config_Xml adapter designed to handle XML-encoded configuration

data. Consider the following XML file:

<?xml version="1.0"?>
<configuration>
 <application>
 <name>SomeApp</name>
 <version>2.3</version>
 <window>
 <height>600</height>
 <width>500</width>
 <titlebar>
 <title>Export Data</title>
 <foreColor>#ffffff</foreColor>
 <backColor>#0000ff</backColor>
 </titlebar>
 </window>
 </application>
</configuration>

Here’s an example of reading this file and accessing configuration values from within it

using the Zend_Config_Xml adapter:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function configAction()
 {
 // initialize configuration object
 $config = new Zend_Config_Xml(APPLICATION_PATH . "/configs/
example.xml");

 // sets $view->a to '2.3'
 $this->view->a = $config->application->version;

224 Zend Framework: A Beginner’s Guide

 // sets $view->b to 'Export Data'
 $this->view->b = $config->application->window->titlebar->title;
 }
}

Writing Configuration Files
That takes care of reading files, but how about writing them? Zend_Config includes a writer

component, Zend_Config_Writer, which can be used to create configuration files in PHP,

XML, or INI formats. Configuration data can be arranged hierarchically, or in sections, for

greater readability.

Here’s an example that illustrates how Zend_Config_Writer can be used to produce

a configuration file in INI format:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function configAction()
 {
 // create configuration object
 $config = new Zend_Config(array(), 1);

 // create section
 $config->blog = array();
 $config->blog->allowComments = 'yes';
 $config->blog->displayComments = 'yes';
 $config->blog->allowTrackbacks = 'yes';
 $config->blog->defaultAuthor = 'Jack Frost';
 $config->blog->numPostsOnIndexPage = 5;

 // create section
 $config->calendar = array();
 $config->calendar->weekStartsOn = 'Monday';
 $config->calendar->highlightToday = 1;

 // create subsection
 $config->calendar->events = array();
 $config->calendar->events->displayTitle = 1;
 $config->calendar->events->displayStartTime = 1;
 $config->calendar->events->displayEndTime = 0;
 $config->calendar->events->displayLocation = 1;

 // write data to file
 $writer = new Zend_Config_Writer_Ini();
 $writer->write(APPLICATION_PATH . "/configs/example.ini", $config);
 }
}

Chapter 7: Paging, Sorting, and Uploading Data 225

The first step is to initialize a Zend_Config object, which represents the configuration

data. This object should be initialized with an array containing configuration data (or an

empty array if no such data exists), and with a Boolean argument indicating whether or not

the configuration data can be modified. Once the Zend_Config object has been initialized,

individual configuration variables can be set as object properties using standard object

notation. Hierarchical data structures are supported, simply by chaining properties together;

depending on the output format chosen, this hierarchy is represented either with separators

(INI) or nesting (XML).

The configuration file generated by the preceding code is as follows:

[blog]
allowComments = "yes"
displayComments = "yes"
allowTrackbacks = "yes"
defaultAuthor = "Jack Frost"
numPostsOnIndexPage = 5

[calendar]
weekStartsOn = "Monday"
highlightToday = 1
events.displayTitle = 1
events.displayStartTime = 1
events.displayEndTime = 0
events.displayLocation = 1

XML configuration files are quite popular for Web-based applications, because most

languages include XML parsing support (PHP, in particular, comes with a number of extensions

for XML data parsing, including the SimpleXML, DOM, and XMLReader extensions). To

present the same configuration data in XML format, simply update the action code to use the

Zend_Config_Writer_Xml adapter, as follows:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function configAction()
 {
 // create configuration object
 $config = new Zend_Config(array(), 1);

 // create section
 $config->blog = array();
 $config->blog->allowComments = 'yes';
 $config->blog->displayComments = 'yes';
 $config->blog->allowTrackbacks = 'yes';
 $config->blog->defaultAuthor = 'Jack Frost';
 $config->blog->numPostsOnIndexPage = 5;

226 Zend Framework: A Beginner’s Guide

 // create section
 $config->calendar = array();
 $config->calendar->weekStartsOn = 'Monday';
 $config->calendar->highlightToday = 1;

 // create subsection
 $config->calendar->events = array();
 $config->calendar->events->displayTitle = 1;
 $config->calendar->events->displayStartTime = 1;
 $config->calendar->events->displayEndTime = 0;
 $config->calendar->events->displayLocation = 1;

 // write data to file
 $writer = new Zend_Config_Writer_Xml();
 $writer->write(APPLICATION_PATH . "/configs/example.xml",
$config);
 }
}

And here’s what the resulting file looks like:

<?xml version="1.0"?>
<zend-config xmlns:zf="http://framework.zend.com/xml/zend-config-
xml/1.0/">
 <blog>
 <allowComments>yes</allowComments>
 <displayComments>yes</displayComments>
 <allowTrackbacks>yes</allowTrackbacks>
 <defaultAuthor>Jack Frost</defaultAuthor>
 <numPostsOnIndexPage>5</numPostsOnIndexPage>
 </blog>
 <calendar>
 <weekStartsOn>Monday</weekStartsOn>
 <highlightToday>1</highlightToday>
 <events>
 <displayTitle>1</displayTitle>
 <displayStartTime>1</displayStartTime>
 <displayEndTime>0</displayEndTime>
 <displayLocation>1</displayLocation>
 </events>
 </calendar>
</zend-config>

There are also cases where you might prefer to store configuration data as a native PHP

array, which can be read into the application environment with a simple include() or

Chapter 7: Paging, Sorting, and Uploading Data 227

require(). To do this, update the action code to use the Zend_Config_Writer_Array adapter,

and you should see something like this in the output file:

<?php
return array (
 'blog' =>
 array (
 'allowComments' => 'yes',
 'displayComments' => 'yes',
 'allowTrackbacks' => 'yes',
 'defaultAuthor' => 'Jack Frost',
 'numPostsOnIndexPage' => 5,
),
 'calendar' =>
 array (
 'weekStartsOn' => 'Monday',
 'highlightToday' => 1,
 'events' =>
 array (
 'displayTitle' => 1,
 'displayStartTime' => 1,
 'displayEndTime' => 0,
 'displayLocation' => 1,
),
),
);

TIP

Expressing configuration data as a native PHP array offers a performance advantage,
as this data is immediately cacheable by an opcode cache such as APC, with no further
intervention by the developer. INI- and XML-based configuration files cannot be cached
in this manner without explicit intervention by the developer.

Configuring Application Settings
Now that the basics of Zend_Config are clear, let’s look at using it in a practical context, by

creating a simple configuration panel for the SQUARE application. The following sections

walk you through the process.

Defining the Configuration Form
The first step is to define a configuration form. Typically, you would only be able to do this

after having performed some analysis to determine which aspects of the application should be

Try This 7-3

(continued)

228 Zend Framework: A Beginner’s Guide

configurable, and after having decided how these configuration options should be presented. In

this case, let’s assume that the following aspects of the application are configurable:

The email address for messages sent through the contact form●

The default, or fallback, email address for all application and user messages●

The number of items to display per page in the administration control panel●

The visibility of seller names and addresses in the public catalog●

The logging of exceptions to a disk file●

Here’s the corresponding form definition, which should be saved to $APP_DIR/library/

Square/Form/Configure.php:

<?php
class Square_Form_Configure extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/admin/config')
 ->setMethod('post');

 // create text input for default email
 $default = new Zend_Form_Element_Text('defaultEmailAddress');
 $default->setLabel('Fallback email address for all operations:')
 ->setOptions(array('size' => '40'))
 ->setRequired(true)
 ->addValidator('EmailAddress')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create text input for sales email
 $sales = new Zend_Form_Element_Text('salesEmailAddress');
 $sales->setLabel('Default email address for sales enquiries:')
 ->setOptions(array('size' => '40'))
 ->addValidator('EmailAddress')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create text input for number of items per page in admin summary
 $items = new Zend_Form_Element_Text('itemsPerPage');
 $items->setLabel('Number of items per page in administrative
views:')
 ->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addValidator('Int')

Chapter 7: Paging, Sorting, and Uploading Data 229

 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create radio button for display of seller name and address
 $seller = new Zend_Form_Element_Radio('displaySellerInfo');
 $seller->setLabel('Seller name and address visible in public
catalog:')
 ->setRequired(true)
 ->setMultiOptions(array(
 '1' => 'Yes',
 '0' => 'No'
));

 // create radio button for exception logging
 $log = new Zend_Form_Element_Radio('logExceptionsToFile');
 $log->setLabel('Exceptions logged to file:')
 ->setRequired(true)
 ->setMultiOptions(array(
 '1' => 'Yes',
 '0' => 'No'
));

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Save configuration')
 ->setOptions(array('class' => 'submit'));

 // attach elements to form
 $this->addElement($sales)
 ->addElement($default)
 ->addElement($items)
 ->addElement($seller)
 ->addElement($log)
 ->addElement($submit);
 }
}

Defining the Configuration File
The next step is to define the file in which user-level configuration settings will be stored. The

Zend Framework recommends the $APP_DIR/application/configs/ directory for all configuration

data, so let’s use this directory. Open the main application configuration file at $APP_DIR/

application/configs/application.ini, and add the following directive to it to define the location of

the user-level configuration file:

configs.localConfigPath = APPLICATION_PATH "/configs/square.ini"

(continued)

230 Zend Framework: A Beginner’s Guide

Defining Custom Routes
The next step is to define a route to the configuration controller. Since the configuration panel

isn’t specific to any particular module, this controller can be placed in the all-purpose “default”

module. Here’s the route definition, which should be added to the application configuration file

at $APP_DIR/application/configs/application.ini:

resources.router.routes.admin-config.route = /admin/config
resources.router.routes.admin-config.defaults.module = default
resources.router.routes.admin-config.defaults.controller = config
resources.router.routes.admin-config.defaults.action = index

resources.router.routes.admin-config-success.route = /admin/config/
success
resources.router.routes.admin-config-success.defaults.module = default
resources.router.routes.admin-config-success.defaults.controller =
config
resources.router.routes.admin-config-success.defaults.action = success

Q: I’m confused. Why are you storing the location of one configuration file in another?

A: The application configuration file, at $APP_DIR/application/configs/application.ini, is

a global file that is read by the Zend Framework application. Typically, it contains numerous

settings that are defined by the application designer and that should not be modified without

due consideration. That said, every application has various user-level settings that should

be configurable by application users and/or administrators. For the SQUARE application,

these settings are stored in a separate user-level configuration file, at $APP_DIR/application/

configs/square.ini.

Separating system-level settings from user-level settings in this manner is generally

recommended, because it allows these two types of variables to be manipulated independently

without risk of corruption. However, there also needs to be a link between the two, so that

actions and controllers that rely on user-level settings know where to find this information.

Since the application configuration file application.ini is globally available to all actions and

controllers, the path to the user-level configuration file square.ini can be conveniently stored

within it.

If you’re still confused, here’s another way to look at it: Changes in the application.ini

global configuration may also require alteration of application code, but changes in the user-

level configuration file should never have this effect.

Ask the Expert

Chapter 7: Paging, Sorting, and Uploading Data 231

Defining the Controller and View
The next step is to define the action and view for the configuration interface. Here’s the code

for the ConfigController, which should be saved as $APP_DIR/application/modules/default/

controllers/ConfigController.php:

<?php
class ConfigController extends Zend_Controller_Action
{
 protected $localConfigPath;

 public function init()
 {
 // set doctype
 $this->view->doctype('XHTML1_STRICT');

 // retrieve path to local config file
 $config = $this->getInvokeArg('bootstrap')->getOption('configs');
 $this->localConfigPath = $config['localConfigPath'];
 }

 // action to handle admin URLs
 public function preDispatch()
 {
 // set admin layout
 // check if user is authenticated
 // if not, redirect to login page
 $url = $this->getRequest()->getRequestUri();
 $this->_helper->layout->setLayout('admin');
 if (!Zend_Auth::getInstance()->hasIdentity()) {
 $session = new Zend_Session_Namespace('square.auth');
 $session->requestURL = $url;
 $this->_redirect('/admin/login');
 }
 }

 // action to save configuration data
 public function indexAction()
 {
 // generate input form
 $form = new Square_Form_Configure();;
 $this->view->form = $form;

 // if config file exists
 // read config values
 // pre-populate form with values
 if (file_exists($this->localConfigPath)) {
 $config = new Zend_Config_Ini($this->localConfigPath);

(continued)

232 Zend Framework: A Beginner’s Guide

 $data['defaultEmailAddress'] = $config->global-
>defaultEmailAddress;
 $data['salesEmailAddress'] = $config->user->salesEmailAddress;
 $data['itemsPerPage'] = $config->admin->itemsPerPage;
 $data['displaySellerInfo'] = $config->user->displaySellerInfo;
 $data['logExceptionsToFile'] = $config->global-
>logExceptionsToFile;
 $form->populate($data);
 }

 // test for valid input
 // if valid, create new config object
 // create config sections
 // save config values to file,
 // overwriting previous version
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 $values = $form->getValues();
 $config = new Zend_Config(array(), true);
 $config->global = array();
 $config->admin = array();
 $config->user = array();
 $config->global->defaultEmailAddress =
$values['defaultEmailAddress'];
 $config->user->salesEmailAddress =
$values['salesEmailAddress'];
 $config->admin->itemsPerPage = $values['itemsPerPage'];
 $config->user->displaySellerInfo =
$values['displaySellerInfo'];
 $config->global->logExceptionsToFile =
$values['logExceptionsToFile'];
 $writer = new Zend_Config_Writer_Ini();
 $writer->write($this->localConfigPath, $config);
 $this->_helper->getHelper('FlashMessenger')->addMessage(
 'Thank you. Your configuration was successfully saved.');
 $this->_redirect('/admin/config/success');
 }
 }
 }

 // success action
 public function successAction()
 {
 if ($this->_helper->getHelper('FlashMessenger')->getMessages()) {
 $this->view->messages =
 $this->_helper->getHelper('FlashMessenger')->getMessages();
 } else {

Chapter 7: Paging, Sorting, and Uploading Data 233

 $this->_redirect('/');
 }
 }
}

The main workhorse in this controller is the indexAction() method, which is

responsible for validating the input received through it and for writing the configuration data

to an INI file using the Zend_Config_Writer component. When initializing the configuration

form, the indexAction() method also reads the source configuration file (if available) with

the Zend_Config component, and then prepopulates then form with the current configuration

settings.

The location of the configuration file is read directly from the application configuration

file and stored as a protected class property, in the controller’s init() method. Since this

controller is intended for use only by administrators, the preDispatch() method checks for

an authenticated user and redirects to the login page if not present.

Here’s the corresponding view script, which should be saved as $APP_DIR/application/

modules/default/views/scripts/config/index.phtml:

<h2>Edit Settings</h2>
<?php echo $this->form; ?>

Updating the Master Layout
All that’s left is to update the administrative layout at $APP_DIR/application/layouts/admin

.phtml to display a “Settings” item in the main menu when the user is logged in. The revision

to the layout is highlighted in bold in the following example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 ...
 <div id="menu">
 <?php if (Zend_Auth::getInstance()->hasIdentity()): ?>
 <a href="<?php echo $this->url(array(),
 'admin-catalog-index'); ?>">CATALOG
 <a href="<?php echo $this->url(array(),
 'admin-config'); ?>">SETTINGS
 <a href="<?php echo $this->url(array(), 'logout'); ?>">LOGOUT
 <?php else: ?>
 <a href="<?php echo $this->url(array(), 'login'); ?>">LOGIN
 <?php endif; ?>
 </div>

...
</html>

(continued)

234 Zend Framework: A Beginner’s Guide

You can now try this out, by logging in to the application’s administration panel and browsing

to the URL http://square.localhost/admin/config. Figure 7-9 illustrates the configuration form

that you should see.

Enter values into this configuration form and submit it. The data should now be saved to

the file $APP_DIR/application/configs/square.ini. Look inside this file, and you should see the

data in INI format, as shown in Figure 7-10.

If you now revisit the URL http://square.localhost/admin/config, you’ll see that the

configuration form is automatically prepopulated with the settings saved earlier. Figure 7-11

displays the output.

Figure 7-9 The SQUARE application configuration form

Figure 7-10 Example configuration data in INI format

http://square.localhost/admin/config
http://square.localhost/admin/config

Chapter 7: Paging, Sorting, and Uploading Data 235

Using Configuration Data
Successfully reading and writing configuration data is only half the battle won—you still

need to make use of this data to inform the behavior of specific controllers and actions. As an

example, consider that the ContactController::indexAction should now be modified

to read the user-level configuration file and send its email messages to the sales address

specified in that file. Here’s the revised ContactController::indexAction:

<?php
class ContactController extends Zend_Controller_Action
{
 public function indexAction()
 {
 $form = new Square_Form_Contact();;
 $this->view->form = $form;
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 $values = $form->getValues();
 $configs = $this->getInvokeArg('bootstrap')-
>getOption('configs');
 $localConfig = new Zend_Config_Ini($opt['localConfigPath']);
 $to = (!empty($localConfig->user->salesEmailAddress)) ?
 $localConfig->user->salesEmailAddress :
 $localConfig->global->defaultEmailAddress;
 $mail = new Zend_Mail();
 $mail->setBodyText($values['message']);

Figure 7-11 The SQUARE application configuration form, prepopulated with current settings

(continued)

236 Zend Framework: A Beginner’s Guide

 $mail->setFrom($values['email'], $values['name']);
 $mail->addTo($to);
 $mail->setSubject('Contact form submission');
 $mail->send();
 $this->_helper->getHelper('FlashMessenger')->addMessage(
 'Thank you. Your message was successfully sent.');
 $this->_redirect('/contact/success');
 }
 }
 }
}

In a similar vein, the Catalog_ItemController::displayAction should be updated

to check whether seller information should be visible in the public catalog, and to display this

information accordingly. Here’s the revised Catalog_ItemController::displayAction,

which sets a flag for the view after reading the user-level configuration file:

<?php
class Catalog_ItemController extends Zend_Controller_Action
{
 // action to display a catalog item
 public function displayAction()
 {
 // set filters and validators for GET input
 $filters = array(
 'id' => array('HtmlEntities', 'StripTags', 'StringTrim')
);
 $validators = array(
 'id' => array('NotEmpty', 'Int')
);
 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());

 // test if input is valid
 // retrieve requested record
 // attach to view
 if ($input->isValid()) {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.RecordID = ?', $input->id)
 ->addWhere('i.DisplayStatus = 1')
 ->addWhere('i.DisplayUntil >= CURDATE()');
 $result = $q->fetchArray();
 if (count($result) == 1) {

Chapter 7: Paging, Sorting, and Uploading Data 237

 $this->view->item = $result[0];
 $this->view->images = array();
 $config = $this->getInvokeArg('bootstrap')-
>getOption('uploads');
 foreach (glob("{$config['uploadPath']}/
 {$this->view->item['RecordID']}_*") as $file)
 {
 $this->view->images[] = basename($file);
 }
 $configs = $this->getInvokeArg('bootstrap')-
>getOption('configs');
 $localConfig = new Zend_Config_Ini($configs['localConfigPath']
);
 $this->view->seller = $localConfig->user->displaySellerInfo;
 } else {
 throw new Zend_Controller_Action_Exception('Page not found',
404);
 }
 } else {
 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }
}

And here’s the corresponding view, which uses the flag set by the controller to determine

whether or not seller information is included in the output page:

<h2>View Item</h2>
<h3>
 FOR SALE:
 <?php echo $this->escape($this->item['Title']); ?> -
 <?php echo $this->escape($this->item['Year']); ?> -
 <?php echo $this->escape($this->item['Square_Model_Grade']
['GradeName']); ?>
</h3>

<div id="container">
 <div id="images">
 <?php foreach ($this->images as $image): ?>
 <img src="/uploads/<?php echo $this->escape($image); ?>"
 width="150" height="150" />
 <?php endforeach; ?>
 </div>
 <div id="record">
 <table>
 <tr>
 <td class="key">Title:</td>
 <td class="value">

(continued)

238 Zend Framework: A Beginner’s Guide

 <?php echo $this->escape($this->item['Title']); ?>
 </td>
 </tr>
 <!-- other display fields -->

 <tr>
 <td class="key">Description:</td>
 <td class="value">
 <?php echo $this->escape($this->item['Description']); ?>
 </td>
 </tr>
 <?php if ($this->seller == 1): ?>
 <tr>
 <td class="key">Seller:</td>
 <td class="value">
 <?php echo $this->escape($this->item['SellerName']); ?>,
 <?php echo $this->escape($this->item['SellerAddress']); ?>
 </td>
 </tr>
 <?php endif; ?>
 </table>
 </div>
</div>

It’s also quite easy to integrate the user-level configuration with the behavior of the

Doctrine_Pager component in the Catalog_AdminItemController::indexAction.

This ensures that the number of items displayed on each page reflects the value specified by

the user, rather than an arbitrary value set by the application designer. The code is not included

here due to space constraints, but you’ll find it in this chapter’s code archive.

TIP

If you have a number of different controllers and actions reading data from the same
user-level configuration file, you can save yourself some code duplication by having the
application bootstrapper automatically read this file into the local resource registry. This
registry can be accessed from anywhere in the application using the getResource()
method of the Zend_Application_Bootstrap_Bootstrap class. Internally, the registry
is represented as an instance of the Zend_Registry component, which provides an
application-level storage area for global objects or variables. More information on the
application bootstrapper and the Zend_Registry component is available through the
links at the end of this chapter, and you’ll also find numerous examples of using Zend_
Registry in subsequent chapters of this book.

Chapter 7: Paging, Sorting, and Uploading Data 239

Summary
This chapter focused on three components, all of which are new to you: the Doctrine_Pager

component, which provides a framework for paginating large database result sets; the Zend_

File_Transfer component, which provides a full-featured API for validating, filtering, and

receiving files uploaded through Web forms; and the Zend_Config component, which makes it

easy to handle configuration data expressed in different formats. All of these components were

illustrated with practical reference to the SQUARE example application, which now sports

paging and sorting features, a configuration panel, and an image upload system.

To learn more about the topics discussed in this chapter, consider visiting the following

links:

The Doctrine_Pager component, at ● http://www.doctrine-project.org/documentation/

manual/1_1/en/utilities#pagination:working-with-pager

The Zend_Paginator component, at ● http://framework.zend.com/manual/en/zend

.paginator.html

The Zend_File_Transfer component, at ● http://framework.zend.com/manual/en/zend.file

.html

Filters and validators for the Zend_File_Transfer components, at ● http://framework.zend

.com/manual/en/zend.file.transfer.filters.html and http://framework.zend.com/manual/

en/zend.file.transfer.validators.html

The Zend_Config component, at ● http://framework.zend.com/manual/en/zend.config

.html

The Zend_Registry component, at● http://framework.zend.com/manual/en/zend.registry

.html

The Bootstrap class and the local resource registry, at ● http://framework.zend.com/

manual/en/zend.application.theory-of-operation.html

An explanation of the Registry pattern (Martin Fowler), at ● http://martinfowler.com/

eaaCatalog/registry.html

A discussion of creating a custom resource plug-in for the Zend Framework bootstrapper ●

(Stefan Schmalhaus), at http://blog.log2e.com/2009/06/01/creating-a-custom-resource-

plugin-in-zend-framework-18/

A tutorial on the Zend_Config component (Aaron Wormus), at ● http://devzone.zend.com/

article/1264

http://www.doctrine-project.org/documentation/manual/1_1/en/utilities#pagination:working-with-pager
http://www.doctrine-project.org/documentation/manual/1_1/en/utilities#pagination:working-with-pager
http://framework.zend.com/manual/en/zend.paginator.html
http://framework.zend.com/manual/en/zend.paginator.html
http://framework.zend.com/manual/en/zend.file.html
http://framework.zend.com/manual/en/zend.file.html
http://framework.zend.com/manual/en/zend.file.transfer.filters.html
http://framework.zend.com/manual/en/zend.file.transfer.filters.html
http://framework.zend.com/manual/en/zend.file.transfer.validators.html
http://framework.zend.com/manual/en/zend.file.transfer.validators.html
http://framework.zend.com/manual/en/zend.config.html
http://framework.zend.com/manual/en/zend.config.html
http://framework.zend.com/manual/en/zend.registry.html
http://framework.zend.com/manual/en/zend.registry.html
http://framework.zend.com/manual/en/zend.application.theory-of-operation.html
http://framework.zend.com/manual/en/zend.application.theory-of-operation.html
http://martinfowler.com/eaaCatalog/registry.html
http://martinfowler.com/eaaCatalog/registry.html
http://blog.log2e.com/2009/06/01/creating-a-custom-resource-plugin-in-zend-framework-18/
http://blog.log2e.com/2009/06/01/creating-a-custom-resource-plugin-in-zend-framework-18/
http://devzone.zend.com/article/1264
http://devzone.zend.com/article/1264

This page intentionally left blank

241

Chapter 8
Logging and Debugging

Exceptions

242 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

Learn about the PHP 5.x exception model

Understand how exceptions are handled in a Zend Framework application

 Integrate custom exceptions classes with the default Zend Framework error

handler

Control the visibility of error information in production environments

Maintain a permanent record of exceptions by logging them to a file or a database

Enhance log messages with additional debugging information

Track exceptions in real time with the Firebug console debugger

Acommon misconception, especially among less experienced developers, is that a “good”

program is one that works without errors. In fact, this is not strictly true: A better

definition might be that a good program is one that anticipates all possible error conditions

ahead of time and deals with them in a consistent manner.

Writing “intelligent” programs that conform to this definition is as much art as science.

Experience and imagination play important roles in assessing potential causes of error and

defining corrective action, but no less important is the programming framework itself, which

defines the tools and functions available to trap and resolve errors.

By developing applications with the Zend Framework, error handling is less of a

concern than with many other frameworks. The default error handler supplied with the Zend

Framework can handle most common situations out of the box, and there are a number of other

components, such as Zend_Log and Zend_Debug, which can be used to provide additional

information to developers and administrators. This chapter will introduce you to all of these

tools, and explain how they can be used in a practical context.

Understanding Exceptions
PHP 5.x introduced a new exception model, similar to that used by other programming

languages like Java and Python. In this exception-based approach, program code is wrapped in

a try block, and exceptions generated by it are “caught” and resolved by one or more catch
blocks. Because multiple catch blocks are possible, developers can trap different types of

exceptions and handle each type differently.

Chapter 8: Logging and Debugging Exceptions 243

To illustrate how this works, consider the following listing, which attempts to access

a nonexistent array element using an ArrayIterator:

<?php
// define array
$cities = array(
 'London',
 'Washington',
 'Paris',
 'Delhi'
);

// try accessing a non-existent array element
// generates an OutOfBoundsException
try {

 $iterator = new ArrayIterator($cities);
 $iterator->seek(10);

} catch (Exception $e) {
 echo "ERROR: Something went wrong!\n";
 echo "Error message: " . $e->getMessage() . "\n";
 echo "Error code: " . $e->getCode() . "\n";
 echo "File name: " . $e->getFile() . "\n";
 echo "Line: " . $e->getLine() . "\n";
 echo "Backtrace: " . $e->getTraceAsString() . "\n";
}
?>

When PHP encounters code wrapped within a try-catch block, it first attempts to

execute the code within the try block. If this code is processed without any exceptions

being generated, control transfers to the lines following the try-catch block. However,

Q: I’ve seen that uncaught exceptions generate a fatal error that causes the script to end

abruptly. Can I change this?

A: Yes and no. PHP offers the set_exception_handler() function, which allows you

to replace PHP’s default exception handler with your own custom code, in much the same

way as set_error_handler() does. However, there’s an important caveat to be aware

of here. PHP’s default exception handler displays a notification and then terminates script

exception. Using a custom exception handler allows limited control over this behavior:

While you can change the manner and appearance of the notification display, you can’t

make the script continue executing beyond the point where the exception was generated.

Ask the Expert

244 Zend Framework: A Beginner’s Guide

if an exception is generated while running the code within the try block (as happens in the

preceding listing), PHP stops execution of the block at that point and begins checking each

catch block to see if there is a handler for the exception. If a handler is found, the code

within the appropriate catch block is executed and then the lines following the try block are

executed; if not, a fatal error is generated and script execution stops at the point of error.

Every Exception object includes some additional information that can be used for

debugging the source of the error. This information can be accessed via the Exception object’s

built-in methods and includes a descriptive error message, an error code, the filename and the

number of the line in which the error occurred, and a backtrace of the function invocations

leading to the error. Table 8-1 lists these methods.

A more sophisticated approach is to subclass the generic Exception object and create

specific Exception objects for each possible error. This approach is useful when you need to

treat different types of exceptions differently, as it allows you to use a separate catch block

(and separate handling code) for each exception type. Here’s a revision of the preceding

example, which illustrates this approach:

<?php
// subclass Exception
class MissingFileException extends Exception { }
class DuplicateFileException extends Exception { }
class FileIOException extends Exception { }

// set file name
// attempt to copy and then delete file
$file = 'dummy.txt';
try {

 if (!file_exists($file)) {
 throw new MissingFileException($file);
 }
 if (file_exists("$file.new")) {
 throw new DuplicateFileException("$file.new");

Method Name Description

getMessage() Returns a message describing what went wrong

getCode() Returns a numeric error code

getFile() Returns the disk path and name of the script that generated the
exception

getLine() Returns the number of the line that generated the exception

getTrace() Returns a backtrace of the calls that led to the error, as an array

getTraceAsString() Returns a backtrace of the calls that led to the error, as a string

Table 8-1 Methods of the PHP Exception Object

Chapter 8: Logging and Debugging Exceptions 245

 }
 if (!copy($file, "$file.new")) {
 throw new FileIOException("$file.new");
 }
 if (!unlink($file)) {
 throw new FileIOException($file);
 }

} catch (MissingFileException $e) {
 echo 'ERROR: Could not find file \'' . $e->getMessage() . '\'';
 exit();
} catch (DuplicateFileException $e) {
 echo 'ERROR: Destination file \'' . $e->getMessage() . '\' already exists';
 exit();
} catch (FileIOException $e) {
 echo 'ERROR: Could not perform file input/output operation on file \'' .
 $e->getMessage() . '\'';
 exit();
} catch (Exception $e) {
 echo 'ERROR: Something bad happened on line ' . $e->getLine() . ': ' .
 $e->getMessage();
 exit();
}
echo 'SUCCESS: File operation successful.';
?>

This script extends the base Exception class to create three new Exception types, each

representing a different possible error. A separate catch block for each Exception now makes

it possible to customize how each of these three Exceptions is treated. The last catch block

is a generic “catch-all” handler: Exceptions that are not handled by the more specific blocks

above it will fall through to, and be dealt with by, this handler.

The exception-based approach offers a number of benefits:

Without exception handling, it is necessary to check the return value of every function

called to identify if an error occurred and take corrective action. This produces

unnecessarily complicated code and deeply nested code blocks. In the exception-based

model, a single catch block can be used to trap any error that occurs in the preceding

code block. This eliminates the need for multiple cascading error tests, and it produces

simpler and more readable code.

In the absence of exceptions, error handling is prescriptive by nature: It requires the developer

to think through all possible errors that might occur, and write code to handle each of these

possibilities. By contrast, the exception-based approach is more flexible. A generic exception

handler works like a safety net, catching and handling even those errors for which no specific

handling code has been written. This only helps to make application code more robust and

resilient to unforeseen situations.

Because the exception model used an object-based approach, developers can use OOP

concepts of inheritance and extensibility to subclass the base Exception object and create

246 Zend Framework: A Beginner’s Guide

different Exception objects for different types of exceptions. This makes it possible to

distinguish between different types of errors and to handle each type differently.

The exception-based approach forces developers to make hard decisions about how

to handle different types of errors. Where exceptions are not available, developers can

easily omit (by accident or design) tests to check the return value of functions. However,

exceptions are not so easy to ignore. By requiring developers to create and populate catch
blocks, the exception model forces them to think about the causes and consequences of

errors and ultimately results in better design and more robust implementation.

All Zend Framework components are explicitly designed to use the exception-based

model by default, with each component extending the base Zend_Exception class as needed.

So, regardless of whether you’re using Zend Framework components as stand-alone pieces

of a larger application, or within the context of a Zend Framework MVC application, this

consistency in approach can significantly reduce the time spent on developing application-level

error-handling features.

Understanding the Default Error-Handling Process
Let’s now look a little more closely at exception handling within a Zend Framework MVC

application. By default, whenever an action throws an exception, this exception “bubbles

up” through the execution chain until it reaches the front controller. The front controller

includes an error-handler plug-in (automatically registered as part of the bootstrap process)

which takes care of forwarding the exception to the application’s default error controller. The

error controller then checks the exception type and displays an appropriate error view to the

requesting client.

Where does this error controller come from? For projects created with the zf command-line

script, it’s automatically included in the default project layout. For projects created manually, it

must be manually generated. In either case, it’s represented as a separate controller and action,

ErrorController::errorAction, and located within the application’s “default” module.

Here’s an example of what it typically looks like:

<?php
class ErrorController extends Zend_Controller_Action
{
 public function errorAction()
 {
 $errors = $this->_getParam('error_handler');

 switch ($errors->type) {
 case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_CONTROLLER:
 case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_ACTION:

 // 404 error -- controller or action not found
 $this->getResponse()->setHttpResponseCode(404);
 $this->view->message = 'Page not found';
 break;

Chapter 8: Logging and Debugging Exceptions 247

 default:
 // application error
 $this->getResponse()->setHttpResponseCode(500);
 $this->view->message = 'Application error';
 break;
 }

 $this->view->exception = $errors->exception;
 $this->view->request = $errors->request;
 }
}

This default error controller is designed to handle two types of situations: invalid HTTP

requests, and exceptions generated by action code. It responds to the former with a 404 error

code, and to the latter with a 500 error code. To see this in action, consider the following

example:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function failAction()
 {
 // try accessing a non-existent array element
 // generates an OutOfBoundsException
 $cities = array(
 'London',
 'Washington',
 'Paris',
 'Delhi'
);
 $iterator = new ArrayIterator($cities);
 $iterator->seek(10);
 }
}

In this case, any request for the action will result in an exception, and this exception will be

propagated through the execution chain until it reaches the ErrorController::errorAction.

This action will check the exception type and respond by setting the server response code to

500 (internal server error), and then rendering the error view. Figure 8-1 shows an example of

the error view generated by the previous code listing.

If you were instead to try accessing a nonexistent controller or action, you’d be handed a

404 (page not found) error. Figure 8-2 shows an example.

Notice that in addition to the error message, the default view also contains a stack trace

of the internal requests that led to the exception and a list of the parameters included in the

original HTTP request. This is useful information when you’re trying to identify the source

of an error.

248 Zend Framework: A Beginner’s Guide

TIP

The behavior of the default error controller fits the needs of the vast majority of
Zend Framework applications—in most cases, a 500 response for application-level
exceptions and a 404 response for invalid requests is the expected, standards-
compliant behavior—and so you won’t often need to modify it. However, if your
application uses custom exception classes, you might want to modify the default handler
and switch to different handling routines based on the exception type. This is examined
in the following section.

Figure 8-1 The result of an internal error thrown by the application

Figure 8-2 The result of a request for an invalid or missing application resource

Chapter 8: Logging and Debugging Exceptions 249

If you’d like to disable the default error controller and have exceptions handled by PHP in

the default manner, update your application configuration file to include the following directive:

resources.frontController.throwExceptions = 1

With this change, the onus is now on the developer to catch and resolve exceptions locally,

within the scope of the action that produced them. Uncaught exceptions will produce a fatal

error and halt script execution at the point where the exception was raised. Figure 8-3 has an

example of how uncaught exceptions behave when the default error handler is disabled.

Using Custom Exception Classes
If your application makes use of custom exception classes, it often makes sense to alter the default

error controller to switch its behavior depending on the type of exception caught. This approach

allows the developer to go beyond the two basic error types handled by the default controller and

provides more fine-grained control over how different types of exceptions are handled.

To illustrate how this works, consider the following variant of the previous code listing,

which throws a custom exception depending on whether the required file is present or absent:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function failAction()
 {
 $this->file = APPLICATION_PATH . '/configs/no.such.file.xml';
 if (!file_exists($this->file)) {
 throw new Example_Invalid_File_Exception(
 'File does not exist: ' . $this->file);
 }
 if (file_exists($this->file)) {
 throw new Example_Duplicate_File_Exception(
 'File already exists: ' . $this->file);
 }
 }
}

Figure 8-3 The result of disabling the default error controller and allowing exceptions to be handled
by PHP

250 Zend Framework: A Beginner’s Guide

When you’re using custom exceptions in this manner, it’s quite common to change the

default error controller and add in specific handling code for different exception types. Here’s

an example of how to do this:

<?php
class ErrorController extends Zend_Controller_Action
{
 public function errorAction()
 {
 $errors = $this->_getParam('error_handler');
 $this->view->exception = $errors->exception;
 $this->view->request = $errors->request;
 switch (get_class($errors->exception)) {
 // handle invalid file exceptions
 case 'Example_Invalid_File_Exception':
 $this->getResponse()->setHttpResponseCode(500);
 $this->view->title = 'File Not Found';
 $this->view->message =
 'There was an error reading a file needed by the application.';
 break;

 // handle duplicate file exceptions
 case 'Example_Duplicate_File_Exception':
 $this->getResponse()->setHttpResponseCode(500);
 $this->view->title = 'File Already Exists';
 $this->view->message =
 'There was an error writing a file needed by the application.';
 break;

 // handle 404 exceptions
 case 'Zend_Controller_Dispatcher_Exception':
 $this->getResponse()->setHttpResponseCode(404);
 $this->view->title = 'Page Not Found';
 $this->view->message = 'The requested page could not be found.';
 break;

 // handle generic action exceptions
 case 'Zend_Controller_Action_Exception':
 if ($errors->exception->getCode() == 404) {
 $this->getResponse()->setHttpResponseCode(404);
 $this->view->title = 'Page Not Found';
 $this->view->message = 'The requested page could not be found.';
 } else {
 $this->getResponse()->setHttpResponseCode(500);
 $this->view->title = 'Internal Server Error';
 $this->view->message =
 'Due to an application error, the requested page could
 not be displayed.';
 }
 break;

 // handle everything else
 default:

Chapter 8: Logging and Debugging Exceptions 251

 $this->getResponse()->setHttpResponseCode(500);
 $this->view->title = 'Internal Server Error';
 $this->view->message =
 'Due to an application error, the requested page could
 not be displayed.';
 break;
 }
 }
}

Here, the errorAction() begins by first retrieving the exception object thrown by the

source action controller, via the 'error_handler' request parameter. It then examines

the exception class and switches to a different code branch depending on the exception

class name. In this example, in addition to the standard cases (requests for invalid resources

and generic uncaught exceptions), the controller also has specific branches for the custom

exception classes used by the application. Needless to say, this switch-case() routine can

be extended to support as many custom exception classes as are required.

Controlling Exception Visibility
As a general rule, it’s not a good idea to include stack traces and other debugging information

in error messages once an application has been transferred to a production environment.

This information sometimes contains sensitive information, such as SQL query output,

file locations, and/or user passwords, which can be used by malicious users to identify

an application’s weak points and mount attacks on it remotely. Hiding this information in

production environments is thus an important step in improving overall application security.

The typical Zend Framework application comes with configuration settings for four

environments: development, testing, staging, and production. Under the default settings, error

display in these environments is handled as follows:

In both development and testing environments, the PHP 'display_errors' and

'display_startup_errors' configuration variables are set to true, resulting in

error messages being displayed to the user. In staging and production environments, these

variables are set to false and, as a result, error messages are hidden from the user.

Q: How do I switch between production and development environments?

A: Information about the current environment is specified in the application’s .htaccess file, as

a server environment variable named APPLICATION_ENV. On every request, the index.php

script checks for this variable and passes it to the Zend_Application component. Zend_

Application then reads the appropriate block of the application configuration file, and sets

up application variables as per the directives specified in this block. So, to switch from one

environment to another, simply edit the application’s .htaccess file and set the value of the

APPLICATION_ENV variable to the required environment name.

Ask the Expert

252 Zend Framework: A Beginner’s Guide

In the development environment, the default error view includes the error message, a

stack trace, and a variable dump of the request space. In production, staging, and testing

environments, only the error message is displayed to the user.

These settings can be adjusted by modifying the appropriate block in the application

configuration file and by altering the error view to display more or less information depending

on which environment is currently in use (there’s an example of this in the next section).

Creating a Custom Error Page
With all this information at hand, let’s try creating a custom error page for the SQUARE

example application.

Since we don’t have any special exception-handling requirements, we can leave the error

controller largely untouched, with just one minor change: adding a view script variable for the

page title. You’ll see this minor modification in the section entitled “Try This 8-2,” and you’ll

also find it in the code archive for this chapter.

We can now proceed to customize the error view by updating the default error view script,

at $APP_DIR/application/modules/default/views/scripts/error/error.phtml, to include some

additional debugging information:

<div>
 <div id="error-image">

 </div>
 <div id="error-message">
 <h1><?php echo $this->title; ?></h1>
 <?php echo $this->message; ?>
 </div>
</div>

<?php if ('development' == APPLICATION_ENV): ?>
<div id="error-data">
 <h2>Exception message:</h2>
 <pre><?php echo $this->exception->getMessage(); ?></pre>

 <h2>Stack trace:</h2>
 <pre><?php echo $this->exception->getTraceAsString() ?></pre>

 <h2>Request method:</h2>
 <pre><?php echo $this->request->getMethod(); ?></pre>

 <h2>Request parameters:</h2>
 <?php Zend_Debug::dump($this->request->getParams()); ?>

 <h2>Server environment:</h2>
 <?php Zend_Debug::dump($this->request->getServer()); ?>

 <h2>System environment:</h2>
 <?php Zend_Debug::dump($this->request->getEnv()); ?>
 <?php endif ?>
</div>

Try This 8-1

Chapter 8: Logging and Debugging Exceptions 253

This error view displays one of two messages, depending on whether the error is a 404 or

500 server error. The amount of information displayed also differs depending on the environment

in use. For example, Figure 8-4 illustrates the output when running in a production environment,

while Figure 8-5 illustrates the output when running in a development environment.

Figure 8-4 Error output in a production environment

Figure 8-5 Error output in a development environment

254 Zend Framework: A Beginner’s Guide

TIP

The Zend_Controller_Request_Http object exposes various methods to get information
about the current request, and some of these are used in the previous code listing.
The getParams() method returns an array of the current request parameters, the
getServer() method returns an array of server environment variables ($_SERVER),
and the getEnv() method returns an array of the current environment ($_ENV).

Logging Data
You’ve already seen, in the previous section, how it’s possible to alter the amount of debugging

information presented to the user in production environments. However, even though this

information shouldn’t be shown to the user, it does have value to the application developer and

administrator. And so, the Zend Framework includes a Zend_Log component, which provides

a general-purpose logging framework to log any type of data (including, but not limited to,

exceptions) to disk files or other data storage. This information is typically analyzed and used

for debugging, auditing, or reporting purposes.

The Zend_Log component is remarkably flexible. It supports multiple log destinations

(standard output device, file, database, email address, or system log), multiple output formats

(single line ASCII, XML, or custom), and multiple log priorities (ranging from “informational”

to “emergency”). Some of its other features include user-defined priority levels; user-defined

log formats; priority-based log filters; and support for Firebug (the Firefox browser debugger)

console output.

The following sections examine these features in greater detail.

Writing Log Messages
Here’s a simple example of using Zend_Log to log a message to a file in a specified format:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function logAction()
 {

Q: What is Zend_Debug?

A: The Zend_Debug component provides a convenient way to inspect variables in PHP. It exposes

a single static method, dump(), which can be used to “dump” the contents of a variable to

the standard output device. This method is commonly used to quickly look inside variables,

especially when debugging and logging errors. Internally, Zend_Debug::dump() works as

a wrapper around the PHP var_dump() function, adding <pre>...</pre> tags around

the output and cleaning up line breaks for better formatting.

Ask the Expert

Chapter 8: Logging and Debugging Exceptions 255

 // initialize logging engine
 $logger = new Zend_Log();

 // attach writer to logging engine
 $writer = new Zend_Log_Writer_Stream(
 APPLICATION_PATH . '/../data/logs/example.log');
 $logger->addWriter($writer);

 // attach formatter to writer
 $format = '%timestamp%: %priorityName%: %message%' . PHP_EOL;
 $formatter = new Zend_Log_Formatter_Simple($format);
 $writer->setFormatter($formatter);

 // write log message
 $logger->log('Body temperature critical', Zend_Log::EMERG);
 }
}

Figure 8-6 illustrates what the output looks like.

It should be clear from the preceding example that there are various objects involved in

writing log messages:

The Zend_Log object serves as the primary control point for generating log messages.

It exposes a log() method that initiates the log write operation.

The Zend_Log_Writer object takes care of writing the log message to the specified data

storage destination, be it a file, a database, an email address, or the system log. It is

attached to the Zend_Log object with the latter’s addWriter() method. Multiple writers

may be attached to a single Zend_Log object. Table 8-2 shows a list of the built-in writers

included with the Zend Framework.

The Zend_Log_Formatter object takes care of reformatting the log message, either into

XML or a user-defined format. It is always associated with a writer, and is attached to one

with the latter’s setFormatter() method. Only one formatter is permitted per writer.

Table 8-3 provides a list of the built-in formatters included with the Zend Framework.

Figure 8-6 An example log message, written to a file

256 Zend Framework: A Beginner’s Guide

Notice also the second parameter passed to the Zend_Log object’s log() method. This

parameter specifies the message priority, and it can be any one of eight predefined priority

levels. These levels are listed in Table 8-4, and they correspond closely to the levels used by

the UNIX system logger (syslog). They can be specified by the developer on a per-message

basis, depending on the importance of the message being logged.

To log messages to a database instead of a file (recommended in situations where logging

concurrency is high), use the Zend_Log_Writer_Db writer. This writer is initialized with an

instance of the Zend_Db_Adapter class (representing the database connection to be used),

the destination table, and an array specifying which fields should be used for the different

elements of the log message. Here’s an example:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function logAction()
 {
 // initialize logging engine
 $logger = new Zend_Log();

 // define database mapping

Table 8-2 Log Writers Included with the Zend Framework

Writer Description

Zend_Log_Writer_Stream Writes log messages to PHP streams (output device, error device, URLs,
or local files)

Zend_Log_Writer_Db Writes log messages to a database

Zend_Log_Writer_Firebug Writes log messages to the Firebug console

Zend_Log_Writer_Mail Writes log messages to an email address

Zend_Log_Writer_Mock Writes log messages back to itself for testing purposes

Zend_Log_Writer_Null Writes log messages to /dev/null

Zend_Log_Writer_Syslog Writes log messages to the system logger (syslogd on UNIX and the
Event Viewer on Windows)

Table 8-3 Log Formatters Included with the Zend Framework

Formatter Description

Zend_Log_Formatter_Simple Formats log messages into a user-defined format

Zend_Log_Formatter_Firebug Formats log messages for the Firebug console

Zend_Log_Formatter_Xml Formats log messages into XML

Chapter 8: Logging and Debugging Exceptions 257

 $table = 'log';
 $fields = array(
 'LogLevel' => 'priority',
 'LogMessage' => 'message',
 'LogTime' => 'timestamp'
);

 // attach writer to logging engine
 $writer = new Zend_Log_Writer_Db($this->adapter, $table, $fields);
 $logger->addWriter($writer);

 // write log message
 $logger->log('Body temperature critical', Zend_Log::EMERG);
 }
}

CAUTION

It is not possible to use a formatter with the database log writer. Attempting to do so will
result in an exception.

It’s also possible to log messages to an email address with the Zend_Log_Writer_Mail

writer, which accepts a configured Zend_Mail component as input. This is shown in the

next listing:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function logAction()
 {
 // create email message template

Log Level Description

DEBUG Debug notice

INFO Informational notice

NOTICE Notice

WARNING Warning notice

ERR Error notice

CRIT Critical error notice

ALERT Alert notice

EMERG Emergency error notice

Table 8-4 Log Levels Supported by the Zend_Log Component

258 Zend Framework: A Beginner’s Guide

 $mail = new Zend_Mail();
 $mail->setFrom('error-bot@host.example.com')
 ->addTo('admin@host.example.com');
 $mail->setSubject('Email error log');

 // initialize logging engine
 $logger = new Zend_Log();

 // attach writer to logging engine
 $writer = new Zend_Log_Writer_Mail($mail);
 $logger->addWriter($writer);

 // write log message
 // note: a mail transport must be defined for this to work
 $logger->log('Body temperature critical', Zend_Log::EMERG);
 }
}

CAUTION

Email logging can be a major drag on performance, particularly when the mail server
used is not on the same host as the application.

To write messages directly to the system logger (syslogd on UNIX and the Event Viewer

on Windows), use the Zend_Log_Writer_Syslog writer, as shown in the following example.

Note the use of the setFacility() method, which is used to set the log event’s facility, or

category, for the UNIX system logger.

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function logAction()
 {
 // initialize logging engine
 $logger = new Zend_Log();

 // attach writer to logging engine
 $writer = new Zend_Log_Writer_Syslog();
 $writer->setFacility(LOG_USER);
 $logger->addWriter($writer);

 // write log message
 $logger->log('Body temperature critical', Zend_Log::EMERG);
 }
}

Chapter 8: Logging and Debugging Exceptions 259

It’s worth pointing out here that in case none of the techniques in the preceding examples

fit your application’s requirements, it’s also quite easy to create custom log writers for other

data storage destinations, simply by extending the base Zend_Log_Writer_Abstract class.

The child class must expose, at minimum, a protected _write() method that accepts the log

message as an input argument, and writes it to the specified destination. You’ll see an example

of one such custom log writer in the next section.

Adding Data to Log Messages
By default, every log message contains four keys: the log message, the log priority (as

a number and as a string), and a timestamp indicating when the message was generated.

However, it’s possible to add user-defined keys to this message, via the Zend_Log object’s

setEventItem() method. This method accepts two parameters—a key and a value—and

attaches this key/value pair to the log message. This is particularly useful if you need to

include additional debugging information in a log message.

Here’s an example, which adds the client IP address and request URL to the log message:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function logAction()
 {
 // initialize logging engine
 $logger = new Zend_Log();

 // attach writer to logging engine
 $writer = new Zend_Log_Writer_Mock();
 $logger->addWriter($writer);

 // add client IP and request URL to log message
 $logger->setEventItem('request', $this->getRequest()->getRequestUri());
 $logger->setEventItem('host', $this->getRequest()->getClientIp());

 // write log message
 $logger->log('Body temperature critical', Zend_Log::EMERG);
 }
}

Formatting Log Messages
The keys included in a log message serve a dual purpose: They can also be used as format

specifiers to create a custom format string for log messages. The Zend_Log_Formatter_Simple

object uses this format string to control the format in which log messages are written to the

destination. Format specifiers are enclosed in percentage (%) symbols (see the very first code

listing in this section for an example).

260 Zend Framework: A Beginner’s Guide

The default format string contains a timestamp, the log level (as both a number and a

string), and the log message. However, it is possible to modify this format and rearrange items

to suit application-specific requirements. To illustrate, here’s another example, this one making

use of additional keys set with the setEventItem() method:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function logAction()
 {
 // initialize logging engine
 $logger = new Zend_Log();

 // attach writer to logging engine
 $writer = new Zend_Log_Writer_Stream(
 APPLICATION_PATH . '/../data/logs/example.log');
 $logger->addWriter($writer);

 // attach formatter to writer
 $format = '%timestamp%: %priorityName%: %request%:
 %host%: %message%' . PHP_EOL;
 $formatter = new Zend_Log_Formatter_Simple($format);
 $writer->setFormatter($formatter);

 // add client IP and request URL to log message
 $logger->setEventItem('request', $this->getRequest()->getRequestUri());
 $logger->setEventItem('host', $this->getRequest()->getClientIp());

 // write log message
 $logger->log('Body temperature critical', Zend_Log::EMERG);
 }
}

Figure 8-7 illustrates what the output of the previous listing might look like.

CAUTION

When you’re using the Zend_Log_Formatter_Simple formatter, additional keys specified
with the setEventItem() method will not be written to the log by default. To include
these items in the log, explicitly include them in the format string passed to the formatter.

Figure 8-7 An example log message, with extra information added

Chapter 8: Logging and Debugging Exceptions 261

To log data in XML, rather than plain-text format, switch to the Zend_Log_Formatter_

Xml formatter, as follows:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function logAction()
 {
 // initialize logging engine
 $logger = new Zend_Log();

 // attach writer to logging engine
 $writer = new Zend_Log_Writer_Stream(
 APPLICATION_PATH . '/../data/logs/example.log');
 $logger->addWriter($writer);

 // attach formatter to writer
 $formatter = new Zend_Log_Formatter_Xml();
 $writer->setFormatter($formatter);

 // add client IP and request URL to log message
 $logger->setEventItem('request', $this->getRequest()->getRequestUri());
 $logger->setEventItem('host', $this->getRequest()->getClientIp());

 // write log message
 $logger->log('Body temperature critical', Zend_Log::EMERG);
 }
}

In this case, log messages are formatted as XML entries, suitable for parsing in any XML

processor. Figure 8-8 shows an example of the output.

As with the Zend_Log_Formatter_Simple formatter, it’s possible to customize the output

XML by specifying different element names. This information should be passed to the Zend_

Log_Formatter_Simple object constructor as an array. Here’s an example illustrating this feature:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function logAction()
 {
 // initialize logging engine
 $logger = new Zend_Log();

 // attach writer to logging engine
 $writer = new Zend_Log_Writer_Stream(
 APPLICATION_PATH . '/../data/logs/example.log');
 $logger->addWriter($writer);

 // set XML element configuration
 $xml = array(

262 Zend Framework: A Beginner’s Guide

 'data' => 'message',
 'time' => 'timestamp',
 'level' => 'priorityName',
 'request' => 'request',
 'host' => 'host',
);

 // attach formatter to writer
 $formatter = new Zend_Log_Formatter_Xml('entry', $xml);
 $writer->setFormatter($formatter);

 // add client IP and request URL to log message
 $logger->setEventItem('request', $this->getRequest()->getRequestUri());
 $logger->setEventItem('host', $this->getRequest()->getClientIp());

 // write log message
 $logger->log('Body temperature critical', Zend_Log::EMERG);
 }
}

Figure 8-9 shows an example of the revised output.

Figure 8-8 An example log message, formatted as XML

Chapter 8: Logging and Debugging Exceptions 263

Logging Application Exceptions
Let’s now put all of this information in a practical context by updating the SQUARE example

application with a full-fledged exception-logging system, one that logs exception data to the

file, the database, and the Firebug console. As you will see, this is actually quite simple and can

be accomplished relatively easily. The following sections will guide you through the process.

NOTE

The following sections includes a discussion of how to log exception data to Firebug, the
Firefox browser debugger. It assumes that you have a working installation of the Firefox
browser, together with the Firebug and FirePHP extensions. In case you don’t already
have these components, you can download them from the Web using the links at the
end of the chapter.

Defining the Log Location
The first step is to define a location for the file-based log. So, create the $APP_DIR/data/logs/

directory, which is the default location for log files under the Zend Framework’s recommended

directory layout.

shell> cd /usr/local/apache/htdocs/square/data
shell> mkdir logs

Try This 8-2

Figure 8-9 An example log message, formatted as XML with custom element names

(continued)

264 Zend Framework: A Beginner’s Guide

It’s also a good idea to update the application configuration file, at $APP_DIR/application/

configs/application.ini, with this location, so that it can be used from within actions. Open this

file and update it with the following configuration directive:

logs.logPath = APPLICATION_PATH "/../data/logs"

Defining the Database Log Writer
The next step is to create a log writer that will integrate with Doctrine to write log entries to

the database.

As discussed earlier, this is not very difficult: It can be done simply by extending the

base Zend_Log_Writer_Abstract class and ensuring that the child class exposes a _write()
method that knows how to actually perform the log write operation. However, you might be

wondering why this is even necessary, given that Zend_Log already comes with the Zend_

Log_Writer_Db writer.

As explained in detail in Chapter 5, the reasons have to do with efficiency and consistency.

Consistency, because all database queries are currently being performed through Doctrine

models, and adding Zend_Db at this point simply muddies the waters. Efficiency, because

using one database access library instead of two reduces the number of components the

application has to load and the amount of configuration information that must be duplicated.

With this explanation in mind, proceed to create a custom log writer class named Square_

Log_Writer_Doctrine containing the following code:

<?php
class Square_Log_Writer_Doctrine extends Zend_Log_Writer_Abstract
{
 // constructor
 // accepts model name and column map
 public function __construct($modelName, $columnMap)
 {
 $this->_modelName = $modelName;
 $this->_columnMap = $columnMap;
 }

 // stub function
 // to deny formatter coupling
 public function setFormatter($formatter)
 {
 require_once 'Zend/Log/Exception.php';
 throw new Zend_Log_Exception(get_class() . ' does not support formatting');
 }

 // main log write method
 // maps database fields to log message fields
 // saves log messages as database records using model methods
 protected function _write($message)
 {
 $data = array();

Chapter 8: Logging and Debugging Exceptions 265

 foreach ($this->_columnMap as $messageField => $modelField) {
 $data[$modelField] = $message[$messageField];
 }
 $model = new $this->_modelName();
 $model->fromArray($data);
 $model->save();
 }

 // static factory method
 static public function factory($config)
 {
 return new self(self::_parseConfig($config));
 }
}

Save this class as $APP_DIR/library/Square/Log/Writer/Doctrine.php.

This class is based on the Zend_Log_Writer_Doctrine prototype created by Matthew

Lurz on the Zend Framework community wiki (see the link at the end of the chapter). Its

main workhorse is the _write() method, which initializes the named Doctrine model and

populates it with the keys of the log message. The model’s save() method is then used to

write the log message to the database.

Updating the Error Controller
All that’s left now is to update the ErrorController::errorAction such that it

automatically logs exceptions to the file, the database, and the Firebug console. Here’s the

revised controller from $APP_DIR/application/modules/default/controllers/ErrorController

.php, with modifications highlighted in bold:

<?php
class ErrorController extends Zend_Controller_Action
{
 public function errorAction()
 {
 $errors = $this->_getParam('error_handler');
 switch ($errors->type) {
 case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_CONTROLLER:
 case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_ACTION:

 // 404 error -- controller or action not found
 $this->getResponse()->setHttpResponseCode(404);
 $this->view->title = 'Page Not Found';
 $this->view->message = 'The requested page could not be found.';
 break;
 default:
 // application error
 $this->getResponse()->setHttpResponseCode(500);
 $this->view->title = 'Internal Server Error';
 $this->view->message =
 'Due to an application error, the requested page could

(continued)

266 Zend Framework: A Beginner’s Guide

 not be displayed.';
 break;
 }

 $this->view->exception = $errors->exception;
 $this->view->request = $errors->request;

 // initialize logging engine
 $logger = new Zend_Log();

 // add XML writer
 $config = $this->getInvokeArg('bootstrap')->getOption('logs');
 $xmlWriter = new Zend_Log_Writer_Stream(
 $config['logPath'] . '/error.log.xml');
 $logger->addWriter($xmlWriter);
 $formatter = new Zend_Log_Formatter_Xml();
 $xmlWriter->setFormatter($formatter);

 // add Doctrine writer
 $columnMap = array(
 'message' => 'LogMessage',
 'priorityName' => 'LogLevel',
 'timestamp' => 'LogTime',
 'stacktrace' => 'Stack',
 'request' => 'Request',
);
 $dbWriter = new Square_Log_Writer_Doctrine('Square_Model_Log', $columnMap);
 $logger->addWriter($dbWriter);

 // add Firebug writer
 $fbWriter = new Zend_Log_Writer_Firebug();
 $logger->addWriter($fbWriter);

 // add additional data to log message - stack trace and request parameters
 $logger->setEventItem('stacktrace',
 $errors->exception->getTraceAsString());
 $logger->setEventItem('request',
 Zend_Debug::dump($errors->request->getParams()));

 // log exception to writer
 $logger->log($errors->exception->getMessage(), Zend_Log::ERR);
 }
}

This code initializes an instance of the Zend_Log component and attaches three writers

to it: the standard file writer, the Doctrine-compliant database writer created in the previous

section, and the Firebug console writer. The Zend_Log object’s setEventItem() method

is used to attach two additional pieces of information to the log message, namely a stack trace

of the exception and the list of request parameters. As a result of these modifications, any

exception that bubbles up to the ErrorController::errorAction will be automatically

logged to three different destinations.

Chapter 8: Logging and Debugging Exceptions 267

To see this in action, try accessing a nonexistent application URL, such as http://square

.localhost/no/such/resource. An exception will be raised to the error controller, and a 404

response will be sent back to the requesting client. This exception will also be logged to a file

(Figure 8-10), to the application database (Figure 8-11), and to the Firebug console (Figure 8-12).

(continued)

Figure 8-10 An application exception, logged to a file in XML format

Figure 8-11 An application exception, logged to the application database

http://square.localhost/no/such/resource
http://square.localhost/no/such/resource

268 Zend Framework: A Beginner’s Guide

CAUTION

It should be noted that logging exceptions to three different destinations, as discussed
in this section, is not recommended in production environments. Logging data to a file
or database can affect performance due to file locking or network latency issues, while
logging data to the Firebug console increases the size of the response packet sent to
the client by the server. These and other performance issues must be carefully explored
when adding logging capabilities to a Zend Framework application.

Summary
This chapter marks the end of first section of this book, which was intended to teach you

basic application development techniques with the Zend Framework. Fittingly, it covered

exception handling, an important part of application development and an area that every

developer should be familiar with.

This chapter began with an introduction to the new exception model introduced in

PHP 5.x, outlining its benefits and advantages vis-à-vis the older PHP 4.x model. With this

background information at hand, it then proceeded to examine the default exception-handling

system built into the Zend Framework, outlining the functions of the default error controller

and examining how the default process can be adjusted to cover different situations. It

also took a quick look at how exception handling can (and should) be modified depending

on whether the application is running in a development or production environment, and

demonstrated a practical application of creating a custom error page.

Figure 8-12 An application exception, logged to the Firebug console

Chapter 8: Logging and Debugging Exceptions 269

The second half of the chapter focused specifically on the Zend_Log component, which

provides a full-featured framework for logging messages in a Zend Framework application.

This component can be used to log messages to a variety of different storage media, including

file, database, email address, system logger, and Firebug console, and it can also be easily

extended to support new log destinations. Some of these features were demonstrated in a

practical context, by adding exception logging code to the SQUARE example application.

To learn more about the topics discussed in this chapter, consider visiting the following links:

An overview of exceptions and exception handling in PHP 5.x, at http://www.php.net/

manual/en/language.exceptions.php

An overview of exceptions and exception handling in the Zend Framework, at http://

framework.zend.com/manual/en/zend.controller.exceptions.html

The Zend Framework error handler plug-in, at http://framework.zend.com/manual/en/

zend.controller.plugins.html

The Zend_Log component, at http://framework.zend.com/manual/en/zend.log.html

The Zend_Debug component, at http://framework.zend.com/manual/en/zend.debug.html

The Firefox Web browser, at http://www.mozilla.com/firefox

The Firebug console debugger, at http://www.getfirebug.com/

The FirePHP extension, at http://www.firephp.org/

A discussion of using the Firebug and FirePHP components with the Zend Framework

(Christoph Dorn), at http://www.christophdorn.com/Blog/2008/09/02/firephp-and-

zend-framework-16/

A discussion of handling errors in a Zend Framework application (Jani Hartikainen), at

http://codeutopia.net/blog/2009/03/02/handling-errors-in-zend-framework/

A more advanced Zend Framework exception formatter (Larry Root), at http://code

.google.com/p/zend-framework-exception-formatter/

The original proposal and source for the Doctrine-based log writer (Matthew Lurz), at

http://framework.zend.com/wiki/display/ZFPROP/Zend_Log_Writer_Doctrine+-

+Matthew+Lurz

http://www.php.net/manual/en/language.exceptions.php
http://www.php.net/manual/en/language.exceptions.php
http://framework.zend.com/manual/en/zend.controller.exceptions.html
http://framework.zend.com/manual/en/zend.controller.exceptions.html
http://framework.zend.com/manual/en/zend.controller.plugins.html
http://framework.zend.com/manual/en/zend.controller.plugins.html
http://framework.zend.com/manual/en/zend.log.html
http://framework.zend.com/manual/en/zend.debug.html
http://www.mozilla.com/firefox
http://www.getfirebug.com/
http://www.firephp.org/
http://www.christophdorn.com/Blog/2008/09/02/firephp-and-zend-framework-16/
http://www.christophdorn.com/Blog/2008/09/02/firephp-and-zend-framework-16/
http://codeutopia.net/blog/2009/03/02/handling-errors-in-zend-framework/
http://code.google.com/p/zend-framework-exception-formatter/
http://code.google.com/p/zend-framework-exception-formatter/
http://framework.zend.com/wiki/display/ZFPROP/Zend_Log_Writer_Doctrine+-+Matthew+Lurz
http://framework.zend.com/wiki/display/ZFPROP/Zend_Log_Writer_Doctrine+-+Matthew+Lurz

This page intentionally left blank

271

Chapter 9
Understanding

Application Localization

272 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

● Localize your application to different regions of the world

● Automatically apply local conventions for dates, currencies, temperatures, and

measurements

● Build a multilingual Web application

One of the nicest things about the Web is that it’s global: People from around the world can

access and use Web applications with nothing more complicated than a browser and an

Internet connection. The popularity and rapid growth of applications like Flickr, Google, Twitter,

MySpace, and Facebook are testaments to the Web’s global reach and to its popularity as

a medium for communication and collaboration.

If you’re a developer building a Web application, this fact has one important implication.

Once your application is out on the Web, it’s quite likely to receive visits from users who don’t

necessarily speak the same language as you, or even live in the same country. To make your

application accessible to these users, it’s necessary to support the local languages, symbols,

and formatting conventions of each user’s home country. This is the approach followed by

some of today’s most popular applications; look at any of the applications mentioned in the

previous paragraph, and chances are you’ll find a version in your local language or dialect.

The Zend Framework provides an easy way to perform application-level localization with

its Zend_Locale component, and many other components, such as Zend_Date and Zend_

Currency, can also automatically adjust their behavior to reflect the user’s current region.

There’s also the Zend_Translate component, which provides a full-fledged API for managing

and using translation strings in different languages. This chapter examines these components in

detail, illustrating how they can be combined to build a localized, multilingual application.

Understanding Localization and Locales
The pundits of globalization would have us believe that the world is becoming an increasingly

homogenous place, but in reality, each country still has a distinct identity and set of cultural

mores. These differences exist both at the perceptual level—for example, the Italians are

perceived as having a keen eye for fashion, while the French are perceived as a nation of

gourmets—and in more prosaic cultural artifacts such as language, currency, measurements,

and calendars. For example, in the United States, July 4th 2011 would be written as 7/4/2011,

while in India the same date would be expressed as 4/7/2011. Similarly, distances are

expressed in kilometers in Germany, France, Italy, India, and many other countries, while they

are expressed in miles in the United States.

Localization is the process of adapting an application to the conventions of a particular

geographic region, country, and/or language. This might be as simple as ensuring that dates,

times, and currencies are displayed in the correct format for the selected region, or as complex

Chapter 9: Understanding Application Localization 273

as translating application labels, menus, and messages into the native language(s) of that

region. The rationale is simple: The more “local” the application, the easier it is for users in

different regions to understand it and begin making use of it. Most popular Web applications

do this as a matter of routine: To illustrate, consider Figure 9-1, which displays the Google.com

search engine as it appears in three different countries of the world: United States, France,

and India.

Central to the process of localization is the concept of locales and locale identifiers.

A locale identifier is a string representing the user’s language and geographic region. This

identifier consists of a language code and a country code, separated with an underscore. This

identifier is intended to provide the application with precise information about the user’s

current location and language, and thereby enable it to present its information in the usual

conventions of that location and language.

An example will make this clearer. Consider, for example, an application that is set to the

locale en_US (language: English, country: United States). If the application is locale-aware, it

will use this information to ensure that, for example, dates are presented in MM-DD-YYYY

format and currencies are prefixed with the dollar ($) symbol. If the same application is

reconfigured to the locale de_AT (language: German, country: Austria), it will automatically

perform the necessary internal adjustments to present dates in DD-MM-YYYY format and

prefix currencies with the euro () symbol.

Figure 9-1 The Google search engine, as it appears in different countries

274 Zend Framework: A Beginner’s Guide

Table 9-1 provides a list of common locale identifiers, together with a description of the

languages and countries they represent.

NOTE

A complete list of the language codes found in locale identifiers is available in the ISO
639 standard, while a corresponding list of country codes is available in the ISO 3166
standard. You'll find links to both these standards at the end of the chapter.

Setting the Application Locale
The Zend Framework includes a component named Zend_Locale, which can be used to

define the application’s locale. This component can be used to set the application locale,

either manually or through a process of automatic detection at run time. Here’s an example of

manually setting the locale to fr_FR (language: French, country: France):

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function localeAction()

Locale Language Country

en_US English United States

en_GB English United Kingdom

fr_FR French France

fr_CA French Canada

fr_BE French Belgium

fr_CH French Switzerland

de_DE German Germany

it_IT Italian Italy

es_ES Spanish Spain

es_US Spanish United States

cs_CZ Czech Czech Republic

hi_IN Hindi India

mr_IN Marathi India

en_IN English India

pt_BR Portuguese Brazil

zh_CN Chinese China

Table 9-1 Common Locale Identifiers

Chapter 9: Understanding Application Localization 275

 {
 $locale = new Zend_Locale('fr_FR');
 }
}

The individual components of a locale identifier can be retrieved with the Zend_Locale

object’s getLanguage() and getRegion() methods, as follows:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function localeAction()
 {
 // define locale
 $locale = new Zend_Locale('fr_BE');

 // result: 'fr'
 $this->view->message = $locale->getLanguage();

 // result: 'BE'
 $this->view->message = $locale->getRegion();
 }
}

Typically, the Zend_Locale object is initialized in the application bootstrapper and made

persistent through the application registry. Once registered in this manner, other locale-aware

Zend Framework components, such as Zend_Date and Zend_Form, will automatically read the

selected locale and adjust themselves to display information in the conventions for that locale.

Here’s an illustrative example, and you’ll see this used many times throughout this chapter.

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initLocale()
 {
 // define locale
 $locale = new Zend_Locale('fr_FR');

 // register locale
 $registry = Zend_Registry::getInstance();
 $registry->set('Zend_Locale', $locale);
 }
}

Unless you’re very sure that your application will only be used in a single locale, manually

setting the application locale at design time is not recommended. Zend_Locale includes an

276 Zend Framework: A Beginner’s Guide

automatic locale detection feature, which can dynamically set the locale at run time after

inspecting the following information sources:

● The locale settings of the client environment Most modern Web clients allow users

to choose their preferred language and locale for viewing Web pages. This information is

accessible within a PHP application in the $_SERVER['HTTP_ACCEPT_LANGUAGES']
array. Whenever this information is available, Zend_Locale will use it to automatically

set the application locale. When the user has specified multiple preferred languages and

locales, the first valid locale will be used.

● The locale settings of the host environment When client settings are not available,

Zend_Locale will inspect the server environment and set the application locale based on

the host system’s locale. This information can be accessed and modified within PHP with

the setlocale() function.

To use automatic locale detection, the Zend_Locale object must be initialized with one of

the special locales 'browser', 'environment', or 'auto'. Using the 'browser' locale

restricts locale detection to the user’s browser only, while using the 'environment' locale

restricts it to the host server only. Using the special 'auto' locale (or, alternatively, passing

no arguments at all to the object constructor) tells Zend_Locale to check both the user’s

browser and the host environment for locale information.

Here is an example that illustrates these in action:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initLocale()
 {
 // detect locale from user's browser
 $locale = new Zend_Locale('browser');

 // detect locale from server environment
 $locale = new Zend_Locale('environment');

 // detect locale automatically from browser and then server
 $locale = new Zend_Locale('auto');

 // detect locale automatically from browser and then server
 $locale = new Zend_Locale();

 // register locale
 $registry = Zend_Registry::getInstance();
 $registry->set('Zend_Locale', $locale);
 }
}

If locale autodetection fails, Zend_Locale will throw an exception indicating this fact.

The general practice in this situation is to catch the exception and manually set the locale

Chapter 9: Understanding Application Localization 277

to a reasonable value, based on a “best guess” assumption about the application’s primary

audience. For example, if the application is an e-commerce store aimed at users in India, it is

reasonable to set the default locale to hi_IN in cases where no other locale information can be

detected. Here’s an example of how this can be done:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initLocale()
 {
 // try to auto-detect locale
 // if fail, set locale manually
 try {
 $locale = new Zend_Locale('browser');
 } catch (Zend_Locale_Exception $e) {
 $locale = new Zend_Locale('hi_IN');
 }

 // register locale
 $registry = Zend_Registry::getInstance();
 $registry->set('Zend_Locale', $locale);
 }
}

CAUTION

It is important to note that Zend_Locale will not throw an exception if the locale identifier
detected contains only the language code and not the region code. For example, some
client and/or server environments may simply return the locale en or fr. This situation
can sometimes create a problem when Zend_Locale is used with other locale-aware
classes that expect a complete locale identifier, such as Zend_Currency. There is no real
solution to this problem, apart from manually setting the locale based on available facts
and a “best guess” estimate. A proposed new feature in Zend_Locale will, in the future,
allow “locale upgrading,” wherein partially qualified locale identifiers (for example, en)
will be automatically converted to fully qualified locale identifiers (for example, en_US).

Localizing Numbers
The Zend_Locale component includes a subcomponent, Zend_Locale_Format, which

is designed expressly to assist in the task of localizing numeric values. This component

includes a static toNumber() method that can be used to present numbers in locale-specific

conventions. Here’s an example:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{

278 Zend Framework: A Beginner’s Guide

 public function numberAction()
 {
 // localize number
 // result: '195,740.676'
 $this->view->message = Zend_Locale_Format::toNumber(195740.676,
array('locale' => 'en_GB'));

 // result: '1,95,740.676'
 $this->view->message = Zend_Locale_Format::toNumber(
 195740.676, array('locale' => 'en_GB'));

 }
}

It is worth pointing out that, unlike Zend_Date and Zend_Currency, Zend_Locale_Format

cannot directly retrieve the application locale from the registry. It is therefore mandatory to

pass a locale identifier to the static toNumber() method as an argument.

It is also possible to further customize the output number by specifying a custom format

and precision. These options can be passed to the toNumber() method in the options array.

Here are some examples:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function numberAction()
 {
 // use custom number format
 // result: '1,95,740.67'
 $this->view->message = Zend_Locale_Format::toNumber(195740.676, array(
 'locale' => 'en_GB,
 'number_format' => '##,##,##0.00'
));
 }
}

The other method of note in the Zend_Locale_Format component is the static

convertNumerals() method, which makes it possible to convert numbers between Arabic

and Latin scripts. Note that this requires PHP’s PCRE extension to be compiled with UTF-8

support (Windows PHP installations often lack this support). Here’s an example of it in action:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function numberAction()
 {
 // convert between numeric scripts
 $this->view->message =
 Zend_Locale_Format::convertNumerals('1956', 'Latn', 'Thai');
 $this->view->message =

Chapter 9: Understanding Application Localization 279

 Zend_Locale_Format::convertNumerals('6482093.6498', 'Latn', 'Deva');
 }
}

TIP

You can obtain a complete list of the numeric scripts supported by Zend_Locale_
Format::convertNumerals by calling Zend_Locale::getTranslationList('
script').

Localizing Dates and Times
The Zend Framework comes with a component specifically designed to handle temporal display

and manipulation. This component, Zend_Date, provides a simple API to create and format

date and time values; it also supports a much wider range of timestamps than PHP’s built-in

mktime() function, and it can automatically detect the application locale (if set with Zend_

Locale) and present date and time values according to the local conventions of that locale.

Here’s a simple example of Zend_Date in action:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function dateAction()
 {
 // set date to now
 $date = new Zend_Date();

 // result: 'Dec 18, 2009 5:58:38 AM'
 $this->view->message = $date;
 }
}

As these examples illustrate, a Zend_Date object is automatically initialized to the

current date and time. It is also possible to initialize it to a specific date and time by passing

the constructor a human-readable date string, a UNIX timestamp, or an array of date/time

segments. Here are some examples:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{

 public function dateAction()
 {
 // set date using UNIX timestamp
 $date = new Zend_Date(1261125725);

280 Zend Framework: A Beginner’s Guide

 // result: '2009-12-18T08:42:05+00:00'
 $this->view->message = $date->get(Zend_Date::ISO_8601);

 // set date using string
 // result: '2010-12-25T15:56:00+00:00'
 $date->set('25/12/2010 15:56');
 $this->view->message = $date->get(Zend_Date::ISO_8601);

 // set date using array
 // returns '2010-06-24T16:35:00+00:00'
 $date->set(
 array(
 'year' => 2010,
 'month' => 6,
 'day' => 24,
 'hour' => 16,
 'minute' => 35,
 'second' => 0
));
 $this->view->message = $date->get(Zend_Date::ISO_8601);
 }
}

CAUTION

Avoid creating multiple instances of Zend_Date, because each instance incurs a
significant startup cost. So, where multiple instances are required, it is much more
efficient to reset an existing instance than to instantiate multiple instances.

As illustrated in the previous example, Zend_Date includes a set of predefined constants

for common date formats such as ISO 8601 and UNIX timestamps. These can be passed to

the Zend_Date object’s get() method to retrieve date and time output in the correct format.

The following listing demonstrates some of these formatting constants, with examples of the

resulting output:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function dateAction()
 {
 // set date using string
 $date = new Zend_Date('25/12/2010 15:56');

 // result: '2010-12-25T15:56:00+00:00'
 $this->view->message = $date->get(Zend_Date::ISO_8601);

 // result: 'Sat, 25 Dec 2010 15:56:00 +0000'
 $this->view->message = $date->get(Zend_Date::RFC_2822);

Chapter 9: Understanding Application Localization 281

 // result: 'Saturday, 25-Dec-10 15:56:00 UTC'
 $this->view->message = $date->get(Zend_Date::RFC_850);

 // result: '2010-12-25T15:56:00+00:00'
 $this->view->message = $date->get(Zend_Date::ATOM);

 // returns '2010-06-24T16:35:00+00:00'
 $this->view->message = $date->get(Zend_Date::ISO_8601);

 // result: 'Saturday, December 25, 2010'
 $this->view->message = $date->get(Zend_Date::DATE_FULL);

 // result: 'December 25, 2010 3:56:00 PM UTC'
 $this->view->message = $date->get(Zend_Date::DATETIME_LONG);
 }
}

TIP

If the predefined formats don't meet your needs, you can also create your own custom
formats, using either Zend_Date or PHP date() format specifiers. The Zend Framework
manual has more information on this, and you'll find a link to the relevant section at the
end of this chapter.

Zend_Date is also fully locale-aware: The component will automatically look for a

registered Zend_Locale object and, if available, will use the specified locale when formatting

date and time values. It’s also possible to explicitly specify a locale identifier as an argument

to the Zend_Date object constructor, and then have Zend_Date use that value instead. Consider

the following example, which illustrates both these scenarios:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function dateAction()
 {
 // define and register locale
 $locale = new Zend_Locale('fr_FR');
 $registry = Zend_Registry::getInstance();
 $registry->set('Zend_Locale', $locale);

 // create date object
 // locale will be automatically detected
 $date = new Zend_Date();

 // result: 'vendredi 18 décembre 2009'
 $this->view->message = $date->get(Zend_Date::DATE_FULL);

282 Zend Framework: A Beginner’s Guide

 // create date object
 // pass it locale or locale object
 $locale = new Zend_Locale('de_DE');
 $date = new Zend_Date($locale);

 // result: 'Freitag, 18. Dezember 2009 '
 $this->view->message = $date->get(Zend_Date::DATE_FULL);
 }
}

Zend_Date also natively supports time zones via its getTimezone() and setTimezone()
methods, and automatically adjusts dates and times based on the selected time zone. Here’s a

simple example that illustrates this:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function dateAction()
 {
 // set date using string
 $date = new Zend_Date('25/12/2010 15:56');

 // set time zone to UTC
 $date->setTimezone('UTC');

 // result: '2010-12-25T15:56:00+00:00'
 $this->view->message = $date->get(Zend_Date::ISO_8601);

 // set time zone to IST
 $date->setTimezone('Asia/Calcutta');

 // result: '2010-12-25T21:26:00+05:30'
 $this->view->message = $date->get(Zend_Date::ISO_8601);
 }
}

Localizing Currencies
Every country (with the exception of the Eurozone) has its own currency, making currency

localization a key aspect of application development. As with dates and times, Zend_

Framework includes a Zend_Currency component designed specifically to handle this task.

This component provides methods to create currency strings that conform to local conventions,

complete with currency symbol and short or long name. It also exposes methods to retrieve

information on the regions where a specified currency is in circulation, and to list the

currencies that are in circulation in a specified region.

Chapter 9: Understanding Application Localization 283

By default, a newly instantiated Zend_Currency object will check if the application

contains a registered Zend_Locale object and, if it does, it will use this registered locale when

localizing currency values. It’s also possible to override this behavior and explicitly specify a

locale identifier as argument to the Zend_Currency object constructor. In either case, Zend_

Currency will automatically select the appropriate currency for that locale. Localized currency

values can now be obtained by calling the Zend_Currency object’s toCurrency() method,

which accepts a currency value as argument.

Consider the following example, which illustrates this in practice:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function currencyAction()
 {
 // initialize currency object
 $currency = new Zend_Currency('fr_FR');

 // result: '990,65 €'
 $this->view->message = $currency->toCurrency(990.65);
 }
}

CAUTION

When you are passing a locale identifier to Zend_Currency, it is mandatory to include
both the language code and the region code. Omitting either one of these two codes
will result in an exception, as Zend_Currency requires the complete locale identifier to
correctly identify the corresponding currency.

For regions that have more than one currency, or to override the default currency selection,

the Zend_Currency object constructor will accept a currency code as additional optional

argument. Here’s an example:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function currencyAction()
 {
 // initialize currency object
 $currency = new Zend_Currency('fr_FR', 'FRF');

 // result: '990,65 F'
 $this->view->message = $currency->toCurrency(990.65);
 }
}

284 Zend Framework: A Beginner’s Guide

NOTE

A complete list of currency codes is available in the ISO 4217 standard. You'll find a
link to this standard at the end of the chapter.

It is also possible to customize the currency string returned by Zend_Currency by using

the setFormat() method to adjust the position of the currency symbol, the name of the

currency, the number precision, and the visibility of the three-character currency code. This

method accepts an array of key-value pairs and reformats the currency string accordingly. The

following examples illustrate this:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function currencyAction()
 {
 // initialize currency object
 $currency = new Zend_Currency('hi_IN');

 // adjust currency format
 $currency->setFormat(
 array(
 'position' => Zend_Currency::RIGHT,
 'display' => Zend_Currency::USE_NAME,
 'precision' => 2,
)
);

 // result: '990.65 '
 $this->view->message = $currency->toCurrency(990.65);

 // create custom currency format
 $currency->setFormat(
 array(
 'position' => Zend_Currency::LEFT,
 'display' => Zend_Currency::USE_SYMBOL,
 'precision' => 4,
 'name' => 'Driit',
 'symbol' => 'DRT'
)
);

 // result: 'DRT 990.6500'
 $this->view->message = $currency->toCurrency(990.65);
 }
}

Chapter 9: Understanding Application Localization 285

TIP

Zend_Currency includes the ability to perform exchange rate conversions on currency
values before localizing them. Alternatively, consider using the PEAR Services_
ExchangeRates package, which provides an API to perform real-time currency
conversion using current exchange rates. You'll find links with more information at the
end of this chapter.

Localizing Measurements
Weights and measures are another area where localization is often necessary, and here too the

Zend Framework has a solution: Zend_Measure, a component designed to help in converting

between different measurement units and presenting the result as per local conventions. The

component supports more than 30 different measurement types, ranging from common types

such as length, weight, volume, and temperature to more unusual ones such as acceleration,

illumination, power, frequency, and energy.

To initialize a Zend_Measure object, it is necessary to pass the object constructor two

arguments: a numeric measurement and a constant indicating the measurement scale it is

expressed in. Consider the following example, which illustrates by creating a Zend_Measure_

Temperature object:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function measureAction()
 {
 // initialize measure object
 $tempF = new Zend_Measure_Temperature(
 98.6, Zend_Measure_Temperature::FAHRENHEIT);

 // result: '98.6 °F'
 $this->view->message = $tempF;
 }
}

Here’s another example, this one creating Zend_Measure_Length and Zend_Measure_

Weight objects:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function measureAction()
 {
 // initialize measure object
 $lengthCm = new Zend_Measure_Length(2540, Zend_Measure_Length::CENTIMETER);

 // result: '2,540 cm'
 $this->view->message = $lengthCm;

286 Zend Framework: A Beginner’s Guide

 // initialize measure object
 $weightKg = new Zend_Measure_Weight(6500, Zend_Measure_Weight::KILOGRAM);

 // result: '6,500 kg'
 //$this->view->message = $weightKg;
 }
}

Each Zend_Measure object exposes a convertTo() method, which can be used to

convert from one unit of measurement to another. The target unit of measurement must be

specified as an argument to the convertTo() method. Here are some examples that illustrate

this method in action:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function measureAction()
 {
 // convert temperature
 // result: '37.0 °C'
 $tempF = new Zend_Measure_Temperature(
 98.6, Zend_Measure_Temperature::FAHRENHEIT);
 $this->view->message = $tempF->convertTo(
 Zend_Measure_Temperature::CELSIUS);

 // convert length
 // result: '1,000.0 in'
 $lengthCm = new Zend_Measure_Length(2540, Zend_Measure_Length::CENTIMETER);
 $this->view->message = $lengthCm->convertTo(Zend_Measure_Length::INCH);

 // convert weight
 // result: '6,500,000.0 g'
 $weightKg = new Zend_Measure_Weight(6500, Zend_Measure_Weight::KILOGRAM);
 $this->view->message = $weightKg->convertTo(Zend_Measure_Weight::GRAM);
 }
}

CAUTION

Zend_Measure does not allow you to convert from one measurement type to another.
So, for example, any attempt to convert from length to weight, or from speed to
frequency, will result in an exception.

Like Zend_Date and Zend_Currency, Zend_Measure is locale-aware. A locale identifier

may be passed to the Zend_Measure object constructor as optional third argument or, if this

is not present, Zend_Measure can also use the value specified in the registered Zend_Locale

instance. Here’s an example illustrating both these scenarios:

Chapter 9: Understanding Application Localization 287

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function measureAction()
 {
 // define and register locale
 $locale = new Zend_Locale('pt_BR');
 $registry = Zend_Registry::getInstance();
 $registry->set('Zend_Locale', $locale);

 // convert temperature using default locale
 // result: '37,0 °C'
 $tempF = new Zend_Measure_Temperature(
 98.6, Zend_Measure_Temperature::FAHRENHEIT);
 $this->view->message = $tempF->convertTo(Zend_Measure_Temperature::CELSIUS);

 // convert length using custom locale
 // result: '1'000.0 in'
 $lengthCm = new Zend_Measure_Length(
 2540, Zend_Measure_Length::CENTIMETER, 'fr_CH');
 $this->view->message = $lengthCm->convertTo(Zend_Measure_Length::INCH);
 }
}

Localizing Strings
While English is the language you’re most likely to see on the Web, it’s important to remember

that there is still a large percentage of Internet users for whom English is not their native

language. This fact assumes particular significance when localizing a Web application, as the

biggest component of any localization project usually consists of translating the application’s

textual content into multiple languages.

The Zend Framework offers a comprehensive API for managing translation strings in

different languages, via its Zend_Translate component. This component supports a wide

variety of translation data sources, including CSV files, PHP arrays, and GNU gettext files,

and it can also be readily extended to support other data sources (for example, translation

strings from a database). Like other Zend Framework components discussed in this chapter, it

is fully locale-aware and can dynamically select the appropriate language for the application

based on a registered Zend_Locale object, or from client locale settings.

The best way to understand Zend_Translate is with an example. Assume for a moment that

there are translation source files for different languages, as follows:

<?php
// languages/messages.fr_FR.php
return array(
 'welcome' => 'Bienvenue',
 'dog' => 'chien',
 'cat' => 'chat',
 'one' => 'un',
 'two' => 'deux',
 'three' => 'trois'
);

<?php
// languages/messages.de_DE.php
return array(
 'welcome' => 'Wilkommen',
 'dog' => 'hund',
 'cat' => 'katz',
 'one' => 'eins',
 'two' => 'zwei',
 'three' => 'drei'
);

<?php
// languages/messages.es_ES.php
return array(
 'welcome' => 'Bienvenido',
 'dog' => 'gato',
 'cat' => 'perro',
 'one' => 'un',
 'two' => 'dos',
 'three' => 'tres'
);

288 Zend Framework: A Beginner’s Guide

This is the simplest possible format for a translation file, consisting of a PHP associative

array with keys mapping to the corresponding local language strings. Zend_Translate can now

be configured to read these files and dynamically translate strings at run time based on the

selected locale. Here’s an example:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function translateAction()
 {
 // create translation object
 // specify translation adapter
 // specify source files for each locale
 $translate = new Zend_Translate('array', APPLICATION_PATH .
 '/../languages/messages.es_ES.php', 'es_ES');
 $translate->addTranslation(APPLICATION_PATH .
 '/../languages/messages.de.php', 'de_DE');
 $translate->addTranslation(APPLICATION_PATH .
 '/../languages/messages.fr_FR.php', 'fr_FR');

 // set current locale
 $translate->setLocale('fr_FR');

 // translate string
 // result: 'un, deux, trois'
 $this->view->message = sprintf('%s, %s, %s',
 $translate->_('one'),
 $translate->_('two'),
 $translate->_('three')
);

 // set current locale
 $translate->setLocale('de_DE');

 // translate string
 // result: 'eins, zwei, drei'
 $this->view->message = sprintf('%s, %s, %s',
 $translate->_('one'),
 $translate->_('two'),
 $translate->_('three')
);
 }
}

Chapter 9: Understanding Application Localization 289

A Zend_Translate object is initialized with three arguments: the type of translation

adapter to use, the location of the translation source files, and the locale for the file. The

setLocale() method is then used to define the current locale. With this information at

hand, Zend_Translate is able to look up the appropriate translation file and return the correct

translation for each string.

TIP

If Zend_Translate is unable to find a translation source for the specified locale, it will
return the original translation key and generate a PHP error notice. To disable this
notice, pass the special 'disableNotices' option in the fourth argument to the
Zend_Translate object constructor.

Working with Adapters and Data Sources
Zend_Translate supports a number of different adapters for translation source files. The

previous example used the Array adapter, which is suitable in most scenarios. However, there

exist other options too, as shown in Table 9-2.

Zend_Translate can also recursively scan a directory tree and attach all found translation

sources to the Zend_Translate object, through a process of automatic source detection.

The locale for each translation file is autodetected based on the corresponding file and/or

Adapter Description

Zend_Translate_Adapter_Array Reads translation sources expressed as a PHP array

Zend_Translate_Adapter_Csv Reads translation sources expressed in CSV format

Zend_Translate_Adapter_Ini Reads translation sources expressed in INI format

Zend_Translate_Adapter_Gettext Reads translation sources expressed in GNU gettext binary format

Zend_Translate_Adapter_Tbx Reads translation sources expressed in TermBase eXchange (TBX)
format

Zend_Translate_Adapter_Tmx Reads translation sources expressed in Translation Memory
eXchange (TMX) format

Zend_Translate_Adapter_Qt Reads translation sources expressed in QtLinguist format

Zend_Translate_Adapter_Xliff Reads translation sources expressed in the XML Localization
Interchange File Format (XLIFF)

Zend_Translate_Adapter_XmlTm Reads translation sources expressed in XML Text Memory
(XML:TM) format

Table 9-2 Translation Adapters Included with the Zend Framework

290 Zend Framework: A Beginner’s Guide

directory names. This eliminates the need to manually add translation sources with the

addTranslation() method.

To illustrate, consider Figure 9-2, which illustrates the use of locale-specific directories

for translation source files, and the following code listing, which configures Zend_Translate to

automatically scan this directory structure and incorporate all found translation sources:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function translateAction()
 {
 // create translation object
 // specify translation adapter
 // automatically find source files for each locale
 $translate = new Zend_Translate('array', APPLICATION_PATH .
 '/../languages', null,
 array('scan' => Zend_Translate:: LOCALE_DIRECTORY));
 }
}

Notice that, in this case, the second argument to the

Zend_Translate object constructor is simply the root of the

directory tree to scan, and the additional fourth argument

indicates that locale information should be read from each

directory’s name.

An alternative approach is to use a file-based structure,

wherein each filename incorporates the locale identifier for

the corresponding translation source. Figure 9-3 illustrates

such a system, and the following code listing demonstrates

how to use Zend_Translate with it:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function translateAction()
 {

Figure 9-2 Translation sources in separate directories

Figure 9-3 Translation sources in
separate files

Chapter 9: Understanding Application Localization 291

 // create translation object
 // specify translation adapter
 // automatically find source files for each locale
 $translate = new Zend_Translate('array', APPLICATION_PATH .
 '/../languages', null,
 array('scan' => Zend_Translate::LOCALE_FILENAME));
 }
}

Of course, these are not the only two options available. There are a number of standard

directory layouts supported by Zend_Translate for translation source files, and you should

choose one that is most appropriate for the size and scale of your project. You can read

more about these layouts, and also see some examples, using the links at the end of

this chapter.

Using the Application Locale
Like many other Zend_Framework components, Zend_Translate is locale-aware: If a registered

Zend_Locale instance is available, it can automatically use this locale as the default for all

translation operations. This is convenient, because it allows the locale to be set just once (in

the application bootstrapper) and then have that locale applied to all Zend_Translate operations

across the entire application.

Q: What is GNU gettext and how do I use it?

A: GNU gettext is part of the GNU Translation Project, and provides a standard way of

creating and using translation tables for an application. Under this system, translation

strings for different languages are specified in human-readable message template (*.po)

files, one for each language. These files are then converted to binary catalog (*.mo) files,

which are distributed with the application.

By convention, GNU gettext uses a directory-based layout for *.mo translation files,

wherein translation files for different languages are stored in separate directories named

according to locale or language (Figure 9-4 shows an example). It is worth noting that

Zend_Translate’s source detection feature can recognize and use this directory layout

automatically, thereby allowing developers to use existing GNU gettext sources in a PHP

application with no additional modification.

Ask the Expert

292 Zend Framework: A Beginner’s Guide

The following example demonstrates this in action, by registering the de_DE (language:

German, country: Germany) locale in the application registry and having Zend_Translate

automatically detect and use it:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function localeAction()
 {
 // define and register locale
 $locale = new Zend_Locale('de_DE');
 $registry = Zend_Registry::getInstance();
 $registry->set('Zend_Locale', $locale);

 // create translation object
 // specify translation adapter
 // automatically find source files for each locale
 $translate = new Zend_Translate('array', APPLICATION_PATH .
 '/../languages', null,
 array('scan' => Zend_Translate::LOCALE_FILENAME));

 // translate string
 // result: 'eins, zwei, drei'
 $this->view->message = sprintf('%s, %s, %s',
 $translate->_('one'),

Figure 9-4 The conventional GNU gettext directory layout for translation sources

Chapter 9: Understanding Application Localization 293

 $translate->_('two'),
 $translate->_('three')
);
 }
}

It’s important to note that if Zend_Translate is unable to find a translation source for a

fully qualified locale, it will automatically “degrade” the locale and use the translation source

that best matches the degraded locale. So, for example, if the application locale is set to fr_LU

(language: French, country: Luxembourg) but no translation source is available for the fr_LU

locale, Zend_Translate will automatically use the translation source for the fr locale instead, if

available.

Using the Translation View Helper
The examples in the previous sections have demonstrated translation operations within the

scope of the controller. In reality, however, the correct approach is to perform translation

operations within the scope of the view script rather than that of the controller. Zend_Translate

includes a translation view helper, which can be used to perform these operations within a

view script.

To use the translation view helper, it is necessary to first register the Zend_Translate object

in the application registry, such that it is accessible throughout the application. Here’s an

example of how to do this:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initTranslate()
 {
 // initialize and register translation object
 $translate = new Zend_Translate('array',
 APPLICATION_PATH . '/../languages/',
 null,
 array('scan' => Zend_Translate::LOCALE_FILENAME));
 $registry->set('Zend_Translate', $translate)
 }
}

Once this is done, translation can be performed within a view script simply by calling the

view object’s translate() method, as shown in the following code. When invoked in this

manner, the translation view helper will retrieve the corresponding local-language string and

interpolate it into the view script before rendering the view.

<div id="header">
 <?php echo $this->translate('welcome'); ?>
</div>

294 Zend Framework: A Beginner’s Guide

Once a Zend_Translate object has been registered with the application registry, other

Zend Framework components can also use it for string localization. The best example of this

is Zend_Form, which can automatically use a registered Zend_Translate object to prepare

localized versions of form field and button labels, option elements, fieldset legends, and

validation error messages. You’ll see an example of this in the next section.

Localizing the Example Application
As the previous sections have illustrated, the Zend Framework offers a comprehensive API

for application localization. Now that you know the theory, let’s apply it in a practical context

by localizing the SQUARE example application to support three different languages: English

(both UK and US), French, and German.

Setting the Application Locale
The first step in application localization is to define the application’s locale. This locale

information can then be used by other components, such as Zend_Date and Zend_Translate.

The recommended way to do this is to first attempt locale autodiscovery from the user’s client,

or failing that, manually set the locale to a reasonable value.

Begin by editing the application bootstrapper, at $APP_DIR/application/Bootstrap.php,

and adding a method to perform locale autodiscovery, as follows:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initLocale()
 {
 try {
 $locale = new Zend_Locale('browser');
 } catch (Zend_Locale_Exception $e) {
 $locale = new Zend_Locale('en_GB');
 }
 $registry = Zend_Registry::getInstance();
 $registry->set('Zend_Locale', $locale);
 }
}

In this case, Zend_Locale will attempt to automatically detect the user’s current locale and,

if unable to do so, will set the locale to en_GB (language: English, country: United Kingdom).

The locale will be registered in the application registry via Zend_Registry so that other locale-

aware components can use it as well.

Localizing Numbers and Dates
With locale definition out of the way, the next step is to look through the application and begin

the process of localizing numbers and dates. If you take a look at the stamp catalog views,

you’ll see that each stamp record includes some numeric values: the stamp’s denomination and

Try This 9-1

Chapter 9: Understanding Application Localization 295

the stamp’s minimum and maximum sale prices. Ideally, these values should be formatted to

reflect the user’s current locale conventions.

Another item that’s currently missing from each stamp’s detail page is the date on which it

was offered for sale. This is useful information for potential buyers, as it allows them to judge

how “fresh” the listing is. Ideally, this date value should also be presented in the user’s local

language and convention.

The Zend_Locale_Format component provides the tools needed to localize numbers via its

toNumber() static method, while the Zend_Date component can handle date localization and

formatting. To use these tools, update the Catalog_ItemController::displayAction
at $APP_DIR/application/modules/catalog/controllers/ItemController.php as shown in the

following example:

<?php
class Catalog_ItemController extends Zend_Controller_Action
{
 // action to display a catalog item
 public function displayAction()
 {
 // set filters and validators for GET input
 $filters = array(
 'id' => array('HtmlEntities', 'StripTags', 'StringTrim')
);
 $validators = array(
 'id' => array('NotEmpty', 'Int')
);
 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());

 // test if input is valid
 // retrieve requested record
 // attach to view
 if ($input->isValid()) {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.RecordID = ?', $input->id)
 ->addWhere('i.DisplayStatus = 1')
 ->addWhere('i.DisplayUntil >= CURDATE()');
 $result = $q->fetchArray();
 if (count($result) == 1) {
 $this->view->item = $result[0];
 $this->view->images = array();
 $config = $this->getInvokeArg('bootstrap')->getOption('uploads');
 foreach (glob("{$config['uploadPath']}/
 {$this->view->item['RecordID']}_*") as $file) {
 $this->view->images[] = basename($file);
 }

(continued)

296 Zend Framework: A Beginner’s Guide

 $configs = $this->getInvokeArg('bootstrap')->getOption('configs');
 $localConfig = new Zend_Config_Ini($configs['localConfigPath']);
 $this->view->seller = $localConfig->user->displaySellerInfo;
 $registry = Zend_Registry::getInstance();
 $this->view->locale = $registry->get('Zend_Locale');
 $this->view->recordDate = new Zend_Date($result[0]['RecordDate']);
 } else {
 throw new Zend_Controller_Action_Exception('Page not found', 404);
 }
 } else {
 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }
}

Here, the displayAction() method retrieves the current locale from the application

registry, and assigns it to a view variable. It also retrieves the date on which the record was

saved and assigns it to a Zend_Date object. It is now possible to localize these dates and

numbers within the corresponding view script, at $APP_DIR/application/modules/catalog/

views/scripts/item/display.phtml, as follows:

<h2>View Item</h2>
<h3>
 FOR SALE:
 <?php echo $this->escape($this->item['Title']); ?> -
 <?php echo $this->escape($this->item['Year']); ?> -
 <?php echo $this->escape($this->item['Square_Model_Grade']['GradeName']); ?>
</h3>

<div id="container">
 <div id="images">
 <?php foreach ($this->images as $image): ?>
 <img src="/uploads/<?php echo $this->escape($image); ?>"
 width="150" height="150" />
 <?php endforeach; ?>
 </div>
 <div id="record">
 <table>

 ...
 <tr>
 <td class="key">Denomination:</td>
 <td class="value">
 <?php echo $this->escape(
 Zend_Locale_Format::toNumber($this->item['Denomination'],
 array(
 'locale' => $this->locale,
 'precision' => 2
)
)); ?>
 </td>

Chapter 9: Understanding Application Localization 297

 </tr>
 <tr>
 <td class="key">Grade:</td>
 <td class="value">
 <?php echo $this->escape(
 $this->item['Square_Model_Grade']['GradeName']); ?>
 </td>
 </tr>
 <tr>
 <td class="key">Sale price:</td>
 <td class="value">
 $<?php echo $this->escape(
 Zend_Locale_Format::toNumber($this->item['SalePriceMin'],
 array(
 'locale' => $this->locale,
 'precision' => 2
)
)); ?> -
 $<?php echo $this->escape(
 Zend_Locale_Format::toNumber($this->item['SalePriceMax'],
 array(
 'locale' => $this->locale,
 'precision' => 2
)
)); ?>
 </td>
 </tr>
 <tr>
 <td class="key">Description:</td>
 <td class="value">
 <?php echo $this->escape($this->item['Description']); ?>
 </td>
 </tr>
 <tr>
 <td class="key">Date posted:</td>
 <td class="value">
 <?php echo $this->escape($this->recordDate->get(
 Zend_Date::DATE_FULL)); ?>
 </td>
 </tr>
 <?php if ($this->seller == 1): ?>
 <tr>
 <td class="key">Seller:</td>
 <td class="value">
 <?php echo $this->escape($this->item['SellerName']); ?>,
 <?php echo $this->escape($this->item['SellerAddress']); ?>
 </td>
 </tr>
 <?php endif; ?>
 </table>
 </div>
</div>

(continued)

298 Zend Framework: A Beginner’s Guide

Defining String Localization Targets
With the dates and numbers handled, the next step is to perform string localization. Given the

limited space constraints of this book, it isn’t possible to localize every single string in the

application, and so, this example will assume that string localization is restricted to only the

following three targets: the application’s main menu, page footer, and contact form.

To perform string localization, it is necessary to edit each application layout and view, and

use the translation view helper to dynamically interpolate translation strings into it. A good

place to begin is the application’s master layout, which contains the main menu. Edit this file,

which is located at $APP_DIR/application/layouts/master.phtml, with the revisions highlighted

in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

...
 <div id="menu">
 <a href="<?php echo $this->url(array(), 'home'); ?>">
 <?php echo $this->translate('menu-home'); ?>

 <a href="<?php echo $this->url(array('page' => 'services'),
 'static-content'); ?>">
 <?php echo $this->translate('menu-services'); ?>

 <a href="<?php echo $this->url(array('module' => 'catalog',
 'controller' => 'item', 'action' => 'search'), 'default', true); ?>
 ">
 <?php echo $this->translate('menu-catalog'); ?>

 <a href="<?php echo $this->url(array(), 'contact'); ?>">
 <?php echo $this->translate('menu-contact'); ?>

 </div>
 </div>

 <div id="content">
 <?php echo $this->layout()->content ?>
 </div>

 <div id="footer">
 <p>
 <?php echo $this->translate('created-with'); ?>
 Zend Framework.
 <?php echo $this->translate('licensed-under'); ?>
 Creative Commons.
 </p>
 </div>
 </body>
</html>

Chapter 9: Understanding Application Localization 299

Next up, the application’s contact form. This form definition is created using Zend_Form,

which can automatically detect and use a registered Zend_Translate object to perform run-time

string localization. So all that’s really required here is to replace each element’s label with a

string identifier, which will be automatically replaced by the translated value at run time. Edit

the form definition, at $APP_DIR/library/Square/Form/Contact.php, and make the changes

highlighted in bold:

<?php
class Square_Form_Contact extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/contact/index')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('contact-name')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('Alpha', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim');

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('contact-email-address');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('EmailAddress', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringToLower')
 ->addFilter('StringTrim');

 // create text input for message body
 $message = new Zend_Form_Element_Textarea('message');
 $message->setLabel('contact-message')
 ->setOptions(array('rows' => '8','cols' => '40'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim');

(continued)

300 Zend Framework: A Beginner’s Guide

 // create captcha
 $captcha = new Zend_Form_Element_Captcha('captcha', array(
 'captcha' => array(
 'captcha' => 'Image',
 'wordLen' => 6,
 'timeout' => 300,
 'width' => 300,
 'height' => 100,
 'imgUrl' => '/captcha',
 'imgDir' => APPLICATION_PATH . '/../public/captcha',
 'font' => APPLICATION_PATH .
 '/../public/fonts/LiberationSansRegular.ttf',
)
));
 $captcha->setLabel('contact-verification');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('contact-send-message')
 ->setOptions(array('class' => 'submit'));

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($message)
 ->addElement($captcha)
 ->addElement($submit);
 }
}

Creating Translation Sources
Once the various view elements have been configured for localization, the next step is to create

translation source files for each language. To keep things simple, express these translation

source files as PHP arrays, with locales specified within the filename.

Begin by creating a directory for these translation sources by changing to the $APP_DIR

directory and executing the following command:

shell> mkdir languages

Then, go ahead and create translation source files for each language that should be

supported. Here’s an example of the French translation source file, which should be saved as

$APP_DIR/languages/messages.fr.php:

<?php
return array(
 'menu-home' => 'ACCUEIL',
 'menu-services' => 'SERVICES',

Chapter 9: Understanding Application Localization 301

 'menu-catalog' => 'BROCHURE',
 'menu-contact' => 'CONTACTEZ-NOUS',
 'welcome' => 'Bienvenue',
 'created-with' => 'Créé avec',
 'licensed-under' => 'Sous license',
 'contact-name' => 'Nom:',
 'contact-email-address' => 'Adresse email:',
 'contact-message' => 'Message:',
 'contact-verification' => 'Vérification:',
 'contact-send-message' => 'Envoyer Message',
 'contact-title' => 'Contactez-Nous',
);

Once you’re done, you should have a directory structure like the one shown in Figure 9-5.

TIP

To avoid data corruption, use UTF-8 encoding when creating translation files containing
non-Latin characters. Some free and commercial text editors with UTF-8 encoding
support include gedit on UNIX and Notepad2 on Microsoft Windows. Download links
can be found at the end of this chapter.

Figure 9-5 The application’s translation sources, each in a separate file

(continued)

Q: Why do you have a separate translation file for the en locale in addition to files for the

en_US and en_GB locales?

A: As explained earlier in the chapter, if Zend_Translate is unable to find a translation source

file for a locale identifier, it will automatically degrade the locale identifier to just the

language code and use the general translation source file for that language, if available.

Therefore, it’s recommended to always include a general translation file for every language

that you plan to support in the application, in addition to the more specific translation files.

This is the reason for including an en language file in addition to the en_US and en_GB

language files.

Ask the Expert

302 Zend Framework: A Beginner’s Guide

Registering the Translation Object
The final step is to update the application bootstrapper and configure and register an instance of the

Zend_Translate object. This instance will then become available in all application controllers and

views, enabling the use of the translation view helper and Zend_Form’s autotranslation features.

To do this, update the application bootstrapper, at $APP_DIR/application/Bootstrap.php,

and add the following method to it:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initTranslate()
 {
 $translate = new Zend_Translate('array',
 APPLICATION_PATH . '/../languages/',
 null,
 array('scan' => Zend_Translate::LOCALE_FILENAME,
 'disableNotices' => 1));
 $registry = Zend_Registry::getInstance();
 $registry->set('Zend_Translate', $translate);
 }
}

TIP

Instead of getting the Zend_Registry instance, you can directly access registry
values with the shorthand Zend_Registry::get($index) and Zend_
Registry::set($index, $value) methods.

And you’re done! To see this in action, configure your browser settings and add French

or German as your preferred language. Figure 9-6 shows an example of how to do this in Mozilla

Firefox, while Figure 9-7 shows an example of how to do this in Microsoft Internet Explorer.

Figure 9-6 Configuring page languages in Mozilla Firefox

Chapter 9: Understanding Application Localization 303

Then, browse to the application index page at http://square.localhost/ and you should be

presented with something like Figure 9-8. Notice that the main menu and footer are presented

in the selected local language.

Browse to the contact form at http://square.localhost/contact, and you’ll see that the field

labels have also been automatically translated by Zend_Form (see Figure 9-9).

Figure 9-7 Configuring page languages in Microsoft Internet Explorer

(continued)
Figure 9-8 The application’s index page, automatically localized to French

http://square.localhost/
http://square.localhost/contact

304 Zend Framework: A Beginner’s Guide

If you adjust your browser settings to use another preferred language, and if Zend_

Translate is able to find a translation source for that language, content will be automatically

translated into the selected language (see Figure 9-10). If, on the other hand, Zend_Translate is

not able to find a translation source for that language, translation will not be possible and the

original string identifiers will be displayed instead (see Figure 9-11). Finally, if your browser is

not set to use any particular language, locale autodetection will fail and the fallback locale of

en_GB will be used instead by both Zend_Locale and Zend_Translate (see Figure 9-12).

Figure 9-9 The application’s contact form, automatically localized to French

Figure 9-10 The application’s index page, automatically localized to German

Chapter 9: Understanding Application Localization 305

(continued)

Figure 9-11 The application’s index page, when no translation is available

NOTE

You'll notice that the static page content is still presented in US English, regardless of
the locale autodetection. It isn't possible to cover this aspect of localization in the limited
space available in this chapter, but you can easily handle it by creating separate static
pages for each language and adjusting the static page controller to render the page
corresponding to the current locale or language. This method is preferable to creating
translation keys containing the content for each static page, as maintaining such large
blocks of localized content can quickly become a problem.

Figure 9-12 The application’s index page, manually set to UK English when no locale autodetection
is possible

306 Zend Framework: A Beginner’s Guide

Supporting Manual Locale Selection
Now, while locale autodetection is fine and dandy, you may also want users to be able

to manually select their desired language and locale. More often than not, this feature is

implemented in the application user interface as a string of clickable flag icons; clicking one of

these icons switches the application to the corresponding language.

To add this feature, define a new LocaleController in the application’s “default” module,

which will be responsible for manually setting the locale to that selected by the user, and fill it

with the following code:

<?php
class LocaleController extends Zend_Controller_Action
{
 // action to manually override locale
 public function indexAction()
 {
 // if supported locale, add to session

 if (Zend_Validate::is(
 $this->getRequest()->getParam('locale'), 'InArray',
 array('haystack' => array('en_US', 'en_GB', 'de_DE', 'fr_FR'))
)) {
 $session = new Zend_Session_Namespace('square.l10n');
 $session->locale = $this->getRequest()->getParam('locale');
 }

 // redirect to requesting URL
 $url = $this->getRequest()->getServer('HTTP_REFERER');
 $this->_redirect($url);
 }
}

Q: Should translation keys be lowercased?

A: There is no convention that requires you to only use lowercase for translation keys. Doing

so would mean that you would need to wrap translate() calls within application views

in calls to strtoupper() and/or ucfirst(), which is a tedious exercise. Additionally,

different languages might well demand different capitalizations of the same word, and

applying case transformations within application views would not permit this. Finally, if

Zend_Translate is unable to find a translation source for the selected language, it will fall

back to displaying the keys themselves. Therefore, limiting translation keys to lowercase

is usually undesirable. You should, however, ensure that your translation keys are named

correctly, so that they serve as a viable fallback option for Zend_Translate.

Ask the Expert

Chapter 9: Understanding Application Localization 307

Save this file as $APP_DIR/application/modules/default/controllers/LocaleController.php.

When the LocaleController::indexAction is invoked, it first retrieves the URL

of the referring script and stores this in a local variable. It then looks up the URL request for a

$_GET['locale'] parameter, checks if the requested locale is supported, and if it is, stores

this locale in the session. Finally, it redirects the client back to the referring script.

This is only part of the puzzle, though. It’s also necessary to now update the application

bootstrapper and modify the _initLocale() method to first check if a locale identifier

is present in the session and, if it is, to give this locale priority over the autodetected locale.

Here’s the revised _initLocale() method:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initLocale()
 {
 $session = new Zend_Session_Namespace('square.l10n');
 if ($session->locale) {
 $locale = new Zend_Locale($session->locale);
 }

 if ($locale === null) {
 try {
 $locale = new Zend_Locale('browser');
 } catch (Zend_Locale_Exception $e) {
 $locale = new Zend_Locale('en_GB');
 }
 }

 $registry = Zend_Registry::getInstance();
 $registry->set('Zend_Locale', $locale);
 }
}

Updating the Master Layout
The final step is to add the string of flag icons to the application’s main menu, and link it to the

LocaleController::indexAction. To do this, update the master layout, at $APP_DIR/

application/layouts/master.phtml, with the changes highlighted in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
...
 <div id="menu-locale-container">
 <div id="locale">
 <a href="<?php echo $this->url(array('module' => 'default',
 'controller' => 'locale', 'action' => 'index',
 'locale' => 'en_GB'), 'default', true); ?>">

(continued)

308 Zend Framework: A Beginner’s Guide

 <a href="<?php echo $this->url(array('module' => 'default',
 'controller' => 'locale', 'action' => 'index',
 'locale' => 'en_US'), 'default', true); ?>">

 <a href="<?php echo $this->url(array('module' => 'default',
 'controller' => 'locale', 'action' => 'index',
 'locale' => 'fr_FR'), 'default', true); ?>">

 <a href="<?php echo $this->url(array('module' => 'default',
 'controller' => 'locale', 'action' => 'index',
 'locale' => 'de_DE'), 'default', true); ?>">

 </div>
...

</html>

You’ll notice that the master layout makes use of various images from the $APP_DIR/

public/images/locale/ directory. You’ll find these images and the corresponding stylesheet rules

in the code archive for this chapter, which can be downloaded from this book’s companion

Web site at http://www.zf-beginners-guide.com/.

And now, when you revisit the application index page at http://square.localhost/, you’ll see

that you have the ability to manually select a language from the menu bar that appears on every

page. This language selection overrides the locale that is autodetected from the browser settings,

and it persists throughout your visit to the site. Figure 9-13 illustrates what the output looks like.

Figure 9-13 The application’s index page, with controls for manual language selection

http://www.zf-beginners-guide.com/
http://square.localhost/

Chapter 9: Understanding Application Localization 309

Summary
As this chapter demonstrates, the Zend Framework includes everything you need to fully

localize your application to different languages and countries. The Zend_Locale component

provides a framework for defining the application locale, either through a manual setting

at design time or through a process of autodetection at run time. In either case, other Zend

Framework components, such as Zend_Date, Zend_Currency, and Zend_Measure, have the

ability to automatically detect this locale and adjust their behavior to reflect local conventions

for dates, currencies, and measurements.

The most complex aspect of any localization project involves translating application

strings to different languages, and here too, the Zend Framework offers a solution in the

form of Zend_Translate. Zend_Translate provides a flexible API for working with translation

sources in many different formats, and it can automatically integrate with Zend_View via the

translation view helper to simplify the task of run-time string localization.

All these aspects of localization were illustrated in the SQUARE example application

which, at the end of this chapter, now supports four different locales and is capable of presenting

dates, numbers, and (some) content in the user’s current or selected language. While a complete

localization exercise is not possible within the limited confines of this book, this exercise should

nevertheless give you some insight into the process, and set the foundation for future research.

To learn more about the topics discussed in this chapter, consider visiting the following links:

● The Zend_Locale component, at http://framework.zend.com/manual/en/zend.locale.html

● The Zend_Date component, at http://framework.zend.com/manual/en/zend.date.html

● Zend_Date format specifiers, at http://framework.zend.com/manual/en/zend.date

.constants.html

● The Zend_Currency component, at http://framework.zend.com/manual/en/zend

.currency.html

● Zend_Currency exchange rate conversion, at http://framework.zend.com/manual/en/

zend.currency.exchange.html

● The Zend_Measure component, at http://framework.zend.com/manual/en/zend

.measure.html

● The Zend_Translate component, at http://framework.zend.com/manual/en/zend

.translate.html

● Zend_Translate directory layouts for translation source files, at http://framework.zend

.com/manual/en/zend.translate.using.html

● The GNU gettext project, at http://www.gnu.org/software/gettext/

● The ISO 639 standard (language codes), at http://www.iso.org/iso/support/faqs/faqs_

widely_used_standards/widely_used_standards_other/language_codes.htm

● The ISO 3166 standard (country codes), at http://www.iso.org/iso/support/faqs/faqs_

widely_used_standards/widely_used_standards_other/country_name_codes.htm

http://framework.zend.com/manual/en/zend.locale.html
http://framework.zend.com/manual/en/zend.date.html
http://framework.zend.com/manual/en/zend.date.constants.html
http://framework.zend.com/manual/en/zend.date.constants.html
http://framework.zend.com/manual/en/zend.currency.html
http://framework.zend.com/manual/en/zend.currency.html
http://framework.zend.com/manual/en/zend.currency.exchange.html
http://framework.zend.com/manual/en/zend.currency.exchange.html
http://framework.zend.com/manual/en/zend.measure.html
http://framework.zend.com/manual/en/zend.measure.html
http://framework.zend.com/manual/en/zend.translate.html
http://framework.zend.com/manual/en/zend.translate.html
http://framework.zend.com/manual/en/zend.translate.using.html
http://framework.zend.com/manual/en/zend.translate.using.html
http://www.gnu.org/software/gettext/
http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/language_codes.htm
http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/language_codes.htm
http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/country_name_codes.htm
http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/country_name_codes.htm

310 Zend Framework: A Beginner’s Guide

● The ISO 4217 standard (currency codes), at http://www.iso.org/iso/support/faqs/faqs_

widely_used_standards/widely_used_standards_other/currency_codes.htm

● The PEAR Services_ExchangeRates package, at http://pear.php.net/package/Services_

ExchangeRates/

● The gedit text editor, at http://www.gnome.org/projects/gedit/

● The Notepad2 text editor, at http://www.flos-freeware.ch/notepad2.html

● A discussion of building multilingual Web sites with the Zend Framework (Jason Gilmore),

at http://www.developer.com/design/article.php/3683571/Build-Multi-lingual-Websites-

With-the-Zend-Framework.htm

● A discussion of string localization with gettext and the Zend Framework (Peter Törnstrand),

at http://www.tornstrand.com/2008/03/29/string-localization-with-gettext-and-zend-

framework/

http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/currency_codes.htm
http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/currency_codes.htm
http://pear.php.net/package/Services_ExchangeRates/
http://pear.php.net/package/Services_ExchangeRates/
http://www.gnome.org/projects/gedit/
http://www.flos-freeware.ch/notepad2.html
http://www.developer.com/design/article.php/3683571/Build-Multi-lingual-Websites-With-the-Zend-Framework.htm
http://www.developer.com/design/article.php/3683571/Build-Multi-lingual-Websites-With-the-Zend-Framework.htm
http://www.tornstrand.com/2008/03/29/string-localization-with-gettext-and-zend-framework/
http://www.tornstrand.com/2008/03/29/string-localization-with-gettext-and-zend-framework/

311

Chapter 10
Working with

News Feeds

and Web Services

312 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

● Generate and read news feeds in Atom and RSS formats

● Understand the different types of Web service architecture

● Integrate search results and data from Google, Amazon, and Twitter

● Access third-party Web services using SOAP and REST

● Implement a simple REST API

If you’ve ever tried getting two (or more) disparate Web applications to work together

harmoniously, you probably already know how difficult and frustrating the process can be.

In the multiplatform, multilingual world of the Web, exchanging data between applications

written in different programming languages is often the biggest stumbling block to achieving

true application interoperability.

In recent years, a number of technologies and protocols have emerged that attempt

to solve this problem. Web Distributed Data eXchange (WDDX), Simple Object Access

Protocol (SOAP), Really Simple Syndication (RSS), Atom Syndication Format (ASF), and

others provide a language- and platform-independent framework for data exchange between

Web applications. Typically, this exchange occurs over HTTP, with requests and responses

transferred back and forth using an XML variant. These technologies are in common use today

for news feed syndication and Web service implementation.

The Zend Framework includes a number of components that can come in handy when

working with Web services and news feeds. First, the Zend_Feed and Zend_Feed_Reader

components make it easy to create, modify, parse, and process news feeds in RSS and Atom

formats. Next, the Zend_Rest_Client component allows access to existing REST-based Web

services, while the Zend_Rest_Controller component simplifies the task of implementing new

REST-based Web services. And, finally, a comprehensive set of Zend_Service implementations

eases integration with popular Web applications such as Twitter, Technorati, Google, and

Flickr. This chapter examines all of these components in detail.

Working with News Feeds
If you’ve ever had your own weblog, you already know what a news feed is. It’s a way for

content publishers to distribute information about what’s new and interesting on a particular

site at any given time. This information, which is typically a list of chronologically ordered

news headlines and snippets, is published as machine-readable XML that can be parsed by

third-party Web sites or feed reader applications.

The Zend Framework comes with a couple of components that help in working with

such news feeds. The Zend_Feed_Reader component provides an API to read and parse news

Chapter 10: Working with News Feeds and Web Services 313

feeds in the two most common formats, while the Zend_Feed component makes it possible to

generate new feeds or modify existing feeds from native PHP data structures. The following

sections examine these components in detail.

Understanding News Feed Formats
Typically, news feeds are published in either Really Simple Syndication (RSS) format or Atom

Syndication Format (ASF or, more commonly, “Atom”). Both formats are XML-based and

contain a marked-up list of resources, each of which is tagged with descriptive information

such as a title, description, URL, and date. Both formats can also reference a variety of

different resource types, including documents (usually blog entries or news items), images, and

video and audio streams.

Like RSS feeds, Atom feeds contain summary information about the resources they

describe; however, Atom feeds are slightly more complex than RSS feeds, and the Atom

syndication format has also been accepted as an Internet Engineering Task Force (IETF)

standard, a feat yet to be matched by the RSS format. The differences are not unintentional:

The Atom syndication format was conceived in 2003 as an alternative to the RSS format,

which was originally devised by Netscape Communications in early 1997. Since its

introduction, the RSS format has been through multiple iterations and competing versions, and

the Atom format was conceived as a fresh approach that had the advantage of not requiring

backward compatibility with existing feeds.

Figure 10-1 illustrates the similarities (and differences) between the RSS and Atom feed

formats.

Consuming News Feeds
The easiest way to integrate news feeds into a Zend Framework application is with the Zend_

Feed_Reader component, which provides a simple, extensible framework for parsing feed and

entry data. This component can handle both Atom and RSS feeds, and it supports all existing

versions of both formats. This is a significant time-saver, given the numerous RSS variants

currently in use. The Zend Framework manual specifies the component’s design philosophy

best when it states, “you should not have to care whether a feed is RSS or Atom so long as you

can extract the information you want.”

Consider the following example, which illustrates the process of using Zend_Feed_Reader:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function feedAction()
 {
 // import feed from URL
 $feed = Zend_Feed_Reader::import(
 'http://news.google.com/news?hl=en&topic=w&output=rss');

 // get feed-level summary elements
 $this->view->feed = array(

314 Zend Framework: A Beginner’s Guide

Figure 10-1 Example RSS and Atom feeds

Chapter 10: Working with News Feeds and Web Services 315

 'title' => $feed->getTitle(),
 'description' => $feed->getDescription(),
 'url' => $feed->getLink(),
 'generator' => $feed->getGenerator(),
 'numEntries' => $feed->count()
);

 // get first entry in feed
 $feed->rewind();
 $entry = $feed->current();
 $this->view->entries = array(
 array(
 'title' => $entry->getTitle(),
 'description' => $entry->getDescription(),
 'body' => $entry->getContent(),
 'url' => $entry->getLink(),
 'date' => $entry->getDateModified()
)
);
 }
}

As this example illustrates, the first step to consume a news feed with Zend_Feed_Reader

is to import it with the import() method. This method accepts a URL to the feed and,

depending on the feed type being imported, returns either a Zend_Feed_Reader_Feed_Rss

or Zend_Feed_Reader_Feed_Atom object. This object is the primary entry point to feed and

entry data, and it exposes various methods to access feed summary information, such as the

getTitle(), getLink(), and getDescription() methods.

Entries within a feed can be accessed by iterating over the primary feed object. Individual

entry objects expose similar methods to the primary feed object. In particular, pay attention

to the getTitle(), getDescription(), getLink(), getDateModified(),

getDateCreated(), and getContent() methods, which return the entry title,

description, URL, last modification date, creation date, and entry content, respectively. These

methods will suffice for most common requirements.

It’s also possible to access the underlying XML representation of a feed as a DOMDocument,

DOMXPath, or DOMElement object. This is useful for occasions when you need to work directly

with the feed XML, and this can be accomplished with the feed object’s getDomDocument(),

getElement(), and getXpath() methods. Here’s an example that illustrates this

in action:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function feedAction()
 {
 // import feed from URL

316 Zend Framework: A Beginner’s Guide

 $feed = Zend_Feed_Reader::import(
 'http://news.google.com/news?hl=en&topic=w&output=rss');

 // get underlying XPath object
 $xpath = $feed->getXpath();

 // query for list of all item titles
 $titles = $xpath->query('//item/title');

 // return third item in list
 $this->view->title = $titles->item(2)->nodeValue;
 }
}

NOTE

It's also possible to import a news feed from a file or string, using the Zend_Feed_
Reader::importFile() and Zend_Feed_Reader::importString() methods,
respectively.

In addition to Zend_Feed_Reader, the Zend Framework also includes the Zend_Feed

component, which provides a comprehensive API for feed generation and modification.

While Zend_Feed can also be used for parsing feeds, Zend_Feed_Reader is usually a better

alternative because of its simpler API and ability to autodetect the feed type. Nevertheless, an

example of consuming an RSS feed with Zend_Feed is included for completeness:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function feedAction()
 {
 // import feed from URL
 $feed = Zend_Feed::import(
 'http://news.google.com/news?hl=en&topic=w&output=rss');

 // get feed-level summary elements
 $this->view->feed = array(
 'title' => $feed->title(),
 'description' => $feed->description(),
 'url' => $feed->link(),
 'generator' => $feed->generator(),
 'numEntries' => $feed->count()
);

 // get first entry in feed
 $feed->rewind();
 $entry = $feed->current();
 $this->view->entries = array(

Chapter 10: Working with News Feeds and Web Services 317

 array(
 'title' => $entry->title(),
 'description' => $entry->description(),
 'url' => $entry->link(),
 'date' => $entry->pubDate()
)
);
 }
}

Notice that, when Zend_Feed is used, the content of individual feed-level and entry-level

elements is accessed using $object->method syntax, where the method name corresponds

to the element name. So, for example, $feed->title() retrieves the content of the feed

<title> element, while $entry->description() retrieves the content of the entry’s

<description> element.

Creating News Feeds
So that takes care of reading existing feeds. Now, how about creating new ones?

Creating a new feed is trivial and is most easily accomplished with Zend_Feed. To do this,

simply pass the Zend_Feed::importArray method an array representation of the feed and

the output format (RSS or Atom) required, and it will produce a correctly encoded feed in the

specified format, suitable for use in any standards-compliant feed reader. Here’s an example,

which illustrates by building an Atom feed from a database result set:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function feedAction()
 {
 // query for 10 most recent articles
 $q = Doctrine_Query::create()
 ->from('App_Model_Posts p')
 ->where('p.status = 1')
 ->orderBy('p.date desc')
 ->limit(10);
 $result = $q->fetchArray();

 // generate output array
 // set feed-level elements
 $output = array(
 'title' => 'Newest posts on melonfire.com/trog',
 'link' => 'http://www.melonfire.com/community/columns/trog/',
 'author' => 'Melonfire Feed Generator/1.0',
 'charset' => 'UTF-8',
 'entries' => array()
);

318 Zend Framework: A Beginner’s Guide

 // iterate over result set
 // set entry-level elements as nested array
 foreach ($result as $r) {
 $entry = array(
 'title' => $r['title'],
 'link' => 'http://www.melonfire.com/community/columns/trog/'.
 $r['id'],
 'description' => $r['abstract'],
 'lastUpdate' => strtotime($r['date']),
);
 $output['entries'][] = $entry;
 }

 // import array into Zend_Feed and convert to Atom feed
 $feed = Zend_Feed::importArray($output, 'atom');

 // disable layout and view rendering
 $this->_helper->layout->disableLayout();
 $this->getHelper('viewRenderer')->setNoRender(true);

 // send feed to client
 $feed->send();
 exit();
 }
}

TIP

The Zend_Feed send() method will set its own headers, so if this is not what you want,
or if you want to set your own custom headers, consider setting the headers manually
with header() and then using the saveXml() method to send the feed XML to the
requesting client.

The previous listing first builds a nested array containing feed and entry content, and then

passes this array to the Zend_Feed::importArray method for conversion into an Atom

feed. The return value of this method is a Zend_Feed_Atom object, which exposes two very

useful methods, send() and saveXml(). The send() method sends the feed to a client with

the correct HTTP headers, while the saveXml() method returns an XML representation

of the feed for further processing.

Figure 10-2 displays an example of the Atom feed produced by the previous example.

NOTE

Newer versions of the Zend Framework also include a Zend_Feed_Writer component,
which provides an alternative API for creating and modifying feeds.

Chapter 10: Working with News Feeds and Web Services 319

Accessing Web Services
In recent years, it’s become almost de rigueur for consumer-facing Web applications to expose

some or all of their functions and/or data for third-party use through Web services. Google,

Facebook, Twitter, Technorati, and Flickr are just some of the many hundreds of thousands of

Web applications that today allow such access to their innards. As an application developer, it’s

quite likely that you’ll find yourself either integrating these Web services into your application,

or creating your own Web services for others to access and consume.

The Zend Framework comes with implementations for many common Web services

(including all the ones mentioned in the previous paragraph, and a few more besides). It also

offers generic SOAP and REST clients for accessing SOAP- and REST-based Web services.

The following sections examine these components in greater detail.

Understanding Web Services
Think of a Web service as a “remote API,” which allows a client to request an action or

perform a query on a remote server. The nature of the request can vary; common examples

Figure 10-2 A dynamically generated Atom feed

320 Zend Framework: A Beginner’s Guide

include looking up and returning a database record that matches a particular identifier,

verifying a credit card number, or retrieving the latitude and longitude corresponding to a

specific postal code. The server will receive the request, perform the necessary query or action,

and return the result to the requesting client in a structured format.

Web services may be based on either the Simple Object Access Protocol (SOAP) or

Representational State Transfer (REST) architecture. In both cases, clients transmit service

requests and receive service responses over HTTP. However, the key difference lies in how

these requests and responses are encoded and transmitted. With SOAP-based services, request

messages are typically encoded in XML envelopes and transmitted to the server using the

HTTP POST method, and responses are transmitted back in similar XML packaging. With

REST-based services, requests, and responses need not be encoded in XML, and the HTTP

method used to transmit requests from client to server (whether GET, POST, PUT, or DELETE)

plays an active role in determining the server action and response.

Because the REST model uses existing HTTP verbs, such as GET (get data), POST (create

data), PUT (update data), and DELETE (remove data) to communicate intent, it is generally

considered easier to use and simpler to implement than the SOAP model. To better appreciate

this, consider Figure 10-3, which illustrates the difference between SOAP and REST request

and response packets.

In case you’re ever asked the question at a party and there’s an attractive member of the

opposite sex within earshot, here are a few key points of difference between the SOAP and

REST approaches:

SOAP makes extensive use of XML for request and response encoding, and it uses strong ●

data typing to ensure the integrity of the data being passed between client and server.

REST requests and responses, on the other hand, can be transmitted in ASCII, XML,

JSON, or any other format that is understandable by both client and server. Additionally,

the REST model also has no built-in data typing requirements. As a result, REST request

and response packets are typically much smaller than the corresponding SOAP packets.

Under the SOAP model, the HTTP transport layer is mostly a passive spectator, with its ●

role limited to the transmission of SOAP requests from client to server using the POST
method. The details of the service request, such as the remote procedure name and input

arguments, are encoded within the request body. REST architecture, on the other hand,

treats the HTTP transport layer as an active participant in the transaction, making use

of existing HTTP method “verbs” such as GET, POST, PUT, and DELETE to indicate

the type of service required. From a development perspective, therefore, REST requests

are generally easier to formulate and understand, as they piggyback on existing, well-

understood HTTP interfaces.

The SOAP model supports some degree of introspection, by allowing service developers ●

to describe the service API in a Web Service Description Language (WSDL) file. These

files are reasonably complex to create; however, the effort is often worth it, because

SOAP clients can then automatically obtain detailed information on method names and

signatures, input and output data types, and return values through this WSDL file. The

Chapter 10: Working with News Feeds and Web Services 321

Figure 10-3 Example SOAP and REST transactions

322 Zend Framework: A Beginner’s Guide

REST model, on the other hand, eschews WSDL-level complexity in favor of a simpler,

more intuitive interface based on standard HTTP methods, as described earlier.

REST revolves around the concept of ● resources, while SOAP uses interfaces based on

objects and methods. A SOAP interface can have a potentially unlimited number of

methods; however, a REST interface is limited to four possible operations, corresponding

to the four HTTP “verbs.”

Consuming Web Services
The Zend Framework includes generic clients for REST- and SOAP-based Web services,

as well as a number of service-specific client implementations that can be used to directly

communicate with popular Web services. The following sections examine these aspects in

greater detail.

Using Service-Specific Client Implementations
The Zend Framework includes a number of preconfigured clients for popular Web services,

such as those exposed by Google, Amazon, Flickr, Technorati, and others. Using these service-

specific client implementations can reduce the time and effort involved in integrating data

from these services into a Web application. In most cases, these implementations provide an

object-oriented API, with service responses returned as native PHP objects or arrays.

Table 10-1 lists the service-specific implementations currently included in the Zend

Framework.

While a complete description of each of these implementations is not possible within the

limited confines of this chapter, a few examples will be illustrative. Consider the following

Q: If I’m building a Web service, which should I use: SOAP or REST?

A: As with all questions of this sort, the answer really depends on your requirements and

goals. For transactional or e-commerce services, or in situations where the service is part

of a larger, distributed platform, SOAP’s strict data typing and formal service description

often make it a better choice than REST. On the other hand, if your goal is simply to

enable quick-and-dirty access to your application’s innards, with ease of use and format

flexibility as the key factors in your choice, then REST is probably a better option. That

said, it’s worth noting that the REST approach is gradually overtaking the SOAP approach

in popularity, both because it cleverly leverages existing technologies and because it is

significantly simpler to use and understand.

Ask the Expert

Chapter 10: Working with News Feeds and Web Services 323

listing, which uses the Zend_Service_Delicious component to retrieve a list of the user’s tags

and bookmarks on the del.icio.us service:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function deliciousAction()
 {
 // initialize service object
 $client = new Zend_Service_Delicious('username', 'password');

 // get all tags created by user with frequency
 $this->view->tags = $client->getTags();

 // get all posts tagged with PHP
 $this->view->posts = $client->getPosts('php');
 }
}

Client Class Description

Zend_Service_Akismet A client for the Akismet spam-blocking application

Zend_Service_Amazon A client for the Amazon Web Services API, with specific
implementations for Amazon EC2, Amazon SQS, and Amazon S3

Zend_Service_AudioScrobbler A client for the Last.fm music search engine

Zend_Service_Delicious A client for the del.icio.us social bookmarking application

Zend_Service_Flickr A client for the Flickr photo-sharing application

Zend_Service_Nirvanix A client for the Nirvanix data storage application

Zend_Service_ReCaptcha A client for the ReCaptcha CAPTCHA generator

Zend_Service_Simpy A client for the Simpy social bookmarking application

Zend_Service_SlideShare A client for the SlideShare presentation-sharing application

Zend_Service_StrikeIron A client for the StrikeIron commercial database aggregator

Zend_Service_Technorati A client for the Technorati weblog search engine

Zend_Service_Twitter A client for the Twitter micro-blogging service

Zend_Service_Yahoo A client for the Yahoo! Search APIs

Zend_Gdata A client for the Google Data APIs, with specific implementations for
Google applications such as Notebook, Calendar, YouTube, Base,
Spreadsheets, and Documents

Table 10-1 Web Service Client Implementations Included with the Zend Framework

324 Zend Framework: A Beginner’s Guide

Here’s another example, this one using the Zend_Gdata component to query the YouTube

service for a list of the five most popular videos at the current time:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function youtubeAction()
 {
 // initialize service object
 $client = new Zend_Gdata_YouTube();

 // get feed of five most popular videos
 $feed = $client->getVideoFeed(
 'http://gdata.youtube.com/feeds/api/standardfeeds/most_popular?
 max-results=5');

 // process feed and get individual entries
 // for each entry, get title, category, rating, view count and url
 $this->view->mostViewed = array();
 foreach ($feed as $entry) {
 $this->view->mostViewed[] = array(
 'title' => $entry->getVideoTitle(),
 'rating' => $entry->getVideoRatingInfo(),
 'category' => $entry->getVideoCategory(),
 'views' => $entry->getVideoViewCount(),
 'watch' => $entry->getVideoWatchPageUrl()
);
 }
 }
}

In this example, the getVideoFeed() method returns an Atom feed of YouTube

video results; this feed is automatically parsed and converted into an array of Zend_Gdata_

YouTube_VideoEntry objects, each representing one entry in the feed. It’s now a simple matter

to iterate over this array, retrieve the details of each entry using object properties, and represent

it as a Web page.

And finally, here’s an example of using the Zend_Service_Amazon implementation to

search Amazon.com for books by a particular author:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function amazonAction()
 {
 // initialize service object
 $client = new Zend_Service_Amazon('ACCESS-KEY', 'US', 'SECRET-KEY');

Chapter 10: Working with News Feeds and Web Services 325

 // search for items on Amazon.com by attributes
 $items = $client->itemSearch(array(
 'SearchIndex' => 'Books',
 'Author' => 'Dan Brown',
 'ResponseGroup' => 'Large'
));

 // process search results
 $this->view->results = array();
 foreach ($items as $i) {
 $this->view->results[] = array (
 'asin' => $i->ASIN,
 'title' => $i->Title,
 'author' => $i->Author,
 'url' => $i->DetailPageURL,
 'rating' => $i->AverageRating,
 'salesRank' => $i->SalesRank,
);
 }
 }
}

Here, the service object’s itemSearch() method queries the Amazon Web service for

a list of products matching the specified parameters, and returns an array of Zend_Service_

Amazon_Item objects, each containing information on the corresponding item. It’s quite easy

to iterate over this array of objects, extracting the relevant information for display.

Using Generic Client Implementations
If you’re trying to access a Web service for which no predefined service implementation exists,

don’t lose heart: The Zend Framework also includes generic SOAP and REST clients for

accessing such services. These clients are implemented in the Zend_Soap_Client and Zend_

Rest_Client components, respectively.

To illustrate these in action, consider the following example, which uses the generic SOAP

client to access the GeoCoder Web service and return the latitude and longitude corresponding

to a particular address:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function soapAction()
 {
 // initialize SOAP client
 $soap = new Zend_Soap_Client(
 'http://geocoder.us/dist/eg/clients/GeoCoderPHP.wsdl', array(
 'soap_version' => SOAP_1_1,
 'compression' => SOAP_COMPRESSION_ACCEPT,
));

326 Zend Framework: A Beginner’s Guide

 // get latitude/longitude results for address
 $response = $soap->geocode('E Capitol St NE & 1st St NE, Washington,
DC');
 $this->view->results = array();
 foreach ($response as $r) {
 $this->view->results[] = array(
 'zip' => $r->zip,
 'latitude' => $r->lat,
 'longitude' => $r->long
);
 }

 // get SOAP request and response for debugging
 $this->view->request = $soap->getLastRequest();
 $this->view->response = $soap->getLastResponse();
 }
}

This example creates a new Zend_Soap_Client object and instantiates it with the URL

to the Web service’s WSDL file. As discussed earlier, the WSDL file allows the client to

automatically obtain information on available methods, expected data types, and content of

input and output arguments. The second argument to the object constructor is an array of

configuration options, which can be used to define various aspects of client behavior.

NOTE

It's also possible to use Zend_Soap_Client in non-WSDL mode by omitting the WSDL
URL and directly specifying the SOAP service URL (endpoint) as an argument in the
options array.

Once the Zend_Soap_Client object has been instantiated, remote service methods can

be accessed “by proxy,” by calling the corresponding object method. The Zend_Soap_Client

object will automatically take care of creating the SOAP message packet, transmitting it to the

server via POST, receiving a response packet, and decoding the response packet into a native

PHP Zend_Soap_Client_Response object. This is visible in the previous example, which

invokes the service’s geocode() method, passes it an address string (actually, the address of

the U.S. Capitol in Washington, D.C.), and retrieves the postal code, latitude, and longitude

from the response.

CAUTION

The Zend_Soap_Client component makes use of PHP's ext/soap extension and will not
function if your PHP environment does not include this extension.

In a similar vein, it’s possible to use the Zend_Rest_Client implementation to access

REST-based Web services in a generic and consistent manner. Consider this next

example, which illustrates by attempting to access the GeoNames REST service for

country information:

Chapter 10: Working with News Feeds and Web Services 327

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function restAction()
 {
 // initialize REST client
 $client = new Zend_Rest_Client('http://ws.geonames.org/countryInfo');

 // set arguments
 $client->country('IN');

 // make GET request for country information
 // parse results
 $result = $client->get();
 $this->view->countryName = $result->countryName();
 $this->view->countryCode = $result->countryCode();
 $this->view->capital = $result->capital();
 $this->view->areaKM = $result->areaInSqKm();
 $this->view->population = $result->population();
 $this->view->languages = $result->languages();
 $this->view->mapCoordinates = array(
 $result->bBoxWest(),
 $result->bBoxEast(),
 $result->bBoxNorth(),
 $result->bBoxSouth()
);

 // get REST request and response for debugging
 $this->view->request = $client->getLastRequest();
 $this->view->response = $client->getLastResponse();
 }
}

As before, the first step is to initialize the REST client by creating an instance of the Zend_

Rest_Client object and passing the object constructor the URL to the REST service. Arguments are

specified using a fluent interface that proxies argument names to object methods, and actual request

transmission is performed using the get(), post(), put(), or delete() method, which is

internally translated to the corresponding HTTP method. This is clearly visible in the previous

listing, which formulates a GET request for the GeoNames country information service, passing it

the country code for India as an argument: http://ws.geonames.org/countryInfo?country=IN.

The response to a Zend_Rest_Client request is presented as an instance of the Zend_

Rest_Client_Response object, and is typically represented as a SimpleXML object or array

of objects. Individual elements of the response can be accessed either by using SimpleXML

notation, or by directly accessing the element name as a method. Under the latter method,

an XPath query will be used to return all matching elements, regardless of their hierarchical

position in the XML document tree.

http://ws.geonames.org/countryInfo?country=IN

328 Zend Framework: A Beginner’s Guide

As these two examples illustrate, the Zend Framework makes it easy to access any SOAP-

or REST-based Web service, even if a service-specific implementation does not already exist

and without requiring extensive knowledge of service internals. This makes it a valuable tool

for rapid and efficient integration of third-party Web services into a PHP application.

TIP

Notice the getLastRequest() and getLastResponse() methods in the previous
two listings. These methods come in very handy for debugging SOAP and REST
transactions, and for verifying the contents of request and response packets.

Integrating Twitter and Blog Search Results
With all this background information at hand, let’s see how it plays out in the real world. The

following sections will illustrate how the components discussed in preceding sections can

be combined to display recent news, blog posts, and Twitter updates related to the subject of

philately within the SQUARE example application.

Defining Custom Routes
The first step is, as always, to define a custom route for the news page. Edit the application

configuration file, at $APP_DIR/application/configs/application.ini, and add the following

route definition to it:

resources.router.routes.news.route = /news
resources.router.routes.news.defaults.module = default
resources.router.routes.news.defaults.controller = news
resources.router.routes.news.defaults.action = index

Defining the Controller and View
The next step is to define the action and view for the news interface. Here’s the code for

the NewsController, which should be saved as $APP_DIR/application/modules/default/

controllers/NewsController.php:

<?php
class NewsController extends Zend_Controller_Action
{
 public function indexAction()
 {
 // get Twitter search feed
 $q = 'philately';
 $this->view->q = $q;
 $twitter = new Zend_Service_Twitter_Search();
 $this->view->tweets = $twitter->search($q,
 array('lang' => 'en', 'rpp' => 8, 'show_user' => true));

Try This 10-1

Chapter 10: Working with News Feeds and Web Services 329

 // get Google News Atom feed
 $this->view->feeds = array();
 $gnewsFeed = "http://news.google.com/news?hl=en&q=$q&output=atom";
 $this->view->feeds[0] = Zend_Feed_Reader::import($gnewsFeed);

 // get BPMA RSS feed
 $bpmaFeed = "http://www.postalheritage.org.uk/news/RSS";
 $this->view->feeds[1] = Zend_Feed_Reader::import($bpmaFeed);
 }
}

The indexAction() method is responsible for accessing and importing various news

feeds and Web service feeds.

The Zend_Service_Twitter implementation makes it possible to perform a Twitter ●

search for recent status updates containing the word 'philately'. The object’s

search() method accepts a query term, and an options array that specifies the language

filter, the number of results to return, and whether or not each result entry should include

the source user’s Twitter username. The return value of this method is a nested array

of results matching the search term, and this is then attached to the view for further

processing.

The Zend_Feed_Reader implementation is used to import two news feeds. The first is an ●

Atom feed containing the latest news headlines related to 'philately' from Google

News, and the second is a list of recent posts from the official British Postal Museum

and Archive (BPMA) blog. The resulting feed objects are then assigned as view script

variables.

Here’s the corresponding view script, which should be saved as $APP_DIR/application/

modules/default/views/scripts/news/index.phtml:

<h2>News</h2>
<div id="newsfeeds">

 <div id="posts">
 Recent news about
 <a href="http://news.google.com/news?hl=en&q=<?php echo $this->q; ?>">
 '<?php echo $this->q; ?>'
 :

 <p id="hdiv"></p>
 <?php $count = 0; ?>
 <?php foreach ($this->feeds[0] as $entry):?>
 <?php if ($count >= 5) break; ?>
 <p class="post">

(continued)

330 Zend Framework: A Beginner’s Guide

 <a href="<?php echo $entry->getLink(); ?>">
 <?php echo $entry->getTitle(); ?>

 <?php echo $entry->getDateModified(); ?>

 </p>
 <?php $count++; ?>
 <?php endforeach; ?>

 <p style="padding-top: 4px"/>

 Recent posts from

 the British Postal Museum and Archive
 blog:

 <p id="hdiv"></p>
 <?php $count = 0; ?>
 <?php foreach ($this->feeds[1] as $entry):?>
 <?php if ($count >= 5) break; ?>
 <p class="post">

 <a href="<?php echo $entry->getLink(); ?>">
 <?php echo $entry->getTitle(); ?>

 <?php echo $entry->getDateModified(); ?>

 </p>
 <?php $count++; ?>
 <?php endforeach; ?>
 </div>

 <div id="tweets">
 Recent tweets about
 <a href="http://search.twitter.com/search?q=<?php echo $this->q; ?>">
 '<?php echo $this->q; ?>'
 :

 <?php foreach ($this->tweets['results'] as $tweet):?>
 <p class="tweet">

 <img src="<?php echo $tweet['profile_image_url']; ?>" />

 <?php echo $tweet['from_user'] . ': '; ?>

Chapter 10: Working with News Feeds and Web Services 331

 <?php echo $tweet['text']; ?>

 <?php echo $tweet['created_at']; ?>

 </p>
 <?php endforeach; ?>
 </div>

</div>

Nothing very complicated here. The view script merely iterates over the result objects

assigned in the controller, extracting the necessary information from each and displaying it in a

neatly formatted two-column layout.

Updating the Master Layout
All that’s left is to update the master layout at $APP_DIR/application/layouts/master.phtml to

display a link to the news page in the main menu. The revision to the layout is highlighted in

bold in the following listing:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <div id="menu-locale-container">
 <div id="menu">
 ...

 <a href="<?php echo $this->url(array(), 'news'); ?>">
 <?php echo $this->translate('menu-news'); ?>

 ... </div>
 </div>
...
</html>

NOTE

Remember that you'll need to add translation strings for the new menu item to the
translation source files for each supported language, as discussed in Chapter 9.
The code archive for this chapter, which can be downloaded from http://www.zf-
beginners-guide.com/, has the necessary additions.

To see this in action, visit the URL http://square.localhost/news in your browser, and you

should see something like Figure 10-4.

(continued)

http://www.zf-beginners-guide.com/
http://www.zf-beginners-guide.com/
http://square.localhost/news

332 Zend Framework: A Beginner’s Guide

Creating REST-Based Web Services
In addition to providing a comprehensive set of tools for accessing and integrating news feeds

and Web services into a PHP application, the Zend Framework also makes it easy to expose

application functionality by building your own REST-based Web services. This is usually

accomplished through the Zend_Rest_Route and Zend_Rest_Controller components, discussed

in the following section.

Understanding REST Routes
There are two key principles of REST-based architecture:

An application is made up of multiple resources, each of which can be accessed with a ●

unique URL.

The method used to access a resource determines the action that is to be taken on that resource.●

Figure 10-4 Dynamically retrieving and integrating blog, news, and Twitter search results

Chapter 10: Working with News Feeds and Web Services 333

Table 10-2 illustrates the typical URL routes for a REST-based service.

It should be clear from Table 10-2 that, under the REST model, existing HTTP verbs, such

as GET (get data), POST (create data), PUT (update data), and DELETE (remove data), indicate

the action to be taken on the specified resource. Where required, a unique resource identifier

is included with the request URL. Any additional arguments, particularly when creating new

resources or updating existing ones, are passed within the body of the POST or PUT request.

The Zend Framework includes a Zend_Rest_Route component that can automatically

enable these standard REST routes for the entire application, for a specific module, or for

a specific controller. When matching URL requests, this component will automatically

identify the request method, examine request arguments, and invoke one of the corresponding

standard actions: indexAction(), getAction(), postAction(), putAction(), and

deleteAction().

These five standard actions are defined as abstract methods of the Zend_Rest_Controller

class. This controller, which itself extends the Zend_Controller_Action class, serves as the

base for all REST-based controllers in the Zend Framework. Here’s a controller skeleton that

illustrates this more clearly:

<?php
class Sandbox_RestController extends Zend_Rest_Controller
{
 public function indexAction()
 {
 // handle GET requests
 }

 public function getAction()
 {
 // handle GET requests
 }

 public function postAction()
 {
 // handle POST requests
 }

Request URL Request Method Description Example

/api/items GET Get all items GET /api/items

/api/items POST Add new item POST /api/items

/api/items/:id GET Get item record GET /api/items/25

/api/items/:id PUT Update item record PUT /api/items/15

/api/items/:id DELETE Delete item record DELETE /api/items/13

Table 10-2 Standard REST Routes

334 Zend Framework: A Beginner’s Guide

 public function putAction()
 {
 // handle PUT requests
 }

 public function deleteAction()
 {
 // handle DELETE requests
 }
}

Implementing REST-Based Web Services
From the preceding section, it should be clear that adopting REST architecture for an

application, particularly with reference to the standard CRUD operations, involves two

essential components:

1. A controller that extends Zend_Rest_Controller and implements actions corresponding to

the standard HTTP methods;

2. A route that uses Zend_Rest_Route to match incoming URL requests with the

aforementioned controller actions.

The best way to understand how this works is with an example. The following sections

illustrate this by building a simple REST-based API for the SQUARE example application.

This API will support GET and POST methods, and it will allow users to retrieve information

on existing catalog items as well as post new items.

Creating a New Module
The first step is to create a new module—we’ll call it “api”—to house the REST controller. To

do this, change to $APP_DIR/application/ and execute the following commands:

shell> mkdir modules/api
shell> mkdir modules/api/controllers
shell> mkdir modules/api/views
shell> mkdir modules/api/views/scripts

Defining the Controller
The next step is to define the API controller, which will handle all REST requests. As

discussed previously, this controller should extend the abstract Zend_Rest_Controller, and

implement all its abstract methods. Here’s what it looks like:

Try This 10-2

Chapter 10: Working with News Feeds and Web Services 335

<?php
class Api_CatalogController extends Zend_Rest_Controller
{
 // disable layouts and rendering
 public function init()
 {
 $this->apiBaseUrl = 'http://square.localhost/api/catalog';
 $this->_helper->layout->disableLayout();
 $this->getHelper('viewRenderer')->setNoRender(true);
 }

 public function indexAction()
 {
 // handle GET requests
 }

 public function getAction()
 {
 // handle GET requests
 }

 public function postAction()
 {
 // handle POST requests
 }

 public function putAction()
 {
 // handle PUT requests
 }

 public function deleteAction()
 {
 // handle DELETE requests
 }
}

Notice the controller’s init() method, which disables all layouts and view script

rendering. This is because a REST API will typically return responses in XML, JSON, or (in

some cases) ASCII text. This output can be generated from within the controller itself and sent

directly to the requesting client.

Save this controller as $APP_DIR/application/modules/api/controllers/CatalogController

.php.

(continued)

336 Zend Framework: A Beginner’s Guide

Defining the GET Actions
Next, let’s define the Api_CatalogController::indexAction. You’ll remember that

this action is automatically dispatched when the router encounters a GET request without the

“id” request variable, and it should return a list of all matching resources. Here’s the code:

<?php
class Api_CatalogController extends Zend_Rest_Controller
{
 public function indexAction()
 {
 // get records from database
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->addWhere('i.DisplayStatus = 1');
 $result = $q->fetchArray();

 // set feed elements
 $output = array(
 'title' => 'Catalog records',
 'link' => $this->apiBaseUrl,
 'author' => 'Square API/1.0',
 'charset' => 'UTF-8',
 'entries' => array()
);

 // set entry elements
 foreach ($result as $r) {
 $output['entries'][] = array(
 'title' => $r['Title'] . ' - ' . $r['Year'],
 'link' => $this->apiBaseUrl . '/' . $r['RecordID'],
 'description' => $r['Description'],
 'lastUpdate' => strtotime($r['RecordDate']),
 'square:title' => $r['Title']
);
 }

 // import array into atom feed
 // send to client
 $feed = Zend_Feed::importArray($output, 'atom');
 $feed->send();
 exit;
 }

Chapter 10: Working with News Feeds and Web Services 337

 // forward to indexAction
 public function listAction() {
 return $this->_forward('index');
 }
}

The Api_CatalogController::indexAction begins by executing a Doctrine query

to obtain a list of all active catalog items. It then iterates over the result set, converting it into

a nested array suitable for conversion into an Atom feed with Zend_Feed::importArray.

This Atom feed is then returned to the client using the feed object’s send() method.

CAUTION

The Zend Framework v1.9.2 and earlier included a bug that resulted in the router
attempting to delegate REST requests for the indexAction() to a listAction()
instead. The previous listing illustrates a simple workaround for this bug: Simply
forward listAction() requests, if any, to the indexAction() using the _forward()
controller method.

The Api_CatalogController::getAction is automatically dispatched when the

router encounters a GET request with the “id” request variable, indicating a request for a

particular resource. In this case, the action must retrieve the specified catalog record from the

database and return detailed information about it to the requesting client. Here’s the code:

<?php
class Api_CatalogController extends Zend_Rest_Controller
{
 public function getAction()
 {
 // get entry record from database
 $id = $this->_getParam('id');
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.RecordID = ?', $id)
 ->addWhere('i.DisplayStatus = 1');
 $result = $q->fetchArray();

 // if record available
 // set entry elements
 if (count($result) == 1) {
 // set feed elements
 $output = array(
 'title' => 'Catalog record for item ID: ' . $id,
 'link' => $this->apiBaseUrl . '/' . $id,
 'author' => 'Square App/1.0',

(continued)

338 Zend Framework: A Beginner’s Guide

 'charset' => 'UTF-8',
 'entries' => array()
);

 $output['entries'][0] = array(
 'title' => $result[0]['Title'] . ' - ' . $result[0]['Year'],
 'link' => $this->apiBaseUrl . '/' . $id,
 'description' => $result[0]['Description'],
 'lastUpdate' => strtotime($result[0]['RecordDate'])
);

 // import array into atom feed
 $feed = Zend_Feed::importArray($output, 'atom');
 Zend_Feed::registerNamespace('square', 'http://square.localhost');

 // set custom namespaced elements
 $feed->rewind();
 $entry = $feed->current();
 if ($entry) {
 $entry->{'square:id'} = $result[0]['RecordID'];
 $entry->{'square:title'} = $result[0]['Title'];
 $entry->{'square:year'} = $result[0]['Year'];
 $entry->{'square:grade'} =
 $result[0]['Square_Model_Grade']['GradeName'];
 $entry->{'square:description'} = $result[0]['Description'];
 $entry->{'square:country'} =
 $result[0]['Square_Model_Country']['CountryName'];
 $entry->{'square:price'} = null;
 $entry->{'square:price'}->{'square:min'}= $result[0]['SalePriceMin'];
 $entry->{'square:price'}->{'square:max'} = $result[0]['SalePriceMax'];
 }

 // output to client
 $feed->send();
 exit;
 } else {
 $this->getResponse()->setHttpResponseCode(404);
 echo 'Invalid record identifier';
 exit;
 }
 }
}

This is very similar to the previous listing, except that in this case, the Atom feed contains

additional elements (in a custom namespace) that hold details on the item type, grade, price,

location, and description. Notice that, if the supplied resource ID cannot be matched to a

record in the database, the feed creation process is skipped and the client is directly sent a 404

(page not found) error. This is an example of how REST architecture cleverly leverages

existing standards—in this case, HTTP server error codes—to provide information on the

status of a request.

Chapter 10: Working with News Feeds and Web Services 339

Defining the POST Action
The Api_CatalogController::postAction is automatically dispatched when the

router encounters a POST request. As per REST conventions, such a request should result in

the creation of a new resource, with the body of the POST request containing the raw data

required for resource creation. Here’s the code:

<?php
class Api_CatalogController extends Zend_Rest_Controller
{
 public function postAction()
 {
 // read POST parameters and save to database
 $item = new Square_Model_Item;
 $item->fromArray($this->getRequest()->getPost());
 $item->RecordDate = date('Y-m-d', mktime());
 $item->DisplayStatus = 0;
 $item->DisplayUntil = null;
 $item->save();
 $id = $item->RecordID;

 // set response code to 201
 // send ID of newly-created record
 $this->getResponse()->setHttpResponseCode(201);
 $this->getResponse()->setHeader('Location', $this->apiBaseUrl.'/'.$id);
 echo $this->apiBaseUrl.'/'.$id;
 exit;
 }
}

Notice that once the resource record has been created and saved to the database, the client

is sent a 201 (created) response code, together with the URL to the newly created resource.

Q: Why does your REST API return results as Atom feeds?

A: While REST-based APIs can return data in any format, it’s quite common for them to return

Atom or RSS feeds. This is because most modern HTTP clients come with built-in support

for these feeds, and most programming languages, too, include built-in or readily available

parsers for these formats.

Ask the Expert

(continued)

340 Zend Framework: A Beginner’s Guide

Initializing the REST Routes
The final step is to initialize the REST API route. To do this, open the application bootstrapper

and add the following method to it:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initRoutes()
 {
 $front = Zend_Controller_Front::getInstance();
 $router = $front->getRouter();
 $restRoute = new Zend_Rest_Route($front, array(), array('api'));
 $router->addRoute('api', $restRoute);
 }
}

Figure 10-5 The API response to a GET request for all records

Chapter 10: Working with News Feeds and Web Services 341

This _initRoutes() method takes care of initializing a new Zend_Rest_Route instance,

and mapping it to the new “api” module created in the first step. The third argument to the

Zend_Rest_Route constructor specifies an array of module and/or controller names for which

REST support should be enabled.

At this point, your REST API is up and running. You can test it by requesting the URL http://

square.localhost/api/catalog in your Web browser, which should produce an Atom feed of active

listings from the stamp catalog database. Figure 10-5 illustrates what the output looks like.

In a similar vein, accessing the same URL with an additional item identifier, such as

http://square.localhost/api/catalog/1, generates an Atom feed with details of the requested

item. Figure 10-6 illustrates what this feed might look like.

Figure 10-6 The API response to a GET request for a specific record

(continued)

http://square.localhost/api/catalog
http://square.localhost/api/catalog
http://square.localhost/api/catalog/1

342 Zend Framework: A Beginner’s Guide

Figure 10-7 The API response to a POST request

And finally, POST-ing an array of data to the URL http://square.localhost/api/catalog

will result in the creation of a new item record in the database, and a reference to the item URL

will be returned to the client (see Figure 10-7).

Summary
Most weblogs and news sites include RSS or Atom feeds that can be used to syndicate new

content to third-party applications. Writing parsers to consume these news feeds is a common

application development task, and the Zend Framework simplifies it by providing a set of

predefined components to generate, modify, and parse news feeds. This chapter discussed

these components in detail, illustrating how they could be used to integrate feeds from online

news sources into the SQUARE example application.

By allowing third-party access to an application’s functions, Web services enable a new

range of “mashups” and spin-off products that integrate data from multiple disparate sources

while encouraging technical innovation. The Zend Framework makes it easy to jump on the

Web service bandwagon: It includes generic clients for REST and SOAP access, as well as

ready implementations for Web services exposed by popular applications such as Google,

Amazon, and Twitter. This chapter demonstrated some of these implementations, and also

illustrated the basics of creating a REST-based Web service from scratch using the SQUARE

example application.

To learn more about the topics discussed in this chapter, consider visiting the

following links:

The Zend_Feed_Reader component, at ●

http://framework.zend.com/manual/en/zend.feed.reader.html

The Zend_Feed component, at ●

http://framework.zend.com/manual/en/zend.feed.html

The Zend_Rest_Client component, at ●

http://framework.zend.com/manual/en/zend.rest.client.html

http://framework.zend.com/manual/en/zend.feed.reader.html
http://framework.zend.com/manual/en/zend.feed.html
http://framework.zend.com/manual/en/zend.rest.client.html
http://square.localhost/api/catalog

Chapter 10: Working with News Feeds and Web Services 343

The Zend_Soap_Client component, at ●

http://framework.zend.com/manual/en/zend.soap.client.html

The Zend_Service component, at ●

http://framework.zend.com/manual/en/zend.service.html

The Zend_Gdata component, at ●

http://framework.zend.com/manual/en/zend.gdata.html

The Atom Syndication Format 1.0 specification, at ●

http://tools.ietf.org/html/rfc4287

Wikipedia’s discussion of the RSS format, at ●

http://en.wikipedia.org/wiki/RSS

Wikipedia’s discussion of SOAP and REST architecture, at ●

http://en.wikipedia.org/wiki/Web_service

A discussion of REST versus SOAP Web services (Amit Asaravala), at ●

http://www.devx.com/DevX/Article/8155

A discussion of building REST-based interfaces with the Zend Framework (Matthew Weier ●

O’Phinney), at

http://weierophinney.net/matthew/archives/228-Building-RESTful-Services-with-

Zend-Framework.html

A screencast of writing a REST-based Web service and client (Jon Lebensold), at ●

http://www.zendcasts.com/writing-a-restful-web-service-and-client-with-zend_

controller-and-zend_httpclient/2009/04/

A (non-framework) approach to building a REST API (Ian Selby), at ●

http://www.gen-x-design.com/archives/create-a-rest-api-with-php/

Some examples of HTTP response codes and how they can be used with a REST-based ●

Zend Framework application (Sudheer Satyanarayana), at

http://techchorus.net/create-restful-applications-using-zend-framework-part-ii-using-

http-response-code

http://framework.zend.com/manual/en/zend.soap.client.html
http://framework.zend.com/manual/en/zend.service.html
http://framework.zend.com/manual/en/zend.gdata.html
http://tools.ietf.org/html/rfc4287
http://en.wikipedia.org/wiki/RSS
http://en.wikipedia.org/wiki/Web_service
http://www.devx.com/DevX/Article/8155
http://weierophinney.net/matthew/archives/228-Building-RESTful-Services-with-Zend-Framework.html
http://weierophinney.net/matthew/archives/228-Building-RESTful-Services-with-Zend-Framework.html
http://www.zendcasts.com/writing-a-restful-web-service-and-client-with-zend_controller-and-zend_httpclient/2009/04/
http://www.zendcasts.com/writing-a-restful-web-service-and-client-with-zend_controller-and-zend_httpclient/2009/04/
http://www.gen-x-design.com/archives/create-a-rest-api-with-php/
http://techchorus.net/create-restful-applications-using-zend-framework-part-ii-using-http-response-code
http://techchorus.net/create-restful-applications-using-zend-framework-part-ii-using-http-response-code

This page intentionally left blank

345

Chapter 11
Working with User

Interface Elements

346 Zend Framework: A Beginner’s Guide

Key Tools & Concepts

● Improve site navigation with menus, sitemaps, and breadcrumb trails

● Learn about the Zend Framework’s Dojo integration

● Create an AJAX-enabled autocomplete form input

● Use YUI Library widgets with the Zend Framework

● Understand how to create and use action helpers

Distilling the essence of a Web application into clear, consistent navigation is one of those

things that sound easy in theory but are actually fairly hard to get right in practice. It often

takes many hours of thought and experimentation to build a usable and consistent navigation

map for a Web application. However, the effort is invariably worth it: Navigation is one of

the key elements of Web site usability, and getting it right helps users locate information

efficiently, making them happy and promoting repeat visits.

In addition to good navigation, it’s also possible to improve application usability through

the judicious use of client-side programming techniques. The rich client API in most modern

browsers, together with the ready availability of client-side programming toolkits like jQuery,

mooTools, and Dojo, make it possible to quickly add new behaviors and functions to a Web

application, improving responsiveness, reducing wait time, and (again) making users happy.

What does this have to do with the Zend Framework, you wonder? Well, the Zend

Framework includes a couple of components that are directly relevant to the goal of improving

application usability. In particular, there’s the Zend_Navigation component, which provides a

flexible, sophisticated API for managing and implementing different types of site navigation

structures; and the Zend_Dojo component, which makes it possible to directly integrate DHTML

and AJAX widgets from the Dojo Toolkit with a Web application. This chapter discusses both

these components, and also demonstrates how easy it is to integrate a third-party JavaScript

toolkit, the Yahoo! User Interface (YUI) Library, with a Zend Framework application.

Working with Navigation Structures
Zend_Navigation provides an object-oriented approach to managing navigation links on a Web site

or application. It provides a mechanism to express the relationships between the different pages

of a Web application, and to render these relationships as menus, sitemaps, or breadcrumb trails.

Links and link relationships may be expressed as nested PHP arrays, XML documents, or INI files.

Understanding Pages and Containers
The most basic navigational unit under the Zend_Navigation approach is a page, usually

expressed as an instance of the Zend_Navigation_Page class. Every page has, at minimum, a

Chapter 11: Working with User Interface Elements 347

label and either a URL or a module/controller/action combination; it may also include other

optional information such as visibility, sort order, access privileges, and forward and reverse

relationships. Pages are further organized into navigation containers, which are simply

hierarchical collections of pages.

To better understand this, consider the following PHP listing, which illustrates the

relationship between pages and containers:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 function navAction()
 {
 // initialize pages
 $config = array(
 Zend_Navigation_Page::factory(array(
 'label' => 'Foreword',
 'uri' => '/foreword',
)),

 Zend_Navigation_Page::factory(array(
 'label' => 'Chapter 1: Introducing the Zend Framework',
 'uri' => '/chapter-01',
 'pages' => array(
 Zend_Navigation_Page::factory(array(
 'label' => 'Overview',
 'uri' => '/chapter-01/overview',
)),
 Zend_Navigation_Page::factory(array(
 'label' => 'Features',
 'uri' => '/chapter-01/features',
))
)
)),

 Zend_Navigation_Page::factory(array(
 'label' => 'Index',
 'uri' => '/index',
))
);

 // initialize navigation container
 $container = new Zend_Navigation($config);
 }
}

The previous listing sets up an example navigation container for a book. The container

itself is represented as a Zend_Navigation object and passed an array of Zend_Navigation_

Page objects. Each top-level Zend_Navigation_Page object in the container represents a page

348 Zend Framework: A Beginner’s Guide

at the top level of the navigational hierarchy, and each page has a title and URL. Each page

may itself contain further child pages; these too are expressed as Zend_Navigation_Page

objects and attached to their parent as a nested array. This hierarchical structure can easily be

extended to cover the entire surface area of a Web site.

Page objects are themselves created as instances of either the Zend_Navigation_Page_Mvc

class or the Zend_Navigation_Page_Uri class, both of which extend the abstract Zend_

Navigation_Page class. The difference between the two arises from the manner in which the

page link is defined: The former piggybacks on the Zend Framework’s router by specifying

each page’s module, action, and controller, while the latter directly specifies the page link as a

URL. The following example illustrates the difference:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 function pageAction()
 {
 // define MVC page
 $page = Zend_Navigation_Page::factory(array(
 'label' => 'Contact Us',
 'module' => 'default',
 'controller' => 'contact',
 'action' => 'index',
));

 // define URI page
 $page = Zend_Navigation_Page::factory(array(
 'label' => 'Contact Us',
 'uri' => '/contact',
));
 }
}

Each page object exposes a number of “getter” and “setter” methods, which can be used

to set page properties. For example, the label, forward relationships, reverse relationships, and

visibility can all be set with the page object’s setLabel(), setRel(), setRev(), and

setVisibility() methods, respectively, and they can be retrieved with the corresponding

getLabel(), getRel(), getRev(), and getVisibility() methods. There’s also the

isActive() method, which returns a Boolean value indicating whether or not the page

matches the current request.

TIP

In most cases, it is preferable to specify page objects as Zend_Navigation_Page_Uri
instances. Not only are the corresponding URLs somewhat easier to read and
understand, but the flexible nature of these objects means that they can also be used to
create links to external or third-party resources. Zend_Navigation_Page_Mvc objects,

Chapter 11: Working with User Interface Elements 349

on the other hand, must be mapped by the Zend Framework router and so can only be
used to create links to internal application resources.

The Zend_Navigation container can be initialized, as shown previously, with an array of

Zend_Navigation_Page objects. For long or complex navigational structures, however, this

method can be somewhat unwieldy, so a Zend_Navigation container can also be initialized with

a Zend_Config object, with the navigation configuration expressed as either an XML document

or an INI file. Consider the following example, which illustrates one such XML document:

<?xml version="1.0" encoding="UTF-8"?>
<config>
 <home>
 <label>Home</label>
 <uri>/home</uri>
 </home>

 <products>
 <label>Products</label>
 <uri>/products</uri>
 <pages>
 <men>
 <label>Men</label>
 <uri>/products/men</uri>
 <pages>
 <item_1>
 <label>Dress Shirts</label>
 <uri>/products/men/16339</uri>
 </item_1>
 <item_2>
 <label>Trousers</label>
 <uri>/products/men/85940</uri>
 </item_2>
 <item_3>
 <label>Shoes</label>
 <uri>/products/men/75393</uri>
 </item_3>
 </pages>
 </men>
 <women>
 <label>Women</label>
 <uri>/products/women</uri>
 <pages>
 <item_1>
 <label>Skirts and Dresses</label>
 <uri>/products/women/75849</uri>
 </item_1>
 <item_2>
 <label>Bags</label>
 <uri>/products/women/64830</uri>

350 Zend Framework: A Beginner’s Guide

 </item_2>
 <item_3>
 <label>Shoes</label>
 <uri>/products/women/58303</uri>
 </item_3>
 </pages>
 </women>
 </pages>
 </products>

 <about>
 <label>About Us</label>
 <uri>/about</uri>
 <pages>
 <history>
 <label>Company History</label>
 <uri>/about/history</uri>
 </history>
 <team>
 <label>Management Team</label>
 <uri>/about/team</uri>
 </team>
 <awards>
 <label>Awards</label>
 <uri>/about/awards</uri>
 </awards>
 </pages>
 </about>

 <feedback>
 <label>Feedback</label>
 <uri>/feedback</uri>
 </feedback>
</config>

This XML document can be read into a Zend_Navigation container using Zend_Config, as

follows:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 function navAction()
 {
 // initialize navigation container from XML file
 $config = new Zend_Config_Xml(APPLICATION_PATH . '/configs/site.xml');
 $container = new Zend_Navigation($config);
 }
}

Chapter 11: Working with User Interface Elements 351

TIP

Zend_Navigation is fully locale-aware, and will automatically translate labels into local-
language equivalents, given a correctly configured Zend_Translate object. You can read
more about Zend_Translate in Chapter 9.

It’s easy to iterate over a Zend_Navigation container with the RecursiveIteratorIterator,

retrieving the contents of individual Zend_Navigation_Page objects. Here’s an example:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 function navAction()
 {
 // initialize navigation container
 $config = new Zend_Config_Xml(APPLICATION_PATH . '/configs/site.xml');
 $container = new Zend_Navigation($config);

 // iterate over container
 // display page information
 foreach (new RecursiveIteratorIterator(
 $container, RecursiveIteratorIterator::CHILD_FIRST) as $page) {
 echo $page->getLabel();
 }
 }
}

The Zend_Navigation container also exposes various methods for interacting with the

pages contained within it. In particular, it exposes the findBy() search method, which can

be used to retrieve all pages matching specific criteria. Consider the following example, which

illustrates this:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 function navAction()
 {
 // initialize navigation container
 $config = new Zend_Config_Xml(APPLICATION_PATH . '/configs/site.xml');
 $container = new Zend_Navigation($config);

 // find all pages with matching URLs
 $container->findBy('uri', '/about');
 }
}

Rendering Navigational Elements
Of course, defining a site’s navigation structure is only part of the problem; you still need to

use it in some way. Typically, the Zend_Navigation container is initialized in the application

352 Zend Framework: A Beginner’s Guide

bootstrapper and made persistent through the application registry. Here’s an example that

illustrates how the container can be set up:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initNavigation()
 {
 $config = new Zend_Config_Xml(APPLICATION_PATH . '/configs/site.xml');
 $container = new Zend_Navigation($config);
 $registry = Zend_Registry::getInstance();
 $registry->set('Zend_Navigation', $container);
 }
}

Once this is done, the Zend_Navigation view helpers can automatically access the registered

navigation container from within a view script and turn it into menus, sitemaps, or breadcrumb

trails suitable for use on a Web page. The following sections discuss these aspects in detail.

Menus
The Zend_Navigation Menu helper can automatically turn navigation data into a hierarchical

set of unordered list items. Here’s an example of how to use it in a view script:

<?php echo $this->navigation()->menu(); ?>

The output of this code is a nested, unordered list of links, as shown in Figure 11-1.

It’s also possible to customize this default output by specifying whether only the active

menu branch should be displayed and by defining the depth of the menu tree that is rendered.

These options are passed to the view helper’s renderMenu() method as an associative array.

Here’s a revision of the previous example that illustrates this:

<?php
echo $this->navigation()
 ->menu()
 ->renderMenu(null, array(
 'minDepth' => null,
 'maxDepth' => 1,
 'ulClass' => 'nav',
 'onlyActiveBranch' => true
));
?>

Figure 11-2 illustrates the resulting output.

TIP

If you'd like the menu to be rendered using custom markup instead of the default
unordered list, you can specify a custom view script for the Menu view helper with the
setPartial() method.

Chapter 11: Working with User Interface Elements 353

Breadcrumb Trails
There’s also a Breadcrumbs navigation helper, which automatically creates breadcrumb trails

based on the currently requested URL. In this case too, it’s possible to customize the appearance of

the breadcrumbs, including the separator, the indentation, and whether or not the last breadcrumb

should be rendered as a link. Here’s an example of how to use this helper in a view script:

<?php
echo $this->navigation()
 ->breadcrumbs()
 ->setLinkLast(true)
 ->setSeparator(' / ');
?>

Figure 11-3 illustrates the output.

Figure 11-1 An autogenerated site menu

354 Zend Framework: A Beginner’s Guide

Links
The Links helper generates a set of <link>
elements that express the relationship of a particular

page to other pages in the document collection, as

well as provide additional information to search

engines. These <link> elements can express both

forward and reverse relationships, and always

appear within the <head> of an HTML document.

Here’s an example of how to use this helper in a view script:

<?php echo $this->navigation()->links(); ?>

Figure 11-4 illustrates an example of the output.

Sitemaps
The Sitemap helper makes it possible to automatically generate an XML sitemap from the data

in the navigation container. This sitemap is compliant with the Sitemap protocol that has been

Figure 11-2 An autogenerated site menu with only the active branch visible

Figure 11-3 An autogenerated
breadcrumbs trail

Chapter 11: Working with User Interface Elements 355

adopted by Google, Yahoo!, and Microsoft, and you’ll find links to more information about

this protocol at the end of this chapter.

Here’s an example of how to use this helper in a view script:

<?php
echo $this->navigation()
 ->sitemap()
 ->setFormatOutput(true)
 ->setMaxDepth(1);
?>

Figure 11-5 has an example of the output.

Adding a Navigation Menu
Now that you know a little bit about how Zend_Navigation works, let’s use it in the context

of the SQUARE example application. Given that the application only has a single-tier main

menu, this doesn’t pose much of a challenge; however, it still provides a good illustration of

how you might typically use Zend_Navigation in a practical context.

Defining Navigation Pages and Containers
The first step is to define the navigation container, and attach pages to it. As discussed in

previous sections, one of the easiest ways to express this information is with an XML file. So,

create a new file in your text editor and fill it with the following data:

<?xml version="1.0" encoding="UTF-8"?>
<config>
 <home>

Try This 11-1

Figure 11-4 Autogenerated header links

(continued)

356 Zend Framework: A Beginner’s Guide

 <label>menu-home</label>
 <uri>/home</uri>
 </home>
 <services>
 <label>menu-services</label>
 <uri>/content/services</uri>
 </services>
 <catalog>
 <label>menu-catalog</label>
 <uri>/catalog/item/search</uri>
 </catalog>
 <news>
 <label>menu-news</label>
 <uri>/news</uri>
 </news>
 <contact>
 <label>menu-contact</label>
 <uri>/contact</uri>
 </contact>
</config>

Figure 11-5 An autogenerated XML Sitemap

Chapter 11: Working with User Interface Elements 357

Save this file as $APP_DIR/application/configs/navigation.xml. Notice that this XML

definition uses string identifiers for each menu label; these will be automatically localized

to the currently selected language via Zend_Navigation’s built-in compatibility with Zend_

Locale.

Registering the Navigation Object
The next step is to update the application bootstrapper and configure and register an instance

of the Zend_Navigation object. This instance will then become available in all application

controllers and views, enabling the use of the various navigation view helpers.

To do this, update the application bootstrapper, at

$APP_DIR/application/Bootstrap.php, and add the following method to it:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initNavigation()
 {
 // read navigation XML and initialize container
 $config = new Zend_Config_Xml(
 APPLICATION_PATH . '/configs/navigation.xml');
 $container = new Zend_Navigation($config);

 // register navigation container
 $registry = Zend_Registry::getInstance();
 $registry->set('Zend_Navigation', $container);

 // add action helper
 Zend_Controller_Action_HelperBroker::addHelper(
 new Square_Controller_Action_Helper_Navigation()
);
 }
}

Notice that the last line of the _initNavigation() method references a Navigation

action helper. This is a custom action helper that is called on every request and takes care of

setting the active page in the main menu. This is discussed in detail in the next section.

CAUTION

Reading an external file to load the navigation container on every request, as shown in
the previous section, can significantly degrade performance in high-traffic applications.
An alternative in such cases, especially for simple navigation containers, is to use the
navigation resource plug-in and define the container in the application configuration
file itself. This eliminates the extra file read and helps keeps things speedy.

(continued)

358 Zend Framework: A Beginner’s Guide

Creating the Navigation Action Helper
Zend Framework action helpers are generally perceived as complex and hard to understand.

In reality, though, this couldn’t be further from the truth. Action helpers exist as a substitute

for base controllers; they provide a way for developers to program common functionality into

“helper objects” that can then be loaded and used at run time from any action controller.

Action helpers are typically registered using a helper broker, which exposes

addHelper() and removeHelper() methods to immediately load and unload helpers

from the helper stack. This is particularly important for helpers that are referenced in

preDispatch() or postDispatch() methods. An alternative is to use the helper broker’s

addPath() or addPrefix() method to map the helper path; this information can then be

used to load the helper on demand.

Once they’ve been loaded or mapped, helpers can be retrieved using the helper broker’s

getHelper() method, which returns the helper object. This helper broker is available for

use in all action controllers via the controller object’s _helper property, making it possible to

load helpers on demand either within the application bootstrapper or as needed within specific

controllers.

TIP

You might not have known it at the time, but you've already seen and used some of the
Zend Framework's built-in action helpers in previous chapters. The ContextSwitch helper in
Chapter 6 and the FlashMessenger helper in Chapter 3 are both examples of built-in action
helpers, accessed from within controllers using the helper broker's getHelper() method.

Table 11-1 provides a complete list of the action helpers that are included in the Zend

Framework.

With that background information out of the way, let’s return to the task at hand: creating

a custom action helper that will automatically check the current request URL, match it against

the navigation container, and flag the current active page. To do this, create a new action helper

at $APP_DIR/library/Square/Controller/Action/Helper/Navigation.php, and fill it with the

following code:

Action Helper Description

ActionStack Queues multiple actions for execution

ContextSwitch Enables output in different formats

FlashMessenger Stores messages for retrieval on next request

Autocomplete Formats and sends JSON/HTML arrays of data for autocomplete inputs

JSON Enables output in JSON format

Redirector Handles client redirection

ViewRenderer Registers view scripts and handles view script rendering

Table 11-1 Action Helpers Included with the Zend Framework

Chapter 11: Working with User Interface Elements 359

<?php
// code credited to Ryan Mauger, technical editor
class Square_Controller_Action_Helper_Navigation extends
Zend_Controller_Action_Helper_Abstract
{
 protected $_container;

 // constructor, set navigation container
 public function __construct(Zend_Navigation $container = null)
 {
 if (null !== $container) {
 $this->_container = $container;
 }
 }

 // check current request and set active page
 public function preDispatch()
 {
 $this->getContainer()
 ->findBy('uri', $this->getRequest()->getRequestUri())
 ->active = true;
 }

 // retrieve navigation container
 public function getContainer()
 {
 if (null === $this->_container) {
 $this->_container = Zend_Registry::get('Zend_Navigation');
 }
 if (null === $this->_container) {
 throw new RuntimeException ('Navigation container unavailable');
 }
 return $this->_container;
 }
}

This definition sets up a new action helper, which retrieves the Zend_Navigation container

from the application registry and uses the container’s findBy() method to check the current

request URL against the page links in the container. If a match is found, the corresponding

page is marked active. This task is performed on every request, by virtue of being placed in the

helper’s preDispatch() method.

Using the Menu View Helper
Why do we need to identify the active page at all? The information is useful to the Menu view

helper, which will attach an “active” CSS class to the corresponding main menu branch at

(continued)

360 Zend Framework: A Beginner’s Guide

render time. This makes it possible to visually (and automatically) highlight the active menu

item at any given time.

To see this in action, update the master layout to use the Menu view helper and

dynamically generate the main menu, by updating the master layout file at

$APP_DIR/application/layouts/master.phtml with the changes highlighted in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
...

 <div id="menu">
 <?php echo $this->navigation()->menu(); ?>
 </div>

...
</html>

Note that you’ll also need to update the master layout stylesheet and add stylesheet rules

for the dynamically generated menu and active menu item. You’ll find the corresponding

stylesheet rules in the code archive for this chapter, which can be downloaded from this book’s

companion Web site at http://www.zf-beginners-guide.com/.

When you now visit the application home page and select a particular main menu item—

say, the contact form at http://square.localhost/contact—you’ll notice that the corresponding

main menu item is now automatically highlighted. Then, look behind the scenes and notice

that Zend_Navigation’s Menu view helper has dynamically generated the main menu for you.

Figure 11-6 illustrates the rendered output.

Figure 11-6 The automatically generated and highlighted navigation menu

http://www.zf-beginners-guide.com/
http://square.localhost/contact

Chapter 11: Working with User Interface Elements 361

Working with the Dojo Toolkit
The Dojo Toolkit is a cross-browser JavaScript library that includes both a data access

layer for AJAX requests and responses (Dojo Data) and a set of predefined user interface

components (Dijit). These components include layout and menu elements, data grids, dialog

boxes, form controls such as autocomplete inputs, and date selectors, themes, and various

animated page effects. The project is supported by some of the Web’s biggest companies,

including Google, IBM, AOL, and Sun Microsystems.

The Zend Framework makes it easy to get started with the Dojo Toolkit. The full version

of the Zend Framework comes with a complete distribution of Dojo and Dijit interface

components, and the framework also includes a Zend_Dojo component that simplifies

the task of activating and using the Dojo Toolkit in a Web application. This Zend_Dojo

component includes a data layer implementation, a view helper that assists in setting up the

Dojo environment, and a set of form and layout extensions that can be used to add Dojo/Dijit

functionality to view scripts. The following sections discuss these in detail.

Handling Dojo Data
The Dojo Toolkit defines a uniform format for client-server data exchange,

and provides two basic datastores, dojo.data.ItemFileReadStore and

dojo.data.ItemFileWriteStore, for interacting with this data. In its simplest form,

this data is represented as a structured JSON object and looks something like this:

{
 "identifier":"name",
 "items": [
 {"name":"Agatha Christie"},
 {"name":"J. K. Rowling"},
 {"name":"Dan Brown"},
 {"name":"William Shakespeare"},
 {"name":"Dennis Lehane"}
]
}

The Zend_Dojo_Data component provides an object-oriented API for constructing this

JSON representation, adding items to it, iterating over it, and querying it for matches. To

illustrate, consider the following listing, which produces output equivalent to the previous code

listing:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function dojoAction()
 {
 // define data items
 $authors = array(
 'Agatha Christie', 'J. K. Rowling', 'Dan Brown',

362 Zend Framework: A Beginner’s Guide

 'William Shakespeare', 'Dennis Lehane'
);
 foreach ($authors as $a) {
 $items[] = array('name' => $a);
 }

 // initialize object and pass it data items
 $data = new Zend_Dojo_Data('name', $items);

 // output as structured JSON
 echo $data->toJson();
 }
}

As illustrated in this example, the object is initialized simply by passing the object

constructor the name of the unique identifier field (in this case, 'name') and an array of data

items. These data items must be expressed as associative arrays (or objects implementing

the toArray() method), and must include the specified identifier as one of the array keys.

Once initialized, the object may be exported either as a PHP array or a JSON string, via the

toArray() or toJson() method.

TIP

The Zend_Dojo_Data component comes in particularly handy when implementing
endpoints for Dojo/Dijit AJAX requests. You'll see an example of this further along in
this chapter.

Using the Dojo View Helpers
Typically, enabling Dojo and Dijit components in a Web page involves loading the Dojo

library files, initializing the Dojo parser, and enabling the required components, passing along

configuration options as necessary. While this can certainly be done manually within your

view scripts, the Zend Framework provides an easier way: the Dojo view helper, which can

“Dojo-ify” a view by automatically generating all the necessary client-side initialization code

inline.

Here’s an example of using the Dojo view helper in a view script:

<?php
Zend_Dojo::enableView($this);
$this->dojo()->setLocalPath('/js/dojo/dojo.js')
 ->addStyleSheetModule('dijit.themes.tundra')
 ->setDjConfigOption('parseOnLoad', true)
 ->setDjConfigOption('locale', 'en-US')
 ->setDjConfigOption('isDebug', true);
echo $this->dojo();
?>

Figure 11-7 illustrates the markup generated by the helper from the previous listing.

Chapter 11: Working with User Interface Elements 363

CAUTION

Note the call to Zend_Dojo::enableView in the previous listing. This method adds
the Dojo view helper path to the Zend_View object; omitting it will usually result in an
exception because Zend_View will be unable to find and load the required helper(s).

If you’d prefer to load Dojo Toolkit libraries from an external location, such as a Content

Delivery Network (CDN), you can use the setCdnBase() method, as follows:

<?php
Zend_Dojo::enableView($this);
$this->dojo()->setCdnBase(Zend_Dojo::CDN_BASE_AOL)
 ->addStyleSheetModule('dijit.themes.tundra')
 ->setDjConfigOption('parseOnLoad', true)
 ->setDjConfigOption('locale', 'en-US')
 ->setDjConfigOption('isDebug', true);
echo $this->dojo();
?>

CAUTION

If you don't specify a local path to the Dojo libraries with setLocalPath(), the Dojo
view helper will automatically assume that you wish to use the Google CDN.

In addition to the Dojo view helper, the Zend Framework also ships with a number of other

view helpers that can be used to directly render Dojo and Dijit layout containers and form

elements within a view script. Table 11-2 gives an abridged list of these helpers.

It’s worth noting that the Dojo view helper will automatically detect your use of these helpers

in a view script and generate the necessary client-side code to initialize them. Here’s an example:

<html>
 <head>
 <?php
 Zend_Dojo::enableView($this);

Figure 11-7 Autogenerated markup from the Dojo view helper

364 Zend Framework: A Beginner’s Guide

 $element = $this->NumberSpinner('temp', 25, array(
 'min' => 12,
 'max' => 41,
 'places' => 2
)
);
 $this->dojo()->setCdnBase(Zend_Dojo::CDN_BASE_AOL)
 ->addStyleSheetModule('dijit.themes.tundra');
 echo $this->dojo();
 ?>
 </head>
 <body class="tundra">
 <?php echo $element; ?>
 </body>
</html>

This example uses the NumberSpinner view helper to generate a Dijit number spinner

form control. Figure 11-8 illustrates the resulting markup generated by the Dojo view helper.

Dojo View Helper Description

Button Button

CheckBox Check box

ComboBox Combined selection/text input

ContentPane Content container

CurrencyTextBox Currency input

DateTextBox Date selector

Editor Rich text editor

FilteringSelect Selection control with filter

HorizontalSlider Horizontal slider

NumberSpinner Number input with increment controls

StackContainer Stacked content container

TabContainer Tabbed content container

Textarea Text input

TextBox Text input

TimeTextBox Time selector

ValidationTextBox Text input with validator

VerticalSlider Vertical slider

Table 11-2 Dojo View Helpers Included with the Zend Framework (Nonexhaustive List)

Chapter 11: Working with User Interface Elements 365

Using Dojo Form Elements
The Dojo Toolkit includes a number of ready-made form widgets that can be used to quickly

add common functionality to Web forms: a color picker, a WYSIWYG text editor, a number

spinner, an autocomplete text input, a horizontal slider control, and so on. Zend_Dojo extends

Zend_Form to support these additional elements, allowing them to be used in the same way as

regular Zend_Form_Element instances.

Table 11-3 provides a list of Dojo-specific form widgets included with the Zend Framework.

To use these elements inside a form, update the Zend_Form instance to extend Zend_

Dojo_Form instead of Zend_Form, and then attach Zend_Dojo_Form_Element elements to it

in the usual manner. Here’s an example, which illustrates by creating a Web form with a date

picker, rich text editor, and vertical slider:

<?php
class Form_Example extends Zend_Dojo_Form
{

Figure 11-8 Autogenerated markup from the Dojo view helper

366 Zend Framework: A Beginner’s Guide

 public function init()
 {
 $this->setAction('/sandbox/example/form')
 ->setMethod('post')
 ->setOptions(array('class' => 'tundra'));

 // create rich editor
 $message = new Zend_Dojo_Form_Element_Editor('message');
 $message->setLabel('Message:')
 ->setOptions(array(
 'width' => '150px',
 'height' => '100px',
));

 // create date picker

Table 11-3 Dojo Form Element Classes Included with the Zend Framework

Form Element Class Description

Zend_Dojo_Form_Element_Button Button

Zend_Dojo_Form_Element_CheckBox Check box

Zend_Dojo_Form_Element_ComboBox Combination selection/input

Zend_Dojo_Form_Element_CurrencyTextBox Currency input

Zend_Dojo_Form_Element_DateTextBox Date input

Zend_Dojo_Form_Element_DijitMulti Check box group

Zend_Dojo_Form_Element_Editor Rich text input field

Zend_Dojo_Form_Element_FilteringSelect Selection control with filter

Zend_Dojo_Form_Element_HorizontalSlider Horizontal slider

Zend_Dojo_Form_Element_NumberSpinner Number input with increment controls

Zend_Dojo_Form_Element_NumberTextBox Number input

Zend_Dojo_Form_Element_PasswordTextBox Password input

Zend_Dojo_Form_Element_RadioButton Radio button

Zend_Dojo_Form_Element_SimpleTextarea Text input field

Zend_Dojo_Form_Element_SubmitButton Submit button

Zend_Dojo_Form_Element_Textarea Text input

Zend_Dojo_Form_Element_TextBox Text input

Zend_Dojo_Form_Element_TimeTextBox Time input

Zend_Dojo_Form_Element_ValidationTextBox Text input with validator

Zend_Dojo_Form_Element_VerticalSlider Vertical slider

Chapter 11: Working with User Interface Elements 367

 $dob = new Zend_Dojo_Form_Element_DateTextBox('dob');
 $dob->setLabel('Date of birth:');

 // create slider
 $volume = new Zend_Dojo_Form_Element_VerticalSlider('volume');
 $volume->setLabel('Volume level:')
 ->setOptions(array(
 'minimum' => '100',
 'maximum' => '0',
 'discreteValues' => '10',
 'style' => 'height: 100px'
));

 // create submit button
 $submit = new Zend_Dojo_Form_Element_SubmitButton('submit');
 $submit->setLabel('Submit');

 $this->addElement($message)
 ->addElement($dob)
 ->addElement($volume)
 ->addElement($submit);
 }
}

Figure 11-9 illustrates what the output looks like.

Figure 11-9 A form with Dojo/Dijit form elements

368 Zend Framework: A Beginner’s Guide

Adding a Dojo Autocomplete Widget
Now that you know what the Zend_Dojo component can do, let’s try using it for something

practical: adding an autocomplete input to a Zend_Form instance. This is a reasonably

common requirement, and the following sections will walk you through the process.

Updating the Contact Form
For this example, assume that the autocomplete input is to be attached to the application’s

contact form, which will “suggest” a list of countries based on the user’s input. The first step,

therefore, is to update the Square_Form_Contact object to extend Zend_Dojo_Form instead of

Zend_Form, as discussed in the previous section, and to add a Dijit ComboBox element to it.

Here’s the code:

<?php
class Square_Form_Contact extends Zend_Dojo_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/contact')
 ->setMethod('post');

 // create text input for name
 ...

 // create text input for email address
 ...

 // create autocomplete input for country
 $country = new Zend_Dojo_Form_Element_ComboBox('country');
 $country->setLabel('contact-country');
 $country->setOptions(array(
 'autocomplete' => false,
 'storeId' => 'countryStore',
 'storeType' => 'dojo.data.ItemFileReadStore',
 'storeParams' => array('url' => "/default/contact/autocomplete"),
 'dijitParams' => array('searchAttr' => 'name')))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringToLower')
 ->addFilter('StringTrim');

 // create text input for message body
 ...

Try This 11-2

Chapter 11: Working with User Interface Elements 369

 // create captcha
 ...

 // create submit button
 ...

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($country)
 ->addElement($message)
 ->addElement($captcha)
 ->addElement($submit);
 }
}

This revised definition adds a new Dijit ComboBox element to the contact form, and specifies

the use of a remote Dojo datastore for autocomplete suggestions. The endpoint for the datastore is

also specified, as /default/contact/autocomplete. Save the revised object definition to $APP_DIR/

library/Square/Form/Contact.php and keep reading to see how this endpoint is defined.

Initializing the Dojo View Helper
The next step is to initialize the Dojo view helper. If your application doesn’t use layouts,

you can perform this initialization directly in the relevant view script. However, since the

SQUARE example application does make use of layouts, this initialization must be performed

within the layout itself.

This brings up an interesting point. As a general rule, it’s important to minimize the total

number of remote HTTP requests generated by a Web page, because each request adds overhead

and increases the amount of time a user must wait for the page to load completely. With this in

mind, it is obviously not very efficient to initialize the Dojo view helper in the layout script, as it

will result in the Dojo libraries being requested and loaded even in cases when they are not needed.

A better approach in this case is to configure the Dojo helper in the application

bootstrapper, but explicitly disable it such that it is not loaded by default in every view script.

It can then be dynamically enabled, as needed, in those view scripts that require it.

To do this, first update the application configuration file to enable the view resource plug-

in, by adding the following line to it:

resources.view = ""

Then, update the application bootstrapper at $APP_DIR/application/Bootstrap.php with

the following method:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap

(continued)

370 Zend Framework: A Beginner’s Guide

{
 protected function _initDojo()
 {
 // get view resource
 $this->bootstrap('view');
 $view = $this->getResource('view');

 // add helper path to view
 Zend_Dojo::enableView($view);

 // configure Dojo view helper, disable
 $view->dojo()->setCdnBase(Zend_Dojo::CDN_BASE_AOL)
 ->addStyleSheetModule('dijit.themes.tundra')
 ->disable();
 }
}

This method grabs the Zend_View instance from the view resource plug-in and uses the

Zend_Dojo::enableView method to enable the Dojo view helper for the view. It then

configures the Dojo environment, setting up the CDN URL and stylesheet, and finally

explicitly disables the helper with its disable() method. The end result of this is that the

Dojo view helper is configured for use, but the Dojo Toolkit libraries will not be loaded

in view scripts unless explicitly asked to do so via a call to the view helper’s enable()
method.

Updating the Master Layout
The next step is to update the master layout to check if the Dojo view helper is enabled and, if

yes, to load the Dojo environment. This is not very difficult to do, as the following additions to

the <head> of the $APP_DIR/application/layouts/master.phtml layout illustrate:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <base href="/" />
 <link rel="stylesheet" type="text/css" href="/css/master.css" />
 <?php if ($this->dojo()->isEnabled()):
 echo $this->dojo();
 endif;
 ?>
 </head>
 <body class="tundra">
 ...
 </body>
</html>

Chapter 11: Working with User Interface Elements 371

Updating the Controller
The final step is to update the ContactController and define the endpoint for the autocomplete

input. Here’s the code, which should be added to $APP_DIR/application/modules/default/

controllers/ContactController.php:

<?php
class ContactController extends Zend_Controller_Action
{
 public function autocompleteAction()
 {
 // disable layout and view rendering
 $this->_helper->layout->disableLayout();
 $this->getHelper('viewRenderer')->setNoRender(true);

 // get country list from Zend_Locale
 $territories = Zend_Locale::getTranslationList('territory', null, 2);
 $items = array();
 foreach ($territories as $t) {
 $items[] = array('name' => $t);
 }

 // generate and return JSON string compliant with dojo.data structure
 $data = new Zend_Dojo_Data('name', $items);
 header('Content-Type: application/json');
 echo $data->toJson();
 }
}

This method converts an array containing a

list of countries into the JSON format expected

by Dojo using the Zend_Dojo_Data component

discussed earlier, and returns it to the requesting

client.

To see it in action, visit the SQUARE

application’s contact form, by browsing to http://

square.localhost/contact, and you should see

a new text input field for country name. Enter a

few characters in this field, and watch as Dojo

requests and presents a list of matching suggestions

from the ContactController::autocom
pleteAction defined in the previous section.

Figure 11-10 illustrates an example of what you

might see.
Figure 11-10 The Dojo ComboBox in

action

http://square.localhost/contact
http://square.localhost/contact

372 Zend Framework: A Beginner’s Guide

Adding a YUI Calendar Widget
In the previous section, you saw how easy it is to add Dojo widgets to a Zend Framework

application. However, Dojo isn’t the only game in town, and it’s also quite easy to integrate

widgets and libraries from other client-side programming toolkits as well. This next section

illustrates the process by adding a pop-up calendar widget from the Yahoo! User Interface

Library (YUI) to a Zend_Form instance.

The target form, in this case, is the ItemUpdate form that was first defined in Chapter 5, and

that allows application administrators to adjust catalog item properties and set display status. In

this example, we’ll update the form to use YUI’s graphical calendar widget for single-click date

input, instead of displaying separate selection lists for day, month, and year input.

For purposes of this example, assume that all the necessary YUI files are hosted remotely

and loaded from the Yahoo! Content Delivery Network (CDN).

Updating the Form
The first step is to update the form object, creating a new element that will contain the calendar

widget and removing the previous date selection lists. Here’s the revised form definition,

which should be saved to $APP_DIR/library/Square/Form/ItemUpdate.php:

<?php
class Square_Form_ItemUpdate extends Square_Form_ItemCreate
{
 public function init()
 {
 // get parent form

Try This 11-3

Q: What is the Yahoo! User Interface Library?

A: To quote its official Web site, the Yahoo! User Interface Library, aka YUI, is “a set of

utilities and controls, written with JavaScript and CSS, for building richly interactive

web applications.” It provides a huge number of ready-made widgets that developers can

integrate into a Web application with minimal fuss, and it works on all modern browsers.

Some of the widgets in this library include an image carousel, a color picker, a drag-and-

drop interface, an upload progress monitor, tabbed and tree menu systems, a calendar

widget, and an input autocompleter.

Among these widgets is a calendar widget, which displays a monthly calendar and

provides navigation controls for the user to move back and forth between months and years.

The user can select a particular date by clicking it; the widget will automatically convert the

selected date into a standard date string and attach it to a specified form element.

Ask the Expert

Chapter 11: Working with User Interface Elements 373

 parent::init();

 // set form action (set to false for current URL)
 $this->setAction('/admin/catalog/item/update');

 // remove unwanted elements
 $this->removeElement('Captcha');
 $this->removeDisplayGroup('verification');
 $this->removeElement('images');
 $this->removeDisplayGroup('files');

 // create hidden input for item ID
 $id = new Zend_Form_Element_Hidden('RecordID');
 $id->addValidator('Int')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');

 // create select input for item display status
 $display = new Zend_Form_Element_Select('DisplayStatus',
 array('onChange' =>
 "javascript:handleInputDisplayOnSelect('DisplayStatus',
 'divDisplayUntil', new Array('1')); cal.hide();"));
 $display->setLabel('Display status:')
 ->setRequired(true)
 ->addValidator('Int')
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim');
 $display->addMultiOptions(array(
 0 => 'Hidden',
 1 => 'Visible'
));

 // create input for item display date
 $displayUntil = new Zend_Form_Element_Text('DisplayUntil');
 $displayUntil->setLabel('Display until (yyyy-mm-dd):')
 ->addValidator('Date', false, array('format' =>
'yyyy-MM-dd'))
 ->addFilter('HtmlEntities')
 ->addFilter('StringTrim')
 ->addDecorators(array(
 array('HTMLTag', array('tag' => 'div', 'id' =>
'divDisplayUntil')),
));

 // create container for YUI calendar widget

(continued)

374 Zend Framework: A Beginner’s Guide

 $calendar = new Zend_Form_Element_Text('Calendar');
 $calendar->setDecorators(array(
 array('Label', array('tag' => 'dt')),
 array('HTMLTag', array('tag' => 'div', 'id' =>
'divCalendar', 'class' => 'yui-skin-sam yui-calcontainer', 'style' =>
'display:none;')),
));

 // attach element to form
 $this->addElement($id)
 ->addElement($display)
 ->addElement($calendar)
 ->addElement($displayUntil);

 // create display group for status
 $this->addDisplayGroup(
 array('DisplayStatus', 'DisplayUntil', 'Calendar'),
 'display');
 $this->getDisplayGroup('display')
 ->setOrder(25)
 ->setLegend('Display Information');
 }
}
?>

Updating the Master Layout
The Zend Framework’s HeadScript and HeadLink view helpers offer an easy way to specify

external resources on a per-action basis. These helpers allow developers to specify the

JavaScript and CSS files for each action and view script at design time, and they automatically

generate the necessary <link> and <script> markup at run time.

To use these helpers, update the <head> of the administrative layout at $APP_DIR/

application/layouts/admin.phtml with the changes highlighted in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <base href="/" />
 <link rel="stylesheet" type="text/css" href="/css/master.css" />
 <link rel="stylesheet" type="text/css" href="/css/admin.css" />
 <?php echo $this->headLink(); ?>
 <?php echo $this->headScript(); ?>
 </head>
 <body>

Chapter 11: Working with User Interface Elements 375

 ...
 </body>
</html>

Updating the Controller
The next step is to update the Catalog_AdminItemController::updateAction with

the following two changes:

Specify the source JavaScript and CSS files for the YUI calendar widget using the ●

HeadLink and HeadScript view helpers.

Adjust the code to use the date string provided by the calendar widget instead of the three ●

separate values (month, date, and year) provided by the current selection lists.

Here’s the revised code:

<?php
class Catalog_AdminItemController extends Zend_Controller_Action
{
 // action to modify an individual catalog item
 public function updateAction()
 {
 // load JavaScript and CSS files
 $this->view->headLink()->appendStylesheet(
 'http://yui.yahooapis.com/combo?2.8.0r4/build/calendar/
 assets/skins/sam/calendar.css'
);
 $this->view->headScript()->appendFile('/js/form.js');
 $this->view->headScript()->appendFile(
 'http://yui.yahooapis.com/combo?2.8.0r4/build/yahoo-dom-event/
 yahoo-dom-event.js&2.8.0r4/build/calendar/calendar-min.js'
);

 // generate input form
 $form = new Square_Form_ItemUpdate;
 $this->view->form = $form;

 if ($this->getRequest()->isPost()) {
 // if POST request
 // test if input is valid
 // retrieve current record
 // update values and replace in database
 $postData = $this->getRequest()->getPost();

 // comment date adjustment
 //$postData['DisplayUntil'] = sprintf('%04d-%02d-%02d',
 // $this->getRequest()->getParam('DisplayUntil_year'),

(continued)

376 Zend Framework: A Beginner’s Guide

 // $this->getRequest()->getParam('DisplayUntil_month'),
 // $this->getRequest()->getParam('DisplayUntil_day')
 //);

 if ($form->isValid($postData)) {
 $input = $form->getValues();
 $item = Doctrine::getTable('Square_Model_Item')
 ->find($input['RecordID']);
 $item->fromArray($input);
 $item->DisplayUntil = ($item->DisplayStatus == 0) ?
 null : $item->DisplayUntil;
 $item->save();
 $this->_helper->getHelper('FlashMessenger')
 ->addMessage('The record was successfully updated.');
 $this->_redirect('/admin/catalog/item/success');
 }
 } else {
 // if GET request
 // set filters and validators for GET input
 // test if input is valid
 // retrieve requested record
 // pre-populate form
 $filters = array(
 'id' => array('HtmlEntities', 'StripTags', 'StringTrim')
);
 $validators = array(
 'id' => array('NotEmpty', 'Int')
);
 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());
 if ($input->isValid()) {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.RecordID = ?', $input->id);
 $result = $q->fetchArray();
 if (count($result) == 1) {
 // comment date adjustment
 //$date = $result[0]['DisplayUntil'];
 //$result[0]['DisplayUntil_day'] = date('d', strtotime($date));
 //$result[0]['DisplayUntil_month'] = date('m', strtotime($date));
 //$result[0]['DisplayUntil_year'] = date('Y', strtotime($date));
 $this->view->form->populate($result[0]);
 } else {
 throw new Zend_Controller_Action_Exception('Page not found', 404);
 }
 } else {

Chapter 11: Working with User Interface Elements 377

 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }
 }
}

Updating the View
Finally, there’s a little bit of JavaScript needed to initialize the widget in the view script, which

is located at $APP_DIR/application/modules/admin/views/scripts/admin-item/update.phtml:

<h2>Update Item</h2>
<?php echo $this->form; ?>

<script type="text/javascript">
handleInputDisplayOnSelect('DisplayStatus', 'divDisplayUntil', new Array('1'));

cal = new YAHOO.widget.Calendar('cal', 'divCalendar', {close:true});
cal.render();
YAHOO.util.Event.addListener('DisplayUntil', 'click', cal.show, cal, true);
cal.selectEvent.subscribe(handleSelect, cal, true);

function handleSelect(type,args,obj) {
 var dates = args[0];
 var date = dates[0];
 var year = date[0];
 var month = date[1];
 var day = date[2];

Q: Why don’t you simply specify “hard” links to the YUI JavaScript and CSS files in the

master layout, instead of using the headScript() and headLink() view helpers?

A: The YUI files are only needed for certain view scripts. Since these files are read from

a remote host over HTTP, it’s suboptimal to create “hard” links to them in the master

layout, because it would result in these files being requested on every page load. This adds

unnecessary overhead and increases the number of seconds a user has to wait before the

page is completely loaded. Using the view helpers makes it possible to load these files only

when needed, producing a better user experience and improving performance.

Ask the Expert

(continued)

378 Zend Framework: A Beginner’s Guide

 var input = document.getElementById('DisplayUntil');
 input.value = year + '-' + padZero(month, 2) + '-' + padZero(day, 2);
}
</script>

Save these changes, and then navigate your way to the administration panel and select

a catalog item for update. You should be presented with a form with fields for updating the

various item properties. Select the “Display until” field, and you should be presented with a

pop-up calendar for date selection. Figure 11-11 illustrates what this might look like.

Summary
This chapter focused on user interface elements, and the Zend Framework components that

can create a better experience for application users. First, this chapter discussed the Zend_

Navigation component, illustrating how to structure pages into containers and then generate

sitemaps, menus, and breadcrumb trails from these containers. Next, it examined the Zend

Framework’s Dojo integration and illustrated how the Zend_Dojo component could be used

to quickly integrate an autocomplete input into a Zend_Form instance. Finally, it looked at

the process of using third-party JavaScript widgets in a Zend Framework application, with an

example of integrating a YUI date picker into a Zend_Form instance.

Figure 11-11 The YUI calendar widget in action

Chapter 11: Working with User Interface Elements 379

To learn more about the topics discussed in this chapter, consider visiting the following

links:

The Zend_Navigation component, at ●

http://framework.zend.com/manual/en/zend.navigation.html

The Zend_Dojo component, at ●

http://framework.zend.com/manual/en/zend.dojo.html

Zend Framework action helpers, at ●

http://framework.zend.com/manual/en/zend.controller.actionhelpers.html

Zend Framework resource plug-ins, at ●

http://framework.zend.com/manual/en/zend.application.available-resources.html

The Yahoo! User Interface Library, at ●

http://developer.yahoo.com/yui/

The Dojo Toolkit, at ●

http://www.dojotoolkit.org/

The Sitemaps protocol, at ●

http://www.sitemaps.org/

A discussion of creating custom resource plug-ins (Stefan Schmalhaus), at ●

http://blog.log2e.com/2009/06/01/creating-a-custom-resource-plugin-in-zend-

framework-18/

http://framework.zend.com/manual/en/zend.navigation.html
http://framework.zend.com/manual/en/zend.dojo.html
http://framework.zend.com/manual/en/zend.controller.actionhelpers.html
http://framework.zend.com/manual/en/zend.application.available-resources.html
http://developer.yahoo.com/yui/
http://www.dojotoolkit.org/
http://www.sitemaps.org/
http://blog.log2e.com/2009/06/01/creating-a-custom-resource-plugin-in-zend-framework-18/
http://blog.log2e.com/2009/06/01/creating-a-custom-resource-plugin-in-zend-framework-18/

This page intentionally left blank

381

Chapter 12
Optimizing Performance

382 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

Become familiar with application benchmarking and profiling tools

Understand the benefits and types of caching

Find out how to cache Web service responses and RSS feeds

Learn various techniques for optimizing database query performance

Over the last few years, Web applications have become increasingly sophisticated,

sporting a number of bells and whistles—AJAX user interfaces, streaming

media, dynamically generated content—in an attempt to attract and retain visitors.

But as applications become more complex, as their reliance on dynamic data sources

increases, and as more and more requests need to be served per second, the first casualty is

usually application performance.

However, there are a number of common techniques you can use to identify and work

around performance bottlenecks in application code. Techniques like code profiling, caching,

refactoring, and lazy loading can reduce server load and improve application response times.

The Zend Framework comes with a number of tools that you can use for this task, and this

chapter discusses some of them.

Analyzing Performance
Before you can get started with fine-tuning a Web application, you need detailed information

on which parts of an application are suffering from degraded performance. A number of tools

exist for benchmarking and profiling, and the following sections discuss them in some detail.

Benchmarking
ApacheBench, or ab, is a tool to benchmark Web server response times. It does this by sending

multiple simultaneous requests to a server URL, timing the response, and generating detailed

statistics of response times under varying load conditions. ApacheBench is part of the Apache

Web server distribution and is available for both Windows and *NIX platforms. Although part

of the Apache distribution, it can also be used to benchmark any other HTTP-compliant Web

server.

Here’s an example of using ApacheBench to benchmark a Web application, simulating

1000 requests for the same resource, sent 10 at a time:

shell> ab -n 1000 -c 10 http://server/request/url

Figure 12-1 illustrates an example of the output report generated by ApacheBench.

Chapter 12: Optimizing Performance 383

As Figure 12-1 illustrates, this report provides useful information on the average number

of seconds needed by the server to respond to a particular URL request. Running a similar test

on other application routes builds up an accurate picture of which parts of an application are

“slow” and could benefit from optimization.

An alternative to ApacheBench is the Microsoft Web Capacity Analysis Tool (WCAT).

Like ApacheBench, this tool too simulates load on a Web server, returning data on measured

throughput and response times. Although only available for the Windows platform, it

does have a couple of interesting features: It can be used from multiple client systems

simultaneously, and it can benchmark multiple-request “transactions” that must be executed in

a specific sequence.

Here’s an example of using WCAT to benchmark a Web application:

shell> wcat.wsf -terminate -run -clients localhost -t scenario.ubr -f
settings.ubr -s server -singleip -extended

Figure 12-2 illustrates an example WCAT output report.

Figure 12-1 ApacheBench summary statistics

384 Zend Framework: A Beginner’s Guide

Code Profiling
Once you’ve got some broad benchmarking figures and have identified areas for improvement,

the next step is to profile the relevant controllers and actions, and understand where the

bottlenecks are. One of the most popular tools for this task is PHP’s Xdebug extension,

available for both Windows and *NIX flavors of PHP.

The Xdebug profiler generates detailed statistics on the amount of time spent per function

call in a script and the total time spent on script compilation, processing, and execution.

These statistics make it possible to see which function calls are responsible for the maximum

processing overhead, and thus identify areas for potential optimization. The Xdebug extension

also overrides PHP’s default exception-handling routines, providing more detailed debugging

output and stack traces for both fatal and non-fatal errors.

Figure 12-2 A WCAT benchmark report

Chapter 12: Optimizing Performance 385

Once configured, Xdebug will automatically profile every script executed through the

PHP interpreter. Profile reports are formatted as cachegrind files, which may be viewed with

a number of open-source tools, such as WinCacheGrind (Windows desktop), KCacheGrind

(*NIX desktop), or Webgrind (PHP Web application). Profiles are stored in the output directory

specified in the xdebug.profiler_output_dir variable in PHP’s php.ini configuration file.

Figure 12-3 illustrates what such a profile might look like.

This type of profiling information is very useful to understand, for example, which method

calls or framework components are taking up the majority of processing time and therefore are

reasonable targets for optimization or substitution by other, lighter libraries.

NOTE

PHP's Xdebug extension is installed in the usual way, in PHP's ext/ directory, and is
activated by adding the zend_extension_ts = /path/to/xdebug/ext directive to
the php.ini configuration file. You must also specify the xdebug.profiler_enable,
xdebug.profiler_output_dir, and xdebug.trace_output_dir variables in the
configuration file. For detailed installation instructions, see the Xdebug Web site link at
the end of this chapter.

An alternative to Xdebug is the PEAR Benchmark class, which provides an API to

benchmark PHP function calls. In this case, the benchmarking tool is embedded within specific

actions, wrapping action code within calls to its start() and stop() methods. These

Figure 12-3 An Xdebug profile of a Zend Framework request, as viewed in Webgrind

386 Zend Framework: A Beginner’s Guide

methods are typically called at the beginning and end of an action, although they can also be

used to benchmark specific subsections of an action.

Within these two method calls, it’s a good idea to set user-defined section “markers” to

identify the activities or transactions the script is undertaking; because these markers are

included in the final report, they can help in identifying which transactions are responsible for

what percentage of overhead. Here’s an example of how you might use this class:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function queryAction()
 {
 // include profiler
 include_once('Benchmark/Profiler.php');
 $profiler = new Benchmark_Profiler();

 // start profiler
 $profiler->start();

 // profile filter/validator setup
 $profiler->enterSection("Setup");
 $filters = array(
 'q' => array('HtmlEntities', 'StripTags', 'StringTrim'),
);
 $validators = array(
 'q' => array('Alpha'),
);
 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());
 $profiler->leaveSection("Setup");

 // profile validation
 $profiler->enterSection("Validate");
 $check = $input->isValid();
 $profiler->leaveSection("Validate");

 // profile database query
 if ($check) {
 $profiler->enterSection("Query");
 $db = $this->getInvokeArg('bootstrap')->getResource('database');

 $sql = "SELECT * FROM city AS ci,
 country AS co,
 countrylanguage AS cl
 WHERE
 ci.CountryCode = co.Code AND
 cl.CountryCode = co.Code AND
 cl.Language = 'English' AND

Chapter 12: Optimizing Performance 387

 cl.IsOfficial = 'T' AND
 co.Continent LIKE '%$input->q%'";
 $result = $db->fetchAll($sql);
 $this->view->records = $result;
 $profiler->leaveSection("Query");
 }
 $profiler->stop();

 $this->view->profile = $profiler->_getOutput('html');
 }
}

Figure 12-4 has an example of the profiling data generated by PEAR Benchmark.

TIP

The PEAR Benchmark class, like other PEAR classes, doesn't work with the Zend
Framework autoloader out of the box. To make it compatible with the Zend Framework
autoloader, install it with the PEAR installer, check that your PEAR directory is part of the
PHP include path, and then add the line autoloaderNamespaces[] = 'Benchmark' to
the application.ini file.

Query Profiling
Xdebug and PEAR Benchmark are extremely useful for profiling PHP code, but they

don’t offer any information on what is often the biggest performance bottleneck in a Web

application: the interaction between the application and the database server. As part of

any profiling exercise, it is also necessary to profile the application’s database queries and

understand where they can be optimized. If you’re using Zend_Db for your database queries,

you can profile them with the Zend_Db_Profiler component, which makes it possible to

inspect application queries and obtain a report of the elapsed time per query.

Figure 12-4 A PEAR Benchmark profile of a Zend Framework request

388 Zend Framework: A Beginner’s Guide

The easiest way to use Zend_Db_Profiler is to attach it to the Zend_Db instance in the

application bootstrapper, as follows:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initDatabase()
 {
 $db = new Zend_Db_Adapter_Pdo_Mysql(array(
 'host' => '127.0.0.1',
 'username' => 'user',
 'password' => 'pass',
 'dbname' => 'world'
));
 $profiler = new Zend_Db_Profiler();
 $profiler->setEnabled(true);
 $db->setProfiler($profiler);
 return $db;
 }
}

The query profiles captured by the profiler can be retrieved with the Zend_Db_Profiler

object’s getQueryProfiles() method. This method returns an array of Zend_Db_Profiler_

Query objects, each of which exposes getQuery() and getElapsedSecs() methods

to retrieve the query string and query execution time, respectively. Here’s an example of

retrieving profile data from the profiler using these methods:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function queryAction()
 {
 // get database adapter
 $db = $this->getInvokeArg('bootstrap')->getResource('database');

 // run query
 $sql = "SELECT * FROM city AS ci,
 country AS co,
 countrylanguage AS cl
 WHERE
 ci.CountryCode = co.Code AND
 cl.CountryCode = co.Code AND
 cl.Language = 'English' AND
 cl.IsOfficial = 'T' AND
 co.Continent LIKE '%$input->q%'";
 $result = $db->fetchAll($sql);
 $this->view->records = $result;

Chapter 12: Optimizing Performance 389

 $this->view->profiles = array();

 // get query profile data
 foreach ($db->getProfiler()->getQueryProfiles() as $profile) {
 $this->view->profiles[] = array(
 'sql' => $profile->getQuery(),
 'time' => $profile->getElapsedSecs(),
);
 }
 }
}

Figure 12-5 illustrates an example of the profile data generated by the previous listing.

There’s also a specialized Zend_Db_Profiler_Firebug extension that can send query

profiling data directly to the Firebug console. To use this, update the application bootstrapper

to use this extension, as follows:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initDatabase()
 {
 $db = new Zend_Db_Adapter_Pdo_Mysql(array(
 'host' => '127.0.0.1',
 'username' => 'user',
 'password' => 'pass',

Figure 12-5 Query profile output generated by Zend_Db_Profiler

390 Zend Framework: A Beginner’s Guide

 'dbname' => 'world'
));
 $profiler = new Zend_Db_Profiler_Firebug('Query log');
 $profiler->setEnabled(true);
 $db->setProfiler($profiler);
 return $db;
 }
}

Figure 12-6 illustrates an example of the Firebug console output generated by the Zend_

Db profiler.

The Zend Framework doesn’t include a built-in profiler for Doctrine-based database

queries, but it’s quite easy to add this with a third-party component from the Imind project.

This project includes a number of Doctrine-specific extensions for the Zend Framework, one

of which is the Imind_Profiler_Doctrine_Firebug component. This component logs Doctrine

queries to the Firebug (the Firefox browser debugger) console, making it possible to measure

query performance in real time.

To profile Doctrine queries with the Imind Doctrine profiler, attach the profile to the

Doctrine connection manager in the application bootstrapper, as follows:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initDoctrine()
 {
 require_once 'Doctrine/Doctrine.php';

Figure 2-6 Query profile output generated by Zend_Db_Profiler, as seen in the Firebug console

Chapter 12: Optimizing Performance 391

 $this->getApplication()->getAutoloader()
 ->pushAutoloader(array('Doctrine', 'autoload'), 'Doctrine');
 $manager = Doctrine_Manager::getInstance();
 $manager->setAttribute(
 Doctrine::ATTR_MODEL_LOADING,
 Doctrine::MODEL_LOADING_CONSERVATIVE
);

 $config = $this->getOption('doctrine');
 $conn = Doctrine_Manager::connection($config['dsn'], 'doctrine');

 $profiler = new Imind_Profiler_Doctrine_Firebug();
 $conn->setListener($profiler);
 return $conn;
 }
}

As a result of the previous addition, all Doctrine queries will now be automatically profiled

and the results displayed in the Firebug console. Figure 12-7 illustrates an example of the

Firebug console output generated by the Imind Doctrine profiler.

Figure 12-7 Query profile output generated by the Imind Doctrine profiler, as seen in the Firebug
console

392 Zend Framework: A Beginner’s Guide

NOTE

Once you have a list of queries and some data on how long they're taking to execute,
the next step is usually to analyze them and try to get them to run faster. If you're
using MySQL, attaching the EXPLAIN keyword to the beginning of each SELECT query
returns a chart describing how the query will be processed. Included within this chart
is information on which tables the query will access and the number of rows the query
is expected to return. This information comes in handy to see which tables should be
indexed to speed up performance and to analyze where the bottlenecks are. Take
a look at the section entitled "Query Tuning" later in this chapter for some common
techniques you can use to make your queries run faster.

Caching Data
One of the quickest ways to ease performance bottlenecks in a Web application is by using a cache.

What’s that, you ask? Very simply, a cache is an intermediate location containing copies of

frequently requested pieces of information. Whenever a request for one of these information

fragments comes in, the system will pull out and return the cached copy, which is invariably

faster than generating the information anew from the original data source.

Caches can be maintained at various levels depending on the requirements of the user.

Unknown to many, the most commonly used caching mechanism is the Web browser itself.

Modern Web browsers download content to a temporary location on the hard drive before

rendering it to the user. And usually, if you visit the same page again, the browser will just pick

it up from the local cache (unless you configured it differently).

At your workplace, it’s highly likely that you share your Internet connection with a large

group of users, through a proxy server. Clever network administrators often use the proxy

server’s cache to save copies of frequently requested pages. Subsequent requests for such

pages are directly serviced from the proxy server’s cache. This system is usually replicated at

different levels of the food chain; it’s not uncommon to find ISPs caching content in order to

reduce traffic that might otherwise eat up precious bandwidth on their Internet backbone.

Finally, Web sites often implement a caching system to serve their own content faster. In

its simplest form, such a system consists of sending static “snapshots” of dynamic pages to

clients, rather than re-creating the pages anew in response to every request. This reduces server

load and frees up resources for other tasks. The snapshots are regenerated at regular intervals

to ensure they are reasonably fresh.

In addition to such page-level caching, it is also possible to implement finer-grained

caching for database query results, function and class definitions, and compiled PHP code

(this last is also known as opcode caching). All of these caching strategies can improve the

performance of your Web application by reducing the amount of work the system has to do to

satisfy a particular request.

Understanding Cache Operations
The Zend Framework includes a Zend_Cache component, which provides a comprehensive

API to store and retrieve data from a cache. This data may include database result collections,

Chapter 12: Optimizing Performance 393

function or method return values, objects, static files, or rendered page output. The cache itself

may be implemented either as an on-disk store or an in-memory store; Zend_Cache supports

a number of different stores, including flat file, SQLite database, memcached server, or APC

opcode cache.

Every cache entry has two key attributes: a lifetime and a unique identifier.

The lifetime value, usually specified in seconds, indicates the period for which a cache

entry should be considered “valid” or “fresh.” Once this time period has elapsed, the cache

entry becomes “stale” and must be regenerated from the original data source.

Since a single cache can hold multiple entries, every entry must be given a unique

identifier. This identifier serves as a marker for the cache entry and is used to retrieve the

cached data.

To better illustrate how this works, consider the following example:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function cacheAction()
 {
 // define cache configuration
 $front = array(
 'lifetime' => 600,
 'automatic_serialization' => true
);
 $back = array(
 'cache_dir' => APPLICATION_PATH . '/../tmp/cache'
);

 // initialize cache
 $cache = Zend_Cache::factory('Core', 'File', $front, $back);

 // use cache if available
 if(!($this->view->records = $cache->load('cities'))) {
 // set query
 $sql = "SELECT * FROM city AS ci,
 country AS co,
 countrylanguage AS cl
 WHERE
 ci.CountryCode = co.Code AND
 cl.CountryCode = co.Code AND
 cl.Language = 'English' AND
 cl.IsOfficial = 'T'";

 // get database adapter
 $db = $this->getInvokeArg('bootstrap')->getResource('database');

394 Zend Framework: A Beginner’s Guide

 // execute query and save results to cache
 $result = $db->fetchAll($sql);
 $cache->save($result, 'cities');
 $this->view->records = $result;
 }
 }
}

This listing begins by initializing a new Zend_Cache instance using the Zend_
Cache::factory() method. This method accepts the name of the cache frontend and

backend, together with an array of configuration options for each. The previous example

uses the Core frontend, which is the simplest available Zend_Cache frontend, together with

the File backend, which stores cache entries as disk files. Configuration options for each of

these, such as the number of seconds each cache entry is valid for and the location of the

directory for cache files, are specified as associative arrays. The return value of the Zend_
Cache::factory() method is a correctly configured Zend_Cache instance.

The basic logic of cache utilization is quite simple, and is depicted in the flow chart in

Figure 12-8. This business logic is illustrated in the previous code listing, which caches the

result of a database query. The code first checks if the required result is present in the cache.

If it is, it is directly assigned to the view, without the database server coming into the picture

Figure 12-8 Flow chart of cache operation

Request

Database

NO

YES

Cache

Action

controller

View

Model

Response

Data
exists and
is valid?

Chapter 12: Optimizing Performance 395

at all. If it is not, a query is executed on the database server to obtain the required data, and

a copy of the result is saved to the cache. This cached data is then used to serve subsequent

requests, until it expires and needs to be regenerated.

Checking whether the data exists in the cache is accomplished with the load()
method, while writing data to the cache is done with the save() method. Notice that both

methods require the unique cache entry identifier, which, in the previous listing, is the string

'cities'. The save() method additionally lets you specify the entry lifetime, in seconds,

as an optional third argument; if present, this value will override the default value specified in

the frontend configuration options.

TIP

Many Zend Framework components, including Zend_Translate, Zend_Db, and Zend_
Feed_Reader, can be passed a configured Zend_Cache instance, and they will then
automatically use this cache to store relevant metadata or lookup information. You'll see
an example of this later in the chapter.

Understanding Cache Frontends and Backends
As discussed in the previous section, Zend_Cache offers a number of different cache frontends

and backends, each designed for a different purpose. Tables 12-1 and 12-2 provide a list.

A few examples are useful to illustrate how these can be used in an MVC application.

Consider, for example, the Class and Function frontends, which make it possible to cache

computationally expensive procedures so as to reduce server load. Here’s an example of the

Class frontend in action:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function cacheAction()
 {
 // define cache configuration

Cache Frontend Description

Core All-purpose base cache implementation

Class Caches method return values

Function Caches function return values

File Caches disk files

Capture Caches rendered page output or output blocks

Page Caches rendered page output

Table 12-1 Cache Frontends Included with the Zend Framework

396 Zend Framework: A Beginner’s Guide

 $front = array(
 'lifetime' => 600,
 'automatic_serialization' => true,
 'cached_entity' => new Order
);
 $back = array(
 'servers' => array(
 array(
 'host' => 'localhost',
 'port' => 11211,
 'timeout' => 5,
 'retry_interval' => 15,
)
)
);

 // initialize cache
 $cache = Zend_Cache::factory('Class', 'Memcached', $front, $back);

 // use cached object to perform method calls
 $this->view->result =
 $cache->findCheapestShippingProvider(100, 33.6, 1, 'NY');
 }
}

In this example, the findCheapestShippingProvider() method accepts a set of

inputs, such as total weight, number of items, delivery speed, and destination, and then internally

consults and ranks various options to identify the cheapest shipping provider for those inputs.

Table 12-2 Cache Backends Included with the Zend Framework

Cache Backend Description

Apc Stores cache entries to the APC opcode cache

File Stores cache entries as disk files

Memcached Stores cache entries to a memcached server

Sqlite Stores cache entries in an SQLite database

Static Stores cache entries as static HTML files

Two_Levels Stores cache entries in two locations

XCache Stores cache entries using an XCache cache

ZendServer Stores cache entries using the Zend Server cache

Blackhole Stub implementation that caches entries to the system bitbucket (only useful
for testing)

Test Test implementation with predefined cache entries (only useful for debugging)

Chapter 12: Optimizing Performance 397

In most cases, this would be a time-consuming process involving a few database queries and

calls to Web service endpoints. It therefore makes sense to cache the output of this method call

so that repeat queries with the same input “fingerprint” can be directly retrieved from the cache.

Cached data is stored in a memcached server, instead of a disk file, for faster retrieval.

Here’s another example, this one using the File frontend with the APC backend:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function cacheAction()
 {
 // define master file
 $localConfigFile = APPLICATION_PATH . '/configs/my.ini';

 // define cache configuration
 $front = array(
 'lifetime' => 600,
 'automatic_serialization' => true,
 'master_files' => array($localConfigFile)
);
 $back = array();

 // initialize cache
 // load master file from cache
 $cache = Zend_Cache::factory('File', 'Apc', $front, $back);
 if (!($config = $cache->load('localconfig'))) {
 if (file_exists($localConfigFile)) {
 $config = new Zend_Config_Ini($localConfigFile);
 $cache->save($config, 'localconfig');
 }
 }
 }
}

This example automatically caches the specified master file in the APC shared memory

cache and uses this for subsequent requests. The key thing to note here is that the File frontend

will automatically detect any change to the master file and, when such a change occurs,

invalidate the cached version and re-create it on the next request.

NOTE

The Static backend is interesting, because it saves rendered pages as static HTML files
on disk. These files can then be served up in response to requests, bypassing PHP
altogether and producing a dramatic increase in performance. Using this backend
requires some alteration to the server's URL rewriting rules, but the result is often worth
the effort, especially for high-traffic URLs. The Zend Framework manual has a detailed
example of how to use this backend, together with example rewriting rules that you can
extend for different scenarios.

398 Zend Framework: A Beginner’s Guide

Using the Cache Manager
In most cases, the cache will be configured and initialized in the application bootstrapper and

“exported” across the application using Zend_Registry, so that it can be used within different

actions. However, in many cases, there is a need to use different cache configurations depending

on the type of data being cached. For example, you might want to cache RSS and Web service

feeds in disk files while storing frequently executed query results in a memory-based cache,

because retrieving data from disk files usually takes longer than pulling it out of memory.

Striking the correct balance between the different cache types is therefore of critical

importance in achieving an optimal mix of speed and efficiency. This task is made somewhat

easier with the Zend Framework’s Zend_Cache_Manager component and resource plug-in,

which makes it possible to configure multiple cache types in the application configuration file.

This reduces the amount of configuration needed in the application bootstrapper, and makes it

possible to use different caching styles for different actions (or even within the same action).

Here’s an example of one such cache configuration:

resources.cachemanager.mycache.frontend.name = Core
resources.cachemanager.mycache.frontend.options.lifetime = 600
resources.cachemanager.mycache.frontend.options.automatic_serialization = true
resources.cachemanager.mycache.backend.name = Apc

It is now possible to directly utilize this cache instance within an action, as follows:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function cacheAction()
 {
 // get cache
 $cache = $this->getInvokeArg('bootstrap')
 ->getResource('cachemanager')
 ->getCache('mycache');

 // use cache if available
 if(!($this->view->records = $cache->load('cities'))) {
 // run query
 $sql = "SELECT * FROM city AS ci,
 country AS co,
 countrylanguage AS cl
 WHERE
 ci.CountryCode = co.Code AND
 cl.CountryCode = co.Code AND
 cl.Language = 'English' AND
 cl.IsOfficial = 'T'";

 // get and use database adapter
 $db = $this->getInvokeArg('bootstrap')->getResource('database');

Chapter 12: Optimizing Performance 399

 $result = $db->fetchAll($sql);
 $cache->save($result, 'cities');
 $this->view->records = $result;
 }
 }
}

NOTE

It's important to note that configuring a cache in the application configuration file does
not automatically initialize it. For performance reasons, Zend_Cache_Manager will
only initialize a Zend_Cache instance when it is invoked by name with the getCache()
method, and not before.

Caching Doctrine Queries
While Zend_Cache can certainly be used to cache the results of database queries, as

demonstrated in the very first example in this section, it’s also possible to use Doctrine’s own

caching mechanism for this purpose. Doctrine comes with two different caching systems, one

for queries and one for query results, and both are reasonably easy to activate and use, with

minimal code refactoring needed.

The Doctrine query cache holds parsed representations of Doctrine_Query objects,

allowing repeat queries to be directly sent on the server without first needing to be parsed. The

Doctrine result cache does everything the Doctrine query cache does, but also stores serialized

representations of the query results and returns this wherever possible, thereby taking the database

Q: Is a memory cache always preferable to a disk cache?

A: A disk cache is generally considered “slower” than a memory cache, because retrieving

data from disk files usually takes longer than pulling it out of a memory-based cache like

memcached or APC. With this in mind, it often makes sense to cache frequently accessed

data in a memory cache rather than in a disk cache, such that it can be retrieved and served

up faster.

However, it is incorrect to conclude from this that application performance can be

maximized simply by storing all data in a memory-based cache, because one must also

consider the size of the data being cached. In most cases, memory is a far scarcer resource

than disk space, so it usually makes more sense to use a disk cache when the data to be

cached is large in size. Storing everything, including the kitchen sink, in a memory-based

cache will usually end up hurting, rather than helping, performance as the system will

quickly run out of memory for other critical tasks.

Ask the Expert

400 Zend Framework: A Beginner’s Guide

server out of the loop and significantly improving performance. Cached data can be stored in a

memcached server, an APC shared memory cache, or any other Doctrine-supported database.

Activating the Doctrine query cache is quite simple: Initialize the Doctrine driver for

the corresponding cache backend, and pass this to the Doctrine_Manager instance using the

Doctrine::ATTR_QUERY_CACHE attribute. Here’s an example:

<?php
// set up cache driver
$servers = array(
 'host' => 'localhost',
 'port' => 11211,
 'persistent' => false
);
$cache = new Doctrine_Cache_Memcache(array(
 'servers' => $servers,
 'compression' => false
)
);

// attach cache to Doctrine manager
$manager = Doctrine_Manager::getInstance();
$manager->setAttribute(Doctrine::ATTR_QUERY_CACHE, $cache);
?>

Once initialized in this manner, the Doctrine query cache is automatically active for all

queries executed through Doctrine.

A similar approach is to be followed for the Doctrine result cache, as follows:

<?php
// set up cache driver
$servers = array(
 'host' => 'localhost',
 'port' => 11211,
 'persistent' => false
);
$cache = new Doctrine_Cache_Memcache(array(
 'servers' => $servers,
 'compression' => false
)
);

// attach cache to Doctrine manager
$manager = Doctrine_Manager::getInstance();
$manager->setAttribute(Doctrine::ATTR_RESULT_CACHE, $cache);
?>

It’s important to note, though, that the Doctrine result cache is not automatically active for

all queries executed through Doctrine; Doctrine must be explicitly told to use this cache on a

Chapter 12: Optimizing Performance 401

per-query basis, by adding the useResultCache() method to the corresponding Doctrine_

Query object. Here’s an example of how to do this:

<?php
class Sandbox_ExampleController extends Zend_Controller_Action
{
 public function cacheAction()
 {
 $id = $this->_getParam('id');
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')
 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.RecordID = ?', $id)
 ->addWhere('i.DisplayStatus = 1')
 ->useResultCache(true);
 $this->view->result = $q->fetchArray();
 }
}

NOTE

If you're using MySQL as your database, you should know that MySQL comes with its
own query cache, which is enabled by default. This query cache stores the result set of
SELECT queries and, on the next request for the same query, retrieves the results from
the cache instead of running the query again. Be aware, however, that only queries that
are textually exact will match what’s in the query cache; any difference will be treated
as a new query. For example, 'SELECT * FROM airport' won’t return the result from
'select * FROM airport' in the cache.

Optimizing Application Code
While caching can certainly produce significant performance improvements in a Web

application, it’s not the only tool available to clever application developers. The following

sections examine some other common optimization strategies:

Query Tuning
There are a number of techniques you can use to optimize the performance of your database

queries and ensure that they’re working as efficiently as possible. The following sections

discuss some of these techniques, with special reference to MySQL, by far the most commonly

used database server in modern Web application development.

Use Joins Instead of Subqueries
MySQL is better at optimizing joins than subqueries, so if you find the load averages on

your MySQL server hitting unacceptably high levels, examine your application code and try

402 Zend Framework: A Beginner’s Guide

rewriting your subqueries as joins or sequences of joins. For example, the following subquery

is certainly legal:

SELECT id, name FROM movie WHERE directorid IN
 (SELECT id FROM director
 WHERE name = 'Alfred Hitchcock');

But the following equivalent join would run faster due to MySQL’s optimization

algorithms:

SELECT m.id, m.name FROM movie AS m, director AS d
 WHERE d.id = m.directorid AND d.name = 'Alfred Hitchcock';

You can also turn inefficient queries into more efficient ones through creative use of

MySQL’s ORDER BY and LIMIT clauses. Consider the following subquery:

SELECT id, duration FROM movie
 WHERE duration =
 (SELECT MAX(duration) FROM movie);

This works better as the following query, which is simpler to read and also runs much

faster:

SELECT id, duration FROM movie
 ORDER BY duration DESC
 LIMIT 0,1;

Use Temporary Tables for Transient Data or Calculations
MySQL also lets you create temporary tables with the CREATE TEMPORARY TABLE
command. These tables are so-called because they remain in existence only for the duration

of a single MySQL session and are automatically deleted when the client that instantiates

them closes its connection with the MySQL server. These tables come in handy for transient,

session-based data or calculations, or for the temporary storage of data. And because they’re

session-dependent, two different sessions can use the same table name without conflicting.

Since temporary tables are stored in memory, they are significantly faster than disk-based

tables. Consequently, they can be effectively used as intermediate storage areas, to speed up

query execution by helping to break up complex queries into simpler components, or as a

substitute for subquery and join support.

MySQL’s INSERT...SELECT syntax, together with its IGNORE keyword and its support

for temporary tables, provides numerous opportunities for creative rewriting of SELECT
queries to have them execute faster. For example, say you have a complex query that involves

selecting a set of distinct values from a particular field, and the MySQL engine is unable

to optimize your query because of its complexity. Creative SQL programmers can improve

performance by breaking down the single complex query into numerous simple queries (which

lend themselves better to optimization) and then using the INSERT IGNORE...SELECT

Chapter 12: Optimizing Performance 403

command to save the results generated to a temporary table, after first creating the temporary

table with a UNIQUE key on the appropriate field. The result is a set of distinct values for that

field and possibly faster query execution.

Explicitly Specify Required Fields
It’s common to see queries like these:

SELECT (*) FROM airport;
SELECT COUNT(*) FROM airport;

These queries use the asterisk (*) wildcard for convenience. However, this convenience

comes at a price: The * wildcard forces MySQL to read every field or record in the table,

adding to the overall query processing time. To avoid this, explicitly name the output fields

you wish to see in the result set, as shown in this example:

SELECT id, name FROM airport;
SELECT COUNT(id) FROM airport;

Index Join Fields
Fields that are accessed frequently should be indexed. As a general rule, if you have a field

involved in searching, grouping, or sorting, indexing it will likely result in a performance gain.

Indexing should include fields that are part of join operations or fields that appear with clauses

such as WHERE, GROUP BY, or ORDER BY. In addition, joining tables on integer fields, rather

than on character fields, will produce better performance.

Use Small Transactions
Clichéd though it might be, the KISS (Keep It Simple, Stupid!) principle is particularly

applicable in the complex world of transactions. This is because MySQL uses a row-level

locking mechanism to prevent simultaneous transactions from editing the same record in the

database and possibly corrupting it. The row-level locking mechanism prevents more than

one transaction from accessing a row at the same time—this safeguards the data, but has the

disadvantage of causing other transactions to wait until the transaction initiating the locks has

completed its work. So long as the transaction is small, this wait time is not very noticeable.

When you are dealing with a large database and many complex transactions, however, the long

wait time while the various transactions wait for each other to release locks can significantly

affect performance.

For this reason, it is generally considered a good idea to keep the size of your transactions

small and to have them make their changes quickly and exit so that other transactions queued

behind them do not get unduly delayed. At the application level, two common strategies exist

for accomplishing this.

Ensure that all user input required for the transaction is available before issuing a START
TRANSACTION command. Often, novice application designers initiate a transaction before

the complete set of values needed by it is available. Other transactions initiated at the same

time now have to wait while the user inputs the required data and the application processes

404 Zend Framework: A Beginner’s Guide

it, and then asks for more data, and so on. In a single-user environment, these delays will

not matter as much because no other transactions will be trying to access the database. In

a multiuser scenario, however, a delay caused by a single transaction can have a ripple

effect on all other transactions queued in the system, resulting in severe performance

degradation.

Try breaking down large transactions into smaller subtransactions and executing them

independently. This will ensure that each subtransaction executes quickly, freeing up

valuable system resources that would otherwise be used to maintain the state of the system.

Optimize Table Design and Server Configuration
The techniques discussed in this section are all suggestions for application-layer optimization.

However, for further performance improvements, you should also consider various techniques

for optimizing performance at the database layer, such as:

Using indexes to speed up searching, grouping, or sorting

Selecting an appropriate table engine

Specifying table join fields to be of the same data type and length

Increasing the available memory for various server-side buffers, such as the read buffer,

the sort buffer, and the thread cache.

You’ll find more information on these techniques in the manual for your database server.

Lazy Loading
Both the Zend Framework and Doctrine include autoloaders that can automatically find and

load class definition files “on demand.” This technique, commonly known as lazy loading, can

significantly improve performance by reducing the number of file reads performed by a PHP

script.

To activate the Zend Framework autoloader, the Zend Framework manual suggests adding

the following lines of code to the application’s index.php script:

<?php
require_once 'Zend/Loader/Autoloader.php';
Zend_Loader_Autoloader::getInstance();
?>

To fully benefit from the autoloader, it is also necessary to strip out all the require_
once() and include_once() function calls from your Zend Framework installation. The

Zend Framework manual provides an example of a simple command-line script that can do

this for you automatically. You’ll find a link to the relevant manual page at the end of this

chapter.

It’s also a good idea to rearrange your PHP include path such that the Zend Framework

directory is at or near the top of the list. This is because when attempting to require() or

Chapter 12: Optimizing Performance 405

include() a file, PHP will look in each directory on the include path, and this can end up

being a time-consuming operation when the target directory is at the end of the include path.

Moving the Zend Framework directory ahead of others helps reduce the time taken to find and

load included files.

Improving Application Performance
Let’s now look at utilizing some of the techniques discussed in the preceding sections to

improve the performance of the SQUARE example application.

NOTE

The following section includes a discussion of how to cache application data in
memcached, the distributed memory caching system. It assumes that you have a
working installation of the memcached server, together with the PHP memcached
extension. In case you don't already have these components, you can download them
from the Web using the links at the end of the chapter. If memcached is not available for
your platform, or if you're unable to get it working correctly with PHP, you can still try
out the following example simply by switching the second cache to use a file backend
instead of a memory backend in the example configuration.

Configuring the Application Cache
This example will make use of two caches: a disk cache and a memcached memory cache.

To keep things simple, this example assumes that the memcached server is running on the

local host, using default parameters, and requires no special configuration. So, the first step is

to define a location for the file cache, and then configure cache parameters using the Zend_

Cache_Manager component.

To begin, create the directory for the file cache, as follows:

shell> cd /usr/local/apache/htdocs/square/data
shell> mkdir cache

Then, update the application configuration file at $APP_DIR/application/configs/

application.ini and add the following directive to it:

resources.cachemanager.news.frontend.name = Core
resources.cachemanager.news.frontend.options.lifetime = 600
resources.cachemanager.news.frontend.options.automatic_serialization = true
resources.cachemanager.news.backend.name = File
resources.cachemanager.news.backend.options.cache_dir =
APPLICATION_PATH "/../data/cache"

resources.cachemanager.memory.frontend.name = Core
resources.cachemanager.memory.frontend.options.lifetime = 300

Try This 12-1

(continued)

406 Zend Framework: A Beginner’s Guide

resources.cachemanager.memory.frontend.options.automatic_serialization = true
resources.cachemanager.memory.backend.name = Memcached
resources.cachemanager.memory.backend.options.servers.host = localhost
resources.cachemanager.memory.backend.options.servers.port = 11211
resources.cachemanager.memory.backend.options.servers.timeout = 5
resources.cachemanager.memory.backend.options.servers.retry_interval = 10

With all the configuration out of the way, let’s start caching!

Caching Translation Strings
Both Zend_Translate and Zend_Locale can use a preconfigured Zend_Cache instance to store

locale data and translation strings for fast lookup. It’s quite easy to set up caching for these

components: Simply pass their static setCache() methods a correctly configured Zend_

Cache instance, and they’ll take care of the rest.

To enable caching for these two components, update the application bootstrapper with a

new _initCache() method, as follows:

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initCache()
 {
 $this->bootstrap('cachemanager');
 $manager = $this->getResource('cachemanager');
 $memoryCache = $manager->getCache('memory');
 Zend_Locale::setCache($memoryCache);
 Zend_Translate::setCache($memoryCache);
 }
}

Caching Query Results
If you take a look at the Catalog_ItemController::displayAction and the

Catalog_AdminItemController::displayAction, you’ll see that both actions

use the same Doctrine query, with one minor difference: The former contains an additional

check to ensure that the catalog item has been approved for display to the public. Since this

is essentially the same code repeated twice over, it is an ideal candidate for refactoring into a

model method.

To do this, add the following method to the Square_Model_Item model class, at $APP_

DIR/library/Square/Model/Item.php:

<?php
class Square_Model_Item extends Square_Model_BaseItem
{
 public function getItem($id, $active = true)
 {
 $q = Doctrine_Query::create()
 ->from('Square_Model_Item i')

Chapter 12: Optimizing Performance 407

 ->leftJoin('i.Square_Model_Country c')
 ->leftJoin('i.Square_Model_Grade g')
 ->leftJoin('i.Square_Model_Type t')
 ->where('i.RecordID = ?', $id);
 if ($active) {
 $q->addWhere('i.DisplayStatus = 1')
 ->addWhere('i.DisplayUntil >= CURDATE()');
 }
 return $q->fetchArray();
 }
}

Then, update the Catalog_ItemController::displayAction method

to reference the getItem() method defined in the model, instead of formulating

the Doctrine query directly. While you’re at it, go ahead and cache the results of the

method using the memory cache defined earlier. Here’s what the revised Catalog_
ItemController::displayAction method will look like:

<?php
class Catalog_ItemController extends Zend_Controller_Action
{
 // action to display a catalog item
 public function displayAction()
 {
 // set filters and validators for GET input
 $filters = array(
 'id' => array('HtmlEntities', 'StripTags', 'StringTrim')
);
 $validators = array(
 'id' => array('NotEmpty', 'Int')
);
 $input = new Zend_Filter_Input($filters, $validators);
 $input->setData($this->getRequest()->getParams());

 // test if input is valid
 // retrieve requested record from cache or database
 // attach to view
 if ($input->isValid()) {
 $memoryCache = $this->getInvokeArg('bootstrap')
 ->getResource('cachemanager')
 ->getCache('memory');
 if (!($result = $memoryCache->load('public_item_'.$input->id))) {
 $item = new Square_Model_Item;
 $result = $item->getItem($input->id, true);
 $memoryCache->save($result, 'public_item_'.$input->id);
 }
 if (count($result) == 1) {
 $this->view->item = $result[0];

(continued)

408 Zend Framework: A Beginner’s Guide

 $this->view->images = array();
 $config = $this->getInvokeArg('bootstrap')->getOption('uploads');
 foreach (glob("{$config['uploadPath']}/
 {$this->view->item['RecordID']}_*") as $file) {
 $this->view->images[] = basename($file);
 }
 $configs = $this->getInvokeArg('bootstrap')->getOption('configs');
 $localConfig = new Zend_Config_Ini($configs['localConfigPath']);
 $this->view->seller = $localConfig->user->displaySellerInfo;
 $registry = Zend_Registry::getInstance();
 $this->view->locale = $registry->get('Zend_Locale');
 $this->view->recordDate = new Zend_Date($result[0]['RecordDate']);
 } else {
 throw new Zend_Controller_Action_Exception('Page not found', 404);
 }
 } else {
 throw new Zend_Controller_Action_Exception('Invalid input');
 }
 }
}

A similar approach can be followed with the Catalog_AdminItemController::dis
playAction. Look in the code archive for this chapter, which you can download from http://

www.zf-beginners-guide.com/, for the revised code.

Q: How does refactoring model methods help in improving performance?

A: Chapter 4 discussed the “fat model, skinny controller” approach, which proposes that

business logic should be located within models, rather than controllers, wherever possible.

In addition to various other benefits, following this approach can improve performance

when it is used in combination with caching. As shown earlier in the section “Caching

Query Results,” you can use caching to block the method calls on the model altogether if

cached result data already exists, thereby reducing the number of lines of code that need to

be executed. And fewer lines of code automatically translates to faster script parsing and

execution.

Ask the Expert

Caching Twitter and Blog Feeds
In its current incarnation, the NewsController::indexAction retrieves a fresh set of

Twitter search results and the most current news and blog feeds on every request. This data is

accessed over HTTP and is expensive to retrieve; at the same time, it is also non-critical, low-

impact information. This makes it an ideal target for caching.

http://www.zf-beginners-guide.com/
http://www.zf-beginners-guide.com/

Chapter 12: Optimizing Performance 409

Consider the following revision of the NewsController::indexAction, which

uses the File frontend to cache Twitter search results and blog/news feeds in order to improve

response times:

<?php
class NewsController extends Zend_Controller_Action
{
 public function indexAction()
 {
 // get Twitter search feed
 $q = 'philately';
 $this->view->q = $q;

 // get cache
 $fileCache = $this->getInvokeArg('bootstrap')
 ->getResource('cachemanager')
 ->getCache('news');

 $id = 'twitter';
 if(!($this->view->tweets = $fileCache->load($id))) {
 $twitter = new Zend_Service_Twitter_Search();
 $this->view->tweets = $twitter->search($q,
 array('lang' => 'en', 'rpp' => 8, 'show_user' => true));
 $fileCache->save($this->view->tweets, $id);
 }

 Zend_Feed_Reader::setCache($fileCache);
 $this->view->feeds = array();
 // get Google News Atom feed
 $gnewsFeed = "http://news.google.com/news?hl=en&q=$q&output=atom";
 $this->view->feeds[0] = Zend_Feed_Reader::import($gnewsFeed);

 // get BPMA RSS feed
 $bpmaFeed = "http://www.postalheritage.org.uk/news/RSS";
 $this->view->feeds[1] = Zend_Feed_Reader::import($bpmaFeed);
 }
}

Notice from the previous listing that Zend_Feed_Reader caching is enabled with a simple

call to the static Zend_Feed_Reader::setCache(), passing it an instance of a configured

Zend_Cache object.

If you were to measure application performance before and after making the above

changes, you’d notice a distinct improvement in performance. To illustrate, consider

Table 12-3, which displays sample “before” and “after” statistics using ApacheBench on a test

deployment of the SQUARE application. The report was generated for 100 total requests, with

a concurrency level of 10.

410 Zend Framework: A Beginner’s Guide

Summary
This chapter, the last in this book, explored the important topic of Zend Framework

performance optimization, discussing some of the techniques and options available to help you

squeeze a little more speed out of your application. In addition to providing a quick overview

of the tools available for performance analysis and code profiling, the chapter examined

various strategies for performance optimization, including query and output caching, lazy

loading, SQL query tuning, and code refactoring.

Application optimization is almost a science unto itself, and it is impossible to cover

in the limited space available in this chapter. However, adopting these techniques will help

you build more efficient applications, and they should be a part of your standard development

process.

Q: Why aren’t you using the Doctrine result cache to cache query results?

A: While it is certainly possible to use the Doctrine result cache for query results, doing

so invariably requires one to load the Doctrine model(s). The approach used in this

example bypasses this step, such that the Doctrine model is not invoked at all. This reduces

the amount of code executed even further and only helps to increase overall

performance.

Ask the Expert

URL Without Caching With Caching

Improvement
with Caching
(percent)

Number
of requests
served per
second

Mean time
per request
(ms)

Number
of requests
served per
second

Mean
time per
request
(ms)

http://square.localhost/
news

0.45 2242.00 2.07 483.91 Approximately
360 percent

http://square.localhost/
catalog/item/1

3.32 301.563 9.52 105.00 Approximately
187 percent

Table 12-3 ApacheBench Benchmarks for the Example Application, Pre- and Post-Cache
Implementation

http://square.localhost/news
http://square.localhost/news
http://square.localhost/catalog/item/1
http://square.localhost/catalog/item/1

Chapter 12: Optimizing Performance 411

To learn more about performance optimization, and to download some of the tools

mentioned in this chapter, consider visiting the following links:

The Zend_Cache component, at

http://framework.zend.com/manual/en/zend.cache.html

The Zend_Db_Profiler component, at

http://framework.zend.com/manual/en/zend.db.profiler.html

Information on Doctrine caching, at

http://www.doctrine-project.org/documentation/manual/1_1/en/caching

Information on MySQL performance optimization, at

http://dev.mysql.com/doc/refman/5.1/en/optimization.html

Strategies for Zend Framework performance optimization, at

http://framework.zend.com/manual/en/performance.html

ApacheBench documentation, at

http://httpd.apache.org/docs/2.0/programs/ab.html

WCAT, at http://www.iis.net/downloads/default.aspx?tabid=34&i=1466&g=6

Xdebug, at http://xdebug.org/

Webgrind, at http://code.google.com/p/webgrind/

Wincachegrind, at http://sourceforge.net/projects/wincachegrind/

Kcachegrind, at http://kcachegrind.sourceforge.net/

The PEAR Benchmark package, at

http://pear.php.net/package/Benchmark

Memcached, at http://memcached.org/

The PHP memcached extension, at

http://pecl.php.net/package/memcache

The Imind Doctrine profiler, at

http://code.google.com/p/imind-php/wiki/Imind_Profiler_Doctrine_Firebug

A discussion of profiling PHP scripts with Xdebug and Webgrind (Anant Garg), at

http://anantgarg.com/2009/03/10/php-xdebug-webgrind-installation/

Although you’ve reached the end of this book, it should be clear that your Zend

Framework odyssey is far from over… if anything, it’s only just beginning! The preceding

chapters have given you the grounding necessary to begin creating your own high-quality

Zend Framework applications. The rest is up to you and your imagination. Good luck, and

happy coding!

http://framework.zend.com/manual/en/zend.cache.html
http://framework.zend.com/manual/en/zend.db.profiler.html
http://www.doctrine-project.org/documentation/manual/1_1/en/caching
http://dev.mysql.com/doc/refman/5.1/en/optimization.html
http://framework.zend.com/manual/en/performance.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://www.iis.net/downloads/default.aspx?tabid=34&i=1466&g=6
http://xdebug.org/
http://code.google.com/p/webgrind/
http://sourceforge.net/projects/wincachegrind/
http://kcachegrind.sourceforge.net/
http://pear.php.net/package/Benchmark
http://memcached.org/
http://pecl.php.net/package/memcache
http://code.google.com/p/imind-php/wiki/Imind_Profiler_Doctrine_Firebug
http://anantgarg.com/2009/03/10/php-xdebug-webgrind-installation/

This page intentionally left blank

413

Appendix

Installing and

Configuring Required

Software

414 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

Learn to obtain and install MySQL, PHP, and Apache software from the Internet

Perform basic testing to ensure that the applications are working correctly

Find out how to automatically activate all required components on system startup

Take basic steps to safeguard the security of your MySQL installation

In this book, you learned about the Zend Framework and how it can be used to build

sophisticated Web applications. The examples in this book assumed that you have a correctly

configured Apache/MySQL/PHP development environment. In case you don’t, this appendix

will show you how to install and configure these components and create a development

environment that can be used to run the code examples in this book.

CAUTION

This appendix is intended to provide an overview and general guide to the process of
installing and configuring MySQL, PHP, and Apache on UNIX and Windows. It is not
intended as a replacement for the installation documentation that ships with each software
package. If you encounter difficulties installing the various programs described here,
visit the respective program’s Web site or search the Web for detailed troubleshooting
information and advice (some links are provided at the end of this appendix).

Obtaining the Software
There are a couple of different ways you can get an Apache/MySQL/PHP development

environment running on your Windows or *NIX system:

1. You can download an all-in-one, integrated stack that contains all the necessary pieces and

dependencies, preconfigured to work together.

2. You can download the different pieces separately and configure them yourself.

The first approach is recommended if you’re new to PHP, or to open-source development

in general, as it will get you up and running with minimal heartache. Here are two popular

stacks you should consider:

Zend Server Community Edition is an integrated, robust stack provided by Zend

Technologies. In addition to the standard Apache/MySQL/PHP components, it also

includes a number of debugging and optimization tools, plus (as a bonus) the latest version

of the Zend Framework. It is available for Microsoft Windows, Mac OS X, and Linux

operating systems, and it can be freely downloaded from http://www.zend.com/.

http://www.zend.com/

Appendix: Installing and Configuring Required Software 415

XAMPP is a community-supported distribution that includes the latest versions of Apache,

PHP, MySQL, and Perl. It is fully configured for out-of-the-box use, and is extremely

popular for quickly setting up a PHP-based development environment. It also includes

additional tools, namely, an FTP server and a Web-based MySQL management tool. It

is available for Microsoft Windows, Mac OS X, Linux, and Solaris, and can be freely

downloaded from http://www.apachefriends.org/en/index.html.

The downside of using an integrated stack is that you’ll learn significantly less than if you

use the second, do-it-yourself approach, since all the components come preconfigured for you.

If you have the inclination and interest, configuring the individual pieces separately is a great

learning experience; it is discussed in depth in the rest of this appendix.

The first step is to make sure that you have all the software you need. Here’s a list:

PHP PHP provides an application development framework for both Web and console

applications. It can be downloaded from http://www.php.net/. Here too, both source and

binary versions are available for Windows, UNIX, and Mac OS X platforms. UNIX users

should download the latest source archive, while Windows users should download the

latest binary release. At the time this book goes to press, the most current version of PHP is

PHP v5.3.1.

Apache Apache is a feature-rich Web server that works well with PHP. It can be

downloaded free of charge from http://httpd.apache.org/ in both source and binary

form, for a variety of platforms. UNIX users should download the latest source archive,

while Windows users should download a binary installer appropriate for their version

of Windows. At the time this book goes to press, the most current version of the Apache

server is Apache v2.2.14.

MySQL The MySQL database server provides robust and scalable data storage/retrieval.

It is available in both source and binary versions from http://www.mysql.com/. Binary

distributions are available for Linux, Solaris, FreeBSD, Mac OS X, Windows, HP-UX,

IBM AIX, SCO OpenUNIX, and SGI Irix, and source distributions are available for both

Windows and UNIX platforms. The binary version is recommended, for two reasons:

It is easier to install, and is optimized for use on different platforms by the MySQL

development team. At the time this book goes to press, the most current version of the

MySQL database server is MySQL v5.1.43.

In addition to these four basic components, UNIX users may also require some supporting

libraries. Here’s a list:

The libxml2 library, available from http://www.xmlsoft.org/

The zlib library, available from http://www.gzip.org/zlib/

The gd library, available from http://www.boutell.com/gd/

Finally, users on both platforms will need a decompression tool capable of dealing with

TAR (Tape Archive) and GZ (GNU Zip) files. On UNIX, the tar and gzip utilities are they

http://www.apachefriends.org/en/index.html
http://www.php.net/
http://httpd.apache.org/
http://www.mysql.com/
http://www.xmlsoft.org/
http://www.gzip.org/zlib/
http://www.boutell.com/gd/

416 Zend Framework: A Beginner’s Guide

are usually included with the operating system. On Windows, a good decompression tool is

WinZip, available from http://www.winzip.com/.

NOTE

The examples in this book have been developed and tested on MySQL v5.1.30, with
Apache v2.2.14, PHP v5.3.1, and Zend Framework v1.9 and v1.10.

Installing and Configuring the Software
Once the required software has been obtained, the next step is to install the various pieces and

get them talking to each other. The following sections outline the steps for both Windows and

UNIX platforms.

NOTE

If you use an Apple workstation, you can find instructions for installing PHP on Mac OS X
in the PHP manual, at http://www.php.net/manual/en/install.macosx.php.

Installing on UNIX
The installation process for UNIX involves a number of distinct steps: installing MySQL from

a binary distribution; compiling and installing PHP from a source distribution; and compiling

and configuring Apache to properly handle requests for PHP Web pages. These steps are

described in greater detail in the following subsections.

Installing MySQL
To install MySQL from a binary distribution, use the following steps:

1. Ensure that you are logged in as the system’s root user.

[user@host]# su - root

2. Extract the content of the MySQL binary archive to an appropriate directory on your

system—for example, /usr/local/.

[root@host]# cd /usr/local
[root@host]# tar -xzvf /tmp/mysql-5.1.30-linux-i686-glibc23.tar.gz

The MySQL files should be extracted into a directory named according to the format mysql-

version-os-architecture—for example, mysql-5.1.30-linux-i686-glibc23.

3. For ease of use, set a shorter name for the directory created in Step 2 by creating a soft link

named mysql pointing to this directory in the same location.

[root@host]# ln -s mysql-5.1.30-linux-i686-glibc23 mysql

4. For security reasons, the MySQL database server process should never run as the system

superuser. Therefore, it is necessary to create a special mysql user and group for this purpose.

http://www.winzip.com/
http://www.php.net/manual/en/install.macosx.php

Appendix: Installing and Configuring Required Software 417

Do this with the groupadd and useradd commands, and then change the ownership of the

MySQL installation directory to this user and group:

[root@host]# groupadd mysql
[root@host]# useradd –g mysql mysql
[root@host]# chown -R mysql /usr/local/mysql
[root@host]# chgrp -R mysql /usr/local/mysql

5. Initialize the MySQL tables with the mysql_install_db initialization script included in the

distribution.

[root@host]# /usr/local/mysql/scripts/mysql_install_db --user=mysql

Figure A-1 demonstrates what you should see when you do this.

As the output in Figure A-1 suggests, this initialization script prepares and installs the

various MySQL base tables, and also sets up default access permissions for MySQL.

6. Alter the ownership of the MySQL binaries so that they are owned by root.

[root@host]# chown -R root /usr/local/mysql

Ensure that the mysql user created in Step 4 has read/write privileges to the MySQL data

directory.

[root@host]# chown -R mysql /usr/local/mysql/data

7. Start the MySQL server by manually running the mysqld_safe script.

[root@host]# /usr/local/mysql/bin/mysqld_safe --user=mysql &

MySQL should now start up normally.

Figure A-1 The output of the mysql_install_db script

418 Zend Framework: A Beginner’s Guide

Once installation has been successfully completed and the server has started up, skip down

to the section entitled “Testing MySQL” to verify that it is functioning as it should.

Installing Apache and PHP
PHP can be integrated with the Apache Web server in one of two ways: as a dynamic module

that is loaded into the Web server at run time, or as a static module that is integrated into the

Apache source tree at build time. Each alternative has advantages and disadvantages:

Installing PHP as a dynamic module makes it easier to upgrade your PHP build at a later

date, as you only need to recompile the PHP module and not the rest of the Apache Web

server. On the flip side, with a dynamically loaded module, performance tends to be lower

than with a static module, which is more closely integrated with the server.

Installing PHP as a static module improves performance, because the module is compiled

directly into the Apache source tree. However, this close integration has an important

drawback: If you ever decide to upgrade your PHP build, you will need to reintegrate the

newer PHP module into the Apache source tree and recompile the Apache Web server.

This section shows you how to compile PHP as a dynamic module that is loaded into the

Apache server at run time.

1. Ensure that you are logged in as the system’s root user.

[user@host]# su - root

2. Extract the contents of the Apache source archive to your system’s temporary directory.

[root@host]# cd /tmp
[root@host]# tar -xzvf /tmp/httpd-2.2.14.tar.gz

3. To enable PHP to be loaded dynamically, the Apache server must be compiled with

Dynamic Shared Object (DSO) support. This support is enabled by passing the --enable-

module=so option to the Apache configure script, as follows:

[root@host]# cd /tmp/httpd-2.2.14
[root@host]# ./configure --prefix=/usr/local/apache
 --enable-module=so --enable-rewrite

4. Now, compile the server using the make command, and install it to the system using make
install.

[root@host]# make
[root@host]# make install

Figure A-2 illustrates what you might see during the compilation process.

Apache should now have been installed to /usr/local/apache/.

5. Next, proceed to compile and install PHP. Begin by extracting the contents of the PHP

source archive to your system’s temporary directory.

[root@host]# cd /tmp
[root@host]# tar -xzvf /tmp/php-5.3.1.tar.gz

Appendix: Installing and Configuring Required Software 419

6. This step is the most important in the PHP installation process. It involves sending

arguments to the PHP configure script to configure the PHP module. These command-line

parameters specify which PHP extensions should be activated, and they also tell PHP where

to find the supporting libraries needed by those extensions.

[root@host]# cd /tmp/php-5.3.1
[root@host]# ./configure --prefix=/usr/local/php
 --with-apxs2=/usr/local/apache/bin/apxs
 --with-zlib --with-gd --with-mysqli=mysqlnd
 --with-pdo-mysql=mysqlnd

Here is a brief explanation of what each of these arguments does:

The --with-apxs2 argument tells PHP where to find Apache’s APXS (APache

eXtenSion) script. This script simplifies the task of building and installing loadable

modules for Apache.

The --with-zlib argument tells PHP to activate compression (zip) features, which are

used by different PHP services.

The --with-gd argument tells PHP to activate image-processing features.

The --with-mysqli argument activates PHP’s MySQLi extension and tells PHP to use

the new MySQL native driver (mysqlnd) as the MySQL client library.

The --with-pdo-mysql argument activates PHP’s MySQL PDO driver and tells PHP to

use the MySQL native driver as the MySQL client library.

Figure A-2 Compiling Apache

420 Zend Framework: A Beginner’s Guide

7. Next, compile and install PHP using make and make install.

[root@host]# make
[root@host]# make install

You can also run make test at this point to run the unit tests for PHP and review any

failures. If all goes well, PHP should now have been installed to /usr/local/php/.

8. The final step in the installation process consists of configuring Apache to correctly

recognize requests for PHP pages. This is accomplished by opening the Apache

configuration file, httpd.conf (which be found in the conf/ subdirectory of the Apache

installation directory), in a text editor and adding the following line to it:

AddType application/x-httpd-php .php

Save the changes to the file. Also, check to make sure that the following line appears

somewhere in the file:

LoadModule php5_module modules/libphp5.so

9. Start the Apache server by manually running the apachectl script.

[root@host]# /usr/local/apache/bin/apachectl start

Apache should start up normally.

Once installation has been successfully completed and the server has successfully started,

skip down to the section entitled “Testing PHP” to verify that all is functioning as it should.

Installing on Windows
Compiling applications on Windows is a challenging process, especially for novice

developers. With this in mind, it is advisable for Windows users to focus instead on installing

and configuring prebuilt binary releases of MySQL, SQLite, PHP, and Apache, instead of

attempting to compile them from source code. These releases can be downloaded from the

Web sites listed earlier, in the section “Obtaining the Software,” and are to be installed one

after another, as outlined in the following subsections.

Installing MySQL
MySQL is available in both source and binary forms for both 32-bit and 64-bit versions of

Microsoft Windows. Most often, you will want to use either the “Essentials” or “Complete”

binary distributions, which include an automated installer to get MySQL up and running in just

a few minutes.

To install MySQL from a binary distribution, use the following steps:

1. Log in as an administrator (if you’re using Windows XP/Vista/7).

2. Double-click the mysql-*.msi file to begin the installation process. You should see a

welcome screen. (see Figure A-3).

Appendix: Installing and Configuring Required Software 421

3. Select the type of installation required.

Most often, a Typical installation will do; however, if you’re the kind who likes tweaking

default settings, or if you’re just short of disk space, select the Custom installation option,

and decide which components of the package should be installed.

4. MySQL should now begin installing to your system.

5. Once installation is complete, you should see a success notification. At this point, you will

have the option to launch the MySQL Server Instance Configuration Wizard, to complete

configuration of the software. Select this option, and you should see the corresponding

welcome screen.

6. Select the type of configuration. In most cases, the Standard Configuration will suffice.

7. Install MySQL as a Windows service, such that it starts and stops automatically with

Windows (see Figure A-4).

8. Enter a password for the MySQL administrator (root) account (see Figure A-5).

The server will now be configured with your specified settings, and automatically started.

You will be presented with a success notification once all required tasks are complete.

You can now proceed to test the server as described in the section “Testing MySQL,” to

ensure that everything is working as it should.

Figure A-3 Beginning MySQL installation on Windows

422 Zend Framework: A Beginner’s Guide

Figure A-4 Setting up the MySQL service

Figure A-5 Setting the administrator password

Installing Apache
Once MySQL is installed, the next step is to install the Apache Web server. On Windows, this

is a point-and-click process, similar to that used when installing MySQL.

1. Begin by double-clicking the Apache installer to begin the installation process. You should

see a welcome screen (see Figure A-6).

2. Read the license agreement, and accept the terms to proceed.

Appendix: Installing and Configuring Required Software 423

3. Read the descriptive information, and then proceed to enter basic server information and the

e-mail address to be displayed on error pages.

4. Select the type of installation required. You can select the Custom installation option if you

want to decide which components of the package should be installed.

5. Select the location to which Apache should be installed—for example, C:\Program Files\

Apache\.

6. Apache should now begin installing to the specified location. The installation process takes

a few minutes to complete, so this is a good time to get yourself a cup of coffee.

7. Once installation is complete, the Apache installer will display a success notification and

also start the Apache Web server.

Installing PHP
There are two versions of the PHP binary release for Windows—a ZIP archive, which contains

all the bundled PHP extensions and requires manual installation, and an automated Windows

Installer version, which contains only the basic PHP binary with no extra extensions. This

section outlines the installation process for the PHP ZIP archive.

1. Log in as an administrator (if you’re using Windows XP/Vista/7) and unzip the distribution

archive to a directory on your system—for example, C:\php\. After extraction, this directory

should look something like Figure A-7.

Figure A-6 Beginning Apache installation on Windows

424 Zend Framework: A Beginner’s Guide

2. Next, rename the file php.ini-recommended in your PHP installation directory to php.ini.

This file contains configuration settings for PHP, which can be used to alter the way it

works. Read the comments within the file to learn more about the available settings.

3. Within the php.ini file, locate the following line:

extension_dir = "./"

Alter it to read

extension_dir = "c:\php\ext\"

This tells PHP where to locate the extensions supplied with the package. Remember to

replace the path “c:\php\” with the actual location of your PHP installation.

4. Next, look for the following lines and remove the semicolon at the beginning (if present) so

that they read as follows:

extension=php_mysqli.dll
extension=php_pdo_sqlite.dll
extension=php_pdo_mysql.dll
extension=php_zip.dll
extension=php_gd2.dll

This takes care of activating PHP’s MySQL, GD, Zip, and PDO extensions.

Figure A-7 The directory structure created on unpackaging a PHP binary distribution for Windows

Appendix: Installing and Configuring Required Software 425

5. Open the Apache configuration file, httpd.conf (which can be found in the conf/

subdirectory of the Apache installation directory) in a text editor, and add the following

lines to it:

AddType application/x-httpd-php .php
LoadModule php5_module modules/libphp5.so

These lines tell Apache how to deal with PHP scripts and where to find the php.ini

configuration file.

6. When the Apache server is installed, it adds itself to the Start menu. Use this Start menu

group to stop and restart the server, as shown in Figure A-8.

PHP is now installed and configured to work with Apache. To test it, skip down to the

section entitled “Testing PHP.”

Adding memcached Support to PHP Chapter 12 of this book makes use of the memcached

memory caching engine. To add support for this engine to PHP, there are a few additional steps

to be performed. Very briefly, they are as follows:

1. Download, compile, and install the memcached and libevent libraries from http://tangent

.org/552/libmemcached.html and http://www.monkey.org/~provos/libevent/ (*NIX only).

2. Install the memcached server from http://memcached.org/ (*NIX source) or http://code

.jellycan.com/memcached/ (Windows binary).

3. Install the memcache PHP extension from PECL at http://pecl.php.net/package/

memcache (*NIX source) or http://downloads.php.net/pierre/ (Windows binary).

4. Activate the memcache PHP extension in the PHP configuration file and restart the Web

server for the changes to take effect.

Figure A-8 Apache server controls on Windows

http://tangent.org/552/libmemcached.html
http://tangent.org/552/libmemcached.html
http://www.monkey.org/~provos/libevent/
http://memcached.org/
http://code.jellycan.com/memcached/
http://code.jellycan.com/memcached/
http://pecl.php.net/package/memcache
http://pecl.php.net/package/memcache
http://downloads.php.net/pierre/

426 Zend Framework: A Beginner’s Guide

Testing the Software
Once all the software components have been installed, use the following sections to test that

they are all correctly configured and active.

Testing MySQL
Once MySQL has been successfully installed, the base tables have been initialized, and the

server has been started, you can verify that all is working as it should via some simple tests.

First, start up the MySQL command-line client by changing to the bin/ subdirectory of

your MySQL installation directory and typing the following command:

prompt# mysql -u root

You should be rewarded with a prompt, as follows:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 26288
Server version: 5.1.30-community MySQL Community Edition (GPL)
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

At this point, you are connected to the MySQL server and can begin executing SQL

commands or queries to test whether the server is working as it should. Here are a few

examples, with their output:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
+----------+
2 rows in set (0.13 sec)

mysql> SELECT COUNT(*) FROM mysql.user;
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec)

If you see output similar to this example, your MySQL installation is working as it should.

Exit the command-line client by typing the command exit and you’ll be returned to your

command prompt.

Appendix: Installing and Configuring Required Software 427

Testing PHP
Once you’ve successfully installed PHP as an Apache module, you should test it to ensure that

the Web server can recognize PHP scripts and handle them correctly.

To perform this test, create a PHP script in any text editor containing the following lines:

<?php
phpinfo();
?>

Save this file as test.php in your Web server document root (the htdocs/ subdirectory of

your Apache installation directory), and point your browser to http://localhost/test.php. You

should see a page containing information on the PHP build, as shown in Figure A-9.

Eyeball the list of extensions to make sure that the MySQL, GD, SimpleXML, Zip, and

memcached (optional) extensions are active. If they aren’t, review the installation procedure,

as well as the installation documents that shipped with the software, to see what went wrong.

Figure A-9 Viewing the output of the phpinfo() command

http://localhost/test.php

428 Zend Framework: A Beginner’s Guide

Setting the MySQL Super-User Password
When MySQL is first installed, access to the database server is restricted to the MySQL

administrator, aka ‘root’. By default, this user is initialized with a blank password, which

is generally considered a Bad Thing. You should therefore rectify this as soon as possible by

setting a password for this user via the included mysqladmin utility, using the following syntax

in UNIX:

[root@host]# /usr/local/mysql/bin/mysqladmin -u root password 'new-password'

In Windows, you can use the MySQL Server Instance Configuration Wizard, which allows

you to set or reset the MySQL administrator password (see the section entitled “Installing on

Windows” for more details).

This password change goes into effect immediately, with no requirement to restart the

server.

Summary
As popular open-source applications, MySQL, Apache, and PHP are available for a wide

variety of platforms and architectures, in both binary and source forms. This appendix

demonstrated the process of installing and configuring these software components to create

a PHP development environment on the two most common platforms, UNIX and Windows.

It also showed you how to configure your system to launch these components automatically

every time the system starts up, and it offered some tips on basic MySQL security.

To read more about the installation processes outlined in this appendix, or for detailed

troubleshooting advice and assistance, consider visiting the following pages:

MySQL installation notes, at

http://dev.mysql.com/doc/refman/5.1/en/installing-binary.html

General guidelines for compiling Apache on UNIX, at

http://httpd.apache.org/docs/2.2/install.html

Windows-specific notes for Apache binary installations, at

http://httpd.apache.org/docs/2.2/platform/windows.html

Installation instructions for PHP on Windows, at

http://www.php.net/manual/en/install.windows.php

Installation instructions for PHP on UNIX, at

http://www.php.net/manual/en/install.unix.php

Installation instructions for PHP on Mac OS X, at

http://www.php.net/manual/en/install.macosx.php

http://dev.mysql.com/doc/refman/5.1/en/installing-binary.html
http://httpd.apache.org/docs/2.2/install.html
http://httpd.apache.org/docs/2.2/platform/windows.html
http://www.php.net/manual/en/install.windows.php
http://www.php.net/manual/en/install.unix.php
http://www.php.net/manual/en/install.macosx.php

429

Index

A
ab (ApacheBench) tool, 382–383
action attribute, 37
action helpers for navigation, 358–359
Action Message Format (AMF), 3, 7
actions overview

methods, 24
naming conventions, 34

ActionStack helper, 358
ActiveRecord pattern, 105, 107
adapters

authentication, 162–164
translation files, 289–291

addActionContext() method, 193–194
addContext() method, 193–194
addDecorators() method, 96
addDisplayGroup() method, 93
addDocument() method, 183
addElement() method, 53, 93, 150
addField() method, 183
addFilter() method, 70–72, 75
addFilters() method, 72
addHelper() method, 358
adding records, 120–121
addMessage() method, 87

addMultiOption() method, 136
addPath() method, 358
addPrefix() method, 358
addslashes() function, 70
addTranslation() method, 290
addValidator() method, 74, 79, 81, 91–92
addWhere() method, 119
addWriter() method, 255
/admin prefix, 141
adminDeleteAction() method, 142
administrative actions, 140

controllers, 141
layout, 142–144
protecting, 167–168
routing, 141–142
structure, 140–141

ALERT log level, 257
Alnum filter, 73
Alnum validator, 77
Alpha filter, 73
Alpha validator, 77, 84
alphabetic and alphanumeric strings, testing for, 74
Amazon Web service, 324–325
amazonAction() method, 324
AMF (Action Message Format), 3, 7
Apache configuration files, 13

430 Zend Framework: A Beginner’s Guide

Apache Lucene Project, 181
ApacheBench (ab) tool, 382–383
Apc cache backend, 396
Api_CatalogController class, 335–339
$APP_DIR/ directory, 11, 16
$APP_DIR/application/ directory, 31–33

Bootstrap.php file, 117, 302, 357, 369
contents, 12
modules, 334

$APP_DIR/application/configs/ directory, 229
navigation.xml file, 357
square.ini file, 230, 234

$APP_DIR/application/configs/application.ini file
administrative functions, 145
application configuration, 37
caches, 405
Doctrine configuration, 117
log locations, 264
logins and logouts, 161
namespaces, 85
news page, 328
pagination, 201
search index location, 185
sort criteria, 204
upload destinations, 213
user-level configuration, 229–230

$APP_DIR/application/controller/IndexController
.php file, 28

$APP_DIR/application/layouts/ directory
admin.phtml file, 143, 168, 233, 374
layout template files, 36

$APP_DIR/application/layouts/master.phtml file
application master layouts, 37
Dojo autocomplete widget, 370
forms, 88
localization, 298, 307
Menu view helpers, 360
news feeds, 331
searches, 179

$APP_DIR/application/modules/ directory, 30–33
admin/views/scripts/admin-item/update.phtml

file, 377
api/controllers/CatalogController.php file, 335

$APP_DIR/application/modules/catalog/controllers/
directory

AdminItemController.php file, 144
ItemController.php file, 122, 157, 215, 295

$APP_DIR/application/modules/catalog/views/
scripts/admin-item/ directory

index.php file, 146
index.phtml file, 188

update.php file, 156
$APP_DIR/application/modules/catalog/views/

scripts/item/ directory
create.phtml file, 138
display.phtml file, 124, 296
search.xml.phtml file, 194
success.phtml file, 137

$APP_DIR/application/modules/default/ directory, 32
$APP_DIR/application/modules/default/controllers/

directory
ConfigController.php file, 231
ContactController.php file, 371
ErrorController.php file, 265
LocaleController.php file, 307
LoginController.php file, 165
NewsController.php file, 328

$APP_DIR/application/modules/default/views/login/
login.phtml file, 166

$APP_DIR/application/modules/default/views/
scripts/ directory

config/index.phtml file, 233
contact/index.phtml file, 87
contact/success.phtml file, 88
error/error.phtml file, 252
news/index.phtml file, 329

$APP_DIR/application/views/scripts/index/index
.phtml file, 29, 35

$APP_DIR/data/indexes/ directory, 185
$APP_DIR/data/logs/ directory, 263
$APP_DIR/languages/messages.fr.php file, 300
$APP_DIR/library/ directory, 12–13
$APP_DIR/library/Doctrine directory, 117
$APP_DIR/library/Square/ directory

Auth/Adapter/Doctrine.php file, 164
Controller/Action/Helper/Navigation.php

file, 358
$APP_DIR/library/Square/Form/ directory

Configure.php file, 228
Contact.php file, 299, 369
ItemCreate.php file, 130, 213
ItemUpdate.php file, 372
Login.php file, 161
Search.php file, 177, 188

$APP_DIR/library/Square/Model/Item.php file, 406
$APP_DIR/modules/catalog/ directory

controllers/ItemController.php file, 177
scripts/item/search.phtml file, 190
scripts/search php file, 178

$APP_DIR/public/ directory, 12–13, 44
$APP_DIR/public/captcha/ directory, 85
$APP_DIR/public/css/ directory, 37

Index 431

$APP_DIR/public/fonts/ directory, 84–85
$APP_DIR/public/images/ directory, 37
$APP_DIR/public/images/locale/ directory, 308
$APP_DIR/public/uploads/ directory, 213, 221
$APP_DIR/tests/ directory, 12
application code optimization, 401

cache configuration, 405–406
caching query results, 406–408
caching translation strings, 406
caching Twitter and blog feeds, 408–409
lazy loading, 404–405
query tuning, 401–404

APPLICATION_ENV variable, 251
application.ini file, 230
applications

configuration files, 33, 37
database initialization, 109–113
environment, 7–8
index pages, 35
interoperability, 6–7
localization and locales. See localization and

locales
master layouts, 36–37, 42–44
optimizing. See application code optimization
requirements, 11
routes, 37–40
views, 41–42

ArrayIterator, 243
asterisks (*) for required fields, 403
Atom Syndication Format (ASF), 312–313, 317–319
ATTR_QUERY_CACHE attribute, 400
audio CAPTCHAs, 66
authenticate() method

Square_Auth_Adapter_Doctrine, 163–164
Zend_Auth_Adapter_Interface, 160, 162

authenticateAction() method, 159–160
authentication

adapters, 162–164
user, 158–160, 170

auto locale, 276
Autocomplete helper, 358
autocompleteAction() method, 371
autoloading Doctrine, 116–118

B
backends, cache, 395–397
Barcode validator, 78
BaseName filters, 73
benchmarking performance, 382–384

best practices, 4
Between validator, 77
bin/ directory, 9
Binary fields for full-text search, 182
Blackhole cache backend, 396
blogs

feeds, caching, 408–409
Twitter integration, 328–332

Bootstrap class
Doctrine initialization, 117
Dojo view helper, 369–370
locales, 275–277, 293–294, 307
navigation objects, 352, 357
query profiling, 388–391
REST routes, 340–342
translation objects, 302, 406

Breadcrumbs navigation helper, 353–354
brokers, helper, 358
browsers

caches, 392
locale, 276

Buck, Jamis, 106
Button view helper, 364
buttons for forms, 61–63

C
cacheAction() method, 393–399, 401
cachegrind files, 385
caches, 392

cache manager, 398–399
configuring, 405–406
Doctrine queries, 399–401, 410
frontends and backends, 395–397
operations, 392–395
query results, 406–408
translation strings, 406
Twitter and blog feeds, 408–409

calculations, transient, 402–403
calendars. See YUI calendar widget
Callback filters, 73
camel-casing names, 34, 111
CAPTCHA fields in forms, 63–65
CAPTCHAs (Completely Automated Public Turing

tests), 66, 84
Capture cache frontend, 395
CardSpace, 7
Catalog_AdminItemController class

administrative actions, 144, 146–150, 154–155
database records, 201–206, 218–219

432 Zend Framework: A Beginner’s Guide

Catalog_AdminItemController class (continued)
index actions, 186–187
logging actions, 167–168
YUI calendar widget, 375–377

Catalog_ItemController class
administrative actions, 157–158
application configuration, 236–237
caches, 406–408
database records, 122–124
forms, 136–137
number locales, 295–296
searches, 177–178, 189, 194
uploaded files, 215–218

catch blocks, 242–245
Ccnum validator, 78
CDN (Content Delivery Network), 363
chains

filter, 79–81
inheritance, 106
methods, 54

CheckBox view helper, 364
checkboxes for forms, 57–59
Class cache frontend, 395
clearDecorators() method, 96
closing PHP tags, 41
code

optimization. See application code
optimization

profiling, 384–387
code-generation tools, 6
ComboBox view helper, 364
command-line tool, 14
commercial support, 7
community support, 5
Completely Automated Public Turing tests

(CAPTCHAs), 66, 84
component interaction, 26–28
configAction() method, 222–227
ConfigController class, 231–233
configuration files

applications, 33, 37
controllers and views, 231–233
defining, 229
forms, 227–229
master layout, 233–235
reading, 222–224
routes, 230
storing, 230
working with, 235–238
writing, 224–227

consistency, 264
__construct() method

MemberModel, 103
Square_Auth_Adapter_Doctrine, 163
Square_Controller_Action_Helper_

Navigation, 359
Square_Log_Writer_Doctrine, 264

consuming
news feeds, 313–317
Web services, 322–328

contact forms
creating, 82
Dojo autocomplete widget, 368–369
localization targets, 299–300

ContactController class, 28, 86–87, 90, 235–238, 371
containers, 346–351, 355–357
Content Delivery Network (CDN), 363
ContentPane view helper, 364
contexts, 192–194
ContextSwitch helper, 192–194, 358
controller attribute, 37
controllers

administrative, 140–141
configuration files, 231–233
CRUD operations, 136–139
Dojo autocomplete widget, 371
forms, 86–88
models, 122–124
MVC patterns, 23–24
naming conventions, 34
news feeds, 328–331
REST-based Web services, 334–335
search, 177–179
static content, 40
YUI calendar widget, 375–377

conversions, currency, 285
convertNumerals() method, 278–279
convertTo() method, 286
copyrighted fonts, 84
Core cache frontend, 395
Count validator, 78, 211
countries, locales for, 273–274
Crc32 validator, 78, 211
create action for uploaded files, 215–216
Create, Read, Update, and Delete. See CRUD

(Create, Read, Update, and Delete) operations
CREATE TEMPORARY TABLE command, 402
createAction() method, 136–137, 215–216
createElement() method, 54
createFulltextIndexAction() method, 186–187

Index 433

CRIT log level, 257
criteria, sort, 204
Cross-Site Request Forgery (CSRF) attacks, 63–64
cross-site scripting attacks, 127
CRUD (Create, Read, Update, and Delete)

operations, 130
administrative actions, 167–168
authentication adapters, 162–164
controllers and views, 136–139
date input, 153
delete actions, 148–150
display actions, 157–158
forms, 130–136
layout, 142–144
list actions and views, 146–148
login actions and views, 165–166
login forms, 161–162
logout actions, 167
master layout, 168–169
routes, 141–142, 144–145, 161
structure, 140–141
summary, 170–171
update actions and views, 154–157
update form, 150–152
user authentication, 158–160

CSRF (Cross-Site Request Forgery) attacks, 63–64
ctype_alnum() function, 74
ctype_alpha() function, 74
currency locales, 273, 282–285
currencyAction() method, 283–284
CurrencyTextBox view helper, 364
custom error messages for forms, 91–92

D
Data Source Name (DSN), 117–118
data sources for translation files, 289–291, 300–301
databases, application, 109–113
DataMapper pattern, 105, 107
date() method, 281
Date validator, 78, 153
dateAction() method, 279–282
dates

form input, 153
locales, 273, 279–282

DateTextBox view helper, 364
Db_NoRecordExists validator, 78
Db_RecordExists validator, 78
<dd> element, 95, 98

DEBUG log level, 257
decorators for forms, 94–99
Decrypt filters, 73, 211
default index page, 28–30
default modules, 33
default routes, 25
default values on forms, 65–69
Del.icio.us services, 7
delete actions

defining, 148–150
records, 120–121
uploaded files, 218–221

delete() method
DQL, 121
patterns, 105
Zend_Rest_Client, 327

DELETE method
HTTP, 320
REST routes, 333

delete URLs, 145
deleteAction() method

Api_CatalogController, 335
Catalog_AdminItemController, 148–149, 218
Sandbox_RestController, 334

deliciousAction() method, 323
deny access, 170
Description decorators, 95
description() method, 317
destination of uploaded files, 213
/dev/null file, 256
development environments, exceptions in, 251–252
Digits filter, 73
Digits validator, 77
Dir filter, 73
disable() method, 370
disableNotices option, 289
disabling decorators, 96
disk caches

example, 405–406
vs. memory caches, 399

display actions, 157–158
display_errors variable, 251
display groups in forms, 93–94
display() method, 203
display_startup_errors variable, 251
displayAction() method

Catalog_ItemController, 123–124, 157–158,
216–218, 236–237, 295–296, 406–408

ItemController, 138
StaticContentController, 40

434 Zend Framework: A Beginner’s Guide

Doctrine_Manager class, 118, 400
Doctrine_Pager class, 201, 203, 238
Doctrine_Pager_Layout class, 203, 206
Doctrine_Query class, 119, 399, 401
Doctrine Query Language (DQL), 107, 118
Doctrine_Record class, 118
Doctrine tool, 22

adding, updating, and deleting records, 120–121
autoloading, 116–118
database queries, 390–391
installing, 107–109
model generation, 113–115
model relationships, 115–116
query caches, 399–401, 410
record retrieval, 118–120, 122

documentation, 7
Dojo autocomplete widget, 368

controllers, 371
forms, 368–369
master layout, 370
view helper, 369–370

dojo.data.ItemFileReadStore datastore, 361
dojo.data.ItemFileWriteStore datastore, 361
Dojo Toolkit, 7, 346, 361

data, 361–362
form elements, 365–367
view helpers, 362–365

dojoAction() method, 361
dollar ($) symbols in locales, 273
DOMDocument class, 315
DOMElement class, 315
DOMXPath class, 315
Don't Repeat Yourself (DRY) maxim, 106
double post problem, 137
DQL (Doctrine Query Language), 107, 118
DRY (Don't Repeat Yourself) maxim, 106
DSN (Data Source Name), 117–118
<dt> element, 95, 98
dump() method, 254
DuplicateFileException class, 244

E
EC2, 3
Editor view helper, 364
efficiency, 264
email addresses

updating, 90
validity checks, 74

EmailAddress validator, 78

EMERG log level, 257
enable() method, 370
enableView() method, 363, 370
Encrypt filter, 73, 211
$_ENV variable, 254
environment locale, 276
ERR log level, 257
error handling

default process, 246–249
error pages, 252–254
exception classes, 249–251
exception overview, 242–246
exception visibility, 251
logging data. See logging data
summary, 268–269

error messages for forms, 50, 91–92
error pages, 252–254
errorAction() method, 246–247, 250–251, 265–266
ErrorController class, 246–247, 250–251, 265–266
Errors decorator, 95
escape() method, 126
escaping output, 126–127
ExampleController class, 51–52, 82
Exception class, 244–246
exceptions

custom classes, 249–251
logging, 263–265
overview, 242–246
visibility, 251

exchange rates, 285
ExcludeExtension validator, 78, 211
ExcludeMimeType validator, 78, 211
execute() method, 203
Exists validator, 78, 211
EXPLAIN keyword, 392
Extension validator, 78, 211

F
facilities for log events, 258
factory() method

Square_Log_Writer_Doctrine, 265
Zend_Cache, 394

failAction() method, 247, 249
fat model, skinny controller approach, 105–106
feedAction() method, 313–318
fetch() method

MemberModel, 103
patterns, 105

fetchAll() method, 103

Index 435

fetchArray() method, 190
fields

forms, 55–57, 60–61, 63–65
index join, 403
required, 403
search, 182

Fieldset decorators, 95
File cache backend, 396
File cache frontend, 395
file uploads

fields, 60–61
working with, 209–212

$_FILES superglobal, 209
FilesSize validator, 78, 211
filter-based database queries vs. full-text search, 192
filter_var() function, 74
FilteringSelect view helper, 364
filters

chaining, 79–81
forms, 52, 70–73, 135
record retrieval, 119
uploaded files, 210–211

find() method
Doctrine, 118, 155
DQL, 121
Zend_Search_Lucene, 184, 190

findAll() method, 118
findBy() method, 351, 359
findCheapestShippingProvider() method, 396
Firebug console, 263, 389–391
500 exceptions, 248, 253
FlashMessenger tool, 87, 358
Float validator, 77
fluent interfaces, 119
fonts, copyrighted, 84
foreign key relationships, 116
Form_Example class, 53–69

decorators, 96–98
display groups, 93–94
Dojo forms, 365–367
error messages, 91–92
input filters, 70–72
input validators, 73–77
uploaded files, 209–213

Form_Item_Create class, 51
formAction() method

ExampleController, 52, 82
Sandbox_ExampleController, 210

formats
date, 153
log messages, 255, 257

news feeds, 313
formatting log messages, 259–263
FormElements decorator, 95
FormErrors decorator, 95
forms

basics, 48–52
buttons, 61–63
configuration, 227–229
contact, 82
controllers and views, 86–88
date input, 153
decorators, 94–99
defining, 82–85, 130–136
display groups, 93–94
Dojo, 365–369
element creation, 53–55
error messages, 50, 91–92
file uploads, 60–61, 209–215
filter chains, 79–81
Hash and CAPTCHA fields, 63–65
input filters, 70–73
input retrieval and processing, 81–82
input validators, 73–81
localization targets, 299–300
login, 161–162
master layouts, 88–89
namespaces, 85
radio buttons and checkboxes, 57–59
required and default values, 65–69
routes, 85–86
search, 174–177, 188–189
selection lists, 59–60
summary, 99–100
text and hidden fields, 55–57
update, 150–152
YUI calendar widget, 372–374

_forward() method, 337
404 exceptions, 124, 158, 248, 253
Fowler, Martin, 105
front controllers, 24, 27
frontends, cache, 395–397
full-text searches, 181–182

vs. filter-based database queries, 192
index actions and views, 186–187
index locations, 185
indexing data, 182–184
routes, 186
search action and views, 189–191
search form, 188–189
searching data, 184–185
summary view, 188

436 Zend Framework: A Beginner’s Guide

full version, 9
Function cache frontend, 395

G
GData APIs, 3
generateModelsFromDb() method, 114–116
generic client Web service implementations,

325–328
geocode() method, 326
GeoCoder Web service, 325
GET actions, 156

HTTP, 320
REST-based Web services, 336–338
REST routes, 333

get() method
date and time, 280
Zend_Registry, 302
Zend_Rest_Client, 327

getAction() method
Api_CatalogController, 335, 337–338
Sandbox_RestController, 333

getCache() method, 399
getCode() method, 244
getContainer() method, 359
getContent() method, 315
getCountries() method, 135–136
getDateCreated() method, 315
getDateModified() method, 315
getDescription() method, 315
getDomDocument() method, 315
getElapsedSecs() method, 388
getElement() method, 315
getEnv() method, 254
getFile() method, 244
getGrades() method

Square_Form_ItemCreate, 135–136
Square_Form_Search, 176

getHelper() method, 358
getIdentity() method, 160
getInvokeArg() method, 187
getItem() method, 406–407
getLabel() method, 348
getLanguage() method, 275
getLastRequest() method, 328
getLastResponse() method, 328
getLine() method, 244
getLink() method, 315
getMessage() method, 244

getMessages() method
FlashMessenger, 87
Zend_Form, 81

getParam() method, 40
getParams() method, 254
getQuery() method, 388
getQueryProfiles() method, 388
getRegion() method, 275
getRel() method, 348
getResource() method, 238
getResultArray() method, 164
getRev() method, 348
getServer() method, 254
getSql() method, 120
getTimezone() method, 282
getTitle() method, 315
getTrace() method, 244
getTraceAsString() method, 244
getTransferAdapter() method, 216
getTranslationList() method, 279
getTypes() method, 135–136
getUnfilteredValues() method, 81
getValues() method, 81, 210, 214
getVideoFeed() method, 324
getVisibility() method, 348
getXpath() method, 315
glob() function, 217
GNU gettext, 291–292
Google Data APIs, 7
granting access, 170
GreaterThan validator, 78
groupBy() method, 119
groups

display, 93–94
retrieval results, 119

Gutmans, Andi, 3

H
handleInputDisplayOnSelect() function, 153, 156
Hartjes, Chris, 106
Hash fields for forms, 63–65
Hash validator, 78, 211
hasIdentity() method, 160, 168
hasMany() method, 115
hasOne() method, 115
header() method, 318
HeadLink view helper, 374–375, 377
HeadScript view helper, 374–375, 377

Index 437

helper brokers, 358
helpers, view, 362–365, 369–370
Hex validator, 77
hidden fields for forms, 55–57
HorizontalSlider view helper, 364
Hostname validator, 78
.htaccess file, 27, 251
HtmlEntities filter, 73, 135
htmlentities() function, 70
HtmlTag decorators, 95, 153
HTTP POST method, 320
HTTP remote requests, 369
httpd.conf file, 13
httpd-vhosts.conf file, 13

I
Iban validator, 78
Identical validator, 77
IETF (Internet Engineering Task Force)

standard, 313
IGNORE keyword, 402–403
image buttons, 62
image uploads. See uploaded files
ImageSize validator, 78, 211
Imind Doctrine profiler, 390–391
Imind_Profiler_Doctrine_Firebug class, 390
Imind project, 390
import() method, 315
importArray() method, 317–318, 337
importFile() method, 316
importString() method, 316
InArray validator, 77, 204
include() method, 226, 405
include_once() function, 404
index join fields, 403
index pages

applications, 35
default, 28–30

index.php script, 27
index.phtml file, 35
indexAction() method

Api_CatalogController, 335–337
Catalog_AdminItemController, 146, 201–206
ConfigController, 231–233
ContactController, 86–87, 90, 235–236, 238
IndexController, 28, 35, 37
ListingController, 24–25
LocaleController, 306–307
NewsController, 28, 328–329, 408–409

PostController, 28
Sandbox_ExampleController, 183
Sandbox_RestController, 333

IndexController class, 27–28, 35, 37
indexes

actions, 186–187
database records, 201–204
indexing process, 182–184
locations, 185

INFO log level, 257
inheritance chains, 106
ini_set() function, 15
init() method, 142

Api_CatalogController, 335
Catalog_ItemController, 122–123, 194
ConfigController, 231
ContactController, 86–87
Form_Example, 53–77, 91–92, 97–98, 209,

212–213, 365–367
Form_Item_Create, 51
IndexController, 28
LoginController, 165
Sandbox_ExampleController, 192
Square_Form_Configure, 228–229
Square_Form_Contact, 83–84, 299, 368–369
Square_Form_ItemCreate, 130–136, 213–214
Square_Form_ItemUpdate, 150–152,

372–374
Square_Form_Login, 161–162
Square_Form_Search, 175–176, 188–189
StaticContentController, 40

_initCache() method, 406
initContext() method, 194
_initDatabase() method, 388–390
_initDoctrine() method, 117–118, 390–391
_initDojo() method, 370
initializing

application database, 109–113
Dojo view helper, 369–370
REST routes, 340–342

_initLocale() method, 275–277, 294, 307
_initNavigation() method, 352, 357
_initRoutes() method, 340–341
_initTranslate() method, 293–294, 302
innerJoin() method, 119
input, form

dates, 153
filters, 70–73
retrieving and processing, 81–82
validators, 73–81

INSERT...SELECT syntax, 402–403

438 Zend Framework: A Beginner’s Guide

installation
Doctrine, 107–109
Zend Framework, 8–10

Int filters, 73
Int validator, 77
internationalization, 5
Internet Engineering Task Force (IETF) standard, 313
interoperability of applications, 6–7
"Invalid input" error, 126
Ip validator, 78
is_numeric() function, 74
is_uploaded_file() method, 209
IsCompressed validator, 78, 211
IsImage validator, 78, 211
isValid() method

Square_Form_Contact, 87
Zend_Auth_Result, 160
Zend_Filter_Input, 124
Zend_Form, 81, 155

ItemController class, 138
itemSearch() method, 325

J
joining tables, 119–120
joins vs. subqueries, 401–402
jQuery toolkit, 346
JSON helper, 358

K
KCacheGrind tool, 385
keys for forms, 63
keywords in full-text searches, 181–182
KISS (Keep It Simple, Stupid!) principle, 403

L
Label decorator, 95
languages in locales, 273–274
layouts

master. See master layouts
overview, 25–26

lazy loading, 116, 404–405
LeClerc, Eric, 116
leftJoin() method, 119

LessThan validator, 78
libraries

adding, 13
Yahoo! User Interface Library, 372

library/ directory, 9, 13
lifetime attribute for caches, 393
Links helper, 354
list actions, 146–148
listAction() method, 193, 337
ListingController class, 24–25
ListingModel class, 21
load() method, 395
loading

cache data, 395
Doctrine, 116–118
lazy, 404–405

locale identifiers, 273–274
localeAction() method, 274–275, 292–293
LocaleController class, 306–307
localization and locales, 272

application settings, 274–277, 294
currencies, 282–285
dates and times, 279–282
manual selection, 306–307
master layouts, 307–308
measurements, 285–287
numbers, 277–279, 294–295
overview, 272–274
strings, 287–294, 298–300
translation object registration, 302–305
translation sources, 300–301

LocalizedToNormalized filters, 73
log() method, 255–256
logAction() method, 254–262
logging data, 254

adding data to log messages, 259
error controllers, 265–268
formatting log messages, 259–263
log location, 263–264
log writers, 264–265
writing log messages, 254–259

loginAction() method, 162, 165–166, 168
LoginController class, 162, 165–167
logins

actions and views, 165–166
authentication adapters, 162–164
forms, 161–162
routes, 161

logout actions, 167

Index 439

logoutAction() method, 167
loosely coupled architectures, 3, 5–6
LowerCase filters, 73, 211
lowercased translation keys, 306
Lurz, Matthew, 265

M
manual locale selection, 306–307
many-to-many relationships, 115–116
market credibility, 6
master layouts, 33

administrative actions, 142–144
applications, 36–37, 42–44
configuration files, 233–235
CRUD operations, 168–169
Dojo autocomplete widget, 370
forms, 88–89
localization, 307–308
news feeds, 331–332
search, 179–181
storage, 39
YUI calendar widget, 374–375

Md5 validator, 78, 211
measureAction() method, 285–287
measurement locales, 285–287
MemberModel class, 103
Memcached cache backend, 396
memory caches

vs. disk caches, 399
example, 405–406

menus
navigation structures, 352–353
navigation view helpers, 359–360

methods, 24
chaining, 54
SOAP, 322

Microsoft CardSpace, 7
MimeType validator, 78, 211
minimal version, 9
MissingFileException class, 244
mktime() function, 279
Model-View-Controller (MVC) pattern, 3, 21

controllers, 23–24
models, 21–22
views, 22–23

models, 102
application database, 109–113

controllers, 122–124
generating, 113–115
module creation, 122
MVC patterns, 21–22
overview, 102–105
patterns, 105
record retrieval, 118–120, 122
relationships, 115–116
routes, 122
scope, 105–106
summary, 127–128
views, 124–127

module attribute, 37
modules

creating, 122
default, 33
overview, 24–25
REST-based Web services, 334

mooTools toolkit, 346
move_uploaded_file() method, 209
multipart/form-data type, 61
multiple output types, 192–193
multiple-selection lists, 59–60
MVC (Model-View-Controller) pattern, 3, 21

controllers, 23–24
models, 21–22
views, 22–23

MySQL databases
initializing, 109–113
table names, 111

N
names

controllers, actions, and views, 34
database tables, 111

namespaces for forms, 85
navAction() method, 347–348, 350–351
navigation structures, 346

action helpers, 358–359
Breadcrumbs, 353–354
Links, 354
menu view helpers, 359–360
menus, 352–353
pages and containers, 346–351, 355–357
registering navigation objects, 357
rendering, 351–355
Sitemap helpers, 354–356

440 Zend Framework: A Beginner’s Guide

news feeds
consuming, 313–317
controllers and views, 328–331
creating, 317–319
formats, 313
master layouts, 331–332
routes, 328
Twitter and blog search integration,

328–332
working with, 312–313

NewsController class, 28, 328–329, 408–409
NormalizedToLocalized filters, 73
NotEmpty validator, 67, 77, 84
NOTICE log level, 257
numberAction() method, 278–279
numbers

localizing, 277–279, 294–295
testing for, 74

NumberSpinner view helper, 364

O
object-oriented programming (OOP) architecture, 4
Object-Relational Mapping (ORM) tool, 22, 107
objects in SOAP, 322
OCR (optical character recognition) algorithms, 84
one-to-many relationships, 115
one-to-one relationships, 115
OOP (object-oriented programming) architecture, 4
opcode caching, 392
open() method, 184
open-source project, 5
O'Phinney, Matthew Weier, 116, 153
optical character recognition (OCR) algorithms, 84
optimizing performance. See performance
orderBy() method, 119
ordering retrieval results, 119
ORM (Object-Relational Mapping) tool, 22, 107

P
Page cache frontend, 395
page-level caching, 392
“Page not found” error, 126
pageAction() function, 348
pages and pagination, 200–201

index controllers and views, 201–204
navigation, 355–357

overview, 346–351
routes, 201

parse() method, 184
patterns

form validation, 74
models, 105

PEAR Benchmark class, 385, 387
PEAR Services_ExchangeRates package, 285
percentage (%) symbols in log messages, 259
performance

application code. See application code
optimization

benchmarking, 382–384
caches. See caches
code profiling, 384–387
query profiling, 387–392
refactoring model methods, 410

PHP benefits, 2–3
php.ini configuration file, 87
populate() method, 156
POST actions, 155

file uploads, 209
HTTP, 320
REST-based Web services, 339
REST routes, 333

post() method, 327
$_POST variable, 50
postAction() method

Api_CatalogController, 335, 339
Sandbox_RestController, 333

PostController class, 28
postDispatch() method, 144, 358
<pre> tag, 254
preDispatch() method, 142–143, 358

Catalog_AdminItemController, 167–168
ConfigController, 231, 233
description, 144
Square_Controller_Action_Helper_

Navigation, 359
preg_match() function, 74
priority of log messages, 256
processing form input, 81–82
production environments, exceptions in, 251–252
profiles, project, 16
profiling

code, 384–387
query, 387–392

Propel tool, 22, 107
protectedAction() method, 160
protecting administrative actions, 167–168

Index 441

PUT actions
file uploads, 209
HTTP, 320
REST routes, 333

put() method, 327
putAction() method

Api_CatalogController, 335
Sandbox_RestController, 333–334

Q
Qcodo tool, 107
queries

caching results, 406–408
Doctrine, 399–401
profiling, 387–392
tuning, 401–404

queryAction() method, 386–389

R
radio buttons for forms, 57–59
rapid release cycles, 6
reading configuration files, 222–224
Really Simple Syndication (RSS) format, 312–313
RealPath filters, 73
receive() method, 214, 216
records

adding, updating, and deleting, 120–121
paging and sorting, 201–208
retrieving, 118–120, 122

RecursiveIteratorIterator class, 351
RedBean tool, 107
Redirector helper, 358
refactoring model methods, 410
Regex validator, 78, 135
registering

navigation objects, 357
translation objects, 302–305

regular expressions for form validation, 74
relationships in models, 115–116
remote HTTP requests, 369
removeElement() method, 150
removeHelper() method, 358
Rename filter, 73
Rename validator, 211
rendering navigational elements, 351–355
renderMenu() method, 352

Representational State Transfer (REST) architecture,
320–322, 328

require() method, 227, 404
require_once() method, 404
required fields, 403
required values, 65–69
requirements for applications, 11
resources in SOAP, 322
REST (Representational State Transfer) architecture,

320–322, 328
REST-based Web services, 332

controllers, 334–335
GET actions, 336–338
modules, 334
POST actions, 339
routes, 332–334, 340–342

restAction() method, 327
result caches for queries, 406–408, 410
retrieval

form input, 81–82
records, 118–120, 122

reusability, 4
right joins, 120
route attribute, 37
routes, 33

administrative actions, 141–142
applications, 37–40
configuration files, 230
CRUD operations, 141–142, 144–145, 161
forms, 85–86
full-text searches, 186
login and logout, 161
models, 122
news feeds, 328
overview, 25
page numbers for, 201
REST-based Web services, 332–334, 340–342
sort criteria, 204
static content, 39–40

routing requests, 25
routing subsystems, 34
row-level locking mechanism, 403
RSS (Really Simple Syndication) format, 312–313

S
Sandbox_ExampleController class

administrative actions, 142
cache frontends and backends, 395–397

442 Zend Framework: A Beginner’s Guide

Sandbox_ExampleController class (continued)
cache manager, 398–399
cache operations, 393–394
caching Doctrine queries, 400–401
code profiling, 386–387
configuration files, 222–227
currency locales, 283–285
date and time locales, 279–282
Dojo, 361–362
exceptions, 247, 249
indexes, 183–184
locales overview, 274–277
logs, 254–262
measurement locales, 285–287
models, 104–105
multiple output types, 192–193
news feeds consumption, 313–317
news feeds creation, 317–319
number locales, 277–279
pages and containers, 347–348, 350–351
query profiling, 388–389
string locales, 287–288, 290–293
uploaded files, 210
user authentication, 159–160
Web services, 323–327

Sandbox_RestController class, 333–334
Savant template engine, 23
save() method

Doctrine, 155, 265
DQL, 121
forms, 137
MemberModel, 103–104
patterns, 105
Zend_Cache, 395

saveAction() method, 104–105
saveXml() method, 318
scope of models, 105–106
search() method, 329
searchAction() method, 194–195

Catalog_ItemController, 177–178, 189
Sandbox_ExampleController, 184

searches
controllers and views, 177–179
forms for, 174–177
full-text. See full-text searches
master layout, 179–181
summary, 196–197
XML, 194–196

selection lists in forms, 59–60
self-referencing relationships, 115

send() method
Zend_Feed, 318, 337
Zend_Mail, 87

sendAction() method, 28
$_SERVER array, 254, 276
server configuration, 404
service-specific client Web service implementations,

322–325
set_error_handler() function, 243
set_exception_handler() function, 243
set() method, 302
setAction() method, 53
setAttribs() method, 53
setAutoInsertNotEmptyValidator() method, 67
setCache() method, 406, 409
setCdnBase() method, 363
setCheckedValue() method, 58
setData() method, 124
setDecorators() method, 96, 98, 177
setDefaults() method, 67
setDescription() method, 54
setDestination() method, 210, 216
setElementDecorators() method, 177
setEnctype() method, 61
setEventItem() method, 259–260, 266
setFacility() method, 258
setFormat() method, 284
setFormatter() method

Square_Log_Writer_Doctrine, 264
Zend_Log_Writer, 255

setImage() method, 62
setLabel() method, 54, 348
setLayout() method, 144
setLegend() method, 93
setLocale() method, 276, 289
setLocalPath() method, 363
setMessage() method, 92
setMethod() method, 53
setMultiFile() method, 61, 214
setMultiOptions() method, 58–59
setOptions() method, 54
setPartial() method, 352
setRel() method, 348
setRequired() method, 65, 67
setResultSetLimit() method, 185
setRev() method, 348
setTimezone() method, 282
setUncheckedValue() method, 58
setUp() method, 115–116
setValue() method, 67

Index 443

setValueDisabled() method, 214
setVisibility() method, 348
Sha1 validator, 78, 211
shared hosting environments, 15
Simple Object Access Protocol (SOAP), 312,

320–322, 328
SimpleXML class, 195, 327
single controllers, creating, 140
single-selection lists, 59–60
Sitemap helper, 354–356
Size validator, 78, 211
skeletons, application, 11
small transactions, 403–404
Smarty template engine, 23
SOAP (Simple Object Access Protocol), 312,

320–322, 328
soapAction() method, 325
sorting records, 204–208
 element, 176
Sqlite cache backend, 396
SQS Web services, 3
SQUARE administration panel, 140
Square_Auth_Adapter_Doctrine class, 163–164
Square_Controller_Action_Helper_Navigation

class, 359
SQUARE example application, 11
Square_Form_Configure class, 228–229
Square_Form_Contact class, 83–84, 87, 299, 368–369
Square_Form_ItemCreate class, 130–136, 213–214
Square_Form_ItemUpdate class, 150–152, 372–374
Square_Form_Login class, 161–162
Square_Form_Search class, 175–177, 188–189
Square_Log_Writer_Doctrine class, 264–265
Square_Model_Item class, 116, 406–407
StackContainer view helper, 364
stacking filters, 79–81
standards compliance, 4
start() method, 385
starting projects, 10–16
Static cache backend, 396–397
static content

controllers, 40
routes, 39–40

StaticContentController class, 39–40
stop() method, 385
storing configuration files, 230
string-transposition operations, 65
StringLength validator, 77
strings

localizing, 287–294, 298–300

testing for, 74
StringToLower filter, 73
StringToUpper filter, 73
StringTrim filter, 73, 135
strip_tags() function, 70
StripNewlines filter, 73
StripTags filter, 73
strtoupper() function, 306
structure

administrative actions, 140–141
navigation. See navigation structures

subqueries vs. joins, 401–402
successAction() method

Catalog_AdminItemController, 149–150, 155
Catalog_ItemController, 136–137
ConfigController, 232–233
ContactController, 86–87
LoginController, 166

summary view for full-text searches, 188
support, 5, 7
Suraski, Zeev, 3
switch-case() routine, 251
switching between production and development

environments, 251

T
TabContainer view helper, 364
table names, 111
tables

design, 404
joining, 119–120
transient data and calculations, 402–403

Technorati services, 7
template files, 36–37
temporary tables, 402–403
Test cache backend, 396
text fields

forms, 55–57
full-text searches, 182

Textarea view helper, 364
TextBox view helper, 364
third-party application interoperability, 6–7
Ticket model, 103
times, localizing, 279–282
TimeTextBox view helper, 364
timezones, 282
title() method, 317
toArray() method, 362

444 Zend Framework: A Beginner’s Guide

toCurrency() method, 283
toJson() method, 362
toNumber() method, 277–278, 295
transaction size, 403–404
transient data and calculations, 402–403
translate() function, 306
translateAction() method, 288, 290–291
translation files, 287–288

adapters and data sources, 289–291
application locale, 291–293
data sources, 300–301
view helpers, 293–294

translation keys, 306
translation objects, registering, 302–305
translation strings, caching, 406
try blocks, 242–245
Twitter services, 7

blog search integration, 328–332
caching feeds, 408–409

Two_Levels cache backend, 396

U
ucfirst() function, 306
 element, 95
underscores (_) in locales, 273
UnIndexed fields in full-text searches, 182
unique identifier attribute for caches, 393
UNIQUE keyword, 403
unit testing policies, 6
UnStored fields in full-text searches, 182
update forms, 150–152
update() method, 105, 121
update URLs, 145
updateAction() method, 153–155, 375–376
updating

application configuration files, 37
display actions, 157–158
records, 120–121, 154–157

uploaded files, 209–212
create action, 215–216
delete action, 218–221
destination, 213
form definitions, 213–215

upper camel-casing, 111
UpperCase filters, 73, 211
url() method, 38, 42–43, 88, 148, 179–180
URLs

forms, 136

routes, 39–40, 144–145
sorting criteria, 206, 208
validity checking, 74

user access control, 170
user authentication, 158–160, 170
user interface elements

Dojo Toolkit, 361–371
navigation structures. See navigation structures
overview, 346
YUI calendar widget, 372–378

useResultCache() method, 401
UTF-8 encoding, 301

V
validation tests in forms, 50
ValidationTextBox view helper, 364
validators, 52

input, 73–81
uploaded files, 210–211

var_dump() function, 254
VerticalSlider view helper, 364
view helpers, Dojo, 362–365, 369–370
ViewHelper decorators, 95
ViewRenderer helper, 358
views

applications, 41–42
configuration files, 231–233
CRUD operations, 136–139, 146–148,

154–157
forms, 86–88
full-text searches, 186–187, 189–191
logins, 165–166
models, 124–127
MVC patterns, 22–23
naming conventions, 34
news feeds, 328–331
pagination, 201–204
search, 177–179
XML, 194–196
YUI calendar widget, 377–378

virtual hosts, 13–14
visibility of exceptions, 251

W
WARNING log level, 257
WCAT (Web Capacity Analysis Tool), 383–384
WDDX (Web Distributed Data eXchange), 312

Index 445

Web browser caches, 392
Web Capacity Analysis Tool (WCAT), 383–384
Web Distributed Data eXchange (WDDX), 312
Web Service Description Language (WSDL) file,

320–321, 326
Web services, 7

consuming, 322–328
overview, 319–322
REST-based, 332–343

Webgrind files, 385
where() method, 119
wildcards for required fields, 403
WinCacheGrind tool, 385
WordCount filter, 211
WordCount validator, 78
_write() method

Square_Log_Writer_Doctrine, 264–265
Zend_Log_Writer_Abstract, 259, 264
Zend_Log_Writer_Doctrine, 265

writing
configuration files, 224–227
log messages, 254–259

WSDL (Web Service Description Language) file,
320–321, 326

X
XCache cache backend, 396
Xdebug profiler, 384–385
xdebug.profiler_output_dir variable, 385
xdebug.trace_output_dir variable, 385
XML

configuration files, 225–227
context, 194
log data, 261–263
with SOAP, 320
views, 194–196

XPath queries, 327

Y
Yahoo! services, 7
Yahoo! User Interface Library (YUI), 372
YahooFlickr services, 7
youtubeAction() method, 324
YUI (Yahoo! User Interface Library), 372
YUI calendar widget, 372

controller, 375–377

forms, 372–374
master layout, 374–375
views, 377–378

Z
Zend_Application_Bootstrap_Bootstrap class, 238
Zend_Auth class, 3, 159–162, 168, 170
Zend_Auth_Adapter_DbTable class, 162–163
Zend_Auth_Adapter_Interface class, 160, 162
Zend_Auth_Result class, 160, 164
Zend_Auth_Storage_Interface class, 159
Zend_Cache class, 3, 392–395, 399, 406
Zend_Cache_Manager class, 398–399, 405
Zend_Config class, 222, 225, 349–350
Zend_Config_Writer class, 224, 233
Zend_Config_Writer_Array class, 227
Zend_Config_Writer_Xml class, 225
Zend_Config_Xml class, 223
Zend_Controller_Action class, 24, 333
Zend_Controller_Request_Http class, 254
Zend_Currency class, 5, 282–285
Zend_Date class, 5, 275, 279–282, 295
Zend_Db_Adapter class, 107, 256
Zend_Db_Adapter_Abstract class, 160
Zend_Db class, 22, 162–163, 387–388
Zend_Db_Profiler class, 387–388
Zend_Db_Profiler_Firebug class, 389
Zend_Db_Profiler_Query class, 388
Zend_Db_Table class, 107
Zend_Debug class, 242, 254
Zend_Doctrine_Manager class, 399
Zend_Dojo class, 346, 362, 365
Zend_Dojo_Data class, 362, 371
Zend_Dojo_Form_Element class, 365
Zend_Dojo_Form_Element_ classes, 366
Zend_Exception class, 246
Zend_Feed class, 312, 316–318, 337
Zend_Feed_Reader class, 312–313, 315–316, 329, 409
Zend_Feed_Reader_Feed_Atom class, 315
Zend_Feed_Reader_Feed_Rss class, 315
Zend_Feed_Writer class, 318
Zend_File_Transfer class, 209, 214
Zend_Filter class, 70, 79
Zend_Filter_Input class, 124
Zend_Form class

decorators, 95, 177
file uploads, 210
form creation and validation, 51–53

446 Zend Framework: A Beginner’s Guide

Zend_Form class (continued)
input forms, 83
localization, 275, 294, 299
updates, 150, 155–156

Zend_Form_Decorator_Abstract class, 98
Zend_Form_Element_ class list, 56
Zend_Form_Element class, 365
Zend_Form_Element_Button class, 62
Zend_Form_Element_Captcha class, 63–64, 84
Zend_Form_Element_Checkbox class, 57–58
Zend_Form_Element_File class, 60–61, 214, 216
Zend_Form_Element_Hash class, 63
Zend_Form_Element_Image class, 62
Zend_Form_Element_MultiCheckbox class, 58
Zend_Form_Element_MultiSelect class, 59
Zend_Form_Element_Password class, 55
Zend_Form_Element_Radio class, 57–58
Zend_Form_Element_Reset class, 61
Zend_Form_Element_Select class, 59
Zend_Form_Element_Submit class, 61
Zend_Form_Element_Text class, 55
Zend_Form_Element_Textarea class, 55
Zend Framework Certification program, 7
Zend_Gdata class, 323–324
Zend_Locale class, 5, 274–277, 281, 304, 406
Zend_Locale_Format class, 277–278, 295
Zend_Log class, 242, 254–260, 264, 266
Zend_Log_Formatter class, 255
Zend_Log_Formatter_Firebug class, 256
Zend_Log_Formatter_Simple class, 256, 259–261
Zend_Log_Formatter_Xml class, 256, 261
Zend_Log_Writer class, 255
Zend_Log_Writer_Abstract class, 259, 264
Zend_Log_Writer_Db class, 256, 264
Zend_Log_Writer_Doctrine class, 265
Zend_Log_Writer_Firebug class, 256
Zend_Log_Writer_Mail class, 256–257
Zend_Log_Writer_Mock class, 256
Zend_Log_Writer_Null class, 256
Zend_Log_Writer_Stream class, 256
Zend_Log_Writer_Syslog class, 256, 258

Zend_Mail class, 87, 90, 257
Zend_Measure class, 285–286
Zend_Measure_Length class, 285
Zend_Navigation class, 346, 349, 351
Zend_Navigation_Page class, 346–349, 351
Zend_Navigation_Page_Mvc class, 348
Zend_Navigation_Page_Uri class, 348
Zend_Paginator class, 201
Zend_Registry class, 238, 302, 398
Zend_Rest_Client class, 312, 325–327
Zend_Rest_Controller class, 312, 332–334
Zend_Rest_Route class, 332–334, 341
Zend_Search_Lucene class, 181–185, 190
Zend_Search_Lucene_Document class, 183
Zend_Search_Lucene_Field class, 183
Zend_Search_Lucene_Search_QueryHit class, 184
Zend_Search_Lucene_Search_QueryParser

class, 184
Zend_Service_ classes, 323
Zend_Service class, 312
Zend_Service_Amazon class, 324–325
Zend_Service_Amazon_Item class, 325
Zend_Service_Delicious class, 323
Zend_Service_Twitter class, 329
Zend_Soap_Client class, 325–326
Zend_Soap_Client_Response class, 326–327
Zend_Translate_Adapter_ adapters, 289
Zend_Translate class, 5, 287–294, 299, 302–304,

351, 406
Zend_Validate class, 74, 79
Zend_View class, 23, 370
Zend_View_Interface class, 23
ZendServer class, 396
zeroes in dates, 153
zf.bat script, 9
zf create project command, 11–12
zf.php script, 9–10
zf.sh script, 9–10
zf show phpinfo command, 15
zf show profile command, 16
zf show version command, 14, 16

	Contents
	Foreword
	Acknowledgments
	Introduction
	1 Introducing the Zend Framework
	Overview
	Features
	Standards Compliance and Best Practices
	Reusability
	Internationalization
	Open Source
	Community Support

	Unique Advantages
	Loose Coupling
	Rapid Release Cycle
	Unit Testing Policy
	Code-Generation Tools
	Market Credibility
	Third-Party Application Interoperability
	Commercial Support Options
	Extensive Documentation

	Application Environment
	Installing the Zend Framework
	Try This 1-1: Starting a New Project
	Understand Application Requirements
	Create the Application Directory
	Create the Application Skeleton
	Add Zend Framework Libraries
	Define Virtual Host Settings

	Using the Command-Line Tool
	Summary

	2 Working with Models, Views, Controllers, and Routes
	Understanding Basic Concepts
	Models
	Views
	Controllers
	Modules
	Routes
	Layouts

	Understanding Component Interaction
	Looking Behind the Default Index Page

	Understanding the Modular Directory Layout
	Try This 2-1: Using a Modular Directory Layout
	Creating the Default Module
	Updating the Application Configuration File

	Understanding Master Layouts and Custom Routes
	Updating the Application Index Page
	Setting a Master Layout
	Using a Custom Route

	Try This 2-2: Serving Static Content
	Defining Custom Routes
	Defining the Controller
	Defining the View
	Updating the Master Layout

	Summary

	3 Working with Forms
	Understanding Form Basics
	Creating Forms and Form Elements
	Working with Form Elements
	Setting Required and Default Values

	Filtering and Validating Form Input
	Using Input Filters
	Using Input Validators
	Retrieving and Processing Form Input

	Try This 3-1: Creating a Contact Form
	Defining the Form
	Using a Custom Namespace
	Defining a Custom Route
	Defining Controllers and Views
	Updating the Master Layout

	Customizing Form Appearance
	Using Custom Error Messages
	Using Display Groups
	Using Decorators

	Summary

	4 Working with Models
	Understanding Models
	Model Patterns
	Model Scope

	Installing Doctrine
	Try This 4-1: Generating and Integrating Doctrine Models
	Initializing the Application Database
	Generating Doctrine Models
	Setting Model Relationships
	Autoloading Doctrine

	Working with Doctrine Models
	Retrieving Records
	Adding, Updating, and Deleting Records

	Try This 4-2: Retrieving Database Records
	Creating a New Module
	Defining a Custom Route
	Defining the Controller
	Defining the View

	Summary

	5 Handling CRUD Operations
	Try This 5-1: Creating Database Records
	Defining the Form
	Defining Controllers and Views

	Working with Administrative Actions
	Structure
	Routing

	Layout
	Try This 5-2: Listing, Deleting, and Updating Database Records
	Setting the Administrative Layout
	Defining Custom Routes
	Defining the List Action and View
	Defining the Delete Action
	Defining the Update Form
	Defining the Update Action and View
	Updating the Display Action

	Adding User Authentication
	Try This 5-3: Creating a Login/Logout System
	Defining Custom Routes
	Defining the Login Form
	Defining the Authentication Adapter
	Defining the Login Action and View
	Defining the Logout Action
	Protecting Administrative Actions
	Updating the Master Layout

	Summary

	6 Indexing, Searching, and Formatting Data
	Try This 6-1: Searching and Filtering Database Records
	Defining the Search Form
	Defining the Controller and View
	Updating the Master Layout

	Adding Full-Text Search
	Indexing Data
	Searching Data

	Try This 6-2: Creating a Full-Text Search Engine
	Defining the Index Location
	Defining Custom Routes
	Defining the Index Action and View
	Updating the Summary View
	Updating the Search Form
	Updating the Search Action and View

	Handling Multiple Output Types
	Try This 6-3: Expressing Search Results in XML
	Enabling the XML Context
	Defining the XML View

	Summary

	7 Paging, Sorting, and Uploading Data
	Try This 7-1: Paging and Sorting Database Records
	Adding Page Numbers to Routes
	Updating the Index Controller and View
	Adding Sort Criteria to Routes
	Updating the Controller and View

	Working with File Uploads
	Try This 7-2: Enabling Image Uploads
	Defining the Upload Destination
	Updating the Form Definition
	Updating the Create Action
	Updating the Display Action and View
	Updating the Delete Action

	Working with Configuration Data
	Reading Configuration Files
	Writing Configuration Files

	Try This 7-3: Configuring Application Settings
	Defining the Configuration Form
	Defining the Configuration File
	Defining Custom Routes
	Defining the Controller and View
	Updating the Master Layout
	Using Configuration Data

	Summary

	8 Logging and Debugging Exceptions
	Understanding Exceptions
	Understanding the Default Error-Handling Process
	Using Custom Exception Classes
	Controlling Exception Visibility

	Try This 8-1: Creating a Custom Error Page
	Logging Data
	Writing Log Messages
	Adding Data to Log Messages
	Formatting Log Messages

	Try This 8-2: Logging Application Exceptions
	Defining the Log Location
	Defining the Database Log Writer
	Updating the Error Controller

	Summary

	9 Understanding Application Localization
	Understanding Localization and Locales
	Setting the Application Locale

	Localizing Numbers
	Localizing Dates and Times
	Localizing Currencies
	Localizing Measurements
	Localizing Strings
	Working with Adapters and Data Sources
	Using the Application Locale
	Using the Translation View Helper

	Try This 9-1: Localizing the Example Application
	Setting the Application Locale
	Localizing Numbers and Dates
	Defining String Localization Targets
	Creating Translation Sources
	Registering the Translation Object
	Supporting Manual Locale Selection
	Updating the Master Layout

	Summary

	10 Working with News Feeds and Web Services
	Working with News Feeds
	Understanding News Feed Formats
	Consuming News Feeds
	Creating News Feeds

	Accessing Web Services
	Understanding Web Services
	Consuming Web Services

	Try This 10-1: Integrating Twitter and Blog Search Results
	Defining Custom Routes
	Defining the Controller and View
	Updating the Master Layout

	Creating REST-Based Web Services
	Understanding REST Routes

	Try This 10-2: Implementing REST-Based Web Services
	Creating a New Module
	Defining the Controller
	Defining the GET Actions
	Defining the POST Action
	Initializing the REST Routes

	Summary

	11 Working with User Interface Elements
	Working with Navigation Structures
	Understanding Pages and Containers
	Rendering Navigational Elements

	Try This 11-1: Adding a Navigation Menu
	Defining Navigation Pages and Containers
	Registering the Navigation Object
	Creating the Navigation Action Helper
	Using the Menu View Helper

	Working with the Dojo Toolkit
	Handling Dojo Data
	Using the Dojo View Helpers
	Using Dojo Form Elements

	Try This 11-2: Adding a Dojo Autocomplete Widget
	Updating the Contact Form
	Initializing the Dojo View Helper
	Updating the Master Layout
	Updating the Controller

	Try This 11-3: Adding a YUI Calendar Widget
	Updating the Form
	Updating the Master Layout
	Updating the Controller
	Updating the View

	Summary

	12 Optimizing Performance
	Analyzing Performance
	Benchmarking
	Code Profiling
	Query Profiling

	Caching Data
	Understanding Cache Operations
	Understanding Cache Frontends and Backends
	Using the Cache Manager
	Caching Doctrine Queries

	Optimizing Application Code
	Query Tuning
	Lazy Loading

	Try This 12-1: Improving Application Performance
	Configuring the Application Cache
	Caching Translation Strings
	Caching Query Results
	Caching Twitter and Blog Feeds

	Summary

	A: Installing and Configuring Required Software
	Obtaining the Software
	Installing and Configuring the Software
	Installing on UNIX
	Installing on Windows

	Testing the Software
	Testing MySQL
	Testing PHP

	Setting the MySQL Superu-User Password
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

